
United States Patent
US006470349B1

(12) (10) Patent N0.: US 6,470,349 B1
Heninger et al. (45) Date of Patent: Oct. 22, 2002

(54) SERVER-SIDE SCRIPTING LANGUAGE AND 5,727,156 A 3/1998 Herr-Hoyman et a1.
PROGRAMMING TOOL 395/200.49

5,737,592 A 4/1998 Nguyen et al. 395/604

(75) Inventors: Troy Heninger, South Ogden, UT 2 g“ ‘1’: a1
~~~~~~~~~~~~ ~~ _ , , 00 man e a . ......... .. 

Rama Rasmussen’ Ogden’ UT 5,812,134 A 9/1998 Pooser et a1. ............. .. 345/356 

5,890,170 A * 3/1999 ' 

. . 5,898,835 A * 4/1999 
(73) Assrgnee: Browz, Inc., Salt Lake City, UT (US) 5,963,952 A * 10/1999 
* . , _ _ _ 5,987,523 A * 11/1999 

( ) Notlcel sublectto aHyd1SC1a1m@r>_th@termofthls 6,073,160 A * 6/2000 Grantham et a1. ........ .. 709/200 
patent 1s extended or adjusted under 35 6,119,166 A * 9/2000 Bergman et a1. .......... .. 709/232 
U.S.C. 154(1)) by 0 days. 6,178,439 B1 * 1/2001 Feit .......................... .. 709/204 

* cited by examiner 
(21) Appl. N0.: 09/266,357 

_ Primary Examiner—David Jung 
(22) Flled: Mar‘ 11’ 1999 (74) Attorney, Agent, or Firm—Kirton & McConkie; 
(51) Int. c1.7 .............................................. .. G06F 17/00 Mlchael F- Kneger 

(52) US. Cl. ...................... .. 707/102; 707/513; 717/143 (57) ABSTRACT 
(58) Field of Search ........... .. 707/1—529; 709/100—322; _ _ 

345/716_749; 717/143 Software loads scr1pt ?le and strips markup language tags. 
This software can be located on a server. In order to prepare 

(56) References Cited for operation, markup language pages are created. Then, 
special tags containing script commands are placed in the 

US- PATENT DOCUMENTS pages. These tags are replaced dynamically With the result of 

5 530 852 A 6/1996 Meske Jr_ et aL ________ __ 395/6OO the command execution When the script is requested by a 
5,537,586 A 7/1996 Amram et a1. ..... .. 395/600 browser and eXecllted by the Server 

5,708,825 A 1/1998 Sotomayor ...... .. 395/762 
5,708,826 A 1/1998 Ikeda et a1. ............... .. 395/762 1 Claim, 11 Drawing Sheets 

146 \ <p> . . .</p> 148 \ 

140 db cllents [quote(var.text)] 

<p>{!p while #n db clientsselect * from TABLE where NAME = 
[quote(var.text)]}</p> 

[!p while #n...} 

144 

Select * from TABLE 
where NAME = 

150 



U.S. Patent Oct. 22, 2002 

RAM/ROM Memory 

l/O Processors 

f 
Hard Disk 

Sheet 1 0f 11 US 6,470,349 B1 

<——~> Display \ 

14 

CPU 
pm 

12 

Keyboard 

Figure 1 



U.S. Patent 0a. 22, 2002 Sheet 2 0f 11 US 6,470,349 B1 

16 

Client Client 

Network 

, 8 , 1 

16 

Database 

/ 2R 24 
Server 

22 \ v1‘ 
Database 

Figure 2 



U.S. Patent 0a. 22, 2002 Sheet 3 0f 11 US 6,470,349 B1 

//— Client Browser 

32 i 
/- Internet or Intranet 

34 l 
/— Web Server 

36 l 
/— Request Interpreter 

yes 

42 /’—- Load Script File 

l ‘K46 
44 /— Parse Script Execute Script 

48 

Send Results 
to Client 

Figure 3 



U.S. Patent 0a. 22, 2002 Sheet 4 0f 11 US 6,470,349 B1 

Client Browser \ 

Internet or Intranet \ 

36 K 38 
Novel Script Interpreter 

File Programmatic 
System Databases Objects 

50 52 
54 

Figure 4 



U.S. Patent 0a. 22, 2002 Sheet 5 0f 11 US 6,470,349 B1 

/—- Load Script File 

60 

/— Parse Script 

62 l 
f Execute Toke-n Sequence 

64 

{- Client Browser 
32 

Figure 5 



U.S. Patent 0a. 22, 2002 Sheet 6 0f 11 US 6,470,349 B1 

/— HTML Parser 

72 l 

/ Command Parser 

/— Expression Parser 

76 

Figure 6 



U.S. Patent 0a. 22, 2002 

Scan Inter reter /'____p_ 
84 

K Dir Interpreter 

86 

V 

/ SQL Interpreter 

Sheet 7 0f 11 

82 

LSta'tement Interpreter 

Array Interpreter 

87 

\ 

Database SQL 
Interpreter A 

88 

Figure 7 

US 6,470,349 B1 

89 



U.S. Patent Oct. 22, 2002 Sheet 8 0f 11 US 6,470,349 B1 

94 

100 

104 

90 

102 \ 

For each command token / 

For each attached expression tree 

Walk the tree, executing in depth first 
order . 

