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Chapter 1

Introduction

XSB is a research-oriented Logic Programming system for Unix and Windows-based systems. In

addition to providing all the functionality of Prolog, XSB contains several features not usually

found in Logic Programming systems, including

� Evaluation according to the Well-Founded Semantics [44] through full SLG resolution;

� A compiled HiLog implementation;

� A variety of indexing techniques for asserted code, along with a novel transformation technique

called uni�cation factoring that can improve program speed and indexing for compiled code;

� A number of interfaces to other software systems, such a C, Java, Perl and Oracle.

� Extensive pattern matching libraries, which are especially useful for Web applications.

� Preprosessors and Interpreters so that XSB can be used to evaluate programs that are based

on advanced formalisms, such as extended logic progams (according to the Well-Founded

Semantics [1]); Generalized Annotated Programs [23]; and F-Logic [22].

� Source code availability for portability and extensibility.

Though XSB can be used as a Prolog system1, we avoid referring to XSB as such, because of the

availability of SLG resolution and the handling of HiLog terms. These facilities, while seemingly

simple, signi�cantly extend its capabilities beyond those of a typical Prolog system. We feel that

these capabilities justify viewing XSB as a new paradigm for Logic Programming.

To understand the implications of SLG resolution [8], recall that Prolog is based on a depth-

�rst search through trees that are built using program clause resolution (SLD). As such, Prolog

is susceptible to getting lost in an in�nite branch of a search tree, where it may loop in�nitely.

SLG evaluation, available in XSB, can correctly evaluate many such logic programs. To take the

simplest of examples, any query to the program:

1Many of the Prolog components of XSB are based on PSB-Prolog [48], which itself is based on version 2.0 of

SB-Prolog [13].

1
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:- table ancestor/2.

ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).

ancestor(X,Y) :- parent(X,Y).

will terminate in XSB, since ancestor/2 is compiled as a tabled predicate; Prolog systems, however,

would go into an in�nite loop. The user can declare that SLG resolution is to be used for a predicate

by using table declarations, as here. Alternately, an auto table compiler directive can be used

to direct the system to invoke a simple static analysis to decide what predicates to table (see

Section 3.8.4). This power to solve recursive queries has proven very useful in a number of areas,

including deductive databases, language processing [24, 25], program analysis [12, 9, 5], model

checking [32] and diagnosis [34]. For eÆciency, we have implemented SLG at the abstract machine

level so that tabled predicates will be executed with the speed of compiled Prolog. We �nally

note that for de�nite programs SLG resolution is similar to other tabling methods such as OLDT

resolution [43] (see Chapter 5 for details).

Example 1.0.1 The use of tabling also makes possible the evaluation of programs with non-

strati�ed negation through its implementation of the well-founded semantics [44]. When logic pro-

gramming rules have negation, paradoxes become possible. As an example consider one of Russell's

paradoxes | the barber in a town shaves every person who does not shave himself | written as a

logic program.

:- table shaves/2.

shaves(barber,Person):- person(Person), tnot(shaves(Person,Person)).

person(barber).

person(mayor).

Logically speaking, the meaning of this progam should be that the barber shaves the mayor, but the

case of the barber is trickier. If we conclude that the barber does not have himself our meaning does

not re
ect the �rst rule in the program. If we conclude that the barber does shave himself, we have

reached that conclusion using information beyond what is provided in the progra. The well-founded

semantics, does not treatshaves(barber,barber) as either true or false, but as unde�ned. Prolog,

of course, would enter an in�nite loop. XSB's treatment of negation is discussed further in Chapter

5.

The second important extension in XSB is support of HiLog programming [6, 39]. HiLog allows a

form of higher-order programming, in which predicate \symbols" can be variable or structured. For

example, de�nition and execution of generic predicates like this generic transitive closure relation

are allowed:

closure(R)(X,Y) :- R(X,Y).

closure(R)(X,Y) :- R(X,Z), closure(R)(Z,Y).

where closure(R)/2 is (syntactically) a second-order predicate which, given any relation R, returns

its transitive closure relation closure(R). With XSB, support is provided for reading and writing
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HiLog terms, converting them to or from internal format as necessary (see Section 4.2). Special

meta-logical standard predicates (see Section 6.5) are also provided for inspection and handling of

HiLog terms. Unlike earlier versions of XSB (prior to version 1.3.1) the current version automat-

ically provides full compilation of HiLog predicates. As a result, most uses of HiLog execute at

essentially the speed of compiled Prolog. For more information about the compilation scheme for

HiLog employed in XSB see [39].

HiLog can also be used with tabling, so that the program above can also be written as:

:- table closure(_)(_,_).

closure(R)(X,Y) :- R(X,Y).

closure(R)(X,Y) :- closure(R)(X,Z), R(Z,Y).

A further goal of XSB is to provide in implementation engine for both logic programming and

for data-oriented applications such as in-memory deductive database queries and data mining [36].

One prerequisite for this functionality is the ability to load a large amount of data very quickly.

We have taken care to code in C a compiler for asserted clauses. The result is that the speed of

asserting and retracting code is faster in XSB than in any other Prolog system of which we are

aware. At the same time, because asserted code is compiled into SLG-WAM code, the speed of

executing asserted code in XSB is faster than that of many other Prologs as well. We note however,

that XSB does not follow the semantics of assert speci�ed in [27].

Data oriented applications may also require indices other than Prolog's �rst argument indexing.

XSB o�ers a variety of indexing techniques for asserted code. Clauses can be indexed on a groups of

arguments or on alternative arguments. For instance, the executable directive index(p/4,[3,2+1])

speci�es indexes on the (outer functor symbol of) the third argument or on a combination of (the

outer function symbol of) the second and �rst arguments. If data is expected to be structured within

function symbols and is in unit clauses, the directive index(p/4,trie) constructs an indexing trie

of the p/4 clauses using a left-to-right traversal through each clause. Representing data in this

way allows discrimination of information nested arbitrarily deep within clauses. These modes of

indexing can be combined: index(p/4,[3,2+1],trie) creates alternative trie indices beginning

with the third argument and with the second and �rst argument. Using such indexing XSB can

eÆciently perform intensive analyses of in-memory knowledge bases with 1 million or so facts.

Indexing techniques for asserted code are covered in Section 6.10.

For compiled code, XSB o�ers uni�cation factoring, which extends clause indexing methods

found in functional programming into the logic programming framework. Brie
y, uni�cation fac-

toring can o�er not only complete indexing through non-deterministic indexing automata, but can

also factor elementary uni�cation operations. The general technique is described in [11], and the

XSB directives needed to use it are covered in Section 3.8.

A number of interfaces are available to link XSB to other systems. In UNIX systems XSB can

be directly linked into C programs; in Windows-based system XSB can be linked into C programs

through a DLL interface. On either class of operating system, C functions can be made callable

from XSB either directly within a process, or using a socket library. XSB can access external data

in a variety of ways: through an Oracle interface, through an ODBC interface, or through a variety

of mechanisms to read data from 
at �les. These interfaces are all described in Volume 2 of this
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manual.

Another feature of XSB is its support for extensions of normal logic programs through pre-

processing libraries. Currently supported are Extended logic programs (under the well-founded

semantics), F-Logic, and Annotated Logic Programs. These libraries are described in Volume 2 of

this manual.

Source code is provided for the whole of XSB, including the engine, interfaces and supporting

functions written in C, along with the compiler, top-level interpreter and libraries written in Prolog.

It should be mentioned that we adopt some standard notational conventions, such as the

name/arity convention for describing predicates and functors, + to denote input arguments, - to

denote output arguments, ? for arguments that may be either input or output and # for arguments

that are both input and output (can be changed by the procedure). See Section 3.8.4 for more

details. Also, the manual uses UNIX syntax for �les and directories except when it speci�cally

addresses other operating systems such as Windows.

Finally, we note that XSB is under continuous development, and this document |intended to

be the user manual| re
ects the current status (Version 2.1) of our system. While we have taken

great e�ort to create a robust and eÆcient system, we would like to emphasize that XSB is also a

research system and is to some degree experimental. When the research features of XSB | tabling,

HiLog, and Indexing Techniques | are discussed in this manual, we also cite documents where they

are fully explained. All of these documents can be found via the world-wide web or anonymous ftp

from fwww/ftpg.cs.sunysb.edu, the same host from which XSB can be obtained.

While some of Version 2.1 is subject to change in future releases, we will try to be as upward-

compatible as possible. We would also like to hear from experienced users of our system about

features they would like us to include. We do try to accomodate serious users of XSB whenever we

can. Finally, we must mention that the use of undocumented features is not supported, and at the

user's own risk.



Chapter 2

Getting Started with XSB

This section describes the steps needed to install XSB under UNIX and under Windows.

2.1 Installing XSB under UNIX

If you are installing on a UNIX platform, the version of XSB that you received may not include all

the object code �les so that an installation will be necessary. The easiest way to install XSB is to

use the following procedure.

1. Decide in which directory in your �le system you want to install XSB and copy or move XSB

there.

2. Make sure that after you have obtained XSB by anonymous ftp (using the binary option)

or from the web, you have uncompressed it by following the instructions found in the �le

README.

3. Note that after you uncompress and untar the XSB tar �le, a subdirectory XSB will be tacked

on to the current directory. All XSB �les will be located in that subdirectory.

In the rest of this manual, let us use $XSB DIR to refer to this subdirectory. Note the orig-

inal directory structure of XSB must be maintained, namely, the directory $XSB DIR should

contain all the subdirectories and �les that came with the distribution. In particular, the

following directories are required for XSB to work: emu, syslib, cmplib, lib, packages,

build, and etc.

4. Change directory to $XSB DIR/build and then run these commands:

configure

makexsb

This is it!

In addition, it is now possible to install XSB in a shared directory (e.g., /usr/local) for

everyone to use. In this situation, you should use the following sequence of commands:

5
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configure --prefix=$SHARED XSB

makexsb

makexsb install

where $SHARED XSB denotes the shared directory where XSB is installed. In all cases, XSB

can be run using the script

$XSB DIR/bin/xsb

However, if XSB is installed in a central location, the script for general use is:

<central-installation-directory>/<xsb-version>/bin/xsb

Important: The XSB executable determines the location of the libraries it needs based on the

full path name by which it was invoked. The \smart script" bin/xsb also uses its full path name to

determine the location of the various scripts that it needs in order to �gure out the con�guration

of your machine. Therefore, there are certain limitations on how XSB can be invoked.

Here are some legal ways to invoke XSB:

1. invoking the smart script bin/xsb or the XSB executable using their absolute or relative path

name.

2. using an alias for bin/xsb or the executable.

3. creating a new shell script that invokes either bin/xsb or the XSB executable using their full

path names.

Here are some ways that are guaranteed to not work in some or all cases:

1. creating a hard link to either bin/xsb or the executable and using it to invoke XSB. (Symbolic

links should be ok.)

2. changing the relative position of either bin/xsb or the XSB executable with respect to the

rest of the XSB directory tree.

Type of Machine. The con�gureation script automatically detects your machine and OS type,

and builds XSB accordingly. Moreover, you can build XSB for di�erent architectures while

using the same tree and the same installation directory provided, of course, that these ma-

chines are sharing this directory, say using NFS or Samba. All you will have to do is to login

to a di�erent machine with a di�erent architecture or OS type, and repeat the above sequence

of comands.

The con�guration �les for di�erent architectures reside in di�erent directories, and there is no

danger of an architecture con
ict. Moreover, you can keep using the same ./bin/xsb script

regardless of the architecture. It will detect your con�guration and will use the right �les for

the right architecture!
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Choice of the C Compiler and Other options The configure script will attempt to use gcc,

if it is available. Otherwise, it will revert to cc or acc. Some versions of gcc are bro-

ken, in which case you would have to give configure an additional directive --with-cc.

If you must use some special comiler, use --with-cc=your-own-compiler. You can also

--disable-optimization (to change the default), --enable-debug, and there are many

other options. Type configure --help to see them all. Also see the �le $XSB_DIR/INSTALL

for more details.

Other options are of interest to advanced users who wish to experiment with XSB, or to use

XSB for large-scale projects. In general, however users need not concern themselves with these

options.

Type of Scheduling Strategy. The ordering of operations within a tabled evaluation can dras-

tically a�ect its performance. XSB provides two scheduling strategies: Batched Evaluation

and Local Evaluation. Batched Evaluation is the default scheduling strategy for XSB and

evaluates queries to reduce the time to the �rst answer of a query. Local Evaluation can be

chosen via the --enable-local-scheduling con�gure option. Detailed explanations can be

found in [18].

Type of Memory Management. Routines for managing execution stacks for tabled evaluations

can be quite complex, due to interdependencies of tabled subgoals. Indeed, memory man-

agement algorithms can be based on common elements are shared among computation states

or are copied. The default con�guration of XSB shares these elements while the option

--enable-chat copies these elements. While sharing and copying have minor performance

di�erences, the main reason to try the --enable-chat con�guration is to use a heap garbage

collector that has been written for it. See [35, 14, 15, 16] for in-depth discussion of the engine

memory management.

2.1.1 Possible Installation Problems

Lack of Space for Optimized Compilation of C Code When making the optimized version

of the emulator, the temporary space available to the C compiler for intermediate �les is sometimes

not suÆcient. For example on one of our SPARCstations that had very little /tmp space the "-O4"

option could not be used for the compilation of �les emuloop.c, and tries.c, without changing the

default tmp directory and increasing the swap space. Depending on your C compiler, the amount

and nature of /tmp and swap space of your machine you may or may not encounter problems. If

you are using the SUN C compiler, and have disk space in one of your directories, say dir, add the

following option to the entries of any �les that cannot be compiled:

-temp=dir

If you are using the GNU C compiler, consult its manual pages to �nd out how you can change

the default tmp directory or how you can use pipes to avoid the use of temporary space during

compiling. Usually changing the default directory can be done by declaring/modifying the TMPDIR

environment variable as follows:

setenv TMPDIR dir
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Missing XSB Object Files When an object (*.O) �le is missing from the lib directories you

can normally run the make command in that directory to restore it (instructions for doing so are

given in Chapter 2). However, to restore an object �le in the directories syslib and cmplib, one

needs to have a separate Prolog compiler accessible (such as a separate copy of XSB), because the

XSB compiler uses most of the �les in these two directories and hence will not function when some

of them are missing. For this reason, distributed versions normally include all the object �les in

syslib and cmplib.

2.2 Installing XSB under Windows

2.2.1 Using Cygnus Software's CygWin32

This is easy: just follow the Unix instructions. This is the preferred way to run XSB under

Windows, because this ensures that all features of XSB are available.

2.2.2 Using Microsoft Visual C++

1. XSB will unpack into a subdirectory named xsb. Assuming that you have XSB.ZIP in the

$XSB DIR directory, you can issue the command

unzip386 xsb.zip

which will install XSB in the subdirectory xsb.

2. If you decide to move XSB to some other place, make sure that the entire directory tree is

moved | XSB executable looks for the �les it needs relatively to its current position in the

�le system.

You can compile XSB under Microsoft Visual C++ compiler to create a console-supported top

loop or a DLL by following these steps:

1. cd build

2. Type:

makexsb wind "CFG=option" ["DLL=yes"] ["ORACLE=yes"] ["SITE LIBS=libraries"]

� The items in square brackets are optional.

� The options for CFG are: release or debug. The latter is used when you want to compile

XSB with debugging enabled.

� The other parameters to makexsb wind are optional. The DLL parameter tells Visual

C++ to compile XSB as a DLL. The ORACLE parameter compiles XSB with support

for Oracle DBMS. If ORACLE is speci�ed, you must also specify the necessary Oracle

libraries using the parameter SITE LIBS.
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3. The above command will compile XSB as requested and will put the XSB executable in:

$XSB DIRnconfignx86-pc-windowsnbinnxsb:exe

If you requested to compile XSB as a DLL, then the DLL will be placed in

$XSB DIRnconfignx86-pc-windowsnbinnxsb:dll

Note: the XSB executable and the DLL can coexist in the same source tree structure. However,

if you �rst compiled XSB as an executable and then want to compile it as a DLL (or vice versa),

then you must run

makexsb_wind clean

in between.

2.3 Invoking XSB

Under Unix, XSB can be invoked by the command:

$XSB DIR/bin/xsb

if you have installed XSB in your private directory. If XSB is instaled in a shared directory (e.g.,

$SHARED XSB for the entire site (UNIX only), then you should use

$SHARED XSB/bin/xsb

In both cases, you will �nd yourself in the top level interpreter. As mentioned above, this script

automatically detects the system con�guration you are running on and will use the right �les and

executables. (Of course, XSB should have been built for that architecture earlier.)

Under Windows, you should invoke XSB by typing:

$XSB DIRnconfignx86-pc-windowsnbinnxsb:exe

You may want to make an alias such as xsb to the above commands, for convenience, or you

might want to put the directory where the XSB command is found in the $PATH environment

variable. However, you should not make hard links to this script or to the XSB executable. If you

invoke XSB via such a hard link, XSB will likely be confused and will not �nd its libraries. That

said, you can create other scripts and cal the above script from there.

Most of the \standard" Prolog predicates are supported by XSB, so those of you who consider

yourselves champion entomologists, can try to test them for bugs now. Details are in Chapter 6.
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2.4 Compiling XSB programs

All source programs should be in �les whose names have the suÆx .P. One of the ways to compile

a program from a �le in the current directory and load it into memory, is to type the query:

[my_file].

where my_file is the name of the �le, or preferably, the name of the module (obtained from the

�le name by deleting the suÆx .P). To �nd more about the module system of XSB see Section 3.3.

If you are eccentric (or you don't know how to use an editor) you can also compile and load

predicates input directly from the terminal by using the command:

[user].

A CTRL-d or the atom end_of_file followed by a period terminates the input stream.

2.5 Sample XSB Programs

If for some reason you don't feel like writing your own XSB programs, there are several sample

XSB programs in the directory: $XSB DIR/examples. All contain source code.

The entry predicates of all the programs in that directory are given the names demo/0 (which

prints out results) and go/0 (which does not print results).1 Hence, a sample session might look

like (the actual times shown below may vary and some extra information is given using comments

after the % character):

my_favourite_prompt> cd $XSB_DIR/examples

my_favourite_prompt> $XSB_DIR/bin/xsb

XSB Version 2.0 (Gouden Carolus) of June 27, 1999

[i586-pc-linux-gnu; mode: optimal; engine: slg-wam; scheduling: batched]

| ?- [queens].

[queens loaded]

yes

| ?- demo.

% ...... output from queens program .......

Time used: 0.4810 sec

yes

| ?- statistics.

memory (total) 1906488 bytes: 203452 in use, 1703036 free

permanent space 202552 bytes

1This convention does not apply to the subdirectories of the examples directory, which illustrate advanced features

of XSB.
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glob/loc space 786432 bytes: 432 in use, 786000 free

global 240 bytes

local 192 bytes

trail/cp space 786432 bytes: 468 in use, 785964 free

trail 132 bytes

choice point 336 bytes

SLG subgoal space 0 bytes: 0 in use, 0 free

SLG unific. space 65536 bytes: 0 in use, 65536 free

SLG completion 65536 bytes: 0 in use, 65536 free

SLG trie space 0 bytes: 0 in use, 0 free

(call+ret. trie 0 bytes, trie hash tables 0 bytes)

0 subgoals currently in tables

0 subgoal check/insert attempts inserted 0 subgoals in the tables

0 answer check/insert attempts inserted 0 answers in the tables

Time: 0.610 sec. cputime, 18.048 sec. elapsetime

yes

| ?- halt. % I had enough !!!

End XSB (cputime 1.19 secs, elapsetime 270.25 secs)

my_favourite_prompt>

2.6 Exiting XSB

If you want to exit XSB, issue the command halt. or simply type CTRL-d at the XSB prompt. To

exit XSB while it is executing queries, strike CTRL-c a number of times.



Chapter 3

System Description

Throughout this chapter, we use $XSB_DIR to refer to the directory in which XSB was installed.

3.1 Entering and Exiting XSB

After the system has been installed, the emulator's executable code appears in the �le:

$XSB_DIR/bin/xsb

or, if, after being built, XSB is later installed at a central location, $SHARED_XSB.

$SHARED_XSB/bin/xsb

and indeed, using this command, invokes XSB's top level interpreter which is the usual way of

using XSB

Version 2.1 of XSB can also directly execute object code �les from the command line interface.

Suppose you have a top-level routine go in a �le foo.P that you would like to run from the UNIX or

Windows command line. As long as foo.P contains a directive :- go., and foo has been compiled

to an object �le (foo.O), then

$XSB_DIR/bin/xsb -B foo.O

will execute go, loading the appropriate �les as needed. In fact the command $XSB_DIR/bin/xsb

is equivalent to the command:

$XSB_DIR/bin/xsb -B $XSB_DIR/syslib/loader.O

There are several ways to exit XSB. A user may issue the command halt. or end_of_file,

or simply type CTRL-d at the XSB prompt. To interrupt XSB while it is executing a query, strike

CTRL-c.

12
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3.2 The System and its Directories

The XSB system, when installed, resides in a single directory that contains the following subdirec-

tories:

1. build

2. docs

3. emu

4. etc

5. examples

6. cmplib

7. lib

8. packages

9. syslib

The directory emu contains the source and object code for the XSB emulator, which is written

in C.

The directories syslib, cmplib and lib contain source and object code for the basic Prolog

libraries, the compiler, and the extended Prolog libraries, respectively. All the source programs

are written in XSB, and all object (byte code) �les contain SLG-WAM instructions that can be

executed by the emulator. These byte-coded instructions are machine-independent, so usually no

installation procedure is needed for the byte code �les.

The directory packages contains the various applications, written in XSB, which are not part

of the system per se.

You must already be familiar with the build directory, which is what you must have used

to build XSB. This directory contains XSB con�guration scripts. The directory etc contains

miscellaneous �les used by XSB.

The directory docs contains this manual in LATEX, dvi and Postscipt format, and the directory

examples contains sample programs to demonstrate various features of XSB.

3.3 The Module system of XSB

XSB has been designed as a module-oriented Prolog system. Modules provide a small step towards

logic programming \in the large" that facilitates large programs or projects to be put together from

components which can be developed, compiled and tested separately. Also module systems enforce

the principle of information hiding and can provide a basis for data abstraction.
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The module system of XSB, unlike the module systems of most other Prolog systems is atom-

based. Brie
y, the main di�erence between atom-based module systems and predicate-based ones

is that in an atom-based module system any symbol in a module can be imported, exported or be

a local symbol as opposed to the predicate-based ones where this can be done only for predicate

symbols 1.

Usually the following three �les are associated with a particular module:

� A single source �le, whose name is the module name plus the suÆx \.P".

� An optional header �le, whose name is the module name plus the suÆx \.H".

� An object (byte-code) �le, whose name consists of the module name plus the suÆx \.O".

The header �le is normally used to contain declarations and directives while the source �le usually

contains the actual de�nitions of the predicates de�ned in that module. The module hierarchy of

XSB is therefore 
at | nested modules are not possible.

In order for a �le to be a module, it should contain one or more export declarations, which

specify that a set of symbols appearing in that module is visible and therefore can be used by any

other module. A module can also contain local declarations, which specify that a set of symbols are

visible by this module only, and therefore cannot be accessed by any other module. Any �le (either

module or not) may also contain import declarations, which allow symbols de�ned in and exported

by other modules to be used in the current module. We note that only exported symbols can be

imported; for example importing a local symbol will cause an environment conflict error.

Export, local, and import declarations can appear anywhere in the source or header �les and

have the following forms:

:- export sym1, ..., syml.

:- local sym1, ..., symm.

:- import sym1, ..., symn from module.

where symi has the form functor=arity.

If the user does not want to use modules, he can simply bypass the module system by not

supplying any export declarations. Such exportless �les (non-modules) will be loaded into the

module usermod, which is the working module of the XSB interpreter.

Currently the module name is stored in its byte code �le, which means that if the byte code

�le is renamed, the module name is not altered, and hence may cause confusion to the user and/or

the system. So, it is advisable that the user not rename byte code �les generated for modules by

the XSB compiler. However, byte code �les generated for non-modules can be safely renamed. We

will try to �x the problem described above in future releases.

In order to understand the semantics of modules, the user should keep in mind that in a module

oriented system, the name of each symbol is identi�ed as if it were pre�xed with its module name,

1Operator symbols can be exported as any other symbols, but their precedence must be redeclared in the importing

module.
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hence two symbols of the same functor=arity but di�erent module pre�xes are distinct symbols.

Currently the following set of rules is used to determine the module pre�x of a symbol:

� Every predicate symbol appearing in a module (i.e. that appears as the head of some clause)

is assumed to be local to that module unless it is declared otherwise (via an export or import

declaration). Symbols that are local to a given module are not visible to other modules.

� Every other symbol (essentially function symbols) in a module is assumed to be global (its

module pre�x is usermod) unless declared otherwise.

� If a symbol is imported from another module (via an explicit import declaration), the module

pre�x of the symbol is the module it is imported from; any other symbol takes the module

where the symbol occurs as its module pre�x.

� The XSB interpreter is entered with usermod as its working module.

� Symbols that are either de�ned in non-modules loaded into the system or that are dynamically

created (by the use of standard predicates such as read/1, functor/3, '=..'/2, etc) are

contained in usermod.

The following facts about the module system of XSB may not be immediately obvious:

� If users want to use a symbol from another module, they must explicitly import it otherwise

the two symbols are di�erent even if they are of the same functor=arity form.

� A module can only export predicate symbols that are de�ned in that module. As a conse-

quence, a module cannot export predicate symbols that are imported from other modules.

This happens because an import declaration is just a request for permission to use a symbol

from a module where its de�nition and an export declaration appear.

� The implicit module for a particular symbol appearing in a module must be uniquely deter-

mined. As a consequence, a symbol of a speci�c functor=arity cannot be declared as both

exported and local, or both exported and imported from another module, or declared to be

imported from more than one module, etc. These types of environment con
icts are detected

at compile-time and abort the compilation.

� It is an error to import a symbol from a module that does not export it. This error is not

detected at compile-time but at run-time when a call to that symbol is made. If the symbol

is de�ned in, but not exported from the module that de�nes it, an environment con
ict error

will take place. If the symbol is not de�ned in that module an unde�ned predicate/function

error will be be reported to the user.

� In the current implementation, at any time only one symbol of a speci�c functor=arity form

can appear in a module. As an immediate consequence of this fact, only one functor=arity

symbol can be loaded into the current working module (usermod). An attempt to load a

module that rede�nes that symbol results in a warning to the user and the newly loaded

symbol overrides the de�nition of the previously loaded one.
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3.4 The Dynamic Loader and its Search Path

The dynamic (or automatic) loader comprises one of XSB's di�erences from other Prolog systems.

In XSB, the loading of user modules Prolog libraries (including the XSB compiler itself) is delayed

until predicates in them are actually needed, saving program space for large Prolog applications.

The delay in the loading is done automatically, unlike other systems where it must be explicitly

speci�ed for non-system libraries.

When a predicate imported from another module (see section 3.3) is called during execution,

the dynamic loader is invoked automatically if the module is not yet loaded into the system, The

default action of the dynamic loader is to search for the byte code �le of the module �rst in the

system library directories (in the order lib, syslib, and then cmplib), and �nally in the current

working directory. If the module is found in one of these directories, then it will be loaded (on

a �rst-found basis). Otherwise, an error message will be displayed on the current output stream

reporting that the module was not found.

In fact, XSB loads the compiler and most system modules this way. Because of dynamic loading,

the time it takes to compile a �le is slightly longer than usual the �rst time the compiler is invoked

in a session.

3.4.1 Changing the Default Search Path and the Packaging System

Users are allowed to supply their own library directories and also to override the default search

path of the dynamic loader. User-supplied library directories are searched by the dynamic loader

before searching the default library directories.

The default search path of the dynamic loader can easily be changed by having a �le named

.xsb/xsbrc.P in the user's home directory. The .xsb/xsbrc.P �le, which is automatically con-

sulted by the XSB interpreter, might look like the following:

:- assert(library_directory('./')).

:- assert(library_directory('~/')).

:- assert(library_directory('~my_friend')).

:- assert(library_directory('/usr/lib/sbprolog')).

After loading the module of the above example, the current working directory is searched �rst

(as opposed to the default action of searching it last). Also, XSB's system library directories

(lib, syslib, and cmplib), will now be searched after searching the user's, my friend's and the

"/usr/lib/sbprolog/" directory.

In fact, XSB also uses library directory/1 for internal purposes. For instance, before the

user's .xsb/xsbrc.P is consulted, XSB puts the packages directory and the directory

.xsb/config/$CONFIGURATION

on the library search path. The directory .xsb/config/$CONFIGURATION is used to store user

libraries that are machine or OS dependent. ($CONFIGURATION for a machine is something that
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looks like sparc-sun-solaris2.6 or pc-linux-gnu, and is selected by XSB automatically at run

time).

Note that the �le .xsb/xsbrc.P is not limited to setting the library search path. In fact,

arbitrary Prolog code can go there.

We emphasize that in the presense of a .xsb/xsbrc.P �le it is the user's responsibility to avoid

module name clashes with modules in XSB's system library directories. Such name clashes can

cause the system to behave strangely since these modules will probably have di�erent semantics

from that expected by the XSB system code. The list of module names in XSB's system library

directories can be found in appendix C.

Apart from the user libraries, XSB now has a simple packaging system. A package is an appli-

cation consisting of one or more �les that are organized in a subdirectory of one of the XSB system

or user libraries. The system directory $XSB_DIR/packages has several examples of such packages.

Packages are convenient as a means of organizing large XSB applications, and for simplifying user

interaction with such applications. User-level packaging is implemented through the predicate

bootstrap_userpackage(+LibraryDir, +PackageDir, +PackageName).

which must be imported from the packaging module.

To illustrate, suppose you wanted to create a package, foobar, inside your own library, my lib.

Here is a sequence of steps you can follow:

1. Make sure that my lib is on the library search path by putting an appropriate assert statement

in your xsbrc.P.

2. Make subdirectory ~/my_lib/foobar and organize all the package �les there. Designate one

�le, say, foo.P, as the entry point, i.e., the application �le that must be loaded �rst.

3. Create the interface program ~/my_lib/foobar.P with the following content:

:- bootstrap_userpackage('~/my_lib', 'foobar', foobar), [foo].

The interface program and the package directory do not need to have the same name, but it

is convenient to follow the above naming schema.

4. Now, if you need to invoke the foobar application, you can simply type [foobar]. at the

XSB prompt. This is because both and ~/my_lib/foobar have already been automatically

added to the library search path.

5. If your application �les export many predicates, you can simplify the use of your package by

having ~/my_lib/foobar.P import all these predicates, renaming them, and then exporting

them. This provides a uniform interface to the foobarmodule, since all the package predicates

are can now be imported from just one module, foobar.
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In addition to adding the appropriate directory to the library search path, the predicate bootstrap_userpackage/3

also adds information to the predicate package_configuration/3, so that other applications could

query the information about loaded packages.

Packages can also be unloaded using the predicate unload_package/1. For instance,

:- unload_package(foobar).

removes the directory ~/my_lib/foobar from the library search path and deletes the associated

information from package_configuration/3.

3.4.2 Dynamically loading predicates in the interpreter

Modules are usually loaded into an environment when they are consulted (see section 3.7). Speci�c

predicates from a module can also be imported into the run-time environment through the standard

predicate import PredList from Module. Here, PredList can either be a Prolog list or a comma

list. (The import/1 can also be used as a directive in a source module (see section 3.3).

We provide a sample session for compiling, dynamically loading, and querying a user-de�ned

module named quick sort. For this example we assume that quick sort is a �le in the current

working directory, and contains the de�nitions of the predicates concat/3 and qsort/2, both of

which are exported.

| ?- compile(quick_sort).

[Compiling ./quick_sort]

[quick_sort compiled, cpu time used: 1.439 seconds]

yes

| ?- import concat/3, qsort/2 from quick_sort.

yes

| ?- concat([1,3], [2], L), qsort(L, S).

L = [1,3,2]

S = [1,2,3]

yes.

The standard predicate import/1 does not load the module containing the imported predicates,

but simply informs the system where it can �nd the de�nition of the predicate when (and if) the

predicate is called.

3.5 Command Line Arguments

There are several command line options for the emulator. The general synopsis is:
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xsb [flags] [-l] [-i]

xsb [flags] -n

xsb [flags] module

xsb [flags] -B boot_module [-D cmd_loop_driver] [-t] [-e goal]

xsb [flags] -B module_to_disassemble -d

xsb -[h | v]

xsb --help | --version | --nobanner | --quietload | --noprompt

memory management flags:

-c tcpsize | -m glsize | -o complsize | -u pdlsize | -r | -g gc_type

miscellaneous flags:

-s | -T

module:

Module to execute after XSB starts up.

Module should have no suffixes, no directory part, and

the file module.O must be on the library search path.

boot_module:

This is a developer's option.

The -B flags tells XSB which bootstraping module to use instead

of the standard loader. The loader must be specified using its

full pathname, and boot_module.O must exist.

module_to_disassemble:

This is a developer's option.

The -d flag tells XSB to act as a disassembler.

The -B flag specifies the module to disassemble.

cmd_loop_driver:

The top-level command loop driver to be used instead of the

standard one. Usually needed when XSB is run as a server.

-i : bring up the XSB interpreter

-e goal : evaluate goal when XSB starts up

-l : the interpreter prints unbound variables using letters

-n : used when calling XSB from C

-B : specify the boot module to use in lieu of the standard loader

-D : Sets top-level command loop driver to replace the default.

-t : trace execution at the SLG-WAM instruction level

(for this to work, build XSB with the --debug option)

-d : disassemble the loader and exit

-c N : allocate N KB for the trail/choice-point stack

-m N : allocate N KB for the local/global stack

-o N : allocate N KB for the SLG completion stackof

-u N : allocate N KB for the SLG unification (table copy) stack

-r : turn off automatic stack expansion

-g gc_type : choose the garbage collection ("none", "sliding", or "copying")
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-s : maintains more detailed statistical information

-T : print a trace of each called predicate

-v, --version : print the version and configuration information about XSB.

-h, --help : print this help message

--nobanner : don't show the XSB banner on startup

--quietload : don't show the `module loaded' messages

--noprompt : don't show prompt (for non-interactive use)

The order in which these options appear makes no di�erence.

-i Brings up the XSB interpreter. This is the normal use and because of this, use of this option is

optional and is only kept for backwards compatibility.

-l Forces the interpreter to print unbound variables as letters, as opposed to the default setting

which prints variables as memory locations pre�xed with an underscore. For example, starting

XSB's interpreter with this option will print the following:

| ?- Y = X, Z = 3, W = foo(X,Z).

Y = A

X = A

Z = 3

W = foo(A,3)

as opposed to something like the following:

| ?- Y = X, Z = 3, W = foo(X,Z).

Y = _10073976

X = _10073976

Z = 3

W = foo(_10073976,3);

-n used in conjunction with the -i option, to indicate that the usual read-eval-print top-loop is

not to be entered, but instead will interface to a calling C program. See the chapter Calling

XSB from C in Volume 2 for details.

-d Produces a disassembled dump of byte code file to stdout and exits.

-c size Allocates initial size Kbytes of space to the trail/choice-point stack area. The trail stack

grows upward from the bottom of the region, and the choice point stack grows downward

from the top of the region. Because this region is expanded automatically from Version 1.6.0

onward, this option should rarely need to be used. Default initial size: 768 Kbytes.

-m size Allocates size Kbytes of space to the local/global stack area. The global stack grows

upward from the bottom of the region, and the local stack grows downward from the top of

the region. Default: 768 Kbytes.
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-o size Allocates size Kbytes of space to thecompletion stack area. Because this region is expanded

automatically from Version 1.6.0 onward, this option should rarely need to be used. Default

initial size 64 Kbytes.

