
Laboratory Manual

for

Compiler Design

Robb T. Koether



ii



Contents

I Preliminaries 11

1 Getting Started 13

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 The Cygwin Window . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 The HOME Environment Variable . . . . . . . . . . . . . . . 15

1.4 The Java Development Kit . . . . . . . . . . . . . . . . . . . . 16

1.5 Running Java Programs . . . . . . . . . . . . . . . . . . . . . 16

1.6 The Java API . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 The JLex Java-based Lexical Analyzer Generator . . . . . . . 17

1.8 The CUP Java-based Parser Generator . . . . . . . . . . . . . 19

1.9 Zipping Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.10 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II Lexical Analysis 23

2 Writing a Lexical Analyzer 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Running the Lexer . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Understanding the Lexer . . . . . . . . . . . . . . . . . . . . . 28

2.5 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 A Lexical Analyzer using JLex 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 JLex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1



2 CONTENTS

3.3 The Err and Warning Classes . . . . . . . . . . . . . . . . . . 33

3.4 The Token Class . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Invoking the Lexer . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Building the Lexical Analyzer . . . . . . . . . . . . . . . . . . 34

3.7 The Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

III Syntactic Analysis 39

4 A Recursive-Descent Parser 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Modify the Lexical Analyzer . . . . . . . . . . . . . . . . . . . 42

4.3 The Recursive-Descent Parser . . . . . . . . . . . . . . . . . . 42

4.4 Derivations and Parse Trees . . . . . . . . . . . . . . . . . . . 44

4.5 Improving the Parser . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Using JLex with a Predictive Parser 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Lexer-Parser Interface . . . . . . . . . . . . . . . . . . . . . . 48

5.3 The Productions . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 The Parse Table . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 The Parsing Algorithm . . . . . . . . . . . . . . . . . . . . . . 51

5.6 Running the Program . . . . . . . . . . . . . . . . . . . . . . 52

5.7 Expand the Grammar . . . . . . . . . . . . . . . . . . . . . . 53

5.8 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Using JLex and CUP 55

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Modifying the JLex File . . . . . . . . . . . . . . . . . . . . . 56

6.3 The Symbol Class . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 The CUP File . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5 The Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.6 Shift/Reduce Conflicts . . . . . . . . . . . . . . . . . . . . . . 60

6.7 Semantic Actions . . . . . . . . . . . . . . . . . . . . . . . . . 61



CONTENTS 3

6.8 The sym and parser Classes . . . . . . . . . . . . . . . . . . . 61

6.9 The Action and Goto Tables . . . . . . . . . . . . . . . . . . . 62

6.10 The CUP Debugger . . . . . . . . . . . . . . . . . . . . . . . . 63

6.11 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

IV A Simple Compiler 69

7 The Symbol Table 71

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 The Symbol Table . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3 The IdEntry Class . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 The Hashtable and LinkedList Classes . . . . . . . . . . . . 73

7.5 The SymbolTable Class . . . . . . . . . . . . . . . . . . . . . 74

7.6 Reserved Words and the Lexer . . . . . . . . . . . . . . . . . . 77

7.7 The Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.8 The Ops.java File . . . . . . . . . . . . . . . . . . . . . . . . 79

7.9 Running the Program . . . . . . . . . . . . . . . . . . . . . . 79

7.10 Semantic Actions . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.11 Handling Syntax Errors . . . . . . . . . . . . . . . . . . . . . 83

7.12 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 The Abstract Syntax Tree 85

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2 Pointers, l -values, and r -values . . . . . . . . . . . . . . . . . 87

8.3 Tree Nodes and the TreeNode Class . . . . . . . . . . . . . . . 87

8.4 The Ops Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.5 The TreeOps Class . . . . . . . . . . . . . . . . . . . . . . . . 90

8.6 The Utility Class . . . . . . . . . . . . . . . . . . . . . . . . 90

8.7 Printing the Abstract Syntax Tree . . . . . . . . . . . . . . . . 91

8.8 Semantic Actions . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.9 The NUM Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.10 The id() Function . . . . . . . . . . . . . . . . . . . . . . . . 94

8.11 The dcl() Function . . . . . . . . . . . . . . . . . . . . . . . 95

8.12 The deref() Function . . . . . . . . . . . . . . . . . . . . . . 96



4 CONTENTS

8.13 Parenthesized Expressions . . . . . . . . . . . . . . . . . . . . 97

8.14 The assign() Function . . . . . . . . . . . . . . . . . . . . . 97

8.15 The arith() Function . . . . . . . . . . . . . . . . . . . . . . 98

8.16 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9 Code Generation 103

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.2 The compiler v1 Class . . . . . . . . . . . . . . . . . . . . . . 104

9.3 The Code Generator . . . . . . . . . . . . . . . . . . . . . . . 105

9.4 Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.5 Identifier Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9.6 The Dereference Operation . . . . . . . . . . . . . . . . . . . . 107

9.7 Testing the Compiler . . . . . . . . . . . . . . . . . . . . . . . 108

9.8 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.9 The Assignment Operator . . . . . . . . . . . . . . . . . . . . 110

9.10 The Addition Instruction . . . . . . . . . . . . . . . . . . . . . 111

9.11 The Subtraction Instruction . . . . . . . . . . . . . . . . . . . 112

9.12 The Negation Instruction . . . . . . . . . . . . . . . . . . . . . 112

9.13 The Multiplication Instruction . . . . . . . . . . . . . . . . . . 113

9.14 The Division Instruction . . . . . . . . . . . . . . . . . . . . . 113

9.15 The Mod Operator . . . . . . . . . . . . . . . . . . . . . . . . 114

9.16 print and read Statements . . . . . . . . . . . . . . . . . . . 114

9.17 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

V Additional Data Types 117

10 Floating-Point Numbers and the AST 119

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

10.2 Version 2 of the Compiler . . . . . . . . . . . . . . . . . . . . 120

10.3 Introducing the double Keyword . . . . . . . . . . . . . . . . 120

10.4 Semantic Actions . . . . . . . . . . . . . . . . . . . . . . . . . 121

10.5 The dcl() Function . . . . . . . . . . . . . . . . . . . . . . . 121

10.6 The cast() Function . . . . . . . . . . . . . . . . . . . . . . . 122

10.7 The arith() Function . . . . . . . . . . . . . . . . . . . . . . 123



CONTENTS 5

10.8 The assign() Function . . . . . . . . . . . . . . . . . . . . . 123

10.9 The print() and read() Functions . . . . . . . . . . . . . . . 123

10.10 The mod() Function . . . . . . . . . . . . . . . . . . . . . . . 125

10.11 double Literals . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10.12 Testing the Compiler . . . . . . . . . . . . . . . . . . . . . . . 125

10.13 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11 Floating-Point Numbers and the FPU 127

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

11.2 The ID and NUM Cases . . . . . . . . . . . . . . . . . . . . . . 128

11.3 The DEREF Case . . . . . . . . . . . . . . . . . . . . . . . . . . 128

11.4 The ASSIGN Case . . . . . . . . . . . . . . . . . . . . . . . . . 129

11.5 The Arithmetic Operators . . . . . . . . . . . . . . . . . . . . 129

11.6 The CAST Case . . . . . . . . . . . . . . . . . . . . . . . . . . 130

11.7 The PRINT and READ Cases . . . . . . . . . . . . . . . . . . . . 131

11.8 Testing the Compiler . . . . . . . . . . . . . . . . . . . . . . . 131

11.9 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

VI Functions 133

12 Function Definitions and the AST 135

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

12.2 Miscellaneous Details . . . . . . . . . . . . . . . . . . . . . . . 139

12.3 The CUP file . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

12.4 The fname() Function . . . . . . . . . . . . . . . . . . . . . . 141

12.5 The arg() Function . . . . . . . . . . . . . . . . . . . . . . . 142

12.6 The dcl() Function . . . . . . . . . . . . . . . . . . . . . . . 143

12.7 The fbeg() Function . . . . . . . . . . . . . . . . . . . . . . . 143

12.8 The ret() Function . . . . . . . . . . . . . . . . . . . . . . . 143

12.9 The func() Function . . . . . . . . . . . . . . . . . . . . . . . 144

12.10 Debugging and Testing the Compiler . . . . . . . . . . . . . . 144

12.11 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



6 CONTENTS

13 Function Calls and the AST 145

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

13.2 Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

13.3 The Argument List . . . . . . . . . . . . . . . . . . . . . . . . 147

13.4 The call() Function . . . . . . . . . . . . . . . . . . . . . . . 149

13.5 The String Type . . . . . . . . . . . . . . . . . . . . . . . . . 149

13.6 Testing the Compiler . . . . . . . . . . . . . . . . . . . . . . . 151

13.7 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

14 Functions and Code Generation 153

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

14.2 The FUNC Case . . . . . . . . . . . . . . . . . . . . . . . . . . 154

14.3 The FEND Case . . . . . . . . . . . . . . . . . . . . . . . . . . 155

14.4 The RET Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

14.5 The CALL Case . . . . . . . . . . . . . . . . . . . . . . . . . . 156

14.6 The LIST Case . . . . . . . . . . . . . . . . . . . . . . . . . . 157

14.7 The CALL Case, Continued . . . . . . . . . . . . . . . . . . . . 158

14.8 The ID Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

14.9 The STR Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

14.10 Testing the Compiler . . . . . . . . . . . . . . . . . . . . . . . 160

14.11 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

VII Control Flow Structures 161

15 Control Flow and the AST 163

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

15.2 Version 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

15.3 Labels and Jumps . . . . . . . . . . . . . . . . . . . . . . . . . 164

15.4 Markers in the Grammar . . . . . . . . . . . . . . . . . . . . . 165

15.5 Backpatching . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

15.6 Backpatch Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 166

15.7 The printNode() Function . . . . . . . . . . . . . . . . . . . 167

15.8 Two Label Functions . . . . . . . . . . . . . . . . . . . . . . . 167

15.9 The m() and n() Functions . . . . . . . . . . . . . . . . . . . 168



CONTENTS 7

15.10 Backpatch Functions . . . . . . . . . . . . . . . . . . . . . . . 168

15.11 The CUP File . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

15.12 Sequences of Statements . . . . . . . . . . . . . . . . . . . . . 173

15.13 Conditional Expressions . . . . . . . . . . . . . . . . . . . . . 173

15.14 The exprToCExpr() Function . . . . . . . . . . . . . . . . . . 175

15.15 The One-Way if Statement . . . . . . . . . . . . . . . . . . . 176

15.16 The Two-Way if Statement . . . . . . . . . . . . . . . . . . . 177

15.17 Function Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

15.18 The READ Case . . . . . . . . . . . . . . . . . . . . . . . . . . 178

15.19 Testing the Compiler . . . . . . . . . . . . . . . . . . . . . . . 178

15.20 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

16 Control Flow Code Generation 181

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

16.2 The LABEL Case . . . . . . . . . . . . . . . . . . . . . . . . . . 182

16.3 The EQU Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

16.4 The JUMP Case . . . . . . . . . . . . . . . . . . . . . . . . . . 183

16.5 The CMPNE Case . . . . . . . . . . . . . . . . . . . . . . . . . . 184

16.6 The JUMPT Case . . . . . . . . . . . . . . . . . . . . . . . . . . 185

16.7 Testing the Compiler . . . . . . . . . . . . . . . . . . . . . . . 186

16.8 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

17 Boolean Expressions 187

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

17.2 Version 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

17.3 The Relational Operators . . . . . . . . . . . . . . . . . . . . 188

17.4 The Boolean Operators . . . . . . . . . . . . . . . . . . . . . . 189

17.5 Testing the Tree-Building . . . . . . . . . . . . . . . . . . . . 190

17.6 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . 191

17.7 Testing the Code-Generation . . . . . . . . . . . . . . . . . . . 191

17.8 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



8 CONTENTS



List of Figures

7.1 The symbol table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.1 An example of an abstract syntax tree . . . . . . . . . . . . . . . . . 86

8.2 A number tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.3 A declaration tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.4 A dereference tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.5 An assignment tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.6 An arithmetic tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.7 A mod tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.8 A negate tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.9 Print and read trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.1 An uncast tree node . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.2 A cast tree node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

10.3 Casting an arithmetic operation . . . . . . . . . . . . . . . . . . . . . 124

10.4 Casting an assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 124

12.1 A tree for a function beginning . . . . . . . . . . . . . . . . . . . . . 137

12.2 A function return tree . . . . . . . . . . . . . . . . . . . . . . . . . . 137

12.3 A tree for a function ending . . . . . . . . . . . . . . . . . . . . . . . 138

13.1 The tree for the copy function . . . . . . . . . . . . . . . . . . . . . . 146

13.2 The tree for the sum function . . . . . . . . . . . . . . . . . . . . . . 148

13.3 The tree for a list of two parameters . . . . . . . . . . . . . . . . . . 149

13.4 The tree for a function call . . . . . . . . . . . . . . . . . . . . . . . . 150

14.1 The logical structure of a function tree . . . . . . . . . . . . . . . . . 155

9



10 LIST OF FIGURES

15.1 Equate trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

15.2 Backpatching statements in sequence . . . . . . . . . . . . . . . . . . 173

15.3 A comparison tree (not equal) . . . . . . . . . . . . . . . . . . . . . . 174

15.4 A comparison to zero . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

15.5 Backpatching a one-way if statement . . . . . . . . . . . . . . . . . . 176

15.6 Backpatching a two-way if statement . . . . . . . . . . . . . . . . . . 177

15.7 Backpatching the end of a function . . . . . . . . . . . . . . . . . . . 177

17.1 A tree comparing two expressions . . . . . . . . . . . . . . . . . . . . 188

17.2 Backpatching the AND operator . . . . . . . . . . . . . . . . . . . . . 190



Part I

Preliminaries

11





Laboratory 1

Getting Started

Key Concepts

• The Cygwin window

• Environment variables

• The Java compiler

• The JLex lexical analyzer generator

• The CUP parser generator

• The WinZip program

Before the Lab

Read Chapter 1 of Compilers: Principles, Techniques, and Tools.

Preliminary

In your folder in //hams-acad-fs/Students, create a folder named Coms 480. Keep

all of your work for this course in this folder.

Copy the folder Lab 01 from the Compiler Design CD to your folder.
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14 LABORATORY 1. GETTING STARTED

1.1 Introduction

In this lab we will download and install a number of programs. The purpose of this

is twofold. You will be more aware of the setup that we will be using and you will be

able to set up the same software on your own computer.

1.2 The Cygwin Window

Throughout this course we will use the Cygwin command window. You may use

the DOS command window if you want, but I think it would be better if you gained

experience with a UNIX-type system. An exception to this will be editing source text.

The UNIX editors are truly awful. Even though there is some benefit in learning how

to use them, I recommend that you use CodeWarrior to edit your Java source files in

this course.

Cygwin creates a UNIX-type environment for Windows. A large number of the

standard UNIX commands are available.

Cygwin has already been installed on your computer. You will see the Cygwin

icon on the desktop, so we will not download it now.

However, to download Cygwin, go to the web site

http://www.cygwin.com/

If you download Cygwin in your room, you should go to this web page and click on

the install icon. The program setup.exe will be downloaded. When you run the

setup program, one of the familiar installer programs will start up, asking youseveral

questions. Generally, you should go with the defaults. However, when you choose

which packages to install, be sure to select “install” for the development (Devel)

package. You will get a minimal install plus the development tools. The program will

go through three stages: downloading, installing, and executing. These stages should

take roughly 25 minutes, 10 minutes, and 1 minute, respectively. If the installation

fails, then try again.

After Cygwin is installed, double-click on the Cygwin icon on the desktop to start

the Cygwin window. Then right-click on the title bar and select Properties. You

may change the font, the size of the window, and the colors. My preference is to

choose a small font (12 pt) and then make the window as wide and as tall as possible.

Type the command pwd (print working directory) to see the pathname of the current

directory.
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Type the command dir (directory) to see the names of all the files in the current

directory.

Choose the name of one of the subdirectories in the current directory and type

the command

$ cd directory-name

where directory-name is the name of the subdirectory that you chose. Now repeat

the commands pwd and dir. Type the command

$ cd ..

to return to the previous directory. A single period (.) refers to the current directory

and two periods (..) refers to the parent directory. For example, to move up two

levels and then down to a directory called programs, you could type

$ cd ../../programs

1.3 The HOME Environment Variable

The Cygwin window has opened to a default directory. Use pwd to see what it is.

You will find it very convenient to set the HOME environment variable to your Coms

480 folder. Then Cygwin will always start there when you open a Cygwin window

and you can always return there by typing

$ cd ~

To make this the home directory, bring up the System control panel. Click on

the Advanced tab and then click on Environment Variables. In the top section,

named User Variables, click New. Enter HOME as the Variable name and type

the exact pathname of your Coms 480 directory as the Variable value. If you open

a window to that directory, then you should be able to copy and paste the pathname.

Be sure to use the backslash as a separator between directories. Then click OK (on

all three windows) to save the settings.

Now close the Cygwin window and open a new one. (This is necessary in order

to reinitialize the environment variables.) This window should have opened to your

folder. You can confirm that by typing pwd. From now on, Cygwin will begin in this

folder.
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1.4 The Java Development Kit

The latest version of the Java Development Kit (JDK) is update 1.6, release 11. Go

to the website

http://java.sun.com/javase/downloads/index.jsp

Next to the title “Java SE Development Kit (JDK) 6 Update 11,” click on Download.

Follow the instructions through the next two web pages. (Do not download the Sun

Download Manager.) When you are finished there should be a Java folder in the

Program Files folder of the C drive. Inside one of the subfolders is the javac.exe

compiler.

1.5 Running Java Programs

Change the current directory to Lab 01 if you are not already there.

I have written a Java program that prints "Hello, World!" to standard output.

It is in the Lab 01 folder that you downloaded. Type the command

$ javac Hello.java

You probably will get an error message, because the computer could not find the Java

compiler javac.exe.

Open the System program on the Control Panel and go the Environment Variables

window again. This time we must add a PATH variable. The PATH variable tells the

computer where to find executable files, including the Java compiler.

You may have to search for the Java compiler. Indeed, there may be more

than one on the computer. We will use the one in the folder named C:\Program
Files\Java\jdk1.6.0 11\bin. Once you know where it is, then create the PATH

variable with this pathname as its value, as you did the HOME variable earlier.

Close the Cygwin window and open a new one. Now try again to compile the

program. This time the program should compile. Type dir to see that the file

Hello.class is in the directory. This is the compiled Java program. Now run the

program by typing

$ java Hello

The program should print "Hello, world!" This confirms that you are set up to run

Java programs in the Cygwin window.
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1.6 The Java API

Our programs will be written Java. If you know C++, then you should have no

trouble picking up Java since it is quite similar. The two languages use mostly

the same keywords, same constructs, and the same syntax. One major difference,

however, is that Java is heavily object-oriented. Every function must be a member

function of some class. Another difference is that Java comes with an extensive library

of classes.

Open Internet Explorer and go to the website

http://java.sun.com/j2se/1.4.2/docs/api/

Save this as a bookmark. You will want to return here many times later in the course.

This web site contains the documentation for all Java classes. For example, in

the upper left frame, scroll down and click on java.lang. In the window below, the

names of all the classes in the java.lang package appear. Click on Integer. To the

right you see the information about the Integer class.

• In what ways can an Integer be constructed?

• How does one convert an Integer to a double?

Another difference between Java and C++ is that Java is weak on operators. Oper-

ators are defined only for the primitive objects: int, float, double, char, etc.

• How do you compare one Integer to another?

• How do you add two Integers and represent the result as an Integer?

Remember, there are no operators + or < for the Integer class!

1.7 The JLex Java-based Lexical Analyzer Generator

Be sure you are now in the Coms 480 folder (not Lab 01).

Open another instance of Internet Explorer and go to the web site

http://www.cs.princeton.edu/~appel/modern/java/JLex/
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This is the web site for JLex, the Java lexical analyzer generator. Click on Installa-

tion Instructions. Read these instructions carefully. The directory “J” will be your

Coms 480 folder. Create a subfolder named JLex. You can either do this in Windows

or you can type the command

$ mkdir JLex

When you are ready, click on Source Code and save it in your JLex folder. The

Java code for JLex (Main.java) should now be in the folder JLex. Move to the JLex

directory and compile JLex by typing

$ javac Main.java

Now we will test our installation by using a test program available from the JLex web

page. On the web page, click on Sample Input. Copy and paste the contents of the

page into a new file in CodeWarrior and save it in Lab 01 as sample.lex.

This file must be edited slightly in order to work on our PCs. In DOS files, each

line ends with a return character \r followed by a newline character \n. In UNIX

files, each line ends with only a newline character. Go to line 116 in sample.lex:

<YYINITIAL,COMMENT> \n { }

Immediately below this line, add a similar line, replacing \n with \r.

Now type

$ java JLex.Main sample.lex

It probably did not work. The notation JLex.Main means the Main.class file in the

JLex folder. The program javac could not find the file Main.java. To solve this

problem, we must define the CLASSPATH variable. The CLASSPATH variable tells the

Java compiler where to look for Java source code files. Set this variable as before,

setting the value of CLASSPATH to

.;\\hams-acad-fs\Students\your-name\Coms 480

and restart the Cygwin window. Be sure to replace your-name with the name of

your workspace in the Students directory. Note the initial dot (.). This refers to the

current directory. Thus, Cygwin will search the current directory first. The semicolon

is a separator. Cygwin will next search
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\\hams-acad-fs\Students\your-name\Coms 480

Now type

$ java JLex.Main sample.lex

again. It should work. This creates the file sample.lex.java, which contains Java

source code for the classes Sample, Utility, Yytoken, and Yylex. Then type

$ javac sample.lex.java

to compile this, creating the files Sample.class, Utility.class, Yytoken.class,

and Yylex.class. You will get an error message (7 of them) about the assert

keyword. This program creates an assert() function, but the latest versions of Java

use assert as a keyword. Go back to the file and change assert to myAssert. Then

recreate the file sample.lex.java and compile it with javac.

Now we can test our program. Type

$ java Sample

Enter various lines of C code and see what the output is. Enter a line that contains an

embedded /*-style comment. When you are satisfied, type CTRL-Z (as many times

as necessary) to indicate end of file. The program should terminate.

1.8 The CUP Java-based Parser Generator

Open one more instance of Internet Explorer and go to the web site

http://www2.cs.tum.edu/projects/cup/

This is the web site for CUP, the Java parser generator. CUP stands for Constructor

of Useful Parsers. It also is a play on the java theme. Get it? CUP? Java? Cup of

java?

We will save the CUP files in a CUP directory. Create a CUP directory now as a

subdirectory of your Coms 480 directory. On the web page, in the section “Archived

versions,” click on CUP 10k sourcecode release. This is the most recent stable

version. Then click on Save. Save it in your CUP folder. This will download a zip

file to be unzipped. All the files needed for CUP will be extracted. Double-click on
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the file java cup v10k.tar.gz. Follow the Zip instructions. You should save the

extracted files in your CUP folder.

The Java classes in CUP are already compiled. We will now test CUP using

a slightly modified version of the sample program that appears in the CUP User’s

Manual. This example creates a program that evaluates integer expressions involving

+, -, *, /, %, and parentheses.

In the Lab 01 folder, there are the files scanner.java, grammar.cup, and

Evaluator.java. Type the command

$ java java_cup.Main < grammar.cup

Again, this probably did not work. The filename java cup.Main refers to the file

Main.class in the subdirectory java cup of the CUP directory. Java does not know

to look in the CUP directory for Java class files. Therefore, we must add the pathname

of the CUP directory to the paths to be searched in the CLASSPATH environment

variable. Make this change, close the Cygwin window, and open a new one.

Try again to execute the command

$ java java_cup.Main < grammar.cup

It should work. This will create the Java source files parser.java and sym.java

from the grammar file grammar.cup. Compile these two files and then compile the

files scanner.java and Evaluator.java.

Run the evaluator program by typing

$ java Evaluator

The program accepts keyboard input. Type in an integer expression such as

2 + 3 * 4;

Be sure to end the expression with a semicolon. The program will print the value of

the expression. When you are finished, type CTRL-Z.
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1.9 Zipping Files

Most of your assignment will involve a large number of source files. Rather than drag

each one individually to the dropbox, you will place your work in a folder, zip the

folder into a zip file, and drop the zip file in the dropbox. I will unzip it and test it.

Let’s test WinZip. We will zip the files used in the last two examples, namely, the

files Sample.class, Utility.class, Yylex.class, Yytoken.class, scanner.java,

parser.java, sym.java, and Evaluator.java, save the file as Lab 01.zip, and then

unzip them into a test folder. To do this, start up WinZip and follow the instructions.

Use the Wizard version of WinZip. Select Create a new Zip file. Give it the name

Lab 01. Add the specified files by repeatedly clicking Add files. . . and selecting the

files. Have the output directed to your Coms 480 folder. Then click Zip Now and

exit WinZip. Next create a folder named Test in which to put the extracted files.

