
Stood

Administrator Manual
revision D

STOOD Administrator Manual © Ellidiss - October 2011 - page 1

Ellidiss
w w w . e l l i d i s s . c o m

Pierre Dissaux
Pam Flood

page 2 - STOOD Administrator Manual © Ellidiss - October 2011

This manual explains how to customize Stood. It is assumed here that a
standard installation procedure for the product and its license server has been
followed successfully before attempting to use Stood. Please refer to the
Installation Manual in case of any problem. Stood v5.3 is available for both
Unix/Motif and Windows platforms.

1 Administrator’s customizations.....p. 5
1.1 Binary files... p 5
1.2 Configuration files..............................p 8
1.3 Application examples.........................p 48
1.4 Prolog engine......................................p 49
1.5 Unix interface (for Windows only).... p 67

2 User’s customizations................... p. 69
2.1 Properties..p 69
2.2 Changing applications search path.....p 71
2.3 Customizing target languages............ p 73
2.4 Customizing the main window...........p 77
2.5 Changing default fonts and colors..... p 83
2.6 Customizing the environment............ p 87
2.7 Other simple customizations.............. p 89
2.8 Configuration management................p 93
2.9 Requirements management................ p 96

3 Launching Stood........................... p. 98
3.1 STShell... p 99
3.2 Stood executing modes.......................p 107

STOOD Administrator Manual © Ellidiss - October 2011 - page 3

page 4 - STOOD Administrator Manual © Ellidiss - October 2011

1. Administrator’s customizations
This chapter contains usefull information to check and customize the current
installation of the product on your system. The following components should
be found on the system after a proper installation of Stood v5.3:

1.1. Binary files

1.1.1. Supported platforms

The bin.xxx directory contains all the required platform specific binary files,
where xxx identifies the actual environment which should be one of the
following:

• sol2 for Solaris2 on Sun sparc platforms.
• w32 for Windows on PC platforms.
• pclinux for Linux/OpenMotif on PC platforms.

Binaries for the other platforms may be available. Please contact ELLIDISS'
technical support for further information: stood@ellidiss.com

STOOD Administrator Manual © Ellidiss - October 2011 - page 5

1.1.2. Executable files

The available executable files for a given platform are listed below. On Windows
platforms only, all executable files have a .exe extension after the filename:

stood main executable to launch Stood
sbprolog prolog engine for post-processors
scan_ada Ada lexical analyser
scan_c C lexical analyser
scan_cpp C++ lexical analyser
scan_pseudo pseudo-code lexical analyser
scan_aadl AADL Behavior Annex lexical analyser
adarev Ada syntactic analyser
crev C syntactic analyser
aadlrev AADL v2 syntactic analyser

Note that some distributions of Stood may also encompass additional products,
such as AADL Inspector which comes with various AADL analysis tools:
Cheddar for schedulability analysis and Marzhin for real-time simulation. Use
of Marzhin requires that a proper Java Runtime Environment is installed on
the platform.

1.1.3. Ancillary files

A few ancillary files need to be located inside the bin directory:

stood.eng Stood localization file
stood.bmp startup image

page 6 - STOOD Administrator Manual © Ellidiss - October 2011

1.1.4. Initialization file

The bin directory also contains a default initialization file where customizable
options and parameters may be set to fit the user’s preferences:

.stoodrc default initialization file for Unix
stood.ini default initialization file for Windows

Other copies of these files may be created and customized inside users working
directories in order to manage several concurrent configurations. More details
about initialization files contents and customization is provided in §2.

If no other initialization file is found, Stood will use the one located inside the
bin directory. The initialization file gathers all user level customizations. It is
recommended not to modify the initialization file provided during a standard
installation procedure of the product. However, customized initialization files
may be created in the various working or home directories. These additional
initialization files just need to contain the actually overloaded properties. All
the other properties will be set to their default value, as defined in the bin
directory.

Many other customization capabilities are available at the administrator level.
These other customizable features are located inside the config directory and
will be listed later in this chapter.

Note that recent Stood distributions come with two initialization files:
stood_HOOD and stood_AADL. By default, the initialization file located in
the bin directory is a copy of stood_AADL.

STOOD Administrator Manual © Ellidiss - October 2011 - page 7

1.2. Configuration files

The config directory is the general container for all the platform independant
configuration files, including the documentation and code generators. Features
contained in this directory may all be customized by the administrator of the
tool. Many of these features operate like plugins, that may be added, modified
or removed with a simple "plug and play" maintenance process.

The standard configuration complies as far as possible with the HOOD
Reference Manual (HRM) release 4.0, September 1995, and has been extended
thanks to numerous feedbacks from operational users and projects. More
recently, support of Hard Real Time extensions (HRT-HOOD) has been added
to Stood, and other standards like the Architectural Analysis and Design
Language (AADL) or the version 2.0 of the Unified Modeling Language (UML)
are now supported in the last versions of the configuration.

Several configuration directories may be defined in order to fit the specific
requirements for a given Project. It is possible, for instance, to:

• define and implement specific code generation, documentation
and verification rules;

• implement communication utilities with other tools;
• customize help files;

To switch from a given configuration directory to another, the ConfigPath
property should be properly set within the relevant initialization file
(stood.ini or .stoodrc). Refer to §2.6 for further details. For instance, the
config_AADL directory provides a specialized configuration for AADL users.
Features that are not re-defined in this directory are inherited from the default
config directory.

page 8 - STOOD Administrator Manual © Ellidiss - October 2011

1.2.1. Code generators

The code generators are located inside the code_extractors configuration
subdirectory. There is a dedicated subdirectory for each installed code generator:

• config/code_extractors/ada Ada
• config/code_extractors/c C
• config/code_extractors/cpp C++
• config/code_extractors/aadl AADL

Each of these subdirectories contains a set of files that are used by Stood each
time the corresponding code generation action is invoked. The code generation
rules are written in the prolog language. When starting code generation, Stood
produces a prolog facts base and gives the control to a prolog engine which
loads both facts and rules bases, to generate source code files (refer to §1.4).

The contents of a code generation directory are shown below. Some of these
files may be customized by the tool administrator.

Extract.pro prolog rules (source code)
Extract.sbp prolog rules (binary code)
Init.pro prolog run-time interface (source)
Init.sbp prolog run-time interface (binary)
Input.sbp input file for code extraction (rules base)
go.sh launching shell script
scan.lex lexical analyser (lex code)
special definition of code-dependent symbol types
extractors definition of code extraction modes
pragma definition of code extraction options
makefile to re-build code extractor if required

STOOD Administrator Manual © Ellidiss - October 2011 - page 9

More details about the content and use of these files is provided in the user
manual. Like the other plugins, the code generators may be updated more
frequently than the Stood kernel. To know the precise version of a code
generator, edit the Extract.pro file, whose header provides the date of
the last modifications.

The file extractors is used to define different profiles for the code
generation process (for instance, full or partial generation), and to specify the
configuration variables that can be used to handle the source code suffix:

SuffixSpecVariable "ADASPECSUFFIX"
defines an initialization file property in the Languages category(cf. §2.3.2).

ProcedureSpecVariable "$As"
defines the corresponding pseudo variable for the DataBase file (cf. §1.2.9).

While launching Stood, a set of verifications are performed on the configuration
files. You must ensure that, when performing specific customizations,
inconsistencies are not introduced. The main issues may come from differences
between the DataBase file and the various configuration subdirectories it
refers to. This is especially important for the code generators that can easily be
removed or added to the configuration directory, whereas the DataBase file
has not necessarily be properly updated. For instance, if the Ada code generator
has been removed from the configuration directory, but some DataBase
sections still refer to the Ada language, then the following warning will be
shown at launch time:

page 10 - STOOD Administrator Manual © Ellidiss - October 2011

1.2.2. Document generators

The documentation generators are located inside the doc_extractors and
the doc_templates configuration subdirectories. Documentation may be
ones produced in various formats. There is a dedicated subdirectory for each
installed document generator:

• config/doc_extractors/html HTML file
• config/doc_extractors/odt OpenOffice input file
• config/doc_extractors/mif FrameMaker input file
• config/doc_extractors/ps PostScript file
• config/doc_extractors/rtf MSWord input file
• config/doc_extractors/pdf PDF file

Each of these subdirectories contains a set of files that are used by Stood each
time the corresponding document generation is invoked.

Document generators are written either in the prolog language (those whose
directory contain a prolog file), or using the docBook technology (those
whose directory contain a docbook file). Note that the easyDoc technology is
no longer supported. Both kinds of generators may be customized by the tool
administrator. The following files should appear in each document generator:

variable.cfg definition of document variables
suffix.cfg definition of output file suffix
keepps.cfg specifies to keep temporary graphics (optional)

STOOD Administrator Manual © Ellidiss - October 2011 - page 11

In addition to .cfg files, the prolog document generator directories contain:

Extract.pro prolog rules (source code)
Extract.sbp prolog rules (binary code)
Init.pro prolog run-time interface (source)
Init.sbp prolog run-time interface (binary)
Input.sbp input file for code extraction (rules base)
print.sh main launching shell script
printer.sh additional script to send to a printer
preview.sh additional script to send to a pre-viewer
header.xxx initializations, tags definitions
prolog identifies a prolog generator
makefile to re-build doc generator if required
gif insertion of GIF graphics

Important notes:

• The file printer.sh is used to send the produced document to a
printer or a documentation tool. The tool administrator must
customize this file with the actual name of the printer or print
spooler to use.

• The file header.xxx (where xxx may be ps, tps or mif), may be
edited to change the fonts to be used in the documentation.

• Other .sh files may be created to propose different printing
modes or different printers to the user. When print.sh is the
only one defined, only the file only entry is presented in the tools
menu. When additional scripts are defined, corresponding entries
are automatically presented in the tools menu.

• The odt document generator contains an additional template
subdirectory.

page 12 - STOOD Administrator Manual © Ellidiss - October 2011

In addition to .cfg files, the docBook document generators uses the
doc_templates subdirectory which contains a customizable template for
each corresponding format.

config/doc_templates/portrait.rtf template for Word documents
config/doc_templates/portrait.style template for PDF documents

These files may be edited to customize the layout of the documents that are
generated by Stood for these formats.

Some of the document generators can insert a pre-defined keyword or text in
case of a missing file or an empty list. The corresponding text must be specified
in the following configuration files:

config/MissingFile default text for missing file in documentation
config/EmptyList default text for empty list in documentation

STOOD Administrator Manual © Ellidiss - October 2011 - page 13

1.2.3. Rules checkers

The rules checkers are located inside the checkers configuration subdirectory.
There is a dedicated subdirectory for each installed code rules checker:

• config/checkers/hood design rules checker
• config/checkers/metric design metrics
• config/checkers/requirements requirements coverage
• config/checkers/scheduling schedulability analysis
• config/checkers/database design storage checker

Note that the AADL checker is now replaced by AADL Inspector.

Each of these subdirectories contains a set of files that are used by Stood each
time the corresponding verification action is called. Rules checkers are written in
the prolog language. When starting rules checking, Stood produces a prolog
facts base and gives the control to a prolog engine which loads both facts and
rules bases, to generate the appropriate check reports.

The contents of a rules checker directory is shown below. Some of these files
may be customized by the tool administrator.

_Main.pro prolog main rule (source code)
_Main.sbp prolog main rule (binary code)
_Init.pro prolog run-time interface (source)
_Init.sbp prolog run-time interface (binary)
_Input.sbp input file for code extraction (rules base)
go.sh launching shell script
makefile to re-build rules checker if required
config to specify the additional languages to process

page 14 - STOOD Administrator Manual © Ellidiss - October 2011

These files are duplicated for each checker plugin, except for the database
checker (see below). In addition to these files, a set of specific files are
contained inside each checker subdirectory. The .pro suffix identifies the
prolog source files and the .sbp suffix is used for the corresponding prolog
binary files. Only the binary file is required in normal use. The source file is
necessary to perform customizations to the default rules.

