
Technical Report Number CSSE10-07

User Manual for PC104-based Compact Wireless Sensor Nodes

Brandon Maharrey (maharbk@auburn.edu)

Alvin Lim (limalvi@auburn.edu)

Qing Yang (yangqin@auburn.edu)

Computer Science & Software Engineering

Shelby Center for Engineering Technology

Auburn University

Auburn, AL 36849

I. Overview

This manual describes the hardware of the PC104-based compact wireless sensor

node and the target tracking application and related software.

II. Hardware & Technical Specifications

A. PC104 Components

In the current version of the PC104-based target tracking application, we use three PC104-

compliant modules, the main CPU module, the PCMCIA module and the Power Supply module,

the details of which are listed below.

1. CPU Module

The CPU module (

Figure 1), PFM-550S, is manufactured by Aaeon. It has a 533MHz VIA Mark processor and has

features such as 10/100Base-TX Fast Ethernet port, one RS-232 port and one RS-232/485 port,

four USB 1.1 ports, a SDRAM-SODIMM socket for up to 512 megabytes of RAM and supports

type I compact flash cards. It supports 36-bit TL & 18/36-bit dual LVDS LCD panel, has a

watchdog timer and fully supports ISA. It is also fanless with an operating temperature of 0 to

+60 degrees Celsius. It requires +5V for operation. More information can be found online at

http://www.tri-m.com/products/aaeon/pfm550s.html.

Technical Report Number CSSE10-07

Figure 1 PC104 CPU module

2. PCMCIA Module

The PCMCIA module (

Figure 2), PCM-3115C, is manufactured by Aaeon. It is a 2-slot PCMCIA module which

supports two Type I/II cards or one Type III card. It complies with PCMCIA v2.1 and JEIDA

v4.2. It has a 16-bit data bus and a busy status LED. It requires +5V for operation. More

information can be found online at http://www.tri-m.com/products/aaeon/pcm3115c.html.

http://www.tri-m.com/products/aaeon/pcm3115c.html

Technical Report Number CSSE10-07

Figure 2 PC104 PCMCIA module

3. Power Supply Module

The Power Supply module (

Figure 3), PFM-P13DW2, is manufactured by Aaeon. It has an input range of +7V to +30V and

an output of +5V and +12V. It is used to intake +12V from the AC power supply or battery and

convert it into the +5V used by the PCMCIA and CPU modules.

Technical Report Number CSSE10-07

Figure 3 PC104 Power Supply module

4. Press-Fit, Stack-Through Connector

This connector (part number PC104-C104-PS1), shown in

Figure 4, allows us to continue the bus from one PC104 module to another module if the

modules are too thick. The connector is manufactured by Emulation Technology, Inc., and the

part number is PC104-C104-PS1. More information can be found online at

http://www.emulation.com/173/pc104.cfm.

Technical Report Number CSSE10-07

Figure 4 PC104 Press-Fit, Stack-Through Connector

B. Other Hardware Items

The rest of the hardware items described are more commonplace items:

1. Orinoco Wireless Card

Shown in

Figure 5 is the Orinoco Gold wireless PCMCIA LAN card we use is a 2.4 GHz radio which

supports the four IEEE 802.11 High-Speed compliant speeds 11Mb/s, 5.5 Mb/s, 2 Mb/s and 1

Mb/s within the IEEE 802.11 Standard for Wireless LANs.

Technical Report Number CSSE10-07

Figure 5 Orinoco Gold Wireless PCMCIA LAN Card

2. Lucent External Antenna

Shown in

Figure 6 is a 2.4 – 2.5 Ghz omnidirectional external antenna used to boost the wireless signal

with a +5dBi gain and a 60” cable.

Technical Report Number CSSE10-07

Figure 6 Omnidirectional External Antenna

3. Compact Flash Card

A standard type I compact flash card is shown in

Figure 7.

Technical Report Number CSSE10-07

Figure 7 Type I Compact Flash Card.

4. Memory (RAM)

The RAM used is a 256MB, 144 pin Synchronous Dynamic RAM high-density memory module

at 133 Mhz. Its technical specifications can be found at

http://www.transcendusa.com/Support/DLCenter/Datasheet/TS32MSS64V6G_6755.pdf. Please

see

Figure 8 for an image.

Technical Report Number CSSE10-07

Figure 8 256MB, 144 pin Synchronous Dynamic RAM High-Density Memory Module

5. Microphone

This plastic USB microphone, manufactured by Sound Professionals, is a mono, high sensitivity,

omnidirectional microphone with headphone amplifier. Its dimensions measure 1.5” x 1.0” x

0.25”, and it can detect frequencies from 20 – 20,000 Hz. More information can be found online

at http://www.soundprofessionals.com/cgi-bin/gold/item/SP-USB-MIC-1. Please see

Figure 9 for an image.

http://www.soundprofessionals.com/cgi-bin/gold/item/SP-USB-MIC-1

Technical Report Number CSSE10-07

Figure 9 USB Microphone

6. AC Power Supply

The AC Power Supply, shown in Figure 10 below, is manufactured by Sunny Computer

Technology. It has an input range of 100 – 240V and an output of +12V. This is what we use in

the lab to power the PC104s. For more information, please refer to http://www.sunny-

euro.com/HTML/PRODUCTS/POWERSPL/SYS1183UP.html online.