Double-click on the zip file and follow the instructions to extract the files. Direct the

output to folder Test. Open Test to verify that the original files are there.

Now test the results by recompiling the files (be sure to change the directory to

Test in Cygwin) and running sample and Evaluator again.

1.10 Assignment

Turn in the file Lab 01.zip.
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Part II

Lexical Analysis
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Laboratory 2

Writing a Lexical Analyzer

Key Concepts

• Lexical Analyzers

• Redirected input and output

• Makefiles

Before the Lab

Read Sections 3.1 - 3.4 of Compilers: Principles, Techniques, and Tools.

Preliminary

Copy the folder Lab 02 from the Compiler Design CD to your Coms 480 folder.

2.1 Introduction

In this lab we will create a lexical analyzer that will return the tokens that occur in

statements of the form

id =expr;

where expr is an infix expression consisting of integers, identifiers, parentheses, and

the operators +, -, *, and /. Once we understand how this is done, we will be able

to create a lexer for a larger set of C tokens.

25
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2.2 Makefiles

Open the file Makefile. A makefile consists mainly of a list of dependencies and

actions. A dependency is written in the form

target: sources

action

where target is a file name and sources is a list of file names. (The tab before the

action part is mandatory.) This means that the target file depends on the source files.

Whenever any of the source files is updated, then the target file will be updated by

performing the action. This is all governed by the timestamps on the files.

The makefile for Lab 2 contains the dependencies among the files used by this

program. In this case, it is very simple: there are only four files and two depen-

dencies. The file MyLexer.class depends on the file MyLexer.java and the file

Token.class depends (in the same way) on the file Token.java. That means that

whenever MyLexer.java is updated, i.e., modified, then MyLexer.class should also

be updated and whenever Token.java is updated, then Token.class should also be

updated. In the makefile, the line

MyLexer.class: MyLexer.java

expresses that dependency. The line below that,

javac MyLexer.java

describes the action to be taken whenever the timestamp of MyLexer.java is more

recent than the timestamp of MyLexer.class. Note that this line begins with a

mandatory tab. A similar pair of lines appears for Token.class and Token.java.

As our programs become more and more complicated, you will come to appreciate

the makefiles more and more. In Lab 3 the makefile will be more sophisticated.

To invoke the makefile, type the command

$ make

Try this now. You should see that the Java compiler is invoked and MyLexer and

Token are compiled. Type the command again and you will see that it says that

MyLexer is up to date, so it does not recompile it.

Now we will delete the file MyLexer.class and rebuild it. Type the command
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$ rm MyLexer.class

This removes the file. Now execute the make command.

Let’s do it one more time. This time we will not remove MyLexer.class, but

merely change the timestamp of MyLexer.java. The touch command will change the

timestamp of a file to the current time. Type

$ touch MyLexer.java

and then type the make command again.

2.3 Running the Lexer

Open the file MyLexer.java in CodeWarrior. This is a Java program that finds certain

tokens in the input stream. Currently if finds only positive integers, plus signs (+),

and times signs (*).

Look in the Lab 02 folder and see that there is now a file named MyLexer.class.

This is the compiled bytecode version of MyLexer.java.

Now we will run MyLexer. Type

$ java MyLexer

The program expects input from the keyboard, so type

$ 123 + 456 * 789

The program should find the five tokens in this expression. Then type CTRL-Z and

press return again. CTRL-Z is interpreted as end-of-file.

This program does not recognize any grammar rules; those will come later. There-

fore, any string of legal tokens will be processed correctly. For example, try

$ 123***456++++

It also skips white space, so it will accept the input

$ 1 23 * * * 45 6 +++ +

We wish to expand the lexer so that it will recognize input such as

$ avg_grade = (3*test + 2*exam)/5;

Run MyLexer again, using this input to see what the output is.
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2.4 Understanding the Lexer

Before improving the program, let’s take a look at how it works. First we will look at

the tokens. Open the file Token.java. The purpose of the Token class is to provide

a list of symbolic constants to be used by the lexer. The Token class also provides a

set of strings so that we can print the name of the token in an readable form.

Now look in the file MyLexer.java. The program creates a BufferedReader

object named source. Look at the function getNextChar(). It gets an integer iVal

from source and then converts it to a character cVal.

Look at the function advance(). Once a character has been processed, we place it

in a character buffer and read another character. The purpose of the character buffer

is to store the “value” of the token as a character string for use in the cases when the

token is an identifier or a number. For example, if the token is radius, then the type

is ID and the value is "radius", and if the token is 123, then the type is NUM and the

value is "123".

To clear the buffer, we simply set charCnt to 0.

The main function initializes the lexer and then processes tokens by repeatedly

calling next token() until it returns the EOF token. Note the use of the expression

new String(buffer, 0, charCnt)

to convert the contents of the buffer to a String. Go to the Java web page, access

the String page, and look at the String constructors. The URL is

http://java.sun.com/j2se/1.4.2/docs/api/

Find the constructor that is used here. You should develop the habit of referring to

the Java API pages as often as necessary, i.e., often. You will find the answers to

many of your Java questions there.

The heart of the MyLexer class is the next token() function. By looking at the

current character cVal, next token() is able to decide which type of token is being

read. It processes the token and returns the token type.

2.5 Assignment

For the “toy” lexer that we are building in this lab, the complete set of tokens is

shown in Table 2.1.
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Token Symbolic Name Description

identifier ID a letter followed by zero or more letters,

digits, and underscores

number NUM one or more digits

+ PLUS

- MINUS

* TIMES

/ DIVIDE

( LPAREN

) RPAREN

= ASSIGN

; SEMI

Table 2.1: Tokens used in Lab 2

Complete the MyLexer class by adding code that will recognize each of these types

of token.

After you have finished the lexer, test it on the file testfile. The lexer uses

standard input (keyboard) and standard output (monitor), but you may redirect

them to files. To read input from the file testfile, type

$ java MyLexer < testfile

To redirect output to a file named, say, outfile.txt, type

$ java MyLexer >outfile.txt

Or you can do both at the same time.

$ java MyLexer < testfile > outfile.txt

Type this command and then open outfile.txt in CodeWarrior or Notepad and

inspect it. When the output is complicated, this method allows you to inspect it at

your leisure. Or you can print it and inspect it later.

Zip the files MyLexer.java, Token.java, and Makefile in a folder named Lab 02

and drop it in the dropbox.
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Laboratory 3

A Lexical Analyzer using JLex

Key Concepts

• Lexical analyzer generators

• JLex

• The JLex interface

• Regular expressions

Before the Lab

Read Sections 3.5 - 3.9 of Compilers: Principles, Techniques, and Tools. Also read

the JLex User’s Manual.

Preliminary

Copy the folder Lab 03 from the Compiler Design CD to your folder.

3.1 Introduction

In this lab we will create the same lexical analyzer as in Lab 2, but by using JLex

and a file tokens.lex. The file tokens.lex contains the rules for recognizing tokens

and the actions to take for each kind of token. JLex will use these rules to build a

Java program that will be a lexical analyzer. The rules in the file tokens.lex are

regular expressions and the lexical analyzer that JLex builds is a DFA. By inspecting

31
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the Java code that JLex produces, one could in principle figure out how it works,

although it is rather complicated.

3.2 JLex

JLex is a program that generates Java source code for a lexer. The original such

program was lex, which works on UNIX systems and creates C source code. The

gnu version of lex is called flex and it is included as one of the development tools in

cygwin. It also produces C source code.

Open the file tokens.lex in CodeWarrior. A JLex file is divided into three parts,

which are separated by %%. The first part contains code that is to be copied directly

into the Java class Yylex, which is the name of the lexer. In this example, this section

contains no code. The yy prefix is a carry-over from lex, which uses the yy prefix

on all of its variables and file names in order to avoid conflicts with any programmer

defined objects (provided the programmer avoids the yy prefix). See Section 2.1 of

the JLex User’s Manual for more information.

The second part contains various JLex directives and definitions. Read the JLex

User’s Manual for more information. This example contains one directive and three

definitions. The first directive is

%integer

It tells JLex that the tokens that are returned will be of type int. It also causes JLex

to define the constant YYEOF = -1 in the Yylex class. This constant will be returned

automatically by Yylex upon encountering end of file and then will be used in the

main function to terminate the program. See Section 2.2 of the JLex User’s Manual

for more information.

The three definitions

digit= [0-9]

num= {digit}+

ws= [\ \t]+

define a number and white space using regular expressions. A digit is a single character

in the range ’0’ through ’9’. A number is one or more digits. White space (ws) is

a blank or a tab. See Section 2.3 of the JLex User’s Manual for more information.
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The third section lists the regular expressions to be matched and the actions to be

taken for each. In the example, the regular expressions are numbers num, a plus sign

"+", and a times sign "*". In each case, the action is to print a message telling the

type of token found and to return the corresponding constant from the Token class

(to be discussed shortly). In the case of a number, the message will also include the

string that constitutes the value of the token.

The double quotes around single characters are used to guard against the character

being interpreted as a metacharacter.

Since white space should be ignored, there is no action associated with it.

Finally, note the dot (.). This stands for any character except a newline. It

should be used and it should appear last. If a string matches more than one pattern,

JLex will choose the pattern that is listed earlier in the list. Thus, no pattern in the

list after the dot, except a newline, will be matched. In this example, the dot is used

to match any invalid character. Notice that the error message is handled by the Err

class.

3.3 The Err and Warning Classes

Open the file Err.java. This class is designed to handle error messages. For each

error, create a symbolic name and a message. For example, the “Illegal character”

error has the symbolic name

public static int ILLCHAR = 1;

and the message

"Illegal character: "

The illegal character itself is filled by passing the parameter yytext(). Notice also

that the line number in which the error was detected is printed. For example, if a

program contained the illegal character # in line 19, then the message

Error: (line 19) Illegal character: #

The file Warning.java has the same design as Err.java. The difference between

errors and warnings is that errors are fatal, i.e., the program cannot be compiled.

If there are only warnings, then the program can be compiled, but it may not run

as expected. As we add to our compiler, whenever we want to report an error or a

warning, use the Err and Warning classes, adding new messages as necessary.
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3.4 The Token Class

Open the file Token.java. The Token class contains symbolic names for the int

values returned by the lexer. These make the program more readable. In a later lab,

this class will be replaced by the sym class, which is generated by the CUP parser

generator. This code will be included in the output file from JLex and then it will

be compiled into the file Token.class. This file defines four constants: ERROR, NUM,

PLUS, and TIMES.

3.5 Invoking the Lexer

Open the file Lexer.java. The main function is defined in the Lexer class. This

function simply processes tokens until reaching end of file. End of file is indicated by

the token YYEOF.

Observe how a lexer is created:

lex = new Yylex(System.in);

Then observe how tokens are obtained from the lexer:

token = lex.yylex();

The variable token is of type int because we told our lexer to return ints. You

should appreciate how simple the interface with the Lexer class is; all the work is

being done in the Yylex class.

3.6 Building the Lexical Analyzer

To use JLex to create the lexical analyzer, we must invoke JLex’s Main function and

specify the file tokens.lex as the input file.

$ java JLex.Main tokens.lex

This will create as output the file tokens.lex.java. Since we are creating the Yylex

class, we will rename this file Yylex.java. Then we compile Token.java, Yylex.java

and Lexer.java in the usual way.

Execute the above command now. Note the screen output from JLex. It describes

the number of states in the NFA that it builds. Then it converts the NFA to a DFA.

Finally, it minimizes the DFA and reports the number of states.
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Open the file Yylex.java in CodeWarrior. Look at the Yylex class. It is com-

plicated, but not impossible to figure out. Go to the function yytext(). It builds a

string that contains the value of the current token. Note that it uses the same String

constructor that we used in our program MyLexer. Look in the file tokens.lex and

find the place where yytext() is used. Be aware that yytext() is not a public mem-

ber function of the Yylex class. The reason we can use it in the JLex file is because

this code is copied into the Yylex class. Therefore, when it is used, it is being used

within the class.

Now look at the function yylength(). This function returns the length of the

current token.

The function unpackFromString() is used to create the DFA transition tables

that drive the lexer. It is invoked three times just before the yylex() function (not

to be confused with the Yylex constructors).

In the yylex() function you will find the code that appeared in the tokens.lex

file as the action part of each token. It appears now in a switch structure.

Now compile the files Token.java, Yylex.java, and Lexer.java. Then test the

lexer by typing

$ java Lexer

The program will wait for input from the keyboard. Enter strings as you did in Lab

2. For example, try the strings

123 + 456 * 789

1 23 * * * 45 6 +++ +

avg_grade = (3*test + 2*exam)/5;

In the last example, did you get any error messages? Why?

3.7 The Makefile

Open the file Makefile. The makefile is now more complicated, and therefore more

beneficial to us. This makefile begins with a rule. In the rule, the % is a wildcard,

signifying any file name. Thus, the rule says that each .class file depends on the

corresponding .java file. In the action part, the $< refers to whatever file name the

% currently holds. In this example, the action part will invoke the java compiler.
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By writing the rule, the makefile will automatically update any .class files by

this rule, as necessary. Thus we do not need to tell it explicitly to make Lexer.class,

Token.class, and Yylex.class.

In the next part of the makefile, there is the line

all: Token.class Yylex.class Lexer.class

This says that the “file” all depends on the other three files. In fact, there is no

file all. (Notice that there is no action part telling how to update all.) This is a

common makefile technique used to force the makefile to update a list of targets.

The final part contains the two instructions that are needed to update the Yylex

class whenever a change is made to tokens.lex.

Read through the makefile and be sure that you understand it. For more infor-

mation on makefiles, there are many good tutorials on the web. For example, see

http://www.gnu.org/software/make/manual/make.html

You should spend some time looking over one of them.

3.8 Assignment

Add to the lexical analyzer the set of tokens shown in Table 3.1.

Your lexer must also detect the patterns described in Table 3.2, although they

require no action and no return value. These are the patterns that the compiler will

skip over.

Take actions similar to those already taken in the file tokens.lex. In the case of

identifiers, be sure to print the value of the identifier as well as the token type. Test

your work thoroughly. The //-style comments extend only to the end of the line. The

/*-style comments extend past line breaks to the next occurrence of */. Character

strings do not extend past line breaks.

This lab will serve as Project 1. Zip the files tokens.lex, Token.java, Lexer.java,

and Makefile in a folder named Project 1 and drop it in the dropbox.
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Token Symbolic

Name

Description

identifier ID a letter followed by zero or more letters,

digits, and underscores

number NUM one or more digits

string STR A double quote ("), followed by non-

double-quote

characters, followed by a double quote

( LPAREN

) RPAREN

{ LBRACE

} RBRACE

[ LBRACK

] RBRACK

+ PLUS

- MINUS

* TIMES

/ DIVIDE

% MOD

++ INC

-- DEC

== EQ

!= NE

< LT

<= LE

> GT

>= GE

! NOT

&& AND

|| OR

~ COMP
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Token Symbolic

Name

Description

& BAND

| BOR

^ BXOR

<< SHL

>> SHR

= ASSIGN

+= APLUS

-= AMINUS

*= ATIMES

/= ADIVIDE

%= AMOD

&= ABAND

|= ABOR

^= ABXOR

<<= ASHL

>>= ASHR

, COMMA

; SEMI

Table 3.1: Tokens used in Project 3

Pattern Description

//-comment //, followed by zero or more characters, followed by end of line

/*-comment /*, followed by zero or more characters, followed by */

white space a blank or a tab

newline \n

return \r

Table 3.2: Patterns to be skipped over



Part III

Syntactic Analysis
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Laboratory 4

A Recursive-Descent Parser

Key Concepts

• Recursive-descent parsers

• Leftmost derivations

• Parse trees

Before the Lab

Read Sections 2.1 - 2.6 of Compilers: Principles, Techniques, and Tools.

Preliminary

Copy the folder Lab 04 from the Compiler Design CD to your folder. Also, copy

the file MyLexer.java and Token.java from your Lab 02 folder to this folder. These

two files should have been modified to accept identifiers, subtraction, division, assign-

ments, parentheses, and semicolons.

4.1 Introduction

We will create a recursive descent parser that parses a series of statements of the form

id = expr;

41
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where id is an identifier and expr consists of numbers, variables (identifiers), +, -, *,

/, and parentheses ( and ). The parser will print each token and each grammar rule

as it is used. From this we may infer a derivation of the input string.

4.2 Modify the Lexical Analyzer

In this lab, the lexer will not be the main program. Instead, the parser will call

on the lexer whenever it needs the next token. Thus, remove the main() function

from MyLexer; the parser will call MyLexer.next token() directly. One purpose of

main() was to print the tokens as they were identified. This has now been moved to

a function printToken() that is in the parser class.

4.3 The Recursive-Descent Parser

Open the program RDParser.java in CodeWarrior. This program is a direct imple-

mentation of the grammar rules

E → TE ′

E ′ → +TE ′ | ε
T → FT ′

T ′ → *FT ′ | ε
F → num

Note that when there is a choice of rules to apply, the decision can be made by looking

at the current token only. If the current token does not fit any of the production rules,

then an error message is printed. This is a necessary characteristic of the grammar

in order for a recursive-descent parser to be feasible.

Notice that for each nonterminal in the grammar, there is a function in

RDParser.java that decides which rule to apply to that nonterminal. The main

function gets things started by initializing the lexer (MyLexer), getting the first token,

and calling on E(). When execution eventually returns, the class variable error tells

whether an error was encountered, which determines whether the input is accepted.

The function E() applies the rule E → TE ′. It prints an informative message

and then calls on T() followed by Eprime(). The function Eprime() must make a

choice since there are two possible grammar to apply: E ′ → +TE ′ and E ′ → ε. This
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choice is made by checking whether the current token is PLUS. The other functions

are similar.

Finally, the match() function verifies that the token is what it is supposed to be

and then it gets the next token.

Build the program by running the makefile. Then run the program by typing

$ java RDParser

Enter the input

$ 123 + 456 * 789

Press CTRL-Z for EOF. The input should be accepted. We are using the “verbose”

versions of the lexer and the parser. Each program prints informative messages to

apprise the user of its progress. These messages can be extremely helpful in debugging.

You may turn them off by commenting them out. It is better not to delete them since

you may need them later for further debugging.

You should have gotten the output

123 + 456 * 789

Token = NUM, value = ’123’

E -> T E’

T -> F T’

F-> num

Token = PLUS

T’ -> e

E’ -> + T E’

Token = NUM, value = ’456’

T -> F T’

F -> num

Token = TIMES

T’ -> * F T’

Token = NUM, value = ’789’

F -> num

^Z

Token = EOF

T’ -> e
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E’ -> e

Accepted

Notice that some productions were applied after you indicated EOF. Why is that?

4.4 Derivations and Parse Trees

Can you write a derivation for the input, based on the output? Write it out com-

pletely. Is it a rightmost derivation? Leftmost? Neither?

Draw the parse tree.

Now run the program again, entering the expression

$ 123 * 456 + 789

Draw the parse tree. How does it compare to the parse tree of the previous expression?

Test the program, sending the output to an output file outfile.txt. The output

will be rather long, but the input should be accepted. Print the output file.

Notice that RDParser.java prints the production used as soon as it decides which

one to use, even before the production has been satisfied. One effect of this is that

the productions are listed in the order of a leftmost derivation. As an experiment, in

each case when a production is matched, move the output statement to the end of

that block. For example, in the function E(), rewrite

System.out.println("E -> T E’");

T();

Eprime();

as

T();

Eprime();

System.out.println("E -> T E’");

Build and run the parser again, sending the output to the file outfile2.txt. Print

the output file. Compare this output to the previous output. Read the output from

bottom to top. In what order did the productions appear? What kind of derivation

does this indicate? Can you explain this?
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Notice how the product 3 * 4 * 5 * 6 was handled. What does this indicate

about the depth of the recursion? In the same vein, notice the point at which the

production E ′ → +TE ′ was matched. Again, this tells us something about the depth

of recursion.

Notice how much output appeared after the EOF token was received. This output,

when read from top to bottom, appears to indicate that the parser is a bottom-up

parser following a rightmost derivation. That is misleading; it is a top-down parser

that follows a leftmost derivation. However, this indicates that the difference is subtle.

Put the output statements back where they were. You may do this by pressing

CTRL-Z repeatedly to undo the earlier changes.

4.5 Improving the Parser

Now let us test our program’s ability to detect syntax errors. Run the program and

enter the line

$ 123 ++ 456

What error was detected? Can you see why? Now try

$ 123 456

Was an error detected? Why not? You might notice that you did not need to indicate

EOF. Why not?

Trace through the program and find out exactly how execution terminated when

the next token after 123 was a number. Did this number token cause error to be set

to true?

The problem is that when the program quits, the last token received from the

lexer should be EOF. Otherwise, the lexer was not at the end of the expression.

However, the program does not check that this was the case. It simply quits after the

production for E has been satisfied. Correct this by requiring that after satisfying

the production for E, the token be EOF in order for the parser to report that the

input was accepted.

4.6 Assignment

Expand the grammar as follows
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• Acceptable input is a series of assignment statements of the form id = expr;

• Expressions may include parentheses.

• Expressions may include subtraction and division.

• Factors may be identifiers.

Thus, the grammar now is

S → S ′S | ε
S ′ → id = E;

E → TE ′

E ′ → +TE ′ | -TE ′ | ε
T → FT ′

T ′ → *FT ′ | /FT ′ | ε
F → (E) | id | num

Be sure to test your program with incorrect input as well as correct input.

Place the files Token.java, MyLexer.java, RDParser.java, and Makefile in a

folder named Lab 04, zip it, and drop it in the dropbox.



Laboratory 5

Using JLex with a Predictive

Parser

Key Concepts

• The JLex-parser interface

• JLex EOF values

• Predictive parsing

• Java Stack objects

Before the Lab

Read Sections 4.1 - 4.4 of Compilers: Principles, Techniques, and Tools.

Preliminary

Copy the folder Lab 05 from the Compiler Design CD to your folder. Also copy the

files Err.java and Warning.java from your Lab 03 Folder.

5.1 Introduction

In this lab we will use a lexer generated by JLex together with a table-driven predictive

parser. We will see how to set up the interface so that the parser will communicate

properly with the lexer. That will be quite simple. The same interface would be used

47
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with RDParser or any other hand-written parser. Then we will look at how the parser

works. It is the model of elegance. Since the parser uses a stack, we will also have an

opportunity to become familiar with the Java Stack class and some issues related to

its use.

5.2 Lexer-Parser Interface

This parser uses a parse table. (See Table 5.1 below.) In the parse table, there is

a column specifically for EOF. In past labs, JLex assigned EOF the value -1 and

returned it automatically. In this lab we must be sure that EOF has the value that

corresponds to its column in the table, which is 6. Therefore, in the file Token.java,

we include EOF in the list of symbols. Open Token.java and see that that is done.

Now we must make JLex return 6 instead of -1 on end-of-file. To do this, we must

make two changes in the JLex file. First, change the directive %integer to

%type int

This prevents JLex from returning -1. Second, since the return value is no longer

automatic, we must tell JLex what it is. To do this, add the following in the directive

section of the JLex file.

%eofval{

return Token.EOF;

%eofval}

This provides the action that JLex will take on end-of-file. See Sections 2.2.12 and

2.2.17 in the JLex manual.

Currently the parser in PredParser.java makes no mention of a lexer. We must

add some lines to the parser so that it can accept tokens from a Yylex object. Open

the file PredParser.java.

First, we must declare lex to be a Yylex object. Add the class variable

public static Yylex lex;

to the PredParser class. It should be declared before main() so that it will be a

class variable, available to all functions in the class. Then in the main function, we

must create the object. Add the line
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lex = new Yylex(System.in);

at the beginning of main().

Now to get a token, we call the yylex() function of the Yylex class. Thus,

where the recursive descent parser called the function next token(), we will now call

yylex(). Add the line

token = lex.yylex();

in main() just before the while loop, just as in Lab 3.

Add the same line at the end of the function match(), just before the return

statement. That’s it! Our parser will now communicate with our lexer.

Now we will look at how the parser works.

5.3 The Productions

The nonterminals are E,E ′, T, T ′, F and the grammar is

E → TE ′

E ′ → +TE ′ | ε
T → FT ′

T ′ → *FT ′ | ε
F → (E) | id | num

Look at the beginning of the PredParser class. You will see the nonterminals defined

as the negative integer constants −1,−2, . . . ,−5. The tokens, or terminals, will be

assigned non-negative integer values. Thus, the sign of the grammar symbol will be

our way of distinguishing between terminals and nonterminals. (Note that we avoid

the use of −0 for a nonterminal since 0 is used for tokens and +0 = −0.)

Next, you see the productions themselves, as strings. This array is included so

that we can print informative messages about which production is being matched.