The specific files for the design rules checker are:

General.pro (.sbp) general design rules
Include.pro (.sbp) rules for Include relationships
Use.pro (.sbp) rules for Use relationships
Operation.pro (.sbp) rules for Operations
Provided.pro (.sbp) rules for Provided Interfaces
Visibility.pro (.sbp) visibility rules
Consistency.pro (.sbp) consistency rules
Required.pro (.sbp) rules for Required Interfaces
Std.pro (.sbp) additional rules for States &Transitions

The specific files for the metric rules checker are:

Cohesion.pro (.sbp) cohesion of the design
Coupling.pro (.sbp) coupling between design entities
Depth.pro (.sbp) depth of the design hierarchy
Size.pro (.sbp) size of the design entities
Other.pro (.sbp) miscellaneous metrics

STOOD Administrator Manual © Ellidiss - October 2011 - page 15

The specific files for the requirements coverage checker are:

Coverage.pro (.sbp) summary of coverage information
ERMatrix.pro (.sbp) entity -> requirements matrix
REMatrix.pro (.sbp) requirement -> entities matrix
TabMatrix.pro (.sbp) tabulated text matrix
Output.pro (.sbp) output file for Reqtify

The specific files for the schedulability analysis checker are:

RMA.pro (.sbp) schedulability analysis

As opposed to the other checkers, the database checker uses the newest version
of the rules processing engine. Consequently, this directory does not contain the
common files listed above and only includes the following ones:

Hierarchy.sbp hierarchy of components
Scan.sbp summary of ODS files in the database
List.sbp complete list of significant files
_Rules.sbp pre-compiled rules
go.sh launching shell script
config to specify the additional languages to process

More details about the content and use of these files is provided in the users
documentation. Like the other plugins, the rules checkers may be updated more
frequently than the Stood kernel.

page 16 - STOOD Administrator Manual © Ellidiss - October 2011

1.2.4. Tools

Even for Windows platforms, Stood uses Unix shell scripts to control the
interface between the kernel and the post-processors or the
configuration/version management system, or more simply the file storage
environment, and to easily call remote tools. These scripts may all be
customized by the tool administrator, if required. For safety reasons, they are
stored in two different configuration subdirectories: internalTools and
externalTools. Internal tools should never be removed as they are used as
gateways between the kernel and the post-processors (rules checkers, code and
document generators) and the configuration/version management system or the
file system. The contents of the config/internalTools configuration
subdirectory is as follows:

lock.sh called when opening a session
inittrash.sh called when closing a session
infosyc.sh called when enquiring about a System
inforoot.sh called when enquiring about a Design
copydir.sh called when copying or moving files
rmdir.sh called when deleting files
fastprint.sh called for direct printing of graphics and trees
print.sh called to call the document generator
scan.sh called when accepting source code
external.sh called to launch checkers and extractors
difffiles.sh called when comparing files
reqtify.sh called when importing requirements from Reqtify
reverse.sh called to launch a reverse engineering engine
copyenv.sh called when copying the interface of an Environment
checkin.sh called for configuration management checkin (*)
checkout.sh called for configuration management checkout (*)
checklock.sh called for configuration management lock (*)
checkunlock.sh called for configuration management unlock (*)

STOOD Administrator Manual © Ellidiss - October 2011 - page 17

(*) checkin.sh, checkout.sh, checklock.sh and
checkunlock.sh are generic names. Several sets of scripts may be defined
to interface with various configuration or version management systems.

The name of the actual scripts that will be used, is specified by the value of the
CheckInProcedure, CheckOutProcedure, CheckLockProcedure
and CheckUnlockProcedure properties in the initialization file
(stood.ini for Windows or .stoodrc for Unix). The standard installation
provides an interface with cvs (cvsin.sh, cvsout.sh, cvslock.sh, and
cvsunlock.sh) and a simple version management system operating by copy
(copyin.sh, copyout.sh, copylock.sh, copyunlock.sh).

The CheckOutProcedure is used to extract a given version from the
configuration management database to the local working area. The
CheckInProcedure is used to save the current contents of the local working
area into a given version in the configuration management database. The
CheckLockProcedure and CheckUnlockProcedure can be used to
manage multiple access to the configuration management database.

When called by Stood, these configuration management procedures receive the
following parameters:

$1 name of the application to load, lock, unlock or save.
$2 base directory in the local working area.
$3 version id (versions ids are defined in the initialization file).
$4 selected module (not currently used)
$5 protection flag (ro for read-only or rw for read-write)
$6 filename with the list of components to be processed

The last parameter is present if the property CheckInWithArgFile or
CheckOutWithArgFile is set to Yes.

page 18 - STOOD Administrator Manual © Ellidiss - October 2011

Unlike the internal tools, the use of external tools is optional. They may be
defined to communicate with remote tools. They can be called only from text
editors. The default contents of the config/externalTools configuration
subdirectory is described below. These contents should be considered as an
example only.

info.sh provide information about current selection
text_edit.sh launch a remote text editor (to be customized)
check_ada.sh launch gnat for Ada code analysis (if possible)
check_aadl.sh launch the AADL syntactic code analyser
make.sh execute selected makefile
aadl_inspector.sh launch AADLInspector (for AADL files only)
osate.sh launch TOSATE (for AADL files only)

Please note that use of external tools may require the definition of an
environment variable in the initialization file (stood.ini or .stoodrc). For
instance, the following settings are necessary for using OSATE. They must of
course be customized as appropriate.

OSATE_PATH=/cygdrive/C/topcased/eclipse/eclipse.exe

It is possible to send information to external tools via five parameters whose
value is related to the currently selected items in used text editor.

$1 current Property file pathname (if any)
$2 current Design name
$3 current Component name
$4 current Feature name
$5 current Property identifier (logical name)

Note: Cheddar is now included into AADLInspector

STOOD Administrator Manual © Ellidiss - October 2011 - page 19

For instance, the external tool info.sh is defined as follow:

#!/bin/sh
echo "design name: " $2
echo "component name: " $3
echo "feature name: " $4
echo "property logical name: " $5
echo "property file pathname: " "$1"

The result of an external tool execution is displayed in a dialog box, that
contains information sent to the shell script standard output. Note that
execution of an external tool suspends Stood until its completion, except if the
header of the relevant script contains the following statement:

#!/bin/sh
Stood:NoWait

In this case, the script mustn't write anything on the standard output.

An other protocol is also supported which specifically fits the text_edit external
tool.:

#!/bin/sh
Stood:Write

When the Write protocol is used, the file referenced by $1 is subject to Stood
lexical analysis after it has been saved in the remote editor.

page 20 - STOOD Administrator Manual © Ellidiss - October 2011

1.2.5. Contextual help files

An on-line help mecanism is available with Stood. It is also fully customizable
by the tool administrator. The help facility is composed of three different parts,
each of them being stored in a dedicated configuration subdirectory:

• config/help help files for Stood windows
• config/ods_help help files for ODS sections
• config/ods_template templates for ODS sections

The contents of help subdirectory is a list of files, attached to each editor or
dialog box. Help may be provided at two levels.

Information contained in these files is displayed in a dialog box when the
corresponding help menu or button has been selected. A more help button gives
access to more detailed information, if any. An additional file may be created in
each case to provide this second level help. These additional files should have a
.more suffix.

Help filenames are directly related to window or view identifiers also used for
setting initialization file properties (refer to §2.4) or in the STShell language
parameters (refer to §3.1.1).

STOOD Administrator Manual © Ellidiss - October 2011 - page 21

main main window
tre design tree
hie inheritance tree
req requirements editor
gra_hood HOOD graphical editor
gra_uml UML graphical editor
gra_aadl AADL graphical editor
txt text editor
std states-transitions diagram (STD) editor
chk design verification tools
utr call tree and access graph
ext code extractor
code code editor
rev code reversor
doc document editor
vna allocation editor
dbobj module selection dialog box
dbobjla module and language selection dialog box
dbcompare designs comparison dialog box
dbcopy design copy dialog box
dbreplace design replace dialog box
dbconf configuration management dialog box

Additional help is provided for each section of the detailed design structure.
This is particularly useful to provide assistance on the best way to insert
information inside each section of the ODS (Object Description Skeleton). This
assistance may be informative text or examples of text input that are directly
inserted at the right place. Both may be customized by the tool administrator,
by editing the files contained in the ods_help and ods_template
configuration subdirectories.

page 22 - STOOD Administrator Manual © Ellidiss - October 2011

Organization of these two subdirectories is directly related to the way
Application storage has been configured in the DataBase file (refer to §1.2.9).
Help and template information files are organized as any Stood Application,
but in a generic way. Each time an Application, Component or Feature name
is required to build an actual storage pathname, the reserved keyword name is
used instead.

It is also possible to provide information for sections that are not stored in a
file, but extracted from the design model by a procedure. In this case, help and
template files will be named proc#, where # is the procedure number defined
inside the DataBase file. Many sections controled by procedure are read-only,
so that only help information is provided (no template). These help and
template files may use the following contextual pseudo-variables:

$Dg Application name $St current config directory
$Op Operation name $39 Super-Class (Ada syntax)
$Os Operation-Set name $40 Super-Class (C++ syntax)
$Ty Type name $70 Attributes (Ada syntax)
$Cp Constant name $71 Attributes (C/C++ syntax)
$Ex Exception name $72 Operation Parameter list
$Da Data name $73 Enumeration (C/C++)
$Id RCS tag $74 Enumeration (Ada syntax)
$Ho current SavePath directoryrectory

Other pseudo-variables may be defined in the initialization file. For instance, to
use a pseudo-variable $Pj which gives the name of the project, first declare it as
follow in the stood.ini file:
[Variables]
Pj=Stood
or in the .stoodrc file:
Variables.Pj:Stood

STOOD Administrator Manual © Ellidiss - October 2011 - page 23

The immediate contents of ods_help and ods_template configuration
subdirectories refer to the first directory level (sections global to an
Application):

• name directory for second directory level (Components)
• proc# information file for procedure # (see table below)

proc1 list of child Components Read Only
proc2 contents of current System Configuration Read Only
proc3 list of requirements Read Only
proc4 DataFlows Read Only
proc5 Exception Flows Read Only
proc15 actual parameters for Instance_Of Generic Componeomponents
proc16 instance range for Instance_Of Generic Components
proc22 Operation declaration
proc23 Used Operations Read Only
proc24 Operation properties
proc29 Type properties
proc30 Class inheritance
proc31 Type attributes
proc32 Exception definition
proc33 propagated Exceptions
proc34 Constrained Operations
proc35 OBCS is Implemented By Read Only
proc36 Required Interface (Op, Os, Ty, Co, Ex) Read Only
proc37 Operation Set definition Read Only
proc38 Type enumeration
proc46 Required Interface (Op) Read Only
proc47 Required Interface (Op, Ty, Co, Ex, Da)) Read Only

(cont. next page)

page 24 - STOOD Administrator Manual © Ellidiss - October 2011

proc61 Operation is Implemented By Read Only
proc62 Type is Implemented By Read Only
proc63 Constant is Implemented By Read Only
proc64 Exception is Implemented By Read Only
proc65 Data is Implemented By (forbidden) Read Only
proc66 Operation Set is Implemented By Read Only
proc81 Operation Set contents Read Only
proc91 symbol is used by Read Only
proc93 symbol uses Read Only
proc175 sketch editor
proc176 table editor
proc199 inheritance tree Read Only
proc200 Design tree Read Only
proc220 State-Transition diagram
proc224 Transition event Read Only
proc225 State exiting Transitions Read Only
proc226 State entering Transitions Read Only
proc227 origin State for the Transition Read Only
proc228 destination State for the Transition Read Only
proc302 Object Real-Time Attributes
proc303 Operation Real-Time Attributes

STOOD Administrator Manual © Ellidiss - October 2011 - page 25

At the second directory level (sections global to a Component),
ods_help/name and ods_template/name contain a set of files and a set
of directories:

• DOC subdirectory (help and template for Description files):

StaPro.t help and template files for Statement of the Problem
RefDoc.t help and template files for Referenced Documents
StrReq.t help and template files for Structural Requirements
FunReq.t help and template files for Functional Requirements
BehReq.t help and template files for Behavioural Requirements
ParDes.t help and template files for Parent Description
UseMan.t help and template files for User Manual Outline
GenStr.t help and template files for General Strategy
IdeChi.t help and template files for Identification of Children
IdeStr.t help and template files for Identification of Types
IdeOpe.t help and template files for Identification of Operations
GroOpe.t help and template files for Grouping Operations
IdeBeh.t help and template files for Identification of Behaviour
JusDes.t help and template files for Justification of Decisions
ImpCon.t help and template files for Implementation Constraints
modif.t help and template files for Component modifications
header help and template files for code files header
ProDes.t help and template files for Project Description

• AP subdirectory (help and template for AADL properties files):
This directory is available in the config_AADL directory only and provides
some help and default value for each AADL standard property.

page 26 - STOOD Administrator Manual © Ellidiss - October 2011

• OP subdirectory (help and template for Operations):

name.t help and template files for Operation spec description
name.t2 help and template files for Operation body description
name.hx help and template files for Operation handled Exceptio
name.x help and template files for Operation Ada extension
name.p help and template files for Operation Pseudo code
name.u help and template files for Operation Ada code
name.c help and template files for Operation C code
name.cc help and template files for Operation C++ code
name_test.t help and template files for Operation test description
name_prec.t help and template for Op. preconditions description
name_prec.u help and template for Op. preconditions Ada code
name_post.t help and template for Op. postconditions description
name_post.u help and template for Op. postconditions Ada code
name_modif.t help and template for Operation changes file
name_header.u help and template for Op. Ada separate file header

• T subdirectory (help and template for Types):

name.t help and template files for Type textual description
name.s help and template files for Type Ada pre-declaration
name.u help and template files for Type Ada full definition
name.h help and template files for Type C definition
name.hh help and template files for Type C++ definition

