TEWS &

The Embedded I/O Company TECHNOLOGIES

TIP6/70-SW-42

VxWorks Device Driver
Digital I/O

Version 2.0.x

User Manual

Issue 2.0.1
June 2008
TEWS TECHNOLOGIES GmbH TEWS TECHNOLOGIES LLC
Am Bahnhof 7 Phone: +49 (0) 4101 4058 0 9190 Double Diamond Parkway, Phone: +1 (775) 850 5830

25469 Halstenbek, Germany Fax: +49 (0) 4101 4058 19 Suite 127, Reno, NV 89521, USA Fax: +1 (775) 201 0347
www.tews.com e-mail: info@tews.com www.tews.com e-mail: usasales@tews.com

mailto:info@tews.com
mailto:usasales@tews.com

TEWS &<

TECHNOLOGIES

TIP670-SW-42

)) This document contains information, which is
VxWorks Device Driver proprietary to TEWS TECHNOLOGIES GmbH. Any
Digital 1/0 reproduction without written permission is forbidden.

Supported Modules:

TIP670
device described herein.

Issue Description

1.0 First Issue

1.1 General Revision

2.0.0 Carrier Support added, New File List, General Revision

Initialization functions changed (tip670Drv(), tip670DevCreate())

2.0.1 Carrier Driver description added

TIP670-SW-42 — VVxWorks Device Driver

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the

©1996-2008 by TEWS TECHNOLOGIES GmbH

Date
April 1996
September 17, 2003
August 22, 2006

June 24, 2008

Page 2 of 36

TEWS &<

TECHNOLOGIES

Table of Contents

1 INTRODUGCTION e et e e e e e e e e et e e e et e et e e eennns 4
O R B oA ot B V2= PP UPPRTRRRN 4

A | O O T g T=] g B A=) SRR UTUPPRTRRIN 5

2 INSTALLATION ..ttt et e et et e et e e et e e e aaeeeeanas 6
2.1 Include device driver in TOrnado IDE PrOjJECT ...uuuuiiiieeiiiiiiieeee e e e e ettt e e e e e s s sreae e e e e e e e e snnaneneeee s 6

2.2 Special installation for Intel X86 based targetS.....cccceiivicciiiiiii e 6

2.3 SYSLEmM reSOUICE FEOUIFEIMENT ..oiiii it e ettt e e e e et et e et e e e e e e e bbbt e e e e e e e e s anbbebeeeaeeeeasnnbeeneeaaans 7

2.4 Device driver CONFIGUIALIONciii ettt e e e e e e s e e e e e e e e e e sanbbeeeeaaeas 7

3 /O SYSTEM FUNCTIONS e e e 8
I TR 1 S Y 015 oV PP PRPP TP 8

I 1 Sy A0 BT O g =T LT (TP ERPT 10

4 /O FUNGCTIONS ..ottt e e et e et e et e e e et e e st e e aaneeeaans 14
o R oY o 1T o 1 I PP RUPT 14

A o] [11 = (PP RUPT 16

e T =T Uo () PSR 18

Y 1 =Y PSR 20

TSI o Tox { I PP P PP RRPT 22
451 670 _EVREAD ..ottt et e e nnree s 24

452 670 _WDENABLE ...ttt ettt e sttt sttt e e bt e e bb e e nnae s 27

4.5.3 670 _WDDISABLEooiiiiitiiie ettt ettt e e nnaeeas 28

454 670 _WDTRIGGER.......coii ittt ettt ettt ettt e e st e e s snbb e e e e snneeeas 29

455 870 _CTREAD ...ttt ettt et e ettt e e s ettt e e st e e e st e e a e e e nnreeas 30

N T (T O O IS T I A L PRSP 32

O A (1O T O 1S 1O] = PSPPSR 35

5 AP PENDIDX .ot ra e ee 36
5.1 AdditioNal ErrOr COUBS ...ttt ettt sttt e e st e e e st be e e s abbeeeeaneee 36

TIP670-SW-42 — VxWorks Device Driver Page 3 of 36

TEWS &<

TECHNOLOGIES

1 Introduction

1.1 Device Driver

The TIP670-SW-42 VxWorks device driver software allows the operation of the supported IPAC
conforming to the VxWorks 1/0O system specification. This includes a device-independent basic 1/O
interface with open(), close(), read(), write(), and ioctl() functions.