-u size Allocates size Kbytes of space to the uni�cation (and table copy) stack. Default 64 Kbytes.

(This option should rarely need to be used).

-D Tells XSB to use a top-level command loop driver speci�ed here instead of the standard XSB

interpreter. This is most useful when XSB is used as a server.

-r Turns o� automatic stack expansion.

-g gc type Chooses the garbage collection strategy that is employed; choice of the strategy is

between "none" (meaning perform no garbage collection), or garbage collection based on

"sliding" or on "copying". Since garbage collection is only available when the emulator is

based on a CHAT model (see also the installation options), this option only makes sense in

this context; it is ine�ective when the emulator is SLG-WAM based.

-s Maintains information on the size of program stacks for the predicate statistics/0. This

option may be expected to slow execution by around 10%. Default: o�.

-T Generates a trace at entry to each called predicate (both system and user-de�ned). This option

is available mainly for people who want to modify and/or extend XSB, and it is not the normal

way to trace XSB programs. For the latter, the builtin predicates trace/0 or debug/0 should

be used (see Chapter 7).

Note: This option is not available when the system is being used at the non-tracing mode

(see Section 7).

-t Traces through code at SLG-WAM instruction level. This option is for internal debugging and

is not fully supported. It is also not available when the system is being used at the non-debug

mode (see Section 7).

-e goal Pass goal to XSB at starup. This goal is evaluated right before the �rst prompt is issued.

For instance, xsb -e "write(Hello!'), nl."' will print a heart-warming message when XSB

starts up.

--nobanner Start XSb without showing the startup banner. Useful in batch scripts and for inter-

process communication (when XSB is launched as a subprocess).

--quietload Do not tell when a new module gets loaded. Again, is useful in non-interactive

activities and for interprocess communication.

--noprompt Do not show te XSB prompt. This is useful only in batch mode and in interprocess

communication when you do not want the prompt to clutter the picture.

As an example, a program which uses more heap and local stack than the default con�guration

of XSB might be run by invoking XSB with the command.

xsb -m 2000
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3.6 Memory Management

All execution stacks are automatically expenaded in Version 2.1 including the local stack/heap

region, the trail/choice point region and the completion stack region. Each of these regions begin

with an initial value set by the user (or the default stated in Section 3.5), and double their size

until it is not possible to do so with available system memory. At that point XSB tries to �nd the

maximal amount of space that will still �t in system memory. Garbage collection is automatically

performed for retracted clauses. In addition, heap garbage collection is automatically included

when the --enable-chat con�guration option is used.

The program area (the area into which the code is loaded) is also dynamically expanded as

needed, and the area occupied by dynamic code (created using assert/1, or the standard predicate

load dyn/1) is reclaimed when that code is retracted. Version 1.8 improves memory management

for retracted dynamic code.

Version 2.1 provides memory management for table space as well. Space for tables is dynami-

cally allocated as needed and reclaimed through use of the predicate abolish all tables/0 (see

Section 6.12).

3.7 Compiling and Consulting

In XSB, both compiled and interpreted code are transformed into SLG-WAM instructions. The

main di�erences are that compiled code may be more optimized than interpreted code, and that

compilation produces an object code �le.

This section describes the actions of the standard predicate consult/[1,2] (and of reconsult/[1,2]

which is de�ned to have the same actions as consult/[1,2]). consult/[1,2] is the most conve-

nient method for entering rules into XSB's database. Though consult comes in many 
avors, the

most general form is:

consult(+FileList, +CompilerOptionList)

At the time of the call both of its arguments should be instantiated (ground). FileList is a list of

�lenames or module names (see section 3.3) and CompilerOptionList is a list of options that are

to be passed to the compiler when (and if) it should be invoked. For a detailed description of the

format and the options that can appear in this list see Section 3.8.

If the user wants to consult one module (�le) only, she can provide an atom instead of a list

for the �rst argument of consult/2. Furthermore, if there isn't any need for special compilation

options the following two forms:

[FileName].

consult(FileName).

are just notational shorthands for:

consult(FileName, []).
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Consulting a module (�le) generally consists of the following �ve steps which are described in

detail in the next paragraphs.

Name Resolution : determine the module to be consulted.

Compilation : if necessary (and the source �le is not too big), compile the module using predicate

compile/2 with the options speci�ed.

Loading load the object code of the module into memory.

Importing import all the exported predicates of that module to the current working module

(usermod).

Query Execution : execute any queries that the module may contain.

There are two steps to name resolution: determination of the proper directory pre�x and

determination of the proper extension. When FileName is absolute (i.e. in UNIX contains a slash

'/') determination of the proper directory pre�x is straightforward. However, the user may also

enter a name without any directory pre�x. In this case, the directory pre�x is a directory in the

dynamic loader path (see section 3.4) where the source �le exists. Once the directory pre�x is

determined, the �le name is checked for an extension. If there is no extension the loader �rst

checks for a �le in the directory with the .P extension, (or .c for foreign modules) before searching

for a �le without the extension. Note that since directories in the dynamic loader path are searched

in a predetermined order (see section 3.4), if the same �le name appears in more than one of these

directories, the compiler will consult the �rst one it encounters.

Compilation is performed if the update date of the the source �le (*.P) is later than that of the

the object �le (*.O), and if the source �le is not larger than the default compile size. This default

compile is set to be 20,000 bytes (in cmplib/config.P), but can be reset by the user. If the source

�le is larger than the default compile size, the �le will be loaded using load dyn/1, and otherwise

it will be compiled (load dyn/1 can also be called separately, see the section Asserting Dynamic

Code for details. While load dyn gives reasonibly good execution times, compilation can always

be done by using compile/[1,2] explicitly. Currently (Version 2.1), a foreign language module is

compiled when at least one of �les *.c or *.H has been changed from the time the corresponding

object �les have been created.

Whether the �le is compiled or dynamically loaded, the byte-code for the �le is loaded into

XSB's database. The default action upon loading is to delete any previous byte-code for predicates

de�ned in the �le. If this is not the desired behavior, the user may add to the �le a declaration

:- multifile <Predicate List> .

where Predicate List is a list of predicates in functor/arity form. The e�ect of this declaration

is to delete only those clauses of predicate/arity that were de�ned in the �le itself.

After loading the module, all exported predicates of that module are imported into the cur-

rent environment (the current working module usermod). For non-modules (see Section 3.3), all

predicates are imported into the current working module.
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Finally any queries | that is, any terms with principal functor ':-'/1 that are not directives

like the ones described in Section 3.8 | are executed in the order that they are encountered.

3.8 The Compiler

The XSB compiler translates XSB source �les into byte-code object �les. It is written entirely

in Prolog. Both the sources and the byte code for the compiler can be found in the XSB system

directory cmplib.

Prior to compiling, XSB �lters the programs through GPP, a preprocessor written by Denis

Auroux (auroux@math.polytechnique.fr). This preprocessor maintains high degree of compatibility

with the C preprocessor, but is more suitable for processing Prolog programs. The preprocessor

is invoked with the compiler option xpp_on as described below. The various features of GPP are

described in Appendix A.

XSB also allows the programmer to use preprocessors other than GPP. However, the modules

that come with XSB distribution require GPP. This is explained below (see xpp_on compiler option).

The following sections describe the various aspects of the compiler in more detail.

3.8.1 Invoking the Compiler

The compiler is invoked directly at the interpreter level (or in a program) through the Prolog

predicates compile/[1,2].

The general forms of predicate compile/2 are:

compile(+File, +OptionList)

compile(+FileList, +OptionList)

and at the time of the call both of its arguments should be ground.

The second form allows the user to supply a proper list of �le names as the parameter for

compile/[1,2]. In this case the compiler will compile all the �les in FileList with the compiler

options speci�ed in OptionList (but see Section 3.8.2 below for the precise details.)

j ?- compile(Files).

is just a notational shorthand for the query:

j ?- compile(Files, []).

The standard predicates consult/[1,2] call compile/1 (if necessary). Argument File can be

any syntactically valid UNIX or Windows �le name (in the form of a Prolog atom), but the user

can also supply a module name.

The list of compiler options OptionList, if speci�ed, should be a proper Prolog list, i.e. a term

of the form:

[ option1, option2, : : :, optionn ].
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where optioni is one of the options described in Section 3.8.2.

The source �le name corresponding to a given module is obtained by concatenating a directory

pre�x and the extension .P (or .c) to the module name. The directory pre�x must be in the

dynamic loader path (see Section 3.4). Note that these directories are searched in a predetermined

order (see Section 3.4), so if a module with the same name appears in more than one of the

directories searched, the compiler will compile the �rst one it encounters. In such a case, the user

can override the search order by providing an absolute path name.

If File contains no extension, an attempt is made to compile the �le File.P (or File.c) before

trying compiling the �le with name File.

We recommend use of the extension .P for Prolog source �le to avoid ambiguity. Optionally,

users can also provide a header �le for a module (denoted by the module name suÆxed by .H).

In such a case, the XSB compiler will �rst read the header �le (if it exists), and then the source

�le. Currently the compiler makes no special treatment of header �les. They are simply included

in the beginning of the corresponding source �les, and code can, in principle, be placed in either.

In future versions of XSB the header �les may be used to check interfaces across modules, hence it

is a good programming practice to restrict header �les to declarations alone.

The result of the compilation (an SLG-WAM object code �le) is stored in a (h�lenamei.O), but

compile/[1,2] does not load the object �le it creates. (The standard predicates consult/[1,2]

and reconsult/[1,2] both recompile the source �le, if needed, and load the object �le into the

system.) The object �le created is always written into the directory where the source �le resides

(the user should therefore have write permission in that directory).

If desired, when compiling a module (�le), clauses and directives can be transformed as they

are read. This is indeed the case for de�nite clause grammar rules (see Chapter 8), but it can

also be done for clauses of any form by providing a de�nition for predicate term expansion/2 (see

Section 8.3).

Predicates compile/[1,2] can also be used to compile foreign language modules. In this case,

the names of the source �les should have the extension .c and a .P �le must not exist. A header

�le (with extension .H) must be present for a foreign language module (see the chapter Foreign

Language Interface in Volume 2.

3.8.2 Compiler Options

Compiler options can be set in three ways: from a global list of options (see set global compiler options/1),

from the compilation command (see compile/2 and consult/2), and from a directive in the �le to

be compiled (see compiler directive compiler options/1).

set global compiler options(+OptionsList)

OptionsList is a list of compiler options (described below). Each can optionally be pre�xed

by + or -, indicating that the option is to be turned on, or o�, respectively. (No pre�x turns

the option on.) This evaluable predicate sets the global compiler options in the way indicated.

These options will be used in any subsequent compilation, unless reset by another call to this

predicate, or overridden by options provided in the compile invocation, or overridden by
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options in the �le to be compiled.

The following options are currently recognized by the compiler:

optimize When speci�ed, the compiler tries to optimize the object code. In Version 2.1, this option

optimizes predicate calls, among other features, so execution may be considerably faster for

recursive loops. However, due to the nature of the optimizations, the user may not be able

to trace all calls to predicates in the program. Also the Prolog code should be static. In

other words, the user is not allowed to alter the entry point of these compiled predicates by

asserting new clauses. As expected, the compilation phase will also be slightly longer. For

these reasons, the use of the optimize option may not be suitable for the development phase,

but is recommended once the code has been debugged.

xpp on Filter the program through a preprocessor before sending it to the XSB compiler. By

default (and for the XSB code itself), XSB uses GPP, a preprocessor developed by Denis

Auroux (auroux@math.polytechnique.fr) that has high degree of compatibility with the C

preprocessor, but is more suitable for Prolog syntax. In this case, the source code can include

the usual C preprocessor directives, such as #define, #ifdef, and #include. This option

can be speci�ed both as a parameter to compile/2 and as part of the compiler options/1

directive inside the source �le. See Appendix A for more details on GPP.

When an #include "file" statement is encountered, XSB directs GPP preprocessor to

search for the �les to include in the directories $XSB_DIR/emu and $XSB_DIR/prolog_includes.

However, additional directories can be added to this search path by asserting into the predi-

cate xpp_include_dir/1, which should be imported from module parse.

XSB prede�nes the constant XSB PROLOG, which can be used for conditional compilation.

For instance, you can write portable program to run under XSB and and other prologs that

support C-style preprocessing and use conditional compilation to account for the di�erences:

#ifdef XSB_PROLOG

XSB-specific stuff

#else

other Prolog's stuff

#endif

common stuff

However, as mentioned earlier, XSB lets the user �lter programs (except the programs that

belong to XSB distribution) through any preprocessor the user wants. To this end, one

only needs to assert the appropriate command into the predicate xpp_program, which should

be imported from module parse. The command should not include the �le name|XSB

appends the name of the �le to be compiled to the command supplied by the user. For

instance, executing

:- assert(xpp_program('/usr/bin/m4 -E -G')).
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before calling the compiler will have the e�ect that the next XSB program passed to the

compiler will be �rst preprocessed by the M4 macro package. Note that the XSB compiler

automatically clears out the xpp program predicate, so there is no need to tidy up each

time. But this also means that if you need to compile several programs with a non-standard

preprocessor then you must specify that non-standard preprocessor each time the program is

compiled.

auto table When speci�ed as a compiler option, the e�ect is as described in Section 3.8.4. Brie
y,

a static analysis is made to determine which predicates may loop under Prolog's SLD evalua-

tion. These predicates are compiled as tabled predicates, and SLG evaluation is used instead.

suppl table The intention of this option is to direct the system to table for eÆciency rather than

termination. When speci�ed, the compiler uses tabling to ensure that no predicate will depend

on more than three tables or EDB facts (as speci�ed by the declaration edb of Section 3.8.4).

The action of suppl table is independent of that of auto table, in that a predicate tabled

by one will not necessarily be tabled by the other. During compilation, suppl table occurs

after auto table, and uses table declarations generated by it, if any.

spec repr When speci�ed, the compiler performs specialisation of partially instantiated calls by

replacing their selected clauses with the representative of these clauses, i.e. it performs folding

whenever possible. We note in general, the code replacement operation is not always sound;

i.e. there are cases when the original and the residual program are not computationally

equivalent. The compiler checks for suÆcient (but not necessary) conditions that guarantee

computational equivalence. If these conditions are not met, specialisation is not performed

for the violating calls.

spec off When speci�ed, the compiler does not perform specialisation of partially instantiated

calls.

unfold off When speci�ed, singleton sets optimisations are not performed during specialisation.

This option is necessary in Version 2.1 for the specialisation of table declarations that select

only a single chain rule of the predicate.

spec dump Generates a module.spec �le, containing the result of specialising partially instantiated

calls to predicates de�ned in the module under compilation. The result is in Prolog source

code form.

ti dump Generates a module.ti �le containing the result of applying uni�cation factoring to pred-

icates de�ned in the module under compilation. The result is in Prolog source code form. See

page 34 for more information on uni�cation factoring.

ti long names Used in conjunction with ti dump, generates names for predicates created by uni-

�cation factoring that re
ect the clause head factoring done by the transformation.

modeinfer This option is used to trigger mode analysis. For each module compiled, the mode

analyzer creates a module.D �le that contains the mode information.

Warning: Occasionally, the analysis itself may take a long time. As far as we have seen,

the analysis times are longer than the rest of the compilation time only when the module
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contains recursive predicates of arity � 10. If the analysis takes an unusually long time (say,

more than 4 times as long as the rest of the compilation) you may want to abort and restart

compilation without modeinfer.

mi warn During mode analysis, the .D �les corresponding to the imported modules are read in.

The option mi warn is used to generate warning messages if these .D �les are outdated |

i.e., older than the last modi�cation time of the source �les.

mi foreign This option is used only when mode analysis is performed on XSB system modules.

This option is needed when analyzing standard and machine in syslib.

sysmod Mainly used by developers when compiling system modules. If speci�ed, standard pred-

icates (listed in Appendix B) are automatically available for use only if they are primitive

predicates (see the �le syslib/machine.P for a current listing of such predicates. When

compiling in this mode, non primitive standard predicates must be explicitly imported from

the appropriate system module.

verbo Compiles the �les (modules) speci�ed in \verbose" mode, printing out information about

the progress of the compilation of each predicate.

profile This option is usually used when modifying the XSB compiler. When speci�ed, the

compiler prints out information about the time spent in each phase of the compilation process.

asm dump, compile off Generates a textual representation of the SLG-WAM assembly code and

writes it into the �le module.A where module is the name of the module (�le) being compiled.

Warning: This option was created for compiler debugging and is not intended for general

use. There might be cases where compiling a module with these options may cause generation

of an incorrect .A and .O �le. In such cases, the user can see the SLG-WAM instructions

that are generated for a module by compiling the module as usual and then using the -d

module.O command-line option of the XSB emulator (see Section 3.5).

index off When speci�ed, the compiler does not generate indices for the predicates compiled.

3.8.3 Specialisation

From Version 1.4.0 on, the XSB compiler automatically performs specialisation of partially instan-

tiated calls. Specialisation can be thought as a source-level program transformation of a program

to a residual program in which partially instantiated calls to predicates in the original program are

replaced with calls to specialised versions of these predicates. The expectation from this process is

that the calls in the residual program can be executed more eÆciently that their non-specialised

counterparts. This expectation is justi�ed mainly because of the following two basic properties of

the specialisation algorithm:

Compile-time Clause Selection The specialised calls of the residual program directly select (at

compile time) a subset containing only the clauses that the corresponding calls of the original

program would otherwise have to examine during their execution (at run time). By doing so,

laying down unnecessary choice points is at least partly avoided, and so is the need to select

clauses through some sort of indexing.
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Factoring of Common Subterms Non-variable subterms of partially instantiated calls that are

common with subterms in the heads of the selected clauses are factored out from these terms

during the specialisation process. As a result, some head uni�cation (get * or unify *) and

some argument register (put *) WAM instructions of the original program become unneces-

sary. These instructions are eliminated from both the specialised calls as well as from the

specialised versions of the predicates.

Though these properties are suÆcient to get the idea behind specialisation, the actual specialisation

performed by the XSB compiler can be better understood by the following example. The example

shows the specialisation of a predicate that checks if a list of HiLog terms is ordered:

ordered([]).

ordered([X]).

ordered([X,Y|Z]) :-

X @=< Y, ordered([Y|Z]).

�!

ordered([]).

ordered([X]).

ordered([X,Y|Z]) :-

X @=< Y, $ordered(Y, Z).

:- index $ordered/2-2.

$ordered(X, []).

$ordered(X, [Y|Z]) :-

X @=< Y, $ordered(Y, Z).

The transformation (driven by the partially instantiated call ordered([Y|Z])) e�ectively allows

predicate ordered/2 to be completely deterministic (when used with a proper list as its argument),

and to not use any unnecessary heap-space for its execution. We note that appropriate :- index

directives are automatically generated by the XSB compiler for all specialised versions of predicates.

The default specialisation of partially instantiated calls is without any folding of the clauses

that the calls select. Using the spec repr compiler option (see Section 3.8.2) specialisation with

replacement of the selected clauses with the representative of these clauses is performed. Using this

compiler option, predicate ordered/2 above would be specialised as follows:

ordered([]).

ordered([X|Y]) :- _$ordered(X, Y).

:- index _$ordered/2-2.

_$ordered(X, []).

_$ordered(X, [Y|Z]) :- X @=< Y, _$ordered(Y, Z).

We note that in the presense of cuts or side-e�ects, the code replacement operation is not always

sound, i.e. there are cases when the original and the residual program are not computationally

equivalent (with respect to the answer substitution semantics). The compiler checks for suÆcient

(but not necessary) conditions that guarantee computational equivalence, and if these conditions

are not met, specialisation is not performed for the violating calls.

The XSB compiler prints out messages whenever it specialises calls to some predicate. For

example, while compiling a �le containing predicate ordered/1 above, the compiler would print

out the following message:
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% Specialising partially instantiated calls to ordered/1

The user may examine the result of the specialisation transformation by using the spec dump

compiler option (see Section 3.8.2).

Finally, we have to mention that for technical reasons beyond the scope of this document,

specialisation cannot be transparent to the user; predicates created by the transformation do appear

during tracing.

3.8.4 Compiler Directives

The following compiler directives are recognized in Version 2.1 of XSB 2.

Mode Declarations

The XSB compiler accepts mode declarations of the form:

:- mode ModeAnnot1; : : : ;ModeAnnotn.

where each ModeAnnot is a mode annotation (a term indicator whose arguments are elements of

the set f+,-,#,?g). From Version 1.4.1 on, mode directives are used by the compiler for tabling

directives, a use which di�ers from the standard use of modes in Prolog systems3. See Section 3.8.4

for detailed examples.

Mode annotations have the following meaning:

+ This argument is an input to the predicate. In every invocation of the predicate, the argument

position must contain a non-variable term. This term may not necessisarily be ground, but

the predicate is guaranteed not to alter this argument).

:- mode see(+), assert(+).

- This argument is an output of the predicate. In every invocation of the predicate the argument

position will always be a variable (as opposed to the # annotation below). This variable is

uni�ed with the value returned by the predicate. We note that Prolog does not enforce the

requirement that output arguments should be variables; however, output uni�cation is not

very common in practice.

:- mode cputime(-).

# This argument is either:

� An output argument of the predicate for which a non-variable value may be supplied

for this argument position. If such a value is supplied, the result in this position is

uni�ed with the supplied supplied value. The predicate fails if this uni�cation fails. If a

2Any parallelisation directives (parallel) are simply ignored by the compiler, but do not result in syntax errors

to enhance compatibility with various other earlier versions of PSB-Prolog.
3The most common uses of mode declarations in Prolog systems are to reduce the size of compiled code, or to

speed up a predicate's execution.
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variable term is supplied, the predicate succeeds, and the output variable is uni�ed with

the return value.

:- mode '='(#,#).

� An input/output argument position of a predicate that has only side-e�ects (usually by

further instantiating that argument). The # symbol is used to denote the � symbol that

cannot be entered from the keyboard.

? This argument does not fall into any of the above categories. Typical cases would be the following:

� An argument that can be used both as input and as output (but usually not with both

uses at the same time).

:- mode functor(?,?,?).

� An input argument where the term supplied can be a variable (so that the argument can-

not be annotated as +), or is instantiated to a term which itself contains uninstantiated

variables, but the predicate is guaranteed not to bind any of these variables.

:- mode var(?), write(?).

We try to follow these mode annotation conventions throughout this manual.

Finally, we warn the user that mode declarations can be error-prone, and since errors in mode

declarations do not show up while running the predicates interactively, unexpected behaviour may

be witnessed in compiled code, optimised to take modes into account (currently not performed by

XSB). However, despite this danger, mode annotations can be a good source of documentation,

since they express the programmer's intention of data 
ow in the program.

Tabling Directives

Memoization is often necessary to ensure that programs terminate, and can be useful as an opti-

mization strategy as well. The underlying engine of XSB is based on SLG, a memoization strategy,

which, in our version, maintains a table of calls and their answers for each predicate declared as

tabled. Predicates that are not declared as tabled execute as in Prolog, eliminating the expense of

tabling when it is unnecessary.

The simplest way to use tabling is to include the directive

:- auto table.

anywhere in the source �le. auto table declares predicates tabled so that the program will termi-

nate.

To understand precisely how auto table does this, it is necessary to mention a few properties

of SLG. For programs which have no function symbols, or where function symbols always have a

limited depth, SLG resolution ensures that any query will terminate after it has found all correct

answers. In the rest of this section, we restrict consideration to such programs.

Obviously, not all predicates will need to be tabled for a program to terminate. The auto table

compiler directive tables only those predicates of a module which appear to static analysis to contain

an in�nite loop, or which are called directly through tnot/1. It is perhaps more illuminating to
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demonstrate these conditions through an example rather than explaining them. For instance, in

the program.

:- auto_table.

p(a) :- s(f(a)).

s(X) :- p(f(a)).

r(X) :- q(X,W),r(Y).

m(X) :- tnot(f(X)).

:- mode ap1(-,-,+).

ap1([H|T],L,[H|L1]) :- ap1(T,L,L1).

:- mode ap(+,+,-).

ap([],F,F).

ap([H|T],L,[H|L1]) :- ap(T,L,L1).

mem(H,[H|T]).

mem(H,[_|T]) :- mem(H,T).

The compiler prints out the messages

% Compiling predicate s/1 as a tabled predicate

% Compiling predicate r/1 as a tabled predicate

% Compiling predicate m/1 as a tabled predicate

% Compiling predicate mem/2 as a tabled predicate

Terminating conditions were detected for ap1/3 and ap/3, but not for any of the other predi-

cates.

auto table gives an approximation of tabled programs which we hope will be useful for most

programs. The minimal set of tabled predicates needed to insure termination for a given program

is undecidible. It should be noted that the presence of meta-predicates such as call/1 makes any

static analysis useless, so that the auto table directive should not be used in such cases.

Predicates can be explicitly declared as tabled as well, through the table/1. When table/1 is

used, the directive takes the form

:- table(F/A).

where F is the functor of the predicate to be tabled, and A its arity.

Another use of tabling is to �lter out redundant solutions for eÆciency rather than termination.

In this case, suppose that the directive edb/1 were used to indicate that certain predicates were
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likely to have a large number of clauses. Then the action of the declaration :- suppl table in the

program:

:- edb(r1/2).

:- edb(r2/2).

:- edb(r3/2).

:- suppl_table.

join(X,Z):- r1(X,X1),r2(X1,X2),r3(X2,Z).

would be to table join/2. The suppl table directive is the XSB analogue to the deductive database

optimization, supplementary magic templates [4]. suppl table/0 is shorthand for suppl table(2)

which tables all predicates containing clauses with two or more edb facts or tabled predicates. By

specifying suppl table(3) for instance, only predicates containing clauses with three or more edb

facts or tabled predicates would be tabled. This 
exibility can prove useful for certain data-intensive

applications.

Indexing Directives

The XSB compiler usually generates an index on the principal functor of the �rst argument of

a predicate. Indexing on the appropriate argument of a predicate may signi�cantly speed up its

execution time. In many cases the �rst argument of a predicate may not be the most appropriate

argument for indexing and changing the order of arguments may seem unnatural. In these cases,

the user may generate an index on any other argument by means of an indexing directive. This is

a directive of the form:

:- index Functor/Arity-IndexArg.

indicating that an index should be created for predicate Functor/Arity on its IndexArgth argu-

ment. One may also use the form:

:- index(Functor/Arity, IndexArg, HashTableSize).

which allows further speci�cation of the size of the hash table to use for indexing this predicate if

it is a dynamic (i.e., asserted) predicate. For predicates that are dynamically loaded, this directive

can be used to specify indexing on more than one argument, or indexing on a combination of

arguments (see its description on page 106). For a compiled predicate the size of the hash table is

computed automatically, so HashTableSize is ignored.

All of the values Functor, Arity, IndexArg (and possibly HashTableSize) should be ground in

the directive. More speci�cally, Functor should be an atom, Arity an integer in the range 0..255,

and IndexArg an integer between 0 and Arity. If IndexArg is equal to 0, then no index is created

for that predicate. An index directive may be placed anywhere in the �le containing the predicate

it refers to.

As an example, if we wished to create an index on the third argument of predicate foo/5, the

compiler directive would be:
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:- index foo/5-3.

Uni�cation Factoring

When the clause heads of a predicate have portions of arguments common to several clauses,

indexing on the principal functor of one argument may not be suÆcient. Indexing may be improved

in such cases by the use of uni�cation factoring. Uni�cation Factoring is a program transformation

that \factors out" common parts of clause heads, allowing di�ering parts to be used for indexing,

as illustrated by the following example:

p(f(a),X) :- q(X).

p(f(b),X) :- r(X).
�!

p(f(X),Y) :- $p(X,Y).

$p(a,X) :- q(X).

$p(b,X) :- r(X).

The transformation thus e�ectively allows p=2 to be indexed on atoms a=0 and b=0. Uni�cation

Factoring is transparent to the user; predicates created by the transformation are internal to the

system and do not appear during tracing.

The following compiler directives control the use of uni�cation factoring:4.

:- ti(F/A). Speci�es that predicate F=A should be compiled with uni�cation factoring enabled.

:- ti off(F/A). Speci�es that predicate F=A should be compiled with uni�cation factoring dis-

abled.

:- ti all. Speci�es that all predicates de�ned in the �le should be compiled with uni�cation

factoring enabled.

:- ti off all. Speci�es that all predicates de�ned in the �le should be compiled with uni�cation

factoring disabled.

By default, higher-order predicates (more precisely, predicates named apply with arity greater than

1) are compiled with uni�cation factoring enabled. It can be disabled using the ti off directive. For

all other predicates, uni�cation factoring must be enabled explicitly via the ti or ti all directive.

If both :- ti(F/A). (:- ti all.) and :- ti off(F/A). (:- ti off all.) are speci�ed, :-

ti off(F/A). (:- ti off all.) takes precedence. Note that uni�cation factoring may have no

e�ect when a predicate is well indexed to begin with. For example, uni�cation factoring has no

e�ect on the following program:

p(a,c,X) :- q(X).

p(b,c,X) :- r(X).

even though the two clauses have c=0 in common. The user may examine the results of the

transformation by using the ti dump compiler option (see Section 3.8.2).

4Uni�cation factoring was once called transformational indexing, hence the abbreviation ti in the compiler direc-

tives
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Other Directives

XSB has other directives not found in other Prolog systems.

:- hilog atom1; : : : ; atomn.

Declares symbols atom1 through atomn as HiLog symbols. The hilog declaration should

appear before any use of the symbols. See Chapter 4 for a purpose of this declaration.

:- ldoption(Options).

This directive is only recognized in the header �le (.H �le) of a foreign module. See the

chapter Foreign Language Interface in Volume 2 for its explanation.

:- compiler options(OptionsList).

Indicates that the compiler options in the list OptionsList should be used to compile this �le.

This must appear at the beginning of the �le. Thes options will override any others, including

those given in the compilation command. The options may be optionally pre�xed with + or

- to indicate that they should be set on or o�. (No pre�x indicates the option should be set

on.)

3.8.5 Inline Predicates

Inline predicates represent \primitive" operations in the WAM. Calls to inline predicates are com-

piled into a sequence of WAM instructions in-line, i.e. without actually making a call to the

predicate. Thus, for example, relational predicates (like >/2, >=/2, etc.) compile to, essentially,

a subtraction followed by a conditional branch. Inline predicates are expanded specially by the

compiler and thus cannot be rede�ned by the user without changing the compiler. The user does

not need to import these predicates from anywhere. There are available no matter what options

are speci�ed during compiling.

Table 3.1 lists the inline predicates of XSB Version 2.1. Those predicates that start with _$ are

internal predicates that are also expanded in-line during compilation.

'='/2 '<'/2 '=<'/2 '>='/2 '>'/2

'=:='/2 '=\='/2 is/2 '@<'/2 '@=<'/2

'@>'/2 '@>='/2 '=='/2 '\=='/2 fail/0

true/0 var/1 nonvar/1 halt/0 '!'/0

' $cutto'/1 ' $savecp'/1 ' $builtin'/1

Table 3.1: The Inline Predicates of XSB

We warn the user to be very cautious when de�ning predicates whose functor starts with $

since the names of these predicates may interfere with some of XSB's internal predicates. The

situation may be particularly severe for predicates like ' $builtin'/1 that are treated specially

by the XSB compiler.
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Syntax

The syntax of XSB is taken from C-Prolog with extensions. This chapter mainly introduces the

extensions. The syntax of XSB is that of the HiLog language. The syntax of HiLog is a proper

superset of the Prolog syntax.

4.1 Terms

The data objects of the HiLog language are called terms. A HiLog term can be constructed from

any logical symbol or a term followed by any �nite number of arguments. In any case, a term is

either a constant, a variable, or a compound term.

A constant is either a number (integer or 
oating-point) or an atom. Constants are de�nite

elementary objects, and correspond to proper nouns in natural language.

4.1.1 Integers

The printed form of an integer in HiLog consists of a sequence of digits optionally preceded by a

minus sign ('-'). These are normally interpreted as base 10 integers. It is also possible to enter

integers in other bases (2 through 36); this can be done by preceding the digit string by the base

(in decimal) followed by an apostrophe ('). If a base greater than 10 is used, the characters A-Z

or a-z are used to stand for digits greater than 9.

Using these rules, examples of valid integer representations in XSB are:

1 -3456 95359 9'888 16'1FA4 -12'A0 20'

representing respectively the following integers in decimal base:

1 -3456 95359 728 8100 -120 0

Note that the following:

36
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+525 12'2CF4 37'12 20'-23

are not valid integers of XSB.

A base of 0 (zero) will return the ASCII code of the (single) character after the apostrophe; for

example,

0'A = 65

4.1.2 Floating-point Numbers

A HiLog 
oating-point number consists of a sequence of digits with an embedded decimal point,

optionally preceded by a minus sign ('-'), and optionally followed by an exponent consisting of

uppercase or lowercase 'E' and a signed base 10 integer.

Using these rules, examples of HiLog 
oating point numbers are:

1.0 -34.56 817.3E12 -0.0314e26 2.0E-1

Note that in any case there must be at least one digit before, and one digit after, the decimal point.

4.1.3 Atoms

A HiLog atom is identi�ed by its name, which is a sequence of up to 1000 characters (other than

the null character). Just like a Prolog atom, a HiLog atom can be written in any of the following

forms:

� Any sequence of alphanumeric characters (including ' '), starting with a lowercase letter.

� Any sequence from the following set of characters (except of the sequence '/*', which begins

a comment):

+ - * / \ ^ < > = ` ~ : . ? @ # &

� Any sequence of characters delimited by single quotes, such as:

'sofaki' '%' '_$op'

If the single quote character is to be included in the sequence it must be written twice. For

example:

'don''t' ''''
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� Any of the following:

! ; [] {}

Note that the bracket pairs are special. While '[]' and 'fg' are atoms, '[', ']', 'f', and

'g' are not. Like Prolog, the form [X] is a special notation for lists (see Section 4.1.6), while

the form fXg is just \syntactic sugar" for the term 'fg'(X).

Examples of HiLog atoms are:

h foo ^=.. ::= 'I am also a HiLog atom' []

4.1.4 Variables

Variables may be written as any sequence of alphanumeric characters (including ' ') beginning

with either a capital letter or ' '. For example:

X HiLog Var1 _3 _List

If a variable is referred to only once in a clause, it does not need to be named and may be

written as an anonymous variable, represented by a single underscore character ' '. Any number

of anonymous variables may appear in a HiLog clause; all of these variables are read as distinct

variables. Anonymous variables are not special at runtime.

4.1.5 Compound Terms

Like in Prolog, the structured data objects of HiLog are compound terms (or structures). The

external representation of a HiLog compound term comprises a functor (called the principal functor

or the name of the compound term) and a sequence of one or more terms called arguments. Unlike

Prolog where the functor of a term must be an atom, in HiLog the functor of a compound term

can be any valid HiLog term. This includes numbers, atoms, variables or even compound terms.

Thus, since in HiLog a compound term is just a term followed by any �nite number of arguments,

all the following are valid external representations of HiLog compound terms:

foo(bar) prolog(a, X) hilog(X)

123(john, 500) X(kostis, sofia) X(Y, Z, Y(W))

f(a, (b(c))(d)) map(double)([], []) h(map(P)(A, B))(C)

Like a functor in Prolog, a functor in HiLog can be characterized by its name and its arity

which is the number of arguments this functor is applied to. For example, the compound term

whose principal functor is 'map(P)' of arity 2, and which has arguments L1, and L2, is written as:

map(P)(L1, L2)
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As in Prolog, when we need to refer explicitly to a functor we will normally denote it by the

form Name=Arity. Thus, in the previous example, the functor 'map(P)' of arity 2 is denoted by:

map(P)/2

Note that a functor of arity 0 is represented as an atom.