Technical Report Number CSSE10-07

Technical Report Number CSSE10-07

Figure 10 AC Power Supply

7. Power Input Connector

To supply the PC104 with power, the +12V AC power supply and the +12V battery are

connected to the power input connector. Here in the lab, we solder wire onto the power input

connector. Note the power connector in

Figure 11 below.

Figure 11 Power Connector

8. Battery

The battery, shown in

Figure 12 below, is used to power the PC104 when away from the lab and outputs +12V at 5.0

amp hr. It is sealed and rechargeable. For more information, please refer to http://www.power-

sonic.com/site/doc/prod/86.pdf online.

power
connector

Technical Report Number CSSE10-07

Technical Report Number CSSE10-07

Technical Report Number CSSE10-07

Figure 12 Power Sonic Battery

9. Sony EVI-D30 Pan-Tilt-Zoom Camera with Serial Cable

The camera controller tracks a moving target using the Sony EVI-D30 Pan-Tilt-Zoom camera

shown in Figure 13. The EVI-D30 is a serial-controlled (RS232) camera with a total pan area of

200° (100° to the left and 100° to the right of center) and a total tilt area of 50° (25° up and 25°

down from center). It has zoom capability and auto-focus. For more information, visit

http://www.axis.com/techsup/cam_servers/ptz/sony_d30.htm online. Also, see

http://bssc.sel.sony.com/Professional/docs/manuals/evid30commandlist1-21.pdf for more

technical details from Sony.

Figure 13 Sony EVI-D30 Pan-Tilt-Zoom Camera

Technical Report Number CSSE10-07

Shown here in

Figure 14 is the back side of the Sony EVI-D30 Pan-Tilt-Zoom Camera. Notice the two video

output methods, RCA and S Video. The serial cable, shown in Figure 15, connects to VISCA

IN.

Figure 14 Reverse side of the Sony EVI-D30 Pan-Tilt-Zoom Camera

Shown below in Figure 15 is the serial communication cable used to connect the serial connector

from the PC104 to the VISCA IN input connection on the reverse side of the Sony EVI-D30

Pan-Tilt-Zoom Camera.

Technical Report Number CSSE10-07

Figure 15 Serial Cable

10. Direct Connect Ethernet Cable

The use of a direct connect Ethernet cable is required to connect the camera controller to the

gateway.

11. Logitech Webcam

Technical Report Number CSSE10-07

Another type of pan-tilt-zoom camera, shown in Figure 16, is the Logitech QuickCam Orbit AF.

It is a 2-megapixel webcam with an autofocus lens system with HD video capture. It is also

USB 2.0 certified. More information can be found online at

http://www.logitech.com/index.cfm/webcam_communications/webcams/devices/3480&cl=us,en.

Figure 16 Logitech QuickCam

C. How To Put All The Pieces Together

1. Required Tools

Technical Report Number CSSE10-07

 Small screwdrivers, one flat head and one Phillips head

 Voltmeter

 Cables, gold spacers, nuts and screws provided with PC104

2. Assembly Instructions

To put together a PC104 out of the box, follow these steps:

1. Remove all of the components from their respective boxes.

2. Connect the memory (RAM) and the compact flash card to the CPU module as shown

below in Figure 17.

Figure 17 The underside of the CPU module with the RAM and CFC inserted in their respective

slots.

3. Connect the power input connector wire to the Power Supply module. Warning: We

advise testing the voltage levels before connecting any power to the PC104. Be sure the

positive input wire is connected to the positive side of the input on the Power Supply

Technical Report Number CSSE10-07

module. You can plug the AC adapter into the power connector and test the ends of the

wire before inserting them into the Power Supply module. See

Figure 18 below.

Figure 18 The top side of the Power Supply module with the power cord inserted and screwed

in.

4. Press one of the Press-Fit, Stack-Through connectors onto the underside of the CPU

module. This is necessary because the next module, the PCMCIA module, is too thick to

stack next. You must connect this connector before connecting the PCMCIA module.

+ sign indicates
positive side

Technical Report Number CSSE10-07

5. Stack the PCMCIA module on the Press-Fit, Stack-Through connector you just connected

in the previous step. You need to add double-stacked gold spacers on the opposite side of

the Press-Fit, Stack-Through connector to support the other side of the PCMCIA module.

You should have something that looks as shown below in

6. Figure 19.

Figure 19 An upside-down image of the PC104 showing the press-fit, stack through connector

added in step 4, gold spacers and the assembly of the CPU and PCMCIA modules.

7. Stack the Power Supply module onto the current assembly. Tighten a nut around the end

of each of the gold spacers jutting out from the bottom of the Power Supply module.

Pictures of the assembly can be seen from the bottom and from the top in

press-fit, stack-through

connector added in step 4

gold spacer

Technical Report Number CSSE10-07

8. Figure 20 and

9. Figure 21, respectively.

Technical Report Number CSSE10-07

Figure 20 This is an image of the PC104 as viewed from the bottom.

Figure 21 This is the picture if viewed from the top.

10. The last step involves looking over the CPU module’s reference manual (

11. Figure 22) to determine where the various connectors go. A representative image of the

CPU module’s reference manual for various connectors is shown. We currently use CN3

for Ethernet, CN4 for serial I/O, CN7 for USB, CN15 for the keyboard – we do not use

the mouse – and CN16 for VGA video.

Technical Report Number CSSE10-07

Figure 22 Excerpt from the CPU module's reference manual.