Then there is a two-dimensional array containing the right-hand side of each

production, as a list of grammar symbols. It is here that we must be able to distinguish

between terminals and nonterminals, since, in general, they are mixed together in

productions.
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+ * ( ) ID NUM $ ERROR

E −1 −1 E → TE ′ −1 E → TE ′ E → TE ′ −1 −1

E ′ E ′ → +TE ′ −1 −1 E ′ → ε −1 −1 E ′ → ε −1

T −1 −1 T → FT ′ −1 T → FT ′ T → FT ′ −1 −1

T ′ T ′ → ε T ′ → *FT ′ −1 T ′ → ε −1 −1 T ′ → ε −1

F −1 −1 F → (E) −1 F → id F → num −1 −1

Table 5.1: The parse table

Note that the tokens in each production are listed in reverse order. That is because

the predictive parsing algorithm requires that they be pushed onto the stack in reverse

order. If we store them in reverse order, then it will be simpler to push them later.

Next is an array of sizes. This array stores the number of grammar symbols on the

right-hand side of the productions. That is to facilitate the pushing of the symbols

onto the stack.

Notice how well organized all of this is. It should be fairly simple to add some

productions to the grammar and update the objects in the program.

5.4 The Parse Table

The heart of this program is the parse table. See Table 5.1. It is this table that allows

us to avoid using recursion. This table also makes it possible to perform more elegant

error recovery and it sure would be fun to do that, but in the interest of time, we will

have to skip that.

The tokens are defined in a separate Token class. At this point, it would be

helpful to see what their values are. Open the file Token.java. You see that the

tokens PLUS (+), TIMES (*), LPAREN ((), RPAREN ()), ID, and NUM are assigned the

values 0, 1, 2, . . . , 5 and EOF ($) is assigned the value 6. These values will correspond

to the columns in the parse table.

The rows of the parse table correspond to the nonterminals E, E ′, T , T ′, and F ,

in that order.

The entries in the table are integers representing the productions, as listed above

in the array prodList. In cells representing an error, we have entered ERROR (−1),

an integer which corresponds to no production. Now it is the job of the parsing



51

algorithm to read the table and take the appropriate action.

5.5 The Parsing Algorithm

The main function is now quite simple, thanks to the various arrays and tables already

constructed. A few things need to be initialized. First, the stack must be created

and then the symbols $ and E must be pushed onto it, in that order. Recall that $

represents EOF. In Java it is easy to use a stack since there is already a Stack class.

Go to the Java website

http://java.sun.com/j2se/1.4.2/docs/api/

and look up the Stack class in the package java.util. Read the Method Summary.

Now we will create and initialize a Stack. First, declare stack to be a Stack

object:

public static Stack stack;

Then, at the beginning of main(), create a new Stack object:

stack = new Stack();

In Java, Stacks can hold any kind of object whatsoever. That is why the return type

of peek() and pop() is Object. Every non-primitive class is a subclass of the Object

class. However, the primitive classes, such as int, are not subclasses of the Object

class. Therefore, we cannot push ints onto our stack. That’s too bad, because the

grammar symbols in this program are all ints. We will have to convert our int

primitives to the wrapper-class Integer objects. In general, to create an Integer

from an int, say n, we write the expression

new Integer(n)

Use this together with the push() function to initialize the stack with the grammar

symbols $ and E. Recall that $ is represented by Token.EOF.

Note that in the while statement we are using the Stack function empty() to

see if the stack is empty. Once we enter the while loop, the first thing we need to

do is to see what symbol is on top of the stack. We don’t want to pop it, but just

look at it. So we should use the peek() function. The peek() function will return a
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reference to the Object on top of the stack. To use the object, we must cast it as an

Integer. Furthermore, to use it as an int, we must convert it to int. That is done

with the Integer function intValue(). Put this all together to write a statement,

or statements, that

• Retrieves the object from the top of the stack.

• Converts it to Integer.

• Gets its int value.

• Assigns the int value to the variable symbol.

Now we check to see if symbol is a terminal or a nonterminal. If it is non-negative,

then it must be a terminal. If it is negative, then it must be a nonterminal. So the

program divides into two cases accordingly.

If the symbol is a terminal, then it must match the current token. That is handled

by the match() function, which also gets the next token. Look at match() to see how

it works.

If the symbol is a nonterminal, then it is used, together with the current token,

to look up a production in the parse table. Note that to use symbol as an index, it

must be made positive and then decremented by 1. After retrieving the entry from

the table, we first make sure that the entry is not ERROR. If not, then we announce the

production we are using, pop the nonterminal from the stack, and push the grammar

symbols from the production onto the stack.

That’s it! We let the while loop run until the stack is empty or until an error

condition occurs. The program finishes by reporting whether the input was accepted

or rejected.

5.6 Running the Program

Now use the makefile to build the program. Test your program with the input

a + 3

If it works, then test it with more complicated expressions:

a*b + 3*c

123*(dog + 456*(cat + bear)) + 789
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Test your program with some invalid input, too, such as

a + 2b

b + + c

a & b

5.7 Expand the Grammar

Let us expand the grammar to include the productions

E ′ → -TE ′

T ′ → /FT ′

You will have to recompute FIRST and FOLLOW for the nonterminals and update

the parse table. There are no new nonterminals, but there are two new terminals and

two new productions, so you will have to

• Add two tokens, - and /, to the Token class.

• Add two strings to the prodName array.

• Add two productions to the prodList array.

• Add two integers to the prodSize array.

• Add two columns to the parse table.

Everything else should work as before. I suggest that you add these things to the

ends of the arrays so that you do not disturb what is already there. The one exception

might be the list of tokens and the parse table. It is customary, but certainly not

necessary, that $ be the last token. That will be your call. However, it is necessary

that the ERROR token be at the end of the list of tokens since it is not a terminal.

Test your program with input such as

a + b*(c - (d + e)/3) - 2/3*f

5.8 Assignment

Zip the files tokens.lex, Token.java, PredParser.java, Err.java, Warning.java,

and Makefile in a folder named Lab 05 and drop it in the dropbox.
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Laboratory 6

Using JLex and CUP

Key Concepts

• The CUP files

• Context-free grammars

• Semantic actions

• LR and LALR parsing

• Precedence

• Associativity

• Shift/reduce conflicts

Before the Lab

Read Sections 4.5 and 4.7 of Compilers: Principles, Techniques, and Tools. Also read

the CUP User’s Manual.

Preliminary

Copy the folder Lab 06 from the Compiler Design CD to your folder. Also copy the

file tokens.lex from your Lab 03 folder and the files Err.java and Warning.java

from your Lab 05 folder.
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6.1 Introduction

The program CUP is a parser generator. The programmer specifies a context-free

grammar in a .cup file. For each production in the grammar, he specifies an action

to be taken. Whenever a rule is matched, the specified action is taken.

CUP creates an LALR parser, which is a variation of an LR(1) parser. It creates

the action and goto tables and uses the LALR algorithm to parse the input. In this

lab we will learn how to write a CUP file and how to make CUP and JLex work

together to create a complete program.

6.2 Modifying the JLex File

We will not need the file Token.java since the tokens will be defined by CUP.

The JLex file must be modified so that its output will interface with the parser

generated by CUP. In the user-code section, we need the line

import java_cup.runtime.Symbol;

This import statement will be copied into the file Yylex.java where it will make the

lexer aware of the Symbol class. The lexer will use the Symbol class, which is found

in the directory CUP/java cup/runtime, to return tokens to the parser. Later in this

lab, we will take a closer look at the Symbol class.

To tell JLex that the tokens will be sent to a program generated by CUP, we must

add the %cup directive

%cup

in the directive section. Also, remove the directive

%integer

The return value will be of type Symbol, not int. We must use the %eofval to specify

the return value. In the directive section, add the lines

return new Symbol(sym.EOF);

Now we must instruct the lexer to return Symbol objects consisting of a token and

possibly a value.
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6.3 The Symbol Class

A Symbol object has several data members. We will be interested in two of them:

sym and value. Open the file Symbol.java in the directory CUP/java cup/runtime.

Scroll to the bottom of the file to see the data members. What are the types of sym

and value? The value of sym will be taken from the sym class, which will be created

by CUP. It will be similar to the Token class that we have been using. The value

of value will be set by us as necessary in the JLex file. Note that value is of type

Object, so we may assign to it an object of any type. We will assign it a String

value.

Now look at the Symbol constructors. One Symbol constructor has prototype

public Symbol(int sym_num);

Another one has prototype

public Symbol(int id, Object o);

These are the two constructors that we will use. If the token does not have an

associated value, then we use the constructor that takes only the token number. For

example, the PLUS token has no associated value, so we would return

new Symbol(sym.PLUS)

If the token has an associated value, then we will use the second constructor, which

takes the token number and its value. For example, the ID token has an associated

value, the name of the identifier. In this case, we would return

new Symbol(sym.ID, new String(yytext()))

In the JLex file, replace each Token return object with a Symbol object. For the ID

and NUM tokens, we must also return the associated value. This will come from the

yytext() function. Create a new String from this and use it as the second parameter

in the Symbol constructor for these two token types, as shown in the example above.

Also, be sure that the JLex file returns the token sym.error when an invalid token

is found. Make these changes throughout the JLex file. Now the JLex file is ready to

be used by CUP.
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6.4 The CUP File

Open the file grammar.cup. CUP will use the CUP file to create the parser and

sym classes. The CUP file begins with user code that will be copied directly into the

parser. We have included the import statement

import java_cup.runtime.*;

Next, we have some “parser code.” We could write a separate program to contain

a main function, as we did in Lab 3. Instead, for now we will use the parser code

directive to create a main function in the parser class. Read the parser code in the

CUP file. Later we will look at the parser class to see what this code does.

Next we list the terminals. Generally, these are the same as the tokens returned

by the lexer, except for EOF, which we do not list. CUP will copy these names to

the sym class and assign them numerical values. This file currently defines all of the

tokens that were used in Lab 3, even though a number of them are not used in the

grammar, yet. If any are missing, you will get an error message. In that case, just

go back and add them in. In any case, you will get some warnings about the unused

terminals. You can ignore those warnings for now.

Next we list the nonterminals. Each of these should appear on the left side of a

production later in the file. If any nonterminals are listed, but not used, then CUP

will give us a warning. Indeed, if one is listed, but is not accessible from the start

symbol, CUP will give us a warning.

To resolve shift/reduce conflicts arising from the operators, we may specify prece-

dence levels. The two lines

precedence left PLUS;

precedence left TIMES;

say that PLUS has a lower precedence than TIMES and that both operators are left

associative. (Terminals are listed in order of increasing precedence.)

6.5 The Grammar

The grammar currently in the CUP file is

expr → expr + expr | expr * expr | num
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where expr is the only nonterminal. This grammar by itself is ambiguous because

it is not clear whether addition or multiplication comes first, but the ambiguity has

been removed by the precedence rules. The expression E+E will not be reduced to E

if the next token is *, but the expression E*E will be reduced to E if the next token

is +. Also, in an expression such as b + c + d, left associativity will cause the rule

E → E+E to be applied first to b + c rather than to c + d.

Build the parser from the file grammar.cup, by typing the command

$ java java_cup.Main < grammar.cup

This creates the files parser.java and sym.java. Next, build the lexer by typing

the command

$ java JLex.Main tokens.lex

Now compile the files tokens.lex.java, parser.java, and sym.java. To run the

parser, type

$ java parser

First test the parser on some simple input such as

$ 123 + 456

Use CTRL-Z (4 times!) to indicate EOF. Now run the program on the input

$ 123 + 456 * 789

and note that the multiplication is done first. Run it again on the input

$ 123 * 456 + 789

and note that again the multiplication is done first.

To see the associativity, use the input

$ 123 + 456 + 789

As an experiment, change “left” to “right” in the precedence statement for PLUS in

the CUP file, rebuild the parser, and run it again with the previous input. You

should see that 456 + 789 was processed first. How can you tell that 456 + 789 was

processed first? You might try running the parser with the input
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$ 123 * 456 * 789

which is still left associative, and compare the output.

Change “right” back to “left” before continuing. (Do not bother rebuilding yet

since we are about to make more changes.)

6.6 Shift/Reduce Conflicts

As an experiment, comment out the precedence rules by using //-comments. Build

the program again. This time we get a number of messages telling us of shift/reduce

conflicts in the LR parse table. In each case, we are told how the conflict was resolved.

Generally, shift/reduce conflicts are resolved in favor of shifting.

However, CUP will not produce Java source code unless the number of conflicts

found matches the expected number. (Note the message “No code produced.”) In

the makefile, in the command

java java_cup.Main < grammar.cup

we may add a command-line argument that gives the expected number of conflicts.

In the output from the build attempt, count the number of conflicts (or read the

message that tells you the number). Then write

-expect n

in the above command before the <, where n is the number of conflicts that you

counted (the expected number). (Make this change in the makefile, if you are using

the makefile.) Build the program again and test it. It should work, although you

should test to see exactly what the precedence rules are. Use input such as

$ 123 + 456 * 789

and

$ 123 * 456 + 789

to find out. What are the precedence rules, apparently?

Now restore things by removing the -expect argument (from the makefile, if nec-

essary) and uncommenting the precedence rules in the CUP file. Whenever possible,
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we should resolve conflicts through precedence rules. Later we will encounter an

ambiguity in the statement

if (expr) if (expr) else stmt;

that cannot be resolved through precedence rules.

6.7 Semantic Actions

With each grammar rule there is an associated semantic action. This is what gives

meaning (semantics) to the grammar rules. In a later lab we will fill in more mean-

ingful semantic actions. Right now, we just want to print the grammar rules that

are applied so that we can track the progress of the parser as the input is processed.

Later, in our compiler, the semantic actions will be used to generate assembly code.

When you read the output, note that the rules are applied after the right-hand

sides are matched. That is because this is an LR parser.

6.8 The sym and parser Classes

Open the file sym.java. It was created by CUP from the CUP file. Note that it

defines an integer value for each of the terminals listed in the CUP file. It also defines

two more constants, EOF and error.

Now open the file parser.java. It was also created by CUP from the CUP file.

Scroll down a bit and see that there are three tables: a production table, an action

table, and a reduce table. They are in a compressed, unreadable (by us) form. Scroll

down a bit further and you will see the parser code that we wrote in the CUP file.

(It is now the main function.)

The main function creates a parser object, which is simply an instance of this

class. At the top of this file, there were two parser constructors (above the tables).

The second one takes as its parameter a Scanner object. (Recall that “scanner” is

another name for a lexer.) Open the file Yylex.java and read the first line of the

class definition:

class Yylex implements java_cup.runtime.Scanner

This tells us that a Yylex object is a Scanner object. Thus, we pass to this parser

constructor a new instance of a Yylex object. Altogether, this means that the parser

will use Yylex as its lexer. It will call on Yylex as necessary for tokens.



62 LABORATORY 6. USING JLEX AND CUP

Next, note that after the parser object is created, we call on the function parse().

You can search throughout the file parser.java and you will not find the member

function parse(). But look at the first line of the parser class definition:

public class parser extends java_cup.runtime.lr_parser

This tell us that the parser class is a subclass of the lr parser class. Open the

file lr parser.java, which is found in the directory CUP/java cup/runtime. This

is an abstract class. Down around line 500 you will find the parse() function. Take

a few minutes to look it over. It is not hard to see that it is implementing an LR

algorithm. First, it initializes the stack to the start state (0). Then it goes into a

while loop where it gets the value of act from the action table. If act is greater

than 0, it represents a shift operation, so it pushes a symbol onto the stack. If act

is less than 0, it represents a reduce operation, so it pops several symbols from the

stack and pushes a new symbol. If act equals 0, it indicates an error. We used ideas

very similar to that in the predictive parser in Lab 5.

Go back to the main function in the parser class. Notice that we use a try/catch

construct. If an error occurs in the try clause, execution jumps to the catch clause.

Otherwise, when the try clause is finished, execution skips over the catch clause.

Notice how we have used this to report whether the input was accepted or rejected.

6.9 The Action and Goto Tables

Let’s use some command-line arguments to see what is going on inside CUP. Our

example is so small that it shouldn’t be very complicated. Use CUP to build the

parser once more, this time using the -dump grammar switch. Type

$ java java_cup.Main -dump_grammar < grammar.cup

You should see listed all the terminals, nonterminals, and productions, each with a

number. Note that the grammar has been augmented with a new start symbol and

the production

[1] $START ::= expr EOF

Now build the parser again using the switch -dump tables. This will output the

action and goto tables. Using the numbered terminals, nonterminals, and productions

seen above, we could easily use this output to fill in all the entries in the action and

goto tables.
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6.10 The CUP Debugger

In the file grammar.cup, in the parser code section, change the parser call parse()

to debug parse() and recompile. Run the program again with some simple input.

You will see that the CUP debugger informs you of each action in the LR algorithm.

This might be useful if we had the tables written out.

Change debug parse() back to parse() and rebuild.

6.11 Assignment

Expand the grammar to include all of the following. This will be the full grammar

for our C compiler. In subsequent labs, we will implement more and more parts of

this grammar.

In the JLex file, add the keywords int, double, if, else, return, read, and

print as separate tokens. In Lab 7 we will learn a better way to handle keywords,

but this will suffice for now.

The terminals are given in Table 6.1. The nonterminals are listed in Table 6.2.

ID MOD COMP ABOR

NUM UNARY BAND ABXOR

STR INC BOR ASHL

LPAREN DEC BXOR ASHR

RPAREN EQ SHL COMMA

LBRACE NE SHR SEMI

RBRACE LT ASSIGN INT

LBRACK LE APLUS DOUBLE

RBRACK GT AMINUS IF

PLUS GE ATIMES ELSE

MINUS NOT ADIVIDE RETURN

TIMES AND AMOD READ

DIVIDE OR ABAND PRINT

Table 6.1: The terminals for the CUP file

The precedence and associativity of the operators is shown in Table 6.3. The table is

arranged from highest to lowest precedence. Finally, the productions of the grammar
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arg expr func n

args exprs glbl prog

cexpr fargs glbls stmt

dcl fbeg lval stmts

dcls fname m type

Table 6.2: The nonterminals for the CUP file

Operator Associativity

UNARY, NOT right

TIMES, DIVIDE, MOD left

PLUS, MINUS left

LT, LE, GT, GE left

EQ, NE left

AND left

OR left

ASSIGN right

Table 6.3: The precedence and associativity of operators

are the following.



65

The Program

prog → glbls

Globals

glbls → glbls glbl

| ε

glbl → dcl

| func

Markers

m → ε

n → ε

Declarations

dcls → dcls dcl

| ε

dcl → type ID SEMI

type → INT

| DOUBLE

Function Definitions

func → fbeg stmts m RBRACE

fbeg → fname fargs LBRACE dcls

fname → type ID

| ID

Function Arguments

fargs → LPAREN args RPAREN

| LPAREN RPAREN

args → args COMMA arg

| arg

arg → type ID
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Statements

stmts → stmts m stmt

| ε

stmt → expr SEMI

| RETURN SEMI

| RETURN expr SEMI

| LBRACE stmts RBRACE

| IF LPAREN cexpr RPAREN m stmt

| IF LPAREN cexpr RPAREN m stmt n ELSE m stmt

| SEMI
| READ lval SEMI

| PRINT lval SEMI

Conditional Expr.

cexpr → expr EQ expr

| expr NE expr

| expr LT expr

| expr LE expr

| expr GT expr

| expr GE expr

| NOT cexpr

| cexpr AND m cexpr

| cexpr OR m cexpr

| LPAREN cexpr RPAREN

| expr
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Numerical Expr.

exprs → exprs COMMA expr

| expr

expr → lval ASSIGN expr

| expr PLUS expr

| expr MINUS expr

| expr TIMES expr

| expr DIVIDE expr

| expr MOD expr

| MINUS expr

| LPAREN expr RPAREN

| lval

| ID LPAREN RPAREN

| ID LPAREN exprs RPAREN

| NUM
| STR

lval → ID

For each production, provide an action that prints the production. For example,

the action for the production

expr → ID LPAREN exprs RPAREN

should be

{: System.err.println("expr -> ID ( exprs )"); :}

Also, as a very special case, in the production

expr ::= MINUS expr

add the phrase %prec UNARY after the action part. This will give the negation oper-

ator the same precedence as UNARY.

This lab will serve as Project 2. Zip the files tokens.lex, grammar.cup, and

Makefile in a folder named Project 2 and drop it in the dropbox.
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Part IV

A Simple Compiler
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Laboratory 7

The Symbol Table

Key Concepts

• Symbol tables

• Reserved words

• Hash tables

• Linked lists

• Block level

• Semantic actions

• try/catch blocks

• Syntax errors

Before the Lab

Read Sections 2.7, 5.1, 7.4, and 7.6 of Compilers: Principles, Techniques, and Tools.

Section 2.7 gives an easy introduction to the idea of a symbol table. Section 5.1

discusses inherited and synthesized attributes of grammar symbols. Some of Section

7.4 discusses function calls, which we are not concerned with yet. Try to understand

it now, and then we will re-read it later when we introduce function calls into our

compiler.

For information on hash tables, read the chapter or section on hash tables in the

textbook you used in Coms 262.
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Preliminaries

Copy the folder Lab 07 from the Compiler Design CD to your folder. Also, copy

the files tokens.lex, grammar.cup, Err.java, and Warning.java from your Lab 06

folder to your Lab 07 folder.

7.1 Introduction

The main purpose of this lab is to introduce the symbol table, the table in which all

the identifiers are stored along with information about them. Since the symbol table

is rather complicated, I have written nearly all the code. You main job in this lab

will be to understand how the code works.

The compiler will interact with the symbol table in two fundamental ways. When

a variable is declared, the compiler will enter it as a new entry in the symbol table.

When a variable is referenced in an expression, the compiler will look it up in the

symbol table to retrieve necessary information about it, such as its data type.

This lab will also introduce (non-trivial) semantic actions. Up to this point, the

only actions taken by the parser in response to matching grammatical patterns has

been to announce that the pattern was matched. Now it will have to respond in a

more substantial way to declarations of variables and uses of variables in expressions.

7.2 The Symbol Table

Each identifier in a program has various attributes associated with it. For example,

a variable has a name, a type, and a memory location. (Of course, it also has a

value, but that is not determined until run time.) All information associated with

the identifiers is organized in a symbol table. The symbol table consists of a collection

of IdEntry objects. Each IdEntry object stores all information relevant to a single

identifier.

When an identifier is first found, an IdEntry object is created and placed in the

symbol table. The symbol table is built in levels, according to the levels at which

the identifiers are declared. Level 1 contains reserved words (keywords). This will

be explained in more detail later. (Reserved words are not really identifiers.) Level

2 contains global variables, including function names. In C, all functions are global.

Level 3 contains local variables. Levels beyond 3 contain variables that are declared
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within blocks within functions. At the present time, all of our identifiers are global.

We will not have local variables until we introduce functions in Lab 11.

When the program enters a new block (by encountering a left brace), a new level

is created in the symbol table. Any variables declared at that level are placed in this

level of the symbol table. When the program exits a block (by encountering a right

brace), the corresponding level of the symbol table is disposed of; those variables no

longer exist.

7.3 The IdEntry Class

Open the file IdEntry.java to see what the data members are. The member name is

the identifier value, i.e., the string that was found in the source file. The member type

is the data type. For the time being, this will be int. In Lab 10, we will introduce

the double type. The member blockLevel is the level at which the identifier was

defined: level 1 for reserved words, level 2 for globals, level 3 for locals, and so on. The

member scope is either GLOBAL, LOCAL, or PARAM. The member offset will be used

later when we introduce function calls. It represents the position of a local variable

or parameter in the activation record on the run-time stack.

The IdEntry class includes a toString() function. In Java, whenever an object

is sent to the println() function, that object’s toString() member function is

automatically invoked. We include the function here for debugging purposes. To

help follow what is happening, we may want to print an IdEntry object. If you want

less IdEntry information displayed, you may modify this function.

7.4 The Hashtable and LinkedList Classes

The various levels of the symbol table could be implemented individually as linked

lists. Instead, we will implement them as hash tables in order to speed up access

to the elements and to give ourselves come experience with using hash tables. Java

provides a complete Hashtable class. Go to the Java web page and read about the

Hashtable class. The class is found in the java.util package. Note the functions

put() and get(). These functions will allow us to put identifiers in the table and

later retrieve them. Hold on to that page; you will need it again in a few minutes.

You may want to read later the full description of hash tables in the introductory

part of the Hashtable web page.
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Since levels 3 and above of the symbol will be created and destroyed as we enter

and exit functions, we need to be able to create and destroy the various hash tables.

To do this, we will implement the symbol table as a linked list of hash tables. The

highest level, which will always be the current level, will be at the head of the list.

When we move back down to the next lower level, we will destroy this table. The

previous table will then move to the head of the list and become the current table.

This is as it should be. For suppose a variable count is declared as a global

variable and then later declared as a local variable to a function. If we encounter a

use of count within the function, it should refer to the local variable, not the global

variable. Our compiler will work this way if it searches the hash table that is at the

head of the list first. If it fails to find the identifier there, it should search the next

hash table, and so on.