In Prolog, a compound term of the form p(t1; t2; : : : ; tk) is usually pictured as a tree in which

every node contains the name p of the functor of the term and has exactly k children each one of

which is the root of the tree of terms t1; t2; : : : ; tk.

For example, the compound term

s(np(kostis), vp(v(loves), np(sofia)))

would be pictured as the following tree:

s

/ \

np vp

| / \

| v np

| | |

kostis loves sofia

The principal functor of this term is s/2. Its two arguments are also compound terms. In illustra-

tion, the principal functor of the second argument is vp/2.

Likewise, any external representation of a HiLog compound term t(t1; t2; : : : ; tk) can be pictured

as a tree in which every node contains the tree representation of the name t of the functor of the

term and has exactly k children each one of which is the root of the tree of terms t1; t2; : : : ; tk.

Sometimes it is convenient to write certain functors as operators. Binary functors (that is,

functors that are applied to two arguments) may be declared as in�x operators, and unary functors

(that is, functors that are applied to one argument) may be declared as either pre�x or post�x

operators. Thus, it is possible to write the following:

X+Y (P;Q) X<Y +X P;

More about operators in HiLog can be found in section 4.3.

4.1.6 Lists

As in Prolog, lists form an important class of data structures in HiLog. They are essentially

the same as the lists of Lisp: a list is either the atom '[]', representing the empty list, or else

a compound term with functor '.' and two arguments which are the head and tail of the list

respectively, where the tail of a list is also a list. Thus a list of the �rst three natural numbers is

the structure:
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.

/ \

1 .

/ \

2 .

/ \

3 []

which could be written using the standard syntax, as:

.(1,.(2,.(3,[])))

but which is normally written in a special list notation, as:

[1,2,3]

Two examples of this list notation, as used when the tail of a list is a variable, are:

[Head|Tail] [foo,bar|Tail]

which represent the structures:

. .

/ \ / \

Head Tail foo .

/ \

bar Tail

respectively.

Note that the usual list notation [H|T] does not add any new power to the language; it is

simply a notational convenience and improves readability. The above examples could have been

written equally well as:

.(Head,Tail) .(foo,.(bar,Tail))

For convenience, a further notational variant is allowed for lists of integers that correspond to

ASCII character codes. Lists written in this notation are called strings. For example,

"I am a HiLog string"

represents exactly the same list as:

[73,32,97,109,32,97,32,72,105,76,111,103,32,115,116,114,105,110,103]
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4.2 From HiLog to Prolog

From the discussion about the syntax of HiLog terms, it is clear that the HiLog syntax allows the

incorporation of some higher-order constructs in a declarative way within logic programs. As we

will show in this section, HiLog does so while retaining a clean �rst-order declarative semantics.

The semantics of HiLog is �rst-order, because every HiLog term (and formula) is automatically

encoded (converted) in predicate calculus in the way explained below.

Before we brie
y explain the encoding of HiLog terms, let us note that the HiLog syntax is a

simple (but notationally very convenient) encoding for Prolog terms, of some special form. In the

same way that in Prolog:

1 + 2

is just an (external) shorthand for the term:

+(1, 2)

in the presence of an in�x operator declaration for + (see section 4.3), so:

X(a, b)

is just an (external) shorthand for the Prolog compound term:

apply(X, a, b)

Also, in the presence of a hilog declaration (see section 3.8.4) for h, the HiLog term whose external

representation is:

h(a, h, b)

is a notational shorthand for the term:

apply(h, a, h, b)

Notice that even though the two occurrences of h refer to the same symbol, only the one where h

appears in a functor position is encoded with the special functor apply/n; n � 1.

The encoding of HiLog terms is performed based upon the existing declarations of hilog symbols.

These declarations (see section 3.8.4), determine whether an atom that appears in a functor position

of an external representation of a HiLog term, denotes a functor or the �rst argument of a set of

special functors apply. The actual encoding is as follows:

� The encoding of any variable or parameter symbol (atom or number) that does not appear

in a functor position is the variable or the symbol itself.
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� The encoding of any compound term t where the functor f is an atom that is not one of the

hilog symbols (as a result of a previous hilog declaration), is the compound term that has

f as functor and has as arguments the encoding of the arguments of term t. Note that the

arity of the compound term that results from the encoding of t is the same as that of t.

� The encoding of any compound term t where the functor f is either not an atom, or is an atom

that is a hilog symbol, is a compound term that has apply as functor, has �rst argument

the encoding of f and the rest of its arguments are obtained by encoding of the arguments of

termt. Note that in this case the arity of the compound term that results from the encoding

of t is one more than the arity of t.

Note that the encoding of HiLog terms described above, implies that even though the HiLog

terms:

p(a, b)

h(a, b)

externally appear to have the same form, in the presence of a hilog declaration for h but not for

p, they are completely di�erent. This is because these terms are shorthands for the terms whose

internal representation is:

p(a, b)

apply(h, a, b)

respectively. Furthermore, only h(a,b) is uni�able with the HiLog term whose external represen-

tation is X(a, b).

We end this short discussion on the encoding of HiLog terms with a small example that illus-

trates the way the encoding described above is being done. Assuming that the following declarations

of parameter symbols have taken place,

:- hilog h.

:- hilog (hilog).

before the compound terms of page 38 were read by XSB, the encoding of these terms in predicate

calculus using the described transformation is as follows:

foo(bar) prolog(a,X)

apply(hilog,X) apply(123,john,500)

apply(X,kostis,sofia) apply(X,Y,Z,apply(Y,W))

f(a,apply(b(c),d)) apply(map(double),[],[])

apply(apply(h,apply(map(P),A,B)),C)

4.3 Operators

From a theoretical point of view, operators in Prolog are simply a notational convenience and add

absolutely nothing to the power of the language. For example, in most Prologs '+' is an in�x

operator, so
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2 + 1

is an alternative way of writing the term +(2, 1). That is, 2 + 1 represents the data structure:

+

/ \

2 1

and not the number 3. (The addition would only be performed if the structure were passed as an

argument to an appropriate procedure, such as is/2).

However, from a practical or a programmer's point of view, the existence of operators is highly

desirable, and clearly handy.

Prolog syntax allows operators of three kinds: in�x, pre�x, and post�x. An in�x operator

appears between its two arguments, while a pre�x operator precedes its single argument and a

post�x operator follows its single argument.

Each operator has a precedence, which is an integer from 1 to 1200. The precedence is used to

disambiguate expressions in which the structure of the term denoted is not made explicit through

the use of parentheses. The general rule is that the operator with the highest precedence is the

principal functor. Thus if '+' has a higher precedence than '/', then the following

a+b/c a+(b/c)

are equivalent, and both denote the same term +(a,/(b,c)). Note that in this case, the in�x form

of the term /(+(a,b),c) must be written with explicit use of parentheses, as in:

(a+b)/c

If there are two operators in the expression having the same highest precedence, the ambiguity

must be resolved from the types (and the implied associativity) of the operators. The possible types

for an in�x operator are

yfx xfx xfy

Operators of type 'xfx' are not associative. Thus, it is required that both of the arguments of the

operator must be subexpressions of lower precedence than the operator itself; that is, the principal

functor of each subexpression must be of lower precedence, unless the subexpression is written in

parentheses (which automatically gives it zero precedence).

Operators of type 'xfy' are right-associative: only the �rst (left-hand) subexpression must

be of lower precedence; the right-hand subexpression can be of the same precedence as the main

operator. Left-associative operators (type 'yfx') are the other way around.

An atom named Name can be declared as an operator of type Type and precedence Precedence

by the command;
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:- op(Precedence, Type, Name).

The same command can be used to rede�ne one of the prede�ned XSB operators (see appendix B.3).

However, it is not allowed to alter the de�nition of the comma (',') operator. An operator

declaration can be cancelled by redeclaring the Name with the same Type, but Precedence 0.

As a notational convenience, the argument Name can also be a list of names of operators of the

same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of di�erent

kinds: in�x, pre�x, or post�x. An operator of any kind may be rede�ned by a new declaration

of the same kind. Declarations for all these built-in operators can be found in appendix B.3. For

example, the built-in operators '+' and '-' are as if they had been declared by the command:

:- op(500, yfx, [+,-]).

so that:

1-2+3

is valid syntax, and denotes the compound term:

(1-2)+3

or pictorially:

+

/ \

- 3

/ \

1 2

In XSB, the list functor '.'/2 is one of the standard operators, that can be thought as declared

by the command:

:- op(661, xfy, .).

So, in XSB,

1.2.[]

represents the structure

.

/ \

1 .

/ \

2 []
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Contrasting this picture with the picture above for 1-2+3 shows the di�erence between 'yfx'

operators where the tree grows to the left, and 'xfy' operators where it grows to the right. The

tree cannot grow at all for 'xfx' type operators. It is simply illegal to combine 'xfx' operators

having equal precedences in this way.

If these precedence and associativity rules seem rather complex, remember that you can always

use parentheses when in any doubt.

In XSB, at the time when this is written, the possible types for pre�x operators are:

fx fy hx hy

and the possible types for post�x operators are:

xf yf

We end our discussion about operators by just mentioning that pre�x operators of type hx and

hy are proper HiLog operators. The discussion of proper HiLog operators and their properties is

deferred for the manual of a future version.
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Using Tabling in XSB: A Tutorial

Introduction

XSB has two ways of evaluating predicates. The default is to use Prolog-style evaluation, but by

using various declarations a programmer can use also tabled resolution which allows for a di�erent,

more declarative programming style than Prolog. In this section we discuss the various aspects of

tabling and how it is implemented in XSB. Our aim in this section is to provide a user with enough

information to be able to program productively in XSB. It is best to read this tutorial with a copy

of XSB handy, since much of the information is presented through a series of exercises.

For the theoretically inclined, XSB uses SLG resolution which can compute queries to non-


oundering normal programs under the well-founded semantics [44], and is guaranteed to terminate

when these programs have the bounded term-depth property. This tutorial covers only enough of

the theory of tabling to explain how to program in XSB. For those interested, the web site contain

papers covering in detail various aspects of tabling (often through the links for individuals involved

in XSB). An overview of SLG resolution, and practical evaluation strategies for it are provided

in [8, 41, 38, 19]. The engine of XSB, the SLG-WAM, is described in [35, 33, 18, 37, 7, 14] as it

is implemented in Version 2.1 and its performance analyzed. Examples of large-scale applications

that use tabling are overviewed in [42, 9, 12].

5.1 XSB as a Prolog System

Before describing how to program using tabling it is perhaps worthwhile reviewing some of the

goals of XSB

1. To execute tabled predicates at the speed of compiled Prolog.

2. To ensure that the speed of compiled Prolog is not slowed signi�cantly by adding the option

of tabling.

3. To execute that the functionality of Prolog is not compromised by support for tabling.

46
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4. To provide Prolog functionality in tabled predicates whenever it is semantically sensible to

do so.

5. To provide standard predicates to manipulate tables taken as objects in themselves.

Goals 1 and 2 are addressed by XSBs engine, which in Version 2.1 is based on a memory-

copying version of a virtual machine called the SLG-WAM. The overhead for SLD resolution using

this machine is negligible. Thus when XSB is used simply as a Prolog system (i.e., no tabling is

used), it is reasonably competitive with other Prolog implementations based on a WAM emulator

written in C or assembly. For example, XSB Version 1.6 is about two to three times slower than

Quintus 3.1.1 or emulated SICStus Prolog 3.1.

Goals 3, 4 and 5 have been nearly met, but there are a few instances in which interaction of

tabling with a Prolog construct has been accomplished, or is perhaps impossibe. Accordingly we

discuss these instances throughout this chapter. XSB is still under development however, so that

future versions may support more transparent mixing of Prolog and tabled code (e.g. allowing

tabled predicates in the scope of 0
n+0 =1) or adding Prolog functionality to tabled predicates (e.g.

allowing non-ground negation in tnot/1).

5.2 Tabling in De�nite Programs

De�nite programs, also called Horn Clause Programs, are those programs without negation | In

XSB, this means without the \+/1, fail if/1, not/1 or tnot/1 operators. Consider the Prolog

program

path(X,Y) :- path(X,Z), edge(Z,Y).

path(X,Y) :- edge(X,Y).

together with the query ?- path(1,Y). This program has a simple, declarative meaning: there is

a path from X to Y if there is a path from X to some node Z and there is a path from Z to Y, or

if there is a direct path from X to Y. Prolog, however enters into an in�nite loop when computing

an answer to this query. The inability of Prolog to answer such queries, which arise frequently,

comprises one of its major limitations as an implementation of logic.

A number of approaches have been developed to address this problem by reusing partial answers

to the query path(1,Y) [17, 43, 3, 45, 46]. The ideas behind these algorithms can be described

in the following manner. First, the implementation keeps track of all calls to tabled predicates,

(or tabled subgoals such as path(1,Y) in the above example. Whenever a new tabled subgoal S is

called, a check is �rst made to see whether S is in the table. If so, S is resolved against answers in

the table; if not S is entered into the table and the subgoal is resolved against program clauses, as

in Prolog. Answers are handled in the same way. When an answer to a tabled subgoal S is derived

a check is made against the table for S to see if the answer is there. If the answer isn't in the table

for S, the answer is added and scheduled to be returned to all instances where S has been called;

if the answer is already in the table, the evaluation simply fails and backtracks to generate more

answers.
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Predicates can be declared tabled in a variety of ways. A common form is the compiler directive

:-table p1=n1; : : : ; pk=nk:

where pi is a predicate symbol and ni is an integer representing the arity of pi. This directive can

be added to the �le containing the predicate to be tabled and then to compile the �le.

Exercise 5.2.1 Unless otherwise noted, the �le table examples.P in the directory $XSB_DIR/examples

contains all code for the running examples in this section. Consult the �le into XSB and type the

query

?- path(1,Y).

and continue hitting semi-colons until you have exhausted all answers. Type the query again. Can

you guess why the order of answers is di�erent? Now type

?- abolish_all_tables.

and retry the path query.

Exercise 5.2.2 If you are curious, try rewriting the path query as it would be written in Prolog.

Will it now terminate for the provided edge/2 relation? (Remember, in XSB you can always hit

<ctrl>-C if you go into an in�nite loop).

The return of answers in tabling aids in �ltering out redundant computations { indeed it is

this property which makes tabling terminate for many classes of programs. The same generation

program furnishes a case of the usefulness of tabling for optimizing a Prolog program.

Exercise 5.2.3 If you are still curious, load in the �le cyl.P in the $XSB_DIR/examples directory

using the command.

?- load_dync(cyl.P).

and then type the query

?- same_generation(X,X),fail.

Now rewrite the same generation/2 program so that it does not use tabling and retry the same

query what happens? (Be patient | or use <ctrl>-C).

The examples stress two di�erences between tabling and SLD resolution beyond termination

properties. First, that each solution to tabled subgoal is returned only once | a property that

is helpful not only for path/2 but also for same generation/2 which terminates in Prolog. Sec-

ond, because answers are sometimes obtained using program clauses and sometimes using answers,

answers may be returned in an unaccustomed order.
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In the language of tabling, the �rst instance of a tabled subgoal S is called a generator subgoal,

and is expanded using program clauses as in SLD resolution (Prolog). Subsequent instances of S

are referred to as consuming subgoals and are expanded using answers in the table for S instead of

program clauses. Because consuming subgoals resolve against unique answers rather than repeat-

edly against program clauses, tabling will terminate whenever (1) a �nite number of subgoals are

encountered in query evaluation, (2) each of these subgoals have a �nite number of answers. Indeed,

it can be proven that for any program with the bounded term depth property (roughly, where all

terms generated in a program have a maximum depth), SLG computation will terminate. These

programs include the important class of Datalog programs.

Variant and Subsumptive Tabling The above description gives the general idea of how tabling

a�ects de�nite programs but is imprecise on certain points. In XSB, a subgoal subgoals S2 can use

a table from S1 if S1 is a variant of S2, that is, if S1 and S2 are the same up to variable renaming.

Other tabling strategies may allow S2 to use the table of S1 if S2 not more general than S1, or S2
is subsumed by S1:

Example 5.2.1 The terms p(f(Y),X,1) and p(f(Z),U,1) are variants, but p(f(Y),X,1) and

p(f(Z),Z,1) are not. In fact, the former subsumes the latter.

Just as a subsumption or variance relation can be used to decide when one subgoal can use the

table of another, the two relations can be used to determine when an answer should be returned.

In XSB's engine, a derived answer A will be considered new and returned to a subgoal S only if

A is not a variant of some other previously derived answer for S. In Version 2.1 of XSB, subgoal

subsumption is not supported: although work on an engine that includes subgoal subsumption is

nearing completion. Answer subsumption, however, can be 
exibly programmed as discussed in

Section 5.4 1.

Cuts and Tabling Tabling integrates well with most Prolog functionality, even for non-pure

Prolog predicates. Meta-logical predicates like var/1, and predicates with side-e�ects like read/1

and write/1 can be used freely in tabled predicates as long as it is remembered that only the �rst

call to a goal will execute program clauses: the rest will look up answers from a table.

The use of cuts with tabling is more problematic, as can be seen from the following exercise.

Exercise 5.2.4 Consider the program

:- table cut_p/1,cut_q/1,cut_r/0,cut_s/0.

cut_p(X):- cut_q(X),cut_r.

cut_r:- cut_s.

cut_s:- cut_q(_).

cut_q(1). cut_q(2).

once(Term):- call(Term),!.

1We also note that the library subsumes contains routines for checking variance and subsumption.
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What solutions are derived for the goal ?- p(X)? Suppose that cut p/1 were rewritten as

p1(X):- q1(X),once(r1).

How should this cut over a table a�ect the answers generated for cut p/1? What happens if

you rewrite p/1 in this way and compile it in XSB?

The solution Version 2.1 of XSB takes to the problem posed in Exercise 5.2.4 is to check whether

a tabled predicate statically lies in the scope of a cut at compile time. If so, the compilation is

aborted. However, cuts are allowed within tabled predicates, subject (as always) to the restriction

that the scope of a cut cannot include a call to a tabled predicate.

Example 5.2.2 An example of using cuts in a tabled predicate is a tabled meta-interpreter.

:- table demo/1.

demo(true).

demo((A,B)):-!,demo(A),demo(B).

demo(C):-call(C).

More elaborate tabled meta-interpreters can be extremely useful, for instance to implement various

extensions of de�nite or normal programs.

In Version 2.1 of XSB a \cut" over tables occurs only when the user makes a call to a tabled

predicate from the interpreter level, but does not generate all solutions. In such a case, the user

will see the warning "Removing incomplete tables..." appear. Any complete tables will not be

removed. They can be abolished by using one of XSB's predicates for abolishing tables.

Potential Pitfalls in Tabling While the judicious use of tabling can make some programs faster,

its indiscriminate use can make other programs slower. Naively tabling append/3 is one case

append([],L,L).

append([H|T],L,[H|T1]) :- append(T,L,T1).

can, in the worst case, copy N sublists of the �rst and third arguments into the table, transforming

a linear algorithm into a quadratic one.

Exercise 5.2.5 If you need convincing that tabling can sometimes slow a query down, type the

query:

?- genlist(1000,L),prolog_append(L,[a],Out).

and then type the query
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?- genlist(1000,L),table_append(L,[a],Out).

append/3 is a particularly bad predicate to table. Type the query

?- table_append(L,[a],Out).

(i.e. with no genlist/2 and backtrack through a few answers. Will table append/3 ever succeed

for this predicate? Why not?

Suppose DCG predicates (Section 8) are de�ned to be tabled. How is this similar to tabling

append?

Another issue to be aware of when using tabling in XSB is tracing. XSB's tracer is a standard

4-port tracer, that interacts with the engine at each call, exit, redo, and failure of a predicate (see

Chapter 7). When tabled predicates are traced, these events may occur in unexpected ways, as the

following example shows.

Exercise 5.2.6 Consider a tabled evaluation when the query ?- a(0,X) is given to the following

program

:- table mut_ret_a/2, mut_ret_b/2.

mut_ret_a(X,Y):- mut_ret_d(X,Y).

mut_ret_a(X,Y):- mut_ret_b(X,Z),mut_ret_c(Z,Y).

mut_ret_b(X,Y):- mut_ret_c(X,Y).

mut_ret_b(X,Y):- mut_ret_a(X,Z),mut_ret_d(Z,Y).

mut_ret_c(2,2). mut_ret_c(3,3).

mut_ret_d(0,1). mut_ret_d(1,2). mut_ret_d(2,3).

mut ret a(0,1) can be derived immediately from the �rst clause of mut ret a/2. All other answers

to the query depend on answers to the subgoal mut ret b(0,X) which arises in the evaluation of

the second clause of mut ret a/2. Each answer to mut ret b(0,X) in turn depends on an answer

to mut ret a(0,X), so that the evaluation switches back and forth between deriving answers for

mut ret a(0,X) and mut ret b(0,X).

Try tracing this evaluation, using creep and skip. Do you �nd the behavior intuitive or not?

Table Directives and Declarations Often it is tedious to decide which predicates must be

tabled. To address this, XSB can automatically table predicates in �les. The declaration auto table

chooses predicates to table to assist in termination, while suppl table chooses predicates to table

to optimize data-oriented queries. Both are explained in Section 3.8.4.

Exercise 5.2.7 The reader may have noted that the command table was referred to as a directive,

while auto table and suppl table were both referred to as declarations. The di�erence is that
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the user can execute a directive at the command line but not a compiler declaration. For instance,

restart XSB and at the XSB prompt, type the directive

?- table(dyn_path/2).

and

?- load_dyn(dyn_examples).

Try the queries to path/2 of the previous examples. Note that it is important to dynamically load

dyn examples.P | otherwise the code in the �le will be compiled without knowledge of the tabling

declaration.

5.3 Strati�ed Normal Programs

Normal programs extend de�nite programs to include default negation, which posits a fact as false if

all attempts to prove it fail. As shown in Example 1.0.1, which presented one of Russell's paradoxes

as a logic program, the addition of default negation allows logic programs to express contradictions.

As a result, some assertions, such as shaves(barber,barber) may be unde�ned, although other

facts, such as shaves(barber,mayor)may be true. Formally, the meaning of normal programs may

be given using the well-founded semantics and it is this semantics that XSB adopts for negation.

The Intuition behind Strati�ed Programs Before considering the full well-founded seman-

tics, we discuss how XSB can be used to evaluate programs with strati�ed negation. Intuitively,

a program uses strati�ed negation whenever there is no recursion through negation. Indeed, most

programmers, most of the time, use strati�ed negation.

Exercise 5.3.1 The program

win(X):- move(X,Y),tnot(move(Y)).

is strati�ed when the move/2 relation is a binary tree. This can be seen by loading the �le $XSB_DIR/examples/tree1

along with table examples.P and typing the query

?- win(1).

win(1) calls win(2) through negation, win(2) calls win(4) through negation, and so on, but no

subgoal ever calls itself recursively through negation.

The previous example of win/1 over a binary tree is a simple instance of a strati�ed program,

but it does not even require tabling. A more complex example is presented below.

Exercise 5.3.2 Consider the query ?- lrd s to the following program



CHAPTER 5. USING TABLING IN XSB: A TUTORIAL INTRODUCTION 53

lrd_p:- lrd_q,tnot(lrd_r),tnot(lrd_s).

lrd_q:- lrd_r,tnot(lrd_p).

lrd_r:- lrd_p,tnot(lrd_q).

lrd_s:- tnot(lrd_p),tnot(lrd_q),tnot(lrd_r).

Should lrd s be true or false? Try it in XSB. Using the intuitive de�nition of \strati�ed" as not

using recursion through negation, is this program strati�ed? Would the program still be strati�ed if

the order of the literals in the body of clauses for lrd p, lrd q, or lrd r were changed?

The rules for p, q and r are involved in a positive loop, and no answers are ever produced. Each

of these atoms can be failed, thereby proving s. Exercise 5.3.2 thus illustrates an instance of how

tabling di�ers from Prolog in executing strati�ed programs since Prolog would not fail �nitely for

this program.

Completely Evaluated Subgoals Knowing when a subgoal is completely evaluated can be

useful when programming with tabling. Simply put, a subgoal S is completely evaluated if an

evaluation can produce no more answers for S. The computational strategy of XSB makes great

use of complete evaluation so that understanding this concept and its implications can be of great

help to a programmer.

Consider a simple approach to incorporating negation into tabling. Each time a negative goal

is called, a separate table is opened for the negative call. This evaluation of the call is carried on to

termination. If the evaluation terminates, its answers if any, are used to determine the success of

failure of the calling goal. This general mechanism underlies early formulations for tabling strati�ed

programs [21, 40]. Of course this method may not be eÆcient. Every time a new negative goal

is called, a new table must be started, and run to termination. We would like to use information

already derived from the computation to answer a new query, if at all possible | just as with

de�nite programs.

XSB addresses this problem by keeping track of the state of each subgoal in the table. A call

can have a state of complete, incomplete or not yet called. Calls that do have table entries may be

either complete or incomplete. A subgoal in a table is marked complete only after it is determined

to be completely evaluated; otherwise the subgoal is incomplete. If a tabled subgoal is not present

in the table, it is termed not yet called. XSB contains predicates that allow a user to examine the

state of a given table (Section 6.12).

Using these concepts, we can overview how tabled negation is evaluated for strati�ed programs.

If a literal tnot(S) is called, where S is a tabled subgoal, the evaluation checks the state of S. If

S is complete the engine simply determines whether the table contains an answer for S. Otherwise

the engine suspends the computation path leading to tnot(S) until S is completed (and calls S

if necessary). Whenever a suspended subgoal tnot(S) is completed with no answers, the engine

resumes the evaluation at the point where it had been suspended. We note that because of this

behavior, tracing programs that heavily use negation may produce behavior unexpected by the

user.
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tnot/1 vs. 0
n+0 =1 Subject to some semantic restrictions, an XSB programmer can intermix

the use of tabled negation (tnot/1) with Prolog's negation (0n+0 =1, or equivalently fail if/1

or not/1). These restrictions are discussed in detail below | for now we focus on di�erences in

behavior or these two predicates in strati�ed programs. Recall that 0
n+0 (S) calls S and if S has a

solution, Prolog , executes a cut over the subtree created by 0
n+0 (S), and fails. tnot/1 on the other

hand, does not execute a cut, so that all subgoals in the computation path begun by the negative

call will be completely evaluated. The major reason for not executing the cut is to insure that XSB

evaluates ground queries to Datalog programs with negation with polynomial data complexity. As

seen in Section 5.2, this property cannot be preserved if negation \cuts" over tables.

There are other small di�erences between tnot/1 and 0
n+0 =1illustrated in the following exer-

cise.

Exercise 5.3.3 In general, making a call to non-ground negative subgoal in Prolog may be unsound

(cf. [29]), but the following program illustrates a case in which non-ground negation is sound.

ngr_p:- \+ ngr_p(_).

ngr_p(a).

Its tabled analog is

:- table ngr_tp/1.

ngr_tp:- tnot(ngr_tp(_)).

ngr_tp(a).

Version 2.1 of XSB will 
ounder on the call to ngr tp, but not on the call to ngr p/0.

The description of tnot/1 in Section 6.4 describes other small di�erences between
0
n+0 =1and

tnot/1 as implemented in XSB.

Before leaving the subject of strati�cation, we note that the concepts of strati�cation also

underly XSB's evaluation of tabled �ndall: tfindall/3. Here, the idea is that a program is

strati�ed if it contains no loop through tabled �ndall (See the description of predicate tfindall/3

on page 85).

5.3.1 Non-strati�ed Programs

As discussed above, in strati�ed programs, facts are either true or false, while in non-strati�ed

programs facts may also be unde�ned. XSB represents unde�ned facts as conditional answers.

Conditional Answers

Exercise 5.3.4 Consider the behavior of the win/1 predicate from Exercise 5.3.1.

win(X):- move(X,Y),tnot(move(Y)).
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when the when the move/2 relation is a cycle. Load the �le $XSB_DIR/examplescycle1k.P into

XSB and again type the query ?- win(1). Does the query succeed? Try tnot(win(1)).

Now import get residual/2 via the command

?- import get_residual/2 from tables.

Can you guess what is happening with this non-strati�ed program?

The predicate get residual/2 (Section 6.12) uni�es its �rst argument with a tabled subgoal

and its second argument with the (possibly empty) delay list of that subgoal. The truth of the

subgoal is taken to be conditional on the truth of the elements in the delay list. Thus win(1)

is conditional on tnot(win(2)), win(2) in tnot(win(3)) and so on until win(1023) which is

conditional on win(1).

From the perspective of the well-founded semantics, win(1) is unde�ned. Informally, true

answers in the well-founded semantics are those that have a (tabled) derivation. False answers are

those for which all possible derivations fail | either �nitely as in Prolog or by failing positive loops.

win(1) �ts in neither of these cases { there is no proof of win(1), yet it does not fail in the sense

given above and is thus unde�ned.

However this explanation does not account for why unde�ned answers should be represented

as conditional answers, or why a query with a conditional answer and its negation should both

succeed. These features arise from the proof strategy of XSB, which we now examine in more

detail.

Exercise 5.3.5 Consider the program

:- table simpl_p/1,simpl_r/0,simpl_s/0.

simpl_p(X):- tnot(simpl_s).

simpl_s:- tnot(simpl_r).

simpl_s:- simpl_p(X).

simpl_r:- tnot(simpl_s),simpl_r.

Is simpl p(X) true for any X? Try the query ?- simpl p(X) { be sure to backtrack through all

possible answers. Now try the query again. What could possibly account for this behavior?

At this point, it is worthwhile to examine closely the evaluation of the program in Exercise

5.3.5. The query simpl p(X) calls simpl s and simpl r and executes the portion of the program

shown below in bold:

simpl p(X):- tnot(simpl s).

simpl s:- tnot(simpl r).

simpl s:- simpl p(X).

simpl r:- tnot(simpl s),simpl r.
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Based on evaluating only the bold literals, the three atoms are all unde�ned since they are neither

proved true, nor fail. However if the evaluation could only look at the literal in italics, simpl r,

it would discover that simpl r is involved in a positive loop and, since there is only one clause for

simpl r, the evaluation could conclude that the atom was false. This is exactly what XSB does,

delays the evaluation of tnot(simpl s) in the clause for simpl r and looks ahead to the next

literal in the body of that clause. This action of looking ahead of a negative literal is called delaying.

A delayed literal is moved into the delay list of a current path of computation. Whenever an answer

is derived, the delay list of the current path of computation is copied into the table. If the delay list

is empty, the answer is unconditional; otherwise it is conditional. Of course, for de�nite programs

any answers will be unconditional | we therefore omited delay lists when discussing such programs.

In the above program, delaying occurs for the negative literals in clause for simpl p(X), simpl s,

and simpl r. In the �rst two cases, conditional answers can be derived, while in the third, simpl r

will fail as mentioned above. Delayed literals eventually become evaluated through simpli�cation.

Consider an answer of the form

simpl_p(X):- tnot(simpl_s)|

where the | is used to represent the end of the delay list. If, after the answer is copied into the table,

simpl s turns out to be false, (after being initially delayed), the answer can become unconditional.

If simpl s turns out to be true, the answer should be removed, it is false.

In fact, it is this last case that occurs in Exercise 5.3.5. The answer

simpl_p(X):- tnot(simpl_s)|

is derived, and returned to the user (XSB does not currently print out the delay list). The answr

is then removed through simpli�cation so that when the query is re-executed, the answer does not

appear.

We will examine in detail how to alter the XSB interface so that evaluation of the well-founded

semantics need not be confusing. It is worthwhile to note that the behavior just described is

uncommon.

Version 2.1 of XSB handles dynamically strati�ed programs through delaying negative literals

when it becomes necessary to look to their right in a clause, and then simplifying away the delayed

literals when and if their truth value becomes known. However, to ensure eÆciency, literals are

never delayed unless the engine determines them to not to be strati�ed under the LRD-strati�ed

evaluation method.

When Conditional Answers are Needed A good Prolog programmer uses the order of literals

in the body of a clause to make her program more eÆcient. However, as seen in the previous section,

delaying can break the order that literals are evaluated within the body of a clause. It then becomes

natural to ask if any guarantees can be made that XSB is not delaying literals unnecessarily.

Such a guarantee can in fact be made, using the concept of dynamic strati�cation [31]. Without

going into the formalism of dynamic strati�cation, we note that a program is dynamically strati�ed
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if and only if it has a two-valued model. It is also known that computation of queries to dynamically

strati�ed programs is not possible under any �xed strategy for selecting literals within the body

of a clause. In other words, some mechanism for breaking the �xed-order literal selection strategy

must be used, such as delaying.

However, by rede�ning dynamic strati�cation to use an arbitrary �xed-order literal selection

strategy (such as the left-to-right strategy of Prolog), a new kind of strati�cation is characterized,

called Left-to-Right Dynamic Strati�cation, or LRD-strati�cation. LRD-strati�ed is not as powerful

as dynamic strati�cation, but is more powerful than other �xed-order strati�cation methods, and

it can be shown that for ground programs, XSB delays only when programs are not LRD-strati�ed.

In the language of [38] XSB is delay minimal.

Programming in the Well-founded Semantics XSB delays literals for non-LRD-strati�ed

programs and later simpli�es them away. But how can the programmer determine when all sim-

pli�cation has been done? One method is to use local evaluation, discussed below in Section 5.4.1.

A second method is to make a top-level call for a predicate, p as follows:

?- p,fail ; p.

when the second p in this query is called, all simpli�cation on p will have been performed. However,

this query will succeed if p is true or unde�ned.

Exercise 5.3.6 Write a predicate wfs call(?Tpred,?Val) such that if Tpred is a ground call to a

tabled predicate, wfs call(?Tpred,?Val) calls Tpred and uni�es Val with the truth value of Tpred

under the well-founded semantics.

How would you modify wfs call(?Tpred,?Val) so that it properly handled cases in which Tpred

is non-ground.

Trouble in Paradise: Answer Completion The engine for XSB performs both Prolog style

and answer resolution, along with delay and simpli�cation. What it does not do is to perform an

operation called answer completion which is needed in certain (pathological?) programs.

Exercise 5.3.7 Consider the following program:

:- table p/1,r/0,s/0.

ac_p(X):- ac_p(X).

ac_p(X):- tnot(ac_s).

ac_s:- tnot(ac_r).

ac_s:- ac_p(X).

ac_r:- tnot(ac_s),ac_r.

Using either the predicate from Exercise 5.3.6 or some other method, determine the truth value of

ac p(X). What should the value be? (hint: what is the value of ac s/1?).
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For certain programs, XSB will delay a literal (such as ac p(X) that it will not be able to later

simplify away. In such a case, an operation, called answer completion is needed to remove the

clause

p(X):- p(X)|

Without answer completion, XSB may consider some answers to be unde�ned rather than false. It

is thus is sound, but not complete for terminating programs to the well-founded semantics. Answer

completion is not available for Version 2.1 of XSB, as it is expensive and the need for answer

completion arises rarely in practice. However answer completion will be included at some level in

future versions of XSB.

5.3.2 On Beyond Zebra: Implementing Other Semantics for Non-strati�ed Pro-

grams

The Well-founded semantics is not the only semantics for non-strati�ed programs. XSB can be

used to (help) implement other semantics that lie in one of two classes. 1) Semantics that extend

the well-founded semantics to include new program constructs; or 2) semantics that contain the

well-founded partial model as a submodel.