V 

Insert each expression tree result into 
the parameter statement 

V 

Execute the resulting statement 
98 

\ 
Execute the command token, 
using the statement as the 

parameter 

V 
Insert the command result into the 

output buffer 

Return the output buffer to the 
client 

Figure 8 



U.S. Patent 0a. 22, 2002 Sheet 9 0f 11 US 6,470,349 B1 

/ Request for a Script 

120 

v / 
’\ Execute Script +— Parse Script 

i 1 16 
\ Result Return to 

Client Browser 

Figure 9 



U.S. Patent Oct. 22, 2002 Sheet 10 0f 11 US 6,470,349 B1 

122 \ 136 

—> Execute Script < Swltch t9 
source scrlpt 

A 

124 

Source 
command 

- ntcountered'? 

K 134 
Is source 
ile newer’? 

126 

Target 
command 

- ncountered 

K 132 
Return output 

to client browser 

yes 

Save ouput as 
target script 

V 

130 

Switch to 
target script 

Figure 10 



U.S. Patent 0a. 22, 2002 Sheet 11 0f 11 US 6,470,349 B1 

142 

146 <p> . . .</p> 148 

\ \ 
140 db clients [quote(var.text)] 

<p>{!p while #n db clientsselect * from TABLE where NAME = 
[quote(var.text)]}</p> 

[!p while #n...} SeIEELrJrSQJQELE 

144 / \ 150 

Figure 11 



US 6,470,349 B1 
1 

SERVER-SIDE SCRIPTING LANGUAGE AND 
PROGRAMMING TOOL 

BACKGROUND OF THE INVENTION 

1. The Field of the Invention 

The present invention relates generally to the ?eld of 
dynamic computer document creation and ?le serving. In 
particular, the present invention relates to a scripting lan 
guage and method of use Which provides for the use of 
inventive script codes in a document formatted for an 
independent application. The present invention is particu 
larly Well suited for creating dynamic HTML documents 
With database information using inventive scripting com 
mands. 

2. The Relevant Technology 
The Internet is a World-Wide netWork of computers Which 

is noW accessible to almost any potential user With a 
computer and a means for netWork access. Hundreds of 
Internet Service Providers (ISP’s) have emerged to provide 
Internet access to millions of users Who noW use the Internet 

for personal and business communications, information 
retrieval, advertising, publishing, sales and document deliv 
ery. 

In order to better implement many of these applications, 
the World Wide Web (W or Web), Was created. The Web 
alloWs access to information and documents using “hyper 
media” or “hypertext” links embedded into the document. 
This linking system alloWs documents to be accessed and 
linked in a “non-linear” fashion. Non-linear access alloWs a 
user to “jump” from one point in a document to another 
simply by selecting the link. It also alloWs jumping from one 
document to another Whether the documents are on the same 
computer or across the World. Documents available on the 
WWW include text, sound, graphics images and even full 
motion video. 

Hypertext Markup Language (HTML), a specialiZed 
document formatting language, is typically used to create 
and format documents for vieWing and linking on the Web. 
HTML uses special tags or codes embedded into a text 
document that format the document and alloW linking to 
other documents or other locations in the same document. 