Special I/O operation that do not fit to the standard 1/O calls will be performed by calling the ioctl()
function with a specific function code and an optional function dependent argument.

The TIP670-SW-42 device driver supports the following features:

reading input value

setting output value

wait for selectable input events (match, high-, low-, any transition on the input line(s))
enable, disable and trigger output watchdog

start, read, and stop timers, which can be controlled by the user or by input lines

YVVVY

The TIP670-SW-42 supports the modules listed below:

TIP670-10 8 Channel Digital I/O IPAC
TIP670-20 4 Channel Digital I1/0 IPAC

To get more information about the features and use of supported devices it is recommended to read
the manuals listed below.

TIP670 User manual
TIP670 Engineering Manual
CARRIER-SW-42 IPAC Carrier User Manual

TIP670-SW-42 — VxWorks Device Driver Page 4 of 36

TEWS &<

TECHNOLOGIES

1.2 IPAC Carrier Driver

IndustryPack (IPAC) carrier boards have different implementations of the system to IndustryPack bus
bridge logic, different implementations of interrupt and error handling and so on. Also the different byte
ordering (big-endian versus little-endian) of CPU boards will cause problems on accessing the
IndustryPack 1/0 and memory spaces.

To simplify the implementation of IPAC device drivers which work with any supported carrier board,
TEWS TECHNOLOGIES has designed a so called Carrier Driver that hides all differences of different
carrier boards under a well defined interface.

The TEWS TECHNOLOGIES IPAC Carrier Driver CARRIER-SW-42 is part of this TIP670-SW-42
distribution. It is located in directory CARRIER-SW-42 on the corresponding distribution media.

This IPAC Device Driver requires a properly installed IPAC Carrier Driver. Due to the design of the
Carrier Driver, it is sufficient to install the IPAC Carrier Driver once, even if multiple IPAC Device
Drivers are used.

Please refer to the CARRIER-SW-65 User Manual for a detailed description how to install and setup
the CARRIER-SW-42 device driver, and for a description of the TEWS TECHNOLOGIES IPAC Carrier
Driver concept.

How to use the carrier driver in the application program is shown in the programming example
tip670exa.c.

If the IPAC carrier driver isn’t used for the IPAC driver setup, the application software has to setup
carrier board hardware, mapping of device memory and interrupt level setup by itself.

TIP670-SW-42 — VxWorks Device Driver Page 5 of 36

TEWS &<

TECHNOLOGIES

2 Installation

Following files are located on the distribution media:

Directory path ‘TIP670-SW-42"

tip670drv.c TIP670 device driver source

tip670def.h TIP670 driver include file

tip670.h TIP670 include file for driver and application
tip670exa.c Example application

include/ipac_carrier.h Carrier driver interface definitions
TIP670-SW-42-2.0.1.pdf PDF copy of this manual

Changelog.txt Release history

Release.txt Release information

2.1 Include device driver in Tornado IDE project

For including the TIP670-SW-42 device driver into a Tornado IDE project follow the steps below:

(1) Copy the files from the distribution media into a subdirectory in your project path.
(For example: ./TIP670)

(2) Add the device drivers C-files to your project.
Make a right click to your project in the ‘Workspace’ window and use the ‘Add Files ..." topic.
A file select box appears, and the driver files can be selected.

(3) Now the driver is included in the project and will be built with the project.

For a more detailed description of the project facility please refer to your Tornado User’s
Guide.

2.2 Special installation for Intel x86 based targets

The TIP670 device driver is fully adapted for Intel x86 based targets. This is done by conditional
compilation directives inside the source code and controlled by the VxWorks global defined macro
CPU_FAMILY. If the content of this macro is equal to 180X86 special Intel x86 conforming code and
function calls will be included.

TIP670-SW-42 — VxWorks Device Driver Page 6 of 36

TEWS &<

TECHNOLOGIES

2.3 System resource requirement

The table gives an overview over the system resources that will be needed by the driver.

Resource Driver requirement Devices requirement
Memory <1KB <1KB
Stack <1KB
Semaphores TIP670_MAX_ JOBS

Memory and Stack usage may differ from system to system, depending on the used compiler
and its setup.

The following formula shows the way to calculate the common requirements of the driver and devices.