An example of a semantics of class 1) is (WFSX) [2], which adds explicit (or provable) negation

to the default negation used by the Well-founded semantics. The addition of explicit negation

in WFSX, can be useful for modeling problems in domains such as diagnosis and hierarchical

reasoning, or domains that require updates [26], as logic programs. WFSX is embeddable into

the well-founded semantics; and this embedding gives rise to an XSB meta-interpreter, or, more

eÆciently, to the preprocessor described in Section Extended Logic Programs in Volume 2. See [42]

for an overview of the process of implementing extensions of the well-founded semantics.

An example of a semantics of class 2) is the stable model semantics. Every stable model of a

program contains the well-founded partial model as a submodel. As a result, the XSB can be used

to evaluate stable model semantics through the residual program, to which we now turn.

The Residual Program Given a program P and query Q, the residual program for Q and P

consists of all (conditional and unconditional) answers created in the complete evaluation of Q.

Exercise 5.3.8 Consider the following program.

:- table ppgte_p/0,ppgte_q/0,ppgte_r/0,ppgte_s/0,

ppgte_t/0,ppgte_u/0,ppgte_v/0.

ppgte_p:- ppgte_q. ppgte_p:- ppgte_r.

ppgte_q:- ppgte_s. ppgte_r:- ppgte_u.

ppgte_q:- ppgte_t. ppgte_r:- ppgte_v.

ppgte_s:- ppgte_w. ppgte_u:- undefined.
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ppgte_t:- ppgte_x. ppgte_v:- undefined.

ppgte_w:- ppgte(1). ppgte_x:- ppgte(0).

ppgte_w:- undefined. ppgte_x:- undefined.

ppgte(0).

:- table undefined/0.

undefined:- tnot(undefined).

Write a routine that uses get residual/2 to print out the residual program for the query ?-

ppgte p,fail. Try altering the tabling declarations, in particular by making ppgte q/0, ppgte r/0,

ppgte s/0 and ppgte t/0 non-tabled. What e�ect does altering the tabling declarations have on

the residual program?

When XSB returns a conditional answer to a literal L, it does not propagate the delay list

of the conditional answer, but rather delays L itself, even if L does not occur in a negative loop.

This has the advantage of ensuring that delayed literals are not propagated exponentially through

conditional answers.

Stable Models Stable models are one of the most popular semantics for non-strati�ed programs.

The intuition behind the stable model semantics for a ground program P can be seen as follows.

Each negative literal notL in P is treated as a special kind of atom called an assumption. To

compute the stable model, a guess is made about whether each assumption is true or false, creating

an assumption set, A. Once an assumption set is given, negative literals do not need to be evaluated

as in the well-founded semantics; rather an evaluation treats a negative literal as an atom that

succeeds or fails depending on whether it is true or false in A.

Example 5.3.1 Consider the simple, non-strati�ed program

writes manual(terry)-:writes manual(kostis),has time(terry).

writes manual(kostis)-:writes manual(terry),has time(kostis).

has time(terry).

has time(kostis).

there are two stable models of this program: in one writes manual(terry) is true, and in another

writes manual(kostis) is true. In the Well-Founded model, neither of these literals is true. The

residual program for the above program is

writes manual(terry)-:writes manual(kostis).

writes manual(kostis)-:writes manual(terry).

has time(terry).

has time(kostis).
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Computing stable models is an intractable problem, meaning that any algorithm to evaluate

stable models may have to fall back on generating possible assumption sets, in pathological cases.

For a ground program, if it is ensured that residual clauses are produced for all atoms, using the

residual program may bring a performance gain since the search space of algorithms to compute

stable models will be correspondingly reduced. In fact, by using XSB in conjunction with a Stable

Model generator, Smodels [30], an eÆcient system has been devised for model checking of concurrent

systems that is 10-20 times faster than competing systems [28].

5.4 Tabled Aggregation

The following shortest path predicate is a modi�cation of the path/2 predicate of Section 5.2:

:- table path/3.

path(X,Y,C) :- path(X,Z,C1), edge(Z,Y,C2), C is C1 + C2.

path(X,Y,C) :- edge(X,Y,C).

Exercise 5.4.1 path/3 has a simple declarative meaning: it computes the path between two vertices

of a graph along with the cost of the path. Since path/3 is tabled would you expect it to terminate?

Try the query ?- path(1,5,X) over the graph provided in the �le table examples.P.

If we could use tabling to compute the path with least cost, or the shortest path, the program

would not only omit extraneous information, but it would also terminate. Recall that for simple

horn programs, variant-based tabling ensures termination by only returning a given answer A once,

and failing on subsequent derivations of A. If this strategy could be extended so that the engine

only returned a new answer if it was minimal, termination could be ensured. The XSB predicate,

filterReduce(?Pred,+Binary operator,+Identity,Value), does just this.

Exercise 5.4.2 The use of filterReduce/4 can be seen most easily through an example such as

the following, (which uses a closely related predicate filterReduce1/4).

shorter_path(X,Y,C) :- filterReduce1(sp(X,Y),min,infinity,C).

sp(X,Y,C) :- shorter_path(X,Z,C1),

edge(Z,Y,C2),C is C1 + C2.

sp(X,Y,C) :- edge(X,Y,C).

min(X,Y,Y):- \+ number(X),!.

min(X,Y,X):- \+ number(Y),!.

min(One,Two,Min):- One > Two -> Min = Two ; Min = One.

Note that the library predicate filterReduce1/4 is tabled, so that neither sp/3 nor shorter path/3

need be tabled. Now try the query shorter path(1,5,C).

filterReduce1((?Pred,+Binary operator,+Identity,Value), forms a new predicate out of

Pred and Value to get a new predicate to call. Binary Operator must de�ne a binary function in
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which the �rst two arguments determine the third. Id must be the identity of Binary operator.

Value becomes the result of applying Op to all the elements in the table that are variants of Pred.

In our case, when a new answer sp(X,Y,C) is derived within filterReduce1/4, the later predicate

returns only when C is a shorter path for X and Y than any so far derived.

While shorter path/4 terminates, it returns non-optimal solutions, and these solutions can in

principle be costly | [18] cites a case in which the shorter path program, which should be less than

cubic in the number of vertices in a graph, has exponential complexity because of the non-optimal

solutions that are returned. Fortunately, this has an easy solution.

Exercise 5.4.3 The actual shortest path program has the following de�nition.

filterReduce(Call,Op,Id,Res) :- filterReduce1(Call,Op,Id,Res), fail.

filterReduce(Call,Op,Id,Res) :- filterReduce1(Call,Op,Id,Res).

shortest_path(X,Y,C) :- filterReduce(sp(X,Y),min,infinity,C).

sp(X,Y,C) :- shortest_path(X,Z,C1),

edge(Z,Y,C2),C is C1 + C2.

sp(X,Y,C) :- edge(X,Y,C).

min(X,Y,Y):- \+ number(X),!.

min(X,Y,X):- \+ number(Y),!.

min(One,Two,Min):- One > Two -> Min = Two ; Min = One.

Once again try the query shortest path(1,5,C).

By simply failing out of filterReduce1/4 and then rereading the maximal value from the table,

an eÆcient shortest path algorithm is derived, whose complexity is roughly cubic in the number

or vertices of the graph. This solution is not general for all predicates, but does work for deriving

the shortest path. A more general solution is provided in Section 5.4.1.

filterReduce/4 is an extremely useful predicate. It can write database aggregation functions,

such as min, max, count, sum, and average. However, it can also be used to implement paraconsis-

tent and quantitative reasoning through Generalized Annotated Programs [23], as detailed in the

section on GAPs in Volume 2 of this manual.

Several predicates perform tabled aggregation besides filterReduce/4. One of these is the

predicate filterPO1(?Pred,?Preference structure,+Partial order). Analoguosly to filterReduce1/4

if Pred is an n-ary predicate, filterPO/4 forms a (n+1)-ary predicate Pred1 whose last argument

is Preference structure and whose functor and all other arguments are determined by Pred.

filterPO(?Pred,?Preference structure,+Partial order), then calls Pred1 and for each re-

turn of Pred1 fails if there is some answer already in the table for filterPO1/4 such that the �rst

n arguments of Pred in the tabled answer unify with the �rst n arguments of Pred in the return

and whose preference structure (last argument) is preferred to that of the return. A case study in

the use of filterPO/4 to construct preference logic grammars can be found in [10].
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5.4.1 Local Evaluation

For the shortest path example, simply failing until a minimal answer was derived and then returning

that solution was an e�ective technique for computing the shortest path. However, this approach

will not always work. As we have seen in Exercise 5.2.6, programs can consist of sets of mutually

recursive predicates and in principle these sets can be arbitrarily large. If these computations are

to use tabled aggregation, the approach taken by filterReduce/4 will not suÆce. To see this, we

make the notion of mutual recursion more precise. A tabled computation can be viewed as a directed

graph, in which there is a link from one non-completed tabled predicate P1 to a non-completed

tabled predicate P2 if P2 (or tnot(P2)) is called by P1. Of course, this graph constantly changes

through an evaluation as resolution proceeds, subgoals are completed, and so on. Any directed

graph can be uniquely partitioned into a set of maximal strongly connected components or SCCs,

and these sets correspond to sets of mutually recursive predicates. The SCCs then, are reminiscent

of the LRD-strati�edstrati�cation discussed in Section 5.3.1, except that both positive and negative

links are counted as dependencies. From this view, to optimally compute tabled aggregation, non-

optimal answers from a given subgoal S must be returned within the SCC of S, but not outside

the SCC. This action is performed by Local Scheduling.

It is illustrative to compare local scheduling to Batched Scheduling the default scheduling of

XSB. Batched scheduling returns answers as they are derived, and resembles Prolog's tuple at a

time scheduling. Local scheduling was shown to be quite eÆcient in terms of time and space in

[18], and is the fastest scheduling strategy that we know of for computing a sequence of answers.

The same paper also introduced Local Scheduling, which computes all answers for each SCC and

return only the best answer (or answers) out of the SCC, when the SCC is completely evaluated

| exactly the thing for tabled aggregation.

XSB can be con�gured to use local scheduling via the con�guration option --enable-local-scheduling

and remaking XSB. This will not a�ect the default version of XSB, which will also remain available.
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Standard Predicates

Standard predicates are always available to the Prolog interpreter, and do not need to be imported

or loaded explicitly as do other Prolog predicates. Our standard predicates are listed below. Stan-

dard predicates whose semantics depend on HiLog terms or on SLG evaluation are marked as HiLog

or Tabling.

It is possible for the user to add standard predicates not provided in the standard release. See

the section on Customizing XSB.

6.1 Input and Output

Presently, input and output can only be done with respect to the current input and output streams.

These can be set, reset or checked using the �le handling predicates described below. The default

input and output streams are internally denoted by userin and userout (the user accesses them

both via the name ``user'', and they refer to the user's terminal).

6.1.1 File Handling

see(+F)

Makes �le F the current input stream.

� If there is an open input stream associated with the �le that has F as its �le name, and

that stream was opened previously by see/1, then it is made the current input stream.

� Otherwise, the speci�ed �le is opened for input and made the current input stream. If

the �le does not exist, see/1 fails.

Also note that di�erent �le names (that is, names which do not unify) represent di�erent

input streams (even if these di�erent �le names correspond to the same �le).

Exceptions:

permission error File F is directory or �le is not readable.

63
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instantiation error F is not instantiated at the time of call.

existence error File F does not exist.

seeing(?F)

F is uni�ed with the name of the current input stream. This is exactly the same with predicate

current input/1 described in section 6.9, and it is only provided for upwards compatibility

reasons.

seen

Closes the current input stream. Current input reverts to ``userin'' (the standard input

stream).

tell(+F)

Makes �le F the current output stream.

� If there is an open output stream associated with F and that was opened previously by

tell/1, then that stream is made the current output stream.

� Otherwise, the speci�ed �le is opened for output and made the current output stream.

If the �le does not exist, it is created.

Also note that di�erent �le names (that is, names which do not unify) represent di�erent

output streams (even if these di�erent �le names correspond to the same �le).

Exceptions:

permission error File F does not have write permission, or is a directory.

instantiation error F is uninstantiated.

telling(?F)

F is uni�ed with the name of the current output stream. This predicate is exactly the same

with predicate current output/1 described in section 6.9, and it is only provided for upwards

compatibility reasons.

told

Closes the current output stream. Current output stream reverts to \userout" (the standard

output stream).

open(+File,+Mode,-Stream)

open/1 creates a stream for the �le designated in File, and binds Stream to a structure

representing that stream. Mode can be one of either read to create an input stream or write

or append to create an output stream. If the mode is write, the contents of File are removed

and File becomes a record of the output stream. If the mode is append the output stream is

appended to the contents of File.

Exceptions (read mode)

permission error File F is directory or �le is not readable.

instantiation error F is not instantiated at the time of call.

existence error File F does not exist.
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Exceptions (write mode)

permission error File F does not have write permission, or is a directory.

instantiation error F is uninstantiated.

close(+Stream)

close/1 closes the stream Stream.

file exists(+F)

Succeeds if �le F exists. F must be instantiated to an atom at the time of the call, or an

error message is displayed on the standard error stream and the predicate aborts.

Exceptions:

instantiation error F is uninstantiated.

6.1.2 Character I/O

nl

A new line character is sent to the current output stream.

nl(+Stream)

A new line character is sent to the designated output stream.

get0(?N)

N is the ASCII code of the next character read from the current input stream. If the current

input stream reaches its end of �le, a -1 is returned

Compatibility Note: Unlike other Prologs, such as C-Prolog, the input stream is not closed

on encountering the end-of-�le character.

get(?N)

N is the ASCII code of the next non-blank printable character from the current input stream.

It has the same behaviour as get0/1 when an end of �le character is encountered.

Compatibility Note: Unlike other Prologs, such as C-Prolog, the input stream is not closed

on encountering the end-of-�le character.

put(+N)

Puts the ASCII character code N to the current output stream.

Exceptions:

instantiation error N is not instantiated at the time of the call.

type error N is not an integer at the time of the call.

tab(+N)

Puts N spaces to the current output stream.

Exceptions:

instantiation error N is not instantiated at the time of the call.

type error N is not an integer at the time of the call.
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6.1.3 Term I/O

read(?Term)

A HiLog term is read from the current or designated input stream, and uni�ed with Term

according to the operator declarations in force. (See Section 4.1 for the de�nition and syntax

of HiLog terms). The term must be delimited by a full stop (i.e. a \." followed by a

carriage-return, space or tab). Predicate read/1 does not return until a valid HiLog term is

successfully read; that is, in the presense of syntax errors read/1 does not fail but continues

reading terms until a term with no syntax errors is encountered. If a call to read(Term)

causes the end of the current input stream to be reached, variable Term is uni�ed with the

term end of file. In that case, further calls to read/1 for the same input stream will cause

an error failure.

Exceptions:

existence error end of file is reached before the current term is read.

read(+Stream, ?Term)

read/2 has the same behavior as read/1 but the input stream is explicitly designated using

the �rst argument.

write(?Term)

The HiLog term Term is written to the current output stream, according to the operator

declarations in force. Any uninstantiated subterm of term Term is written as an anonymous

variable (an underscore followed by a non-negative integer).

All proper HiLog terms (HiLog terms which are not also Prolog terms) are not written in

their internal Prolog representation. Predicate write/1 always succeeds without producing

an error.

The HiLog terms that are output by write/1 cannot in general be read back using read/1.

This happens for two reasons:

� The atoms appearing in term Term are not quoted. In that case the user must use

writeq/1 or write canonical/1 described below, which quote around atoms whenever

necessary.

� The output of write/1 is not terminated by a full-stop; therefore, if the user wants the

term to be accepted as input to read/1, the terminating full-stop must be explicitly sent

to the current output stream.

Predicate write/1 treats terms of the form '$VAR'(N) specially: it writes 'A' if N=0,

'B' if N=1, : : :, 'Z' if N=25, 'A1' if N=26, etc. Terms of this form are generated by

numbervars/[1,3] described in the section Library Utilities in Volume 2.

write(+Stream, ?Term)

write/2 has the same behavior as write/1 but the output stream is explicitly designated

using the �rst argument.

writeln(?Term)

writeln(Term) can be de�ned as write(Term), nl.
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writeln(+Stream,?Term)

writeln(Term) can be de�ned as write(Stream,Term), nl(Stream).

display(?Term)

The HiLog term Term is displayed on the terminal (standard output stream), according to

the operator declarations in force. In other words, display/1 is similar to write/1 but the

result is always written on ``userout''. Like write/1, display/1 always succeeds without

producing an error. After returning from a call to this predicate, the current output stream

remains unchanged.

write prolog(?Term) HiLog

This predicate acts as does write/1 except that any HiLog term Term is written as a

Prolog term. write prolog/1 outputs Term according to the operator declarations in force.

Because of this, it di�ers from write canonical/1 described below, despite the fact that

both predicates write HiLog terms as Prolog terms.

write prolog(+Stream,?Term) HiLog

write prolog/2 has the same behavior as write prolog/1 but the output stream is explic-

itly designated using the �rst argument.

writeq(?Term)

Acts as write(Term), but atoms and functors are quoted whenever necessary to make the

result acceptable as input to read/1. writeq/1 treats treats terms of the form '$VAR'(N)

the same way as write/1, writing A if N= 0, etc.

writeq/1 always succeeds without producing an error.

writeq(+Stream, ?Term)

writeq/2 has the same behavior as writeq/1 but the output stream is explicitly designated

using the �rst argument.

write canonical(?Term)

This predicate is provided so that the HiLog term Term, if written to a �le, can be read

back using read/1 regardless of special characters appearing in Term or prevailing operator

declarations. Like write prolog/1, write canonical/1 writes all proper HiLog terms to

the current output stream using the standard Prolog syntax (see Section 4.1 on the standard

syntax of HiLog terms). write canonical/1 also quotes atoms and functors as writeq/1

does, to make them acceptable as input of read/1. Operator declarations are not taken into

consideration, and compound terms are therefore always written in the form:

hpredicate namei(harg1i; : : : ; hargni)

Unlike writeq/1, write canonical/1 does not treat terms of the form '$VAR'(N) spe-

cially. It writes square bracket lists using '.'/2 and [] (that is, [foo, bar] is written

as '.'(foo,'.'(bar,[]))).

read canonical(-Term) basics

Reads a term that is in canonical format from the current input stream and returns it in
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Term. On end-of-�le, it returns the atom end of file. If it encounters an error, it prints an

error message on stderr and returns the atom read canonical error. This is signi�cantly

faster than read/1, but requires the input to be in canonical form.

write canonical(+Stream, ?Term)

write canonical/2 has the same behavior as write canonical/1 but the output stream is

explicitly designated using the �rst argument.

print(?Term)

This predicate is intended to provide a handle for user-de�ned pretty-printing. Currently it

is de�ned as write/1.

6.2 Special I/O

fmt read(+Format, types(+T1,+T2,...), args(-A1,-A2,...), -RetCode)

This predicate implements C-style formatted input. It reads the current input according

to the Format string. Format has the same syntax as the input format in C. The term

types(...) lists the types of the arguments; they must match the types speci�ed in Format.

Here, 1 means string, 2 means integer, and 3 means 
oat. The term args() speci�es the

variables for the input. RetCode speci�es the return code: 0 { ok; -1 { end of �le.

read line(-Line, -Status)

Reads the next line from the current input and puts it in Line. If the line is larger than the

available bu�er, then Status is 0. If the line was read in full, up to and including the newline

character, then Status is 1.

fmt write(+Format, args(-A1,-A2,...))

Similar to formatted write in C. The semantics of the arguments is the same as for fmt read/4.

fmt write string(-String, +Format, args(-A1,-A2,...))

Like fmt write/2, but the output string is placed in String.

6.3 Convenience

These predicates are standard and often self-explanatory, so they are described only brie
y.

true

Always succeeds.

otherwise

Same as true/0.

fail

Always fails.
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X = Y

De�ned as if by the clause \Z=Z", i.e. X and Y are uni�ed.

X n = Y

Succeeds if X and Y are not uni�able, fails if X and Y are uni�able. It is thus equivalent to

n+(X = Y).

6.4 Negation and Control

'!'/0

Cut (discard) all choice points made since the parent goal started execution. Cuts across

tabled predicates are not valid. The compiler checks for such cuts, although whether the

scope of a cut includes a tabled predicate is undecidable in the presence of meta-predicates

like call/1. Further discussion of conditions allowing cuts and of their actions can be found

in Section 5.1.

fail if(+P)

If the goal P has a solution, fails, otherwise it succeeds. Equivalently, it is true i� call(P)

(see section 6.8) is false. Argument P must be ground for sound negation as failure, although

no runtime checks are made by the system.

The standard predicate fail if/1 is compiled by the XSB compiler.

Exceptions:

instantiation error P is not instantiated.

type error P is not a callable term.

n+ +P

Exactly the same as fail if/1. Its existence is only for compatibility with other Prolog

systems.

not +P

If the goal P has a solution, fails, otherwise it succeeds. It is de�ned by:

not(P) :- call(P), !, fail.

not(_).

Argument P must be ground for sound negation, although no runtime checks are made by the

system.

Note that in contrast to the other two kinds of negation as failure (0n+0 =1 and fail if/1),

predicate not/1 is not compiled by the compiler but the above de�nition is used.

Exceptions: The same as call/1 (see section 6.8).

tnot(+P) Tabling

The semantics of tnot/1 allows for correct execution of programs with according to the well-

founded semantics. P must be a tabled predicate, For a detailed description of the actions of
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tabled negation for in XSB Version 2.1 see [35, 37]. Chapter 5 contains further discussion of

the functionality of tnot/1.

Exceptions:

instantiation error P is not ground (
oundering occurs).

type error P is not a callable term.

table error P is not a call to a tabled predicate.

't not'(+P) Tabling

Same as tnot/1 but does not check for 
oundering. This predicate is not standard, but

should be explicitly imported from module tables. Since it is not safe, its use is discouraged.

P -> Q ; R

Analogous to if P then Q else R, i.e. de�ned as if by

(P -> Q ; R) :- P, !, Q.

(P -> Q ; R) :- R.

P -> Q

When occurring other than as one of the alternatives of a disjunction, is equivalent to:

P -> Q ; fail.

repeat

Generates an in�nite sequence of choice points (in other words it provides a very convenient

way of executing a loop). It is de�ned by the clauses:

repeat.

repeat :- repeat.

6.5 Meta-Logical

To facilitate manipulation of terms as objects in themselves, XSB provides a number meta-logical

predicates. These predicates include the standard meta-logical predicates of Prolog, along with

their usual semantics. In addition are provided predicates which provide special operations on

HiLog terms. For a full discussion of Prolog and HiLog terms see Section 4.1.

var(?X)

Succeeds if X is currently uninstantiated (i.e. is still a variable); otherwise it fails.

Term X is uninstantiated if it has not been bound to anything, except possibly another

uninstantiated variable. Note in particular, that the HiLog term X(Y,Z) is considered to be

instantiated. There is no distinction between a Prolog and a HiLog variable.

Examples:
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| ?- var(X).

yes

| ?- var([X]).

no

| ?- var(X(Y,Z)).

no

| ?- var((X)).

yes

| ?- var((X)(Y)).

no

nonvar(?X)

Succeeds if X is currently instantiated to a non-variable term; otherwise it fails. This has

exactly the opposite behaviour of var/1.

atom(?X)

Succeeds only if the X is currently instantiated to an atom, that is to a Prolog or HiLog

non-numeric constant.

Examples:

| ?- atom(HiLog).

no

| ?- atom(10).

no

| ?- atom('HiLog').

yes

| ?- atom(X(a,b)).

no

| ?- atom(h).

yes

| ?- atom(+).

yes

| ?- atom([]).

yes

integer(?X)

Succeeds if X is currently instantiated to an integer; otherwise it fails.

real(?X)

Succeeds if X is currently instantiated to a 
oating point number; otherwise it fails.

float(?X)

Same as real/1. Succeeds if X is currently instantiated to a 
oating point number; otherwise

it fails. This predicate is included for compatibility with earlier versions of SBProlog.

number(?X)

Succeeds if X is currently instantiated to either an integer or a 
oating point number (real);

otherwise it fails.
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atomic(?X)

Succeeds if X is currently instantiated to an atom or a number; otherwise it fails.

Examples:

| ?- atomic(10).

yes

| ?- atomic(p).

yes

| ?- atomic(h).

yes

| ?- atomic(h(X)).

no

| ?- atomic("foo").

no

| ?- atomic('foo').

yes

| ?- atomic(X).

no

| ?- atomic(X((Y))).

no

compound(?X)

Succeeds if X is currently instantiated to a compound term (with arity greater that zero),

i.e. to a nonvariable term that is not atomic; otherwise it fails.

Examples:

| ?- compound(1).

no

| ?- compound(foo(1,2,3)).

yes

| ?- compound([foo, bar]).

yes

| ?- compound("foo").

yes

| ?- compound('foo').

no

| ?- compound(X(a,b)).

yes

| ?- compound((a,b)).

yes

structure(?X)

Same as compound/1. Its existence is only for compatibility with SB-Prolog version 3.1.

is list(?X)

Succeeds if X is a proper list. In other words if it is either the atom [] or [H|T] where H is

any Prolog or HiLog term and T is a proper list; otherwise it fails.

Examples:
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| ?- is_list([p(a,b,c), h(a,b)]).

yes

| ?- is_list([_,_]).

yes

| ?- is_list([a,b|X]).

no

| ?- is_list([a|b]).

no

is charlist(+X)
Succeeds if X is a Prolog string, i.e., a list of characters. Examples:

| ?- is_charlist("abc").

yes

| ?- is_charlist(abc).

no

is charlist(+X,-Size)

Like above, but also returns the length of that string in the second argument, which must

be a variable.

is most general term(?X)
Succeeds if X is compound term with all distinct variables as arguments, or if X is an atom.
(It fails if X is a cons node.)

| ?- is_most_general_term(f(_,_,_,_)).

yes

| ?- is_most_general_term(abc).

yes

| ?- is_most_general_term(f(X,Y,Z,X)).

no

| ?- is_most_general_term(f(X,Y,Z,a)).

no

| ?- is_most_general_term([_|_]).

no

callable(?X)

Succeeds if X is currently instantiated to a term that standard predicate call/1 could take

as an argument and not give an instantiation or type error. Note that it only checks for

errors of predicate call/1. In other words it succeeds if X is an atom or a compound term;

otherwise it fails. Predicate callable/1 has no associated error conditions.

Examples:

| ?- callable(p).

yes

| ?- callable(p(1,2,3)).

yes

| ?- callable([_,_]).

yes
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| ?- callable(_(a)).

yes

| ?- callable(3.14).

no

proper hilog(?X) HiLog

Succeeds if X is a proper HiLog term; otherwise it fails.

Examples: (In this example and the rest of the examples of this section we assume that h is

the only parameter symbol that has been declared a HiLog symbol).

| ?- proper_hilog(X).

no

| ?- proper_hilog(foo(a,f(b),[A])).

no

| ?- proper_hilog(X(a,b,c)).

yes

| ?- proper_hilog(3.6(2,4)).

yes

| ?- proper_hilog(h).

no

| ?- proper_hilog([a, [d, e, X(a)], c]).

yes

| ?- proper_hilog(a(a(X(a)))).

yes

functor(?Term, ?Functor, ?Arity)

Succeeds if the functor of the Prolog term Term is Functor and the arity (number of argu-

ments) of Term is Arity. Functor can be used in either the following two ways:

1. If Term is initially instantiated, then

� If Term is a compound term, Functor and Arity are uni�ed with the name and

arity of its principal functor, respectively.

� If Term is an atom or a number, Functor is uni�ed with Term, and Arity is uni�ed

with 0.

2. If Term is initially uninstantiated, then either both Functor and Arity must be instan-

tiated, or Functor is instantiated to a number, and

� If Arity is an integer in the range 1..255, then Term becomes instantiated to the most

general Prolog term having the speci�ed Functor and Arity as principal functor and

number of arguments, respectively. The variables appearing as arguments of Term

are all distinct.

� If Arity is 0, then Functor must be either an atom or a number and it is uni�ed

with Term.

� If Arity is anything else, then functor/3 aborts.

Exceptions:
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domain error Functor is instantiated to a compound term.

instantiation error Both Term, and either Functor, or Arity are uninstantiated.

Examples:

| ?- functor(p(f(a),b,t), F, A).

F = p

A = 3

| ?- functor(T, foo, 3).

T = foo(_595708,_595712,_595716)

| ?- functor(T, 1.3, A).

T = 1.3

A = 0

| ?- functor(foo, F, 0).

F = foo

| ?- functor("foo", F, A).

F = .

A = 2

| ?- functor([], [], A).

A = 0

| ?- functor([2,3,4], F, A).

F = .

A = 2

| ?- functor(a+b, F, A).

F = +

A = 2

| ?- functor(f(a,b,c), F, A).

F = f

A = 3

| ?- functor(X(a,b,c), F, A).

F = apply

A = 4

| ?- functor(map(P)(a,b), F, A).

F = apply

A = 3

| ?- functor(T, foo(a), 1).

++Error: Wrong type in argument 2 of functor/3

Aborting...

| ?- functor(T, F, 3).

++Error: Uninstantiated argument 2 of functor/3

Aborting...

| ?- functor(T, foo, A).
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++Error: Uninstantiated argument 3 of functor/3

Aborting...

hilog functor(?Term, ?F, ?Arity) HiLog

The XSB standard predicate hilog functor/3 succeeds

� when Term is a Prolog term and the principal function symbol (functor) of Term is F and

the arity (number of arguments) of Term is Arity, or

� when Term is a HiLog term, having name F and the number of arguments F is applied

to, in the HiLog term, is Arity.

The �rst of these cases corresponds to the \usual" behaviour of Prolog's functor/3, while the

second is the extension of functor/3 to handle HiLog terms. Like the Prolog's functor/3

predicate, hilog functor/3 can be used in either of the following two ways:

1. If Term is initially instantiated, then

� If Term is a Prolog compound term, F and Arity are uni�ed with the name and

arity of its principal functor, respectively.

� If Term is an atom or a number, F is uni�ed with Term, and Arity is uni�ed with 0.

� If Term is any other HiLog term, F and Arity are uni�ed with the name and the

number of arguments that F is applied to. Note that in this case F may still be

uninstantiated.

2. If Term is initially uninstantiated, then at least Arity must be instantiated, and

� If Arity is an integer in the range 1..255, then Term becomes instantiated to the most

general Prolog or HiLog term having the speci�ed F and Arity as name and number

of arguments F is applied to, respectively. The variables appearing as arguments are

all unique.

� If Arity is 0, then F must be a Prolog or HiLog constant, and it is uni�ed with

Term. Note that in this case F cannot be a compound term.

� If Arity is anything else, then hilog functor/3 aborts.

In other words, the standard predicate hilog functor/3 either decomposes a given HiLog

term into its name and arity, or given an arity |and possibly a name| constructs the cor-

responding HiLog term creating new uninstantiated variables for its arguments. As happens

with functor/3 all constants can be their own principal function symbols.

Examples:

| ?- hilog_functor(f(a,b,c), F, A).

F = f

A = 3

| ?- hilog_functor(X(a,b,c), F, A).

X = _595836

F = _595836

A = 3
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| ?- hilog_functor(map(P)(a,b), F, A).

P = _595828

F = map(_595828)

A = 2

| ?- hilog_functor(T, p, 2).

T = p(_595708,_595712)

| ?- hilog_functor(T, h, 2).

T = apply(h,_595712,_595716)

| ?- hilog_functor(T, X, 3).

T = apply(_595592,_595736,_595740,_595744)

X = _595592

| ?- hilog_functor(T, p(f(a)), 2).

T = apply(p(f(a)),_595792,_595796)

| ?- hilog_functor(T, h(p(a))(L1,L2), 1).

T = apply(apply(apply(h,p(a)),_595984,_595776),_596128)

L1 = _595984

L2 = _595776

| ?- hilog_functor(T, a+b, 3).

T = apply(a+b,_595820,_595824,_595828)

arg(+Index, +Term, ?Argument)

Uni�es Argument with the Indexth argument of Term, where the index is taken to start at

1. Initially, Index must be instantiated to any integer and Term to any non-variable Prolog

or HiLog term. The arguments of the Term are numbered from 1 upwards. An atomic term

has 0 arguments. If the initial conditions are not satis�ed or I is out of range, the call quietly

fails.

Examples:

| ?- arg(2, p(a,b), A).

A = b

| ?- arg(2, h(a,b), A).

A = a

| ?- arg(0, foo, A).

no

| ?- arg(2, [a,b,c], A).

A = [b,c]

| ?- arg(2, "HiLog", A).

A = [105,108,111,103]

| ?- arg(2, a+b+c, A).

A = c

| ?- arg(3, X(a,b,c), A).
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X = _595820

A = b

| ?- arg(2, map(f)(a,b), A).

A = a

| ?- arg(1, map(f)(a,b), A).

A = map(f)

| ?- arg(1, (a+b)(foo,bar), A).

A = a+b

arg0(+Index, +Term, ?Argument)

Uni�es Argument with the Indexth argument of Term if Index > 0, or with the functor of

Term if Index = 0.

hilog arg(+Index, +Term, ?Argument) HiLog

If Term is a Prolog term, it has the same behaviour as arg/3, but if Term is a proper

HiLog term, hilog arg/3 uni�es Argument with the (Index + 1)th argument of the Prolog

representation of Term. Semantically, Argument is the Indexth argument to which the HiLog

functor of Term is applied. The arguments of the Term are numbered from 1 upwards. An

atomic term is taken to have 0 arguments.

Initially, Indexmust be instantiated to a positive integer and Term to any non-variable Prolog

or HiLog term. If the initial conditions are not satis�ed or I is out of range, the call quietly

fails. Note that like arg/3 this predicate does not succeed for Index=0.

Examples:

| ?- hilog_arg(2, p(a,b), A).

A = b

| ?- hilog_arg(2, h(a,b), A).

A = b

| ?- hilog_arg(3, X(a,b,c), A).

X = _595820

A = c

| ?- hilog_arg(1, map(f)(a,b), A).

A = a

| ?- hilog_arg(2, map(f)(a,b), A).

A = b

| ?- hilog_arg(1, (a+b)(foo,bar), A).

A = foo

| ?- hilog_arg(1, apply(foo), A).

A = foo

| ?- hilog_arg(1, apply(foo,bar), A).

A = bar
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Note the di�erence between the last two examples. The di�erence is due to the fact that

apply/1 is a Prolog term, while apply/2 is a proper HiLog term.

?Term =.. [?Functor |?ArgList]

Succeeds when Term is any (Prolog or) HiLog term, Functor is its Prolog functor and ArgList

is the list of its arguments. The use of =../2 (pronounced univ) although convenient, can

nearly always be avoided. Whenever eÆciency is critical, it is advisable to use the predicates

functor/3 and arg/3, since =../2 is implemented by calls to these predicates. The behaviour

of =../2 is as follows:

� If initially Term is uninstantiated, then the list in the second argument of =../2 must be

instantiated either to a proper list (list of determinate length) whose head is an atom,

or to a list of length 1 whose head is a number.

� If the arguments of =../2 are both uninstantiated, or if either of them is not what is

expected, =../2 aborts, producing an appropriate error message.

Examples:

| ?- X - 1 =.. L.

X = _595692

L = [-,_595692,1]

| ?- p(a,b,c) =.. L.

L = [p,a,b,c]

| ?- h(a,b,c) =.. L.

L = [apply,h,a,b,c]

| ?- map(p)(a,b) =.. L.

L = [apply,map(p),a,b]

| ?- T =.. [foo].

T = foo

| ?- T =.. [3|X].

T = 3

X = []

| ?- T =.. [apply,X,a,b].

T = apply(X,a,b)

| ?- T =.. [1,2].

++Error: Wrong type(s) in argument 2 of =../2

Aborting...

| ?- T =.. [a+b,2].