To implement this linked list of hash tables, we use Java’s LinkedList class. Go

back to the Java web page and read about the LinkedList class. Note the functions

addLast(), removeLast(), and get(). These functions will allow to add and remove

hash tables from the list and to get a particular hash table from the list.

7.5 The SymbolTable Class

Now we get to the heart of the matter: the SymbolTable class. Open the file

SymbolTable.java. As expected, class variables include a LinkedList called idTable

and a variable level that keeps track of the current block level. There are three more

variables (dclSize, fArgSize, and retType) which will be used later when we im-

plement function calls.

The structure of the symbol table is shown in Figure 7.1 (supposing we had 3

levels defined):

The SymbolTable class includes eight functions:

• init()

• initResWords()

• installResWord()

• enterBlock()

• leaveBlock()
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Hashtable Hashtable Hashtable Hashtable

Level 0
(null)

Level 1 Level 3Level 2

idTable

Figure 7.1: The symbol table

• install()

• idLookup()

• idDump()

The function init() initializes the symbol table by creating the linked list and putting

a null entry at level 0. The function initResWords() installs the reserved words by

calling on installResWord() once for each reserved word. Right now we have only

one keyword: int. Later we will install other reserved words as they are needed.

Take a minute to look at the functions initResWords() and installResWord().

They are very simple.

Why install reserved words in the symbol table, as though they were identifiers?

The sole purpose for doing this is to simplify the lexer, which speeds up the process

of lexical analysis. If we had the lexer detect each reserved word on its own, the

DFA transition table would become quite large. Instead, we let the lexer first find

the reserved word as an identifier. Then it is looked up in the symbol table. If it is

found, then the block level is checked. If the block level is 1 (reserved word), then the

identifier must be a reserved word. Clever! This also prevents the use of a keyword

as an identifier.

The enterBlock() and leaveBlock() Functions

When the compiler enters a new block, the block level should be increased by 1. When

it leaves a block, the block level should be decreased by 1. In addition to adjusting

the block level, the function enterBlock() must create a new hash table in the linked
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list of hash tables. The function leaveBlock() must destroy the most recent hash

table in the list.

Read the code for enterBlock(). See that it increments level, creates a new

hash table, and adds it to the end of the linked list. Now look at the function

leaveBlock(). This is just as simple as enterBlock() since all we have to do is

to destroy the top-level hash table and decrement level. Write the body of this

function now.

The functions install() and idLookup() are a little more complicated.

The install() Function

This function has two parameters, which are the identifier as a string and the block

level at which it should be installed. If the block level parameter is 0, then the

identifier is installed at the current level level, whatever that may be. Otherwise, it

is installed at the specified level.

The second part of the function gets the hash table at the specified level from the

linked list.

The third part creates a new IdEntry object, assigns to it the currently known

information, and puts it in the hash table. As more information about the object

becomes available, we will look it up in the table and add the information. This

function uses the Hashtable functions get and put(). Be sure to read about these

functions on the Java website. What does get() return if the object is not found?

The idLookup() Function

The purpose of the idLookup() function is to look up the name of an identifier in

the symbol table. If the identifier is found, then the function will return a reference

to the IdEntry object in the table. Otherwise, it returns null.

The parameters of idLookup() are

(String s, int blkLev)

Obviously, s is the name of the identifier. The parameter blkLev is the block level at

which the identifier is defined. If a positive value is passed, then idLookup() will look

for the identifier at that block level only. If the value 0 is passed, then idLookup()

will search through all block levels, beginning with the current (highest) level. In

either case, if idLookup() cannot find the identifier, then it returns null.
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7.6 Reserved Words and the Lexer

The reserved words are the keywords in the language. We could have designed the

lexer to find the keywords and return the appropriate token. However, that would

have made the lexer far more complex. True, it would be simple enough to type

the keywords in the JLex file and let JLex handle it, but the lexer itself would be

unnecessarily complicated, thereby slowing down the compiler.

The standard approach to handling keywords is to enter them into the symbol

table at level 1, just below the global variables and functions, along with their token

values. This is done before the lexer is started. Then later when the lexer locates an

“identifier,” it will first check level 1 of the symbol table. If it finds the “identifier”

there, it will return the associated token from the table instead of the identifier token.

This is more efficient than designing a complicated lexer. Furthermore, it is very easy

to maintain the program in the event that we want to add a new keyword.

Open the files token.lex and YylexFunction.lex. Copy and paste the contents

of YylexFunction.lex into the directive section of token.lex. Now you will have

two additions to token.lex: a Yylex class variable lineNum and a Yylex class func-

tion lookup() defined. The variable lineNum keeps track of the current line number.

In the file tokens.lex, add the action

lineNum++;

as the action to take when the newline character is matched. Now read the code for

the function lookup() and see that it looks up an identifier and takes the appropriate

action if it is found in the reserved-word part of the symbol table. This function is

called in the lexer action associated with identifiers later in the file. Change the action

for the identifier pattern so that it simply calls lookup() and returns to the parser

the value returned by lookup().

At this time, remove the patterns int, double, if, else, return, read, and print

from the lexer and have them installed in the symbol table by the initResWords()

function of the SymbolTable class.

7.7 The Parser

In the file grammar.cup, we will implement actions for the following productions:

glbl ::= dcl
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dcl ::= type ID SEMI

type ::= INT

expr ::= lval

lval ::= ID

In what follows, modify the actions for only these productions. The nonterminal dcl

represents a declaration. The nonterminal type is a data type (so far, only int). And

the nonterminal lval represents an l -value, i.e., an expression that is permitted to

appear on the left side of an assignment. In our compiler, that will probably be only

an identifier, but in C l -values include array members (e.g., a[i]), pre-incremented

objects (e.g., ++n), dereferenced pointers (e.g., *p), as well as a number of other

expressions. In C++ it also includes function calls if the function returns a value by

reference.

As we add to our compiler later, we will expand these productions. For example,

we will add

type ::= DOUBLE

and we could add

lval ::= ID LBRACK expr RBRACK

for references to array elements.

In productions involving the symbol table, we will soon add semantic actions. Se-

mantic actions are actions that give semantic meaning to the grammar rules. To

keep things orderly, we will relegate most of our semantic actions to a Java file

SemanticAction.java. The SemanticAction class will contain as its member func-

tions the actions to be taken for each of the grammar rules (whenever action is

required).

Now let’s look in SemanticAction.java to see what the actions are. There are

two functions: id() and dcl(). It will be convenient whenever possible to name the

functions after the corresponding grammar symbols. Let’s look at the dcl() function

first, because a variable must first appear in a declaration before it is used in an

expression.

This function looks up the identifier in the symbol table. If it is there, a (non-

null) reference to the IdEntry is returned. That should be an error since an identifier

should not be declared more than once. If it is not there, then a null value is returned.
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In that case, the identifier is installed in the symbol table at the current level and

some of its attributes are recorded.

Now look at the id() function. This function will be called when an identifier is

encountered outside of a declaration. In this case, the variable should already have

been declared and entered in the symbol table. If it hasn’t, then an error message

is printed and the identifier is installed at the current level, but with no attributes

other than its name and current block level. (Nothing else is known about it.)

7.8 The Ops.java File

The purpose of the file Ops.java is just to define a number of symbolic constants

that will be used elsewhere. In C this would have been done in a header file. This file

will define the different possible scopes, which so far is only global, and the different

possible object types, which so far is only int. Later we will add quite a bit more to

this file.

7.9 Running the Program

We are just about ready to test the program. There is only one file left to look at.

Open the file TableBuilder.java. This contains the main function that gets the

whole process started. It is very simple. It calls on init() to initialize the symbol

table. Then it calls on enterBlock() to bump the level from 0 to 1 and create the

level-1 hash table. Then it calls initResWords() to install all of the keywords. Then

it calls enterBlock() again to bump the level from 1 to 2 for the globals. Only then

does it start up the parser, which starts up the lexer. It creates an instance of the

parser and then tells it to begin parsing. If anything goes wrong during parsing, then

the try block fails and turns control over to the catch block, which prints an error

message.

After the catch block, note the call to the SymbolTable class function idDump().

We will get back to that shortly.

Now we will build the program. First, use JLex to process tokens.lex, producing

tokens.lex.java and copy it to the file Yylex.java.

Next, we must use CUP to process the file grammar.cup. Type the command

$ java java_cup.Main -expect 4 < grammar.cup



80 LABORATORY 7. THE SYMBOL TABLE

This produces the two files parser.java and sym.java.

It is important that the files Yylex.java, parser.java, and sym.java are all

created before any of them are compiled since they depend on each other.

Now we should compile all of our Java files. Compile Yylex.java, parser.java,

sym.java, IdEntry.java, SymbolTable.java, Ops.java, SemanticAction.java, and

TableBuilder.java. Do you see the benefit of using makefiles?

Run the program by typing

$ java TableBuilder

The first thing that appears is some messages informing us what the block level is

and that keywords have been added to the symbol table.

Now, one by one, type the following lines and note the output.

int a;

int b;

int main()

{

a = b + 2;

b = a*(a - 1);

}

These lines are all correct, so there should be no error messages. Now enter some

lines containing undeclared variables and redeclared variables.

int a;

int b;

int a;

int main()

{

c = a + b;

}

Were error messages printed? Why not?
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7.10 Semantic Actions

Now we will add semantic actions associated with the symbol table. At the present

time, the action associated with each production is to print the production being

applied, for debugging purposes. In the cases of identifiers, let’s enhance the output

by printing the value of the identifier. First, we must declare the ID terminal to be

of String type. Do that in the terminal statements. Change the line to read

terminal String ID;

While you are at it, in the same manner declare the nonterminal type to be of

Integer type. We will need that soon.

In the productions listed above in which ID or type appear on the right side,

introduce a variable associated with them. For IDs, this variable will automatically

take on the value that was placed in the Symbol object by the lexer. For example,

for the ID terminal, you should replace ID with ID:i. Now i is a String variable

whose value is the value of the ID token. Do a similar thing with type. We will

see shortly that nonterminals, such as type, get their values from their productions.

These values may now be used in the semantic actions.

With the production

type ::= INT

add the action

RESULT = new Integer(Ops.INT);

The value assigned to RESULT is automatically passed to the nonterminal on the

left side of the production. Therefore, type will take on the value Ops.INT, which is

an Integer. That is why we declared type to be an Integer in the nonterminal

statement above.

With the production

dcl ::= type:t ID:i SEMI

add the action

SemanticAction.dcl(i, t);
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Do not remove the output statement that is already there. Note that i and t, the

values of ID and type, are passed as parameters.

The actions of these two productions differ in two important ways. First, one

calls a semantic action function and the other does not. Second, one returns a value

through RESULT and the other does not. We will see numerous examples of each

type. Generally, we will write a special semantic action function if the action is at all

complicated. Otherwise, our CUP file would be too hard to read.

We see that the RESULT mechanism allows the attribute Ops.INT to be inherited

by the terminal ID from the nonterminal type. (The actual transfer takes place in

the dcl() function.) This is how CUP is able to handle inherited and synthesized

attributes.

Finally, with the production

lval ::= ID:i

add the action

SemanticAction.id(i);

Also, in the output statement in that action part, have it print the name of the

identifier.

Rebuild the program and run TableBuilder again, using the same input as above,

including the errors:

int a;

int b;

int a;

int main()

{

a = b + 2;

b = a*(a - 1);

c = a + b;

}

Read the output and be sure that you understand it all.
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7.11 Handling Syntax Errors

What happens if a grammar rule is violated? Let’s try a couple of examples to find

out. First, let’s use an invalid token. Run the program and enter

int a;

int b;

int main()

{

a = b # 2;

}

Second, let’s enter a line with correct tokens, but with invalid syntax. Run the

program and enter

int a;

int b;

int main()

{

(a + b) = 2;

}

Notice three things about the output. First, a message

Syntax error

Couldn’t repair and continue parse

appears. This appears nowhere in our code, so it must have been generated by CUP.

(It was.) The second error message

Error: (line 5) Syntax error

which we should recognize as the one we wrote in the catch block in the main function

of the TableBuilder class. Finally, note that the function idDump() was called, even

though there was a syntax error. This indicates that the try/catch blocks work as

expected, preventing the program from crashing.
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7.12 Assignment

The SymbolTable class function idDump() currently does nothing except print a line.

Its purpose is to display all the contents of the symbol table. There is a Hashtable

member function elements() that can be used to display the elements of the hash

table. It returns an Enumeration object. Look up the Hashtable class and the

Enumeration interface on the Java website, read about them, and figure out how to

use them to display the contents of all levels of the symbol table. In the section on

the Enumeration interface, there is an excellent example that shows how to print the

values contained in a vector.

Zip the files tokens.lex, grammar.cup, IdEntry.java, SymbolTable.java,

Ops.java, SemanticAction.java, TableBuilder.java, and Makefile in a folder

named Lab 07 and drop it in the dropbox.



Laboratory 8

The Abstract Syntax Tree

Key Concepts

• Abstract syntax trees (AST)

• l -values and r -values

• Dereferencing l -values

• Trees and tree nodes

• The mode of an expression

• Inherited and synthesized attributes

Before the Lab

Read Sections 5.2 and 5.6 of Compilers: Principles, Techniques, and Tools. Section

5.2 introduces the basics of abstract syntax trees. Section 5.6 may be tough going,

but that material will be explained further in later labs. Try to get what you can

from it now.

Preliminaries

Copy the folder Lab 08 from the Compiler Design CD to your folder. Copy the files

IdEntry.java, Ops.java, SymbolTable.java, tokens.lex, grammar.cup, Err.java,

and Warning.java from your Lab 07 folder to this folder.
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ASSIGN

ID
tri_area DIVIDE

NUM
2TIMES

DEREF

ID
base

DEREF

ID
height

Figure 8.1: An example of an abstract syntax tree

8.1 Introduction

The purpose of this lab is to create and print an abstract syntax tree for a C program.

The C program will use only a small subset of the grammar we introduced in Project

2.

As an example of a syntax tree, consider the statement

tri_area = (base * height)/2;

The root node is an assignment operation. Its left subtree is a pointer to tri area.

Its right subtree represents the expression (base * height)/2. The tree looks like

the tree in Figure 8.1.

The program TreeBuilder.java in this lab will display it in the form

ASSIGN INT

ID PTR|INT value = "tri_area"
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DIVIDE INT

TIMES INT

DEREF INT

ID PTR|INT value = "base"

DEREF INT

ID PTR|INT value = "height"

NUM INT value = 2

In this display, each node is followed by its left subtree and then its right subtree,

indented one tab stop. Notice that base and height are dereferenced, but tri area

isn’t. That will be explained next.

8.2 Pointers, l-values, and r-values

While we will not formally introduce pointers into our C programs, we should be aware

that ordinary variables are pointers in the sense that in a machine instruction they

hold the address of the value rather than the value itself. In a machine instruction,

it is possible to use the value instead of its address only if the value is a constant, in

which case it is built into the instruction as an immediate operand.

That is why the variables must be dereferenced if their values are to be used. It

is also the difference between an l -value and an r -value. An l -value is an address to

which a value may be assigned. An r -value must be dereferenced to produce its value.

When the value is assigned to an l -value, it is stored at the address of the l -value.

The previous value of the l -value is irrevelant, so it makes no appearance in the code.

That is, there is no need to dereference an l -value.

That is why, in the above example, tri area is not dereferenced, but base and

height are.

8.3 Tree Nodes and the TreeNode Class

A tree node will be implemented by the TreeNode class. If a tree node is an interior

node, then it will contain an operator that acts on the left and right subtrees. The

operator will have a mode, which will be the data type involved in the operation. For

example, if the mode of an assignment operator is INT, then the operator will assign

an int to an int. If a tree node is an exterior (leaf) node, then it will contain an
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object, which will be an identifier or a number (and later a string). The mode of

an exterior node will be the kind of object stored in that node. For example, if the

object is an integer variable (l -value), then the mode will be a pointer to an INT. If

the object is an integer constant, then the mode will be INT.

Open the file TreeNode.java. This file defines the TreeNode class whose objects

have the following attributes: the operation (oper) represented by the node, the

mode (mode) of the operation, a reference to the left subtree (left), a reference to

the right subtree (right), the identifier (id) represented by the node, the number

(num) represented by the node, and the string (str) represented by the node.

If the node is a binary interior node, then left and right will be non-null, and

id, num, and str will be undefined. On the other hand, if the node is an exterior

node, then left and right will be null, while exactly one of id, num, and str will

be defined, depending on the kind of exterior node. From time to time, we will have

unary interior nodes. They will always use the left subtree rather than the right

subtree.

Note the types of the data members oper, mode, left, right, id, num, and str.

Also, one constructor

public TreeNode(IdEntry i)

and the toString() function have been defined. You will define three additional

constructors. First, define the default constructor:

public TreeNode()

It should set oper, mode, and num to 0 and left, right, id, and str to null.

Next, define the following constructor.

public TreeNode(int op, int m, TreeNode l, TreeNode r)

The purpose of this constructor is to join together two existing trees, with root nodes

l and r, as the left and right subtrees of a new tree with this node as its root node.

In the root node, the value of oper should be op and the value of mode should be m.

Finally, define the constructor

public TreeNode(int n)

It will create a node that represents a number. The member oper should be Ops.NUM,

mode should be Ops.INT, and num should be the value of n.

Write these constructors. We will use these constructors later in this lab.
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8.4 The Ops Class

Open the file Ops.java. The Ops class does nothing but define a number of constants.

It is similar to the file sym.java, except that the sym class defines the tokens from

the parser. The Ops class defines the operations that may appear at tree nodes. The

order in which the operators are listed is arbitrary. As examples, the ERROR and

ALLOC values have been defined as

public static final int ERROR = 0;

public static final int ALLOC = 1;

The entire list is

ERROR

ALLOC

ID

NUM

PLUS

MINUS

TIMES

DIVIDE

MOD

NEGATE

ASSIGN

DEREF

READ

PRINT

PRINT and READ represent our pseudo-keywords read and print. Type in the re-

maining operators, assigning them numerical values in sequence. Some of these are

terminals and some are tokens, but this list is not the same as the list of terminals or

the list of tokens. This is a list of operations that may appear in the syntax tree.

Two other groups of constants are defined. In the first group, each constant

represents the scope of a variable: global, local, or parameter. The constants GLOBAL,

LOCAL, and PARAM are defined with the values 0, 1, and 2, respectively.

The final group of constants represents the types of objects. Right now the only

type is INT. The constant PTR is also defined so that an identifier can be a pointer to

an int.
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8.5 The TreeOps Class

Open the file TreeOps.java. This file will be used primarily in the Utility class, to

be discussed soon.

The TreeOps class has three class constants LEAF NODE, UNARY NODE, and BINARY NODE,

representing various types of tree nodes: leaf nodes (no children), unary nodes (one

child), and binary nodes (two children).

A TreeOps object has three data members:

int opcode;

String opstring;

int kind;

The integer opcode is a value from the list defined in Ops.java. The string opstring

is a readable string version of the opcode. It will be used when the opcode needs to be

printed in a readable form. The integer kind will store the kind of node: leaf, unary,

or binary. This class creates the data type, but does not instantiate any objects.

That will be done next in the Utility class in the array opInfo[].

The TreeOps class has a constructor and two functions that return information

about an identifier. The function baseType() returns the fundamental data type of

an identifier, e.g., INT. Later it will also return the type DOUBLE.

The function baseSize() returns the size, in bytes, of the fundamental data type.

The size of an INT is 4. Later, it will also return 8 for the type DOUBLE.

Take a minute to look at these two functions to see how they work. Note especially

how the binary “and” operator & is used to mask out the pointer bit, leaving only

the bit for the base type.

8.6 The Utility Class

Now open the file Utility.java. At the beginning of the class, just before the first

printTree() function, define an array of TreeOps objects named opInfo. Each

element should be a TreeOps object whose values are the opcode (as defined in

Ops.java), the string equivalent of the operator’s name (matching the constant names

in Ops.java), and an integer representing the kind of node (LEAF NODE, UNARY NODE,

or BINARY NODE).

For example, the array members for ERROR and ALLOC are
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new TreeOps(Ops.ERROR, "ERROR", 0),

new TreeOps(Ops.ALLOC, "ALLOC", TreeOps.BINARY_NODE)

The constant ERROR is a special case, since it does not represent an actual tree node;

the constant ALLOC is more typical.

Add entries for the remaining node types that were listed in the Ops class.

8.7 Printing the Abstract Syntax Tree

Once a statement has been completely parsed, the syntax tree will be printed. This

is also handled by the Utility class.

Each tree will be printed recursively. After all, a binary tree is a naturally recur-

sive structure. First, we need a function printTree() that gets the process started.

It takes one parameter: a TreeNode object. A second printTree() function makes

recursive calls to itself. It takes two parameters: a TreeNode object and the indenta-

tion level. Thus, the nonrecursive printTree() function should make the call

printTree(t, 0);

to the recursive printTree() function. When the recursive printTree() function

makes a recursive call, the indentation level will be increased by 1.

The recursive printTree() function is fairly simple. Its basic structure is exactly

what you would expect of a recursive function that traverses a binary tree. It first

checks whether the node is null, to be safe. Then it prints the current node, using

the function printNode(), to be discussed shortly. It increases the indentation level

and then makes the recursive calls. If the node is a binary node, it makes calls for

the left and right subtrees, in that order. If the node is a unary node, it makes a call

only for the left subtree. If the node is a leaf node, it makes no recursive call.

The function printNode() receives a TreeNode object and prints one line of out-

put for that node. It prints the opcode (string version, found in the opInfo[] array)

and the mode. For example, if the node represents an integer variable, the function

should print

ID PTR|INT

There are two special cases concerning leaf nodes. Depending on whether the node is

an identifier node or a number node, we should also print the value of the identifier
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or the number. For example, nodes for the integer variable count and the number

123 would be displayed as

ID PTR|INT value = "count"

NUM INT value = 123

respectively.

I have included a function printType() that will print the data mode of a node,

given the type data member of the TreeNode. Notice how it uses bitwise operators

to test the bits of the integer type.

8.8 Semantic Actions

In the previous lab, we provided semantic actions for those productions in grammar.cup

that involved declarations and the symbol table. Now we will add semantic actions

for a few more productions.

Open the file grammar.cup. Every production should have an output statement

that displays the production. These are enormously helpful in debugging the compiler.

Once we are satisfied that things are working properly, we should comment out the

output statements. Do not remove them. We may need to uncomment them later as

we add more productions to the grammar and new errors occur.

Now open the file SemanticAction.java. We will add seven new functions:

arith()

assign()

deref()

mod()

negate()

print()

read()

The function arith() covers addition, subtraction, multiplication, and division. Since

the tree has exactly the same form in each of these operations, only one function is

needed for them. The function mod() handles the mod operator %. It is different from

the other arithmetic operators since it applies only to ints. The function assign()

handles assignments. The function deref() will dereference a variable. The function

negate() handles the operation of negating an expression.
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NUM
INT

Figure 8.2: A number tree

We will provide two other functions, read() and print(), that will read and

print, respectively, an integer variable. When we generate code, these two functions

will allow us to input and output values in order to test our programs better.

The purpose of each function is to build its part of the tree, printing the tree as

necessary. We will discuss how to write each of the eight functions listed above. We

will begin with a case so simple that it doesn’t require a function.

8.9 The NUM Case

The token num() should cause a NUM tree to be constructed. The form of a NUM tree

is shown in Figure 8.2.

The mode must be Ops.INT.

We will modify the grammar accordingly. In the file grammar.cup, declare the

nonterminal expr to be of the TreeNode type and the terminal NUM to be of type

String. Then modify the action part of the production

expr ::= NUM:n

to be

RESULT = new TreeNode(Integer.parseInt(n));

Now the TreeNode that is returned by RESULT will be assigned to the expr nonter-

minal.

To test this, let’s make a modification. We can restore it to the above form once we

are sure that it is working. Replace the above statement with the following sequence

of statements:

TreeNode t = new TreeNode(Integer.parseInt(n));

Utility.printTree(t);

RESULT = t;
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Clearly, we are just inserting a call to printTree() in order to see the result.

Now test this by building TreeBuilder and running it with the test file testfile.c.

This file contains a simple (and pointless) C program that uses each of the syntactic

structures covered in this lab. At this point, TreeBuilder should print a NUM tree for

each integer constant that it encounters in the program.

As you add the other functions to SemanticAction.java, pause after each one,

build TreeBuilder, and test it on testfile.c. When this lab is done, be sure to

remove all the extraneous calls to Utility.printTree().

8.10 The id() Function

We must revisit the id() function because now it must return a tree containing a

single ID node. Currently, the id() function looks up the identifier in the symbol

table. If it is not there, it prints an error message and then installs the identifier as

an integer at the current level.

Now we need id() to create an ID TreeNode and return a reference to it. Make

the following changes:

• Change the return type from void to TreeNode.