Technical Report Number CSSE10-07

12. A completed PC104 assembly including connectors is shown in

13. Figure 23, and a completed assembly inside its protective enclosure can be seen in Figure

24 below. A picture detailing the PC104 cable interface and showing the microphone’s

position can be seen in Figure 25.

Figure 23 PC104 assembly

Power Supply

module

PCMCIA

module

CPU module

Technical Report Number CSSE10-07

Figure 24 PC104 Inside Protective Casing

Technical Report Number CSSE10-07

Figure 25 PC104 Casing Detail View

III. Operating System

A. Installing the Operating System

The Linux-based Slax operating system is our OS of choice since it is easily configurable.

1. How to Install Slax (option 1) [the easiest, by far]

Note: It is recommended you use Fedora 10 as that is the only OS on which we have tested this

option. Note: We used a Fedora 10 virtual machine running on a Windows 7 host.

To install Slax 6.0.7 to a compact flash card (CFC), you must:

1. Insert the CFC into a USB Compact Flash Card Reader and insert the reader into a free

USB port on your computer.

Technical Report Number CSSE10-07

2. Copy the boot, slax and slaxchanges directories onto the CFC.

3. cd to the boot directory on the CFC.

4. You will now run the script liloinst.sh (as root) which makes the CFC bootable. You can

also edit liloinst.sh to include other Slax boot options. One we include is copy2ram

which copies the entire operating system into RAM to increase access speed. To see how

this is done, open liloinst.sh by typing vi liloinst.sh from your current location. Near the

bottom of the file on the line append = "ramdisk_size=6666 ...", we inserted copy2ram

like this: append = "ramdisk_size=6666 changes=slaxchanges copy2ram". You can

type vi slax.cfg for a few more boot options to insert like copy2ram. Also, maybe more

can be found on Slax.org.

5. Safely remove the USB CFC Reader from the USB port of your computer.

6. Remove the CFC from the CFC Reader and insert the CFC into the CFC slot on the

underside of the PC104’s CPU module.

7. Power up the PC104. The system should now boot to a log in screen.

Import note to remember: The Slax operating system has a neat feature that smoothes

development. Alongside the boot and slax directories is a directory named slaxchanges. If you

take a look into liloinst.sh, you will see where you can give the changes directory another name.

We use the default slaxchanges for simplicity. Inside slaxchanges is a changes folder. This

basically mirrors Slax’s file system. Anything you put into this folder will “show up” in the file

system when you boot the PC104. If you assume this changes folder is the root directory (“/”)

of the file system in Slax, you can add any directory hierarchy in this folder you wish. Suppose,

for instance, you want to include the file idosomethingimportant.txt in the /etc folder of Slax.

Simply create the directory etc in changes and copy and paste idosomethingimportant.txt into

this newly created etc folder. As another example, assume you want to include a bunch of files in

a directory under root’s home directory. Simply create root/anotherDirectory under changes

and copy and paste your files there. Once you boot Slax, the files will appear in the correct

place.

2. How to Install Slax (option 2) [more difficult and time consuming]

To install Slax 6.0.7 to a compact flash card (CFC), you must:

1. Remove the power cord from the PC104.

2. Ensure the CFC and the RAM is in the correct slots on the underside of the PC104 CPU

module.

3. Insert the supplied USB-CDROM into a USB-CDROM device and insert the USB-

CDROM device into a free USB port on the PC104.

4. Insert the power cord. Edit the bios settings of the PC104 to boot from USB-CDROM.

Save and exit. The PC104 reboots itself. It should now boot from USB-CDROM.

5. Boot in text mode as the GUI has been removed. Select text mode from the menu.

6. Copy the two directories boot and slax from the supplied CDROM to /mnt/hdc1, the

CFC. The boot and slax directories should be located under /mnt/live/mnt/sr0. Type cd

/mnt/live/mnt/sr0 to enter the directory where the boot and slax directories are located.

Type cp -r boot /mnt/hdc1 to copy the boot directory to /mnt/hdc1, the CFC. Type cp -

r slax /mnt/hdc1 to copy the slax directory to /mnt/hdc1, the CFC.

Technical Report Number CSSE10-07

7. Type cd /mnt/hdc1/boot to enter the boot directory on the CFC.

8. You will now run the script liloinst.sh, located in /mnt/hdc1/boot, which makes the CFC

bootable. You can also edit liloinst.sh to include other Slax boot options. One we

include is copy2ram which copies the entire operating system into RAM to increase

access speed. To see how this is done, open liloinst.sh by typing vi liloinst.sh from your

current location. Near the bottom of the file on the line append = "ramdisk_size=6666

...", we inserted copy2ram like this: append = "ramdisk_size=6666

changes=slaxchanges copy2ram". You can type vi slax.cfg for a few more boot options

to insert like copy2ram. Also, maybe more can be found on Slax.org.

9. After editing liloinst.sh, return to the command line and type ./liloinst.sh. Just press

enter when it tells you to do so until it is finished. The CFC should now be bootable.

Type poweroff to power off the PC104. You will get to a point in the power off process

where the PC104 complains, “this code should never get here”. This is normal. We have

not found a fix for the problem. We believe that more advanced hardware may be

required to power off the PC104 completely through software. Note: You may need to

change the execution flag of liloinst.sh by typing chmod 744 liloinst.sh.