++Error: Wrong type(s) in argument 2 of =../2

Aborting..

| ?- X =.. [foo|Y].

++Error: Argument 2 of =../2 is not a proper list

Aborting...
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Exceptions:

instantiation error Argument 2 of =../2 is not a proper list.

type error Head of argument 2 of =../2 is not an atom or number.

?Term ^=.. [?F |?ArgList] HiLog

When Term is a Prolog term, this predicate behaves exactly like the Prolog =../2. How-

ever when Term is a proper HiLog term, ^=../2 succeeds unifying F to its HiLog functor

and ArgList to the list of the arguments to which this HiLog functor is applied. Like

=../2, the use of ^=../2 can nearly always be avoided by using the more eÆcient predi-

cates hilog functor/3 and hilog arg/3. The behaviour of ^=../2, on HiLog terms is as

follows:

� If initially Term is uninstantiated, then the list in the second argument of ^=../2 must

be instantiated to a proper list (list of determinate length) whose head can be any Prolog

or HiLog term.

� If the arguments of ^=../2 are both uninstantiated, or if the second of them is not what

is expected, ^=../2 aborts, producing an appropriate error message.

Examples:

| ?- p(a,b,c) ^=.. L.

L = [p,a,b,c]

| ?- h(a,b,c) ^=.. L.

L = [h,a,b,c]

| ?- map(p)(a,b) ^=.. L.

L = [map(p),a,b]

| ?- T ^=.. [X,a,b].

T = apply(X,a,b)

| ?- T ^=.. [2,2].

T = apply(2,2)

| ?- T ^=.. [a+b,2].

T = apply(a+b,2)

| ?- T ^=.. [3|X].

++Error: Argument 2 of ^=../2 is not a proper list

Aborting...

Exceptions:

instantiation error Argument 2 of ^=../2 is not a proper list.

copy term(+Term, -Copy)

Makes a Copy of Term in which all variables have been replaced by brand new variables which

occur nowhere else. It can be very handy when writing (meta-)interpreters for logic-based
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languages. The version of copy term/2 provided is space eÆcient in the sense that it never

copies ground terms. Predicate copy term/2 has no associated errors or exceptions.

Examples:

| ?- copy_term(X, Y).

X = _598948

Y = _598904

| ?- copy_term(f(a,X), Y).

X = _598892

Y = f(a,_599112)

name(?Constant, ?CharList)

The standard predicate name/2 performs the conversion between a constant and its character

list representation. If Constant is supplied (and is any atom or number), CharList is uni�ed

with a list of ASCII codes representing the \name" of the constant. In that case, CharList

is exactly the list of ASCII character codes that appear in the printed representation of

Constant. If on the other hand Constant is a variable, then CharList must be a proper list

of ASCII character codes. In that case, name/2 will convert a list of ASCII characters that

can represent a number to a number rather than to a character string. As a consequence of

this, there are some atoms (for example '18') which cannot be constructed by using name/2.

If conversion to an atom is preferred in these cases, the standard predicate atom codes/2

should be used instead. The syntax for numbers that is accepted by name/2 is exactly the

one which read/1 accepts. Predicate name/2 is provided for backwards compatibility. It is

advisable that new programs use the predicates atom codes/2 and number codes/2 described

below.

In Version 2.1 predicate name/2 is not yet implemented for converting from a real number to

its character list representation, and if the representation of a real is provided as CharList,

it will be converted to an atom.

If both of the arguments of name/2 are uninstantiated or CharList is not a proper list of

ASCII characters, name/2 will abort and an error message will be sent to the standard error

stream.

Examples:

| ?- name('Foo', L).

L = [70,111,111]

| ?- name([], L).

L = [91,93]

| ?- name(431, L).

L = [52,51,49]

| ?- name(X, [102,111,111]).

X = foo
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| ?- name(X, []).

X = ''

| ?- name(X, "Foo").

X = 'Foo'

| ?- name(X, [52,51,49]).

X = 431

| ?- name(X, [45,48,50,49,51]), integer(X).

X = -213

| ?- name(3.14, L).

++Error: Predicate name/2 for reals is not implemented yet

Aborting...

Exceptions:

instantiation error Both arguments are uninstantiated, or argument 2 of name/2 contains

a variable or is not a proper list.

type error Constant is not a variable, an atom or a number.

range error CharList is not a list of ASCII characters.

implementation error Constant is a real number (conversion from a real to its character

list representation is not implemented yet).

atom codes(?Atom, ?CharCodeList)

The standard predicate atom codes/2 performs the conversion between an atom and its

character list representation. If Atom is supplied (and is an atom), CharList is uni�ed with a

list of ASCII codes representing the \name" of that atom. In that case, CharList is exactly

the list of ASCII character codes that appear in the printed representation of Atom. If on the

other hand Atom is a variable, then CharList must be a proper list of ASCII character codes.

In that case, Atom is instantiated to an atom containing exactly those characters, even if the

characters look like the printed representation of a number.

If both of the arguments of atom codes/2 are uninstantiated or CharList is not a proper list

of ASCII characters, atom codes/2 aborts, and an error message will be sent to the standard

error stream.

Examples:

| ?- atom_codes('Foo', L).

L = [70,111,111]

| ?- atom_codes([], L).

L = [91,93]

| ?- atom_codes(X, [102,111,111]).

X = foo

| ?- atom_codes(X, []).

X = ''



CHAPTER 6. STANDARD PREDICATES 83

| ?- atom_codes(X, "Foo").

X = 'Foo'

| ?- atom_codes(X, [52,51,49]).

X = '431'

| ?- atom_codes(X, [52,51,49]), integer(X).

no

| ?- atom_codes(X, [52,Y,49]).

! Instantiation error in argument 2 of atom_codes/2

! Aborting...

| ?- atom_codes(431, L).

! Type error: in argument 1 of atom_codes/2

! atom expected, but something else found

! Aborting...

| ?- atom_codes(X, [52,300,49]).

! Range error: in argument 2 of atom_codes/2

! ASCII code expected, but 300 found

! Aborting...

Exceptions:

instantiation error Both arguments are uninstantiated, or argument 2 is not a proper

list, or it contains a variable.

type error Atom is not a variable or an atom.

range error CharList is not a list of ASCII characters.

atom chars(?Number, ?CharAtomList)

Like atom_codes, but the list returned (or input) is a list of characters as atoms rather

than ASCII codes. For instance, atom_chars(abc,X) binds X to the list [a,b,c] instead of

[97,98,99].

number codes(?Number, ?CharCodeList)

The standard predicate number codes/2 performs the conversion between a number and its

character list representation. If Number is supplied (and is a number), CharList is uni�ed

with a list of ASCII codes comprising the printed representation of that Number. If on the

other hand Number is a variable, then CharList must be a proper list of ASCII character

codes that corresponds to the correct syntax of a number (either integer or 
oat) In that

case, Number is instantiated to that number, otherwise number codes/2 will simply fail.

If both of the arguments of number codes/2 are uninstantiated or CharList is not a proper

list of ASCII characters, number codes/2 aborts, and an error message will be sent to the

standard error stream.

Examples:

| ?- number_codes(123, L).
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L = [49,50,51];

| ?- number_codes(N, [49,50,51]), integer(N).

N = 123

| ?- number_codes(31.4e+10, L).

L = [51,46,49,51,57,57,57,55,69,43,49,48]

| ?- number_codes(N, "314e+8").

N = 3.14e+10

| ?- number_codes(foo, L).

! Type error: in argument 1 of number_codes/2

! number expected, but something else found

! Aborting...

Exceptions:

instantiation error Both arguments are uninstantiated, or argument 2 is not a proper

list, or it contains a variable.

type error Number is not a variable or a number.

range error CharList is not a list of ASCII characters.

number chars(?Number, ?CharAtomList)

Like number_codes, but the list returned (or input) is a list of characters as atoms rather

than ASCII codes. For instance, number_chars(123,X) binds X to the list ['1','2','3']

instead of [49,50,51].

number digits(?Number, ?DigitList)

Like number_chars, but the list returned (or input) is a list of digits as numbers rather than

ASCII codes (for 
oats, the atom '.', '+' or '-', and 'e' will also be present in the list). For

instance, number_digits(123,X) binds X to the list [1,2,3] instead of ['1','2','3'], and

number_digits(123.45,X) binds X to [1,.,2,3,4,5,0,0,e,+,0,2].

6.6 All Solutions and Aggregate Predicates

Often there are many solutions to a problem and it is necessary somehow to compare these solutions

with one another. The most general way of doing this is to collect all the solutions into a list, which

may then be processed in any way desired. So XSB provides several builtin all-solutions predicates

which collect solutions into lists. Sometimes however, one wants simply to perform some aggregate

operation over the set of solutions, for example to �nd the maximum or minimum of the set of

solutions. XSB uses tabling and HiLog to provide a general and powerful aggregation facility

through the use of two new builtins.

setof(?X, +Goal, ?Set)

This predicate may be read as \Set is the set of all instances of X such that Goal is prov-

able". If Goal is not provable, setof/3 fails. The term Goal speci�es a goal or goals as in
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call(Goal). Set is a set of terms represented as a list of those terms, without duplicates, in

the standard order for terms (see Section 6.7). If there are uninstantiated variables in Goal

which do not also appear in X, then a call to this evaluable predicate may backtrack, gener-

ating alternative values for Set corresponding to di�erent instantiations of the free variables

of Goal. Variables occurring in Goal will not be treated as free if they are explicitly bound

within Goal by an existential quanti�er. An existential quanti�cation can be speci�ed as:

Y ^ G

meaning there exists a Y such that G is true, where Y is some Prolog term (usually, a variable).

Exceptions: Same as predicate call/1 (see Section 6.8).

bagof(?X, +Goal, ?Bag)

This predicate has the same semantics as setof/3 except that the third argument returns an

unordered list that may contain duplicates.

Exceptions: Same as predicate call/1 (see Section 6.8).

findall(?X, +Goal, ?List)

Similar to predicate bagof/3, except that variables in Goal that do not occur in X are treated

as existential, and alternative lists are not returned for di�erent bindings of such variables.

This makes findall/3 deterministic (non-backtrackable). Unlike setof/3 and bagof/3, if

Goal is unsatis�able, findall/3 succeeds binding List to the empty list.

Exceptions: Same as predicate call/1 (see Section 6.8).

tfindall(?X, +Goal, ?List) Tabling

Like findall/3, tfindall/3 treats all variables in Goal that do not occur in X as existential.

However, in tfindall/3, the Goal must be a call to a single tabled predicate.

tfindall/3 allows the user to build programs that use strati�ed aggregation. If the table to

Goal is incomplete, tfindall/3 suspends until the table has been completed, and only then

computes List. See Chapter 5 for further discussion of tfindall/3. Like findall/3, if Goal

is unsatis�able, tfindall/3 succeeds binding List to the empty list.

Some of the di�erences between predicates findall/3 and tfindall/3 can be seen from the

following example:

| ?- [user].

[Compiling user]

:- table p/1.

p(a).

p(b).

[user compiled, cpu time used: 0.639 seconds]

[user loaded]

yes

| ?- p(X), findall(Y, p(Y), L).

X = a

Y = _922928
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L = [a];

X = b

Y = _922820

L = [a,b];

no

| ?- abolish_all_tables.

yes

| ?- p(X), tfindall(Y, p(Y), L).

X = b

Y = _922820

L = [b,a];

X = a

Y = _922820

L = [b,a];

no

Exceptions: Same as predicate findall/3 (see above). Also:

table error Upon execution Goal is not a subgoal of a tabled predicate.

tbagof(?X, +Goal, ?List) / tsetof(?X, +Goal, ?List) Tabling

The standard predicates tbagof/3 and tsetof/3 provide tabled versions of bagof/3 and

setof/3 in a similar manner to the way in which tfindall/3 provides a tabled version of

findall/3.

X ^ Goal

The system recognises this as meaning there exists an X such that Goal is true, and treats it

as equivalent to call(Goal). The use of this explicit existential quanti�er outside predicates

setof/3 and bagof/3 constructs is super
uous.

6.6.1 Tabling Aggregate Predicates

HiLog provides an elegant way to introduce aggregate operations into XSB. HiLog allows a user to

de�ne named (and parameterized) sets (or bags). For example, say we have a simple database-like

predicate, employee(Name,Dept,Sal), which contains a tuple for each employee in our concern

and contains the employee's name, department, and salary. From this predicate we can construct

a set, or bag really, that contains all the salaries of employees in the relation:

:- hilog salaries.

salaries(Sal) :- employee(_Name,_Dept,Sal).
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So salaries is the name of a unary predicate that is true of all salaries, or rather is the name of a

bag of all salaries. It is a bag since it may contain the same salary multiple times. XSB provides a

predicate bagSum which can be used to sum up the elements in a named bag. So given the de�nition

of the HiLog predicate salaries/1 above, we can get the sum of all the salaries with:

:- bagSum(salaries,TotalSals).

The �rst argument to bagSum is the name of a bag, and the second is bound to the sum of the

elements in the bag.

We can also do a \group by" to get total salaries within departments as follows. We de�ne a

parameterized predicate, sals(Dept), to be the bag of salaries of employees in department Dept,

as follows:

sals(Dept)(Sal) :- employee(_Name,Dept,Sal).

This rule says that Sal is in the bag named sals(Dept) if there is an employee with some name

who works in department Dept and has salary Sal.

Now with this de�nition, we can de�ne a predicate, deptPayroll/2, that associates with each

department the sum of all the salaries of employees in that department:

deptPayroll(Dept,Payroll) :- bagSum(sals(Dept),Payroll).

XSB provides analogous aggregate operators, described below, to compute the minimum, max-

imum, count, and average, of a bag, respectively. These predicates are all de�ned using a more

basic predicate bagReduce/4.

bagReduce(?SetPred,?Arg,+Op,+Id) HiLog,Tabling

filterReduce(?SetPred,?Arg,+Op,+Id) Tabling

SetPred must be a HiLog set speci�cation, i.e., a unary HiLog predicate. Op must be a Hilog

operation, i.e., a 3-ary HiLog predicate that de�nes an associative operator. The predicate

must de�ne a binary function in which the �rst two arguments determine the third. Id must

be the identity of the operator. bagReduce returns with Arg bound to the \reduce" of the

elements of the bag determined by SetPred under the operation Op. I.e., Arg becomes the

result of applying the operator to all the elements in the bag that unify with SetPred. See

the bagSum operator below to see an example of bagReduce's use.

filterReduce/4 acts as bagReduce/4 with two di�erences. First, it does not depend on

HiLog, so that filterReduce/4 will be more robust especially when XSB's module system

is used. In addition, filterReduce/4 aggregates solutions to Pred using a variance rather

than uni�cation. An example of the use of filterReduce/4 is given in Chapter 5.

bagPO(?SetPred,?Arg,+Order) HiLog,Tabling
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filterPO(?SetPred,?Arg,+Order) Tabling

SetPred must be a HiLog set speci�cation, i.e., a unary HiLog predicate. Order must be

a binary Hilog relation that de�nes a partial order. bagPO returns nondeterministically with

Arg bound to the maximal elements, under Order, of the bag SetPred. bagPO/3 can be used

with Order being subsumption to reduce a set of answers and keep only the most general

answers.

See the bagMax operator below to see an example of bagPO's use.

filterPO/3 acts as bagPO/3 with the single di�erence that it does not depend on HiLog, so

that filterPO/3 will be more robust especially when XSB's module system is used.

filterPO(#Pred,+Order) Tabling

filterPO(#Pred,+Order) succeds only for a solution Pred� of Pred for which there is no

solution Pred� to Pred such that Order(Pred�,Pred�).

Example:

For the following program

:- table p/2.

b(1,2).

p(1,3).

b(1,1).

prefer(b(X,X),b(X,Y)):- X �= Y.

the query

?- filterPO(b(X,Y)

will succeed only with the binding X = 1,Y = 1.

bagMax(?SetPred,?Arg) HiLog,Tabling

SetPredmust be a HiLog set speci�cation, i.e., a unary HiLog predicate. bagMax returns with

Arg bound to the maximum element (under the Prolog term ordering) of the set SetPred.

To use this predicate, it must be imported from aggregs, and you must give the following

de�nitions in the main module usermod:

:- hilog maximum.

maximum(X,Y,Z) :- X @< Y -> Z=Y ; Z=X.

(These decarations are necessary because of a current limitation in how HiLog predicates can

be used. This requirement will be lifted in a future release.) With this de�nition, bagMax/2

can be (and is) de�ned as follows:

bagMax(Call,Var) :- bagReduce(Call,Var,maximum,_).
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(Where variables are minimal in the term ordering.)

Another possible de�nition of bagMax/2 would be:

:- hilog lt.

lt(X,Y) :- X @< Y.

bagMax(Call,Var) :- bagPO(Call,Var,lt).

This de�nition would work, but it is slightly less eÆcient than the previous de�nition since

it is known that bagMax is deterministic.

bagMin(?SetPred,?Arg) HiLog,Tabling

SetPredmust be a HiLog set speci�cation, i.e., a unary HiLog predicate. bagMin returns with

Arg bound to the minimum element (under the Prolog term ordering) of the set SetPred.

To use this predicate, it must be imported from aggregs, and you must give the following

de�nitions in the main module usermod:

:- hilog minimum.

minimum(X,Y,Z) :- X @< Y -> Z=X ; Z=Y.

(These decarations are necessary because of a current limitation in how HiLog predicates can

be used. This requirement will be lifted in a future release.) With this de�nition, bagMin/2

can be (and is) de�ned as:

bagMin(Call,Var) :- bagReduce(Call,Var,minimum,zz(zz)).

(where structures are the largest elements in the term ordering.)

bagSum(?SetPred,?Arg) HiLog,Tabling

SetPred must be a HiLog set speci�cation, i.e., a unary HiLog predicate. bagSum returns

with Arg bound to the sum of the elements of the set SetPred. To use this predicate, it must

be imported from aggregs, and you must give the following de�nitions in the main module

usermod:

:- hilog sum.

sum(X,Y,Z) :- Z is X+Y.

(These decarations are necessary because of a current limitation in how HiLog predicates can

be used. This requirement will be lifted in a future release.) With this de�nition, bagSum/2

can be (and is) de�ned as:

bagSum(Call,Var) :- bagReduce(Call,Var,sum,0).
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bagCount(?SetPred,?Arg)

HiLog,Tabling SetPred must be a HiLog set speci�cation, i.e., a unary HiLog predicate.

bagCount returns with Arg bound to the count (i.e., number) of elements of the set SetPred.

To use this predicate, it must be imported from aggregs, and you must give the following

de�nitions in the main module usermod:

:- hilog successor.

successor(X,_Y,Z) :- Z is X+1.

(These decarations are necessary because of a current limitation in how HiLog predicates can

be used. This requirement will be lifted in a future release.) With this de�nition, bagCount/2

can be (and is) de�ned as:

bagCount(Call,Var) :- bagReduce(Call,Var,successor,0).

bagAvg(?SetPred,?Arg) HiLog,Tabling

SetPred must be a HiLog set speci�cation, i.e., a unary HiLog predicate. bagAvg returns

with Arg bound to the average (i.e., mean) of elements of the set SetPred. To use this

predicate, it must be imported from aggregs, and you must give the following de�nitions in

the main module usermod:

:- hilog sumcount.

sumcount([S|C],X,[S1|C1]) :- S1 is S+X, C1 is C+1.

(These decarations are necessary because of a current limitation in how HiLog predicates can

be used. This requirement will be lifted in a future release.) With this de�nition, bagAvg/2

can be (and is) de�ned as:

bagAvg(Call,Avg) :-

bagReduce(Call,[Sum|Count],sumcount,[0|0]),

Avg is Sum/Count.

6.7 Comparison

The evaluable predicates described in this section are meta-logical. They are used to compare

and order terms, rather than to evaluate or process them. They treat uninstantiated variables

as objects with values which may be compared, and they never instantiate those variables. Each

of these predicates simply succeeds or fails; there is no side-e�ect, substitution or error condition

associated with them. The predicates described in this section should not be used when what the

user really wants is arithmetic comparison predicates or uni�cation predicates (see section 6.3).

The predicates described take into account a standard total ordering of terms, which has as

follows:

variables @ < floating point numbers @ < integers @ < atoms @ < compound terms

Within each one of the categories, the ordering is as follows:
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� variables are put in a standard order (roughly, the oldest �rst | the order is not related to

the names of variables). Also, note that two anonymous variables are not identical terms.

Unfortunately in the current implementation of our system (Version 2.1) variables \tend to

move" rather quickly as a result of uni�cation, and thus the ordering may not continue to

hold if the variables get uni�ed to some other variables. We intend to ameliorate this bug in

future releases.

� 
oating point numbers and integers are put in numeric order, from �1 to +1. Note that a


oating point number is always less than an integer, regardless of their numerical values.

� atoms are put in alphabetical (i.e. ASCII) order;

� compound terms are ordered �rst by arity, then by the name of their principal functor and

then by their arguments (in a left-to-right order).

� lists are compared as ordinary compound terms having arity 2 and functor '.'.

For example, here is a list of terms sorted in increasing standard order:

[ X, 3.14, -9, fie, foe, fum(X), [X], X = Y, fie(0,2), fie(1,1) ]

The basic predicates for comparison of arbitrary terms are:

T1 == T2

Tests if the terms currently instantiating T1 and T2 are literally identical (in particular,

variables in equivalent positions in the two terms must be identical). For example, the

question:

j ?- X == Y.

fails (answers no) because X and Y are distinct variables. However, the question

j ?- X = Y, X == Y.

succeeds because the �rst goal uni�es the two variables (see section 6.3).

T1 n== T2

Tests if the terms currently instantiating T1 and T2 are not literally identical.

T1 @< T2

Succeeds if term T1 is before term T2 in the standard order.

T1 @> T2

Succeeds if term T1 is after term T2 in the standard order.

T1 @=< T2

Succeeds if term T1 is not after term T2 in the standard order.

T1 @>= T2

Succeeds if term T1 is not before term T2 in the standard order.



CHAPTER 6. STANDARD PREDICATES 92

Some further predicates involving comparison of terms are:

compare(?Op, +T1, +T2)

Succeeds if the result of comparing terms T1 and T2 is Op, where the possible values for Op

are:

`=' if T1 is identical to T2,

`<' if T1 is before T2 in the standard order,

`>' if T1 is after T2 in the standard order.

Thus compare(=, T1, T2) is equivalent to T1==T2. Predicate compare/3 has no associated

error conditions.

sort(+L1, ?L2)

The elements of the list L1 are sorted into the standard order, and any identical (i.e. `==')

elements are merged, yielding the list L2. The time to perform the sorting is O(nlogn) where

n is the length of list L1.

Examples:

| ?- sort([3.14,X,a(X),a,2,a,X,a], L).

L = [X,3.14,2,a,a(X)];

no

Exceptions:

instantiation error Argument 1 of sort/2 is a variable or is not a proper list.

keysort(+L1, ?L2)

The list L1 must consist of elements of the form Key-Value. These elements are sorted into

order according to the value of Key, yielding the list L2. The elements of list L1 are scanned

from left to right. Unlike sort/2, in keysort/2 no merging of multiple occurring elements

takes place. The time to perform the sorting is O(nlogn) where n is the length of list L1.

Note that the elements of L1 are sorted only according to the value of Key, not according to

the value of Value. The sorting of elements in L1 is not guaranteed to be stable.

Examples:

| ?- keysort([3-a,1-b,2-c,1-a,3-a], L).

L = [1-b,1-a,2-c,3-a,3-a];

no

Exceptions:

instantiation error Argument 1 of keysort/2 is a variable or is not a proper list.

type error The elements of L1 are not of the form Key-Value.
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6.8 Meta-Predicates

call(#X)

If X is a nonvariable term in the program text, then it is executed exactly as if X appeared

in the program text instead of call(X), e.g.

: : :, p(a), call( (q(X), r(Y)) ), s(X), : : :

is equivalent to

: : :, p(a), q(X), r(Y), s(X), : : :

However, if X is a variable in the program text, then if at runtime X is instantiated to a term

which would be acceptable as the body of a clause, the goal call(X) is executed as if that

term appeared textually in place of the call(X), except that any cut (`!') occurring in X will

remove only those choice points in X. If X is not instantiated as described above, an error

message is printed and call/1 fails.

Exceptions:

instantiation error Argument 1 of call/1 is not instantiated.

type error Argument 1 of call/1 is not a callable term.

#X

(where X is a variable) executes exactly the same as call(X). However, the explicit use of

call/1 is considered better programming practice. The use of a top level variable subgoal

elicits a warning from the compiler.

once(#X)

once/1 is de�ned as once(X):- call(X),!. once/1 should be used with care in tabled

programs. The compiler can not determine whether a tabled predicate is called in the scope

of once/1, and such a call may lead to runtime errors. If a tabled predicate may occur in the

scope of once/1, use table once/1 instead.

Exceptions: The same as call/1.

table once(#X)

table once/1 is a weaker form of once/1, suitable for situations in which a single solution is

desired for a subcomputation that may involve a call to a tabled predicate. table once(?Pred)

succeeds only once even if there are many solutions to the subgoal Pred. However, it does

not \cut over" the subcomputation started by the subgoal Pred, thereby ensuring the correct

evaluation of tabled subgoals.

6.9 Information about the State of the Program

In XSB various aspects of the program state | information about predicates, modules, clauses, and

their object �les can all be inspected in ways similar to many Prolog systems. However, because the
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atom-based module system of XSB may associate structures with particular modules, predicates

are provided to inspect these elements as well. The following descriptions of state predicates use

the terms predicate indicator, term indicator and current module to mean the following:

� By predicate indicator we mean a compound term of the form M:F/A or simply F/A. When

the predicate indicator is fully instantiated, M and F are atoms representing the module name

and the functor of the predicate respectively and A is a non negative integer representing its

arity.

Example: usermod:append/3

� By term indicator we mean a predicate or function symbol of arity N followed by a sequence

of N variables (enclosed in parentheses if N is greater than zero). A term indicator may

optionally be pre�xed by the module name, thus it can be of the form M:Term.

Example: usermod:append( , , )

� A module M becomes a current (i.e. \known") module as soon as it is loaded in the system or

when another module that is loaded in the system imports some predicates from module M.

Note that due to the dynamic loading of XSB, a module can be current even if it has not

been loaded, and that some predicates of that module may not be de�ned. In fact, a module

can be current even if it does not exist. This situation occurs when a predicate is improperly

imported from a non-existent module. Despite this, a module can never lose the property of

being current.

current input(?Stream)

Succeeds i� stream Stream is the current input stream, or procedurally uni�es Stream with

the current input stream. There are no error conditions for this predicate.

current output(?Stream)

Succeeds i� stream Stream is the current output stream, or procedurally uni�es Stream with

the current output stream. There are no error conditions for this predicate.

current module(?Module)

The standard predicate current module/1 allows the user to check whether a given module

is current or to generate (through backtracking) all currently known modules. Succeeds i�

Module is one of the modules in the database. This includes both user modules and system

modules.

Note that predicate current module/1 succeeds for a given module even if that module is

not a real module (in the sense taht it does not export any predicates). There are no error

conditions associated with this predicate; if its argument does not unify with one of the

current modules, current module/1 simply fails.

current module(?Module, ?ObjectFile)

Predicate current module/2 gives the relationship between the modules and their associated

object �le names. The �le name ObjectFile must be absolute and always ends with '.O'.

It is possible for a current module to have no associated �le name (as is the case for modules

like "usermod" and "global"), or for the system to be unable to determine the �le name of
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a current module. In both cases, predicate current module/1 will succeed for this module,

while current module/2 will fail. The system is unable to determine the �le name of a given

module if that module is not in one of the directories of the search path (see Section 3.4).

Once again, there are no error conditions associated with this predicate; if the arguments

of current module/2 are not correct, or Module has no associated File, the predicate will

simply fail.

current atom(?Atom Indicator)

Generates (through backtracking) all currently known atoms, and uni�es each in turn with

Atom Indicator.

current functor(?Predicate Indicator)

The standard predicate current functor/1 can be used to �nd all the currently known terms

appearing in a particular current module. It succeeds i� Predicate Indicator is a predicate

indicator for any term that appears in the database. Note that this includes terms both in

system and in user de�ned modules, even terms that may be not yet loaded in the system.

The behaviour of current functor/1may be contrasted with that of current predicate/1,

which reports only those predicates which have been loaded in the system (both Prolog and

foreign predicates) or are dynamic predicates. There are no error conditions associated with

this predicate; if its argument is not a predicate indicator the predicate simply fails.

Predicate current functor/1 comes in two 
avours depending on the form of its argument

(Predicate Indicator):

1. If Predicate Indicator is of the form Module:Functor/Arity, then the execution of

current functor/1 will backtrack through all the current modules of the system (user

de�ned, system de�ned and global modules).

2. If, however, Predicate Indicator is uninstantiated or has the form Functor/Arity,

then predicate current functor/1 backtracks only through the terms appearing in the

global modules of the system (in other words searches only modules "usermod" and

"global"). This 
avour is only for convenience, since this is the common use of predicate

current functor/1. Note that all the following are equivalent:

| ?- current functor(Functor/Arity).

| ?- current functor(Predicate).

| ?- current functor(usermod:Predicate).

| ?- current functor(global:Predicate).

So, to backtrack through all of the functors of positive arity (function and predicate symbols)

that appear in the global modules of the system regardless of whether they are system or a

user de�ned, use:

| ?- current functor(Functor/Arity), Arity > 0.

current functor(?Name, ?Term Indicator)

Succeeds i� Term Indicator is the most general term corresponding to one of the currently

known terms having Name as their functor appearing in a current module. (Both system and

user de�ned modules are checked). Or procedurally, current functor/2 uni�es Name with

the name of a functor known to the database, and Term Indicator with the most general
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term corresponding to that functor. The 
avours of this predicate are analogous to the ones

of current functor/1 according to whether Term Indicator has one of the following two

forms:

1. Module:Term.

2. Term (for global modules).

If Term Indicator is uninstantiated, then this predicate succeeds only for global modules.

As in current functor/1 even unloaded predicates are reported (if they have been imported

and are are known to the database).

For example, if a predicate foo/2 and and a function symbol foo/1 are de�ned into module

blah, the following query will return:

| ?- current functor(foo, blah:Term).

Term = foo( 638788, 638792);

Term = foo( 638788);

no

If a module is speci�ed, current functor/2 succeeds only for those functors (function and

predicate symbols) which are de�ned in that module. Unless the module is one of the global

modules, current functor/2 fails for the predicates which are imported into that module.

On the other hand, the goal:

| ?- current functor(Name, Term).

can be used to backtrack through every known term Term in the global modules of XSB's

database that has Name as its functor.

Note that the order of term generation is undetermined. Once again, there are no error

conditions associated with this predicate; if its arguments are inappropriate, the predicate

simply fails.

current predicate(?Predicate Indicator)

The predicate current predicate/1 can be used to �nd all the predicates that are de-

�ned and loaded in a particular current module. The module can be either a Prolog or a

foreign module (see the Chapter Foreign Language Interface in Volume 2. This predicate

succeeds i� Predicate Indicator is a predicate indicator for one of the procedures (both

Prolog and foreign language ones) that are loaded in the database or that are dynamic.

Note that this includes procedures both in system and in user de�ned modules. Unlike

current functor/1 which reports all predicates that are somehow known to the database,

current predicate/1 reports only those predicates that are either created dynamically (for

example using assert/1) or loaded in the system. (I.e. it excludes those predicates which

have been imported, but not loaded). There are no error conditions associated with this

predicate; if its argument is not what it should be, the predicate simply fails.

Like current functor/1, predicate current predicate/1 comes in two 
avours depending

on the form of its argument (Predicate Indicator).



CHAPTER 6. STANDARD PREDICATES 97

1. If Predicate Indicator has the form Module:Functor/Arity, then the execution of

current predicate/1 uni�es the predicate indicator with predicates in all current mod-

ules (user de�ned, system de�ned and global modules).

2. If, however, Predicate Indicator is uninstantiated or has the form Functor/Arity,

then current predicate/1 backtracks only through the predicates loaded in the global

modules of the system (in other words searches only modules "usermod" and "global").

Since this is the common use of predicate current predicate/1, this 
avour is only for

convenience. Note that all the following are equivalent:

| ?- current predicate(Functor/Arity).

| ?- current predicate(Predicate).

| ?- current predicate(usermod:Predicate).

| ?- current predicate(global:Predicate).

So, to backtrack through all of the predicates de�ned and loaded in module blah, regardless

of whether blah is a system or a user de�ned module 1 , use:

| ?- current predicate(blah:Predicate).

In this case Predicate will have the form: Functor/Arity.

To backtrack through all predicates de�ned and loaded in any current module, use:

| ?- current predicate(Module:Functor/Arity).

This succeeds once for every predicate that is loaded in XSB's database.

To �nd the predicates having arity 3 that are loaded in the global modules of the system, use:

| ?- current predicate(Functor/3).

while to �nd all predicates loaded in the global modules of the system regardless of their arity,

use:

| ?- current predicate(Predicate).

current predicate(?Name, ?Term Indicator)

Succeeds i� Term Indicator is the most general term corresponding to one of the predicates

having functor Name that are de�ned and loaded in a particular module in the database.

(The module can be either system or user de�ned). Or procedurally, current predicate/2

uni�es Name with the name of a loaded predicate, and Term Indicator with the most general

term corresponding to that predicate. The 
avours of this predicate are analogous to those

of current predicate/1 and behave according to whether Term Indicator has one of the

following two forms:

1. Module:Term.

2. Term (module is assumed to be global or usermod).

If Term Indicator is uninstantiated, then this predicate succeeds only for global modules.

Like current predicate/1 only predicates that have a property in the following set:

1The only limitation is that blah must indeed be a module in the sense that it exports at least one symbol.
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f loaded, dynamic, foreign g

(see predicate property/2 below) are reported.

For example, if predicates foo/1 and foo/3 are de�ned and loaded into module blah, the

following query will return:

| ?- current predicate(foo, blah:Term).

Term = foo( 638788, 638792, 638796);

Term = foo( 638788);

no

If a module is speci�ed, current predicate/2 succeeds only for those predicates which

are de�ned and loaded in that module. Unless the module is one of the global modules,

current predicate/2 fails for those predicates which are imported into that module.

On the other hand, the goal:

| ?- current predicate(Name, Term).

can be used to backtrack through every predicate that is loaded in the global modules of

XSB's database.

Note that the order of term generation is undetermined. Once again, there are no error

conditions associated with this predicate; if its argument is not what it should be, the predicate

simply fails.

predicate property(?Term Indicator, ?Property)

The standard predicate predicate property/2 can be used to �nd the properties of any

predicate which is visible to a particular module. Succeeds i� Term Indicator is a term

indicator for a current predicate whose principal functor is a predicate having Property as

one of its properties. Or procedurally, Property is uni�ed with the currently known properties

of the predicate having Term Indicator as its skeletal speci�cation.

A brief description of predicate property/2 is as follows:

� If Term Indicator is instantiated, then Property is successively uni�ed with the various

properties associated with Term Indicator.

� If Property is bound to a valid predicate property, then predicate property/2 succes-

sively uni�es Term Indicator with the skeletal speci�cations of all known to the system

predicates having the speci�ed Property.

� If Term Indicator is a variable, then it is uni�ed (successively through backtracking)

with the most general term for a predicate whose known properties are uni�ed with

Property.

� If Term Indicator is a skeletal speci�cation not a known to the system, or Property is

not a valid predicate property, the call simply fails.
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For example, all the loaded predicate skeletal speci�cations in module "usermod" may be

enumerated using:

| ?- predicate property(Pred, loaded).

Also the following query �nds all predicate skeletal speci�cations that are exported by module

blah:

| ?- predicate property(blah:Pred, exported).

