Design of a Supply using LTSPICE – Pre-Lab

- 1. Read the handout "Notes on Using Zener diodes"
- 2. Before coming to lab. design the power supply using hand calculation (the Quiz assumes you have completed the design before lab.)
- 3. Read the handout "Using Transformers in LTSPICE"
- 4. Make sure you know how to define diodes and their associated models in LTSPICE.
- 5. Make sure you know how to define subcircuits in LTSPICE (read LTSPICE user manual pp. 95-96)
- 6. Make sure you understand how to associate a subcircuit to a given LTSPICE schematic symbol (lookup the link "LTSPICE tutorial at Laurier University" especially Method 3)

7. KEEN Related Activities

* In your team report Illustrate all technical tradeoffs adopted (multidimentional problem solving) and the economic viability of your solution compared to available commercial solutions

Lab – Design of a Power Supply

It is required to design a regulated power supply using the circuit in Fig 3.52. The 100 M Ω resistor is included to provide DC continuity and thus "keep SPICE happy"; it has little effect on circuit operation.

Let it be required that the power supply provide a dc voltage of nominally 5 V and be able to supply a load current as large as 25 mA (i.e., R_L can be as low as 200 Ω). Assume the availability of 5.1-V zener diodes having $r_z = 10 \Omega$ at $I_Z = 20$ mA (and thus $V_{ZO} =$ 4.9 V), and that the minimum current through the zener should be at least 5 mA.

Diodes

Figure Spice element description for the *pn* junction diode and the general form of the associated diode model statement.

Diode model parameters

Model parameters*	Description	Unit	Default
AF	flicker noise exponent		1.0
BV	reverse breakdown knee voltage	volt	infinite
CJO	zero-bias p-n capacitance	farad	0.0
EG	bandgap voltage (barrier height)	eV	1.11
FC	forward-bias depletion capacitance coefficient		0.5
IBVL	low-level reverse breakdown knee current	amp	0.0
IBV	reverse breakdown knee current	amp	1E-10
IKF	high-injection knee current	amp	infinite
IS	saturation current	amp	1E-14
ISR	recombination current parameter	amp	0.0
KF	flicker noise coefficient		0.0
м	p-n grading coefficient		0.5
N	emission coefficient		1.0
NBV	reverse breakdown ideality factor		1.0
NBVL	low-level reverse breakdown ideality factor		1.0
NR	emission coefficient for isr		2.0
RS	parasitic resistance	ohm	0.0
TBV1	by temperature coefficient (linear)	°C-1	0.0
TBV2	by temperature coefficient (quadratic)	°C-2	0.0
TIKF	ikf temperature coefficient (linear)	°C·1	0.0
TRS1	rs temperature coefficient (linear)	°C-1	0.0
TRS2	rs temperature coefficient (quadratic)	°C-2	0.0
тт	transit time	sec	0.0
T_ABS	absolute temperature	°C	
T_MEASURED	measured temperature	°C	
T_REL_GLOBAL	relative to current temperature	°C	
T_REL_LOCAL	Relative to AKO model temperature	°C	
VJ	<i>p-n</i> potential	volt	1.0
хті	IS temperature exponent		3.0

Unfortunately the diode model does not adequately describe the operation of the diode in the breakdown region; that is, it does not provide a satisfactory model for Zener diodes.

However, the SPICE user can employ the model shown in Fig. 3.51 for the zener by defining the zener as a subcircuit Here D1 is an ideal diode that can be implemented in SPICE by using a very small value for n (say n = 0.01), and D₂ is a regular diode model for the forward direction of the zener (for most applications the parameters of D₂ are of little consequence).

Fig. 3.51 Model for the zener diode. This model can be used in SPICE by defining the zener as a subcircuit. Diode D_1 is ideal and can be approximated in SPICE by using n = 0.01.

In the report: \checkmark V

- Worksheet

- 1. First design the power supply by hand (show in detail all your work) and then use SPICE to verify the correctness of your design choices.
- 2. As part of the design make sure to compute analytically the PIV and the max current through the full-wave rectifying diodes (verify the computed values against SPICE).
- 3. Explain the reasons behind any design choice,
- 4. Explain how did you select the rectifiers diodes, and the source of the SPICE model
- 5. Attach your spice deck,
- 6. Plot the output waveform.
- 7. If the load get shorted will the system get damaged? Explain why.

General Syntax of the SPICE statements used to describe a non ideal transformer:

Lp np+ np- Lpvalue Ls ns+ ns- Lsvalue Kname Lp Ls 0.999