• Just before returning, add the statement.

TreeNode t = new TreeNode(p);

This will create a TreeNode from the symbol table entry p (an IdEntry object)

that was returned by idLookup(). Look in the file TreeNode.java to see what this

TreeNode constructor does. In particular, note that the mode is set to

i.type | Ops.PTR

For the time being, i.type is Ops.INT. Look in the file Ops.java to see the values

of Ops.INT and Ops.PTR. What value do we get when we “or” them together? This

is our method of recording the fact that the mode of the node is “pointer to int.”

Now continue by doing the following.

• Add a call to printTree() to print the ID tree.

• Modify the return statement so that it returns t.
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ALLOC
type

ID
type|PTR

NUM
INT

Figure 8.3: A declaration tree

• In grammar.cup, make the nonterminal lval of the TreeNode type.

• In the production

lval ::= ID:i

change the action to

RESULT = SemanticAction.id(i);

Test the id() function by running TreeBuilder with the testfile.

8.11 The dcl() Function

We also need to revisit the dcl() function. The change here is a little more sub-

stantial. The purpose of a declaration is to allocate memory for an object, so this

function must build an allocation tree as shown in Figure 8.3.

This is our first real “action” tree, i.e., a tree whose root node represents an

operation. The number in the right subtree is the number of bytes of memory required

by the identifier in the left subtree. The mode of the ID node is the type of the

identifier, as seen in the declaration statement, “or”-ed with Ops.PTR to make it a

pointer to that type. On the other hand, the mode of the ALLOC node is simply the

type of the identifier. The statements needed to build this tree are

TreeNode t1 = new TreeNode(id);

TreeNode t2 = new TreeNode(TreeOps.baseSize(id.type));

TreeNode t = new TreeNode(Ops.ALLOC, id.type, t1, t2);
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DEREF
mode

e.oper
e.mode

Figure 8.4: A dereference tree

The first tree t1 represents the identifier. The second tree t2 represents the number

of bytes of memory required by the identifier. Note that its num data member is set

to the size of the base type of the identifier. Then an allocation tree is created with

t1 and t2 as its subtrees. The IdEntry object should be returned by dcl().

The return type of dcl() should now be IdEntry. Make these changes. In the

CUP file, make the nonterminal dcl of the IdEntry type. Also, change the action

associated with the production

dcl ::= type:t ID:i SEMI

so that it assigns the value returned by dcl() to the nonterminal dcl.

There is one more thing dcl() should do before returning. It should print the

tree. The statement to do this is

Utility.printTree(t);

Add this statement to dcl() and then test it using the testfile.

8.12 The deref() Function

Recall that an l -value must be dereferenced before it can be used as an r -value. The

deref() function receives a tree that represents an expression and creates a tree with

the dereference operator at the root node and the expression as its left subtree. See

Figure 8.4.

The DEREF operator should be applied only to an identifier. (In C it could also

be applied to an array element or an expression such as ++n, but those are not in
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our grammar.) The mode of the DEREF node is the base type of the identifier. If the

identifier’s mode is PTR|INT, then the mode of the DEREF node is INT.

Write the deref() function. The deref() function should return a TreeNode.

Make the appropriate changes in the grammar file. This is accomplished by intro-

ducing the variable v to represent lval in the production

expr ::= lval

and then adding the action

RESULT = deref(v);

to the production. Add a printTree() statement and test the function with the

testfile.

8.13 Parenthesized Expressions

The action for the production

expr ::= LPAREN expr RPAREN

is trivial. The tree representing the expression tree on the right is simply passed on

to the expression on the left. Write the action for this production that will do that.

No special semantic action function is necessary.

8.14 The assign() Function

Next, we will write the assign() function. It receives two trees as parameters.

The first represents the destination variable. The second represents the value to be

assigned. This function should create one tree whose root node is an assignment

operator whose left subtree is the destination variable and whose right subtree is the

value. See Figure 8.5.

Again, using a TreeNode constructor, this is very easy. We must construct a

TreeNode with Ops.ASSIGN at the root. Its mode is the base type of the variable on

the left, not the expression on the right. Use the function baseType() to extract the

base type that is being assigned to v. Note that it is a synthesized attribute of the

assignment node. The function should return the new tree.
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ASSIGN
v.mode

ID
v.mode

e.oper
e.mode

Figure 8.5: An assignment tree

op
mode

e1.oper
e1.mode

e2.oper
e2.mode

Figure 8.6: An arithmetic tree

Right now, all objects are ints, so e is an int and v is a pointer to an int. Later,

when we introduce doubles, it will be possible that e will be a double and v will be

a pointer to an int, or e will be an int and v will be a pointer to a double.

Make the corresponding changes in the CUP file to the production

expr ::= lval ASSIGN expr

8.15 The arith() Function

Now we will write the arith() function. It has three parameters. The first is the

integer constant representing the operation; the other two are trees representing ex-

pressions. We need to create a single tree with these two trees as its left and right

subtrees and the arithmetic operator at the root node, as shown in Figure 8.6.

Using a TreeNode constructor, this is very easy. Write the function and modify

the grammar so that the tree node returned by arith() is assigned to the nonterminal

expr.
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MOD
INT

e1.oper
e1.mode

e2.oper
e2.mode

Figure 8.7: A mod tree

Later we will have to allow that the mode may be Ops.DOUBLE.

8.16 Assignment

Complete the set of functions by writing mod(), negate(), print(), and read().

Remove the calls to printTree() from all functions except dcl(), print(), and

read(). In the action associated with the production

stmt ::= expr:e SEMI

add the action

Utility.printTree(e);

because this marks the final stage in the development of that tree.

The functions negate() and mod() are similar to arith() and deref(). They

are arithmetic, but negate() has only a left subtree. You should be able to write

them without much trouble. The function mod() should create the tree shown in

Figure 8.7 and the function negate() should create the tree in Figure 8.8.

The functions print() and read() each have an argument that represents an

identifier. They should build the trees appearing in Figure 8.9.

In both cases, the mode of the root node is the base type of the identifier node.

Each of these two functions should print the tree.

Throughout all of these functions, use the base type wherever appropriate. Also,

be sure to dereference l -values whenever necessary.

This lab will serve as Project 3. Zip the files tokens.lex, grammar.cup, Err.java,

Warning.java, Id.java, Ops.java, SemanticAction.java, SymbolTable.java, TreeBuilder.java,
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NEGATE
e.mode

e.oper
e.mode

Figure 8.8: A negate tree

PRINT
v.mode

DEREF
v.mode

ID
v.mode

READ
v.mode

ID
v.mode

Figure 8.9: Print and read trees
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TreeNode.java, TreeOps.java, and Utility.java in a folder named Project 3 and

drop it in the drop box.
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Laboratory 9

Code Generation

Key Concepts

• Command-line arguments

• Post-order traversals

• Stack operations

• Addressing modes

• The gnu assembler

• printf() and scanf()

Before the Lab

Read Sections 9.1 and 9.2 in Compilers: Principles, Techniques, and Tools. Read

Chapter 3 in the Intel Developer’s Manual, Vol. 1.

Preliminaries

Copy all of the files in your Lab 08 folder into a folder named Lab 09. Copy the files

in the folder Lab 09 from the Compiler Design CD to your Lab 09 folder. This will

replace the makefile and will add the files CodeGenerator.java, compiler v1.java,

and the NewPrintTreeFunc.java.

103
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9.1 Introduction

In this lab we will finally create a working compiler. Our program, compiler v1.java,

will compile simple C programs into assembly code. If we invoke the gnu assembler,

we will obtain an executable program.

The subset of C that is handled by this compiler is very limited. All variables

must be global and they should be declared before main(). The program has exactly

one function, main(). We will implement our special read and print statements so

that our program can read and print integers. Therefore, a program that will print

the average of two integers should be written like this:

int a;

int b;

int average;

int main()

{

read a;

read b;

average = (a + b)/2;

print average;

}

The input and output of the program would appear as

Enter a: 8

Enter b: 16

average = 12

9.2 The compiler v1 Class

We will invoke our compiler by running the program compiler v1. This program

expects command-line arguments. The argument -t means to output the abstract

syntax tree. The argument -c means to output the assembly code. If we use both

arguments, we will get both outputs. That can be extremely useful when debugging.

For example, if we wanted to compile the program average.c, we would type
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$ java compiler_v1 -c < average.c

or if we wanted to compile the program and print the tree, we would type

$ java compiler_v1 -t -c < average.c

The order of -t and -c does not matter, provided they appear after the name of the

compiler and before the name of the source file.

How does compiler v1 know if there are command-line arguments? Open the

file compiler v1.java. At the beginning of the main() function there is a for loop

that uses args.length. The object arg is an array of Strings and it appears as the

parameter of the main() function. When a command is typed, the operating system

passes all command-line arguments as members of the String array arg. This idea

was taken from C, where the prototype of main() is

int main(int argc, char** argv);

In Java, arrays automatically come with a public member length. Thus, args.length

is the number of Strings in the array.

The for loop compares each argument to "-t" and to "-c". If there is a match,

then the corresponding boolean variable tree or code is set to true, for future

reference. Later, when printTree() is called, the Utility class checks the val-

ues of tree and code to decide what to output. Open Utility.java, look at the

printTree() function, and note that it uses compiler v1.code to decide whether

to call CodeGenerator.generateTreeCode() and that it uses compiler v1.tree to

decide whether to print the abstract syntax tree.

9.3 The Code Generator

The grammar and the semantic actions in this lab are the same as in Lab 8. What we

have added is a file named CodeGenerator.java. The CodeGenerator class contains

the functions that write the assembly code. Open the file CodeGenerator.java. The

primary function is generateCode(). It is called from other classes and it in turn

calls traverseTree(). The function traverseTree() will generate assembly code

for an entire abstract syntax tree. Since a tree is a recursive structure, this function

is recursive. It first generates code for the left subtree, then it generates code for the
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right subtree, then it generates code for the node. In other words, it performs a post-

order traversal of the tree, writing the code for each node. That is very important to

keep in mind as we consider how to write the assembly code.

Look at the function generateCode() and see that it distinguishes one special

case: ALLOC. This special case is not recursive, so we do not call traverseTree(). In

the future there will be a few more special cases. When a case is handled recursively,

at each level of recursion, the result of that operation is left on the stack to be used

at the next level up. That means that at the root node, the value will also be left on

the stack. This could be a problem in a for loop such as

for (i = 0; i < 1000000; i++)

a = a + 1;

since the 1000000 values assigned to a will be left on the stack, causing stack overflow.

Therefore, the last action in traverseTree() is to pop the final value of the tree to

avoid this problem.

Now look at the function generateNodeCode(). This is the function that writes

the assembly code for a single node. At this point, we have thirteen different types

of node (plus the error node). Let us look at each of these thirteen. I have arranged

them in alphabetical order in the program order to facilitate locating them. I suggest

that you maintain them in alphabetical order as we add more cases later.

9.4 Allocation

To allocate memory for a global, we write the assembly directive .comm, for common,

followed by the name of the global, followed by the number of bytes to be allocated.

The necessary information has all been stored in the tree, which makes it very simple

to write the assembly code. Pay careful attention to the way in which the name was

retrieved from the ID node in the syntax tree and the way in which the number was

retrieved from the NUM node. We will often have occasion to do that sort of thing in

the future.

For example, declaring the global a to be an int would be written in assembly

code as

.comm a,4
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This assembler directive will allocate 4 bytes of memory and associate the name a

with the address of this memory.

Notice that we print the line

# Code for ALLOC

This will be interpreted as a comment by the assembler, since it begins with #. It

is very helpful to have these comments written into the assembly code when we are

trying to debug it.

9.5 Identifier Nodes

The purpose of an identifier node is simply to load an address and push it onto the

stack. The following code does this.

# Code for ID, global = name

lea name,%eax # Load address of global

push %eax # Push address

where name is the name of the global identifier. Notice that we use the mnemonic

lea (load effective address) instead of mov (move). Had we written

mov name,%eax # Move value to eax

the effect would have been to move the value stored at name into register eax. That

is not what we want. However, if the value of name is needed, then the lea operation

will be followed by a dereference operation.

This example and the previous one make it clear that we must always be aware

of the exact effect of the assembly instruction. Are we operating on the value in the

register or on the value pointed to by the address in the register? Are we operating

on the address itself or on the value stored at the address? These distinctions are

very important.

9.6 The Dereference Operation

In a deference tree, the source address is stored in the left subtree; there is no right

subtree. The address should have already been pushed onto the stack. Therefore,

the assembly code for DEREF must first pop the source address, then push the value

stored at that address. The following two instructions will do this.
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# Code for DEREF

pop %eax # Pop address

push (%eax) # Push value at address

Notice that the parentheses are used to indicate indirect addressing. That is, (%eax)

is interpreted as “the value stored at the address in eax,” whereas %eax means “the

value stored in eax.”

Write the code for the DEREF case.

9.7 Testing the Compiler

In this lab, we will implement the operators in a logical order that allows us to test our

work as we go along. The print and read statements have already been implemented

to facilitate the testing of the other statements. Therefore, we can begin testing right

now in order to learn the test procedure and to see if our operations work so far.

Write the following program and save it as test1.c.

int a;

int main()

{

read a;

print a;

}

Now build the compiler using the makefile. Then type the command

$ java compiler_v1 -c < test1.c > test1.s

This will read the C program from test1.c and write the assembly program to

test1.s. Open the file test1.s to see what is there. (The extension .s is used for

assembly-language files.) If a lot of trace information was output to the file, then go

back into those files and comment those statements out. Do not remove them! They

will be very useful later on when we have to debug.

Now we will assemble the file test1.s. Type

$ gcc -o test1.exe test1.s
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The command gcc invokes the gnu C compiler. (The UNIX command is cc.) The

-o option means “output file,” and it designates test1.exe as the name of the out-

put file. If there were no error messages, then we now have an executable program

test1.exe. Let’s test it. The command to run test1.exe is

$ test1

However, the system does not know to look in this folder for executables. Therefore,

we must modify the PATH environment variable. Open the System control panel and

add the path “.” to the PATH variable. Recall that the dot means “the current

directory.” Also, it might be good to add the “.” at the beginning of the list of paths

rather than at the end so that if there is another executable out there with the same

name, it will find the one in this folder first. Close the Cygwin window and open a

new one so that this change will take effect.

Now run the program. The program should prompt you to enter a value for a.

Then it prints the value that you entered. We will follow this procedure at various

points in the lab, whenever we wish to test our work so far. But we must be sure

that our test program contains only operators that we have implemented.

Let us pause for a moment to fully take in what just happened. You just executed

a program whose code was produced by your compiler. That calls for a moment of

silent reflection. Reflect on the major milestones in your life: birth, marriage, death,

and the day you wrote a compiler that produced executable code. When you feel

ready, continue with the next section.

9.8 Numbers

We are now empowered. Let us push on. A number is an immediate value that should

be pushed onto the stack. The code to do this is

# Code for NUM

push $number # Push number onto stack

where number is a specific value. Note the use of $ to indicate an immediate value.

The value of number is stored in the node and must be written into this statement.

You will have to use the num field of the appropriate TreeNode object to get the value

of number. Write the code in the NUM case.

Before we can test this, we will need to encode assignment statements.
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9.9 The Assignment Operator

As the value of each subtree is computed, it is pushed onto the runtime stack. It

is the responsibility of the next tree node to pop it off the stack in order to use it.

At an assignment node, we have the destination variable in the left subtree and the

expression whose value is to be assigned to it in the right subtree. Therefore, we

may assume that the left subtree, an ID node, has produced code that will push the

address of the variable onto the stack. Similarly, the right subtree has pushed the

value of the expression onto the stack. Since the right subtree is processed after the

left subtree, the value will be on top of the stack, with the address of the variable

just under it.

Thus, the assignment node should

• Pop the value from the stack into a register.

• Pop the address of the variable from the stack into a register.

• Assign the value to the address of the variable.

• Push the value onto the stack

The assembly code should look like this:

# Code for ASSIGN

pop %eax # Pop value to be assigned

pop %edx # Pop destination address

mov %eax,(%edx) # Move value to destination address

push %eax # Push value onto stack

Enter this code into the ASSIGN case of the generateNodeCode() function. This

example should set the pattern for many of the following operations.

Notice that I have included in-line comments for each assembly instruction. It is

worth your time to type these comments since they will be an enormous help when

you are trying to understand or debug the compiler-generated assembly code.

Now we can test a program with simple assignment statements that assign num-

bers and variables to variables. Be sure to rebuild your compiler before trying a test

program.

Create a file test2.c that contains the following C program.
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int a;

int b;

int main()

{

a = 123;

b = a;

print a;

print b;

}

Compile this program (using compiler v1, not gcc!) and then assemble test2.s

(using gcc) and run test2.exe.

9.10 The Addition Instruction

An addition node needs to add the values of the left and right subtrees and push the

sum onto the stack. Since the left and right subtrees have already been evaluated,

their values should be the top two values on the stack. Thus, we should pop them,

add them, and push the sum.

Look up the add operator in the Intel Developer’s Manual, Vol. 2A. Write the

assembly code to pop the right operand into register eax, pop the left operand into

register edx, add edx to eax, and push the value in eax onto the stack. Be sure to

include the comment

# Code for PLUS

and write appropriate in-line comments for each line. For example, you might com-

ment “Pop right operand,” “Pop left operand,” “Add values,” and “Push result.” Be

brief, but informative.

Be sure to rebuild your compiler.

Create a file test3.c containing the C program:

int a;

int b;

int sum;
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int main()

{

read a;

read b;

sum = a + b;

print sum;

}

Test this program. If it works, then test other addition statements, such as

sum = a + b + 2;

and

sum = a + (b + 2);

9.11 The Subtraction Instruction

Subtraction is very similar to addition. Check the Intel Developer’s Manual, Vol. 2B,

for details on the sub instruction and write the assembly code for MINUS. You must be

careful with MINUS since subtraction is not commutative. That is, if the C statement

says a - b, then you must be careful to subtract b from a, not a from b. Write the

code for a subtraction node.

Create a test program test4.c that includes a subtraction operator. If it works,

then try statements such as

diff = a - b - 2;

and

diff = a - (b - 2);

to see if subtraction is left associative.

9.12 The Negation Instruction

A negation node needs to reverse the sign of the value on the stack and return it to

the stack. The neg opcode will negate an integer, so this is very simple. Look up

neg in the Intel Developer’s Manual, Vol. 2B, and write the code for the negation
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operator. Write a test program test5.c to test this operator. Test the precedence

of negation by combining it with other operators. For example, you might try

a = -b + 2;

to verify that the operator is applied only to b, not b + 2.

9.13 The Multiplication Instruction

Multiplication is tricky because the product, in general, occupies about twice as

many bytes as the two factors. For example, the product of two 2-byte integers is,

in general, a 4-byte integer and the product of two 4-byte integers is, in general, an

8-byte integer. The imul opcode is for multiplication of signed integers. (Be careful

not to use mul, which is for multiplication of unsigned integers.) It has various forms,

but the simplest one,

imul register

is designed to multiply the accumulator eax by the value in the specified register.

The product is stored in the 64-bit register pair edx:eax, with the high-order 4 bytes

of the product stored in edx and the low-order 4 bytes stored in eax. In our compiler,

we will assume that the product of any two 4-byte integers is another 4-byte integer,

or else the result will not be mathematically correct. (The value will “wrap around”

from 232 − 1 to −232.) Therefore, the assembly code is

# Code for TIMES

pop %eax # Pop right factor

pop %ecx # Pop left factor

imul %ecx # Calculate product

push %eax # Push product

Add this code to the TIMES case. Then create, compile, and run a program test6.c

that will test multiplication. Be sure to test the associativity and precedence of

multiplication over addition and subtraction.

9.14 The Division Instruction

Division is similar to multiplication. Read about the idiv operator in the Intel

Developer’s Manual, Vol. 2A. If we use the simple form
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idiv register

then the divisor is assumed to be in the specified register and the dividend is in the

64-bit register pair edx:eax. The division produces both a quotient and a remainder.

Read the manual to see exactly where they are stored.

You must be a little careful with the register pair edx:eax. Our compiler assumes

that the dividend is only 32 bits, even though edx:eax is 64 bits. Therefore, you

should load the dividend into register eax. However, it is not enough simply to clear

register edx. If the value in eax is negative, then the sign must be extended through

edx. This will require an instruction that converts a doubleword to a quadword.

Find the convert-doubleword-to-quadword instruction in the Intel Developer’s Man-

ual. When you write the assembly code, after loading the divisor and the dividend,

convert the doubleword eax to the quadword edx:eax, then divide and push the

quotient.

Write a test program test7.c. Be sure to check that the division was done in the

right order. That is, the expression a/b should divide a by b, not b by a. Also, test

the associativity and precedence of division.

9.15 The Mod Operator

The mod operator is similar to division, except that we want to keep the remainder,

not the quotient. Write the code for the mod operator. Then write a test program

test8.c that tests the mod operator. Be sure to include statements that test the

associativity and precedence of mod.

9.16 print and read Statements

In C programs, input is performed by calling the scanf() function and output is

performed by calling the printf() function. We have not incorporated function calls

into our compiler yet, so we cannot handle calls to scanf() or printf() in our C

source. Yet we would like to read and print integers. Therefore, we have introduced

the print and read statements into our compiler just so that we do that. The

statements

read a;

and
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print a;

will generate the assembly code necessary to make function calls to scanf() and

printf().

The form of the scanf() function call is

scanf("format", &var1, ..., &varn);

where var1, ..., varn is a list of variable names. The string format contains %d to read

an int, %c to read a char, %s to read a string, and %f to read a float. For example,

if you wanted to read two ints and a float (in that order), then format would be

"%d%d%f". We will use only %d. Furthermore, since our read statements read only one

variable, the format string parameter will be followed by just one variable parameter.

A read tree has READ at the root and an ID node as the left subtree. When the

left subtree is evaluated, the address of the variable is pushed onto the stack.

The format string and the address of the variable must be passed to the function

as parameters. Parameter passing on the x86 is done by pushing the parameters onto

the stack, in order from right to left, so that they will be popped by the function in

the correct order, from left to right. Therefore, the address of the variable must be

pushed first. But this was already done when the left subtree was evaluated. So we

need only push the format string onto the stack. This is done by creating the string

in memory and pushing its address.

The assembly code for the call

scanf("%d", &a);

would look like this:

# Code for READ

.data

L01: .asciz "%d" # Format string

.text

lea L01,%eax # Load address of format string

push %eax # Push address of format string

call _scanf # Call scanf

add $8,%esp # Pop parameters
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The assembler directive .asciz means a null-terminated ASCII string. (z = “zero”

for the null character at the end of the string.) It is stored in this very location, so

its address is given by the label L01.

The assembly code created for read also includes a call to printf() which will

print a prompt.

The printf() function call is handled similarly, except the variables are passed

by value and the format string may contain additional characters.

The assembly code for the call

printf("a = %d\n", a);

would look like this:

# Code for PRINT

.data

L02: .asciz "a = %d\n" # Format string

.text

lea L02,%eax # Load address of format string

push %eax # Push address of format string

call _printf # Call printf

add $8,%esp # Pop parameters

Again, the variable has already been dereferenced and its value pushed onto the stack

when the left subtree was evaluated, so that does not need to be done here.

Soon we will incorporate function calls into our compiler (version 3), so you should

try to understand what is going on here with scanf() and printf().

9.17 Assignment

Finish implementing all of the operations discussed above. The finished product will

be turned in as Project 4. Put all of your source files in a folder named Project 4,

zip it, and drop it in the dropbox. Congratulations! You have built a compiler!
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Laboratory 10

Floating-Point Numbers and the

Abstract Syntax Tree

Key Concept

• Casting types

Before the Lab

Read Sections 6.1 - 6.4 in Compilers: Principles, Techniques, and Tools.

Preliminaries

Copy the all files from your Lab 09 folder into a new folder named Lab 10.

10.1 Introduction

We have been using only one data type in our compiler so far in order to keep it simple.

Now we would like to introduce a second data type, double. We could introduce other

types, such as char, float, and short, but that would only take more time, with little

additional benefit. We will learn how different types are handled by working with just

the two types int and double. This will create the potential for mixed expressions,

including mixed assignment statements. In any situation where a particular type is

expected, we will have to check the actual type. If it is not the expected type, then a

type conversion will have to be performed or an error message will have to be printed.
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In this lab, we will build only the syntax tree. Before we can write the assembly

code, we must learn how the floating-point unit (FPU) works. All of that will be

done in the next lab.

10.2 Version 2 of the Compiler

Change the name compiler v1 to compiler v2 throughout your files. This is now

version 2.0 of our compiler. To find out in which files compiler v1 occurs, use

the grep command. It is designed to search files for text that matches a regular

expression. The form of grep is

$grep pattern files

Use compiler v1 for pattern and the wildcard * for files. Then make the change

in the files listed.