STOOD Administrator Manual © Ellidiss - October 2011 - page 27

• C subdirectory (help and template for Constants):

name.t help and template files for Constant textual description
name.s help and template files for Constant Ada pre-declaration
name.u help and template files for Constant Ada full definition
name.h help and template files for Constant C definition
name.hh help and template files for Constant C++ definition

• D subdirectory (help and template for Data):

name.t help and template files for Data textual description
name.s help and template files for Data Ada definition
name.c help and template files for Data C definition
name.cc help and template files for Data C++ definition

• X subdirectory (help and template for Exceptions):

name.t help and template files for Exception description

• OPS subdirectory (help and template for Operation Sets):

name.t help and template files for Operation Set description

• OTS subdirectory (help and template for Test Sequence files):

name_desc.t help and template files for Test sequence description
name_sequ.u help and template files for Test Ada code

page 28 - STOOD Administrator Manual © Ellidiss - October 2011

• STD subdirectory (help and template for States and Transitions):

obcs.t help and template files for OBCS spec description
obcs.t2 help and template files for OBCS body description
obcs.p help and template files for OBCS Pseudo code
obcs.u help and template files for OBCS Ada code
obcs.c help and template files for OBCS C code
obcs.cc help and template files for OBCS C++ code
name.t help and template files for State textual description
name_set.u help and template files for State assignment in Ada
name_get.u help and template files for State test code in Ada
name_set.c help and template files for State assignment in C
name_get.c help and template files for State test code in C
name_set.cc help and template files for State assignment in C++
name_get.cc help and template files for State test code in C++
name.t2 help and template files for Transition description
name_cnd.u help and template files for Transition condition in Ada
name_exc.u help and template files for Transition exception in Ada
name_cnd.c help and template files for Transition condition in C
name_exc.c help and template files for Transition exception in C
name_cnd.cc help and template files for Transition condition in C++
name_exc.cc help and template files for Transition exception in C++
obcs_header.u help and template files for OBCS Ada sep. file header

• files:

PRAGMA help and template files for Component Pragmas
specHeader.u help and template files for Ada spec file header
specHeader.c help and template files for C spec file header
specHeader.cc help and template files for C++ spec file header
bodyHeader.u help and template files for Ada body file header
bodyHeader.c help and template files for C body file header
bodyHeader.cc help and template files for C++ body file header

STOOD Administrator Manual © Ellidiss - October 2011 - page 29

1.2.6. Icons

Stood uses customizable icons, especially when displaying buttons or menu
items. Icon definition files are stored in the icons configuration subdirectory.
Each icon is described by a pair of *.bmp and *M.bmp files for both Windows
and Unix platforms. It is possible to edit these files with an appropriate utility
program to change the icons, or add other icons and associate them to some
window buttons bars (refer to §2.4.2). The default list of icons that are available
in the config/icons configuration subdirectory is shown in the table below:

• icons for the Component and Property lists

lock.bmp
partially lock.bmp
write.bmp
rubempty.bmp
rubpartiallyfull.bmp
rubfull.bmp
save small.bmp
print small.bmp
print not small.bmp
contains find text.bmp
find text.bmp
contains rev.bmp
enable rev.bmp
disable rev.bmp

page 30 - STOOD Administrator Manual © Ellidiss - October 2011

• icons for the requirements view (req)

load requirements from reqtify.bmp
load requirements from text.bmp or load.bmp
export requirements.bmp or save.bmp
new requirement.bmp
copy reference.bmp or copy.bmp
delete requirement.bmp
update coverage.bmp
help.bmp

• icons for the textual edition view (txt)

editor.bmp
help.bmp

• icons for the UML graphical view (gra_uml)

print.bmp
new uml component.bmp
new uml class.bmp
new uml cyclic component.bmp
new uml sporadic component.bmp
new uml protected component.bmp
new uml feature.bmp
new uml assembly.bmp
new uml delegate provided.bmp
new uml inheritance.bmp
new uml aggregation.bmp
new uml delegate required.bmp
state diagram.bmp
zoom in.bmp
zoom adjust.bmp
zoom out.bmp
help.bmp

STOOD Administrator Manual © Ellidiss - October 2011 - page 31

• icons for the HOOD graphical view (gra_hood)

print.bmp
show operations.bmp
show types.bmp
show constants.bmp
show exceptions.bmp
show data.bmp
new object.bmp
new class.bmp
new cyclic.bmp
new sporadic.bmp
new protected.bmp
new feature.bmp
new set.bmp
new use connection.bmp
new implementedby connection.bmp
new inheritance.bmp
new aggregation.bmp
state diagram.bmp
zoom in.bmp
zoom adjust.bmp
zoom out.bmp
help.bmp

• icons for the AADL graphical view (gra_aadl)

print.bmp
new aadl component.bmp
new port.bmp
new port group.bmp
new subprogram
new connection
state diagram.bmp
zoom in.bmp
zoom adjust.bmp
zoom out.bmp
help.bmp

page 32 - STOOD Administrator Manual © Ellidiss - October 2011

• icons for the design verification view (chk)

update cross ref.bmp or update xref.bmp
find.bmp
call tree.bmp
access tree.bmp
check design.bmp
check system.bmp
aadl.bmp
ada.bmp
c.bmp
cpp.bmp
pseudo.bmp
help.bmp

• icons for the code extractors view (ext)

add pragma.bmp or pragmas.bmp
full extraction.bmp
obcs extraction.bmp
body only.bmp
help.bmp

• icons for the code editors view (code)

aadl inspector.bmp
osate.bmp
check aadl.bmp
check ada.bmp
reverse.bmp
help.bmp

STOOD Administrator Manual © Ellidiss - October 2011 - page 33

• icons for the code reversor view (rev)

previous change.bmp
next change.bmp
update.bmp
update all.bmp
help.bmp

• icons for the documentation view (doc)

apply.bmp
select all.bmp
apply to all.bmp
html.bmp
mif.bmp
pdf.bmp
ps.bmp
rtf.bmp
odt.bmp
print.bmp
help.bmp

• icons for the deployment view (vna)

select design.bmp or logical root.bmp
check allocation.bmp
help.bmp

page 34 - STOOD Administrator Manual © Ellidiss - October 2011

• icons for the state transtion diagram

print.bmp
istateuml.bmp
state.bmp
connect.bmp
event.bmp
delete2.bmp
undelete.bmp
loupe_p.bmp
loupe_m.bmp
help.bmp

• icons for the call, access, design and inheritance trees

print.bmp
tree.bmp
list.bmp
help.bmp

• icons for the sketch editor

The icons shown on the buttons bar of the sketch editor cannot be customized.

STOOD Administrator Manual © Ellidiss - October 2011 - page 35

1.2.7. Http

Stood commands may be invoked on an intranet or the internet. For Stood to
operate as an http server, the HttpServerPort property must be properly
set in the initialization file. If so, a connection to Stood may be established from
any http client navigator with the following URL:
http://host:port

Where:
• host: must be a hostname where Stood runs.
• port: is the value define by the HttpServerPort property.

Example:
http://server.ellidiss.com:80

When the connection has been established, the list of STShell scripts located in
the config/http configuration subdirectory may be executed. For further
information about STShell, please refer to §3.1.

Note that http is not the only protocol that may be used to send STShell
commands to Stood. A DDE port is made available automatically on Windows
and Unix, and a named pipe, named st, is automatically created on Unix only
(if not disabled by the Server.DisableSTShellPipe property). Finally,
a STShell filename may be specified on the command line when launching
Stood.

page 36 - STOOD Administrator Manual © Ellidiss - October 2011

1.2.8. Reverse

Stood now includes full reverse engineering features for Ada, C, and AADL
source files. This reverse engineering process operates in three sequential steps.
Firstly, an appropriate syntactic analyser is used to parse the source files. Then
the semantic transformation is performed by a program written in the prolog
language to produce a SIF (Standard Interchange Format) file. Finally, Stood
imports the SIF file to build the design. The config/reverse configuration
subdirectory contains all the files required by the second step (SIF generator
from Ada, C or AADL source files). There is a dedicated subdirectory for each
installed reverse engineering tool:

• config/reverse/ada Ada
• config/reverse/c C
• config/reverse/aadl AADL

Each of these subdirectories contains a set of files that are used by Stood each
time the corresponding reverse action is invoked. The reverse rules are written
in the prolog language. When starting a reverse operation, Stood produces a
prolog facts base and gives the control to a prolog engine which loads both
facts and rules bases, to generate a SIF file (refer to §1.4). The contents of a
reverse directory are shown below. Some of these files may be customized by
the tool administrator.

Extract.pro prolog rules (source code)
Extract.sbp prolog rules (binary code)
Init.pro prolog run-time interface (source)
Init.sbp prolog run-time interface (binary)
Input.sbp input file for reverse engineering (rules base)
go.sh launching shell script
makefile to re-build reverse rules if required

STOOD Administrator Manual © Ellidiss - October 2011 - page 37

1.2.9. DataBase file

The place where the standard Application data storage is defined is a
description file called config/DataBase. It may be necessary to customize
this file to perform following kind of changes:

• Add or remove sections in the standard detailed design structure
• Add sections for new target languages (Fortran, Java, ...)
• Create or customize the textual editors
• Change the standard documentation layout
• Modify the Application storage organization
• ...

The contents of this file consists of a sequential list of records, one for each
section of any text editor. These records should comply with a precise syntax
that is described below with a simple variant of Backus-Naur Form (BNF)
where:

• Plain words are used to denote syntactic rules identifiers
• Boldface words are used to denote keywords
• Square brackets enclose optional items
• Curly brackets enclose a repeated item
• A vertical line separates alternative items

(1)DataBase ::= { Section2 }

(2)Section ::= Label3 LogicalName4 (
 SectionLevel5 [ModuleMask6]
 [SectionStorage7] [LoopProc8] [Title9]
 DocProc10 [EditorMask11] [ChildPropagate])

page 38 - STOOD Administrator Manual © Ellidiss - October 2011

(3)Label ::= string

Label is the string that is visible in the section area of text editors. This strings
value may be customized without any constraint.

(4)LogicalName ::= identifier

LogicalName should not be modified as it may be used by Stood as an
internal identifier.

(5)SectionLevel ::= level positive

SectionLevel is used to manage the section hierarchy. It is used to indent
labels in text editors, and to define a hierarchy of paragraphs in the produced
documentation. The highest level is 1, and in the standard configuration, the
lowest level is 6. Note that ModuleMask is automatically inherited from higher
level sections.

(6)ModuleMask ::= when BooleanExpression12

(12)BooleanExpression ::= ModuleKind13
 { BooleanOperator14 ModuleKind13 }

(13)ModuleKind ::= a | o | i | f | e | c
| sroot | root2 | root | leaf | constr | sif
| cy | sp | pr | pk | sy | ps | pc | me | bu
| de | da | th | tg | sg

(14)BooleanOperator ::= + | . | \

STOOD Administrator Manual © Ellidiss - October 2011 - page 39

The way Stood knows if a section is relevant for a given kind of Components,
is the value of the ModuleMask expression. The meaning of the ModuleKind
constant is:

a Active Component
o Op_Control Component
i Instance_Of Component
f Formal_Parameters Component
e unbound Environment Component
c Class Component
sroot System_Configuration
root2 bound Environment Component
root Root_Component
leaf Terminal Component
constr Component providing at least one Constrained Operation
sif to specify that this section should not appear in SIF files
cy Hard Real Time Cyclic Object
sp Hard Real Time Sporadic Object
pr Hard Real Time Protected Object
pk AADL Package
sy AADL System
ps AADL Process
pc AADL Processor
me AADL Memory
bu AADL Bus
de AADL Device
da AADL Data
th AADL Thread
tg AADL Thread Group
sg AADL Subprogram

These conditions may be combined using the following boolean operators:

page 40 - STOOD Administrator Manual © Ellidiss - October 2011

+ logical OR
. logical AND
\ logical NOT

(7)SectionStorage ::=
 text pathname
| text procNumber
| dir pathname

The way Stood knows how to get or store information related to this section, is
specified by SectionStorage. The provided parameter may be either a file
pathname, or an internal procedure number.

Each Pathname is specified in a generic way, using a Unix syntax (even for
DOS based platforms) and the following pseudo-variables:

$Ho pathname of current storage directory (SavePath)
$St pathname of configuration directory (ConfigPath)
$Dg name of current Application
$Ob name of current Component
$Op name of current Operation (if relevant)
$Tp name of current Type (if relevant)
$Cp name of current Constant (if relevant)
$Os name of current Operation Set (if relevant)
$Ex name of current Exception (if relevant)
$Da name of current Data element (if relevant)
$Se name of current State or Transition (if relevant)
$Ts name of current test sequence (if relevant)

According to the standard definition of the extractors file in the code_extractors
directories (cf. §1.2.1), the following additional pseudo variables may be used to
handle the source code suffix:

STOOD Administrator Manual © Ellidiss - October 2011 - page 41

$As suffix for Ada specification files
$Ab suffix for Ada body files
$Cs suffix for C header files
$Cb suffix for C source files
$Ks suffix for C++ header files
$Kb suffix for C++ source files
$Ps suffix for pseudo code specification files
$Pb suffix for pseudo code body files
$Dl suffix for AADL files

Finally, other pseudo variables may be defined in the initialization file, by
creating new entries in the Variables category. For instance, if the following
lines are added to the stood.ini file:

[Variables]
Pj=Stood

Then, the $Pj pseudo variable can be used in the DataBase descriptor file. It
will be replaced by its value in every pathname where it is used.