<total requirement> = <driver requirement> + (<number of devices> * <device requirement>)

The maximum usage of some resources is limited by adjustable parameters. If the application
and driver exceed these limits, increase the according values in your project.

2.4 Device driver configuration

To configure the device driver behavior look for the definitions listed below. The definition is part of the
device driver header file tip670.h.

TIP670_MAX_JOBS

This definition defines the maximum number of available input event jobs for all TIP670 devices.
It's used by a global job list that is shared across all installed devices. The default setting is 10.

TIP670-SW-42 — VxWorks Device Driver Page 7 of 36

31/0O system functions

TEWS &<

TECHNOLOGIES

This chapter describes the driver-level interface to the 1/0 system. The purpose of these functions is to

install the driver in the 1/O system, add and initialize devices.

3.1 tip670Drv()

NAME

tip670Drv() - installs the TIP670 driver in the I/O system

SYNOPSIS

#include “tip670.h”

STATUS tip670Drv
(

)

void

DESCRIPTION

This function installs the TIP670 driver in the 1/0 system and allocates resources for job handling.

A call to this function is the first thing the user has to do before adding any device to the

system or performing any I/O request.

EXAMPLE

#i nclude "tip670.h”

STATUS result;

result = tip670Drv();
if (result == ERROR)
{
/* Error handling */

TIP670-SW-42 — VVXWorks Device Driver

Page 8 of 36

TEWS &<

TECHNOLOGIES

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

Error codes are only set by system functions. The error codes are stored in errno and can be read with
the function errnoGet().

SEE ALSO

VxWorks Programmer’s Guide: 1/0 System

TIP670-SW-42 — VxWorks Device Driver Page 9 of 36

TEWS &<

TECHNOLOGIES

3.2 tip670DevCreate()

NAME

tip670DevCreate() — Add a TIP670 device to the VxWorks system

SYNOPSIS

#include “tip670.h”

STATUS tip670DevCreate
(
char *name,
int devldx,
int funcType,
void *pParam
)
DESCRIPTION

This routine adds the selected device to the VxWorks system. The device hardware will be setup and
prepared for use.

This function must be called before performing any I/O request to this device.

PARAMETER

name

This string specifies the name of the device that will be used to identify the device, for example
for open() calls.

devldx

This index number specifies the device to add to the system.
The index number depends on the search priority of the modules. The modules will be searched
in the following order:

- TIP670-10

- TIP670-20

If modules of the same type are installed the channel numbers will be assigned in the order the
CARRIER driver function will find the devices.

TIP670-SW-42 — VxWorks Device Driver Page 10 of 36

TEWS &<

TECHNOLOGIES

Example: (A system with 2 TIP670-20, and 1 TIP670-10) will assign the following device

indices:
Module Device Index
TIP670-10 0
TIP670-20 (1% 1
TIP670-20 (2™ 2
funcType

This parameter is unused and should be set to 0.

pParam

This parameter points to a structure (TIP670_DEVCONFIG) containing the default configuration
of the device.

typedef struct

{
struct ipac_resource *ipac;
unsigned char inputPol;
unsigned char outputPol;
unsigned short watchDogTime;

} TIP670_DEVCONFIG;

ipac
Pointer to TIP670 module resource descriptor, retrieved by CARRIER Driver
ipFindDevice() function

inputPol
Specifies the input polarity of the input lines. Inverted inputs may be useful to select the
active level of an input line. For example a low active input pin will be recognized as a 1,
if the specified input pin is connected to a low level, and it will be read as 0, if the input is
pulled to a high level. A bit set to ‘0’ will be inverted, set to ‘1’ will not invert the input. Bit O
specifies the input polarity of input 1, bit 1 specifies the input polarity of input 2, and so
on.

outputPol

Specifies the output polarity of the output lines. Inverted output may be useful to select
the active output level of a line. For example a low active pin shall be set to active, if
inverted output is set. A bit set to ‘1’ will be inverted, set to ‘0O’ will not invert the output.
Bit 0 specifies the output polarity of output 1, bit 1 specifies the output polarity of output 2,
and so on.

watchDogTime

Specifies the output watchdog time. If there are no accesses to the TIP670 registers,
during the specified watchdog time the output will be disabled until a new access is
made. The time is set in 0.5usec units. If the watchdog time is set to 0 the watchdog is
disabled.