10. Remove the power cord after the PC104 powers off.

11. Remove the USB-CDROM device from the USB port.

12. Plug in the power cord.

13. Edit the bios settings to boot from HDD-0. Save and exit. The PC104 reboots itself.

14. The PC104 will boot to a log-in screen. Log in with user name root and password toor.

At this point, the PC104 contains a clean install of the Slax operating system without any

additional software or user-space applications, except NTP.

IV. Compiling and Running Software

A. Compiling Directed Diffusion & EVILib Libraries

To compile the Directed Diffusion and camera controller EVILib libraries, follow these steps:

Note: If you used method 1 in the previous section to install Slax to the CFC, you may be able to

skip these steps.

1. Insert the supplied USB flash drive into a free USB port. Mount it to the file system by

typing mount -t vfat /dev/sda1 /mnt/sda1. Type cd /mnt/sda1 to navigate to the USB

flash drive. Copy the target tracking application to root's home directory (“~”) on the

PC104 by typing cp tt ~. That is cp tt ~ without the ending period.

2. Type cd ~ to get back to root's home directory. Unmount the USB flash drive by typing

umount /mnt/sda1. You can now safely remove the USB flash drive after umount

returns.

3. Navigate to the directed diffusion 3.2.0 folder in the diffusion directory by typing cd

~/tt/diffusion/3.2.0. If it is empty, you should copy the contents of ~/tt/diffusion/3.2.0-

fresh to ~/tt/diffusion/3.2.0. Do that by typing cp -r ~/tt/diffusion/3.2.0-fresh/*

~/tt/diffusion/3.2.0. Now, type cd ~/tt/diffusion/3.2.0 if you are not already in that

directory. In this step, you will compile diffusion. First, you must configure the

compilation by typing ./configure --with-ethernet. After it is done, type make. After

Technical Report Number CSSE10-07

this process is complete, ~/tt/exe will contain the executable filter_core and

two_phase_pull. Note: We have recently run into problems with the newer version of

diffusion (version 3.2.0) not compiling ON the PC104. Instead, we have had to perform

this step on another machine and copy diffusion/3.2.0 to ~/tt manually. Also, there can

be no spaces along any path to ~/tt/diffusion/3.2.0 for diffusion to compile properly.

4. Next, we must compile the EVILib library code for the camera controller software to

compile properly. Type cd ~/tt/extAgnts/camera/camlibsrc to get to the directory

where the camera library's source files are kept. Type make clean. Type make. This

will compile the library required for use by the camera controller.

B. Compiling the Application Code

Now, it is time to compile the target tracking application, external agent code and dynamic

services.

1. Type cd ~/tt. Type make. This recursively checks all sub-directories that have

compilable code in them for a Makefile and runs that directory's Makefile. The

executable code dynServ, camera, calibrate and log produced during this process can be

found in ~/tt/exe. Note: If you are compiling this code ON the PC104 using Slax 6.0.7,

you may need to alter the camera.cc and camera_reset.cc code if you run into errors.

For some reason, the file system on Slax 6.0.7 has an issue with capitalization.

All the target tracking executable code has now been produced. Type cd ~/tt/exe and then type

ls to view the executable files.

There are a few more steps to ready the PC104 for an actual experiment. When a clean install of

the operating system is done, SSH and NTP are initially unavailable. You must follow these

steps to ready the SSH and NTP daemons:

1. Type cd /etc/rc.d/. Type chmod 744 rc.sshd. Type chmod 744 ntpd. This will enable

the SSH and NTP daemons.

2. We have altered /etc/rc.d/rc.local in the Slax 6.0.7 image to automate the configuration

process upon powering on the PC104. As you may or may not know, the script

/etc/rc.d/rc.local is run each and every time the PC104 is powered on. To configure your

own options, type vi rc.local and follow the instructions to configure different sensor

nodes.

3. Type cd /etc. Edit ntp.conf.server in the clusterhead to give it the appropriate settings by

typing vi ntp.conf.server. Rename ntp.conf.server to ntp.conf in the NTP server to use it

as the NTP daemon's settings. Rename it by typing mv ntp.conf.server ntp.conf. You

can also edit ntp.conf.client in the NTP clients to give it the appropriate settings by typing

vi ntp.conf.client. Rename ntp.conf.client to ntp.conf to use it as ntpdate's settings. Do

that by typing mv ntp.conf.client ntp.conf. The settings you changed in either

ntp.conf.client or ntp.conf.server and rc.local will now be applied when the system

restarts.

Note: The format of ntp.conf.server is:

 server 127.127.1.0 prefer

Technical Report Number CSSE10-07

 fudge 127.127.1.0 stratum 10

 driftfile /var/lib/ntp/drift

 logfile /var/log/ntp.log

 broadcastdelay 0.008

 restrict 127.0.0.1

 restrict [subnet of addresses to which to reply] mask [subnet mask] nomodify

notrap

On the last line starting restrict, the field [subnet of addresses to which to reply] refers to

those addresses to which the server is allowed to reply. Be sure to set the subnet mask

appropriately.

Note: The format of ntp.conf.client is:

 server [IP address of NTP server]

 restrict default ignore

 restrict 127.0.0.1

 restrict 0.0.0.0 mask 0.0.0.0 nomodify notrap noquery

 driftfile /var/lib/ntp/drift

 logfile /var/log/ntp.log

4. While we are still on this NTP stuff, let us talk about the nifty little script we wrote that

enables time synchronization to be forced every XX minutes, where XX is user-supplied.