Currently, the following properties are associated with predicates either implicitly or by dec-

laration (where double lines show property categories, and a predicate can have at most one

property of each category).

Property Explanation

unclassified The predicate symbol is not yet classi�ed according

to this category. This property has various meanings.

Usually for exported predicate symbols in system or

user de�ned modules it means that the predicate is

yet unloaded (because it has not been used).

In global modules it usually means that the predicate

is either a function symbol, or an unloaded predicate

symbol (including constants).

dynamic The predicate is dynamic.

loaded The predicate (including internal predicates) is a

Prolog predicate loaded into the module in question;

this is always the case for predicates in global modules.

unloaded The predicate is yet unloaded into the module

in question.

foreign The predicate is a foreign predicate. This implies that

the predicate is already loaded in the system, because

currently there is no way for XSB to know that a

predicate is a foreign predicate until it is loaded in

the system.

exported The predicate symbol is exported by the module in

question; in other words the predicate symbol is

visible to any other module in the system.

local The predicate symbol is local to the module

in question.

imported from(Mod) The predicate symbol is imported into the module in

question from module Mod.

spied The predicate symbol has been declared spied

(either conditionally or unconditionally).

tabled The predicate has been declared tabled.

built in The predicate symbol has the same Functor and Arity

as one of XSB's builtin (standard) predicates.
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Finally, since dynamic is usually declared as an operator with precedence greater than 999,

writing the following:

| ?- predicate property(X, dynamic).

will cause a syntax error. The way to achieve the desired result is to parenthesize the operator

like in:

| ?- predicate property(X, (dynamic)).

module property(?Module, ?Property)

The standard predicate module property/2 can be used to �nd the properties of any current

module. Succeeds i� Module is the name of a current module having Property as one of its

properties. Or procedurally, Property is uni�ed with the currently known properties of the

module having Module as its name.

Currently, the following properties are associated with modules implicitly

Property Explanation

unloaded The module (including system modules) though it is

current, is yet unloaded in the system.

loaded The module (including system modules) is loaded in the

system; this is always the case for global modules.

listing

Lists in the current output stream the clauses for all dynamic predicates found in module

usermod. Note that listing/0 does not list any compiled predicates unless they have the

dynamic property (see predicate property/2). A predicate gets the dynamic property when

it is explicitly declared as dynamic, or automatically acquires it when some clauses for that

predicate are asserted in the database. In cases where a predicate was compiled but converted

to dynamic by asserting additional clauses for that predicate, listing/0 will just display an

indication that there exist compiled clauses for that predicate and only the dynamically

created clauses of the predicate will be listed. For example:
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| ?- [user].

[Compiling user]

a(X) :- b(X).

a(1).

[user compiled, cpu time used: 0.3 seconds]

[user loaded]

yes

| ?- assert(a(3)).

yes

| ?- listing.

a(A) :-

$compiled.

a(3).

yes

Predicate listing/0 always succeeds. The query:

| ?- listing.

is just a notational shorthand for the query:

| ?- listing(X).

listing(+Predicate Indicator)

If Predicate Indicator is a variable then listing/1 is equivalent to listing/0. If

Predicate Indicator is an atom, then listing/1 lists the dynamic clauses for all predicates

of that name found in module usermod of the database. The argument Predicate Indicator

can also be a predicate indicator of the form Name/Arity in which case only the clauses for

the speci�ed predicate are listed. Finally, it is possible for Predicate Indicator to be a list

of predicate indicators and/or atoms; e.g.

| ?- listing([foo/2, bar, blah/4]).

If Predicate Indicator is not a variable, an atom or a predicate indicator (or list of predicate

indicators) of the form Name/Arity, predicate listing/1 will simply fail.

In future releases of XSB, we intend to allow the user to specify a predicate indicator of the

form Module:Name/Arity as argument of listing/1.

xsb configuration(Feature Name, ?Value)

Succeeds i� the current value of the XSB feature Feature Name is Value.

This predicate provides information on a wide variety of features related to how XSB was

built, including the compiler used, the compiler and loader 
ags, the machine and OS on

which XSB was built, the release number, the various directories that XSB uses to �nd its

libraries, etc.
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To �nd all features and their values, ask the following query:

| ?- xsb configuration(FeatureName, Value), fail.

Here is how xsb configuration might look like:

xsb_configuration(architecture, 'i686-pc-linux-gnu').

%% configuration is usualy the same as architecture, but it can also

%% contain special tags, {\it e.g.}, i686-pc-linux-gnu-dbg, for a verion

%% built with debugging enabled.

xsb_configuration(configuration, 'i686-pc-linux-gnu-dbg').

xsb_configuration(host_os, 'linux-gnu').

xsb_configuration(os_version, '2.34').

xsb_configuration(os_type, 'linux-gnu').

xsb_configuration(host_vendor, 'pc').

xsb_configuration(host_cpu, 'i686').

xsb_configuration(compiler, 'gcc').

xsb_configuration(compiler_flags, ' -ansi -pedantic -Wall -g').

xsb_configuration(loader_flags, ' -lm -ldl -Wl,-export-dynamic').

xsb_configuration(compile_mode, 'debug').

%% The following is XSB release information

xsb_configuration(major_version, '1').

xsb_configuration(minor_version, '9').

xsb_configuration(beta_version, '3').

xsb_configuration(version, '1.9-b3').

xsb_configuration(codename, 'Code Breaker').

xsb_configuration(release_date, date(1998, 10, 17)).

%% XSB query evaluation directive

xsb_configuration(scheduling_strategy, '(batched)').

%% Support for other languages

xsb_configuration(perl_support, 'yes').

xsb_configuration(perl_archlib, '/usr/lib/perl5/i386-linux/5.00404').

xsb_configuration(perl_cc_compiler, 'cc').

xsb_configuration(perl_ccflags, '-Dbool=char -DHAS_BOOL -I/usr/local/include').

xsb_configuration(perl_libs, '-lnsl -lndbm -lgdbm -ldb -ldl -lm -lc -lposix -lcrypt').

xsb_configuration(javac, '/usr/bin/javac').

/* Tells where XSB is currently residing; can be moved */

xsb_configuration(install_dir, InstallDir) :- ...

/* User home directory. Usually HOME. If that is null, then it would

be the directory where XSB is currently residing.

This is where we expect to find the .xsb directory */

xsb_configuration(user_home, Home) :- ...

/* Where XSB invocation script is residing */

xsb_configuration(scriptdir, ScriptDir) :- ...

/* where are cmplib, syslib, lib, packages, etc live */

xsb_configuration(cmplibdir, CmplibDir) :- ...
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xsb_configuration(libdir, LibDir) :- ...

xsb_configuration(syslibdir, SyslibDir) :- ...

xsb_configuration(packagesdir, PackDir) :- ...

xsb_configuration(etcdir, EtcDir) :- ...

/* architecture and configuration specific directories */

xsb_configuration(config_dir, ConfigDir) :- ...

xsb_configuration(config_libdir, ConfigLibdir) :- ...

/* site-specific directories */

xsb_configuration(site_dir, '/usr/local/XSB/site').

xsb_configuration(site_libdir, SiteLibdir) :- ...

/* site and configuration-specific directories */

xsb_configuration(site_config_dir, SiteConfigDir) :- ...

xsb_configuration(site_config_libdir, SiteConfigLibdir) :- ...

/* Where user's arch-specific libraries are found by default. */

xsb_configuration(user_config_libdir, UserConfigLibdir) :- ...

xsb flag(?Flag Name, ?Value)

Succeeds i� the current value of the XSB 
ag Flag Name is Value. So, one can enumerate

all the 
ag names which the system currently understands, together with their current values

by using the following query:

| ?- xsb flag(FlagName, Value), fail.

The 
ag names currently supported are:

Flag Name Purpose

debugging "on" i� debug mode is on; "off" otherwise.

tracing "on" i� trace mode is on; "off" otherwise.

goal the goal passed to XSB on command line with the `-e' switch;

`true.' if nothing is passed.

dcg style the DCG style currently used; xsb or standard (standard is used

in Quintus, SICSTUS, etc.). See Section 8.4 for more details.

garbage collection "none", "sliding", or "copying" depending on the garbage col-

lection strategy that is currently being employed (see also Sec-

tion 3.5).

Note that xsb flag is used only for dynamic XSB settings, i.e., settings that might change be-

tween sessions or within the same session. For static con�guration information, the predicate

xsb configuration/2 is used.

hilog symbol(?Symbol)

Succeeds i� Symbol has been declared as a HiLog symbol, or procedurally uni�es Symbol

with one of the currently known (because of a prior declaration) HiLog symbols. The HiLog

symbols are always atoms, but if the argument of hilog symbol, though instantiated, is not

an atom the predicate simply fails. So, one can enumerate all the HiLog symbols by using

the following query:
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| ?- hilog symbol(X).

current op(?Precedence, ?Type, ?Name)

This predicate is used to examine the set of operators currently in force. It succeeds when

the atom Name is currently an operator of type Type and precedence Precedence. None of

the arguments of current op/3 need to be instantiated at the time of the call, but if they

are, they must be of the following types:

Precedence it must be an integer in the range from 1 to 1200.

Type it must be one of the atoms:

xfx xfy yfx fx fy hx hy xf yf

Name it must be either an atom or a list of atoms.

Exceptions (not yet implemented):

domain error Precedence is not between 1{1200, or Type is not one of the listed atoms.

type error Name is not an atom.

hilog op(?Precedence, ?Type, ?Name)

This predicate has exactly the same behaviour as current op/3 with the only di�erence that

Type can only have the values hx and hy.

6.10 Modi�cation of the Database

XSB provides an array of features for modifying the dynamic database. Using assert/1, clauses

can be asserted using �rst-argument indexing in a manner that is now standard to Prolog imple-

mentations. While this is the default behavior for XSB, other behavior can be speci�ed using the

(executable) directives index/3 and index/2. For instance, dynamic clauses can be declared to

have multiple or joint indexes, while this indexing can be either hash-based as is typical in Prolog

systems or based on tries. No matter what kind of indexing is used, space is dynamically allo-

cated when a new clause is asserted and, unless speci�ed otherwise, released when it is retracted.

Furthermore, the size of any index table expands dynamically as clauses are asserted.

Consider �rst dynamic predicates that use traditional hash-based indexing. XSB asserts WAM

code for such clauses, leading to execution times similar to compiled code for unit and binary clauses.

Furthermore, tabling can be used with a dynamic predicate by explicitly declaring a predicate to be

both dynamic and tabled. For clauses that are asserted as WAM code, the \immediate semantics"

of dynamic predicates is used, not the so-called \logical semantics" of assert/retract [27]. This

means that signi�cant care must be taken when modifying the de�nition of a predicate which is

currently being executed. Notice that this makes some operations diÆcult. For example, one

might try to retract from dynamically asserted predicates, p/1 and q/1, exactly their intersection,

by issuing the following query:

:- p(X), q(X), retract(p(X)), retract(q(X)), fail.



CHAPTER 6. STANDARD PREDICATES 105

Neither retract/1 nor retractall/1 support this behavior, due to their techniques for space

reclamation. One alternative is to use findall/3 to collect the intersection �rst, before retracting.

Another is to use the predicates retract nr/1 and reclaim space/1, described below.

Asserting clauses as WAM code might be considerably slow for some applications. To remedy

this, XSB provides an alternative to assert/1 which implements assert's functionality using the

trie-based tabling data structures [33]. Though trie-based dynamic code can be created (and usually

executed) signi�cantly faster than using assert/1, users of the following predicates should be aware

that trie-based assert can be used only for unit clauses where a relation is viewed as a set, and

where the order of the facts is not important.

XSB does not at this time fully support dynamic predicates de�ned within compiled code. The

only way to generate dynamic code is by explicitly asserting it, or by using the standard predicate

load dyn/1 to read clauses from a �le and assert them (see the section Asserting Dynamic Code

in Volume 2). There is a dynamic/1 predicate (see page 107) that declares a predicate within the

system so that if the predicate is called when no clauses are presently de�ning it, the call will

quietly fail instead of issuing an \Unde�ned predicate" error message.

assert(+Clause)

adds a dynamic clause, Clause, to the database. Clausemust be of one of the forms: Head or

Head :- Body. Note that because of the precedence of :-/2, using the second form requires

an extra set of parentheses: assert((Head :- Body)). Default: �rst-argument indexing.

asserta(+Clause)

If the index speci�cation for the preicate is not tries, this predicate adds a dynamic clause,

Clause, to the database before any other clauses for the same predicate currently in the

database. If the index speci�cation for the predicate is trie, the clause is asserted arbitrarily

within the trie, and a warning message sent to stderr.

assertz(+Clause)

If the index speci�cation for the predicate is not tries, this predicate adds a dynamic

clause, Clause, to the database after any other clauses for the same predicate currently

in the database. If the index speci�cation for the predicate is trie, the clause is asserted

arbitrarily within the trie, and a warning message sent to stderr.

retract(+Clause)

removes through backtracking all clauses in the database that match with Clause. Clause

must be of one of the forms: Head or Head :- Body. Note, that because of the precedence of

:-/2, using the second form requires an extra set of parentheses: retract((Head :- Body)).

Space is reclaimed when a clause is retracted.

retractall(+Head)

removes every clause in the database whose head matches with Head. The predicate whose

clauses have been retracted retains the dynamic property (contrast this behavior with that

of predicates abolish/[1,2] below). Predicate retractall/1 is determinate and always

succeeds. The term Head is not further instantiated by this call.
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abolish(+PredSpec)

Removes the de�nition of the speci�ed predicate. PredSpec is of the form Pred/Arity.

Everything about the abolished predicate is completely forgotten by the system (including

the dynamic property). There is also an abolish/2 which takes Pred and Arity as its two

arguments.

clause(+Head,?Body)

Returns through backtracking all dynamic clauses in the database whose head matches Head

and Body matches Body. For facts the Body is true.

retract nr(+Clause)

Performs just as retract/1 does, except that it does not reclaim the space used by the

retracted clause. This is provided to allow programmers to modify dynamic clauses while

executing them (a practice that is discouraged.) For example, to retract an intersection, as

described above, one could do:

:- p(X), q(X), retract nr(p(X)), retract nr(q(X)), fail.

In order to reclaim space after using retract nr/1, see reclaim space/1 below. Predi-

cate retract nr/1 is not a standard predicate and must be imported from module assert.

retract nr/1 is provided for (partial) compatibility with the retract/1 predicate of SB-

Prolog.

reclaim space(+Head)

Runs through the dynamic code for the predicate indicated by Head, and reclaims space

for any clauses that have been deleted from that predicate by retract nr/1. This cannot

safely be used when execution is still within some invocation of the speci�ed predicate, or

will backtrack into such a scope. To complete our example of retracting the intersection of

dynamic predicates:

:- p(X), q(X), retract nr(p(X)), retract nr(q(X)), fail ;

reclaim space(p( )), reclaim space(q( )).

would do the trick. Notice that the reclaim space calls must be made after execution has

completely failed out of choice points for q(X) and p(X). Predicate reclaim space/1 is not

standard but must be imported from module assert. As with retract nr, the use of this

predicate is discouraged; it is provided for (partial) compatibility with SB-Prolog.

index(+PredSpec, +IndexSpec)

In general, XSB supports hash-based indexing on alternate arguments or combinations of

arguments, along with trie-based indexing. The availability of various kinds of indexing

depends on whether code is static (e.g. compiled) or dynamic (e.g. asserted or loaded

with load dyn/1). The executable directive index/2 does not re-index an already existing

predicate but takes e�ect only if the program store contains no clauses for PredSpec. Index

directives can be given to the compiler as part of source code or executed during program

execution (analogously to op/3).
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� Hash-based Indexing

{ Static Predicates In this case IndexSpec must be a non-negative integer which indi-

cates the argument on which an index is to be constructed. If IndexSpec is 0, then

no index is kept (possibly an eÆcient strategy for predicates with only one or two

clauses.)

{ Dynamic Predicates For a dynamic predicate, (to which no clauses have yet been

asserted), IndexSpec is either an IndexElt or a list of IndexElts. Each IndexElt

speci�es an argument or group of arguments on which to build an index. Syntacti-

cally, an IndexElt, in its turn is a non-negative integer or a sequence of up to three

non-negative integers separated by +, e.g., 1+2+3.

For example, index(p/3,[2,1]) indicates that clauses asserted to the predicate p/3

should be indexed on both the second and the �rst argument. Subsequent calls to

p/3 will �rst check to see if the second argument is nonvariable, and if so use that

index. If the second argument is variable, it will check to see if the �rst argument

is nonvariable and if so, use that index.

As another example, one could specify: index(p/5,[1+2,1,4]). After clauses are

asserted to it, a call to p/5 would �rst check to see if both the �rst and second

arguments are nonvariable and if so, use an index based on both those values.

Otherwise, it would see if the second argument is nonvariable and if so, use an index

based on it. Otherwise, it would see if the fourth argument is nonvariable and if

so use an index based on it. As a last resort, it would use no index but backtrack

through all the clauses in the predicate. (Notice that it may well make sense to

include an argument that appears in a joint speci�cation later alone, as 1 in this

example, but it never makes sense forcing the single argument to appear earlier. In

that case the joint index would never be used.)

� Trie-based Indexing The executable declaration index(Predspec,trie) causes clauses

for Predspec to be asserted using tries (see [33], which is available through the XSB

web page). The name trie indexing is something of a misnomer since the trie itself both

indexes the term and represents it. In XSB, the above trie index is formed using a left-to-

right traversal of the unit clauses. These indexes can be very e�ective if discriminating

information lies deep within a term, and if there is sharing of left-pre�xes of a term, can

reduce the space needed to represent terms. Furthermore, asserting a unit clause as a

trie is much faster than asserting it using default WAM code.

Despite these advantages, representing terms as tries leads to semantic di�erences from

asserted code, of which the user should be aware. First, the order of clauses within a trie

is arbitrary: using asserta/1 or assertz for a predicate currently using trie indexing

will give the same behavior as using assert. Also, the current version of XSB only

allows trie indexing for unit clauses.

Trie-based indexing is available only for dynamic predicates.

dynamic(+PredSpec)

is an executable predicate which converts a predicate speci�ed as (Predicate/Arity) to a

dynamic predicate. If Predicate is not previously de�ned, it will be initialized to empty (so

that calls to it quietly fail, instead of issuing \Unde�ned predicate" error messages.) If the
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predicate is previously de�ned and dynamic, dynamic/1 is a noop. If previously de�ned as

compiled, Predicate will be converted to dynamic, which means that clauses can be added,

although the compiled portion cannot be manipulated. Note that dynamic/1 can be used

like a compiler directive, since it will be passed through to be executed when the module is

loaded. Note, however, that the semantics is di�erent from that of the standard [20] when

the �le contains clauses de�ning the so-speci�ed predicate.

table(+PredSpec)

is an executable predicate, where PredSpec is a predicate speci�cation for a dynamic predi-

cate. (This is also a compiler directive when PredSpec speci�es a compiled predicate. See the

section of this manual on compiler directives.) This predicate declares a dynamic predicate

to be tabled. It simply saves information to be used at the time of assert and so it must be

called before any clauses are asserted into the speci�ed predicate in order for the predicate

to be tabled.

6.11 Execution State

abort

Abandons the current execution and returns to the top level. This predicate is normally

used in one of the following two cases:

� when some error condition or exception has occurred and carrying on the computation

is of no further use.

� when using the debugger (see Chapter 7).

Currently, all exception handling routines terminate with a call to predicate abort/0, so an

exception encountered at some break level other than the top level will return the interpreter

at the top level.

The user should be aware of the fact that abort/0 does not close any �les which may have

been opened. If the program under execution is doing �le manipulation using see/1 and

tell/1, then strange behavior may occur after the program is aborted and restarted, unless

the user manually closes the �les.

Aborting closes all incomplete tables (those which may not have a complete set of answers).

Closed tables are una�ected, even if the tables were created during the aborted computation.

break

Causes the current execution to be suspended at the beginning of the next call. The in-

terpreter then enters break level 1 and is ready to accept input as if it were at top level.

If another call to break/0 is encountered, it moves up to break level 2, and so on. While

execution is done at break level n > 0 the prompt changes to n: ?-.

To close a break level and resume the suspended execution, the user can type the the atom

end of file or the end-of-�le character applicable on the system (usually CTRL-d on UNIX

systems). Predicate break/0 then succeeds (note in the following example that the calls to
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break/0 do not succeed), and the execution of the interrupted program is resumed. Alterna-

tively, the suspended execution can be abandoned by calling the standard predicate abort/0,

which causes a return to the top level.

An example of break/0 's use is the following:

| ?- break.

[ Break (level 1) ]

1: ?- break.

[ Break (level 2) ]

2: ?- end of file.

[ End break (level 2) ]

yes

1: ?-

Entering a break closes all incomplete tables (those which may not have a complete set of

answers). Closed tables are una�ected, even if the tables were created during the computation

for which the break was entered.

halt

Exits the XSB session regardless of the break level. On exiting the system cpu and elapsed

time information is displayed.

prompt(+NewPrompt, ?OldPrompt)

Sets the prompt of the top level interpreter to NewPrompt and returns the old prompt in

OldPrompt.

An example of prompt/2 's use is the following:

| ?- prompt('Yes master > ', P).

P = | ?- ;

no

Yes master > fail.

no

Yes master >

cputime(-CPU Time)

Returns the CPU Time at the time of the call in seconds. The di�erence between results of

successive calls to this predicate can measure the time spent in speci�c predicates.

statistics

Prints on the current output stream:

� Information about allocation of memory (see Section 3.5) containing the

{ global stack (heap) and local (environment) stack

{ trail and choice point stack



CHAPTER 6. STANDARD PREDICATES 110

{ SLG subgoal space (tablestack)

{ SLG uni�cation stack

{ SLG completion stack

{ the space occupied by subgoal and answer tables (in the form of tries).

� Current use of the above speci�ed memory areas (allocated/in use/free).

� Information about process cpu and clock time.

Additionally, if the emulator is invoked with the '-s' option (see Section 3.5), information

is printed out about

� Maximum use of the memory areas.

The '-s' option slows down the emulator by about 10%.

Example:

| ?- statistics.

memory (total) 1873737 bytes: 171317 in use, 1702420 free

permanent space 169801 bytes

glob/loc space 786432 bytes: 1080 in use, 785352 free

global 152 bytes

local 928 bytes

trail/cp space 786432 bytes: 436 in use, 785996 free

trail 240 bytes

choice point 196 bytes

SLG subgoal space 0 bytes: 0 in use, 0 free

SLG unific. space 65536 bytes: 0 in use, 65536 free

SLG completion 65536 bytes: 0 in use, 65536 free

SLG trie space 0 bytes: 0 in use, 0 free

(call+ret. trie 0 bytes, trie hash tables 0 bytes)

Maximum stack use: global 224, local 1384, trail 240, cp 492

Maximum stack use: SLG completion 0. Max level: 0

0 Trail unwinds, 0 levels

0.570 sec. cputime, 5.088 sec. elapsetime

shows how the emulator output looks if it is invoked with the '-s' option (without it the

Maximum use line is not shown). Information about the allocation size is provided since the

sizes can be changed through emulator options (see Section 3.5).

shell(+SystemCall)

Calls the operating system with the atom SystemCall as argument. It succeeds if SystemCall

is executed successfully, otherwise it fails. As a notational convenience, the user can supply

SystemCall in the form of a list (something currently not possible for shell/2).

For example, the call:

j ?- shell('echo $HOME').
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will output in the current output stream of XSB the name of the user's home directory; while

the call:

j ?- File = 'test.c', shell(['cc -c ', File]).

will call the C compiler to compile the �le test.c.

Note that in UNIX systems, since shell/1 is executed by forking o� a shell process, it cannot

be used, for example, to change the working directory of the interpreter. For that reason the

standard predicate cd/1 described below should be used.

shell(+SystemCall, -Result)

Calls the operating system with the atom SystemCall as argument and returns the result of

the call in Result. In comparison with shell/1 this predicate always succeeds, even if the

SystemCall cannot be successfully executed.

ls

Under UNIX, this command lists in the current output stream the �les in the system's current

directory if it can do so. If so, it succeeds. It is the same as shell('ls -F', 0).

cd(+Dir)

Under UNIX and Windows, this predicate changes the interpreter's working directory to

Dir. If the directory speci�ed does not exist or is not a directory, or the user does not have

execute permission for that directory, predicate cd/1 simply fails raising no permission error.

Exceptions:

instantiation error Dir is not instantiated at the time of call.

type error Dir is not an atom.

edit(+Module)

Provided that the environment variable EDITOR has been set, and the system is executing

under UNIX, a call to edit(foo) will call the default editor on the �le named foo.P. The

argument to edit/1, should be instantiated, it can be an absolute or a relative �le name, but

it should not contain the suÆx .P. Users can also set their preferred options of calling the

default editor by setting an environment variable named EDITOR OPTIONS.

Examples of possible uses of predicate edit/1 are:

1. If the environment variables have been set as follows:

setenv EDITOR /usr/ucb/vi

setenv EDITOR_OPTIONS -l

a call like:

| ?- edit(foo).

will call the vi editor in the mode where left and right parentheses and curly brackets

are checked for balance for the �le foo.P in the current working directory.
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2. If, on the other hand, they have been set as follows:

setenv EDITOR /usr/local/bin/emacs

setenv EDITOR_OPTIONS -r

a call like:

| ?- edit('~/foo').

will call the emacs editor in reverse video for the �le foo.P in user's home directory.

6.12 Tabling

In XSB, tables are designed so that they can be used transparently by computations. However, it is

often useful to be able to explicitly inspect a table, or to alter its state. In the following predicates,

which are provided for this purpose, Skeleton refers to information about the function and arity

of a predicate. If p/2 is a predicate, its skeleton can be represented as p(harg1i; harg2i) where arg1

and arg2 can be any instantiation pattern. Thus the information derived from the skeletons p(1,2)

and p(A,B) would be the same.

The user should be aware that skeletons which are dynamically created (e.g. by functor/3) are

located in usermod (cf. Section 3.3). In such a case, the tabling predicates below may not behave

in the desired manner if the tabled predicates themselves have not been imported into usermod.

get calls(+Skeleton,-Subgoal Structure Pointer,-Return Skeleton) Tabling

Backtracks through the subgoal trie, unifying Skeleton with entries in the call trie. As

it does so, get calls/3 binds Subgoal Structure Pointer with the pointer to the subgoal

structure and binds Return Skeleton to a term of the form ret/n where each of its argu-

ments corresponds to a free variable in the call. Example:

For the following program and table

:- table p/2.

p(1,2).

p(1,3).

p(1,X).

p(2,3).

Call Returns

p(1,X) p(1,2)

p(1,3)

p(1,X)

p(X,3) p(1,3)

p(2,3)

calls to get calls/3 will act as follows

| ?- get_calls(p(X,Y),Cs,Ret).

X = _864816

Y = 3

Cs = 2927152
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Ret = ret(_864816);

X = 1

Y = _864644

Cs = 2927104

Ret = ret(_864644);

no

| ?- get_calls(p(1,Y),Cs,Ret).

Y = 3

Cs = 2927152

Ret = ret(1);

Y = _864620

Cs = 2927104

Ret = ret(_864620);

no

| ?- get_calls(p(Y,3),Cs,Ret).

Y = _864792

Cs = 2927152

Ret = ret(_864792);

Y = 1

Cs = 2927104

Ret = ret(3);

no

| ?- get_calls(p(1,3),Cs,Ret).

Cs = 2927152

Ret = ret(1);

Cs = 2927104

Ret = ret(3);

no

get call(+Skeleton,-Subgoal Structure Pointer,-Return Skeleton) Tabling

This predicate binds Subgoal Structure Pointer and Return Skeleton only if Skeleton

is a variant (i.e., identical up to variable renaming) of some entry in the subgoal table. It

may be compared to the previous predicate get call/3 which uni�es Skeleton with entries

in the subgoal trie. Repeating the example from get calls/3, calls to get call/3 will act

as follows

| ?- get_call(p(X,Y),Cs,Ret).

no

| ?- get_call(p(1,Y),Cs,Ret).

Y = _864620
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Cs = 2927104

Ret = ret(_864620);

no

| ?- get_call(p(Y,3),Cs,Ret).

Y = _864792

Cs = 2927152

Ret = ret(_864792);

no

| ?- get_call(p(1,3),Cs,Ret).

no

get calls for table(+Skeleton,-Call) Tabling

Succeeds whenever Skeleton un�es with an entry in the subgoal table. When this predicate

suceeds, it returns a variant of the call entry with which Skeleton uni�es.

This predicate does not provide any information about whether a table is complete. Use

table state to inquire about a table's state.

Calls to get calls for table/2 for the example in get calls/3 would act as follows

|?- get_calls_for_table(p(X,Y), Call).

X = _646608

Y = _646436

Call = p(1,_646724) ;

X = _646608

Y = _646436

Call = p(_646720,3) ;

no

| ?- get_calls_for_table(p(1,2), Call).

Call = p(1,_646676)

Call = p(_646672,3) ;

no

The second example backtracks through all entries in the table, since only skeletal information

is used from the �rst argument.

Exception:

instantiation error First argument is not instantiated.

table error First argument is not a tabled predicate.

get returns(+Subgoal Structure Pointer,-Return Skeleton) Tabling

Backtracks through the answer trie for the subgoal whose subgoal structure is pointed
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to by Subgoal Structure Pointer, and instantiates the Return Skeleton with the bindings

corresponding to the return.

One way of accessing subgoals and answers of the example in in get calls/3 is as follows

| ?- get_calls(p(Y,3),Cs,Ret), get_returns(Cs,Ret).

Y = 2

Cs = 2561656

Ret = ret(2);

Y = 1

Cs = 2561656

Ret = ret(1);

Y = 1

Cs = 2559032

Ret = ret(3);

Y = 1

Cs = 2559032

Ret = ret(3);

no

get returns(+Subgoal Structure Pointer,-Return Skeleton,-LeafNode) Tabling

Same as above, except for the fact that the third argument is bound to the leaf node

corresponding to the return in the return trie.

get returns for call(+Call,-Return) Tabling

Succeeds whenever there is a table entry for a variant of Call. If this is the case, Return

is instantiated with an entry for the table corresponding to call, and successive entries are

returned by backtracking. If there are no answers in the table, or no table entry for Call,

the goal fails.

This predicate creates fresh variables for the return, rather than unifying them with variables

in the �rst argument. An explicit uni�cation of a call with its return can be done if so desired.

Example: Let us continue from the example in get calls for table/3.

| ?- get_returns_for_call(p(1,X), Return).

X = _646412

Return = p(1,_646628);

X = _646412

Return = p(1,2);

X = _646412

Return = p(1,3);

no
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| ?- get_returns_for_call(p(X,Y), Return).

no

| ?- get_returns_for_call(p(1,2), Return).

no

Exception:

instantiation error First argument is not instantiated.

table error First argument is not a tabled predicate.

get residual(?Skeleton,?Delay list) Tabling

get residual/2 is used to backtrack through answers that unify with a skeleton. These

answers may in fact come from any call that uni�es with Skeleton. Since the Delay list

of an answer consists of those literals whose truth value is unknown in the well-founded

model of the program (see Section 5) get residual/2 can be useful when extensions of the

well-founded model are desired. Consider the program

For the following program and table

:- table p/2.

p(1,2).

p(1,3):- tnot(p(2,3)).

p(2,3):- tnot(p(1,3)).

Call Returns

p(1,X) p(1,2)

p(1,3):- tnot(p(2,3))

p(2,3):- tnot(p(1,3))

p(1,3) p(1,3):- tnot(p(2,3))

p(2,3) p(2,3):- tnot(p(1,3))

calls to get residual/3 will act as follows

| ?- get_residual(p(X,Y),List).

X = 1

Y = 2;

Z = [];

X = 1

Y = 3;

Z = [tnot(p(2,3))];

X = 2

Y = 3;

Z = [tnot(p(1,3))];

X = 1

Y = 3;

Z = [tnot(p(2,3))];

X = 2

Y = 3;

Z = [tnot(p(1,3))];
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no

delete return(+Subgoal Structure Pointer,+LeafNode) Tabling

Deletes a return from the return trie. The LeafNode parameter should be obtained from a

call to get returns/3.

abolish all tables Tabling

abolish all tables/0 abolishes all tables presently in the system. Predicates which have

been declared tabled remain tabled, but information about calls and returns is deleted. In

Version 2.1, abolish all tablesl/0 reclaims used space. The predicate always succeeds.

Note that incomplete tables are abolished automatically by the system on exceptions and

when the interpreter level is resumed. In these cases, the user does not need to abolish tables

to maintain correctness.

abolish table pred(+PredSpecification or +Skeleton) Tabling

Predicate abolish table pred/1 abolishes tables for all calls to the predicate denoted by

PredSpeci�cation (as in path/2) or by Skeleton (as in path(X,Y)). The predicate remains

tabled, but information about its calls and their returns is removed from the system. In

Version 2.1, abolish table pred/1 reclaims the space used by the calls to this predicate

(and their answers). Note that incomplete tables are abolished automatically by the system

on exceptions and when the interpreter level is resumed. In these cases, the user does not

need to abolish tables to maintain correctness.

Exception:

instantiation error Argument is a variable.

type error Argument is not a predicate speci�cation of a callable term.

table error Argument is not a (speci�cation of a) tabled predicate.

abolish table call(?Call) Tabling

Predicate abolish table call/1 abolishes tables for a particular call to a predicate denoted

by Call. The predicate remains tabled, and information about all other tables remains intact.

In Version 2.1, abolish table call/1 does not reclaim used space. Note that incomplete

tables are abolished automatically by the system on exceptions and when the interpreter level

is resumed. In these cases, the user does not need to abolish tables to maintain correctness.

Example:

Continuing the example started in the description of predicate get calls for table/3 the

call abolish table call(p(1,X)) would produce the table

Call Returns

p(X,3) p(1,3)

p(2,3)

Exception:
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table error Argument 1 is not a callable predicate.

table state(?Call,-State) Tabling

If the �rst argument is a valid Term indicator, table state/1 uni�es state with one of

the set fnot yet called, complete, incomplete, undefg. The meaning of these atoms is

de�ned as:

not yet called i� the predicate corresponding to Call has been declared tabled, but there

is no table entry for call.

complete i� the table entry for Call contains all solutions.

incomplete i� the table entry for Call may not contain all solutions.

undef i� the predicate corresponding to Call has not been declared tabled.

Exceptions:

type error Argument 1 is not a callable predicate.
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Debugging

7.1 High-Level Tracing

XSB supports a version of the Byrd four-port debugger for debugging Prolog code. In this release

(Version 2.1), it does not work very well when debugging code involving tabled predicates. If one

only creeps (see below), the tracing can provide some useful information. We do intend that future

versions will have more complete debugging help for tabled evaluation.

To turn on tracing, use trace/0. To turn tracing o�, use notrace/0. When tracing is on, the

system will print a message each time a predicate is:

1. initially entered (Call),

2. successfully returned from (Exit),

3. failed back into (Redo), and

4. completely failed out of (Fail).

At each port, a message is printed and the tracer stops and prompts for input. (See the predicates

show/1 and leash/1 described below to modify what is traced and when the user is prompted.)

In addition to single-step tracing, the user can set spy points to in
uence how the trac-

ing/debugging works. A spy point is set using spy/1. Spy points can be used to cause the system

to enter the tracer when a particular predicate is entered. Also the tracer allows \leaping" from

spy point to spy point during the debugging process.

The debugger also has pro�ling capabilities, which can measure the cpu time spent in each call.

The cpu time is measured only down to 0.0001-th of a second.