TIP670-SW-42 — VxWorks Device Driver Page 11 of 36

TEWS &<

TECHNOLOGIES

EXAMPLE

#i ncl ude <tip670. h>

STATUS result;
TI P670_DEVCONFI G ti p670Conf;

Create the device "/tip670/0" for the first TIP670 device
Devi ce specific paraneters nust be set up:

do not invert input and out put

di sabl e out put wat chdog

___ * |
ti p670Conf. i nput Pol = 0x00;
ti p670Conf. out put Pol = 0x00;
ti p670Conf. wat chDogTi ne = 0;
result = tip670DevCreate("/tip670/ 0",
0,
0,

(voi d*) & i p670Conf) ;
if (result == K

{
/* Device successfully created */
}
el se
{
/* Error occurred when creating the device */
}
RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

TIP670-SW-42 — VxWorks Device Driver Page 12 of 36

TEWS &<

TECHNOLOGIES

ERROR CODES

The error codes are stored in errno and can be read with the function errnoGety().

Error code Description
S_ioLib_NO_DRIVER Driver has not been installed (tip670Drv() not called)
EINVAL lllegal parameter value
EISCONN The device has been created before
ENOMEM Can't allocate device memory
SEE ALSO

VxWorks Programmer’s Guide: 1/O System

TIP670-SW-42 — VxWorks Device Driver Page 13 of 36

TEWS &<

TECHNOLOGIES

41/0 Functions
4.1 open|()

NAME

open() - open a device or file.

SYNOPSIS

int open

(
const char *name,
int flags,
int mode

)

DESCRIPTION

Before 1/0 can be performed to the TIP670 device, a file descriptor must be opened by invoking the
basic 1/0O function open().

PARAMETER

name

Specifies the device which shall be opened, the name specified in tip670DevCreate() must be
used

flags
Not used

mode
Not used

TIP670-SW-42 — VxWorks Device Driver Page 14 of 36

TEWS &<

TECHNOLOGIES

EXAMPLE

i nt fd;

fd = open("/tip670/0", 0, 0);
if (fd == ERROR)

{

/* handl e error */
}
RETURNS

A device descriptor number or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic 1/O routine - open()

TIP670-SW-42 — VxWorks Device Driver Page 15 of 36

4.2 close()

NAME

close() — close a device or file

SYNOPSIS
STATUS close
(

int fd
)
DESCRIPTION

This function closes opened devices.

PARAMETER

fd

TEWS &<

TECHNOLOGIES

This file descriptor specifies the device to be closed. The file descriptor has been returned by

the open() function.

EXAMPLE

i nt fd;
STATUS retval ;

retval = close(fd);
if (retval == ERROR)
{

/* handl e error */

TIP670-SW-42 — VVXWorks Device Driver

Page 16 of 36

TEWS &<

TECHNOLOGIES

RETURNS

OK or ERROR. If the function fails, an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual)

SEE ALSO

ioLib, basic 1/O routine - close()

TIP670-SW-42 — VxWorks Device Driver Page 17 of 36

TEWS &<

TECHNOLOGIES

4.3 read()

NAME

read() — reads input value of the specified TIP670 device.

SYNOPSIS
int read
(
int fd,
char *puffer,
size t maxbytes
)
DESCRIPTION

This function reads the input value of the specified module and places them in buffer. The value
returned in buffer corresponds to the signals at the input lines

Remember the configuration, there may be inverted signals.

PARAMETER

fd
This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

buffer
This argument points to a user supplied buffer. The returned input value will be filled into this
buffer.

maxbytes

This parameter specifies the maximum number of read bytes. The function always returns a
buffer of 1 byte.

TIP670-SW-42 — VxWorks Device Driver Page 18 of 36

TEWS &<

TECHNOLOGIES

EXAMPLE
i nt fd;
unsi gned char inVval;
i nt retval ;
| ® o e e e e e e
Read i nput data from TI P670 device
__________________________________ * |
retval = read(fd, & nval, 1);
if (retval == 1)
{
printf(“1INPUT: 9%92Xh\n”, inVal);
}
el se
{
/* handl e the read error */
}
RETURNS

Number of bytes read or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the /0 system (see VxWorks Reference Manual) or a
driver set error code described below.