You have probably already noticed the lines in /etc/rc.d/rc.local that enable you to

configure this. All you need to do is supply the IP address of the NTP server – in our

case, it is the clusterhead – and the time interval between synchronization attempts. Be

sure that the script ~/tt/scripts/syncClock.sc is in the directory ~/tt. After you are sure

the script has been copied or moved to ~/tt, restart the node. Each time the node powers

on, the script is automatically run.

5. Type cd ~/tt/scripts. If you now type ls, you will see a few scripts that are used to

perform target tracking experiments. Those scripts are described now.

 • calibrateMic.sc is used to calibrate the microphone on sensors and the

clusterhead.

 • startgateway.sc is used in the gateway to start the gateway. It requires one

argument, a port number.

 • startcamera.sc is used in the camera controller to start the camera program. It

takes in an optional argument that determines how many camera iterations to perform.

The default is 1000. This number should probably be smaller.

 • startclusterhead.sc is used to start the clusterhead. It requires one argument, a

port number.

 • startsensor.sc is used to start all other sensors (excluding the clusterhead). It

requires one argument, a port number.

 • stopall.sc is used to stop all the executable programs that may be running

concerning the target tracking application including filter_core, two_phase_pull, dynServ,

gateway, camera and log.

 • maximizemicvolume.sc is used to maximize the microphone’s volume on sensor

nodes and the clusterhead. Be sure if you enable it to run in /etc/rc.d/rc.local that you

copy it to ~/tt.

6. To use the scripts, copy the scripts you need to the ~/tt directory. This ensures that useful

scripts are where you need them at all times. As an example, say you have just followed

Technical Report Number CSSE10-07

all of these instructions for the clusterhead. To successfully run the clusterhead, you need

startclusterhead.sc, calibrateMic.sc, maximizemicmolume.sc and stopall.sc. Therefore,

individually copy them to their parent directory by typing cd ~/tt/scripts. Type cp

startclusterhead.sc ... Do this for each of the other scripts that you need.

7. Repeat these steps for the remaining sensors.

C. Software Configuration

At this point, the environment is configured and all application software has been installed;

however, the application software has not been configured. Software configuration mostly

concerns the creation of configuration files in the ~/tt/exe directory. Software configuration is

different depending on the role of the node in the environment, whether it is the clusterhead, a

sensor, the gateway, the camera controller or another external agent. To configure the software,

first identify the role of the node in the experiment. The roles and software configuration are

defined and described below. But first, let us talk about the network architecture of this

particular sensor networking application. A graphical representation of the network architecture

is shown below in

Figure 26.

1. Network Architecture

The network architecture is shown below in

Figure 26. On the left side of the image, you will notice the 802.11 Directed Diffusion network.

This is the network over which the sensor and gateway nodes communicate. The diffusion

network on the left is connected to the infrastructure network on the right to facilitate

information retrieval and tasking of the sensor nodes. Also, any node on the right-hand side of

the graphic is termed an external agent. External agents require the services provided by the

gateway to retrieve information from the diffusion network.

Technical Report Number CSSE10-07

Figure 26 Network architecture of the target tracking application.

2. Description of Roles

There are several different roles of nodes in this network architecture. They are as follows:

a. Clusterhead Role

The role of the clusterhead is to gather a CPA (closest-point-of-approach) time through sensing

sound, gather the CPA times of its neighbors, run the Enhanced CPA algorithm and produce

target location and speed information.

1. config.txt is used by the directed diffusion protocol to determine the network layout. It is

organized line-by-line. Each neighbor's IP address, port and simulated link quality

should be on its own line. Note: We always use 100 as the link quality. The format of

config.txt is as follows:

Technical Report Number CSSE10-07

 <IP address of neighbor> - <port> - <link quality>

 <IP address of neighbor> - <port> - <link quality>

 ...

2. position.txt is used by the node to determine its current GPS location. Notice that there

is a blank space between “Lat:” and “<latitude>” and between “Long:” and

“<longitude>”. Any program reading this file should take this into consideration. The

format of position.txt is as follows:

 Lat: <latitude>

 Long: <longitude>

3. sensor.txt is an output file of the calibrate program. It provides a way for the target

tracking application to filter out background noise in the deployment environment.

Simply run the calibrate program directly or use the script provided in ~/tt/scripts and

follow the on-screen directions. When we calibrate sensor nodes in the lab and during

field experiments, we use a target threshold of 80-85% and a target recording interval of

five seconds. Be sure to write the output file before closing the calibrate program. Note:

You should not edit sensor.txt directly unless you are very sure you know what you are

doing. You may manually adjust the first number in the file depending on the results of

your target tracking experiment. Any sensor not triggered during a run of the experiment

should probably have its value LOWERED slightly. Any sensor triggered prematurely

should have its value RAISED slightly. A lower threshold means greater sensitivity to

soft sounds and therefore more false positives.

4. services.txt is used by dynServ to determine which data types the current node is able to

produce. The file is organized line-by-line and should include keywords from the list of

legal keywords. In the clusterhead, both VISUAL1 and MIC1 should be included on

different lines.

b. Sensor Role

Sensor nodes sense CPA time through the use of microphones and relay this information to the

clusterhead.

1. config.txt should be set up using the same method as the clusterhead.

2. position.txt should be set up using the same method as the clusterhead.

3. sensor.txt should be set up using the same method as the clusterhead.