When information is produced by an internal procedure, procNumber should
be one of the following:

1 list of child Components 21 OPCS end
2 contents of System Config. 22 Operation declaration
3 List of Requirements 23 Used Operations
4 DataFlows 24 Operation properties
5 Exception Flows 25 Same as 17 followed by 18
14 AADL category 26 Same as 17 without keyword IS
15 parameters for Instance_Of 29 Type properties
16 instance range for Instance_Of 30 Class inheritance
17 begin of ODS 31 Type attributes
18 type of current Component 32 Exception definition
19 end of ODS 33 propagated Exceptions
20 OPCS begin 34 Constrained Operations

page 42 - STOOD Administrator Manual © Ellidiss - October 2011

35 OBCS is Implemented By 91 symbol is used by
36 Required Interface 92 symbol name
37 Operation Set definition 93 symbol uses
38 Type enumeration 94 Call Tree
39 Superclass (Ada syntax) 95 Inverse Call tree
40 Superclass (C++ syntax) 175 sketch
41 child Operation 176 table
42 child Type 199 Inheritance Tree
43 child Constant 200 Design Tree
44 child Exception 201 Operations Diagram
45 child Data 202 Types Diagram
46 Required Interface (Op only) 203 Constants Diagram
47 Required Interface (with Data) 204 Exceptions Diagram
51 Operation name 205 Data Diagram
52 Operation Set name 206 UML Components Diagram
53 Type name 207 AADL Components Diagram
54 Constant name 211 Parent Operations Diagram
55 Exception name 212 Parent Types Diagram
56 Data name 213 Parent Constants Diagram
61 Operation is Implemented By 214 Parent Exception Diagram
62 Type is Implemented By 215 Parent Data Diagram
63 Constant is Implemented By 216 Parent UML Diagram
64 Exception is Implemented By 217 Parent AADL Diagram
65 Data is Implemented By 220 STD
66 Operation Set Implemented By 221 Parent STD
70 Type Attributes (Ada syntax) 222 State name
71 Type Attributes (C/C++ syntax) 223 Transition name
72 Operation signature 224 Transition event
73 Type enumeration (C/C++ syntax) 225 State exiting Transitions
74 Type enumeration (Ada syntax) 226 State entering Transitions
81 Operation Set contents 227 Transition origin State
82 Type Set contents 228 Transition destination State
83 Constant Set contents 301 current version
84 Exception Set contents 302 Component Real-Time Attribute
85 DataSet contents 303 Operation Real-Time Attributes

STOOD Administrator Manual © Ellidiss - October 2011 - page 43

(8)LoopProc ::= list LoopNumber15

(9)Title ::=
 title string
| title procNumber
| title nil

It is possible to control the string that will be used for the section title in
printed documents. If the Title field is missing, then SectionLabel will be
used to print the section title. If a string constant is given, then it will be used as
a title. If a proper procedure number is provided, then Stood will dynamically
generate the title to be printed. Finally, if the nil keyword is specified, then no
title will be printed.

(15)LoopNumber ::= 90 | 92 | 95 | 96 | 1X16Y17Z18

(16)X ::= 1 | 2 | 3 | 4 | 5
(17)Y ::= 1 | 2
(18)Z ::= 0 | 1 | 2

Some DataBase file sections are not related to a unique entity, but to a list of
entities of the same kind. This is the case when a Feature is selected in a text
editor. The LoopNumber field is used to specify which list processing is
required. Encoding is as follow:

90 list of rules checker categories
92 list of cross-references table symbols
95 list of States
96 list of Transitions
97 list of Tests

1XYZ list of Operations, Types, Constants, Exceptions and Data

page 44 - STOOD Administrator Manual © Ellidiss - October 2011

Where the, X, Y and Z digits may have following values:

X
1 list of Operations
2 list of Types
3 list of Constants
4 list of Exceptions
5 list of Data

Y
1 element
2 set

Z
0 Provided
1 Internal
2 both

(10)DocProc ::= doc DocType19

(19)DocType ::= TXT | CODE | TXTEND
| POSTSCRIPT | TABLE

A specific documentation procedure may be applied to a section. They must be
processed by each document generator. The default procedures are:

TXT plain text
CODE fixed font text
TXTEND plain text without form feed
POSTSCRIPT formated graphics (EPSF, GIF, WMF, ...)
TABLE No more used: use POSTSCRIPT instead

STOOD Administrator Manual © Ellidiss - October 2011 - page 45

(11)EditorMask ::= flags BooleanExpression220

(20)BooleanExpression2 ::=
 EditorId21 { BooleanOperator14 EditorId21 }

(21)EditorId ::=
 eOds | eAda | eC | eCpp | eAADL |eChecks | eTests

With the EditorMask section field, it is possible to specify in which text
editor this section will be visible. This field may also be used to create new
customized text editors in Stood. The standard text editors are:

eOds ods text editor
eAda ada text editor
eC c text editor
eCpp cpp text editor
eAADL aadl text editor
eChecks checks text editor
eTests tests text editor

To create a new text editor, the first referencing section must declare it in its
EditorMask field:

flags (eNew=’my_editor’)

In this case, a my_editor text editor will be automatically added to standard text
editors in the editors menu of the main editor.

page 46 - STOOD Administrator Manual © Ellidiss - October 2011

The last keyword may be used for special need:

The ChildPropagate field provides a way for information to be propagated
along Implemented_By links. If this field is present, then a section of a Non
Terminal Component will point to the contents of a regarding section in the
relevant Terminal Component, if the Implemented_By relationship has been
properly set.

Example of DataBase sections:

‘operation spec. description (text)’ OpTxt
(level 5 when \root2+f list 1110
 text ‘$Ho/$Dg/$Ob/OP/$Op.t’
 doc TXT flags eOds)

‘operation declaration (hood)’ OpDecl
(level 5 list 1110
 text 22
 doc CODE flags eOds + eAda + eC + eCpp)

The first section contains the informal text stored in a file. It concerns all the
Provided Operations of any Component, except bounded Environments and
Formal Parameters of Generics. It will be visible only in the ods text editor.

The second section contains code calculated by an internal procedure. It
concerns also Provided Operations of any Component. It is visible in the ods
text editor, ada text editor, c text editor and cpp text editor.

STOOD Administrator Manual © Ellidiss - October 2011 - page 47

1.3. Applications examples

The Stood standard installation contains a set of directories with a few
Application examples that may differ from one distribution to another. A
typical distribution contains:

• examples: a few Ada, C and C++ examples
• examples_AADL: a few AADL examples
• libs: interfaces to libraries (AADL, Ada, C, C++)

page 48 - STOOD Administrator Manual © Ellidiss - October 2011

1.4. Prolog engine

1.4.1. sbprolog

The sbprolog directory, contains sources and librairies of the prolog
environment developed by the State University of New York at Stony Brook
(http://www.sunysb.edu/). If no other prolog engine is available,
sbprolog will be used to perform post-processing actions (code extraction, rules
checking, document generation).

Most of the times, Stood post-processors prolog source code is provided with
the standard distribution in order to let the tool administrator use another
prolog environment, if needed.

Stood does not require the source files of the prolog engine and libraries to
work properly. They may be removed from the Stood execution environment.
However, the sbprolog directory should contain at least:

lib sbprolog library
modlib sbprolog library
cmplib sbprolog library
prolog shell script to launch prolog interpreter
compile shell script to re-build Stood post-processors

STOOD Administrator Manual © Ellidiss - October 2011 - page 49

The executable file for the prolog engine is located in the bin.xxx directory.
Stood always launches the prolog engine through Unix shell scripts:

checkers/*/go.sh rules checkers
code_extractors/*/go.sh code extractors
doc_extractors/*/print.sh document generator
reverse/*/go.sh reverse engines

Each script contains at least a few statements, similar to the following:
Access path to sbprolog libraries:

SIMPATH=
"$STOODPRO/modlib":
"$STOODPRO/lib":
"$STOODPRO/cmplib"

export SIMPATH

Launching sbprolog executable file:

"$STOODBIN/sbprolog"
-m $SBPROLOG_M_SIZE
-p $SBPROLOG_P_SIZE
"$1/_Input.sbp"

The STOODBIN, STOODPRO, SBPROLOG_M_SIZE and SBPROLOG_P_SIZE
 environment variables are used to provide the actual location of the bin.xxx
and the sbprolog directories, and to set the memory allocation quota for the
prolog engine. These variables are set in the initialization file (refer to §2.6).

page 50 - STOOD Administrator Manual © Ellidiss - October 2011

1.4.2. prolog interface

Stood communicates with the prolog engine within a dedicated file interface.
Post-processors consists of a set of prolog rules, whereas Stood provides a set
of facts, or predicates, describing the current status of the Application, and
options for the action to be performed.

Stood prolog
engine

facts
base

output
files

rules
base

The facts base file is dynamically generated into the relevant output directory
within the current Application storage area, before launching the prolog engine:

_checks/extract.pro rules checkers
_ada/extract.pro Ada code extractor
_c/extract.pro C code extractor
_cpp/extract.pro C++ code extractor
_doc/extract.pro document generators

Note that for the reverse engineering operations, the facts base is produced by
the source code syntactic analyser in the source code directory.

STOOD Administrator Manual © Ellidiss - October 2011 - page 51

The list of generated prolog predicates is:

• isSystem(System).

System name of the current System

• isRootObject(Root,Kind,Path).

Root name of a Root Component in current system
Kind DESIGN, GENERIC or VIRTUAL_NODE
Path actual pathname of regarding storage area

• isCurrentRoot(Root).

Root name of the current Root Component

• designModel(Root,Model).

Root name of a Root Component in current system
Model AADL, HOOD, UML or ANY

• isMissing(Root).

Root name of a Root for which details are missing

• isObject(Component,Kind,Parent).

Component name of a Component in current hierarchy
Kind PASSIVE, ACTIVE, OP_CONTROL, ...
Parent name of parent Component in current hierarchy

page 52 - STOOD Administrator Manual © Ellidiss - October 2011

• objectLevel(Component,Level).

Component name of a Component in current hierarchy
Level depth in the hierarchy, 1 for the Root Component

• isProvided(Feature,Kind,Component).

Feature name of a Provided Feature in specified Component
Kind OPERATION, TYPE, CONSTANT, EXCEPTION .
Component name of the Component

• isInternal(Feature,Kind,Component).

Feature name of an Internal Feature in specified Component
Kind OPERATION, TYPE, CONSTANT, DATA, ...
Component name of the Component

• isImplementedBy(Pf,Kind,Pc,Cf,Cc,Style).

Pf name of a Provided Feature of Component Pc
Kind OPERATION, TYPE, CONSTANT, EXCEPTION
Pc name of a Non Terminal Component
Cf name of a Provided Feature of Component Cc
Cc name of a Child Component of Pc
Style 1

STOOD Administrator Manual © Ellidiss - October 2011 - page 53

• uses(Client,Server,View,Style).

Client name of a user Component in current hierarchy
Server name of a used Component
View OPERATION or TYPE
Style 1: Uses; 2: Inherits; 3: Attributes

• isFlow(Source,Sink,View,Flow,Mode,K).

Source name of a user Component in current hierarchy
Sink name of a used Component
View OPERATION
Flow flow identifier: "AADL_SourcePort___SinkPort"
Mode name of a Child Component of Pc
Kind immediate or delayed

• argument(Op,’OPERATION’,Cop,Mode,P,Cty,T,V,K).

Op name of an Operation of Component Cop
Cop name of a Component in current hierarchy
Mode in; out or in out
P name of a Parameter of Operation Op
Cty name of another Component
T name of a Type of Component Cty
V initial value for Parameter P
K BY_VALUE; BY_POINTER; BY_REFERENCE

page 54 - STOOD Administrator Manual © Ellidiss - October 2011

• return(Op,’OPERATION’,Cop,Cty,T,K).

Op name of an Operation of Component Cop
Cop name of a Component in current hierarchy
Cty name of another Component
T name of a Type of Component Cty
K BY_VALUE; BY_POINTER; BY_REFERENCE

• isMemberOf(Op,’OPERATION’,Component,Opset).

Op name of an Operation of Specified Component
Component name of a Component in current hierarchy
Opset name of an Operation Set of specified Component

• isConstrained(Op,’OPERATION’,Component,C,P).