Error code Description
S t670_Drv_SM_BUFFER Specified buffer to small
SEE ALSO

ioLib, basic I/O routine - read()

TIP670-SW-42 — VxWorks Device Driver Page 19 of 36

TEWS &<

TECHNOLOGIES

4.4 write()

NAME

write() — write data to the output of a specified device.

SYNOPSIS

int write

(
int fd,
char *puffer,
size t nbytes

)

DESCRIPTION

This function sets the output value of the specified device.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

buffer
This argument points to a user supplied buffer. The buffer value must be filled with the output
value.

nbytes
This parameter specifies the maximum number of write bytes. The buffer must have a size of
1 byte.

TIP670-SW-42 — VxWorks Device Driver Page 20 of 36

TEWS &<

TECHNOLOGIES

EXAMPLE
i nt fd;
unsi gned char outVal = 0x12;
i nt retval ;
| ® e e e e e e eee -
Set output value of the TIP670 device
_____________________________________ * |
retval = wite(fd, &outVval, 1);
if (retval == 1)
{
printf(“output succesfully set \n");
}
el se
{
/* handle the wite error */
}
RETURNS

Number of bytes written (1) or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic 1/O routine - write()

TIP670-SW-42 — VxWorks Device Driver Page 21 of 36

TEWS &<

TECHNOLOGIES

4.5 ioctl()

NAME

ioctl() - performs an 1/O control function.

SYNOPSIS

#include “tip670.h”

int ioctl

(
int fd,
int request,
int arg

)

DESCRIPTION

Special I/O operation that do not fit to the standard basic 1/O calls (read, write) will be performed by
calling the ioctl() function.

PARAMETER

fd

This file descriptor specifies the device to be used. The file descriptor has been returned by the
open() function.

request
This argument specifies the function that shall be executed. Following functions are defined:

Function Description
t670_EVREAD wait for event and read the input lines
t670_WDENABLE enable watchdog
t670_WDDISABLE disable watchdog
t670_WDTRIGGER trigger watchdog
t670_CTREAD read the value of a timer
t670_CTSTART start C/T with special options
t670_CTSTOP stop C/T in continuous mode

arg

This parameter depends on the selected function (request). How to use this parameter is
described below with the function.

TIP670-SW-42 — VxWorks Device Driver Page 22 of 36

TEWS &<

TECHNOLOGIES

RETURNS

OK or ERROR. If the function fails an error code will be stored in errno.

ERROR CODES

The error code can be read with the function errnoGet().

The error code is a standard error code set by the I/O system (see VxWorks Reference Manual).

SEE ALSO

ioLib, basic 1/O routine - ioctl()

TIP670-SW-42 — VxWorks Device Driver Page 23 of 36

4.5.1 t670_EVREAD

This 1/0 control function reads the value of the input lines after a special event is detected by the
driver. The function specific control parameter arg is a pointer on a t670_EVRD_PAR structure.

TEWS &<

TECHNOLOGIES

A special characteristic of the CIO 28536 which is used on the TIP670 is the functionality of the input
port. In addition to the normal port read function, the driver can wait for a special event, before the
input port is read. The event can be specified by a special bit pattern of the input port or by any
transition of an input line. The input port is used for the purpose as bit port in OR mode (see also the
Technical Manual 28536 CIO which is part of the TIP670-ED Engineering Documentation).

typedef struct

{

int mode;
unsigned short mask;
unsigned short match;
unsigned short value;
unsigned short timeout;

}1670_EVRD_PAR;

mode

mask

match

This parameter specifies the kind of event to wait for. The following events are defined an valid.

Event
t670_MATCH

t670_HIGH_TR

t670_LOW_TR

t670_ANY_TR

Description

The 1/0 request terminates, if all bits which are masked in the call
parameter mask have the state defined in the parameter match.

Note: Match events may get lost if the matching state is only valid
for a short while.

The 1/O request terminates, if a single input which is specified in the
call parameter mask has a low to high transition. The parameter match
is don't care.

Note: Only one bit shall be selected in this mode.
In this mode the I/O request terminates, if a single input which is

specified in the call parameter mask has a high to low transition. The
parameter match is don't care.