4. services.txt should be set up using the same method as the clusterhead except that only

MIC1 should be included.

c. External Agent Role

External agents drive the network. When you start a sensor using startsensor.sc or

startclusterhead.sc, you are, in actuality, starting the dynServ process. dynServ does nothing

(there are no threads running) until it receives an interest from the network. Therefore, when an

external agent sends an interest to the gateway, those interests cause dynServ to start threads

corresponding to this interest.

1. gatewayinfo.txt is required of all external agents and contains the IP address of the

gateway on the first line and the port on which the gateway is listening for incoming UDP

Technical Report Number CSSE10-07

packets on the second line. Note: The port number should always be 8899, for that is the

port number on which the gateway listens.

d. Camera Controller Role

The camera controller program is responsible for controlling the pan of a camera once it receives

target information from the clusterhead.

1. cameraPosition.txt lets the camera controller get its current GPS position and must

follow the same pattern as position.txt as described in the clusterhead above.

2. Note: The camera controller is an external agent and therefore should also contain all

files required by external agents.

e. Gateway Role

The gateway’s job is the facilitate information passing from the directed diffusion network to the

IP network. The gateway is considered to be on the directed diffusion network and not an

external agent.

1. config.txt should be set up using the same method as the clusterhead. Note: In the

gateway, only the clusterhead is its neighbor.

D. Running the Application

At this point, you should have the environment set up and the application software configured

and ready to run an experiment. To run the current version of the target tracking software, we

remotely log in to the different machines. Usually, we use the clusterhead as the base of

operations. From the clusterhead, we are able to communicate with all of the other sensors, the

gateway and the camera controller.

We use different terminals on the same sensor node to control other remote sensors. If you are

running Slax, you can press Ctrl+[Fi] to change to terminal i, where i is between 1 and 6,

inclusive. Assume all of the sensors' SSH daemons have been properly configured. For

demonstration purposes to show you how we run an experiment, assume you have logged in to

the clusterhead locally.

 Press Ctrl+F2. This will take you to terminal 2. You must now log in.

 After you log in, type ssh <IP address of node>. If this is the first time you have tried to

SSH to this IP address, you will be asked to accept that node's public key. You should

accept the public key by typing yes.

 Then, log on to each different IP address in a different terminal. By default, when the

operating system starts up, terminal 1 (Ctrl+F1) is selected. We usually log in to sensor

1 in terminal 2, sensor 2 in terminal 3, sensor 3 in terminal 4, the gateway in terminal 5

and the camera controller in terminal 6. Be sure your current working directory on each

sensor is ~/tt.

1. This section assumes you are already logged in at the clusterhead and that you already

have all other sensors, the gateway and camera controller in the other terminals F2

Technical Report Number CSSE10-07

through F6. At the clusterhead terminal, type ./startclusterhead.sc <port as it is

configured in its neighbor's config.txt files>. Note: As a convention in our lab, if we

assign a PC104 the IP address 131.204.152.138, then the port number we assign directed

diffusion is 10138. Also, if the scripts are not available, copy them from scripts to the

current directory.

2. In the other terminals corresponding to sensors 1-3, type ./startsensor.sc <port as it is

configured in its neighbor's config.txt files>. Note: It is important to remember that

dynServ is more of a middleware solution to the directed diffusion programming

paradigm. After you've started the clusterhead and sensors, they will not actually be

performing any calculations until they receive an INTEREST message from an external

agent, any node not located on the diffusion network.

3. In another terminal corresponding to the gateway, type ./startgateway.sc <port as it is

configured in its neighbor's config.txt files>. This readies the gateway for forwarding

information to and from the directed diffusion network.

4. In another terminal corresponding to the camera controller, type ./startcamera.sc

[optional number of camera iterations to undertake]1. Starting the camera causes an

interest message for VISUAL1 to be sent to the gateway. The gateway will then send out

INTEREST messages to the directed diffusion network.

5. Cycle through terminals 1 through 6, starting each node type by pressing <enter> in each

terminal. This starts the experiment.

Now, the experiment should be ready to run. If you take a look at each of the clusterhead and

sensor terminals, they should have a statement saying “Waiting for target ...”. This means the

clusterhead and the sensors are ready to detect a moving target. When the target appears, the

application displays “Target appears ...” followed by more calculations on the clusterhead if all

of the sensors actually detected something. After all of the sensors have detected the target, they

will record for five seconds and relay CPA information to the clusterhead. The clusterhead will

perform calculations on this information to determine position, velocity and direction of travel.

If the clusterhead receives data on which its target tracking algorithm can perform its

calculations, the clusterhead will send out a data packet to the camera controller through the

gateway. The gateway will then forward the data to the camera controller. Now, the camera

should pan to view the target or output to the screen any conditions under which it cannot track

the target.

When you are ready to stop the application, cycle through F1 through F6 again, typing

./stopall.sc at each of the terminals. This will kill all of the executables associated with the

target tracking application.

V. Dynamic Services

Now that you have completed a run of the experiment, what if you wanted to write your own

sensor networking application over directed diffusion?

1Note: The camera's optional parameter defaults to 1000.

Technical Report Number CSSE10-07

A. Introduction to Dynamic Services

Dynamic Services (DS) is an application which runs over the standard diffusion network. The

services DS provides are very useful for extending the capabilities of a sensor node in a sensor

network. Within DS is programmed the logic to automatically handle interests.