These links may also access ?les, such as sound ?les or 
graphics ?les Which are played or displayed upon selection 
of a link. A document in HTML format that is available on 
the Web is typically referred to as a “Web page” or “Web 
site.” 

The W also implements a unique addressing system 
Which allocates an address or Uniform Resource Locator 
(URL) for each document on the Web so that Web docu 
ments may be selectively accessed, sorted and indexed. 
A computer With a dedicated connection to the Internet 

and specialiZed server softWare that enables Web access is 
called a “Web server.” Web documents are located on 
storage devices connected to Web servers. Aperson seeking 
access to a Web page uses a computer With “Web broWser” 
softWare Which alloWs access to speci?ed URL’s as Well as 
searching and other functions. 

Generally, When a user accesses a speci?c Web page, the 
user enters the URL of the desired Web page into a computer 
Which is running broWser softWare. The broWser softWare, 
then, sends a request across the internet to the server at the 
destination designated by the URL. The destination server 
Will then send an electronic copy of the desired document to 
the broWser computer Where it can be displayed to the user. 

10 

15 

25 

35 

45 

55 

65 

2 
This is the typical procedure used for static Web pages that 
exist as unchanging ?les on a server storage device. 

Web pages may also exist as dynamic documents that 
change or update themselves When conditions are met. 
Dynamic documents may update themselves each time they 
are accessed. This is achieved by alloWing the server to 
execute a program When a given URL is accessed. 

A current standard for enabling dynamic pages is the 
Common GateWay Interface (CGI) Which alloWs a server to 
run programs Which can change, update or customiZe the 
Web page as it is being accessed. 

Programs Which reside on the server and are invoked by 
requests from client broWser applications are referred to as 
“server side” programs. After these programs are run and the 
page is modi?ed thereby, the neWly modi?ed “dynamic” 
page is sent to the broWser Which requested the page so it can 
be displayed to the user. 

Another method for providing a dynamic Web page 
employs programs Which are not operating system speci?c. 
These programs can be executed on any operating system 
supported by the programming language. One very popular 
example is the Java programming language created by Sun 
Microsystems, Inc. With Java, a programmer can create 
programs and include them in her Web site Where the 
programs Will run When the site is accessed by other 
computers on the Web. The programs Will run Whether the 
accessing computer uses an operating system identical to 
that of the Web site or another operating system supported 
by Java. Java programs Which are embedded in a site and 
executed by the accessing computer are called “applets.” 
Java programs Which are executed by the site server When 
the site is accessed by another computer are called “servlets” 
or more generically, “server side programs.” A specialiZed 
programming language Which operates exclusively With 
scripts interpreted by server side programs may be referred 
to as a “server side scripting language.” 

CGI and other dynamically enabled servers can alloW 
dynamic pages to access date or time information, Weather 
information, ?les With pricing or inventory data or other Web 
pages. They may also alloW access to databases stored on the 
same server or at another location on the Internet or a local 

netWork. This capability greatly enhances the utility of Web 
pages and alloWs access to databases containing huge quan 
tities of information. 

SUMMARY AND OBJECTS OF THE 
INVENTION 

The present invention is a server side scripting language 
and programming tool designed to simplify programming 
for Web pages using databases or other dynamic informa 
tion. The present invention is implemented by adding inven 
tive script to a normal text-based document, such as an 
HTML document, a spreadsheet, a Word processing docu 
ment or any other text-based document Which can bene?t 
from a dynamic document architecture. The document is 
subsequently processed by the interpreter of the present 
invention to access database or other information When the 
document is requested by a broWser or at some other time or 
interval speci?ed by the programmer. 
When a broWser requests a document enhanced by the 

present invention, the interpreter processes the document by 
scanning for the inventive script commands. When a script 
command is encountered, the interpreter executes the script 
command, typically by retrieving or processing database 
information, returns the result to the Web page and strips the 
executable script command from the resulting “pure-format” 



US 6,470,349 B1 
3 

document. Once all executable script commands have been 
executed and stripped, the resulting document is in a “pure 
format” form. In the case of a typical Web page, the 
“pure-format” form Would be a pure HTML document 
containing no extraneous tags or commands. This “pure 
format” document is, then, sent by the server to the client 
computer Whose broWser initiated the document request. 