Op name of an Operation of specified Component
Component name of a Component in current hierarchy
C STATE; HSER; LSER; ASER; BY_IT; TO; ROER
P value of Constraint parameter, if any

• raisedException(Op,’OPERATION’,Component,Exc).

Op name of an Operation of specified Component
Component name of a Component in current hierarchy
Exc name of an Exception of specified Component

STOOD Administrator Manual © Ellidiss - October 2011 - page 55

• isInstance(Component,Instance,Generic).

Component name of an Instance Of Component
Instance actual name of the instance (unused)
Generic name of regarding Generic Component

• formalParameter(Feature,Kind,Generic).

Feature name of a Formal Parameter of specified Generic
Kind OPERATION, TYPE, CONSTANT
Generic name of a Generic of current System

• actualParameter(Feature,Kind,Instance,Value).

Feature name of a Formal Parameter of a Generic
Kind OPERATION, TYPE, CONSTANT
Instance name of an Instance Of Generic
Value actual value for specified Parameter

• isState(Component,State,Kind).

Component name of a Component in current hierarchy
State name of a State of specified Component
Kind 1 for initial State, 0 otherwise

page 56 - STOOD Administrator Manual © Ellidiss - October 2011

• isTransition(Component,Transition,From,To,Event).

Component name of a Component in current hierarchy
Transition name of a Transition of specified Component
From name of origin State of specified Transition
To name of destination State of specified Transition
Event name of a Provided Operation of specified Comp.

• isClass(Type,Component).

Type name of a Class of specified Component
Component name of a Component in current hierarchy

• isAbstract(Feature,Kind,Component).

Feature name of a Feature of specified Component
Kind TYPE or OPERATION
Component name of Component in current hierarchy

• isInherited(Operation,Component).

Operation name of an Operation of specified Component
Component name of a Component in current hierarchy

STOOD Administrator Manual © Ellidiss - October 2011 - page 57

• inherits(Class,Cc,Superclass,Csc).

Class name of the Class of Component Cc
Cc name of a Component in current hierarchy
Superclass name of the Class of Component Csc
Csc name of another Component

• attributes(Type,Ct,Attribute,Ta,Cta,Value).

Type name of a Type of Component Ct
Ct name of a Component in current hierarchy
Attribute name of an Attribute of specified Type
Ta name of a Type of Component Cta
Cta name of another Component
Value default value for specified Attribute

• enumeration(Type,Component,Element,Value).

Type name of a Type of specified Component
Component name of a Component in current hierarchy
Enumerationname of an enumeration element of specified Type
Value default value for specified enumeration element

page 58 - STOOD Administrator Manual © Ellidiss - October 2011

• requires(Ccp,Ck,Cmod,Ssymb,Sk,Smod,Ln).
• specialrequires(Ccp,Ck,Cmod,Ssymb,Sk,Smod,Ln).
• unknownrequires(Ccp,Ck,Cmod,Ssymb,Sk,Smod,Ln).
• isRead(Ccp,Ck,Cmod,Ssymb,Sk,Smod,Ln).
• isWritten(Ccp,Ck,Cmod,Ssymb,Sk,Smod,Ln).
• selfrequires(Ccp,Ck,Cmod,Ln).

Ccp name of the user Feature
Ck kind of Feature
Cmod name of the user Component
Ssymb name of the required Feature or special symbol
Sk kind of required Feature or special symbol
Smod name of the required Component
Ln logical name of an DataBase section

• requires(Lang,Ccp,Ck,Cmod,Ssymb,Sk,Smod,Ln).
• specialrequires(Lang,Ccp,Ck,Cmod,Ssymb,Sk,Smod,Ln).
• unknownrequires(Lang,Ccp,Ck,Cmod,Ssymb,Sk,Smod,Ln).
• isRead(Lang,Ccp,Ck,Cmod,Ssymb,Sk,Smod,Ln).
• isWritten(Lang,Ccp,Ck,Cmod,Ssymb,Sk,Smod,Ln).
• selfrequires(Lang,Ccp,Ck,Cmod,Ln).

Lang name of a target language
Ccp name of the user Feature
Ck kind of Feature
Cmod name of the user Component
Ssymb name of the required Feature or special symbol
Sk kind of required Feature or special symbol
Smod name of the required Component
Ln logical name of an DataBase section

STOOD Administrator Manual © Ellidiss - October 2011 - page 59

• description(Component,File,Ln).

Component name of a Component in current hierarchy
File file pathname
Ln logical name of a DataBase Description section

• comment(Feature,Kind,Component,File,Ln).

Feature name of a Feature of specified Component
Kind OPERATION, TYPE, CONSTANT, EXCEPTION
Component name of a Component in current hierarchy
File file pathname
Ln logical name of a DataBase Txt section

• file(Feature,Kind,Component,File,Ln).

Feature name of a Feature of specified Component
Kind OPERATION, TYPE, CONSTANT, EXCEPTION,
Component name of a Component in current hierarchy
File file pathname
Ln logical name of a DataBase default language section

• file(Language,Feature,Kind,Component,File,Ln).

Language name of a target language
Feature name of a Feature of specified Component
Kind OPERATION, TYPE, CONSTANT, EXCEPTION
Component name of a Component in current hierarchy
File file pathname
Ln logical name of a DataBase Language section

page 60 - STOOD Administrator Manual © Ellidiss - October 2011

• rcsId(Header).

Header value of configuration management tag

• thisFile(Directory,File).

Directory directory containing current facts base file
File current facts base file

• fileProlog(Feature,Kind,Component,File,Ln).

Feature NIL
Kind NIL
Component name of a Component in current hierarchy
File prolog source file pathname
Ln logical name

• allocatedRootObject(Design).

Design name of the logical Root to be deployed

• allocatedObject(Node,Component).

Node name of a Virtual Node
Component name of a Component in the logical Root

• isRequirement(Req,Kind).

Req name of a Requirement
Kind '?' for unknown, 'D' for derived, 'P' for provided

STOOD Administrator Manual © Ellidiss - October 2011 - page 61

• coversRequirement(Req,Ln,Component,Feature).
• derivedRequirement(Req,Ln,Component,Feature).

Req name of a Requirement
Ln logical name of a section
Component name of a Component in current hierarchy
Feature name of a Feature of selected Component

• hrtPeriod(Component,Mode,F).
• hrtOffset(Component,Mode,F).
• hrtDeadline(Component,Mode,F).
• hrtMinArrivalTime(Component,Mode,F).
• hrtPriority(Component,Mode,I).
• hrtCeilingPriority(Component,Mode,I).
• hrtImportance(Component,Mode,S).

Component name of a Hard Real-Time Object
Mode 'others' or name of a Mode
I/F/S I: Integer, F: Float, S : String

• hrtWcet(Component,Operation,Mode,F).

Component name of a Hard Real-Time Object
Operation name of an Operation of selected Component
Mode 'others' or name of a Mode
F Float

page 62 - STOOD Administrator Manual © Ellidiss - October 2011

Predicates for design rules checking:

This predicate specifies which categories of rules have been selected by the
user.

• check(Category,Rules,Result).

Category name of a rules checker category
Rules prolog rules base file pathname for this category
Result result file pathname for this category

Predicates for code extraction:

These two predicates indicate which source code files have to be generated,
and various code generation options (pragmas).

• extract(Feature,Kind,Component,Ln,File).

Feature name of a Feature or NIL
Kind OPERATION or NIL
Component name of a Component for which code is generated
Ln section logical name suffix (lang::extract_Ln)
File target language source file pathname

• pragma_xxx(Component,Param_1,..,Param_n).

Component name of a Component
Param_i value of a pragma parameter

Note that this predicate is now also produced for the design checkers.

STOOD Administrator Manual © Ellidiss - October 2011 - page 63

Predicates for documentation generation:

These three predicates specify the list of ODS sections to be inserted in the
documentation, and various user customizable generation parameters.

• pragma_doc_conf(Parameter,Value).

Parameter name of a documentation parameter
Value value of specified documentation parameter

• selectedObject(Component).

Component name of a Component for which doc must be created

• docSection(T,Ln,Pln,L,D,Comp,Title,Contents).

T Text or File
Ln logical name of section to be inserted into the doc
Pln logical name of higher level section
L level of current section
D TXT, CODE, TXTEND or POSTSCRIPT
Comp name of a selected Component
Title title for current section
Contents text string (T=Text) or file pathname (T=File)

page 64 - STOOD Administrator Manual © Ellidiss - October 2011

• graphicBox(Label,X0,Y0,X1,Y1).

Label Name of a Component
X0 top left corner abscissa
Y0 top left corner ordinate
X1 bottom right corner abscissa
Y1 bottom right corner ordinate

• graphicImp(Pc,Pf,Cc,Cf,View,[Xi],[Yi]).

Pc Parent Component name
Pf Parent Feature name
Cc Child Component name
Cf Child Feature name
View OPERATION, TYPE, CONSTANT,...
[Xi] list of segments abscissa
[Yi] list of segments ordinate

• graphicUse(Cc,Sc,View,Style,[Xi],[Yi],[Lj]).

Cc Client Component
Sc Server Component
View OPERATION or TYPE
Style 1: Uses; 2: Inherits; 3: Attributes
[Xi] list of segments abscissa
[Yi] list of segments ordinate
[Lj] list of flows label

STOOD Administrator Manual © Ellidiss - October 2011 - page 65

• graphicState(Component,Label,X0,Y0,X1,Y1).

Component name of a Component with a STD
Label name of a State
X0 top left corner abscissa
Y0 top left corner ordinate
X1 bottom right corner abscissa
Y1 bottom right corner ordinate

• graphicTrans(Component,Label,Si,Sd,[Xi],[Yi]).

Component name of a Component with a STD
Label name of a Transition
Si origin State name
Sd destination State name
[Xi] list of segments abscissa
[Yi] list of segments ordinate

Predicates for AADL mapping:
• aadlCategory(Component,Category).

Component name of a Component in current hierarchy
Category corresponding AADL component category

• aadlFeature(Feature,Kind,Component,Category).

Feature name of a Feature in specified Component
Kind OPERATION, TYPE, CONSTANT, EXCEPTION
Component name of the Component
Category corresponding AADL feature category

page 66 - STOOD Administrator Manual © Ellidiss - October 2011

1.5. Unix interface

The Stood distribution for Windows also contains a bash directory, providing
a standard Unix shell and basic commands implementation for a PC. These files
come from: http://sources.redhat.com/, and are not required if
another version of cygwin or any other implementation of the required Unix
commands has already been installed on your platform. Please note that
software contained inside the bash directory is covered by the GNU General
Public License (GPL). Refer to the RedHat web site for further details.

The executable files contained in the bash directory should be made accessible
by the user’s execution path. This can be performed by the appropriate action
in the local Windows environment, or by extending the current execution path in
the stood.ini initialization file (refer to §2.6):

PATH=$TOOL\bash;$PATH

If this path is not properly set, the following alert box will be displayed when
loading an Application:

STOOD Administrator Manual © Ellidiss - October 2011 - page 67

Stood uses only a very limited number of Unix commands. The next table
provides the minimum contents of the bash directory (or other similar utility)
to comply with the standard configuration of Stood shell scripts:

basename.exe echo.exe pwd.exe
bash.exe gunzip.exe rm.exe
cat.exe gzip.exe rmdir.exe
chmod.exe hostname.exe sed.exe
cp.exe ln.exe tar.exe
date.exe ls.exe uname.exe
diff.exe mkdir.exe zip.exe
dirname.exe mv.exe

More recent versions of cygwin may be available. The tool administrator may
update it directly from RedHat, if required. In this case, for compatibility
reasons, it may be necessary to recompile the sbprolog executable file with
the new provided version of the gcc compiler, or with another compiler.

page 68 - STOOD Administrator Manual © Ellidiss - October 2011

2. User’s customizations
Stood may be customized in many ways. Here we describe only the easy-to-
change options or parameters at user’s level. They are localized in the
.stoodrc (Unix) or stood.ini (Windows) initialization file. Both files
retain the same information, but use a different syntax.

2.1. Properties

All these options and parameters may be handled in a generic way by
properties organized in categories. To assign a value to a property in a category,
operate as follow:

• In the .stoodrc file (Unix):

Category.Property1:value1
Category.Property2:value2

• In the stood.ini file (Windows):

[Category]
Property1=Value1
Property2=Value2

These properties may also be set dynamically on the command line.
In this case, the syntax to use is as follow:

stood Property1=value1 Property2=value2

STOOD Administrator Manual © Ellidiss - October 2011 - page 69

When the same properties are set at various locations, they will be taken into
account with following priority rules:

• highest priority: command line
• user level: stood.ini or .stoodrc in the working directory
• intermediate: stood.ini in the Windows or Winnt directory or
.stoodrc in $HOME.