Note: Only one bit shall be selected in this mode.
In this mode the I/O request terminates if a single input which is

specified in the call parameter mask has any transition. The parameter
match is don't care.

Note: Only one bit shall be selected in this mode.

This parameter masks the input lines that shall be used to detect the event. Bit 0 masks input
line 1, bit 1 masks input line 2 and so on.
Note: masks set for transition events shall only mask one bit.

If the masked bits match to the actual input value the function will terminate. Bit O specifies input
line 1, bit 1 specifies input line 2 and so on.
This parameter is used for match events, for other events it is not used.

TIP670-SW-42 — VxWorks Device Driver Page 24 of 36

TEWS &<

TECHNOLOGIES

value

This value returns the state of input lines.
Note: The value is read in the interrupt service function and may not represent the value
at the moment the event has occurred.

timeout

This value specifies the maximum time to wait for the event. The unit of this parameter is
milliseconds.

EXAMPLE

#i nclude “tip670.hH"

i nt fd;

t670_EVRD PAR evBuf ;

i nt retval ;
2

Wait until the input port is set to >>>1000 XXXX<<< or
timeout after 10 seconds

__ * |
evBuf . node = t670_MATCH
evBuf . mask = OxFO;
evBuf . match = 0x80;
evBuf.tineout = 10000;
retval = ioctl(fd, t670_EVREAD, (int)&evBuf);
if (retval !'= ERROR
{
/* function succeeded, event occurred */
}
el se
{
/* handle the error, or tineout */
}

TIP670-SW-42 — VxWorks Device Driver Page 25 of 36

TEWS &<

TECHNOLOGIES

Wait until bit 3 (input 4) has a low to high
transition or tineout after 5 seconds

.. * [
evBuf . node = t670_H GH TR,
evBuf . mask = (1<<3);
evBuf . ti meout = 5000;
retval = ioctl(fd, t670_EVREAD, (i nt)&evBuf);
if (retval !'= ERROR
{
/* function succeeded, event occurred */
}
el se
{
/* handl e the error, or timeout */
}
ERROR CODES
Error code Description
S t670 Drv_NO_TR_SEL No input line selected

S t670_Drv_ILLEVRDMODE Unknown event specified
S t670_Drv_NO_FREE_JOB There is no free job (increase TIP670_MAX_JOBS)

TIP670-SW-42 — VxWorks Device Driver Page 26 of 36

TEWS &<

TECHNOLOGIES

4.5.2 t670_WDENABLE

This 1/0O control function enables the watchdog of the TIP670 output port. If the TIP670 module is not
triggered during the specified time, the output port of the TIP670 module is disabled. It can be enabled
again with a write access or a call of t670_WDTRIGGER to the device. The function specific control
parameter arg specifies the value of the watchdog timer in steps of 0,5us. Allowed values are
0..65535.

EXAMPLE

#i nclude “tip670.h"

i nt fd;
i nt retval ;
/2
enabl e the watchdog with a tinmeout of 10 ns
___ * |
retval = ioctl(fd, t670_WDENABLE, 20000);
if (retval !'= ERROR
{
/* function succeeded */
}
el se
{
/* handle the error */
}

TIP670-SW-42 — VxWorks Device Driver Page 27 of 36

4.5.3 t670_WDDISABLE

TEWS &<

TECHNOLOGIES

This 1/O control function disables the watchdog of the TIP670 output port. The function specific control

parameter arg is not used.

EXAMPLE

#i nclude “tip670.h”

i nt fd;
i nt retval ;
[® e e e e
di sabl e t he wat chdog
____________________ * |
retval = ioctl(fd, t670_WDDI SABLE, 0);
if (retval !'= ERROR
{
/* function succeeded */
}
el se
{
/* handle the error */
}

TIP670-SW-42 — VVXWorks Device Driver

Page 28 of 36

4.5.4 t670_WDTRIGGER

TEWS &<

TECHNOLOGIES

This 1/0 control function triggers the watchdog of the TIP670 output port. The function specific control

parameter arg is not used.