Due to the text-based format of the present invention, the 

novel script commands may be added, deleted or edited from 
a typical HTML or Web page editor or from a Word 
processor or text editor. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In order that the manner in Which the above-recited and 
other advantages and objects of the invention are obtained, 
a more particular description of the invention brie?y 
depicted above Will be rendered by reference to a speci?c 
embodiment thereof Which is illustrated in the appended 
draWings. With the understanding that these draWings depict 
only a typical embodiment of the invention and are not 
therefore to be considered to be limiting of its scope, the 
invention Will be described and explained With additional 
speci?city and detail through the use of the accompanying 
draWings in Which: 

FIG. 1 is a computer hardWare diagram of prior art 
computer as used in the implementation of a preferred 
embodiment of the present invention. 

FIG. 2 is computer hardWare diagram shoWing the inter 
connection of prior art client and server hardWare used to 
implement a preferred embodiment of the present invention. 

FIG. 3 is a How chart shoWing a dynamic document 
access process of a preferred embodiment of the present 
invention Wherein a caching process is used to speed per 
formance When a client accesses a dynamic document. 

FIG. 4 is a data How chart shoWing data requests and ?le 
transfer betWeen components of a preferred embodiment of 
the present invention. 

FIG. 5 is a How chart depicting the process Whereby the 
inventive script of the preferred embodiment of the present 
invention is loaded, parsed, interpreted and executed and 
sent to the client. 

FIG. 6 is a How chart shoWing details of the script parsing 
process. 

FIG. 7 is a How chart shoWing details of statement 
handling or interpreting. 

FIG. 8 is a How chart shoWing the process of interpreting 
expressions and tokens. 

FIG. 9 is a How chart shoWing hoW a caching process of 
the present invention is implemented. 

FIG. 10 is a How chart shoWing the function of TARGET 
and SOURCE commands in script execution. 

FIG. 11 illustrates the components of an inventive script 
command as used in a HTML document. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

The ?gures listed above are expressly incorporated as part 
of this detailed description. 

It Will be readily understood that the components of the 
present invention, as generally described and illustrated in 
the Figures herein, could be arranged and designed in a Wide 
variety of different con?gurations. Thus, the folloWing more 
detailed description of the embodiments of the system and 
apparatus of the present invention, as represented in FIGS. 

10 

15 

25 

35 

45 

55 

65 

4 
1 through 11, is not intended to limit the scope of the 
invention, as claimed, but it is merely representative of the 
presently preferred embodiments of the invention. 

The presently preferred embodiments of the invention 
Will be best understood by reference to the draWings, 
Wherein like parts are designated by like numerals through 
out. 

The preferred embodiment of the present invention is a 
server side scripting language and programming tool Which 
greatly simpli?es programming of many types of Web pages 
including Web database applications. 
The ?rst step in using the preferred embodiment of the 

present invention is to create an initial HTML document 
With the desired structure, layout and format de?ned by 
HTML code. After the initial HTML document is complete, 
the inventive commands of the scripting language of the 
preferred embodiment of the present invention are added to 
the initial HTML document to transform the initial HTML 
document into a mixed-format scripted document. This 
mixed-format scripted document contains the HTML code 
of the initial HTML document combined With the inventive 
script commands of the preferred embodiment of the present 
invention. These inventive script commands, Which are 
input by a programmer, contain commands Which add 
functionality to the Web page being created. Some of these 
commands may implement procedures Which are executed 
When the resulting Web page is accessed thereby creating a 
dynamic Web page. 
The currently preferred embodiment of the present inven 

tion utiliZes a Java servlet to interpret the novel script 
commands. Accordingly, the server must support servlets for 
this embodiment. Servlets may be supported natively or 
through the use of plug-in programs Which are common in 
the industry. The majority of these plug-in programs require 
that a version of Java be installed on the server. The Java 
Runtime Environment (JRE) or the Java Development Kit 
(JDK) may be installed on the server to enable servlet 
support. The Java environment also provides compatibility 
With virtually all established operating systems in use today. 

The presently preferred embodiment of the present inven 
tion is entirely contained Within one or more ?les stored in 
a standard ?le system thereby eliminating the need for a 
bulky, cumbersome database for program operation and 
functionality. This structure can improve performance and 
eliminate the need for licensing of third party database 
technology. 

This implementation may be quickly and easily employed 
for many applications, hoWever, if more speed is required or 
if speed takes precedence over ease of implementation, 
another embodiment may be used Which employs a server 
add-on using the Common GateWay Interface (CGI) stan 
dard or a server plug-in using the Internet Server Application 
Programming Interface—Dynamic Load Library (ISAPI— 
DLL) standard. 