10.3 Introducing the double Keyword

Make sure that the keyword double has been entered into level 1 of the symbol table

so that the lexer will recognize it as a keyword, not an identifier.

In the grammar, the terminal DOUBLE must be included as a possible value of the

type nonterminal. Make sure that the production

type → DOUBLE

is in the file grammar.cup. Include a semantic action similar to the semantic action

for the production

type → INT.

In the file Ops.java, add the constant DOUBLE as

public static final int DOUBLE = 1 << 2;

This defines Ops.DOUBLE to be the integer with bit 1 set (binary 00000010). The con-

stant Ops.INT is already defined to be the integer with bit 0 set (binary 00000001) and

Ops.PTR is the integer with bit 5 set (binary 00100000). In SemanticAction.java,

in the dcl() function, you will see that when a node for a variable is created, its type

is set to
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id.type | Ops.PTR

where id.type is Ops.INT or Ops.DOUBLE. Thus, for int variables this value is binary

00100001 and for double variables it is binary 00100010. Later, in the baseType()

function, we wish to recover the value Ops.INT or Ops.DOUBLE from this value. We

will do this by “and”-ing the type with the value Ops.INT | Ops.DOUBLE (binary

00000011), which produces 00000001 for pointers to ints and 00000010 for pointers

to doubles, which are the values of Ops.INT and Ops.DOUBLE.

Therefore, the baseType() function in TreeOps.java should return the value

type & (Ops.INT | Ops.DOUBLE)

Make that change.

We must also change the functions baseSize() in TreeOps.java and printType()

in Utility.java. The baseSize() function currently returns only 4 for ints. Mod-

ify it so that it will also return 8 for doubles. The printType() function must also

be extended to handle doubles.

10.4 Semantic Actions

Most of the changes necessitated by the introduction of the double type will be in the

file SemanticAction.java. These changes will be of two types. One type of change

will be in mixed-mode expressions and assignments, where one type will be cast to

the other type to make the types compatible. The other change will be to use the

baseType() function when dereferencing a variable. Up to this point, we knew the

base type was int, so we could just say Ops.INT. Now it could be int or it could be

double, so we will have to call on baseType() to return the correct type.

Let us consider this file, function by function. First, let’s consider a function that

needs no change.

10.5 The dcl() Function

No changes are necessary, but notice that when this function creates an allocation

tree for a double, the number in the right subtree will be 8 instead of 4. That is

because the baseSize() function will return the size of a double. (If your dcl()

function does not use baseSize(), then make that change.)
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e.oper
e.mode

Figure 10.1: An uncast tree node

e.oper
e.mode

CAST
t

Figure 10.2: A cast tree node

Next, we need a function that will convert an object to a specified type. For this,

we introduce the cast() function.

10.6 The cast() Function

Recall that we are not yet actually changing types; we are only building a tree that

represents the operation of changing types. Later, when we write the assembly code,

we will see how types are actually changed. Thus, our job now is to create a CAST

node that represents the change.

First, in the file Ops.java, create a new constant CAST. Then in Utility.java,

add a new element

new TreeOps(Ops.CAST, "CAST", TreeOps.UNARY_NODE)

to the opInfo[] array. Note that it is a unary node.

Now we can write the cast() function. Given a TreeNode e of type e.mode and

a type t to which it should be converted, we need to convert the tree in Figure 10.1

to the tree in Figure 10.2

To do this, we create a new TreeNode with operator Ops.CAST, type t, and left

subtree e. (The right subtree is null). The statement
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new TreeNode(Ops.CAST, t, e, null)

will do that. However, what if the type of e is already the same as t? In that case,

there is no need to create a new tree node. In other words, if e.mode equals t, then

cast() should return e unchanged. Otherwise, it should return the new tree node

created by the above statement.

The cast() function will be used many times by other functions. Whenever we

need to cast a tree e to the type t, we call

cast(e, t)

and it will return the modified tree.

10.7 The arith() Function

The parameter list of this function is

(int op, TreeNode e1, TreeNode e2)

The type of the returned tree is Ops.INT unless either e1 or e2 is of type Ops.DOUBLE,

in which case the returned tree is of type Ops.DOUBLE. Thus, set mode to Ops.INT or

Ops.DOUBLE accordingly. Then the two subtrees must be cast as type of the returned

tree. (Recall that cast() does nothing if the subtree is already of the appropriate

type.) Thus, we should return the tree in Figure 10.3. The CAST nodes will appear

only if they are necessary. Add this to the arith() function.

10.8 The assign() Function

With an assignment operator, the r -value being assigned must be cast to the base

type of the l -value on the left. Thus, the function assign() should return the tree

shown in Figure 10.4.

Make this change in assign().

10.9 The print() and read() Functions

In the newly created tree node, the mode is no longer necessarily Ops.INT, but it is

the base type of the variable v. Make that change by replacing Ops.INT with

TreeOps.baseType(v.mode)

Make a similar change in the read() function.
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CAST
mode

oper
mode

e1.oper
e1.mode

e2.oper
e2.mode

CAST
mode

Figure 10.3: Casting an arithmetic operation

ID
v.mode

ASSIGN
v.mode

e.oper
e.mode

CAST
v.mode

Figure 10.4: Casting an assignment
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10.10 The mod() Function

The mod operator is different from the other arithmetic operators in that it must

have integer operands. The operator % is not defined for floating-point numbers.

Therefore, the action to be taken in the mod() function is to verify that both operands

are integers. If either is a double, then an error message should be displayed.

10.11 double Literals

Our program will not be able to handle double literals, that is, doubles written as

literal numbers such as 123.456. The reason for that is that the assembly language

accepts only integer literals as operands. If we introduce double literals as operands,

we would have to first store them as assembler constants in their hexadecimal form

and then refer to them by their memory address in the assembly instructions. That

is not too difficult since Java provides us with functions that we can use to convert

a double into a String representing the double’s hexadecimal form. But, like a

number of other things, it would just use up valuable time.

Therefore, in order to assign a numerical constant to a double, we will have to

assign an integer literal. The cast operation will convert it to a double and then it

will be stored. Thenceforth, operations on that number will be performed as doubles.

For example, to create the value 0.5, we could write

double x;

x = 1; // Converts 1 to 1.0 and stores it

x = x/2; // Performs floating-point division, creating 0.5

x = 1/2; // Performs integer division, creating 0

10.12 Testing the Compiler

Write simple test programs that include mixed-mode expressions where the left operand

is int and the right operand is double, and vice versa. Also test using statements

that assign a double to an int as well as an int to a double. Try reading and

printing doubles. Be sure that the CAST node is created whenever necessary, but

only when necessary.
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10.13 Assignment

Write test programs that thoroughly test your program. Make sure that the syntax

tree contains CAST nodes only when necessary. Then put all of your source files and

the makefile in a folder named Lab 10, zip it, and drop it in the dropbox.



Laboratory 11

Floating-Point Numbers and the

FPU

Key Concepts

• The x87 FPU

• The FPU stack

• Floating-point arithmetic

• Converting integers and doubles

Before the Lab

Read Chapter 8 of the Intel Developer’s Manual, Vol. 1.

Preliminaries

Copy all the files from your Lab 10 folder to a new folder named Lab 11. Copy the file

PrintRead.java from the Lab 11 folder on the Compiler Design CD to your Lab 11

folder.

11.1 Introduction

We begin with the most basic operations of load and store. Then we will consider

arithmetic instructions. The term load refers to moving data from somewhere else
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(usually memory) into a register. The term store refers to moving data from a register

to somewhere else. Therefore, to dereference a floating-point variable is to load its

value into the FPU, and to assign a floating-point value to a variable is to store the

value in memory. We need to consider every case in CodeGenerator.java that is

affected by the existence of floating-point numbers.

11.2 The ID and NUM Cases

The code associated with an identifier node simply loads the address of the identifier

and pushes it onto the stack. That has not changed.

In our compiler, numerical literals can be only integers. Therefore, a NUM node

cannot hold a double and there is nothing new to do.

11.3 The DEREF Case

The DEREF case loads a floating-point value into the FPU. The address is on the

stack, so we must pop the address from the runtime stack and then load the value

into register st(0) of the FPU. The instructions to do this are

pop %eax # Pop address

fldl (%eax) # Load value into FPU

The code currently written in the DEREF case is

pop %eax # Pop address

push (%eax) # Push value onto stack

which will push the dereferenced integer onto the stack. Notice that the two blocks

of code have the first instruction in common. Therefore, we should modify the DEREF

case so that it looks like

System.out.println(" pop %eax # Pop address");

if (t.mode == Ops.INT)

System.out.println(" push (%eax) # Push value onto stack");

else

System.out.println(" fldl (%eax) # Load value into FPU");

Modify the DEREF case in this way. Other cases will be modified in a similar way.
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11.4 The ASSIGN Case

The ASSIGN case stores a floating-point number from the FPU to memory. As with

DEREF, we must pop the address from the runtime stack. Then we store the value

that is in st(0) of the FPU at that address. The instruction that stores is

fstpl (%eax)

As with the DEREF case, we must use an if statement that distinguishes whether we

are storing an integer or a floating-point value. Using the DEREF case as a model,

modify the ASSIGN case so that it stores floating-point numbers.

11.5 The Arithmetic Operators

All of the cases PLUS, MINUS, TIMES, DIVIDE, and NEGATE are very simple since each

is performed by a single floating-point operation. Also, in operations involving only

floating-point numbers, the operands have already been placed on the FPU stack. If

there are two operands, then the left operand is in st(1) and the right operand is in

st(0). These are the registers that the floating-point operations are designed to act

on. For example, addition is performed by the instruction

faddp

This instruction will add st(1) and st(0), store the sum in st(1), and then pop

st(0) off the FPU stack, causing st(1) to move up to st(0). The other four oper-

ations are similarly performed by the instructions

fsubrp

fmulp

fdivrp

fchs

Note the “r” in fsubrp and fdivrp. It stands for “reverse.” Those instructions

reverse the order of the operands so that they compute a - b and a / b instead of

b - a and b / a.

The gnu assembler’s notation is different from many other assemblers. It adopted

the AT&T notation, which is different from the Intel notation. See the web page at
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http://www.delorie.com/djgpp/doc/brennan/

brennan_att_inline_djgpp.html

for some useful information on the AT&T notation.

The gnu assembler reverses the order of the operands from the usual order. For

example, to add ebx to eax, one would normally write

add %eax,%ebx # eax <- eax + ebx

That is, the first operand is normally the destination and the second operand is the

source. The gnu assembler reverses this. So we write

add %ebx,%eax # eax + ebx -> eax

Apparently for the same reason, it reverses the meanings of fsubp and fsubrp. The

manual states that fsubp subtracts st(0) from st(1), storing the result in st(1).

The machine code for fsubp is DEE9. It also state that fsubrp subtracts st(1) from

st(0), storing the result in st(1). The machine code for fsubrp is DEE1. However,

the gnu assembler assembles fsubp as DEE1 and fsubrp as DEE9, just the reverse of

what the Intel manual says.

Modify the cases PLUS, MINUS, TIMES, DIVIDE, and NEGATE to perform floating-

point operations.

Now it remains only to handle mixed-mode expressions.

11.6 The CAST Case

This case must convert types. If the mode is Ops.INT, then a floating-point number

must be converted to an integer. If the mode is Ops.DOUBLE, then an integer must

be converted to a floating-point number.

The instruction fild will load an integer from memory onto the FPU stack in

st(0), storing it as a floating-point number. This is almost exactly what we want.

The only problem is that it leaves the integer on the runtime stack. We should remove

it. The trouble with popping it is that we have nowhere to pop it to. So, instead, we

will “remove” it from the stack by adjusting the stack pointer. We will have more

occasions to do this in the future, so it is good to see this technique now.

The stack grows downward, so to “pop” a value, we need to increase the stack

pointer. Since an int occupies 4 bytes, we must add 4 to esp.
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add $4,%esp

To convert a double to an int, the process is similar, but in reverse. The double is

initially on the FPU stack. The command fistpl converts the contents of st(0) to

an integer and stores it at the specified location, then it pops the value from the FPU

stack. (The letter l on the end means “long.” That is the gnu way of indicating a

doubleword, which in this instance is necessary. In general, the choices are b for byte,

w for word, and l for long. It is probably a good idea to use l on all instructions, but

I dropped it to keep things looking simple.) We would like to store the integer on the

stack, so the location should be (%esp). However, since this is not a push operation,

we must provide space on the stack. That is, we must subtract 4 from esp before

moving the value.

Write the code for the CAST case, using the ideas discussed above.

11.7 The PRINT and READ Cases

These two cases involve function calls, which we have not discussed yet. Therefore,

I have provided the updated code in the file PrintRead.java in the Lab 11 folder.

Open that file and copy and paste its contents into the PRINT and READ cases.

11.8 Testing the Compiler

Be sure to test integer expressions, floating-point expressions, and all kinds of mixed-

mode expressions, including mixed assignments.

11.9 Assignment

This lab will also serve as Project 5. Place all of the source files and the makefile in

a folder named Lab 11, zip it, and drop it in the dropbox.
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Part VI

Functions

133





Laboratory 12

Function Definitions and the

Abstract Syntax Tree

Key Concepts

• Function definitions

• Formal arguments

• Local variables

• Return values

• Stack frames

Before the Lab

Read Sections 6.1 - 6.3 of the Intel Developer’s Manual, Vol. 1. Also read Sections

7.1 - 7.5 in Compilers: Principles, Techniques, and Tools.

Preliminaries

Copy all of your source files from your Lab 11 folder to a new folder named Lab 12.

Copy the file SemanticActionFunctions.java from the Lab 12 folder on the Com-

piler Design CD. It contains a number of functions and skeletons of functions that

you will need to add to SemanticAction.java.
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12.1 Introduction

Compiling function calls is fairly complicated. Therefore, we will break it up into

three labs. The first lab will build the syntax tree for the function definitions. The

next lab will build the syntax tree for the function calls. The third lab will generate

the code for both the function definitions and the function calls.

The main tasks we face in handling function definitions are

• Allocating memory (the activation record) on the runtime stack for local vari-

ables.

• Returning the appropriate function value, if any.

• Popping the activation record off the runtime stack.

A function definition involves the productions

func → fbeg stmts RBRACE

fbeg → fname fargs LBRACE dcls

fname → type ID | ID
fargs → LPAREN args RPAREN | LPAREN RPAREN

args → args COMMA arg | arg

arg → type ID

stmt → RETURN expr SEMI | RETURN SEMI

When you put them all together, the form of a function definition is

type ID(arg, ..., arg)

{

declarations

statements and RETURN statements

}

The syntax tree for the beginning of a function definition (fbeg) has the form shown

in Figure 12.1.

The ID node contains the name of the function and other information stored in

an IdEntry object. The NUM node is an integer representing the number of bytes

required by the local variables.
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ID
f.mode

FUNC
retType

NUM
INT

Figure 12.1: A tree for a function beginning

e.oper
e.mode

RET
retType

Figure 12.2: A function return tree

As the formal parameters are processed, we must keep a running total of the

number of bytes used. This running total is used to assign an offset from the base

pointer ebp for each parameter. These will all be positive offsets as the parameters

are pushed onto the stack before the function call. This will be handled by the arg()

function.

As the local variable declarations are processed, we must keep another running

total of bytes used. This running total is also used to assign an offset from the base

pointer ebp for each local variable. These offsets will be negative since space for the

local variables is allocated on the stack after the function call has been made. This

will be handled by the dcl() function.

The syntax tree for a return statement has the form shown in Figure 12.2.

If e.mode is different from retType (the return type of the function), then the

expression e must be cast to the type retType.

Recall that a return statement does not necessarily occur at the end of a function

and that there may be more than one return statement in a function. Therefore, we
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ID
f.mode

FEND
retType

Figure 12.3: A tree for a function ending

need a separate tree to handle the details at the physical end of the function. The

syntax tree for the end of a function definition is almost trivial. See Figure 12.3.

The action to be taken is to reset the base pointer ebp and the stack pointer esp

to their previous values, the values that they had before the function was called.

As an example, the trees for the function definition

int sum(int a, int b)

{

int c;

c = a + b;

return c;

}

should be output as

FUNC PTR|PROC|INT

ID PTR|PROC|INT value = "sum"

NUM INT value = 4

ASSIGN INT

ID PTR|INT value = "c"

PLUS INT

DEREF INT

ID PTR|INT value = "a"

DEREF INT

ID PTR|INT value = "b"
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RET INT

DEREF INT

ID PTR|INT value = "c"

FEND PTR|PROC|INT

ID PTR|PROC|INT value = "sum"

In the first tree, the integer 4 represents the number of bytes needed for the local

variable c.

12.2 Miscellaneous Details

In the file SymbolTable.java, install the keyword return, if you haven’t done that

already.

Change the name compiler v2 to compiler v3 throughout your files, as described

in Lab 10.

When we store a function name in the symbol table, we must store its type

as “pointer to a procedure that returns type,” where type is either int or double.

We have the values Ops.PTR and Ops.INT already defined, but we must add a new

symbolic constant Ops.PROC. Let its value be 1 << 3. Now we will be able to write

expressions like

Ops.PTR | Ops.PROC | Ops.INT

to represent the type of a function that returns an int.

We must also define the constants Ops.FUNC, Ops.FEND, and Ops.RET as types of

tree node and add corresponding entries in the opInfo[] array in the Utility.java

file.

Next to the constant Ops.GLOBAL, we should define two more constants: Ops.PARAM

and Ops.LOCAL if that has not already been done.

Finally, in the file Utility.java, in the function printType(), we need to add

one more case. The type may include Ops.PROC. Add a case that will print "PROC|".
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12.3 The CUP file

Let us begin by adding semantic actions to the productions listed above. This is the

top-down approach. We will see the function names and their parameters and we

will describe briefly what each function will do. In the next section we will add the

details to the functions.

For the production

fname ::= type:t ID:f

make a call to SemanticAction.fname(f, t) and for the production

fname ::= ID:f

make a call to

SemanticAction.fname(f, new Integer(Ops.INT))

Be sure to pass the function value on to the nonterminal by using RESULT. The

fname() function registers the function name in the symbol table and returns an

IdEntry for the function. Therefore, the nonterminal fname must be declared to be

of IdEntry type. The second of those two productions indicates that if the return

type of a function is not declared, then it will be assumed to be int.

Next, consider the production

arg ::= type:t ID:i

When this is matched, we should make a call to SemanticAction.arg(i, t). The

arg() function installs a function parameter in the symbol table, but there is no need

to return an IdEntry. Therefore, this is a void function, so the arg nonterminal is

not given a type.

The production

fbeg ::= fname:f fargs LBRACE dcls

calls the function SemanticAction.fbeg(f). This function returns the same IdEntry

object that is passed to it, so the type of the nonterminal fbeg must be IdEntry.

The production

func ::= fbeg:f stmts RBRACE
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calls on SemanticAction.func(f), which returns void.

Finally, there are the productions

stmt ::= RETURN SEMI

stmt ::= RETURN expr:e SEMI

Both of these call the function SemanticAction.ret(), but the first one passes a NUM

tree containing the integer 0 while the second one passes the parameter e.

Let’s consider the semantic actions in the order in which they will be applied

by the compiler. Open the file SemanticActionFunctions.java. It contains a

new dcl() function and several skeletons functions. As each function is discussed

in the next section, copy and paste the function skeleton from this file to the file

SemanticAction.java, maintaining the functions in alphabetical order.

12.4 The fname() Function

The fname() function is called in response to the productions

fname → type ID | ID

The second form is matched if the function is declared without specifying a return

type. The old C rule was that the default return type is int. In the second case, the

parameter

new Integer(Ops.INT)

is passed in place of the parameter t.

The purpose of the fname() function is to install the function name in the symbol

table and store all relevant information about the function.

Initially, fname() should verify that the current level is global. If it is not global,

then display an appropriate error message, including the function name. Then it

should look up the function name in the symbol table to see if it has already been

installed. If it has been, then we should avoid installing it again. Next, (if the name

is not already in the symbol table) we install the function name in the symbol table

at the global level, set its scope data member to Ops.GLOBAL, and set its type equal

to

Ops.PTR | Ops.PROC | type.intValue()
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Then we initialize some symbol table variables concerning the argument list and the

local variables. Add the statements

SymbolTable.fArgSize = 8;

SymbolTable.dclSize = 0;

SymbolTable.retType = type.intValue();

SymbolTable.enterBlock();

The integer SymbolTable.fArgSize is initialized to 8, representing the space used by

the instruction pointer eip and the base pointer ebp. As arguments are encountered,

we will increase fArgSize. The integer SymbolTable.dclSize is initialized to 0.

This will be increased as local variable declarations are encountered. The integer

SymbolTable.retType is set to the return type, as defined by the parameter type.

Finally, since we are entering a block, we should call the enterBlock() function of

the SymbolTable class to increase the block level and create a new hash table.

Write the function fname().

12.5 The arg() Function

The function arg() is invoked by matching the production

arg → type ID

which is used in the larger productions

args → args COMMA arg | arg

Before installing the argument in the symbol table, we should look up the name to

see if it is already in the table at the local level. If it is, then we should print an error

message and not install it again. If it isn’t there, then we should go ahead and install

it.

Each argument must be installed in the symbol table at the local level along with

its data type, scope, and offset. The data type is given by the parameter type, the

scope is Ops.PARAM, and the offset is the current value of fArgSize.

After assigning fArgSize to id.offset, we should increment fArgSize by the

base size of this parameter in preparation for the next parameter.

Write the function farg().
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12.6 The dcl() Function

Up to this point, the dcl() function simply builds an allocation tree for a global

variable. Recall that global variables are stored in a part of memory designated for

globals, while local variables are stored on the runtime stack. Thus, dcl() must

divide into two cases now.

Look at the dcl() function in SemanticActionFunctions.java and see that the

division is based on the current level. (Therefore, it is important that we increased

the block level in the fname() function.) The first part of the if-else block is the

same as what was there before. The second part

id.scope = Ops.LOCAL;

SymbolTable.dclSize += TreeOps.baseSize(id.type);

id.offset = -SymbolTable.dclSize;

sets the scope to local, increments the size of the local variable block, and assigns the

negative of the current size as the offset for this variable. The reason we assign the

offset after incrementing the size rather than before, as we did in arg(), is because

we are building down from the base pointer now, whereas we were building up before.

Copy dcl() and paste it in SemanticAction.java in place of the old dcl()

function.

12.7 The fbeg() Function

This function is invoked by the production

fbeg → fname fargs LBRACE dcls

which means that the parameters (fargs) and the local variables (dcls) have been

processed. Thus, we are ready to print the FUNC syntax tree shown in Figue 12.2.

This is a very straightforward exercise using TreeNode constructors. The tree should

be constructed and printed and the parameter id should be returned.

Write the fbeg() function.

12.8 The ret() Function

When the RET tree is built, we must be sure to cast the return value to the correct

type, if necessary. The variable SymbolTable.retType holds the return type. The
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parameter e is a reference to the returned object. Call on the cast() function, which

will create a CAST node, if necessary.

Now build the RET tree, as shown in the diagram earlier in the lab, and print it.

12.9 The func() Function

This function is called when the function definition is complete. That is indicated by

the right brace } at the end. When the right brace is received, that completes the

pattern in the production

func → fbeg stmts RBRACE

Since the function fbeg() returned the IdEntry for the function name, we have that

parameter available now.

This function should build the FEND tree, as in Figure 12.3, display the tree, then

set the return type retType to 0 and call the leaveBlock() function.

Write the func() function.

12.10 Debugging and Testing the Compiler

Debugging the compiler may be more of a challenge than before. I suggest that you

uncomment all of the debugging print statements in the relevant productions in the

CUP file and in the relevant semantic action functions. This way you will be able to

trace the compiler’s progress up to the point where an error occurred. This technique

should be standard practice for all of your debugging work from here on. Once your

compiler is debugged, you may comment out those print statements again.

Use a test program that contains function definitions, but no function calls, since

we have not implemented function calls yet. Be sure to test all possibilities concerning

data types. For example, test both int and double arguments, local variables, and

return types.

12.11 Assignment

Put the source files and the makefile in a folder named Lab 12, zip it, and drop it in

the dropbox.



Laboratory 13

Function Calls and the Abstract

Syntax Tree

Key Concepts

• Function calls

• Actual parameters

• Strings

Before the Lab

The reading assignment is the same as in Lab 12.

Preliminaries

Copy all of your source files from your Lab 12 folder to a new folder named Lab 13.

13.1 Introduction

In this lab, we will continue to build the syntax tree for functions, but this time we

will build the tree for the function call. Together with Lab 12, this will complete the

tree-building part. In the next lab, we will do the code generation for function calls,

which will result in Version 3 of our compiler.
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ID
copy

CALL
INT

DEREF
INT

ID
b

Figure 13.1: The tree for the copy function

13.2 Function Calls

When a function is called, we pass a list of expressions as the actual parameters.