DS is pre-programmed with 15 key words as follows:

1. SEIS1

2. SEIS2

3. SEIS3

4. INFRA1

5. INFRA2

6. INFRA3

7. MIC1

8. MIC2

9. MIC3

10. VISUAL1

11. VISUAL2

12. VISUAL3

13. SOUND1

14. SOUND2

15. SOUND3

When DS is started, it first checks services.txt to determine which types of sensor data the

current sensor node can provide. DS expects all or a subset of the key words defined above. As

DS reads entries from services.txt, it sets up local-scope subscriptions for interests matching the

entry read from services.txt. This is so that when the diffusion core receives an interest from the

diffusion network, the node will know if it can or can not provide the requested data type

corresponding to the received interest type.

When DS receives an interest from the diffusion network for which there is a corresponding

entry in services.txt, DS starts a thread which will begin producing data. DS is also responsible

for sending out data to the diffusion network. When a thread has data it wishes to send out onto

the diffusion network, it simply calls DIFF_SEND().

B. Adding a Sensor Capability

1. Adding a Sensor Capability Using Predefined Key Words

To add a sensor capability, you must first be sure that all of the predefined key words are not all

used. If they are not all used, select one which is most appropriate to your needs. I will use as

an example a regular sensor in our target tracking application. In our target tracking application,

we use two key words, MIC1 and VISUAL1. MIC1 corresponds to CPA data, and VISUAL1

corresponds to data which the camera uses to track the moving target. For a regular sensor (not

Technical Report Number CSSE10-07

the clusterhead), only MIC1 is used. Thus, services.txt on a sensor node would include, on a

line by itself, the key word MIC1. This indicates to DS that this sensor has the capability of

producing data with the label MIC1. Note that these key words are global. This means that two

different sensors can not use the same key word and expect the network to interpret them

differently.

Next we must implement the code for producing this data. This is where DS comes in handy.

Located in dynServ/dynServ.cc are stubs which a sensor network programmer can implement to

do the job of producing data. These are merely the starting points of the threads that DS will

create once an interest for a data type is received. So, when the sensor receives an interest from

the diffusion network for type MIC1, DS will increment a counter corresponding to the number

of subscriptions for MIC1. DS's main thread checks these counters every time an interest or

disinterest is received to appropriately start up or cancel threads. Once the counter

corresponding to MIC1 is greater than zero, DS starts the thread corresponding to the production

of MIC1 data.

Now that the thread is running corresponding to the interest for MIC1, how do you actually send

information onto the diffusion network? As an example of how to send information onto the

diffusion network, look into targettracking/ttMic1.cc. Notice the variable declaration near the

beginning of the file: GlobalData mic_1_struct;. This is the structure this thread will send out

onto the network. Notice around line 35 when we start to fill this structure. It is important to fill

in the type field because this is how the gateway will identify different packet types. Then, you

will fill in the structure with your own information. Next, you will notice DIFF_SEND() around

line 55. It returns a negative number on failure and a non-negative number on success. Simply

call DIFF_SEND() with your information to send it out to the network.

2. Adding a Sensor Capability by Appending to Predefined Key Words

If the sensor network's capabilities have grown to such an extent that all of the key words have

been used, you can append to the list of key words and do a little more programming to add more

key words to DS.

Let us say you want to add three new predefined key words. Assume the key words you want to

add are “SOUND1”, “SOUND2” and “SOUND3”. Follow the following steps:

1. In dynServExt.h, create a “typedef struct” which corresponds to the three key words.

2. In dynServExt.h, add SOUND1, SOUND2 and SOUND3 to the DataType enumeration

list.

3. In dynServExt.h, add the three new structure names to the union structure inside the

GlobalData structure.

4. Near the bottom of dynServExt.h, add three new function prototypes to the list.

5. In dynServ.h, create three new thread IDs.

6. In dynServ.h, create counters for keeping track of the number of subscriptions for each

of the new key words.

7. In dynServ.h, create three new boolean variables to keep up with the status of running

threads.

Technical Report Number CSSE10-07

8. In the constructor in dynServ.cc, set the initial values for the counters created in step 6 to

zero and the boolean flags we creating in step 7 to false.

9. Also in this constructor, set the thread IDs to zero.

10. At the bottom of dynServ.cc, add stubs corresponding to the newly created key words.

11. In dynServ.cc, find the function named dynServ::recv. In this function, add more if-else-

if statements to change the counters of the corresponding key words for the case for the

NRAttribute::INTEREST_CLASS and NRAttribute::DISINTEREST_CLASS.

12. In dynServ.cc, find the function named dynServ::run(). In this function, add more if

(data_type_subs > 0) ... to the end to take care of starting the appropriate threads once

subscriptions are received.

This version of the target tracking application incorporates a method for external agents (those

machines not directly connected to the diffusion network) to gain access to data packets of a

particular data type. The gateway application has been totally re-written to make it easier for

external agents to request data from the diffusion network. An external agent can submit a

request to the gateway, and the gateway will forward this request to the rest of the diffusion

network. The gateway keeps track of the external agents' IP address, port and requested data

type. When the gateway receives a data type from the diffusion network for which an external

agent has previously sent a request, the gateway simply forwards the data packet to the

requesting external agent. This being said, the gateway needs more information to be able to

forward packets correctly. So, the following steps are also required when appending to the list of

key words:

13. It is now necessary to edit the two functions str2DataType and convertToStrChr in

gatewayDefs.cc. Add more cases to the switch statements corresponding to SOUND1,

SOUND2 and SOUND3.