• lowest priority (default values): stood.ini or .stoodrc in the
bin.xxx directory

A few internal variables are automatically set by Stood at launch time, and may
be used when assigning a value to properties. Note that these internal variables
may only be read, and should not be written. These variables are:

$TOOL parent directory of current bin.xxx directory
$WORKDIR current working directory

$TOOL is the location of the current installation of Stood.

$WORKDIR is the location from where Stood has been launched. It is important
for the user to have proper file access rights at this level (rwx). When launching
Stood from a Windows shortcut, this location may be specified from the
appropriate field within the shortcut properties dialog box.

A few specific properties are not described in this section. Their use is
mentioned in the appropriate chapters (refer to §1.2.7 for the http server
settings, §1.2.9 for customized pseudo variables and §3.2.4 for the Unix named
pipe configuration).

page 70 - STOOD Administrator Manual © Ellidiss - October 2011

2.2. Changing the applications search path

Stood Applications may be stored in several different directories and may be
visible from several simultaneous sessions. They can now be loaded by selecting
a Stood.sto file with a standard file navigation dialog box. It is also the way
an Application can now be attached to a System. The System description files
(.syc) contain the list of Applications that are attached to the System.

For portability reasons, it is sometimes more interesting to store in the .syc
files, the Application simple names (instead of their full pathnames). In this
case, the way Stood knows where to find them is by reading the contents of the
SavePath property in the Files category in the stood.ini or .stoodrc
file. This variable should contain a list of valid pathnames for the current file
system, with a few syntactic constraints.

It should be noted that, even on Windows, Stood uses Unix shell scripts to
perform file handling operations. It is thus prohibited to store Applications
inside directories whose name contains invalid characters as regards standard
Unix files naming rules. Directory names like Program Files should be
avoided.

A list of directories containing Stood Applications may be defined by assigning
a value to the SavePath property. The first path in the list will be used as a
default directory when creating new Systems. It is a good idea to put a working
directory at the first position in the path list. It is thus likely that proper read
and write access rights will be available when creating new Projects and
Applications.

STOOD Administrator Manual © Ellidiss - October 2011 - page 71

Example:

In the stood.ini file, a typical SavePath setting would be:
[Files]
SavePath=$WORKDIR,$TOOL\examples,C:\hood\prj1,
\\unix-server\hood\lib

In the.stoodrc file, the similar setting would be:
Files.SavePath:$WORKDIR,$TOOL/examples,
/users/hood/prj2,/home/unix-server/hood/lib

In both cases:
• First path specifies the current working directory as default

saving area for new Systems.
• Second path refers to an Application examples directory.
• Third path gives access to a local saving directory.
• Fourth path gives access to a remote Unix server.

Note that unlike the previous versions of Stood, it is now possible to work on a
Design whose location is not listed into the SavePath. However, the
SavePath is still mandatory to create new Systems and to solve ambiguous
pathnames in .syc files, especially while sharing a System along a
heterogeneous Unix/Windows network. For instance, refering to the example
above, the file hoodlib.syc will be properly loaded from both platforms,
even if it contents do not specify the full pathnames:

SYSTEM_CONFIGURATION IS
ROOT_OBJECTS

--|hood/lib|--
END

page 72 - STOOD Administrator Manual © Ellidiss - October 2011

2.3. Customizing target languages

2.3.1. Specifying the default language

Stood is a multi-languages environment. Several implementation languages may
be used at the same time for a same Project. That’s why standard configuration
provide access to Ada, C, C++ and AADL features at the same time for any
Application. A pseudo-code is also available to perform some specific
operations. However, a “main” language must always be specified, which will
be used by default when needed. Standard default language is Ada.

It is possible to change these settings by editing the DefaultLanguage
property in the stood.ini or .stoodrc file. On the same way, it is
possible to hide information related to some unused languages, by setting the
DiscardedLanguages property. This last feature is mainly helpful to
minimize the number of sections appearing within textual editors. These two
properties belong to the General category. Finally, the
MandatoryLanguages property may used to enforce the use of other
languages that the main one.

In the stood.ini file, a possible setting could be:

[General]
DefaultLanguage=ada
DiscardedLanguages=c,cpp
MandatoryLanguages=pseudo

STOOD Administrator Manual © Ellidiss - October 2011 - page 73

In the .stoodrc file, the same setting would be:

General.DefaultLanguage:ada
General.DiscardedLanguages:c,cpp
General.MandatoryLanguages:pseudo

Note that the default language may also be changed during an active session by
using the Change design language command of the Design menu. This new
default language will be stored with the other Application data.

It is also possible to temporarily change the default language when performing
language dependent actions (typically: updating a cross-references table or
checking design rules). These local changes are not stored with the other
Application data.

Note that when using the Update symbol tables command of the Tools menu,
the symbol tables for all installed languages will be updated (not only for the
default language).

page 74 - STOOD Administrator Manual © Ellidiss - October 2011

2.3.2. Interfacing with compilers

Stood offers advanced features to perform source code generation and reverse
engineering. These operations require some knowledge about the various
compiling environments that are available on the platform. They may have to be
customized by the tool administrator.

A few environment variables are used by some internal tools to call a compiler
after a source code generation has been completed. The ADA_PATH, C_PATH
and CPP_PATH properties in the Environment category may be used to
specify the location of the compilers to be called. This customization is not
required if the relevant pathnames have already been included in the default
execution path of the system.

Another environment variable is proposed to customize the command line of
the C reverse engineering pre processing. It is generally necessary to include a
few additional options for thr C pre processor to find the appropriate header
files that are included to the source files that are to be reversed. The
REVERSE_OPTIONS property in the Environment category must be used
for this purpose:

Environment.REVERSE_OPTIONS:-I/usr/X11R6/include

STOOD Administrator Manual © Ellidiss - October 2011 - page 75

The Languages category may be used to customize the source file suffix for
the various languages that are supported by Stood. The default values are:

PSEUDOSPECSUFFIX .s
PSEUDOBODYSUFFIX .b
CSPECSUFFIX .h
CBODYSUFFIX .c
CPPSPECSUFFIX .h
CPPBODYSUFFIX .cc
ADASPECSUFFIX .ads
ADABODYSUFFIX .adb
AADLSUFFIX .aadl

Note that the name of these properties for each language may be changed in the
extractors file of the config/code_extractors configuration
subdirectory, and their value are also used by the language suffix pseudo
variables in the DataBase file (refer to §1.2.9).

When Stood generates source code, the previously generated files are cleaned up
from the target directory. However, in the case of a partial generation of the
code, it is necessary to specify which files mustn't be removed (as they won't
be generated again). The NoCleanUpFor property in the Languages
category is used to specify the name of a code generation pragma. If this
pragma is allocated to a Component (or a set of Components) during the code
generation process, then the corresponding source files won't be cleaned up. By
default, the pragma except is used to identify the Components that musn't
be generated, and thus which files musn't be cleaned up.

page 76 - STOOD Administrator Manual © Ellidiss - October 2011

2.4. Customizing the main window

Unlike the previous versions of the tool Stood 5.0 concentrate most of its
features in a unique main window. However, this window shows various views
that are controlled by a set of tabs. Each view provides a different button bar. It
is possible to customize the name and the button bar of each view by editing the
stood.ini or .stoodrc file. In addition, default location and size of the
main window on the screen may be predefined: For this purpose, each view
must be referenced by its predefined identifier:

req requirements editor view
gra_hood HOOD graphical editor view
gra_uml UML graphical editor view
gra_aadl AADL graphical editor view
txt textual editor view
hie inheritance tree
chk design verification view
ext code generator view
code code editor view
rev code reversor view
doc documentation generator view
vna design allocation editor view

Note that it is no more possible to customize the button bar for the State
Transition Diagram editor (std), the inheritance tree (hie) and the call and
access trees (utr), and the following windows don't exist any more due to the
new layout, it is thus no more needed to define a button bar for the previous
main window (main), the previous system editor (syc), the previous cross
references window (crf), which has been inserted into the design verification
view and the previous documentation schemes window (sch), which has been
inserted into the documentation generator view.

STOOD Administrator Manual © Ellidiss - October 2011 - page 77

2.4.1. Customizing view names

The Views category can be used to specify a name to each tab of the main
window. This may be useful to better fit alternate software development
standard terminology. The property names are the view identifiers that are
specified in the previous paragraph, except for the HOOD and UML graphical
editors that are controlled by a unique tab that must be referenced with the
identifier gra.

Note that any renaming of these tabs also impacts the corresponding Tools
menu items. Take care to consider these changes in STShell scripts respect, as
they may use these tab names and menu items in their command parameters.

The defaults for tabs are the following:
in the stood.ini file:

[Views]
req=Requirements
gra=Graphic Design
txt=Detailed Design
chk=Checkers
ext=Code
doc=Documentation
vna=Deployment

in the .stoodrc file:

Views.req:Requirements
Views.gra:Graphic Design
Views.txt:Detailed Design
...

page 78 - STOOD Administrator Manual © Ellidiss - October 2011

2.4.2. Customizing buttons

The Buttons category can be used to customize the button bar for each view.
The property name is the identifier of the view as they are defined in the table
above. The syntax to be used to specify a button bar is similar to the one used
in the previous versions of Stood. However, the previous definitions are no
more relevant as the references to menus are completely different. Another
difference is that a procedure number may be given instead of a menu reference.
This is especially necessary to differenciate contextual create actions from the
generic ones that are provided in the menu. With the former ones, user
interaction is required, not with the latter ones. The list of valid procedure
numbers for button bar definition is provided below.

Syntax of a buttons bar definition in a stood.ini file:

[Buttons]
V1=L11,M11,I11,...; ... ;L1n,M1n,I1n,...
...
Vm=Lm1,Mm1,Im1,...; ... ;Lmn,Mmn,Imn,...

Syntax of a buttons bar definition in a .stoodrc file:

Buttons.V1:L11,M11,I11,...; ... ;L1n,M1n,I1n,...
...
Buttons.Vm:Lm1,Mm1,Im1,...; ... ;Lmn,Mmn,Imn,...

Where:

Lij label to be displayed in the button bar baloon
Mij position of the menu in the menu bar or procedure number
Iij,... position of the item in the menu, followed by submenus if any

STOOD Administrator Manual © Ellidiss - October 2011 - page 79

Notes:
- Additional semi-colons may be used to increase separation space.
- When a label begins with a *, then the icon of the same name (refer to §1.2.6)
will be displayed instead of the label name.

The list of procedures that may be used in buttons bar definitions is the
following:

Button procedures for theHOOD graphical editor (gra_hood):

proc501 new HOOD object
proc502 new HOOD class
proc503 new HOOD cyclic
proc504 new HOOD sporadic
proc505 new HOOD protected
proc520 new HOOD feature
proc530 new HOOD set
proc540 new HOOD use connection
proc541 new HOOD implementedBy connection
proc542 new HOOD inheritance
proc543 new HOOD aggregation

page 80 - STOOD Administrator Manual © Ellidiss - October 2011

Button procedures for theUML graphical editor (gra_uml):

proc601 new UML component
proc602 new UML class
proc603 new UML cyclic component
proc604 new UML sporadic component
proc605 new UML protected component
proc620 new UML feature
proc640 new UML assembly
proc641 new UML delegate provided
proc642 new UML inheritance
proc643 new UML aggregation
proc644 new UML delegate required

Button procedures for theAADL graphical editor (gra_aadl):

proc701 new AADL component or subcomponent
proc702 new AADL process
proc703 new AADL thread group
proc704 new AADL thread
proc705 new AADL subprogram component
proc706 new AADL system
proc707 new AADL processor
proc708 new AADL memory
proc709 new AADL bus
proc710 new AADL device
proc711 new AADL data
proc712 new AADL package
proc720 new AADL port
proc721 new AADL subprogram feature
proc730 new AADL port group
proc740 new AADL connection

STOOD Administrator Manual © Ellidiss - October 2011 - page 81

2.4.3. Customizing default position, size and zoom

The default position and size of the main window as well as zooming
parameters and default size of graphical boxes may be specified in the Window
category. The definition of the Position, Extent and NewBoxExtent
properties must comply with the following syntax:

X_axis_coordinate,Y_axis_coordinate

Where coordinates are specified in pixel. Point (0,0) is located at the top
left corner of the screen.

Notes:
- Position property specifies top left corner location of the window.
- Extent property specifies bottom right corner location of the window.
- NewBoxExtent property specifies the default size of newly created boxes.
- negative values are allowed.

The zooming options of the graphical views may be customized by the
InitialZoom and ZoomIncrement properties in the Window category.
Their value must be given in percentage. It may be useful to change these values
due to best fit the resolution of the screen.

page 82 - STOOD Administrator Manual © Ellidiss - October 2011

2.5. Changing default fonts and colors

It is possible to configure a few fonts and colors that are directly controled by
Stood. This configuration will be performed by setting a few properties inside
the stood.ini or .stoodrc file. These properties belong to the Fonts and
Colors categories respectively. On Unix platforms, the Motif widgets that are
used by Stood can also be customized. The corresponding resources must
simply be overloaded in the .stoodrc file.