When the tracer prompts for input, the user may enter a return, or a single character followed

by a return, with the following meanings:

c, <CR>: Creep Causes the system to single-step to the next port (i.e. either the entry to a traced

predicate called by the executed clause, or the success or failure exit from that clause).

119
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a: Abort Causes execution to abort and control to return to the top level interpreter.

b: Break Calls the evaluable predicate break, thus invoking recursively a new incarnation of the

system interpreter. The command prompt at break level n is

n: ?-

The user may return to the previous break level by entering the system end-of-�le character

(e.g. ctrl-D), or typing in the atom end of file; or to the top level interpreter by typing in

abort.

f: Fail Causes execution to fail, thus transferring control to the Fail port of the current execution.

h: Help Displays the table of debugging options.

l: Leap Causes the system to resume running the program, only stopping when a spy-point is

reached or the program terminates. This allows the user to follow the execution at a higher

level than exhaustive tracing.

n: Nodebug Turns o� debug mode.

r: Retry (fail) Transfers to the Call port of the current goal. Note, however, that side e�ects,

such as database modi�cations etc., are not undone.

s: Skip Causes tracing to be turned o� for the entire execution of the procedure. Thus, nothing

is seen until control comes back to that procedure, either at the Success or the Failure port.

q: Quasi-skip This is like Skip except that it does not mask out spy points.

S: Verbose skip Similar to Skip mode, but trace continues to be printed. The user is prompted

again when the current call terminates with success or failure. This can be used to obtain a

full trace to the point where an error occurred or for code pro�ling. (See more about pro�ling

below.)

e: Exit Causes immediate exit from XSB back to the operating system.

Other standard predicates that are useful in debugging are:

spy(Preds)

where Preds is a spy speci�cation or a list of such speci�cations, and must be instantiated.

This predicate sets spy points (conditional or unconditional) on predicates. A spy speci�cation

can be of several forms. Most simply, it is a term of the form P/N , where P is a predicate

name and N its arity. Optionally, only a predicate name can be provided, in which case

it refers to all predicates of any arity currently de�ned in usermod. It may optionally may

be pre�xed by a module name, e.g. ModName:P/N . (Again, if the arity is omitted, the

speci�cation refers to all predicates of any arity with the given name currently de�ned in the

given module.) A spy speci�cation may also indicate a conditional spy point. A conditional

spy speci�cation is a Prolog rule, the head indicating the predicate to spy, and the body
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indicating conditions under which to spy. For example, to spy the predicate p/2 when the

�rst argument is not a variable, one would write: spy(p(X; ) : �nonvar(X)): (Notice that

the parentheses around the rule are necessary). The body may be empty, i.e., the rule may

just be a fact. The head of a rule may also be pre�xed (using :) with a module name. One

should not put both conditional and unconditional spy points on the same predicate.

nospy(Preds)

where Preds is a spy speci�cation, or a list of such speci�cations, and must be instantiated

at the time of call. What constitutes a spy speci�cation is described above under spy. nospy

removes spy points on the speci�ed predicates. If a speci�cation is given in the form of a fact,

all conditional spy points whose heads match that fact are removed.

debug

Turns on debugging mode. This causes subsequent execution of predicates with trace or spy

points to be traced, and is a no-op if there are no such predicates. The predicates trace/1

and spy/1 cause debugging mode to be turned on automatically.

nodebug

Turns o� debugging mode. This causes trace and spy points to be ignored.

debugging

Displays information about whether debug mode is on or not, and lists predicates that have

trace points or spy points set on them.

debug ctl(option,value)

debug ctl/2 performs debugger control functions as described below. These commands can

be entered before starting a trace or inside the trace. The latter can be done by responding

with \b" at the prompt, which recursively invokes an XSB sub-session. At this point, you

can enter the debugger control commands and type end_of_file. This returns XSB back to

the debugger prompt, but with new settings.

1. debug ctl(prompt, off) Set non-interactive mode globally. This means that trace will

be printed from start to end, and the user will never be prompted during the trace.

2. debug ctl(prompt, on) Make tracing/spying interactive.

3. debug ctl(profile, on) Turns pro�ling on. This means that each time a call execution

reaches the Fail or Exit port, CPU time spent in that call will be printed. The actual

call can be identi�ed by locating a Call prompt that has the same number as the \cpu

time" message.

4. debug ctl(profile, off) Turns pro�ling o�.

5. debug ctl(redirect, +File) Redirects debugging output to a �le. This also includes

program output, errors and warnings. Note that usually you cannot see the contents

of +File until it is closed, i.e., until another redirect operation is performed (usually

debug ctl(redirect, tty), see next).

6. debug ctl(redirect, tty) Attaches the previously redirected debugging, error, pro-

gram output, and warning streams back to the user terminal.
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7. debug ctl(show, +PortList) Allows the user to specify at which ports should trace

messages be printed. PortList must be a list of port names, i.e., a sublist of ['Call',

'Exit', 'Redo', 'Fail'].

8. debug ctl(leash, +PortList) Allows the user to specify at which ports the tracer

should stop and prompt the user for direction. PortList must be a list of port names,

i.e., a sublist of ['Call', 'Exit', 'Redo', 'Fail']. Only ports that are show-n can be leash-ed.

9. debug ctl(hide, +PredArityPairList)The list must be of the form [P1/A1, P2/A2,

...], i.e., each either must specify a predicate-arity pair. Each predicate on the list will

become non-traceable. That is, during the trace, each such predicate will be treated as

an black-box procedure, and trace will not go into it.

10. debug ctl(unhide, ?PredArityPairList) If the list is a predicate-arity list, every

predicate on that list will become traceable again. Items in the list can contain variables.

For instance, debug ctl(unhide, [ /2]) will make all 2-ary that were previously made

untraceable traceable again. As a special case, if PredArityPairList is a variable, all

predicates previously placed on the \untraceable"-list will be taken o�.

11. debug ctl(hidden, -List) This returns the list of predicates that the user said should

not be traced.

7.2 Low-Level Tracing

XSB also provides a facility for low-level tracing of execution. This can be activated by invoking

the emulator with the -T option (see Section 3.5), or through the predicate trace/0. It causes

trace information to be printed out at every call (including those to system trap handlers). The

volume of such trace information can very become large very quickly, so this method of tracing is

not recommended in general.

XSB debugger also provides means for the low-level control of what must be traced. Normally,

various low-level predicates are masked out from the trace, since these predicates do not make sense

to the application programmer. However, if tracing below the application level is needed, you can

retract some of the facts speci�ed in the �le syslib/debugger data.P (and in some cases assert

into them). All these predicates are documented in the header of that �le. Here we only mention

the four predicates that an XSB developer is more likely to need. To get more trace, you should

retract from the �rst three predicates and assert into the last one.

� hide this show(Pred,Arity): speci�es calls (predicate name and arity) that the debugger

should not show at the prompt. However, the evaluation of this hidden call is traced.

� hide this hide(Pred,Arity): speci�es calls to hide. Trace remains o� while evaluating

those predicates. Once trace is o�, there is no way to resume it until the hidden predicate

exits or fails.

� show this hide(Pred,Arity): calls to show at the prompt. However, trace is switched o�

right after that.
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� trace standard predicate(Pred,Arity): Normally trace doesn't go inside standard predi-

cates (i.e., those speci�ed in syslib/std xsb.P. If you need to trace some of those, you must

assert into this predicate.

In principle, by retracting all facts from the �rst three predicates and asserting enough facts into

the last one, it is possible to achieve the behavior that approximates the -T option. However, unlike

-T, debugging can be done interactively. This does not obviate -T, however. First, it is easier to

use -T than to issue multiple asserts and retracts. Second, -T can be used when the error occurs

early on, before the moment when XSB shows its �rst prompt.
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De�nite Clause Grammars

8.1 General Description

De�nite clause grammars (DCGs) are an extension of context free grammars that have proven

useful for describing natural and formal languages, and that may be conveniently expressed and

executed in Prolog. A De�nite Clause Grammar rule in Prolog is executable because it is just a

notational variant of a Prolog term that has the following general form:

Head --> Body.

with the declarative interpretation that \a possible form for Head is Body". The procedural inter-

pretation of a grammar rule is that it takes an input list of symbols or character codes, analyses

some initial portion of that list, and produces the remaining portion (possibly enlarged) as output

for further analysis. The arguments required for the input and output lists are not written explicitly

in the DCG rule, but are added when the rule is translated (expanded) into an ordinary Prolog

clause during parsing. By de�ning the hook predicate term expansion/2, the user can specify

any desired transformation to be done as clauses are read by the reader of XSB's parser. Extra

conditions, in the form of explicit Prolog literals or control constructs such as if-then-elses ('->'/2)

or cuts ('!'/0), may be included in the Body of the DCG rule and they work exactly as one would

expect.

An overview of the syntax of DCGs supported by XSB is as follows:

1. A non-terminal symbol may be any HiLog term other than a variable or a number. A variable

which appears in the body of a rule is equivalent to the appearance of a call to the built-in

predicate phrase/3 as it is described below.

2. A terminal symbol may be any HiLog term. In order to distinguish terminals from nonter-

minals, a sequence of one or more terminal symbols �; �; 
; Æ; : : : is written within a grammar

rule as a Prolog list [ �; �; 
; Æ; : : : ], with the empty sequence written as the empty list [ ].

The list of terminals may contain variables but it has to be a proper list, or else an error

message is sent to the standard error stream and the expansion of the grammar rule that

124
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contains this list will fail. If the terminal symbols are ASCII character codes, they can be

written (as elsewhere) as strings.

3. Extra conditions, expressed in the form of Prolog predicate calls, can be included in the body

(right-hand side) of a grammar rule by enclosing such conditions in curly brackets, 'f' and

'g'. For example, one can write:

positive integer(N) --> [N], finteger(N), N > 0g. 1

4. The left hand side of a DCG rule must consist of a single non-terminal, possibly followed by

a sequence of terminals (which must be written as a unique Prolog list). Thus in XSB, unlike

SB-Prolog version 3.1, \push-back lists" are supported.

5. The right hand side of a DCG rule may contain alternatives (written using the usual Prolog's

disjunction operator ';' or using the usual BNF disjunction operator '|'.

6. The Prolog control primitives if-then-else ('->'/2), nots (not/1, fail if/1, 0
n+0 =1 or

tnot/1) and cut ('!'/0) may also be included in the right hand side of a DCG rule. These

symbols need not be enclosed in curly brackets. 2 All other Prolog's control primitives, such

as repeat/0, must be enclosed explicitly within curly brackets if they are not meant to be

interpreted as non-terminal grammar symbols.

8.2 Translation of De�nite Clause Grammar rules

The procedural interpretation of a DCG rule is that it takes an input list of symbols or character

codes, analyzes some initial portion of that list, and produces the remaining portion (possibly en-

larged, if pushback lists are used) as output for further analysis. As an abbreviation, the arguments

required for the input and output lists are not written explicitly in a grammar rule, but are added

when the rule is translated into an ordinary Prolog clause. In this section we informally describe

this translation, which resembles the DCG rules of other Prologs in most particulars.

Each grammar rule is translated into a Prolog clause as it is consulted or compiled. This DCG

term expansion is as follows:

A DCG rule such as:

p(X) --> q(X).

will be translated (expanded) into the Prolog rule:

p(X, Li, Lo) :-

q(X, Li, Lo).

If there is more than one non-terminal on the right-hand side, as in

1A term like ffoog is just a syntactic-sugar for the term 'fg'(foo).
2Readers familiar with Quintus Prolog may notice the di�erence in the treatment of the various kinds of not.

For example, in Quintus Prolog a not/1 that is not enclosed within curly brackets is interpreted as a non-terminal

grammar symbol.
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p(X, Y) --> q(X), r(X, Y), s(Y).

the corresponding input and output arguments are identi�ed, translating into:

p(X, Y, Li, Lo) :-

q(X, Li, L1),

r(X, Y, L1, L2),

s(Y, L2, Lo).

Terminals are translated using the built-in predicate 'C'/3 (See section 8.3 for its description).

For instance:

p(X) --> [go, to], q(X), [stop].

is translated into:

p(X, S0, S) :-

'C'(S0, go, S1),

'C'(S1, to, S2),

q(X, S2, S3),

'C'(S3, stop, S).

Extra conditions expressed as explicit procedure calls naturally translate into themselves. For

example,

positive number(X) -->

[N], finteger(N), N > 0g,

fraction(F), fform number(N, F, X)g.

translates to:

positive number(X, Li, Lo) :-

'C'(Li, N, L1),

integer(N),

N > 0,

L1 = L2,

fraction(F, L2, L3),

form number(N, F, N),

L3 = Lo.

Similarly, a cut is translated literally.

Push-back lists (a proper list of terminals on the left-hand side of a DCG rule) translate into a

sequence of 'C'/3 goals with the �rst and third arguments reversed. For example,

it is(X), [is, not] --> [aint].

becomes

it is(X, Li, Lo) :-

'C'(Li, aint, L1),

'C'(Lo, is, L2),

'C'(L2, not, L1).
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Disjunction has a fairly obvious translation. For example, the DCG clause:

expr(E) -->

expr(X), "+", term(Y), fE is X+Yg

| term(E).

translates to the Prolog rule:

expr(E, Li, Lo) :-

( expr(X, Li, L1),

'C'(L1, 43, L2), % 0'+ = 43

term(Y, L2, L3)

E is X+Y,

L3 = Lo

; term(E, Li, Lo)

).

8.3 De�nite Clause Grammar predicates

The library predicates of XSB that support DCGs are the following:

phrase(+Phrase, ?List)

This predicate is true i� the list List can be parsed as a phrase (i.e. sequence of terminals)

of type Phrase. Phrase can be any term which would be accepted as a nonterminal of the

grammar (or in general, it can be any grammar rule body), and must be instantiated to a

nonvariable term at the time of the call; otherwise an error message is sent to the standard

error stream and the predicate fails. This predicate is the usual way to commence execution

of grammar rules.

If List is bound to a list of terminals by the time of the call, then the goal corresponds to

parsing List as a phrase of type Phrase; otherwise if List is unbound, then the grammar is

being used for generation.

phrase(+Phrase, ?List, ?Rest)

This predicate is true i� the segment between the start of list List and the start of list

Rest can be parsed as a phrase (i.e. sequence of terminals) of type Phrase . In other words,

if the search for phrase Phrase is started at the beginning of list List, then Rest is what

remains unparsed after Phrase has been found. Again, Phrase can be any term which would

be accepted as a nonterminal of the grammar (or in general, any grammar rule body), and

must be instantiated to a nonvariable term at the time of the call; otherwise an error message

is sent to the standard error stream and the predicate fails.

Predicate phrase/3 is the analogue of call/1 for grammar rule bodies, and provides a se-

mantics for variables in the bodies of grammar rules. A variable X in a grammar rule body is

treated as though phrase(X) appeared instead, X would expand into a call to phrase(X, L,

R) for some lists L and R.

expand term(+Term1, ?Term2)

This predicate is used to transform terms that appear in a Prolog program before the program
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is compiled or consulted. The standard transformation performed by expand term/2 is that

when Term1 is a grammar rule, then Term2 is the corresponding Prolog clause; otherwise

Term2 is simply Term1 unchanged. If Term1 is not of the proper form, or Term2 does not

unify with its clausal form, predicate expand term/2 simply fails.

Users may override the standard transformations performed by predicate expand term/2 by

de�ning their own compile-time transformations. This can be done by de�ning clauses for the

predicate term expansion/2. When a term Term1 is read in when a �le is being compiled

or consulted, expand term/2 calls term expansion/2 �rst; if the expansion succeeds, the

transformed term so obtained is used and the standard grammar rule expansion is not tried;

otherwise, if Term1 is a grammar rule, then it is expanded using dcg/2; otherwise, Term1

is used as is. Note that predicate term expansion/2 must be de�ned in the XSB's default

read-in module (usermod) and should be loaded there before the compilation begins.

'C'(?L1, ?Terminal, ?L2)

This predicate generally is of no concern to the user. Rather it is used in the transformation

of terminal symbols in grammar rules and expresses the fact that L1 is connected to L2

by the terminal Terminal. This predicate is needed to avoid problems due to source-level

transformations in the presence of control primitives such as cuts ('!'/0), or if-then-elses

('->'/2) and is de�ned by the single clause:

'C'([Token|Tokens], Token, Tokens).

The name 'C' was chosen for this predicate so that another useful name might not be pre-

empted.

dcg(+DCG Rule, ?Prolog Clause) dcg

Succeeds i� the DCG rule DCG Rule translates to the Prolog clause Prolog Clause. At the

time of call, DCG Rule must be bound to a term whose principal functor is '-->'/2 or else

the predicate fails. dcg/2 must be explicitly imported from the module dcg.

8.4 Two di�erences with other Prologs

The DCG expansion provided by XSB is in certain cases di�erent from the ones provided by some

other Prolog systems (e.g. Quintus Prolog, SICStus Prolog and C-Prolog). The most important of

these di�erences are:

1. XSB expands a DCG clause in such a way that when a '!'/0 is the last goal of the DCG

clause, the expanded DCG clause is always steadfast.

That is, the DCG clause:

a --> b, ! ; c.

gets expanded to the clause:

a(A, B) :- b(A, C), !, C = B ; c(A, B).

and not to the clause:
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a(A, B) :- b(A, B), ! ; c(A, B).

as in Quintus, SICStus and C Prolog.

The latter expansion is not just optimized, but it can have a di�erent (unintended) meaning

if a/2 is called with its second argument bound.

However, to obtain the standard expansion provided by the other Prolog systems, the user

can simply execute:

set dcg style(standard).

To switch back to the XSB-style DCG's, call

set dcg style(xsb).

This can be done anywhere in the program, or interactively. By default, XSB starts with the

XSB-style DCG's. To change that, start XSB as follows:

xsb -e "set dcg style(standard)."

Problems of DCG expansion in the presence of cuts have been known for a long time and

almost all Prolog implementations expand a DCG clause with a '!'/0 in its body in such a

way that its expansion is steadfast, and has the intended meaning when called with its second

argument bound. For that reason almost all Prologs translate the DCG clause:

a --> ! ; c.

to the clause:

a(A, B) :- !, B = A ; c(A, B).

But in our opinion this is just a special case of a '!'/0 being the last goal in the body of a

DCG clause.

2. Most of the control predicates of XSB need not be enclosed in curly brackets. A di�erence

with, say Quintus, is that predicates not/1, 0
n+0 =1, or fail if/1 do not get expanded when

encountered in a DCG clause. That is, the DCG clause:

a --> (true -> X = f(a) ; not(p)).

gets expanded to the clause:

a(A,B) :- (true(A,C) -> =(X,f(a),C,B) ; not p(A,B))

and not to the clause:

a(A,B) :- (true(A,C) -> =(X,f(a),C,B) ; not(p,A,B))

that Quintus Prolog expands to.

However, note that all non-control but standard predicates (for example true/0 and '='/2)

get expanded if they are not enclosed in curly brackets.

8.5 Interaction of De�nite Clause Grammars and Tabling

Tabling can be used in conjunction with De�nite Clause Grammars to get the e�ect of a more

complete parsing strategy. When Prolog is used to evaluate DCG's, the resulting parsing algorithm
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is \recursive descent". Recursive descent parsing, while eÆciently implementable, is known to su�er

from several de�ciencies: 1) its time can be exponential in the size of the input, and 2) it may not

terminate for certain context-free grammars (in particular, those that are left or doubly recursive).

By appropriate use of tabling, both of these limitations can be overcome. With appropriate tabling,

the resulting parsing algorithm is a variant of Earley's algorithm and of chart parsing algorithms.

In the simplest cases, one needs only to add the directive :- auto table (see Section 3.8.4) to

the source �le containing a DCG speci�cation. This should generate any necessary table declara-

tions so that in�nite loops are avoided (for context-free grammars). That is, with a :- auto table

declaration, left-recursive grammars can be correctly processed. Of course, individual table direc-

tives may also be used, but note that the arity must be speci�ed as two more than that shown in

the DCG source, to account for the extra arguments added by the expansion.

However, due to our current implementation of structures in tabling, there are new ineÆciencies

that can arise. In particular, when using the standard list representation of the input string in a

DCG, there may be a large amount of copying and a great deal of space used. What happens is

that the input string (i.e. list) may be copied into and out of the table many times. To avoid this

problem, the input list can be transformed into a set of datalog atoms. Currently this must be

done manually, as explained in [47], available in the tech reports directory.



Chapter 9

Restrictions and Current Known Bugs

In this chapter we indicate some features and bugs of XSB that may a�ect the users at some point

in their interaction with the system.

If at some point in your interaction with the system you suspect that you have run across a

bug not mentioned below, please report it to (xsb-contact@cs.sunysb.edu). Please try to �nd

the smallest program that illustrates the bug and mail it to this address together with a script that

shows the problem. We will do our best to �x it or to assist you to bypass it.

9.1 Current Restrictions

� The maximum arity for predicate and function symbols is 255.

� The maximum length of atoms that can be stored in an XSB object code �le is in principle

232 � 1, but in practice it is 228 � 1 (i.e., in 32-bit platforms it is bounded by the size of the

maximum integer; see below).

� In the current version, you should never try to rename a byte code �le generated for a module,

though you can move it around in your �le system. Since the module name is stored in the

�le, renaming it causes the system to load it into wrong places. However, byte code �les for

non-modules can be renamed at will.

� XSB allows up to 1 Gigabyte of address space for 32-bit SUNs and 512 Megabytes of address

space for other 32-bit platforms. For SUNs the address space for integers is �228|(228 � 1).

For MIPS-based machines (e.g. Silicon Graphics machines), the address space for integers

is �226|(226 � 1). For all other machines it is �227|(227 � 1). This restriction can cause

unexpected results when numbers are computed. The amount of space allowed for 
oating

point numbers is similar for each machine. For 64-bit platforms, addresses, integers, and


oating point numbers are all stored in 60 bits. However, as the object code �le format is the

same as for the 32-bit versions, compiled constants are subject to 32-bit limitations.

� Indexing on 
oating-point numbers does not work, since, as implemented in XSB, the seman-

tics of 
oating-point uni�cation is murky in the best case. Therefore, it is advisable that if
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you use 
oating point numbers in the �rst argument of a procedure, that you explicitly index

the predicate in some other argument.

� The XSB compiler cannot distinguish the occurrences of a 0-ary predicate and a name of

a module (of an import declaration) as two di�erent entities. For that reason it fails to

characterise the same symbol table entry as both a predicate and a module at the same time.

As a result of this fact, a compiler error is issued and the �le is not compiled. For that reason

we suggest the use of mutually exclusive names for modules and 0-ary predicates, though we

will try to amend this restriction in future versions of XSB.

9.2 Known Bugs

� The current version of XSB does not fully support dynamic code. In fact the declartion :-

dynamic essentially instructs XSB to fail on that code if it is unde�ned.

� Currently the C foreign language interface does not work when XSB is also compiled with

the Oracle interface on Solaris.

� Variables that appear in compiled arithmetic comparison predicates should only be bound

to numbers and not evaluable arithmetic expressions. That is, the variables are not evalu-

ated to obtain an arithmetic value, but the XSB compiler assumes that they are evaluated.

For example, executing compiled code for the following program will cause an "Arithmetic

exception" error:

p(X) :- X =:= 1.

?- p(cos(0)).

This behaviour is only exhibited in compiled code.

� The reader cannot read an in�x operator immediately followed by a left parenthesis. In such

a case you get a syntax error. To avoid the syntax error just leave a blank between the in�x

operator and the left parenthesis. For example, instead of writing:

| ?- X=(a,b).

write:

| ?- X= (a,b).

� The reader cannot properly read an operator de�ned as both a pre�x and an in�x operator.

For instance the declaration

:- op(1200,xf,'<=').

:- op(1200,xfx,'<=').
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will lead to a syntax error.

� When the code of a predicate is reloaded many times, if the old code is still in use at the

time of loading, unexpected errors may occur, due to the fact that the space of the old code

is reclaimed and may be used for other purposes.

� Currently, term comparisons (==,@<=,@<,@>, and @>=) do not work for terms that over
ow the

C-recursion stack (terms that contain more than 10,000 variables and/or function symbols).



Appendix A

GPP - Generic Preprocessor

Version 2.0 - (c) Denis Auroux 1996-99
http://www.math.polytechnique.fr/cmat/auroux/prog/gpp.html

As of version 2.1, XSB uses gpp as a source code preprocessor for Prolog programs. This helps

maintain consistency between the C and the Prolog parts of XSB through the use of the same .h

�les. In addition, the use of macros improves the readability of many Prolog programs, especially

those that deal with low-level aspects of XSB. Chapter 3.8 explains how gpp is invoked in XSB.

A.1 Description

gpp is a general-purpose preprocessor with customizable syntax, suitable for a wide range of pre-

processing tasks. Its independence on any programming language makes it much more versatile

than cpp, while its syntax is lighter and more 
exible than that of m4.

gpp is targeted at all common preprocessing tasks where cpp is not suitable and where no very

sophisticated features are needed. In order to be able to process equally eÆciently text �les or

source code in a variety of languages, the syntax used by gpp is fully customizable. The handling

of comments and strings is especially advanced.

Initially, gpp only understands a minimal set of built-in macros, called meta-macros. These

meta-macros allow the de�nition of user macros as well as some basic operations forming the core

of the preprocessing system, including conditional tests, arithmetic evaluation, and syntax spec-

i�cation. All user macro de�nitions are global, i.e. they remain valid until explicitly removed;

meta-macros cannot be rede�ned. With each user macro de�nition gpp keeps track of the corre-

sponding syntax speci�cation so that a macro can be safely invoked regardless of any subsequent

change in operating mode.

In addition to macros, gpp understands comments and strings, whose syntax and behavior can

be widely customized to �t any particular purpose. Internally comments and strings are the same

construction, so everything that applies to comments applies to strings as well.
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A.2 Syntax

gpp [-o outfile] [-I/include/path] [-Dname=val ...]

[-z|+z] [-x] [-m] [-n] [-C|-T|-H|-P|-U ... [-M ...]]

[+c<n> str1 str2] [-c str1]

[+s<n> str1 str2 c] [infile]

A.3 Options

gpp recognizes the following command-line switches and options:

� -h

Print a short help message.

� -o out�le

Specify a �le to which all output should be sent (by default, everything is sent to standard

output).

� -I /include/path

Specify a path where the #includemeta-macro will look for include �les if they are not present

in the current directory. The default is /usr/include if no -I option is speci�ed. Multiple -I

options may be speci�ed to look in several directories.

� -D name=val

De�ne the user macro name as equal to val. This is strictly equivalent to using the #de�ne

meta-macro, but makes it possible to de�ne macros from the command-line. If val makes

references to arguments or other macros, it should conform to the syntax of the mode speci�ed

on the command-line. Note that macro argument naming is not allowed on the command-line.

� +z

Set text mode to Unix mode (LF terminator). Any CR character in the input is systematically

discarded. This is the default under Unix systems.

� -z

Set text mode to DOS mode (CR-LF terminator). In this mode all CR characters are removed

from the input, and all output LF characters are converted to CR-LF. This is the default if

gpp is compiled with the WIN NT option.

� -x

Enable the use of the #exec meta-macro. Since #exec includes the output of an arbitrary

shell command line, it may cause a potential security threat, and is thus disabled unless this

option is speci�ed.

� -m

Enable automatic mode switching to the cpp compatibility mode if the name of an included

�le ends in '.h' or '.c'. This makes it possible to include C header �les with only minor

modi�cations.
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� -n

Prevent newline or whitespace characters from being removed from the input when they

occur as the end of a macro call or of a comment. By default, when a newline or whitespace

character forms the end of a macro or a comment it is parsed as part of the macro call or

comment and therefore removed from output. Use the -n option to keep the last character in

the input stream if it was whitespace or a newline.

� -U arg1 ... arg9

User-de�ned mode. The nine following command-line arguments are taken to be respectively

the macro start sequence, the macro end sequence for a call without arguments, the argument

start sequence, the argument separator, the argument end sequence, the list of characters to

stack for argument balancing, the list of characters to unstack, the string to be used for

referring to an argument by number, and �nally the quote character (if there is none an

empty string should be provided). These settings apply both to user macros and to meta-

macros, unless the -M option is used to de�ne other settings for meta-macros. See the section

on syntax speci�cation for more details.

� -M arg1 ... arg7

User-de�ned mode speci�cations for meta-macros. This option can only be used together with

-M. The seven following command-line arguments are taken to be respectively the macro

start sequence, the macro end sequence for a call without arguments, the argument start

sequence, the argument separator, the argument end sequence, the list of characters to stack

for argument balancing, and the list of characters to unstack. See below for more details.

� (default mode)

The default mode is a vaguely cpp-like mode, but it does not handle comments, and presents

various incompatibilities with cpp. Typical meta-macros and user macros look like this:

#define x y

macro(arg,...)

This mode is equivalent to

-U "" "" "(" "," ")" "(" ")" "#" "\\"

-M "#" "\n" " " " " "\n" "(" ")"

� -C

cpp compatibility mode. This is the mode where gpp's behavior is the closest to that of cpp.

Unlike in the default mode, meta-macro expansion occurs only at the beginning of lines, and

C comments and strings are understood. This mode is equivalent to

-n -U "" "" "(" "," ")" "(" ")" "#" ""

-M "\n#\w" "\n" " " " " "\n" "" ""

+c "/*" "*/" +c "//" "\n" +c "\\\n" ""

+s "\"" "\"" "\\" +s "'" "'" "\\"
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� -T

TeX-like mode. In this mode, typical meta-macros and user macros look like this:

\define{x}{y}

\macro{arg}{...}

No comments are understood. This mode is equivalent to

-U "\\" "" "{" "}{" "}" "{" "}" "#" "@"

� -H

HTML-like mode. In this mode, typical meta-macros and user macros look like this:

<#define x|y>

<#macro arg|...>

No comments are understood. This mode is equivalent to

-U "<#" ">" "\B" "|" ">" "<" ">" "#" "\\"

� -P

Prolog-compatible cpp-like mode. This mode di�ers from the cpp compatibility mode by its

handling of comments, and is equivalent to

-n -U "" "" "(" "," ")" "(" ")" "#" ""

-M "\n#\w" "\n" " " " " "\n" "" ""

+ccss "\!o/*" "*/" +ccss "%" "\n" +ccii "\\\n" ""

+s "\"" "\"" "" +s "\!#'" "'" ""

� +c <n> str1 str2

Specify comments. Any unquoted occurrence of str1 will be interpreted as the beginning of a

comment. All input up to the �rst following occurrence of str2 will be discarded. This option

may be used multiple times to specify di�erent types of comment delimiters. The optional

parameter <n> can be speci�ed to alter the behavior of the comment and e.g. turn it into a

string or make it ignored under certain circumstances, see below.

� -c str1

Un-specify comments or strings. The comment/string speci�cation whose start sequence is

str1 is removed. This is useful to alter the built-in comment speci�cations of a standard

mode, e.g. the cpp compatibility mode.

� +s <n> str1 str2 c

Specify strings. Any unquoted occurrence of str1 will be interpreted as the beginning of a

string. All input up to the �rst following occurrence of str2 will be output as is without any

evaluation. The delimiters themselves are output. If c is non-empty, its �rst character is used

as a string-quote character, i.e. a character whose presence immediately before an occurrence
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of str2 prevents it from terminating the string. The optional parameter <n> can be speci�ed

to alter the behavior of the string and e.g. turn it into a comment, enable macro evaluation

inside the string, or make the string speci�cation ignored under certain circumstances, see

below.

� -s str1

Un-specify comments or strings. Identical to -c.

� in�le

Specify an input �le from which gpp reads its input. If no input �le is speci�ed, input is read

from standard input.

A.4 Syntax Speci�cation

The syntax of a macro call is the following : it must start with a sequence of characters matching

the macro start sequence as speci�ed in the current mode, followed immediately by the name of

the macro, which must be a valid identi�er, i.e. a sequence of letters, digits, or underscores (" ").

The macro name must be followed by a short macro end sequence if the macro has no arguments,

or by a sequence of arguments initiated by an argument start sequence. The various arguments are

then separated by an argument separator, and the macro ends with a long macro end sequence.

In all cases, the parameters of the current context, i.e. the arguments passed to the body being

evaluated, can be referred to by using an argument reference sequence followed by a digit between 1

and 9. Macro parameters may alternately be named (see below). Furthermore, to avoid interference

between the gpp syntax and the contents of the input �le a quote character is provided. The quote

character can be used to prevent the interpretation of a macro call, comment, or string as anything

but plain text. The quote character "protects" the following character, and always gets removed

during evaluation. Two consecutive quote characters evaluate as a single quote character.

Finally, to facilitate proper argument delimitation, certain characters can be "stacked" when

they occur in a macro argument, so that the argument separator or macro end sequence are not

parsed if the argument body is not balanced. This allows nesting macro calls without using quotes.

If an improperly balanced argument is needed, quote characters should be added in front of some

stacked characters to make it balanced.

The macro construction sequences described above can be di�erent for meta-macros and for user

macros: this is e.g. the case in cpp mode. Note that, since meta-macros can only have up to two

arguments, the delimitation rules for the second argument are somewhat sloppier, and unquoted

argument separator sequences are allowed in the second argument of a meta-macro.

Unless one of the standard operating modes is selected, the above syntax sequences can be

speci�ed either on the command-line, using the -M and -U options respectively for meta-macros and

user macros, or inside an input �le via the #mode meta and #mode user meta-macro calls. In both

cases the mode description consists of 9 parameters for user macro speci�cations, namely the macro

start sequence, the short macro end sequence, the argument start sequence, the argument separator,

the long macro end sequence, the string listing characters to stack, the string listing characters to

unstack, the argument reference sequence, and �nally the quote character. As explained below
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these sequences should be supplied using the syntax of C strings; they must start with a non-

alphanumeric character, and in the �rst �ve strings special matching sequences can be used (see

below). If the argument corresponding to the quote character is the empty string that functionality

is disabled. For meta-macro speci�cations there are only 7 parameters, as the argument reference

sequence and quote character are shared with the user macro syntax.

The structure of a comment/string is the following : it must start with a sequence of characters

matching the given comment/string start sequence, and always ends at the �rst occurrence of the

comment/string end sequence, unless it is preceded by an odd number of occurrences of the string-

quote character (if such a character has been speci�ed). In certain cases comment/strings can be

speci�ed to enable macro evaluation inside the comment/string: in that case, if a quote character

has been de�ned for macros it can be used as well to prevent the comment/string from ending, with

the di�erence that the macro quote character is always removed from output whereas the string-

quote character is always output. Also note that under certain circumstances a comment/string

speci�cation can be disabled, in which case the comment/string start sequence is simply ignored.

Finally, it is possible to specify a string warning character whose presence inside a comment/string

will cause gpp to output a warning (this is useful e.g. to locate unterminated strings in cpp mode).

Note that input �les are not allowed to contain unterminated comments/strings.

A comment/string speci�cation can be declared from within the input �le using the #mode

comment meta-macro call (or equivalently #mode string), in which case the number of C strings

to be given as arguments to describe the comment/string can be anywhere between 2 and 4: the

�rst two arguments (mandatory) are the start sequence and the end sequence, and can make use

of the special matching sequences (see below). They may not start with alphanumeric characters.

The �rst character of the third argument, if there is one, is used as string-quote character (use an

empty string to disable the functionality), and the �rst character of the fourth argument, if there is

one, is used as string-warning character. A speci�cation may also be given from the command-line,

in which case there must be two arguments if using the +c option and three if using the +s option.

The behavior of a comment/string is speci�ed by a three-character modi�er string, which may

be passed as an optional argument either to the +c/+s command-line options or to the #mode

comment/#mode string meta-macros. If no modi�er string is speci�ed, the default value is "ccc"

for comments and "sss" for strings. The �rst character corresponds to the behavior inside meta-

macro calls (including user-macro de�nitions since these come inside a #de�ne meta-macro call),

the second character corresponds to the behavior inside user-macro parameters, and the third

character corresponds to the behavior outside of any macro call. Each of these characters can take

the following values:

� i: disable the comment/string speci�cation.