C. Subscribing to Data in a Thread

You will notice in dynServExt.h that the stubs (the thread starting points) have the argument

void *dr. Also notice that we pass the variable dr to the constructor in ttVisual1.cc. This is to

give threads access to the underlying diffusion routing core contained inside dynServ.cc. Notice

that the class TargetAnalysis has its own version of dr named myDr_ which can be found in

TargetAnalysis.h. In the code that you will write, just assign myDr_ the value of dr, or just use

dr directly. You can see an example by looking in the TargetAnalysis constructor in

TargetAnalysis.cc. You will use myDr_ inside threads to make subscriptions.

Here's the function for subscribing for MIC1 from the clusterhead, TargetAnalysis.cc:

handle TargetAnalysis::setupSubscription() {

 char type[5] = "MIC1";

 NRAttrVec attrs;

 attrs.push_back(NRClassAttr.make(NRAttribute::IS, NRAttribute::INTEREST_CLASS));

 attrs.push_back(TaskNameAttr.make(NRAttribute::IS, type));

 handle h = myDr_->subscribe(&attrs, mr_);

 if (h < 0) {

Technical Report Number CSSE10-07

 cout << "TargAnalysis::setupSubscription failed for type " << type << endl;

 } else {

 cout << "TargAnalysis::setupSubscription succeeded for type " << type << endl;

 }

 return h;
}

Notice the line handle h = myDr_ -> subscribe(&attrs, mr_); in the preceding function. The

variable mr_ is defined to be the pointer to the callback function associated with this

subscription. In other words, if the diffusion network passes to this node a packet with data type

MIC1, the diffusion routing core should pass the incoming packet to this function, mr_. As an

example, see TargetAnalysis.cc.

D. Compiling Other Directed Diffusion Applications

Diffusion applications are a little difficult to compile because of the complexity of directed

diffusion. This is why the original authors of the diffusion code delivered with it a special

configuration file. Our lab has slightly altered it to make the diffusion application compilation

process easier and faster. The file diffAppConfig.mk can be found in ~/tt/diffusion. Whenever

you need to compile a diffusion application, simply copy this file to the folder of the source code

of your diffusion application. You will then be responsible for editing the line beginning srcdir

near the top of the file to point to the relative location of the diffusion library files. For an

example of how to use diffAppConfig.mk to aid in compiling your own directed diffusion code,

see diffAppConfig.mk and Makefile both located in ~/tt/dynServ.

VI. External Agents

Any node not directly connected to the directed diffusion network is assumed to be playing the

role of an external agent. For instance, the camera controller and the log programs are both

external agents. For an external agent to gain access to any information contained or provided

by the diffusion network, it must rely on the services provided by the gateway node.

A simple API has been implemented for an external agent to request data from the diffusion

network through the gateway. Since an external agent is not directly connected to the diffusion

network, it must request subscriptions be sent on its behalf. The gateway takes care of this

function.

The three provided functions are prototyped as follows:
int GATEWAY_UNSUBSCRIBE(const int sock, const vector<DataType>* vec);

int GATEWAY_SUBSCRIBE(const vector<DataType>* vec);

int RECEIVE_FROM_GATEWAY(const int sock, GlobalData* g);

As an external agent, just follow these steps for requesting and receiving data from the diffusion

network.

1. Include the header file extAgnts/API/externalAgentAPI.h in the source file for external

agents.

Technical Report Number CSSE10-07

The header file gives the programmer access to the function GATEWAY_SUBSCRIBE. The

function returns an integer corresponding to a UDP socket through which the gateway will

respond with data packets. Note: Be sure to have gatewayinfo.txt in the current directory of

each external agent. This file gives the IP address and port of the gateway process. To use

GATEWAY_SUBSCRIBE, you must first fill up a vector of subscriptions with the DataTypes for

which you wish to send a request to the gateway. Suppose an external agent wanted data

corresponding to interest types VISUAL1 AND MIC1. The sample request to the gateway is

given as follows:

vector<DataType> vectorOfSubscriptions;

vectorOfSubscriptions.push_back(VISUAL1);

vectorOfSubscriptions.push_back(MIC1);

if ((sock = GATEWAY_SUBSCRIBE(&vectorOfSubscriptions)) < 0) {

 perror("GATEWAY_SUBSCRIBE failed");

}

To receive information from the gateway, use the function RECEIVE_FROM_GATEWAY as

given below:

GlobalData pkt;

if (RECEIVE_FROM_GATEWAY(sock, &pkt) < 0) {

 perror(“RECEIVE_FROM_GATEWAY failed”);

}

This is a blocking call so the external agent will wait here until it receives a data packet from the

gateway. As an example, see extAgnts/log/log.cc.

To gracefully unsubscribe from your previous subscriptions to the gateway, use

GATEWAY_UNSUBSCRIBE as shown below:

if (GATEWAY_UNSUBSCRIBE(sock, &vectorOfSubscriptions) < 0) {
 perror(“GATEWAY_UNSUBSCRIBE failed”);

}

GATEWAY_UNSUBSCRIBE should be called with the socket which was returned with

GATEWAY_SUBSCRIBE.

2. When you are ready to compile the external agent code which includes the header file

extAgnts/API/externalAgentAPI.h, you must link in the actual code which implements

the function prototypes listed in externalAgentAPI.h. See extAgnts/log/Makefile to see

how to prepare your own Makefile.