2.5.1. Customizing fonts

Properties name for fonts customization are:

DefaultFont font to be used by default.
DiagramFont font to be used in graphical diagrams.
TreeFont font to be used used in graphical trees.
TXT font to be used in informal sections.
CODE font to be used in code sections.

The value for font properties must be a valid font name and size that is
available on the current platform. All the other fonts (menus, lists, ...) are
controled by the window manager, and should be customized by any
appropriate procedures in Windows control panel or Motif ressource files. On
Unix workstations, a Stood Motif resources file for Stood may be optionally
created in any of these locations (none is provided with the standard
distribution):

• /usr/lib/X11/app-defaults/Stood
• $APPLRESDIR/Stood
• bin.xxx/Stood

STOOD Administrator Manual © Ellidiss - October 2011 - page 83

It is also possible to introduce Motif resources directly inside the .stoodrc
initialization file to control the widgets appearance, as shown in the example
below.

Example:

A possible stood.ini font configuration is:

[Fonts]
DefaultFont=Arial 9
DiagramFont=Comic Sans MS 10
TreeFont=Comic Sans MS 10
TXT=Times New Roman 12
CODE=Courier New 12

A possible .stoodrc font configuration is:

Fonts.DefaultFont:helvetica 12
Fonts.DiagramFont:times 12
Fonts.TreeFont:times 12
Fonts.TXT:times 14
Fonts.CODE:courier 14

*fontList: -adobe-helvetica-medium-r-normal
--10-100-75-75-p-56-iso8859-1
*XmText*fontList: -adobe-helvetica-medium-r-normal
--10-100-75-75-p-56-iso8859-1
*XmTextField*fontList: -adobe-helvetica-medium-r-
normal--10-100-75-75-p-56-iso8859-1

page 84 - STOOD Administrator Manual © Ellidiss - October 2011

2.5.2. Customizing colors

Property names for color customization are:

Module Component box in the HOOD diagrams
ModuleExport exported Component box in the HOOD diagr
Component Component name in the HOOD diagrams
ConnectionUse Use relationship in the HOOD diagrams
ConnectionImpl Implemented_By link in the HOOD diagrams
ConnectionLabel DataFlow, Exception Flows labels
State State box in the State-Transition Diagrams
Transition Transition in the State-Transition Diagrams
TransitionLabel labels on Transitions in the S-T Diagrams

The value for a color property must be a valid RGB code. Most commonly
used codes are:

black 0 0 0
white 255 255 255
grey 128 128 128
dark grey 192 192 192
red 255 0 0
green 0 255 0
blue 0 0 255

All other combinations are of course possible. It is also possible to customize
Motif resources inside the .stoodrc initialization file, or inside a dedicated
file, to control the widgets appearance, as shown in the example below.

STOOD Administrator Manual © Ellidiss - October 2011 - page 85

Example:

A typical stood.ini color configuration is:

[Colors]
Module=0 0 128
ModuleExport=192 192 192
Component=0 0 255
ConnectionUse=9 117 18
ConnectionImpl=255 153 0
ConnectionLabel=0 0 128
State=0 0 128
Transition=255 0 0
TransitionLabel=0 0 255

The corresponding .stoodrc color configuration is:

Colors.Module:0 0 128
Colors.ModuleExport:192 192 192
Colors.Component:0 0 255
Colors.ConnectionUse:9 117 18
Colors.ConnectionImpl:255 153 0
Colors.ConnectionLabel:0 0 128
Colors.State:0 0 128
Colors.Transition:255 0 0
Colors.TransitionLabel:0 0 255

*OverrideShell*background: LightYellow
*XmText*background: White
*XmTextField*background: White
*XmList*background: White

page 86 - STOOD Administrator Manual © Ellidiss - October 2011

2.6. Customizing the environment

A few properties may be changed to customize the standard configuration and
execution environment of Stood. Changing these properties requires a good
knowledge of the way Stood works. It is generally the responsability of a
system administrator to customize these properties, if needed.

Value of the property ConfigPath in the Files category can be modified to
let Stood point to another configuration directory. Default value is
$TOOL/config, that is the config directory located in the same parent
directory as the current bin.xxx directory.

stood

bin.xxx config

$TOOL$TOOL

When using its internal or external tools, Stood needs to launch Unix shell
scripts (even under a Windows environment). The Shell property in the
Shell category must be set to specify which shell is to be called. Default
values are sh for Unix and bash for Windows. An additional property
specifies whether the shell command window must be displayed or not. Default
is Yes for this HideWindow property.

A few Unix environment variables are required by Stood post-processors (rules
checkers, code extractors, documentation generators). These variables may be
directly set within the Environment category. Defaults values are
$TOOL/sbprolog for the STOODPRO variable, and $TOOL/bin.xxx for the
STOODBIN variable.

STOOD Administrator Manual © Ellidiss - October 2011 - page 87

Additionally, the SBPROLOG_M_SIZE and SBPROLOG_P_SIZE variables
may be set to specify the memory allocation requirements (in bytes) for the
prolog engine that is used by the post-processors.

Note that other Unix or Windows environment variables may bet set if
required. For instance, it may be necessary to extend the execution path to give
access to specific executable files:

PATH=$TOOL\bash;$PATH

Licensing information is also specified by several properties belonging to
Licensing, License or FlexLM categories. Please refer to Installation
Manual or contact your system administrator or ELLIDISS technical support
if you need to set or change these properties. Please note that these three
categories are exclusive, and mustn't be set together:

[Licensing]
Organization=Evaluation
Licensee=None
LicenseCount=1
Mode=Full
ExpirationDate=31/12/2004
Password=6227029

[NFL]
File=\\hostname\tools\license\stood.nfl
ReleaseDelay=1440

[FlexLM]
File=\\hostname\tools\license\license.dat

page 88 - STOOD Administrator Manual © Ellidiss - October 2011

2.7. Other simple customizations

A set of other properties may be used to customized various additional features
of Stood.

• the Welcome property in the General category specifies the
string to be displayed on top of main editor. The default value is
Stood for AADL. It is an easy way to identify a particular
configuration.

• the ShowDirectories property in the General category
specifies whether Project and Application names should be
displayed by default with their full storage pathname or not.
Values are Yes or No. This property may be changed locally
during the session.

• the GraphRepresentation property in the General category
specifies whether the trees must be displayed as a textual lists, or
a graphical trees. Values are List or Tree.

• the GraphSizeLimit property in the General category specifies
the maximum size of a tree to be printed graphically in the design
documentation. For readability reasons, all the trees which size
exceed this limit will be inserted textually in the documentation.

• the DefaultGraphics property in the General category
specifies the default graphical notion for the architectural
diagrams. Values are HOOD or UML.

STOOD Administrator Manual © Ellidiss - October 2011 - page 89

• the Default property in the doc category: specifies which
documentation format will be set by default when opening a new
documentation editor. This default value may be changed locally later
during the session. Possible values depend on actually installed
document generators, typically: rtf, ps, mif, html, pdf.

• the UniqueNameSpace property in the General category
specifies if multiple namespaces are allowed in the code or not.
By default, each HOOD Component defines a separate namespace.

• the EnableSTShellMenu property in the Security category may
be used to invalidate the STShell item in the Windows menu of the
main editor to forbid the execution of STShell commands for
security reasons. Default value is Yes.

• the MarkExportedModule property in the General category
defines whether a Component keeps its exported attribute or not in
the original Design. When set to Yes, the corresponding box has
greyed borders when the Component has been exported. Default
value is Yes.

• the CompleteCrossReferences property in the General
category controls the way symbol tables are stored and call trees
are drawn. When set to No, symbol tables and call trees are
similar to those of the previous versions of Stood. When set to
Yes, all the occurences of calls are stored and call trees show
accessed Data via Operation parameters. Default is Yes.

page 90 - STOOD Administrator Manual © Ellidiss - October 2011

• the ReplaceDashBy property in the General category gives the
replacement characters for dash characters found inside a SIF
filename when associating it to a Root Component name. This is
especially useful while reversing Ada code containing child units.
Default is the underscore character.

• the EnableFirstUnderscore property in the General category
allows symbols with an underscore as their first character to be
recognized in the symbol tables. This is allowed in C but not in
Ada. Note that the corresponding lexical analysers must follow the
same rule. Default is No.

• the KeepPseudoPrefix property in the General category
activates the processing of the dot notation in Pseudo code
sections (like in Ada code sections). Default is No.

• the DirectoryEdit property of the General category is used to
specify which application must be launched to display the
contents of the directories from the Tools menu. Default is
explorer.exe on Windows and an appropriate xterm command
on Unix.

• the StatusTimeOut property of the General category specifies
the duration of the red display of a new error in the status bar.

• the HoodCompliancy property of the General category must be
set to No to enable 1-n implemented by connections (required by
AADL).

STOOD Administrator Manual © Ellidiss - October 2011 - page 91

• the AutolockMode property of the General category specifies if
a selected design must be automatically locked while loaded. This
property accepts three values:
- No (default): designs must be locked manually
- Yes: designs are automatically locked while loaded
- First: first design of a project is automatically loaded and locked
while the project is loaded

• the EnableBinaryFacts property of the General category can
be used to specify the way prolog predicates are generated. This
property accepts three values:
- No (default): only textual predicates are generated.
- Yes: both textual and byte code predicates are generated
- Only: only byte code predicates are generated

page 92 - STOOD Administrator Manual © Ellidiss - October 2011

2.8. Configuration management

Stood database can't manage directly different configurations or versions of a
same Application, but may interact with external configuration and version
management systems. Two kinds of interfaces are proposed: identification tags
and checkin/checkout procedures

2.8.1. Identification tags

It is possible to ask Stood to automatically insert an identification tag in all the
files that are stored in an Application database for configuration management
purpose. The tag must be added manually for the files that are edited by hand.
In the other items, the tag will be included automatically, and between
appropriate comment separators if necessary. A generic tag value may be
specified in the Header property of the Versioning category. Default
values are blank to specify that no tag has to be inserted, or $Header$ else.
This tag may be processed by configuration management systems like RCS.

2.8.2. Checkin/checkout procedures

Shell scripts may be customized to interface with configuration management
systems like CVS. These scripts are stored in the config/internalTools
configuration subdirectory. As several concurrent interfaces may be present, the
actual scripts to use for a given session are specified by the following properties
of the ConfigurationManagement category:

CheckInProcedure from local space to conf. management area
CheckOutProcedure from conf. management area to local area
CheckLockProcedure lock in the conf. management area
CheckUnlockProcedure unlock in the conf. management area

STOOD Administrator Manual © Ellidiss - October 2011 - page 93

local
working
area

config.
management

area

Stood

load

save

checkin

checkout

When a Design, a Component or a Property is loaded, relevant files contents
are copied from the local working disk area to the Stood memory. When a
Design, a Component or a Property is saved, data is stored into the
corresponding files in the local working disk area. If a Design or a Component
is loaded in read-write mode, then a lock file (Stood.lok) is created in the
local working area

During a session, the local working disk area and the Stood memory will be
updated by the contents of the configuration management area, when a Design
or Component checkout menu command is used. Similarly, the configuration
management area, and the local working area, will be updated by the current
contents of the Stood memory, when the Design or Component checkin menu
command is used. If the lock checkbox of the checkout or checkin dialog is set,
then the checklock or checkunlock scripts will be also activated.

page 94 - STOOD Administrator Manual © Ellidiss - October 2011

The ConfMgrActivated property in the File category may be used to
activate or deactivate the use of the configuration management scripts at a
Design level. When the scripts are activated, the name of the configuration
management system to which Stood is interfaced, may be specified in the
ConfMgrLabel property of the File category.

For the configuration management interface to also work at a Component level,
the property ConfMgrModular in the File category, must also be set to
Yes. In that case, due to the hierarchical structure of the model, a single
checkout or checkin command may generate a sequence of call of the respective
scripts, one for each Subcomponent. An option consists in calling the script
only once, and send the list of concerned Subcomponents in a file, which name
is stored into the last parameter passed to the script. To activate this last
option, the CheckOutWithArgFile and CheckInWithArgFile in the
ConfigurationManagement category must be set to Yes. Default is No.

Version labels may be defined in the Versions property of the
ConfigurationManagement category. The label, that must be selected in
the appropriate dialog box, may be used to select or save a given version.

When CVS is used, the configuration management information is stored in a
CVS subdirectory located in each directory of the Application database. To
prevent Stood to alter this information, the CheckKeepingFiles property
of the ConfigurationManagement category must be used.

Note: The configuration management interface at a Component level is a new
feature since Stood 5.0. When using older configuration files, the required
COMPONENTTRASHDIRECTORY section in the DataBase descriptor file may
be missing. In that case, please contact the technical support.