� c: comment (neither evaluated nor output).

� s: string (the string and its delimiter sequences are output as is).

� q: quoted string (the string is output as is, without the delimiter sequences).

� C: evaluated comment (macros are evaluated, but output is discarded).

� S: evaluated string (macros are evaluated, delimiters are output).
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� Q: evaluated quoted string (macros are evaluated, delimiters are not output).

Important note: any occurrence of a comment/string start sequence inside another comment/string

is always ignored, even if macro evaluation is enabled. In other words, comments/strings cannot be

nested. In particular, the 'Q' modi�er can be a convenient way of de�ning a syntax for temporarily

disabling all comment and string speci�cations.

Syntax speci�cation strings should always be provided as C strings, whether they are given as

arguments to a #mode meta-macro call or on the command-line of a Unix shell. If command-line

arguments are given via another method than a standard Unix shell, then the shell behavior must

be emulated, i.e. the surrounding "" quotes should be removed, all occurrences of 'nn' should be

replaced by a single backslash, and similarly 'n"' should be replaced by '"'. Sequences like 'nn' are

recognized by gpp and should be left as is.

Special sequences matching certain subsets of the character set can be used. They are of the

form 'nx', where x is one of:

� b: matches any sequence of one or more spaces or TAB characters ('nb' is identical to ' ').

� w: matches any sequence of zero or more spaces or TAB characters.

� B: matches any sequence of one or more spaces, tabs or newline characters.

� W: matches any sequence of zero or more spaces, tabs or newline characters.

� a: an alphabetic character ('a' to 'z' and 'A' to 'Z').

� A: an alphabetic character, or a space, tab or newline.

� #: a digit ('0' to '9').

� i: an identi�er character. The set of matched characters is customizable using the #mode

charset id command. The default setting matches alphanumeric characters and underscores

('a' to 'z', 'A' to 'Z', '0' to '9' and ' ').

� t: a TAB character.

� n: a newline character.

� o: an operator character. The set of matched characters is customizable using the #mode

charset op command. The default setting matches all characters in "+-*/n^<>=`�:.?@#&!%j",

except in Prolog mode where ' !', '%' and 'j' are not matched.

� O: an operator character or a parenthesis character. The set of additional matched characters

in comparison with 'no' is customizable using the #mode charset par command. The default

setting is to have the characters in "()[]fg" as parentheses.

Moreover, all of these matching subsets except 'nw' and 'nW' can be negated by inserting a ' !',

i.e. by writing 'n!x' instead of 'nx'.
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Note an important distinctive feature of start sequences: when the �rst character of a macro

or comment/string start sequence is ' ' or one of the above special sequences, it is not taken to

be part of the sequence itself but is used instead as a context check: for example a start sequence

beginning with 'nn' matches only at the beginning of a line, but the matching newline character is

not taken to be part of the sequence. Similarly a start sequence beginning with ' ' matches only if

some whitespace is present, but the matching whitespace is not considered to be part of the start

sequence and is therefore sent to output. If a context check is performed at the very beginning of

a �le (or more generally of any body to be evaluated), the result is the same as matching with a

newline character (this makes it possible for a cpp-mode �le to start with a meta-macro call).

A.5 Evaluation Rules

Input is read sequentially and interpreted according to the rules of the current mode. All input

text is �rst matched against the speci�ed comment/string start sequences of the current mode

(except those which are disabled by the 'i' modi�er), unless the body being evaluated is the con-

tents of a comment/string whose modi�er enables macro evaluation. The most recently de�ned

comment/string speci�cations are checked for �rst. Important note: comments may not appear

between the name of a macro and its arguments (doing so results in unde�ned behavior).

Anything that is not a comment/string is then matched against a possible meta-macro call, and

if that fails too, against a possible user-macro call. All remaining text undergoes substitution of

argument reference sequences by the relevant argument text (empty unless the body being evaluated

is the de�nition of a user macro) and removal of the quote character if there is one.

Note that meta-macro arguments are passed to the meta-macro prior to any evaluation (al-

though the meta-macro may choose to evaluate them, see meta-macro descriptions below). In the

case of the #mode meta-macro, gpp temporarily adds a comment/string speci�cation to enable

recognition of C strings ("...") and prevent any evaluation inside them, so no interference of the

characters being put in the C string arguments to #mode with the current syntax is to be feared.

On the other hand, the arguments to a user macro are systematically evaluated, and then passed

as context parameters to the macro de�nition body, which gets evaluated with that environment.

The only exception is when the macro de�nition is empty, in which case its arguments are not

evaluated. Note that gpp temporarily switches back to the mode in which the macro was de�ned in

order to evaluate it: so it is perfectly safe to change the operating mode between the time when a

macro is de�ned and the time when it is called. Conversely, if a user macro wishes to work with the

current mode instead of the one that was used to de�ne it it needs to start with a #mode restore

call and end with a #mode save call.

A user macro may be de�ned with named arguments (see #de�ne description below). In that

case, when the macro de�nition is being evaluated, each named parameter causes a temporary

virtual user-macro de�nition to be created; such a macro may only be called without arguments

and simply returns the text of the corresponding argument.

Note that, since macros are evaluated when they are called rather than when they are de�ned,

any attempt to call a recursive macro causes unde�ned behavior except in the very speci�c case

when the macro uses #undef to erase itself after �nitely many loop iterations.
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Finally, a special case occurs when a user macro whose de�nition does not involve any arguments

(neither named arguments nor the argument reference sequence) is called in a mode where the short

user-macro end sequence is empty (e.g. cpp or TeX mode). In that case it is assumed to be an

alias macro: its arguments are �rst evaluated in the current mode as usual, but instead of being

passed to the macro de�nition as parameters (which would cause them to be discarded) they are

actually appended to the macro de�nition, using the syntax rules of the mode in which the macro

was de�ned, and the resulting text is evaluated again. It is therefore important to note that, in

the case of a macro alias, the arguments actually get evaluated twice in two potentially di�erent

modes.

A.6 Meta-macros

These macros are always pre-de�ned. Their actual calling sequence depends on the current mode;

here we use cpp-like notation.

� #de�ne x y

This de�nes the user macro x as y. y can be any valid gpp input, and may for example refer

to other macros. x must be an identi�er (i.e. a sequence of alphanumeric characters and

' '), unless named arguments are speci�ed. If x is already de�ned, the previous de�nition

is overwritten. If no second argument is given, x will be de�ned as a macro that outputs

nothing. Neither x nor y are evaluated; the macro de�nition is only evaluated when it is

called, not when it is declared.

It is also possible to name the arguments in a macro de�nition: in that case, the argument

x should be a user-macro call whose arguments are all identi�ers. These identi�ers become

available as user-macros inside the macro de�nition; these virtual macros must be called

without arguments, and evaluate to the corresponding macro parameter.

� #defeval x y

This acts in a similar way to #de�ne, but the second argument y is evaluated immediately.

Since user macro de�nitions are also evaluated each time they are called, this means that the

macro y will undergo two successive evaluations. The usefulness of #defeval is considerable,

as it is the only way to evaluate something more than once, which can be needed e.g. to

force evaluation of the arguments of a meta-macro that normally doesn't perform any evalu-

ation. However since all argument references evaluated at de�ne-time are understood as the

arguments of the body in which the macro is being de�ned and not as the arguments of the

macro itself, usually one has to use the quote character to prevent immediate evaluation of

argument references.

� #undef x

This removes any existing de�nition of the user macro x.

� #ifdef x

This begins a conditional block. Everything that follows is evaluated only if the identi�er

x is de�ned, until either a #else or a #endif statement is reached. Note however that the

commented text is still scanned thoroughly, so its syntax must be valid. It is in particular
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legal to have the #else or #endif statement ending the conditional block appear as only the

result of a user-macro expansion and not explicitly in the input.

� #ifndef x

This begins a conditional block. Everything that follows is evaluated only if the identi�er x

is not de�ned.

� #ifeq x y

This begins a conditional block. Everything that follows is evaluated only if the results of the

evaluations of x and y are identical as character strings. Any leading or trailing whitespace

is ignored for the comparison. Note that in cpp-mode any unquoted whitespace character is

understood as the end of the �rst argument, so it is necessary to be careful.

� #ifneq x y

This begins a conditional block. Everything that follows is evaluated only if the results of the

evaluations of x and y are not identical (even up to leading or trailing whitespace).

� #else

This toggles the logical value of the current conditional block. What follows is evaluated if

and only if the preceding input was commented out.

� #endif

This ends a conditional block started by a #if... meta-macro.

� #include �le

This causes gpp to open the speci�ed �le and evaluate its contents, inserting the resulting

text in the current output. All de�ned user macros are still available in the included �le, and

reciprocally all macros de�ned in the included �le will be available in everything that follows.

The include �le is looked for �rst in the current directory, and then, if not found, in one of

the directories speci�ed by the -I command-line option (or /usr/include if no directory was

speci�ed). Note that, for compatibility reasons, it is possible to put the �le name between ""

or <>.

Upon including a �le, gpp immediately saves a copy of the current operating mode onto the

mode stack, and restores the operating mode at the end of the included �le. The included �le

may override this behavior by starting with a #mode restore call and ending with a #mode

push call. Additionally, when the -m command line option is speci�ed, gpp will automatically

switch to the cpp compatibility mode upon including a �le whose name ends with either '.c'

or '.h'.

� #exec command

This causes gpp to execute the speci�ed command line and include its standard output in the

current output. Note that this meta-macro is disabled unless the -x command line 
ag was

speci�ed, for security reasons. If use of #exec is not allowed, a warning message is printed

and the output is left blank. Note that the speci�ed command line is evaluated before being

executed, thus allowing the use of macros in the command-line. However, the output of the

command is included verbatim and not evaluated. If you need the output to be evaluated,

you must use #defeval (see above) to cause a double evaluation.
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� #eval expr

The #eval meta-macro attempts to evaluate expr �rst by expanding macros (normal gpp eval-

uation) and then by performing arithmetic evaluation. The syntax and operator precedence

for arithmetic expressions are the same as in C ; the only missing operators are <<, >>, ?:

and assignment operators. If unable to assign a numerical value to the result, the returned

text is simply the result of macro expansion without any arithmetic evaluation. The only ex-

ceptions to this rule are the == and != operators which, if one of the sides does not evaluate

to a number, perform string comparison instead (ignoring trailing and leading spaces).

Inside arithmetic expressions, the de�ned(...) special user macro is also available: it takes

only one argument, which is not evaluated, and returns 1 if it is the name of a user macro

and 0 otherwise.

� #if expr

This meta-macro invokes the arithmetic evaluator in the same manner as#eval, and compares

the result of evaluation with the string "0" in order to begin a conditional block. In particular

note that the logical value of expr is always true when it cannot be evaluated to a number.

� #mode keyword ...

This meta-macro controls gpp's operating mode. See below for a list of #mode commands.

The key to gpp's 
exibility is the #mode meta-macro. Its �rst argument is always one of a

list of available keywords (see below); its second argument is always a sequence of words separated

by whitespace. Apart from possibly the �rst of them, each of these words is always a delimiter

or syntax speci�er, and should be provided as a C string delimited by double quotes (" "). The

various special matching sequences listed in the section on syntax speci�cation are available. Any

#mode command is parsed in a mode where "..." is understood to be a C-style string, so it is safe to

put any character inside these strings. Also note that the �rst argument of #mode (the keyword)

is never evaluated, while the second argument is evaluated (except of course for the contents of C

strings), so that the syntax speci�cation may be obtained as the result of a macro evaluation.

The available #mode commands are:

� #mode save / #mode push

Push the current mode speci�cation onto the mode stack.

� #mode restore / #mode pop

Pop mode speci�cation from the mode stack.

� #mode standard name

Select one of the standard modes. The only argument must be one of: default (default mode);

cpp, C (cpp mode); tex, TeX (tex mode); html, HTML (html mode); prolog, Prolog (prolog

mode). The mode name must be given directly, not as a C string.

� #mode user "s1" ... "s9"

Specify user macro syntax. The 9 arguments, all of them C strings, are the mode speci�cation

for user macros (see the -U command-line option and the section on syntax speci�cation).

The meta-macro speci�cation is not a�ected.
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� #mode meta fuser j "s1" ... "s7"g

Specify meta-macro syntax. Either the only argument is user (not as a string), and the user-

macro mode speci�cations are copied into the meta-macro mode speci�cations, or there must

be 7 string arguments, whose signi�cance is the same as for the -M command-line option (see

section on syntax speci�cation).

� #mode quote ["c"]

With no argument or "" as argument, removes the quote character speci�cation and disables

the quoting functionality. With one string argument, the �rst character of the string is taken

to be the new quote character. The quote character cannot be alphanumeric nor ' ', and

cannot be one of the special matching sequences either.

� #mode comment [xxx] "start" "end" ["c" ["c"]]

Add a comment speci�cation. Optionally a �rst argument consisting of three characters

not enclosed in " " can be used to specify a comment/string modi�er (see the section on

syntax speci�cation). The default modi�er is ccc. The �rst two string arguments are used

as comment start and end sequences respectively. The third string argument is optional and

can be used to specify a string-quote character (if it is "" the functionality is disabled). The

fourth string argument is optional and can be used to specify a string delimitation warning

character (if it is "" the functionality is disabled).

� #mode string [xxx] "start" "end" ["c" ["c"]]

Add a string speci�cation. Identical to #mode comment except that the default modi�er is

sss.

� #mode nocomment / #mode nostring ["start"]

With no argument, remove all comment/string speci�cations. With one string argument,

delete the comment/string speci�cation whose start sequence is the argument.

� #mode preservelf f on j o� j 1 j 0 g

Equivalent to the -n command-line switch. If the argument is on or 1, any newline or whites-

pace character terminating a macro call or a comment/string is left in the input stream for

further processing. If the argument is o� or 0 this feature is disabled.

� #mode charset f id j op j par g "string"

Specify the character sets to be used for matching the no, nO and ni special sequences. The

�rst argument must be one of id (the set matched by ni), op (the set matched by no) or par

(the set matched by nO in addition to the one matched by no). "string" is a C string which

lists all characters to put in the set. It may contain only the special matching sequences na,

nA, nb, nB, and n# (the other sequences and the negated sequences are not allowed). When

a '-' is found inbetween two non-special characters this adds all characters inbetween (e.g.

"A-Z" corresponds to all uppercase characters). To have '-' in the matched set, either put it

in �rst or last position or place it next to a nx sequence.

A.7 Examples

Here is a basic self-explanatory example in standard or cpp mode:
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#define FOO This is

#define BAR a message.

#define concat #1 #2

concat(FOO,BAR)

#ifeq (concat(foo,bar)) (foo bar)

This is output.

#else

This is not output.

#endif

Using argument naming, the concat macro could alternately be de�ned as

#define concat(x,y) x y

In TeX mode and using argument naming, the same example becomes:

\define{FOO}{This is}

\define{BAR}{a message.}

\define{\concat{x}{y}}{\x \y}

\concat{\FOO}{\BAR}

\ifeq{\concat{foo}{bar}}{foo bar}

This is output.

\else

This is not output.

\endif

In HTML mode and without argument naming, one gets similarly:

<#define FOO|This is>

<#define BAR|a message.>

<#define concat|#1 #2>

<#concat <#FOO>|<#BAR>>

<#ifeq <#concat foo|bar>|foo bar>

This is output.

<#else>

This is not output.

<#endif>

The following example (in standard mode) illustrates the use of the quote character:

#define FOO This is \

a multiline definition.

#define BLAH(x) My argument is x

BLAH(urf)

\BLAH(urf)
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Note that the multiline de�nition is also valid in cpp and Prolog modes despite the absence of quote

character, because 'n' followed by a newline is then interpreted as a comment and discarded.

In cpp mode, C strings and comments are understood as such, as illustrated by the following

example:

#define BLAH foo

BLAH "BLAH" /* BLAH */

'It\'s a /*string*/ !'

The main di�erence between Prolog mode and cpp mode is the handling of strings and comments:

in Prolog, a '...' string may not begin immediately after a digit, and a /*...*/ comment may not

begin immediately after an operator character. Furthermore, comments are not removed from the

output unless they occur in a #command.

The di�erences between cpp mode and default mode are deeper: in default mode #commands

may start anywhere, while in cpp mode they must be at the beginning of a line; the default mode

has no knowledge of comments and strings, but has a quote character ('n'), while cpp mode has

extensive comment/string speci�cations but no quote character. Moreover, the arguments to meta-

macros need to be correctly parenthesized in default mode, while no such checking is performed in

cpp mode.

This makes it easier to nest meta-macro calls in default mode than in cpp mode. For example,

consider the following HTML mode input, which tests for the availability of the #exec command:

<#ifeq <#exec echo blah>|blah

> #exec allowed <#else> #exec not allowed <#endif>

There is no cpp mode equivalent, while in default mode it can be easily translated as

#ifeq (#exec echo blah

) (blah

)

\#exec allowed

#else

\#exec not allowed

#endif

In order to nest meta-macro calls in cpp mode it is necessary to modify the mode description, either

by changing the meta-macro call syntax, or more elegantly by de�ning a silent string and using the

fact that the context at the beginning of an evaluated string is a newline character:

#mode string QQQ "$" "$"

#ifeq $#exec echo blah

$ $blah

$

\#exec allowed
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#else

\#exec not allowed

#endif

Note however that comments/strings cannot be nested ("..." inside $...$ would go undetected), so

one needs to be careful about what to include inside such a silent evaluated string.

Remember that macros without arguments are actually understood to be aliases when they are

called with arguments, as illustrated by the following example (default or cpp mode):

#define DUP(x) x x

#define FOO and I said: DUP

FOO(blah)

The usefulness of the #defeval meta-macro is shown by the following example in HTML mode:

<#define APPLY|<#defeval TEMP|<\##1 \#1>><#TEMP #2>>

<#define <#foo x>|<#x> and <#x>>

<#APPLY foo|BLAH>

The reason why #defeval is needed is that, since everything is evaluated in a single pass, the input

that will result in the desired macro call needs to be generated by a �rst evaluation of the arguments

passed to APPLY before being evaluated a second time.

To translate this example in default mode, one needs to resort to parenthesizing in order to

nest the #defeval call inside the de�nition of APPLY, but need to do so without outputting the

parentheses. The easiest solution is

#define BALANCE(x) x

#define APPLY(f,v) BALANCE(#defeval TEMP f

TEMP(v))

#define foo(x) x and x

APPLY(\foo,BLAH)

As explained above the simplest version in cpp mode relies on de�ning a silent evaluated string to

play the role of the BALANCE macro.

The following example (default or cpp mode) demonstrates arithmetic evaluation:

#define x 4

The answer is:

#eval x*x + 2*(16-x) + 1998%x

#if defined(x)&&!(3*x+5>17)

This should be output.

#endif
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To �nish, here are some examples involving mode switching. The following example is self-

explanatory (starting in default mode):

#mode push

#define f(x) x x

#mode standard TeX

\f{blah}

\mode{string}{"$" "$"}

\mode{comment}{"/*" "*/"}

$\f{urf}$ /* blah */

\define{FOO}{bar/* and some more */}

\mode{pop}

f($FOO$)

A good example where a user-de�ned mode becomes useful is the gpp source of this document

(available with gpp's source code distribution).

Another interesting application is selectively forcing evaluation of macros in C strings when in

cpp mode. For example, consider the following input:

#define blah(x) "and he said: x"

blah(foo)

Obviously one would want the parameter x to be expanded inside the string. There are several

ways around this problem:

#mode push

#mode nostring "\""

#define blah(x) "and he said: x"

#mode pop

#mode quote "`"

#define blah(x) `"and he said: x`"

#mode string QQQ "$$" "$$"

#define blah(x) $$"and he said: x"$$

The �rst method is very natural, but has the inconvenient of being lengthy and neutralizing string

semantics, so that having an unevaluated instance of 'x' in the string, or an occurrence of '/*',

would be impossible without resorting to further contorsions.

The second method is slightly more eÆcient, because the local presence of a quote character

makes it easier to control what is evaluated and what isn't, but has the drawback that it is sometimes

impossible to �nd a reasonable quote character without having to either signi�cantly alter the source

�le or enclose it inside a #mode push/pop construct. For example any occurrence of '/*' in the

string would have to be quoted.
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The last method demonstrates the eÆciency of evaluated strings in the context of selective

evaluation: since comments/strings cannot be nested, any occurrence of '"' or '/*' inside the '$$'

gets output as plain text, as expected inside a string, and only macro evaluation is enabled. Also

note that there is much more freedom in the choice of a string delimiter than in the choice of a

quote character.

A.8 Advanced Examples

Here are some examples of advanced constructions using gpp. They tend to be pretty awkward

and should be considered as evidence of gpp's limitations.

The �rst example is a recursive macro. The main problem is that, since gpp evaluates everything,

a recursive macro must be very careful about the way in which recursion is terminated, in order

to avoid unde�ned behavior (most of the time gpp will simply crash). In particular, relying on a

#if/#else/#endif construct to end recursion is not possible and results in an in�nite loop, because

gpp scans user macro calls even in the unevaluated branch of the conditional block. A safe way to

proceed is for example as follows (we give the example in TeX mode):

\define{countdown}{

\if{#1}

#1...

\define{loop}{\countdown}

\else

Done.

\define{loop}{}

\endif

\loop{\eval{#1-1}}

}

\countdown{10}

The following is an (unfortunately very weak) attempt at implementing functional abstraction in

gpp (in standard mode). Understanding this example and why it can't be made much simpler is

an exercise left to the curious reader.

#mode string "`" "`" "\\"

#define ASIS(x) x

#define SILENT(x) ASIS()

#define EVAL(x,f,v) SILENT(

#mode string QQQ "`" "`" "\\"

#defeval TEMP0 x

#defeval TEMP1 (

\#define \TEMP2(TEMP0) f

)

TEMP1

)TEMP2(v)
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#define LAMBDA(x,f,v) SILENT(

#ifneq (v) ()

#define TEMP3(a,b,c) EVAL(a,b,c)

#else

#define TEMP3(a,b,c) \LAMBDA(a,b)

#endif

)TEMP3(x,f,v)

#define EVALAMBDA(x,y) SILENT(

#defeval TEMP4 x

#defeval TEMP5 y

)

#define APPLY(f,v) SILENT(

#defeval TEMP6 ASIS(\EVA)f

TEMP6

)EVAL(TEMP4,TEMP5,v)

This yields the following results:

LAMBDA(z,z+z)

=> LAMBDA(z,z+z)

LAMBDA(z,z+z,2)

=> 2+2

#define f LAMBDA(y,y*y)

f

=> LAMBDA(y,y*y)

APPLY(f,blah)

=> blah*blah

APPLY(LAMBDA(t,t t),(t t))

=> (t t) (t t)

LAMBDA(x,APPLY(f,(x+x)),urf)

=> (urf+urf)*(urf+urf)

APPLY(APPLY(LAMBDA(x,LAMBDA(y,x*y)),foo),bar)

=> foo*bar

#define test LAMBDA(y,`#ifeq y urf

y is urf#else

y is not urf#endif

`)

APPLY(test,urf)
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=> urf is urf

APPLY(test,foo)

=> foo is not urf
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Please send me e-mail for any comments, questions or suggestions.
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Standard Predicates and Functions

B.1 List of Standard Predicates

abolish(Name/Arity)

abolish(Name, Arity)

abolish all tables

abolish table call(Term)

abolish table pred(Pred)

abort

abort(Message)

analyze table(Pred)

arg(Index, Term, Arg)

arg0(Index, Term, Arg)

assert(Clause)

asserta(Clause)

assertz(Clause)

atom(Term)

atomic(Term)

atom codes(Atom, CharList)

bagof(Elem, Goal, Bag)

break

'C'(List1, Token, List2)

call(Term)

callable(Term)

cd(Dir)

clause(Head, Body)

close(FileName)

compare(Res, Term1, Term2)

compile(Module)

compile(Module, Options)

compound(Term)

153
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consult(Module)

consult(Module, Options)

copy term(Term, Copy)

cputime(Time)

current atom(Atom)

current functor(Functor)

current functor(Functor, Term)

current input(File)

current module(Module)

current module(Module, File)

current op(Precedence, Type, Name)

current output(File)

current predicate(Predicate)

current predicate(Predicate, Term)

debug

debugging

edit(File)

erase(Reference)

expand term(Term, Expanded Term)

fail

fail if(Goal)

file exists(File)

findall(Elem, Goal, List)

float(Term)

functor(Term, Functor, Arity)

get(Char)

get0(Char)

get call(Skeleton,Subgoal Structure Pointer,Return Skeleton)

get calls(Skeleton,Subgoal Structure Pointer,Return Skeleton)

get calls for table(Skeleton,Call,Empty)

get resudual(Call, Return)

get returns(Skeleton,Delay list)

get returns for call(Call, Return)

halt

hilog(Symbol)

hilog arg(Index, Term, Arg)

hilog functor(Term, Functor, Arity)

hilog op(Precedence, Type, Name)

hilog symbol(Symbol)

import PredList from Module

index(Predicate, ArgNo, HashSize)

instance(Ref, Instance)

integer(Term)

is(Result, Expression)

is absolute filename(Path)
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is list(Term)

is charlist(Term)

is charlist(Term,Size)

keysort(Input, Output)

listing

listing(Predicate)

load dyn(Module)

load dync(Module)

ls

module property(Module, Property)

name(Term, CharList)

nl

nl(Stream)

nodebug

nonvar(Term)

nospy(Predicate List)

not(Goal)

notrace

number(Term)

number codes(Number,Character list)

once(Goal)

op(Precedence, Format, Operator)

open(Stream)

otherwise

phrase(Phrase, List)

phrase(Phrase, List, Remains)

predicate property(Predicate, Property)

print(Term) Currently the same as write/1.

proper hilog(Term)

put(Char)

read(Term)

read(Stream,Term)

read canonical(Term)

real(Term)

reconsult(Module)

reconsult(Module, Options)

record(Key, Term, Ref)

recorda(Key, Term, Ref)

recorded(Key, Term, Ref)

recordz(Key, Term, Ref)

rename(OldName, NewName)

repeat

retract(Term)

retractall(Predicate)

see(File)
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seeing(File)

seen

set global compiler options(OptionsList)

setof(Elem, Goal, Set)

skip(Char)

sort(Input, Output)

spy(Predicate List)

statistics

statistics(Number)

structure(Term)

tab(Count)

table prop(Pred, Type, Value)

table prop(Pred, Type, OldValue, NewValue)

table state(Call, State)

tbagof(Elem, Goal, List)

tell(File)

telling(File)

tfindall(Elem, Goal, List)

tilde expand filename(File name,Expanded Filename)

tnot(Goal)

told

trace

true

tsetof(Elem, Goal, List)

ttywrite(Term) Same as write but always writes to

the standard output.

ttywritenl(Terms) Terms can be a comma list of terms. The predicate

calls ttywrite/1 to print all the terms in the list

and then prints a new line symbol at the end.

shell(Command)

shell(Command, Result)

var(Term)

write(Term)

write(Stream,Term)

writeln(Term)

write prolog(Term)

write prolog(Stream,Term)

writeq(Term)

write canonical(Term)

xsb flag(Flag, Value)

n+ Query

!

X =:= Y

X =n= Y

X < Y
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X > Y

X =< Y

X >= Y

X = Y

Term =.. List

Term ^=.. List

X == Y

X n== Y

X @< Y

X @> Y

X @=< Y

X @>= Y

[XjY]

X ; Y

X , Y

X -> Y

X ^ Goal

B.2 List of Standard Functions

X + Y

X - Y

X * Y

X / Y

X // Y integer division

X mod Y

-X

X n/ Y bitwise OR

X /n Y bitwise AND

n X bitwise negate

X >> Y logical shift right

X << Y logical shift left

sin(X)

cos(X)

tan(X)

float(X)

floor(X)

exp(X)

log(X) logarithm with base e

log10(X) logarithm with base 10

sqrt(X)

asin(X)

acos(X)
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atan(X)

B.3 List of Standard Operators

The following operators are provided with the XSB system:

op(1200, xfx, [ :-, --> ])

op(1200, fx, [ :-, ?- ])

op(1198, xfx, [ ::- ])

op(1150, xfx, [ hilog, dynamic, multifile ])

op(1100, fy, [ index, ti, ti off ])

op(1100, fx, [ ;, table, edb, mode, export, local, parallel ])

op(1100, xfx, [ using ])

op(1050, fy, [ import ])

op(1050, xfx, [ from ])

op(1050, xfy, [ -> ])

op(1000, xfy, [ ',' ])

op( 900, fy, [ not, \+, spy, nospy ])

op( 700, xfx, [ =, \=, ==, \==, @<, @=<, @>, @=>,

=.., ^=.., is, =:=, =\=, <, =<, >, >= ])

op( 661, xfy, [ '.' ])

op( 600, xfy, [ : ])

op( 500, yfx, [ +, -, /\, \/ ])

op( 500, fx, [ +, - ])

op( 400, yfx, [ *, /, //, mod, <<, >>, \ ])

op( 200, xfy, [ ^ ])

while the following is the list of operators in the Prolog draft standard that are not provided:

op(1150, fx, [ discontiguous ])

op( 400, yfx, [ rem ])

op( 200, xfx, [ ** ])
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List of Module names

C.1 In syslib

assert basics consult curr sym dcg

db dbclause dbcmpl dcg qsc debugger

domain eval �le op hilogsym loader

machine num vars standard std sbp string

tables term exp x interp xsb read xsb tok

xsb writ

C.2 In cmplib

asm asm inst asm opt asmpass2 auxlry

builtin compile con�g cp opt cutcheck


atten inprog listutil parse peephole

pre cond preproc printres gensym sanity

singlton spec suppltab symtab tabdef

ti mod tp comp tp cond tp eval tp goal

tp index tp var tpinline tprog useinfer

varproc writeasm
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!/0, 93, 124, 125, 128

$trace/0, 122

,̂ 85
0
n+0 =1, 53

xsb xpp include dir, 26

'!'/0, 69

xsb configuration/2, 101

n=/2, 69

't not'/1, 70

->/2, 70

=../2, 79

=/2, 69

^=../2, 80
0
n+0 =1, 69

`C'/3, 128

abolish/1, 106

abolish all tables/0, 117

abolish table call/1, 117

abolish table pred/1, 117

abort/0, 108

arg/3, 77

arg0/3, 78

assert/1, 105

asserta/1, 105

assertz/1, 105

atom/1, 71

atom chars/2, 83

atom codes/2, 82

atomic/1, 72

auto table, 27, 31

bagAvg/2, 90

bagCount/2, 90

bagMax/2, 88

bagMin/2, 89

bagPO/3, 88

bagReduce/4, 87

bagSum/2, 89

bootstrap userpackage/3, 17

break/0, 108

call/1, 93

callable/1, 73

cd/1, 111

clause/2, 106

close/1, 64, 65

compound/1, 72

consult/[1,2], 22

copy term/2, 80

cputime/1, 109

current atom/1, 95

current functor/1, 95

current functor/2, 95

current input/1, 94

current module/1, 94

current module/2, 94

current op/3, 104

current output/1, 94

current predicate/1, 96

current predicate/2, 97

dcg/2, 128

debug/0, 121

debug ctl/2, 121

debugging/0, 121

delete returns/2, 117

display/1, 67

dynamic/1, 107

edit/1, 111

expand term/2, 127

fail/0, 68

fail if/1, 69

file exists/1, 65

filterPO/2, 88

filterPO/3, 88

filterPO/4, 60

filterReduce/4, 60, 87
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float/1, 71

fmt read/4, 68

fmt write/2, 68

functor/3, 74

get/1, 65

get0/1, 65

get call/3, 113

get calls/3, 112

get calls for table/2, 114

get residual/2, 116

get returns/2, 114

get returns/3, 115

get returns for call/2, 115

halt/0, 109

hilog arg/3, 78

hilog functor/3, 76

hilog op/3, 104

hilog symbol/1, 103

import/1, 18

index/2, 106

integer/1, 71

is charlist/1, 73

is charlist/2, 73

is list/1, 72

is most general term/1, 73

listing/0, 100

listing/1, 101

ls/0, 111

mi warn, 28

modeinfer, 27

module property/2, 100

multifile/2, 23

name/2, 81

nl/0, 65

nl/1, 65

nodebug/0, 121

nonvar/1, 71

nospy/1, 121

not/1, 69

number/1, 71

number chars/2, 84

number codes/2, 83

number digits/2, 84

once/1, 93

optimize, 26

otherwise/0, 68

package configuration/2, 18

phrase/2, 127

phrase/3, 127

predicate property/2, 98

print/1, 68

prompt/2, 109

proper hilog/1, 74

put/1, 65

read/1, 66

read/2, 66

read canonical/1, 67

read line/2, 68

real/1, 71

reclaim space/1, 106

repeat/2, 70

retract/1, 105

retract nr/1, 106

retractall/1, 105

see/1, 63

seeing/1, 64

seen/0, 64

set global compiler options/1, 25

setof/3, 84

shell/1, 110

shell/2, 111

spec dump, 27

spec off, 27

spec repr, 27

spy/1, 120

statistics/0, 109

structure/1, 72

suppl table, 27, 32

tab/1, 65

table/1, 108

table once/1, 93

table state/2, 118

tbagof/3, 86

tell/1, 64

telling/1, 64

term expansion/2, 128

tfindall/3, 85

ti dump, 27

ti long names, 27

tnot/1, 53, 69
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told/0, 64

true/0, 68

tsetof/3, 86

unfold off, 27

unload package/1, 18

var/1, 70

write/1, 66

write/2, 66

write canonical/1, 67

write canonical/2, 68

write prolog/1, 67

write prolog/2, 67

writeln/1, 66

writeln/2, 67

writeq/1, 67

writeq/2, 67

xpp on, 26

xsb configuration/2, 103

xsb flag/2, 103

abort

trace facility, 120

aggregate predicates

prolog, 84

tabling, 86

byte code

files

compiler, 24

cmplib, 24

comparison of terms, 90

Compiler, 24

directives, 30

inlines, 35

invoking, 24

options, 25

specialisation, 28

configuration, 5

control, 69

cut, 93, 124, 125, 128

debugger, 119

ports, 119

definite clause grammars, 124

directives

Compiler, 30

indexing, 33

modes, 30

tabling, 31

emulator

command line options, 18

errors

undefined predicate, 15

garbage collection, 7, 22

GPP, 24

gpp, 26

grammars

definite clause, 124

high-level tracing, 119

indexing

directives, 33

transformational, 34

inlines

Compiler, 35

invoking the Compiler, 24

load search path, 16

Local Scheduling, 62

low-level tracing, 122

memory management, 7, 22

mode analysis

compiler options, 27

modes

directives, 30

negation

stable models, 59

stratified, 52

unstratified, 54

notational conventions, 4

options

command line arguments, 18

Compiler, 25

predicate indicator, 94

program, state of, 93
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scheduling strategy, 7

set dcg style/1, 129

sets, bags, 84

specialisation

Compiler, 28

compiler options, 27

stable models, 58

stacks

default sizes, 18

expanding, 18

state of the program, 93

tabled aggregation, 60

tabling

aggregate predicates, 86

answer completion, 57

compiler options, 27

complete evaluation, 53

conditional answers, 54

cuts, 49

directives, 31

dynamic predicates, 51

table inspection predicates, 112

term indicator, 94

terms

comparison of, 90

trace

options, 119

tracing

high-level, 119

low-level, 122

unification factoring

compiler options, 27

well-founded semantics, 57

xpp program, 26