EXAMPLE

#i nclude “tip670.h”

i nt fd;

i nt retval ;

[® e e e e
trigger the watchdog
____________________ * |

retval = ioctl(fd, t670_WDTRI GCER, 0);

if (retval !'= ERROR

{

/* function succeeded */

}

el se

{

/* handle the error */

}

TIP670-SW-42 — VVXWorks Device Driver

Page 29 of 36

TEWS &<

TECHNOLOGIES

4.5.5 t670_CTREAD

This 1/0 control function reads the current value of a counter/timer. The function specific control
parameter arg is a pointer on a t670_CTRD_PAR structure.

typedef struct
{

int timer;
unsigned short value;
}t670_CTRD_PAR,;

timer
This value selects the counter/timer that will be read. Allowed values are 1 and 2.

value
This parameter returns the current value of the selected counter/timer.

EXAMPLE

#i nclude “tip670.h”

i nt fd;
t670_CTRD PAR ct Buf ;
i nt retval ;
2
Read the val ue of counter/tinmer 2
_________________________________ * [
ctBuf.timer = 2;
retval = ioctl(fd, t670_CTREAD, (i nt)&ctBuf);
if (retval !'= ERROR
{

/* function succeeded */
printf(“CT(%l)-value: %\n”, ctBuf.tinmer, ctBuf.value);

/* handl e the error */

TIP670-SW-42 — VxWorks Device Driver Page 30 of 36

TEWS &<

TECHNOLOGIES

ERROR CODES

Error code Description
S t670_Drv_BAD_CT_NUM The specified number of the counter / timer is not valid

TIP670-SW-42 — VxWorks Device Driver Page 31 of 36

4.5.6 t670_CTSTART

TEWS &<

TECHNOLOGIES

This 1/O control function configures and starts a counter/timer. The function specific control parameter
arg is a pointer on a t670_CTST_PAR structure. The counter / timer 1 and 2 can operate in different
modes which are selected through the parameter structure (see the Technical Manual 28536 CIO for

more details).

typedef struct

{
int timer;
int options;
int *softcnt;
int count;
int timeout;

SEM_ID semaphore;
}t670_CTST_PAR;

timer

This value selects the counter/timer to start. Allowed values are 1 and 2.

options
This field specifies counter t
Flag

t670_CONTINUOUS

t670_SOFTCOUNT

t670_EXTCOUNT

t670_EXTTRIGGER

t670_EXTGATE

TIP670-SW-42 — VVXWorks Device Driver

imer mode. The following flags can be ORed to select the mode:
Description

If this flag is set the specified counter / timer will work in continuous
mode. If the counter reaches the value of 1 the next clock pulse will
reload the counter with its initial value which is set with the
parameter. If this mode is selected and the parameter semaphore
is not NULL every reload will send a signal to the specified
semaphore. A timer running in continuous mode has to be stopped
with the t670_CTSTOP function.

This flag is only valid if the continuous mode is selected. Otherwise
this flag will be ignored. If the device works in softcount mode, the
driver counts the reloads of the counter/timer. For this mode the
parameter softcount must be filled with the address of a counter in
memory (int).

This flag selects the clock input of the counter/timer. If the flag is
set the clock is taken from an input. Otherwise the counter/timer is
clocked internal with a period of 0.5ps.

Note: TIP670-20 supports external counter/timer signals for
C/T 2 only.

This flag selects an input as trigger for the counter/timer which
starts the counter / timer.

Note: TIP670-20 supports external counter/timer signals for
C/T 2 only.

This flag selects an input as gate for the counter/timer. If the flag is
not set the counter/timer isn’'t gated.

Note: TIP670-20 supports external counter/timer signals for
C/T 2 only.

Page 32 of 36

TEWS &<

TECHNOLOGIES
The external C/T input assignments:
Timer Count Trigger Gate Supported at
1 (1<<5) (1<<6) (1<<7) TIP670-10
2 (1<<1) (1<<2) (1<<3) TIP670-10/-20

softent
This parameter must point to a value, where counter/timer reloads are counted. This pointer is
only used if the option t670_SOFTCOUNT is specified.

count
This parameter specifies the initial counter value.

timeout

This parameter selects the time, the 1/0 request has to wait before it times out. The unit of this
parameter is milliseconds.

semaphore

This value specifies the semaphore ID that shall be signalled on counter/timer reloads. If no
semaphore is used the value must be set to NULL.