STOOD Administrator Manual © Ellidiss - October 2011 - page 95

2.9. Requirements management

Stood may load a list of requirements from REQTIFY, the requirements
traceability tool of the SafeBuild suite. In addition, the lexical definition of a
requirement or a reference to a requirement may be customized for the current
Project.

The REQTIFY_PATH property in the Environment category must be used
to set an environment variable to be used in the reqtify.sh shell script
located in the config/internalTools configuration subdirectory. This
script calls REQTIFY to get the proper list of requirements. The path must
specify the actual location of the main executable file for REQTIFY.

Most requirements will be loaded from the previous requirements analysis
tasks. Definition of a new requirement during the design process, will be a
derived requirement, and its syntax must be specified with the Define
property of the Requirements category.

Design entities must cover requirements. To define the syntax of a reference to a
requirement, the Reference property of the Requirements category must
be used. Both Define and Reference properties must be specified with
standard regular expressions. Note that the \ escape character must be
dupplicated in the .stoodrc file.

The IgnoreCase property of the Requirements category specifies if the
recognition of requirements must be case sensitive or not, and the
CatalogSuffix property of the Requirements category gives the default
suffix for the file selector when importing requirements. Possible values are
.txt for plain text files or .rqtf for REQTIFY projects.

page 96 - STOOD Administrator Manual © Ellidiss - October 2011

Example:

If the requirements analysis process of the project defines a list of requirements
of the following form:

REQ_001
REQ_002
REQ_003
...
And the coverage of a requirement in the design is defined by a cf.REQ_xxx
expression, and the definition of a derived requirement by a def.REQ_yyy
expression, then the Define and Reference properties could be set as
follow:

in the stood.ini file:

[Requirements]
Define=\(def\.(REQ_[^\)]+)\)
Reference=\(cf\.(REQ_[^\)]+)\)

in the .stoodrc file:

Requirements.Define:\\(def\\.(REQ_[^\\)]+)\\)
Requirements.Reference:\\(cf\\.(REQ_[^\\)]+)\\)

STOOD Administrator Manual © Ellidiss - October 2011 - page 97

3. Launching Stood
Stood may be started in four different modes:

• interactive mode (usual mode)
• semi-interactive mode
• batch mode
• remote control mode

The interactive mode is the only one which requires interactive use of a terminal
keyboard and mouse. With the three other modes, Stood can be controled by a
sequential list of instructions. These instructions must be written with a
specific syntax, in a language called STShell, and define an Application
Programming Interface (API) for Stood.

When Stood is started, an instance of the main window is shown on the screen.
It gives access to the full range of menus, selections and graphical actions that is
necessary for an interactive usage of the tool. Please refer to the appropriate
contextual help or user's documentation to get information about the use of
Stood in interactive mode.

page 98 - STOOD Administrator Manual © Ellidiss - October 2011

3.1. STShell

A STShell instruction is a command to be executed by Stood, and generally
includes a list of parameters. Its general syntax is:

Command("parameter1", "parameter2",...)

STShell expressions may be either inserted sequentially in macro-commands
files (files with a suffix .sts), either be sent directly to an active session of
Stood, in remote control mode.

3.1.1. STShell parameters

Parameters are always strings delimited by double quote characters. These
delimitors may be omitted in following cases:

• for simple identifiers: {[a..z]|[A..Z]|[0..9]}
• for integers

The use of the * wildcard character is allowed. It replaces any sequence of
characters. Take care to avoid its use when there is a risk of ambiguity.

Parameters may need to reference a specific window or view of Stood
(browsers, graphical editors, dialog boxes,...). In this case they must match
relevant window predefined identifier. Following table provides the list of
recognized identifiers.

STOOD Administrator Manual © Ellidiss - October 2011 - page 99

main main window
tre design tree
hie inheritance tree
gra_hood HOOD graphical editor
gra_uml UML graphical editor
gra_aadl AADLgraphical editor
std states-transitions diagram editor
txt text editor
crf cross-references table
utr call tree
sch documentation scheme editor
req requirements editor
dbcfg options dialog box
dbobj module selection dialog box
dbobjla module and language selection dialog box
dbcompare designs comparison dialog box
dbcopy design copy dialog box
dbreplace design replace dialog box
dbconf configuration management dialog box
last last opened window

The parameters may also need to reference a list in a browser. Each list is
identified by an integer.

Notes:
- Only one window of each kind may be referenced at a time within a sequence
of STShell instructions.
- All the parameters referencing a menu, a menu item, a list, a list element and a
button name should match exactly the name shown by the Stood windows.
However, space characters at the beginning or the end and suspension points in
menus may be avoided

page 100 - STOOD Administrator Manual © Ellidiss - October 2011

3.1.2. STShell instructions

The following instructions are available to build STShell programs. These
commands generally represent a basic interaction with windows components
(lists, menus, buttons,...). A few commands represent a higher level command to
perform a predefined list of lower level actions.

• Exec("filename") : execute STShell program contained in file
given as parameter. This file should contain a list of valid STShell
instructions.

• Context("project","application"[,"component"]) : select
the given Project and Application, and optionally the given
Component in the top left selection list of the main window.

• Feature("feature"[,"property"]) : select the given Feature,
and optionally the given Property in the bottom left selection list of
the main window. A Feature must be an Operation, Type, Constant,
Data, State, Transition or a checker rule category

• Property("property"[,"feature"]) : select the given
Property, and optionally the given Feature in the bottom left
selection list of the main window. A Property must be referenced by
its logical name, as defined in the DataBase descriptor file (refer to
§1.2.9)

STOOD Administrator Manual © Ellidiss - October 2011 - page 101

• Menu("id","menu","item"[,"subitems"]) : execute a given
item of a window menubar.

id window identifier (usually: main)
menu Menu name in window menu bar
item Item name or position integer index in menu
subitems Items in submenus, if any

• Menu("id","menu","item","box",X1,Y1,X2,Y2) : create a
new box at the specified coordinates in the given graphical editor.

id window identifier (gra_hood, gra_uml or std)
menu Menu name in window menu bar
item box creation Item name in menu
box name of the box to be created
X1 left coordinate
Y1 top coordinate
X2 right coordinate
Y2 bottom coordinate

• Menu("id","menu","item"[,"subitems"],"C"[,"F"]) :
create a new connection, to specified destination.

id window identifier (usually: main)
menu Menu name in window menu bar
item connexion creation Item name in menu
subitems connexion creation items in submenus, if any
C destination Component or State for the connexion
F destination Feature in destination Component, if any

page 102 - STOOD Administrator Manual © Ellidiss - October 2011

• ListSelect("id",list,"element") : select the given element
in a list of a window.

id window identifier
list list index (1, if there is only one list)
element Element name or position integer index in the list

• ListMenu("id",list,"item"[,"subitems"]) : execute a
given item, or its subitem if any, of a contextual menu in a list of
a window.

id window identifier
list list index (1, if there is only one list)
item item name in contextual menu
subitems items in submenus, if any

• Answer("value") : fill in an active dialog box with the given
string.

• Click("id","label") : “press” a built-in button of a window.
This instruction should not be used for customizable buttons
within a window button bar. In this case, use the Button
instruction.

id window identifier
label button label

• Ok, Cancel, Yes, No : “press” corresponding button in a simple
dialog box. May be used as shortcuts for Click(last,ok), ...

STOOD Administrator Manual © Ellidiss - October 2011 - page 103

• System("OS command") : executes specified external command,
which is supposed to be recognized by current executing
environment.

• Delay(duration) : wait for the specified number of seconds.

• Show(x,y,"text",duration) : display the given text at the
given coordinates during the given number of seconds. The origin
is the top left corner of the screen.

• BoxSelect("id","box"[,"feature"]) : select the specified
box (Component or State) or its specified Feature if any, in the
given graphical editor.

id window identifier (gra_hood, gra_uml or std)
box Component or State name
feature optional Operation, Type, etc...

• Write("id","text") : write the specified text in the currently
selected text input area of the current view. Use the Context and
Property instructions first, to select the right text input area.

id window identifier (txt)
text text to be inserted

page 104 - STOOD Administrator Manual © Ellidiss - October 2011

• Use("id","origin","dest","dir1","dir2") : draw a Use
relationship between the two specified Components.

id window identifier (gra_hood or gra_uml)
origin origin Component name
dest destination Component name
dir1 direction at origin: N,E,S or W
dir2 direction at destination: N,E,S or W

• ImplementedBy("id","origin","dest","child") : draw an
Implemented_By relationship between the specified Features from
the current parent Component to the specified child Component.

id window identifier (gra_hood or gra_uml)
origin origin Feature name
dest destination Feature name
child child Component name

Note: The STShell commands Button and TabSelect are no more
supported. This is due to the new layout of the main windows and to the
reorganization of the main menu bar.

STOOD Administrator Manual © Ellidiss - October 2011 - page 105

3.1.3. STShell program example

#--------------------------------------
BATCH CODE GENERATION EXAMPLE
stood v5.1 - ELLIDISS - August 2006
#--------------------------------------
#
Select "test" design inside "tests" system :
Context(tests,test)
#
Select the "code" view in the "main" window :
Menu(main,tools,view,code)
Menu(main,tools,"display properties",c)
#
Launch the code generation :
Menu(main,tools,code,"full extraction")
Ok
#
Show "extraction messages" :
Property("c::ExtractMessages")
#
Open a remote editor on that file :
Menu(main,tools,"external tools",info)
Ok
#
Quit stood :
Menu(main,file,quit)
#--------------------------------------

Other macro-commands examples may be found in tutorial directory,
provided with standard distribution.

page 106 - STOOD Administrator Manual © Ellidiss - October 2011

3.2. Stood executing modes

In order to be able to launch Stood, first check that used Windows shortcut or
Unix execution path is set properly. They should point to Stood binary files
directory (refer to §1.1)

3.2.1. Interactive mode

When launching Stood without any option, an interactive session is started.
The tool may thus be controled with the keyboard and the mouse of user’s
terminal. In interactive mode, a license token is used for each active session. To
launch Stood in interactive mode, just double-click on relevant Windows
shortcut or, on your Unix terminal, enter:

stood

To open Stood on an existing System (file with .syc extension), enter:
stood -s filename.syc

To open Stood on an existing Root (file with .sto extension), enter:
stood -r filename.sto

3.2.2. Semi-interactive mode

This mode is useful to preset Stood in a predefined configuration, and then let
the user go on working in interactive mode. Predefined configuration should be
described by a sequence of STShell expressions in a .sts file. The user may
thus launch:

stood -f filename.sts

STOOD Administrator Manual © Ellidiss - October 2011 - page 107

3.2.3. Batch mode

The aim of this executing mode is to let Stood perform actions without any user
direct interaction. It is typically the way to launch code and documentation
generation for a stored Application. This mode also requires a STShell
command file, to describe operations to be performed, but unlike semi-
interactive mode, no license token is required, and Stood will close
automatically at the end of the commands sequence. To launch Stood in batch
mode, enter:

stood -batch -f filename.sts

Note that for implementation reasons, on Unix platforms, the DISPLAY
environment variable should be set, even in batch mode.

3.2.4. Remote control mode

On Unix platforms, it is possible to send STShell commands to an active
session of Stood. An input named pipe is automatically created when Stood is
launched. This pipe is always named st and is located in current working
directory.

STShell expressions may then be sent to this file with usual Unix commands:

echo ‘Context(project,application)’ > st
echo ‘Menu(main,tools,view,"graphic design")’ > st
echo ‘BoxSelect(gra_uml,box)’ > st
cat macros.sts > st
...

page 108 - STOOD Administrator Manual © Ellidiss - October 2011

Notes:
- It is not possible to send commands to a remotely mounted st file. If your
working directory is remote, you must rlogin on relevant file server, to be
able to get access to the pipe.
- Take care to get write rights on your current working directory, else Stood
will not be able to create st file.
- To enable the named pipe, the following properties must be present in the
.stoodrc initialization file:

Server.Name:st
Server.DisableSTShellPipe:No

Additionally, a DDE port is also initialized by Stood for remote control. This
mode is mainly used on Windows platforms, but may also be operated with
Unix environments. STShell instructions can be sent to the DDE port of
Stood.

Finally, Stood can operate as an http server. Please refer to §1.2.7 for further
details.

Associated to the capability to customize external tools, remote control mode is
the prefered way to let Stood interact with other tools in a software
development environment.

STOOD Administrator Manual © Ellidiss - October 2011 - page 109

page 110 - STOOD Administrator Manual © Ellidiss - October 2011

STOOD Administrator Manual © Ellidiss - October 2011 - page 111

Ellidiss Software
Triad House

Mountbatten Court
Worall Street

Congleton
Cheshire

CW12 1DT
UK

+44 1260 291 449

Ellidiss Technologies

24 quai de la douane
29200 Brest

Brittany

France

+33 298 451 870

Ellidiss
w w w . e l l i d i s s . c o m

www.ellidiss.com
stood@ellidiss.com