Often each expression is just a variable, but they may be any legal expression of the

appropriate type.

In this lab we will create abstract syntax trees for function calls. The root node

will be the CALL operation. Its left subtree will be the name of the function. Its right

subtree will be an expression or a list of expressions or null if there is no parameter.

A list of expressions is a tree whose root node is a LIST operation. Its left subtree

is an expression or a list of expressions, recursively defined, and its right subtree is a

single expression. The final LIST node will contain expressions on both its left and

right subtrees.

Consider first a function with only one parameter.

int copy(int a)

{

return a;

}

The tree for the function call copy(b) would be as shown in Figure 13.1 and the

compiler would display it as

CALL INT
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ID PTR|PROC|INT value = "copy"

DEREF INT

ID PTR|INT value = "b"

On the other hand, if the function has three parameters, such as

int sum(int x, int y, int z)

{

return x + y + z;

}

then the tree for the function call sum(10, 20, 30) would be the tree in Figure 13.2.

and the compiler would print

CALL INT

ID PTR|PROC|INT value = "sum"

LIST

LIST

NUM INT value = 10

NUM INT value = 20

NUM INT value = 30

Note that the arguments appear in order from bottom to top. That will be important

when the code generator pushes them onto the runtime stack, since they must be

pushed in order from right to left.

13.3 The Argument List

Let us build the subtree of arguments first. Then we will build the CALL tree.

We must add Ops.CALL and Ops.LIST to the files Ops.java and Utility.java

in the opInfo[] array. Do that now, following the pattern that was set with other

tree operators.

The argument list is a sequence of expressions, separated by commas. The pro-

ductions matched are

exprs → exprs COMMA expr | expr

In our compiler we will pass arguments by value only. Thus, each expression in

the actual argument list must be evaluated before its value can be passed. Also,
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ID
sum

CALL
INT

LIST

NUM
30LIST

NUM
10

NUM
20

Figure 13.2: The tree for the sum function

our compiler will not check that the type of the argument matches the type of the

parameter. If they do not match, then the compiled program will not run correctly

and that will not be the fault of the compiler.

The function exprs() receives two parameters e1 and e2. The parameter e1

represents the list of expressions so far and e2 represents the latest expression to be

added to the list. A new LIST tree is to be created with the form shown in Figure

13.3.

Note that e1 is on the left. Thus, the rightmost argument e2 will appear highest

in the tree.

Write the code for the exprs() function.

The action for the production

exprs → expr

is simply to return the expression tree itself.
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LIST

e2e1

Figure 13.3: The tree for a list of two parameters

13.4 The call() Function

The call() function will be invoked by the productions

expr → ID LPAREN exprs RPAREN

| ID LPAREN RPAREN

The call() function receives two parameters. The first parameter s is the name of

the function. The second parameter e is a LIST TreeNode at the root of a tree of

expressions or it is a single expression (when there is only one parameter), or it is

null (when there is no parameter).

The call() function should first look up the name of the function in the symbol

table at the global level. If the returned IdEntry id is null, then call() should

create an entry with type

Ops.PTR | Ops.PROC | Ops.INT

and scope Ops.GLOBAL. That is, the default return type is int.

Then it should create and return a tree of the form in Figure 13.4.

Now that we can call functions, we can call functions in the C library, such as

sqrt(), cos(), and printf(). This creates a new need: the need for strings, since

the first parameter of the printf() function is a format string. We have postponed

strings for as long as possible. Now we will deal with them.

13.5 The String Type

Our lexer already returns string tokens as a Symbol object containing the symbolic

integer sym.STR and the value of the string. (Check the lexer to see that when it
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CALL
id.mode

eid
id.mode

Figure 13.4: The tree for a function call

returns a string, the quotations marks are part of the string. We should keep that

in mind.) Thus, we must instruct the parser to take the appropriate action in the

production

expr → STR

It will call on the str() function in the SemanticAction class. The str() function

should create and return a string TreeNode. To keep our compiler well organized, we

should create a TreeNode constructor for strings that is analogous to the TreeNode

constructors for identifiers and numbers that we created in earlier labs.

The body of this TreeNode constructor should be

oper = Ops.STR;

mode = Ops.PTR | Ops.CHAR;

str = s;

Note the appearance of two new constants, Ops.CHAR and Ops.STR. Add Ops.CHAR

to the Ops class as a data type, in the group with Ops.INT. You might give it the

value 1 << 2. Add Ops.STR as a new type of tree node, in the group with Ops.CALL.

Also, add a corresponding line in the opInfo[] array in Utility.java. We will not

actually have char objects in our programs, but the string type in C is officially a

pointer to char, so we need them for that purpose.

While you are in Utility.java, add a case to the function printType() that

handles Ops.CHAR. Note also that Ops.STR is a type of tree node, while the data

type is a pointer to a character. We must be careful to distinguish between the data

type and the tree type. Also, in the function printNode(), we have cases that print

identifier and number leaf nodes. Add a case that will print a string leaf node.



151

Create the TreeNode constructor and then have str() call on it, passing it the

string.

13.6 Testing the Compiler

At the present time, we are only building the syntax tree. Therefore, be sure to use

the -t option and not the -c option.

To test our compiler, we should now use test programs that contain function calls.

Try all kinds of calls. Test arguments that are ints, doubles, numbers, and expres-

sions. Test functions with no parameter, one parameter, and several parameters. Also

use arguments that are themselves function calls. For example, if you have a sqr()

function that squares a number, you might try statements like

y = sqr(sqr(x));

that will compute the fourth power of x.

13.7 Assignment

Put the source files and the makefile in a folder named Lab 13, zip it, and drop it in

the dropbox.
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Laboratory 14

Functions and Code Generation

Key Concepts

• Pushing parameters

• Calling functions

• Clearing parameters

• String objects

Before the Lab

The reading assignment is the same as in Lab 12.

Preliminaries

Copy all of your source files from your Lab 13 folder to a new folder named Lab 14.

14.1 Introduction

To implement function calls, we will need to create six new cases in CodeGenerator.java

to deal with new types of nodes in the syntax tree. The new cases are

Ops.CALL

Ops.FEND

Ops.FUNC

Ops.LIST

153
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Ops.RET

Ops.STR

We will start with the FUNC case, which is also the simplest case.

14.2 The FUNC Case

The task in this case is to write the assembly code that is needed to start a function

definition. This code follows a standard pattern:

# Code for FUNC

.text

.globl _fname

.def _fname; .scl 2; .type 32; .endef

_fname:

push %ebp # Save base ptr

mov %esp,%ebp # Make stack ptr new base ptr

sub $num,%esp # Adjust stack ptr for local block

where fname is the function name and num is the number of bytes required by the local

variables (not the parameters). The gnu assembler expects function names to begin

with an underscore. For example, if we named a function copy, then gnu expects

name in the assembly code to be copy.

By the time execution reaches this point, the call statement has already been

executed. Therefore, the parameters and the instruction pointer are already on the

stack. Notice that the base pointer is pushed onto the runtime stack next. Then

the current value of the stack pointer becomes the new base pointer. Finally, by

subtracting num from the stack pointer, we provide stack space for the local variables.

Notice also that each parameter will have a positive offset from the (new) base pointer

and each local variable will have a negative offset from the base pointer.

The FUNC tree has the logical structure shown in Figure 14.1. The name of the

function can be obtained from the left subtree, which should be an identifier node.

The number of bytes for local variables can be obtained from the right subtree.

If you look in the CodeGenerator member function init(), you will see that this

code was generated for the main() function. We should now remove this function

and the call to it in compiler v3.java since our compiler will now generate this code

when it sees the main function.
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FUNC

No. bytes for
local vars.

function
name

Figure 14.1: The logical structure of a function tree

Write the Java code that will output the assembly code for a FUNC tree.

14.3 The FEND Case

At the end of a function, if there is no return statement, then we must execute a

return with the default return value 0. Before making the jump back to the calling

function, we must restore the stack pointer and the base pointer. Essentially, this

undoes what was done above when the function was called.

Write statements in the FEND case that will output assembly code that will

• Move the base pointer to the stack pointer, thereby restoring the old stack

pointer. (Recall that we saved the old stack pointer as the new base pointer.)

• Pop the value that is on the stack to the base pointer, thereby restoring the old

base pointer. (Recall that we pushed the old base pointer onto the stack.)

• Return to the calling function.

In that last step, we really should return 0 since the function has a return type and is

expecting a value. However, for simplicity we will not do that (unless you want to).

That means that it is the programmer’s responsibility to return a value whenever the

program expects a value, or else the program may crash. A value will not be returned

automatically.

That is all there is in the FEND case. This code appeared in the CodeGenerator

function finish(), which you should now remove. It was there to finish the main()

function. Also, remove the call to finish() found in compiler v3.java.
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14.4 The RET Case

This case is very similar to the FEND case, except that we have to return the value

specified in the left subtree.

Our compiler does not recognize the void function type, so there will be a return

value. Recall that the semantic action for

expr → RETURN SEMI

fills in the value 0. We must cast the return value to the return type. Then we must

check whether it is an int value or a double value to see how to return it. If it

represents a double value, then there is nothing to do. The double value is already

in register st(0) of the FPU, which is where it is expected to be upon return from

the function. On the other hand, if it represents an int value, then we need to pop

that value from the stack and place it in register eax, which is where it is expected

to be.

Write the code that will do this.

Why not return an integer value by pushing it onto the stack and letting the

calling function pop it off the stack? There is a good reason why we should not do

that. What is it?

14.5 The CALL Case

The CALL case is a bit more complicated since it must first push the parameters onto

the stack. Furthermore, the parameters may themselves be expressions that must

first be evaluated. As our assembly-language program processes each parameter, it

will create code to evaluate it and push it onto the stack. Since that is what happens

anyway when an expression is evaluated, it ought not be a complication.

One issue is that floating-point expressions ordinarily leave their values on the

floating-point stack, in st(0). Thus, we will need to move them over to the runtime

stack. (All parameters of a function call, both integer and floating-point, must appear

on the runtime stack when the function is called.)

Therefore, our procedure for processing parameters will traverse the tree, evaluat-

ing expressions in the usual way, except that if the expression is floating-point, then

we move its final value to the runtime stack.
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As we process each parameter, we need to keep track of the size of the parameter

block. That is so that we can generate the instruction that will clear the parameter

block upon returning from the called function. The complication is that the parameter

list may itself contain calls to other functions (which may contain calls to functions,

etc.). Thus, we may have to interrupt our count of the parameter block size for this

function while we initiate a similar count for another function.

This calls for a stack. As a static object in the CodeGenerator class, create a

Stack named paramStack. Use the Java Stack class. You may look up the details at

http://java.sun.com/j2se/1.4.2/docs/api/

The Stack class is in the package java.util. Therefore, you must include the state-

ment

import java.util.*;

in CodeGenerator.java. Also, create an object paramBlockSize that is initialized

to 0.

In the CALL case, first push the current value of paramBlockSize onto the stack

and initialize paramBlockSize to 0. As parameters are encountered, we will increase

paramBlockSize by the size of those parameters.

Now let us begin processing parameters. First, if the right subtree is null, then

there is no parameter and there is nothing to do.

If it is not null, but is not a LIST node, then it represents a single parameter. Its

tree should be built by calling traverseTree() and, if its value is floating-point, the

value should be moved from st(0) to the stack. Note: you cannot just push it. You

must make room on the stack and then use fstpl to move it. After processing it,

add its size to paramBlockSize. You can use the baseSize() function for this, but

you must modify it to allow for strings, i.e., pointers to chars.

Now, if the right subtree is a LIST node, then it should be processed recursively

by calling generateNodeCode(), which will handle it under the LIST case.

14.6 The LIST Case

To process the LIST tree, begin at the root node and process the right subtree, which

is an expression tree, by calling on traverseTree(). After that is done, check to
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see if the result is floating-point. If it is, then move the value from st(0) onto the

runtime stack. Then add the parameter size to paramBlockSize.

After doing the right subtree, consider the left subtree. If it is itself a LIST tree,

then it can be handled recursively; just call on generateNodeCode() and consider it

done. On the other hand, if you are at the bottom of the tree, then the left subtree

is also an expression tree, so it must be evaluated and possibly moved from st(0) to

the runtime stack. The pattern here should be exactly the same as the pattern for

the right subtree. Be sure to add the parameter size to paramBlockSize.

14.7 The CALL Case, Continued

That takes care of the parameters. Now back to the CALL case. We are ready to make

the call itself. The form of the call statement is

call _fname

where fname is the name of the function, as stored in the symbol table. It can be

retrieved from the left subtree, which consists of a single identifier node.

Once the call is made and execution returns, there are two more things to be done.

We must clear the parameters off the stack and then, if the return value is an int,

we must push it onto the stack, where the next instruction expects to find it.

To clear the parameters, we need a statement of the form

add %n,%esp

where n is the size of the parameter block. Output this statement, using the value of

paramBlockSize. Then you must restore paramBlockSize by popping the previous

value off paramStack and assigning it to paramBlockSize.

Finally, check the type of the returned value. If it is int, then the value is currently

in eax. If so, then we need to push it onto the runtime stack. On the other hand, if

it is double, then it is already in st(0), which is where it should be.

Once you write all of that, the CALL case should be done.

There are two more details to deal with concerning the FUNC, FEND, LIST, and CALL

cases. The FUNC, FEND, and CALL trees all contain ID nodes on the left side. However,

in none of these cases should the ID tree be processed in the usual way. Since the

syntax tree is normally traversed post-order, the ID node would be processed before

we knew that it was part of the FUNC, FEND, or CALL tree. We faced a similar problem
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with ALLOC trees earlier. We will solve this problem in a similar way. At the beginning

of the generateCode() function, make FUNC and FEND special cases along with ALLOC.

The action should be the same. In the traverseTree() function, make CALL a special

case. If the tree is a CALL tree, then we should skip processing the left and right

subtrees; they will be handled correctly in the CALL case of generateNodeCode().

The reason that we handle CALL differently from FUNC and FEND is that a call statement

with its attendant parameter list may appear within a statement, while FUNC and FEND

trees cannot occur within statements.

The LIST case must be handled differently because we traverse the LIST subtrees

from right to left. (Otherwise, the parameters will be pushed in the reverse order.)

The traverseTree() function processes them from left to right. Thus, the LIST case

must be handled similarly to the CALL case in traverseTree(). That is, skip over

the recursive calls. In the LIST case in the generateNodeCode(), we have it traverse

the right subtree first, then the left subtree.

14.8 The ID Case

There remains the problem of accessing parameters and local variables of a function

when they are used in expressions within the function. Each is accessed by applying

an offset to the address in the ebp register. That offset is stored in the offset data

member of the IdEntry object for the identifier stored in the symbol table.

When we process an identifier, we must test to see if it is a global or a parameter

or local variable. If it is global, then we perform the action that is already in the

ID case. If is it not global, then it must be a local or a parameter. In either case,

we follow the same general pattern of the global case, but replace the identifier name

with

n(%ebp)

where n is the offset for that identifier. Write the code for the ID case.

14.9 The STR Case

All we need to do in the case of a string is to create the string in memory and push

its address onto the runtime stack. The assembly code to do this is
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.data

L0n: .asciz "string"

.text

lea L0n,%eax # Load addr of string

push %eax # Push addr of string

where n is the current value of jmpLabel and "string" is the string. The variable

jmpLabel is a static member of the CodeGenerator class that is used to create unique

labels. Whenever it is used, it should be incremented before use to give the next label

number. The leading 0 is used to distinguish it from other labels that we will use

later. If you look at the code in the READ and PRINT cases, you will see how jmpLabel

was used there. The assembler treats L0n as a symbolic name whose value is the

address at which it occurs in the program. The string "string" is stored by the

assembler in the “data” area of the assembled program. That is what the directive

.data does. The .text directive sends us back to the code area.

Write the code for the STR case.

14.10 Testing the Compiler

Now you are ready to test your compiler. If you wrote good test programs in Lab

13, then you can use them here. In any case, you want to be sure to try a variety

of return types; a variety of parameter lists, including zero, one, or more than one

parameter; parameters that are themselves function calls; and a variety of return

statements, including return statements that fail to specify a value.

Since we do not have any means of making decisions, you should not try recur-

sive calls since there would be no way to end the recursion. Once we implement if

statements, we will be able to handle recursive calls.

14.11 Assignment

This lab will serve as Project 6. Put all of your source files and the makefile in a

folder named Project 6, zip it, and drop it in the dropbox.



Part VII

Control Flow Structures

161





Laboratory 15

Control Flow Structures and the

Abstract Syntax Tree

Key Concepts

• Labels and jumps

• if statements

• Backpatching

• Conditional expressions

• Linked lists

Before the Lab

Read Sections 8.4 and 8.6 in Compilers: Principles, Techniques, and Tools.

Preliminaries

Copy all the source files from your Lab 14 folder to a new folder named Lab 15.

15.1 Introduction

At long last, we will incorporate decision structures into our compiler. The two basic

decision structures that we will implement are one-way if statements

163
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if (condition)

stmt

and two-way if statements

if (condition)

stmt1

else

stmt2

It turns out that the technique, called backpatching, that we use to do this will also

allow us to implement while loops and for loops very easily.

15.2 Version 4

This will be version 4 of our compiler, so change the name to compiler v4 throughout

your files. As before, use grep to find out where the name compiler v3 occurs and

then change it to compiler v4. Also, be sure that the keywords if and else have

been installed in the symbol table.

15.3 Labels and Jumps

In order to implement if statements, we must be able to jump over a block of code.

This will be a forward jump. (To implement loops, we create a backward jump.)

There are two kinds of jump statement: conditional and unconditional. We will use

both kinds.

All jump statements must specify a destination. In machine code, this is either

an absolute address or an offset from the current instruction pointer. In assembly

language, it can be a label. A label is an assembly-code identifier that is written

beginning in the leftmost column and followed by a colon. A jump statement will

name a label as its destination. For example, we might write

LoopBegin:

:

jmp LoopBegin

LoopEnd:
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to create a loop.

With most statements, there is a single destination, which we will call the “next”

destination, to which execution goes once that statement has been executed. However,

in the case of conditional expressions, there are two destinations: a “true” destination

and a “false” destination.

15.4 Markers in the Grammar

We will now introduce two markers into the grammar as nonterminals. The non-

terminal m generates a label. The nonterminal n generates an unconditional jump.

They will be used in the following productions:

stmts → stmts1 m stmt

stmt → IF LPAREN cexpr RPAREN m stmt

stmt → IF LPAREN cexpr RPAREN m1 stmt1 n ELSE m2 stmt2

func → fbeg stmts m RBRACE

The nonterminal cexpr is a conditional expression. For the time being, it will be a

numerical expression with the rule that zero is interpreted as false and nonzero is

interpreted as true. That is the standard rule in C.

In the first production,

stmts → stmts1 m stmt,

the label produced by m serves as a destination for the preceding statement. In the

second production,

stmt → IF LPAREN cexpr RPAREN m stmt,

the label produced by m serves as the “true” destination for cexpr, i.e., the destination

when cexpr evaluates to true. In the third production,

stmt → IF LPAREN cexpr RPAREN m1 stmt1 n ELSE m2 stmt2,

the label produced by m1 serves as the “true” destination for cexpr and the label

produced by m2 serves as the “false” destination for cexpr. The jump produced by

n will jump over stmt2.
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In the fourth production,

func → fbeg stmts m RBRACE,

the label generated by m serves as the “next” destination of stmts, immediately

before the return statement that is automatically generated at the physical end of

the function.

The most obvious problem here is in the second production. Where is the “false”

destination of cexpr? Almost as obvious is the question, exactly where should n jump

to in the third production? That is where backpatching comes in.

15.5 Backpatching

Backpatching is a technique of creating a temporary label (a backpatch label) as

the label of a destination that has yet to be determined. Once the destination is

determined, the backpatch label is resolved with an actual label. (Backpatch labels

are not used as actual labels.) Backpatch labels are named B1, B2, B3, ... and actual

labels are named L1, L2, L3, ..., except that, to avoid confusion, we will not use the

same number for both a backpatch label and an actual label.

In the case of statements matching the production

stmts → stmts1 m stmt

the “next” destination of stmts1 will be the label produced by m. But in the case of

if statements, we will need to use a backpatch node to store a pair of destinations

for the conditional expression.

15.6 Backpatch Nodes

Create a file named BackpatchNode.java. An object of this class has two data

members: trueList and falseList. Each is a LinkedList object. Each linked list

is a list of Integers representing backpatch labels.

Provide two constructors: the default constructor and a constructor that has two

linked lists as its parameters, to be assigned to trueList and falseList.

Why store a list of labels instead of a single label? That is because often there

are several jumps that must all be resolved to the same destination. For example,
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consider again the production

stmt → IF LPAREN cexpr RPAREN m1 stmt1 n ELSE m2 stmt2

The destination of the jump statement produced by n must be the same as the “next”

destination of stmt1, which is also the “next” destination of stmt2. Thus, all three

backpatch labels will be collected into a list and later resolved to the same destination.

Create the two BackpatchNode constructors now. The first should be the default

constructor. It should set trueList and falseList to null. The second should have

two parameters, tList and fList, that are LinkedLists. The parameter tList

should be assigned to trueList and the parameter fList should be assigned to

falseList. We will use these constructors shortly.

15.7 The printNode() Function

In the file Utility.java, the printNode() function prints leaf nodes in a special

way. Now that we have LABEL and BLABEL nodes, we have two new types of leaf

node. In the function printNode(), add two new cases, along with the existing cases

of Ops.ID, Ops.NUM, and Ops.STR, that will print LABEL and BLABEL nodes.

The output of these nodes should be of the form

LABEL label=n

and

BLABEL blabel=n

where n is the numerical value of the label.

15.8 Two Label Functions

Two convenient functions will be

TreeNode(int op, int labl)

int newLabel()

We should write these two first since other functions will use them. In the TreeNode

constructor, the parameter op is either Ops.LABEL or Ops.BLABEL. Add the constants
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Ops.LABEL and Ops.BLABEL to the files Ops.java and Utility.java in the usual

way. The sole purpose of this constructor is to create and return a LABEL or BLABEL

node. The first parameter should be assigned to oper and the second should be

assigned to num.

The function newLabel() returns a new integer to be used for the next label.

It should increment a SemanticAction class variable labelNum and return its new

value. Write these two functions.

15.9 The m() and n() Functions

The function m() needs to create and print a LABEL tree and return the Integer used

in the label. First, get an integer representing a new label number. Then you can

use a TreeNode constructor to create the LABEL tree with that number for the label.

Then print the LABEL tree. Finally, have m() return the label as an Integer. (It

should be an Integer because it will be put into a LinkedList of Integers. Java

will not allow us to put ints into a LinkedList.) Therefore, the prototype of m() is

public static Integer m()

The function n() must first create a BLABEL tree. That is done in the same way

as you created a LABEL tree. Then create a JUMP tree, attach the BLABEL tree as its

left subtree, and print the tree. Finally, create a LinkedList containing the integer

that was used in the backpatch label and return that LinkedList. Therefore, the

prototype of n() is

public static LinkedList n()

15.10 Backpatch Functions

Three functions will allow us easily to manage the backpatch labels.

LinkedList makeList(int labl)

LinkedList merge(LinkedList b1, LinkedList b2)

void backpatch(LinkedList b, Integer labl)

See Section 8.6 of Compilers for an excellent discussion of these functions.

The function makeList() will create a LinkedList object with a single Integer

in it, an integer with the value labl.
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The function merge() will take two linked lists b1 and b2 and merge them into

one list. The merged list will replace the old b1 and it will be returned.

The function backpatch() will resolve all the backpatch labels in the list b with

the destination label labl. It will construct and print an EQU tree (equate tree) for

each backpatch label in the list. (An EQU tree equates a backpatch label with an

actual label.)

Now let us write each of the three backpatching functions, beginning with

makeList(). You should go to the Java web site for the LinkedList class to see what

member functions are available.

The function makeList() should begin by creating a new LinkedList object.

Then it should add the label labl to the list and return the list. See the Java

LinkedList web page for details on the member functions.

The function merge() should merge the lists b1 and b2 and return the merged

list. Look at the LinkedList web page and figure out which LinkedList function(s)

will do this.

The function backpatch() is more substantial than the others, but still pretty

simple, thanks to the LinkedList class. First, it must create a LABEL TreeNode for

the label labl. Call it labTree. Then, for each Integer stored in the list b, it

must create a BLABEL TreeNode and then attach it and the LABEL TreeNode already

created as the left and right subtrees of a new EQU tree. (You will need to define

the symbol Ops.EQU in Ops.java and update the opInfo[] array in Utility.java.)

For example, if b is {3, 4, 6} and labl is 8, then the EQU trees in Figure 15.1 will be

created.