EXAMPLE

#i nclude “tip670.h”

i nt fd;
t670_CTST_PAR ct St Buf ;
SEM I D sem x_I D
i nt retval ;
i nt event _counter;
% o o e e eeee oo
Wait for 5 mlliseconds (use counter/timer 1)
___ * [
ctStBuf.tiner = 1; /* timer 1 */
ct St Buf . options = O; /* no special function */
ct St Buf . count = (2000 * 5); /* 5ms = (2000 *0.5ps) * 5 */
ctStBuf.tinmeout = (ctStBuf.count * 2); /* nust be greater than CJT tine */

ct St Buf . semaphore = NULL;

TIP670-SW-42 — VxWorks Device Driver Page 33 of 36

TEWS &<

TECHNOLOGIES

retval = ioctl(fd, t670_CTSTART, (int)&ctStBuf);
if (retval !'= ERROR
{
/* CT started, function succeeded */
}
el se
{
/* handle the error, or tineout */
}
% o e -

send a 3ms signhal to semXx,

event _counter = 0;
semx_|ID = senBCreate(.);

ctStBuf.tiner = 2;

count the events, use counter/tiner 2

[* timer 2 */

ct StBuf.options = t670_ CONTINUOUS | t670_ SOFTCOUNT;

ct St Buf . count = (2000 * 3); /[* 3ms = (2000 *0.5us) * 3 */
ct St Buf . semaphore = sem x_| D,
param softcount = &event_counter; /* set counter address */
retval = ioctl(fd, t670_CTSTART, (int)&ct StBuf);
if (retval !'= ERROR
{
/* CT started, function succeeded */
}
el se
{
/* handl e the error, or timeout */
}

ERROR CODES

Error code
S t670_Drv_BAD _CT_NUM
S t670_Drv_CT_BUSY

TIP670-SW-42 — VVXWorks Device Driver

Description
The specified number of the counter/timer is not valid
The counter/timer is busy, use t670_CTSTOP first.

Page 34 of 36

TEWS &<

TECHNOLOGIES

45.7 1670 _CTSTOP

This 1/0 control function stops the specified counter/timer. The function specific control parameter arg
specifies the counter/timer. Allowed values are 1 and 2.

EXAMPLE

#i nclude “tip670.h”

i nt fd;
i nt retval ;
| % o e
Stop counter/tinmer 2
____________________ * [
retval = ioctl(fd, t670_CTSTOP, 2);
if (retval !'= ERROR
{
/* function succeeded */
}
el se
{
/* handl e the error */
}

ERROR CODES

Error code Description
S t670_Drv_BAD_CT_NUM The specified number of the counter / timer is not valid

TIP670-SW-42 — VxWorks Device Driver Page 35 of 36

5Appendix

5.1 Additional Error Codes

Error code
S _t670Drv_NO_END

S_t670Drv_SM_BUFFER
S_t670Drv_ILLREQUEST
S_t670Drv_ILLEVRDMODE
S_t670Drv_NO_TR_SEL
S_t670Drv_NO_FREE_JOB

S_t670Drv_BAD_MEM

S_t670Drv_BAD_CT_NUM

S_t670Drv_CT_BUSY

Error value
0x06700001

0x06700002
0x06700003
0x06700004
0x06700005
0x06700006

0x06700007

0x06700008

0x06700009

TIP670-SW-42 — VVXWorks Device Driver

TEWS &<

TECHNOLOGIES

Description

There is no END marker in the configuration
table or the number of entries exceeds the
number of MAX_MODULES.

The return buffer is too small.

The request code is unknown.

The event read mode is unknown.

No input line is selected for a transition.

The number of predefined active jobs has been
exceeded.

A driver memory structure has been destroyed.
This is a fatal error. The driver has to be
installed again.

The specified number of the counter/timer is not
valid.

The selected counter/timer is busy.

Page 36 of 36

	Introduction
	Device Driver
	IPAC Carrier Driver

	Installation
	Include device driver in Tornado IDE project
	Special installation for Intel x86 based targets
	System resource requirement
	Device driver configuration

	I/O system functions
	tip670Drv()
	tip670DevCreate()

	I/O Functions
	open()
	close()
	read()
	write()
	ioctl()
	t670_EVREAD
	t670_WDENABLE
	t670_WDDISABLE
	t670_WDTRIGGER
	t670_CTREAD
	t670_CTSTART
	t670_CTSTOP

	Appendix
	Additional Error Codes