When the presently preferred embodiment of the present 

invention is used to provide database connectivity to Web 
pages or other documents, a Java Database Connectivity 
(JDBC) or Open Database Connectivity (ODBC) driver is 
utiliZed to communicate With the database. Currently, JDBC 
is the preferred driver as it provides better performance With 
the preferred softWare embodiment. 
A preferred embodiment of the present invention gener 

ally utiliZes computers in a netWork environment. These 
computers, as basically illustrated in FIG. 1 may be 
mainframes, mini-computers, micro-computers or other 
variations, hoWever, the most commonly used variations 



US 6,470,349 B1 
5 

Will employ a central processing unit (CPU) 12, With RAM 
and/or ROM memory 2, a display device 14 such as a 
cathode ray tube (CRT), one or more input/output processors 
4, a hard drive 6 or other mass storage device, a pointing 
device such as a keyboard 10 and various other peripherals 
or other devices. 

A simple networking environment is illustrated in FIG. 2 
Where one or more client computers 16 is connected to a 
computer netWork 18. This computer netWork 18 may be a 
localiZed netWork or intranet or may utiliZe a Wide-area 
netWork structure or the Internet to communicate With a 
server 20. Server 20 may communicate With a database 
engine 22 Which can be physically located on the server 
hardWare itself or elseWhere. In some embodiments, server 
20 may communicate directly With database engine 22 or 
may employ the netWork or Internet communications capa 
bility to access the database engine. In a preferred embodi 
ment of the present invention, as shoWn in FIG. 3, a client 
computer running Web broWser softWare 32 is connected to 
the Internet or an intranet 34. The client Web broWser 
initiates a request for a speci?c Web page represented by a 
URL address. The request is sent over the Internet or intranet 
34 to the Web server 36 Where the URL is located. The Web 
server 36 ?nds the document associated With the requested 
URL and, in a preferred embodiment, checks the ?le exten 
sion of the document Which indicates Whether inventive 
script commands of the present invention are contained 
therein. If the inventive script commands are not present in 
the document, the document is immediately sent to the client 
Web broWser in its current form. 

If the inventive script commands are present in the 
document, the document is sent to the interpreter 38 of the 
present invention. At this point, the request interpreter 38 
checks to see if the script has already been loaded and parsed 
making it ready for execution. This may have taken place 
during a prior request for the Web page. If so, the script Will 
be held in a RAM cache or otherWise stored in an executable 
form 40 and Will be immediately executed 46 When the page 
is requested. If the ?le has not been previously accessed, the 
script Will have to be loaded 42 and parsed 44 before 
execution 46. 

The data How characteristics of the preferred embodiment 
of the present invention is shoWn in FIG. 4 Where a client 
broWser 32 is again shoWn making a request over the 
Internet or an intranet 34 for a speci?c document. The server 
36 receives the request and, When the ?le extension indicates 
that inventive script commands are not present in the 
document, accesses the ?le system 50 to retrieve the 
requested document and deliver it to the requesting broWser 
32. When the inventive script commands of the present 
invention are present in the document, the request is passed 
to the novel script interpreter 38. The script interpreter 38 
interprets the inventive script commands in the document 
and, depending on the nature of the script commands, may 
access ?les in the ?le system 50, access one or more 
databases 52 or execute one or more programmatic objects 
54. A detailed list of the inventive script commands of the 
present invention and the actions they invoke is given beloW. 

The script processing method of the preferred embodi 
ment of the present invention begins by loading the script 
?le 60. In the Web application of the preferred embodiment, 
this ?le Will be an HTML document that contains, in 
addition to text and HTML code, novel script commands. 
HoWever, in other embodiments of the present invention, the 
novel script commands may be used to enhance other types 
of ?les. By Way of example and not by limitation, these ?les 
may be spreadsheet ?les, Word processor ?les or graphics 

15 

25 

35 

45 

55 

65 

6 
?les or combinations of ?le formats such as graphics or other 
?les embedded in HTML documents. A script ?le may be 
any ?le Which contains the novel script commands of the 
present invention. 