To create each BLABEL TreeNode, you will have to get the next backpatch label

out of the linked list and use intValue() to get its int value. Call it blabl. Then

the statement

TreeNode blabTree = new TreeNode(Ops.BLABEL, blabl);

will construct the BLABEL TreeNode. The statement

TreeNode equTree = new TreeNode(Ops.EQU, 0, blabTree, labTree);

will join them together in an EQU tree. The backpatch() function should print each

EQU tree as it is produced. Then it is finished.
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EQU

LABEL
8

BLABEL
3

EQU

LABEL
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BLABEL
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EQU

LABEL
8

BLABEL
6

Figure 15.1: Equate trees

15.11 The CUP File

The type of the nonterminals stmt, stmts, and n is now LinkedList. Therefore, in

the CUP file, we need to declare them to be LinkedLists. In order for the LinkedList

class to be recognized in parser.java, be sure to include the statement

import java.util.*;

at the beginning of the CUP file. This statement must also be included in the

SemanticAction.java file.

Similarly, the nonterminal m will be an Integer and the nonterminal cexpr will

be a BackpatchNode.

First, add semantic actions to the productions

m → ε

n → ε

The actions are simply calls to the SemanticAction functions m() and n().

Also, in several productions we need to add variable names to some of the symbols.

These productions should now be
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func ::= fbeg:f stmts:s m:m1 RBRACE

stmts ::= stmts:s1 m:m1 stmt:s2

stmt ::= LBRACE stmts:s RBRACE

| IF LPAREN cexpr:c RPAREN m:m1 stmt:s

| IF LPAREN cexpr:c RPAREN m:m1 stmt:s1 n:n1 ELSE m:m2 stmt:s2

cexpr ::= expr:e

The variables s, s1, s2, and n1 will be LinkedLists and the variables m1 and m2 will

be Integers.

Some of these productions do not currently have semantic actions associated with

them. The details of these actions will be relegated to functions in the SemanticAction

class, so right now all we need to do is to add the semantic action function calls.

In the production

func ::= fbeg:f stmts:s m:m1 RBRACE

we have already been using the action func(f), but now we must add two more

parameters. The new action is

SemanticAction.func(f, s, m1);

The production

stmts ::= stmts:s1 m:m1 stmt:s2

requires the action

RESULT = SemanticAction.stmts(s1, m1, s2);

The production

stmts :: =

requires the action

RESULT = new LinkedList();

That is because an empty statement should have an empty list of backpatch labels.

While we are on that subject of empty linked lists, certain other stmt productions

that previously returned null now must return an empty LinkedList, as in the above
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example. Make that change wherever necessary. In some cases that change will show

up in the SemanticAction function rather than in the CUP file. In general it will

show up at any point where we previously returned null, or nothing, for one of the

nonterminals stmts, stmt, or n.

For the productions

stmt ::= IF LPAREN cexpr:c RPAREN m:m1 stmt:s

and

stmt ::= LPAREN cexpr:c RPAREN m:m1 stmt:s1 n:n1 ELSE m:m2 stmt:s2

the actions are

RESULT = SemanticAction.ifStmt(c, m1, s);

and

RESULT = SemanticAction.ifElseStmt(c, m1, s1, n1, m2, s2);

respectively.

For the production

stmt ::= LBRACE stmts:s RBRACE

add the action

RESULT = s;

Finally, the production

cexpr ::= expr:e

requires the action

RESULT = SemanticAction.exprToCExpr(e);

We will write the semantic action functions one by one as we consider the different

types of statements.
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stmts m

next next

stmts ?

Figure 15.2: Backpatching statements in sequence

15.12 Sequences of Statements

Now we will begin to do the backpatching, beginning with sequences of statements.

The production is

stmts → stmts1 m stmt

Draw a diagram that shows how the “branching” goes. See Figure 15.2.

This diagram indicates that the linked list from stmts1 should be backpatched

to the label m, and that the production should return the linked list from stmt (as

RESULT), to be resolved at some higher level in the parse tree. Thus, the stmts()

function should be

public static LinkedList stmts(LinkedList s1, Integer m, LinkedList s2)

{

backpatch(s1, m);

return s2;

}

For all the hoopla, that was awfully simple. Once we finish with conditional expres-

sions, it will be just about as simple to deal with if statements. That is the power

of organization.

15.13 Conditional Expressions

When we use a numerical expression as a conditional expression in an if statement,

it is interpreted as true if its value is zero and false if its value is nonzero. Thus, we

must compare the numerical value to 0. That means that the form

IF (cexpr) m stmt

is logically equivalent to
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CMPNE
mode

e2
e2.mode

e1
e1.mode

Figure 15.3: A comparison tree (not equal)

CMPNE
e.mode

e
e.mode

NUM
0

Figure 15.4: A comparison to zero

IF (expr != 0) m stmt

The “true” destination is m and the false destination is whatever label follows the if

statement.

Altogether we will have six different kinds of comparison nodes: CMPEQ, CMPNE,

CMPLT, CMPGT, CMPLE, and CMPGE. They correspond to the C operators ==, !=, <, >,

<=, and >=. Right now we need only the CMPNE, because the expression counts as true

if it does not equal 0. The general form of a comparison tree is shown in Figure 15.3.

Our grammar contains the production

cexpr → expr

The action to be taken by the exprToCExpr() function is to construct a special CMPNE

tree that looks like the tree in Figure 15.4.

If e.mode is DOUBLE, then there will have to be a CAST node on the left side, casting

the 0 as a double. You will have to add Ops.CMPNE to Ops.java and Utility.java.

The CMPNE tree must now be attached to a “jump-true” tree (JUMPT). A JUMPT

tree has a boolean expression in its right subtree and a BLABEL tree or a LABEL tree
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in its left subtree. If the boolean value is true, it takes the jump. Otherwise, it

continues on to the next instruction. The next instruction should be a JUMP tree that

unconditionally jumps to the “false” destination. (Ops.JUMPT and Ops.JUMP must

also be added to Ops.java and Utility.java.)

The phrase

if (a)

would create the following combined JUMPT and CMPNE tree and the JUMP tree below

it.

JUMPT INT

BLABEL blabel=3

CMPNE INT

NUM INT value=0

DEREF INT

ID PTR|INT value="a"

JUMP INT

BLABEL blabel=4

This indicates that execution jumps to B3 if a is nonzero and it jumps to B4 if a is

zero.

15.14 The exprToCExpr() Function

Now we can write the exprToCExpr() function. The function has a single parameter,

which is a TreeNode representing an expression tree. The nonterminal cexpr is of

BackpatchNode type, so this function should return a BackpatchNode object.

The first thing the function should do is to create the CMPNE tree. Then it must

generate a new label labl1 (by calling newLabel()) and build a BLABEL node, which

will serve as the “true” destination.

Then construct the JUMPT tree, attaching the comparison tree on the right and

the BLABEL tree on the left. (A JUMPT tree has no particular mode.) This tree is now

complete and should be printed.
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cexpr m

F

next

stmt ?IF ( )

T

Figure 15.5: Backpatching a one-way if statement

Next, generate a new label labl2, use it to create a BLABEL node, and then

construct a JUMP tree with the BLABEL node attached on its left. This is the “false”

destination. Print this tree.

The final step is to create and return a BackpatchNode containing the “true” and

“false” destinations of cexpr. Use a BackpatchNode constructor, where labl1 is the

“true” destination and labl2 is the “false” destination.

The hard work is over. Now we can write the functions that handle the one-way

and two-way if statements.

15.15 The One-Way if Statement

The production for an if statement is

stmt → IF ( cexpr ) m stmt

The branching is as shown in Figure 15.5.

This tells us that the “true” destination (trueList) of the cexpr BackpatchNode

should be backpatched to m. The “false” destination (falseList) should be merged

with the LinkedList from stmt and returned as the LinkedList for the if statement

as a whole.

The heading of the ifStmt() function is

public static LinkedList ifStmt(BackpatchNode c, Integer m, LinkedList s)

Write the ifStmt() function.



177

cexpr m1

next

next

stmt2 ?IF ( )

F

stmt1 n ELSE m2

T

Figure 15.6: Backpatching a two-way if statement

fbeg m

next

stmts }

Figure 15.7: Backpatching the end of a function

15.16 The Two-Way if Statement

The production for the two-way if statement is

stmt → IF ( cexpr ) m1 stmt1 n ELSE m2 stmt2

The branching is as shown in Figure 15.6.

From this diagram, determine what needs to be backpatched, what needs to be

merged, and what needs to be returned by the ifElseStmt() function. Then write

the function.

15.17 Function Ends

As mentioned earlier, the function func() now has two more parameters: the linked

list s and the integer m. However, its return type is still void, because the end of a

function marks the termination of backpatching at that level; no backpatch label can

be resolved to an actual label outside of that function. The diagram for the end of a

function is very simple. See Figure 15.7.

From this diagram, figure out how the backpatching should be done and modify

the func() function accordingly.
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15.18 The READ Case

Now that we can use the printf() function, there is no need for the code generated

by the READ case of generateNodeCode() to generate code for a prompt. Remove

that part of the code generated in the READ case. Henceforth, if we want to prompt

the user for input, we can output the prompt using the printf() function.

15.19 Testing the Compiler

Be sure to test your compiler thoroughly. Write test programs with one-way and

two-way if statements. Write test programs with nested if statements. Test your

compiler with multi-way if statements such as

if (a)

d = 100;

else if (b)

d = 200;

else if (c)

d = 300;

else

d = 400;

Now that we have if statements, we can write test programs with recursive function

calls. You might try a recursive version of the gcd() function.

int gcd(int a, int b)

{

if (a % b)

return gcd(b, a % b); // a % b != 0

else

return b; // a % b == 0

}

This implementation of gcd() assumes that a is nonnegative and b is positive.

Another function you might test is the Hanoi() function. Its prototype is

int Hanoi(int num, int src, int dst, int extra);
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The function ought to return void, but we have no void type, so we will make the

return type int and return a 0. The parameter num is the number of disks to be

moved. As long as it is more than 1, then we will make a recursive call. If it is 1,

then we will just move the disk. The parameters src and dst are the source and

destination posts. (The posts are numbered 1, 2, and 3, with the disks originally on

post 1 with the goal of moving them to post 3.) The parameter extra is the remaining

post. You will find this function in the file Hanoi.c.

Have the main function read the number of disks from the user, using our special

read statement. Call that number n. Then the initial function call to Hanoi() from

main() should be

Hanoi(n, 1, 3, 2);

15.20 Assignment

Write the production for a while loop. The form is similar to the form of the one-way

if statement, except that at the bottom of the loop, there is an unconditional branch

back to the conditional expression. Test your program with if statements and while

loops nested in various ways.

Place all of the source files, including a makefile, in a folder named Lab 15, zip it,

and drop it in the dropbox.
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Laboratory 16

Control Flow Structures and Code

Generation

Key Concepts

• Labels

• Equate statements

• Unconditional jumps

• Conditional jumps

• Condition code testing

Before the Lab

Read Sections 3.4.3 and 8.1.2 in Intel’s Developer’s Manual, Vol. 1. These sections

discuss flags and condition codes. In Vol. 2, read about the FUCOMPP instruction

and the Jcc and JMP instructions. These instructions are used in conditional and

unconditional branches.

Preliminaries

Copy your source files from your Lab 15 folder to a new folder called Lab 16.
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16.1 Introduction

Most of the code generated in this lab is straightforward. The one feature that is

new to us is testing the condition codes for equality or inequality. You should read

the Intel manuals to become familiar with how conditional jumps are handled. The

single most important instruction is Jcc, where cc stands for a condition code.

We will generate code for the following types of tree node:

Ops.LABEL

Ops.EQU

Ops.JUMP

Ops.JUMPT

Ops.CMPNE

16.2 The LABEL Case

The purpose of a LABEL node is simply to print a label. A label has the form

Ln:

where n is the number of the label. For example, it might be

L4:

A LABEL tree has the form

LABEL label=n

where n is the number of the label.

Write the code for the LABEL case.

16.3 The EQU Case

An equate statement is an assembler directive. It tells the assembler to assign to one

symbolic name the value held by another symbolic name. In our case, the equate

statement will assign the value (address) of an actual label to a backpatch label.

Thus, its form will be

Bn1=Ln2
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where n1 is the number of the backpatch label and n2 is the number of the actual

label. For example, if the tree is

EQU

BLABEL blabel=6

LABEL label=8

then the generated code will be

B6=L8

An EQU tree has a LABEL tree as a subtree. As a subtree of an EQU tree, the LABEL tree

should not be processed as described above. Therefore, we must make a special case of

an EQU tree. Write the code for the EQU case as a special case in the generateCode()

function. Recall that ALLOC, FEND, and FUNC were also special cases.

16.4 The JUMP Case

A JUMP tree has the following form.

JUMP INT

BLABEL blabel=n

where n is the number of the backpatch label. In some cases, it is possible that the

destination will be an actual label (LABEL) rather than a backpatch label (BLABEL).

This will happen with backward jumps since the destination is known. All forward

jumps will be jumps to backpatch labels.

An unconditional jump statement will have the form

jmp Bn

or

jmp Ln

where n is the number of the label. The JUMP case must also be handled as a special

case for the same reason that EQU was special: the LABEL or BLABEL subtrees should

not be handled as an ordinary LABEL or BLABEL case.
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16.5 The CMPNE Case

Now things get a little more complicated. The effect of the CMPNE case is to leave an

integer 0 or 1 on the stack, where 0 signifies false and 1 signifies true. This value will

be used by the JUMPT node to decide whether to jump.

This method is somewhat inefficient since it requires that we perform two tests.

First, we do the original test and store a true or false value on the stack. Then, later,

we must test the value on the stack to see if it is true or false. Why not just make

the jump after performing the first test? The reason is so that we can disentangle

the compiling of the CMPNE and the JUMPT cases from one another. It is simpler if we

deal with them independently.

The following is an example of a CMPNE tree.

CMPNE INT

NUM INT value=0

DEREF INT

ID PTR|INT value="a"

Note that the left subtree is a NUM node containing the number 0. Later when we

consider general boolean expressions, this may not be 0. The right subtree is the

numerical expression that appeared as the conditional expression in the if statement.

The form of the generated code for an integer comparison is

mov $1,%ecx # Set ecx to true (1)

pop %eax # Load right operand

pop %edx # Load left operand

cmp %eax,%edx # Compare operands

jne L02 # Jump to L02 if left != right

dec %ecx # Set ecx to false (0)

L02:

push %ecx # Push T/F result

Notice that we first put 1 (true) in register ecx. Then if eax does not equal edx,

execution jumps to L02, leaving 1 in ecx. The mnemonic jne means “jump on not

equal.” However, if eax equals edx, then execution drops through to the statement

that decrements ecx, making it 0 (false). In either case, the value of ecx is pushed

onto the stack.
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The code is a little different if the comparison is between floating point quantities.

mov $1,%ecx # Set ecx to true (1)

fucompp # Compare operands

fnstsw %ax # Move status word to ax

sahf # Store ah in eflags

jne L02 # Jump to L02 if left != right

dec %ecx # Set ecx to false (0)

L02:

push %ecx # Push T/F result

Look up the mnemonics fucompp, fnstsw, and sahf in Intel’s Developer’s Manual,

Vol. 2A. The instruction fucompp will compare the two operands on top of the floating-

point stack and pop them both. It also sets certain bits (C0, C2, and C3) in the

floating-point status word, depending on how the comparison turns out. The next

instruction fnstsw will store the 16-bit FPU status word in register ax. Then the

instruction sahf stores ah in the eflags register. See Intel’s Developer’s Manual,

Vol. 1, Section 8.1.2, x87 FPU Status Register, and Section 8.1.3, Branching and

Conditional Moves on Condition Codes. You will see that sahf moves C0 to CF (carry

flag), C2 to PF (parity flag), and C3 to ZF (zero flag). These flags are automatically

tested when a conditional jump such as jne is executed.

The number of the label L02 was gotten from the jmpLabel class variable in the

CodeGenerator class. Be sure to include the leading 0 to distinguish L02 from L2,

which occurs elsewhere.

When you write the code for the CMPNE case, note that the integer and floating-

point cases begin and end with the same code. Only the middle parts are different.

16.6 The JUMPT Case

The JUMPT case should pop the boolean value left on the stack by the CMPNE case,

test it, and branch if it is true (1). Using the ideas discussed, write the code for the

JUMPT case. Allow that the destination of a JUMPT node may be either a backpatch

label or an actual label. If it is a backpatch label, then its name should begin with

the letter B. If it is an actual, then its name should begin with the letter L.

The following is an example of a JUMPT tree.
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JUMPT INT

BLABEL blabel=3

CMPNE INT

NUM INT value=0

DEREF INT

ID PTR|INT value="a"

The JUMPT tree should also be treated as a special case, since the “true” destination

label may be an actual label and we don’t want the label printed here as a label.

However, we should pass the right subtree to generateTreeCode() for processing.

The code generated by the CMPNE tree will leave the boolean value on the stack, which

the JUMPT tree will test.

This should complete the code generation for if statements and while statements.

16.7 Testing the Compiler

Test your compiler with very simple programs that contain one-way if statements,

two-way if statements, and very simple while loops. Then test it with nested struc-

tures: if statements and while loops nested inside of if statements and while

loops.

You may use the test programs gcd.c, gcd2.c, and Hanoi.c. The programs

gcd2.c and Hanoi.c use recursive function calls.

16.8 Assignment

This lab will serve as Project 7. Place all of your source files in a folder named

Project 7, then zip the folder and drop it in the dropbox.



Laboratory 17

Boolean Expressions

Key Concepts

• Relational operators

• Boolean operators

Before the Lab

Read Sections 8.4 and 8.6 in Compilers: Principles, Techniques, and Tools.

Preliminaries

Copy your source files from the Lab 16 folder to a new folder named Lab 17.

17.1 Introduction

The purpose of this lab is to implement the boolean operators &&, ||, and !, and the

relational operators ==, !=, <, >, <=, and >=. All of these operators appear in the

productions for conditional expressions.

cexpr → expr EQ expr

cexpr → expr NE expr

cexpr → expr LE expr

cexpr → expr GE expr

cexpr → expr LT expr

187



188 LABORATORY 17. BOOLEAN EXPRESSIONS

CMPcc
mode

e2
e2.mode

e1
e1.mode

Figure 17.1: A tree comparing two expressions

cexpr → expr GT expr

cexpr → cexpr AND m cexpr

cexpr → cexpr OR m cexpr

cexpr → NOT cexpr

cexpr → LPAREN cexpr RPAREN

Compiling these expressions is easy enough, and we are now experienced enough, that

we will do both the tree building and the code generation in a single lab.

17.2 Version 5

This is now Version 5 of our compiler. Make the necessary change in Utility.java,

compiler v4.java, and the makefile.

17.3 The Relational Operators

We will deal with the six relational operators as a group, similar to the way we

dealt with the four basic arithmetic operators. For each type of relation there will

be a type of tree node. We already have the constant Ops.CMPNE. Therefore, we

need to introduce the constants Ops.CMPEQ, Ops.CMPLT, Ops.CMPGT, Ops.CMPLE, and

Ops.CMPGE. The general form of a comparison tree is seen in Figure 17.1, where cc

stands for “condition code,” which may be EQ, NE, LT, GT, LE, or GE. The semantic

action for each of the six productions is to build this tree, placing the appropriate

comparison at the root node.
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Name the semantic action function relOp(). The header of the function should

be

public static BackpatchNode relOp(int op, TreeNode e1, TreeNode e2)

where op is the relational operator (e.g., Ops.CMPNE) and e1 and e2 are the expressions

that are being compared. The only issue other than building the tree is to determine

the mode of the operations. That will follow the same rule used in the function

arith(). If both operands are int, then the operation is int. If either operand is

double, then the operation is double, with possible casting.

Once the comparison tree is built, it must be attached to a JUMPT tree. To do this,

we will have relOp() call a function relOpToCExpr() which will be nearly identical

to the exprToCExpr() function that we wrote earlier. In fact, it is so similar that

you might want to copy, paste, and edit exprToCExpr() to create relOpToCExpr().

The only difference is that relOp() passes to relOpToCExpr() the comparison tree

already built. In exprToCExpr(), it was necessary to build the CMPNE tree first.

Therefore, the code in relOpToCExpr() should be identical to the subsequent code

in exprToCExpr(). Just as in exprToCExpr(), the function relOpToCExpr() should

return to relOp() a BackpatchNode containing the “true” and “false” destinations

of the JUMPT tree and the JUMP tree that were printed.

Write the relOp() and relOpToCExpr() functions in SemanticAction.java and

add the function calls in the CUP file.

17.4 The Boolean Operators

The boolean operators &&, ||, and ! are more interesting because they involve

backpatching. As such, they will build various JUMP and JUMPT trees.

Consider first the ! operator. The semantic action function will be the notOp()

function. The “not” operator is applied only to Boolean expressions, which are rep-

resented in the grammar as BackpatchNodes, with a “true” list and a “false” list of

destinations. The only thing to be done is to swap the true and false lists. That is,

create and return a new BackpatchNode with the lists reversed.

The andOp() function will perform the action for the && operator. The conjunction

of two boolean expression is again a boolean expression. That means that the andOp()

function should return a BackpatchNode. The function will require backpatching

because of the “short-circuit” evaluation of “and.” Recall that for the expression p
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cexpr1 m

T

AND

F

T

cexpr2
F

Figure 17.2: Backpatching the AND operator

&& q to be true, both p and q must be true. Therefore, if we find p to be false, then

there is no need to evaluate q. In fact, this method of evaluation is required by the

ANSI C standard. To see how to implement this, we need a diagram. See Figure

17.2.

This indicates that the “true” list from cexpr1 should be backpatched to m and

the “false” list from cexpr1 should be merged with the “false” list from cexpr2. (Note

that m must be one of the parameters of andOp().) Then a BackpatchNode should

be constructed and returned that has the “true” and “false” lists indicated in the

diagram. Write the andOp() function.

The “or” operator || is very similar to the “and” operator. In this case, short-

circuit evaluation of p || q means that if p is true, then there is no need to evaluate

q. Write the orOp() function.

Finally, there is the production

cexpr → LPAREN cexpr RPAREN

This is similar to the production

expr → LPAREN expr RPAREN

Using that production as a guide, write the appropriate action.

17.5 Testing the Tree-Building

Before generating assembly code, it would be a good idea to pause and test the

tree building, especially the boolean operators. Try test programs with various com-

binations of &&, ||, and !. Also, be sure that the precedence, associativity, and

short-circuit rules are working.
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17.6 Code Generation

Let’s generate code first for the relational operators. The pattern has already been

established in the CMPNE case that we wrote in the previous lab.

In an integer comparison, we used the jne mnemonic which left true (1) in register

ecx if the operands were not equal. The alternative was to drop through and change

the value in ecx to false (0). In a similar way, CMPEQ will use je, and so on. Look

in Intel’s Developer’s Manual for the other conditional jump mnemonics that are

available.

Then write the cases for CMPEQ, CMPLT, CMPGT, CMPLE, and CMPGE. You can copy and

paste from CMPNE into the other cases, modifying jne to the appropriate mnemonic.

For floating-point comparisons, you must use the conditional jumps ja, jae, jb,

and jbe. That is because the code for floating-point comparisons sets different flags.

Recall that fucompp reverses the expected order of the operands, so you should use

the reverse condition from the expected one. In other words, to test for less than,

you should use ja (jump above), to test for greater than, you should use jb (jump

below), and so on.

You might review again Sections 8.1.2 and 8.1.3 in Intel’s Developer’s Manual,

Vol. 1, and read about the fucompp and jcc instructions in Vol. 2.

17.7 Testing the Code-Generation

Test a variety of Boolean expressions. Test each relational operator at least once and

each Boolean operator at least once. Test combinations of Boolean operators to see

if everything works correctly. You may use the test program prime.c.

17.8 Assignment

Implement do loops and for loops. The productions for these statements are

stmt → DO stmt1 WHILE LPAREN cexpr RPAREN SEMI

stmt → FOR LPAREN expr1 SEMI cexpr SEMI expr2 RPAREN stmt

I recommend that you begin with the do loops, since they are easier. In a do loop,

stmt1 is executed unconditionally on the first pass. Then cexpr is evaluated. If it is
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false, then execution exits the loop. If it is true, then stmt1 is executed again and

then cexpr is evaluated again, and so on.

When the for loop is executed, expr1 is evaluated first and unconditionally. Next,

cexpr is evaluated. If it evaluates to false, then execution exits the for loop. If it

is true, then stmt is executed. After stmt is executed, expr2 is evaluated and then

cexpr is evaluated again, with the same consequences as previously described.

You will have to figure out where to use the markers m and n. Then draw the

backpatching diagram. Be sure that all the parts are connected and that the final

exit from each kind of loop is the false destination of cexpr. You should find that

the abstract syntax tree and the assembly code are created automatically by existing

functions. You may use the program pi.c as a test program.

This lab will serve as Project 8. Copy your source files and the makefile to a folder

name Project 8, zip it, and drop it in the dropbox.