Once the script ?le is loaded, the interpreter of the 
preferred embodiment of the present invention parses the 
script 62 thereby creating sequentially ordered tokens for 
each element of the ?le. These elements comprise HTML 
tags, text, inventive script commands of the present 
invention, and expressions used by these inventive com 
mands such as database or ?le locations. After the ?le 
elements have been converted to executable tokens they are 
assembled into an executable token sequence Which Will be 
executed immediately and cached so it may be re-executed 
each time the page is requested in the future. Execution of 
the token sequence 64 creates a neW “pure-format” or 
“pure-HTML” document that is sent to the client broWser 
that requested the document 32. Accordingly, a dynamic 
document is created as the page is updated or recreated each 
time the page is requested. 
When a script ?le is initially loaded 70, the elements of 

the ?le are parsed by a series of parsers Which recogniZe and 
process individual types of commands and their related 
expressions. The HTML parser 72 distinguishes betWeen 
HTML tags and inventive script commands in the ?le and 
creates tokens for contiguous HTML blocks. The Command 
parser 74 recogniZes the inventive script commands of the 
present invention and creates tokens for each of these 
commands. When an inventive script command contains one 
or more expressions, the expression portion of the inventive 
script command is sent to the expression parser 76 Which 
creates an expression tree for the expression Which is passed 
back to the command parser 74 and incorporated into the 
token for the inventive script command. 
The statement interpreting process occurs at the time the 

token ?le is executed 80. This occurs each time a statement 
is encountered While executing a script. At this point, the 
statement interpreter 82 determines the type of statement 
and sends the statement to the interpreter appropriate for that 
statement. 

When a scan statement is encountered by the statement 
interpreter, the statement is sent to the Scan interpreter 84 
Which interprets the statement by extracting designated 
Words from strings as indicated in the statement. 
When a directory statement is encountered by the state 

ment interpreter, the statement is sent to the Dir interpreter 
86 Which Will interpret the statement and enumerate the ?les 
Within a directory. 

The statement interpreter Will, likeWise, ?nd array state 
ments and send them to the Array interpreter 89 Which Will 
interpret those statements by iterating through the desig 
nated arrays. 
SQL and database related commands are sent by the 

statement interpreter 82 to the SQL interpreter 87 Which Will 
directly interpret a database sWitching modi?er. Other data 
base commands or the remainder of a statement containing 
a database sWitching command Will be forWarded by the 
SQL interpreter 87 to a Database SQL interpreter 88 Which 
is external to the preferred embodiment of the present 
invention and typically resides in a database driver or engine 
program. 

During the script execution process, as detailed in FIG. 8, 
each command token is processed sequentially. If expression 
trees are attached to command tokens, they are also pro 
cessed in the order encountered. Expression trees 92 folloW 
an expression hierarchy or tree structure. When the result of 



US 6,470,349 B1 
7 

an expression is dependent upon another, the script execu 
tion process of the preferred embodiment of the present 
invention executes the expressions in order 94 starting With 
the outermost expressions on the expression tree. The 
expression results are, then, inserted into the expressions of 
the next order until all expressions have been processed and 
the main parameter statement is ready to execute 96. This 
statement is subsequently executed 98 by the statement 
interpreter 82 to the appropriate interpreter Which executes 
the command token 100 thereby returning a result Which is 
sent to an output buffer 102 Where it is combined With the 
results of other tokens to form the resulting dynamic Web 
page Which is sent to the client 104. 

In order to increase performance, the preferred embodi 
ment of the present invention utiliZes caching techniques. A 
RAM cache technique is used to speed response time When 
a dynamic document is requested by a client. A ?le cache 
may also be used to increase performance. 
When an inventive script document is requested 110, as 

shoWn in FIG. 9, the server checks to see if the script is 
stored in RAM cache 112, if so, the script is immediately 
executed 114 and the resulting HTML document is sent to 
the client broWser 116. If the script is not stored in RAM 
Cache, the script ?le is loaded 118, and parsed 120 before 
execution 114 and, ?nally, sent to the client broWser 116. 
A programmer may use the Source command or Target 

command to control program execution for ?le caching and 
to relate script ?les. Using the inventive scripting language 
of the present invention, a script ?le may contain script 
commands Which, When executed, create a neW script ?le. 
The ?le from Which the neW ?le Was created is referred to 
as a source ?le. The Source command initiates a comparison 
betWeen the current ?le and an associated source ?le from 
Which the current ?le Was created. When a Source command 
is encountered during execution, the creation date of the 
current ?le is compared With the creation date of the 
associated source ?le. The ?le With the most recent date, the 
neWer ?le, is selected for execution. 
When a Target command is encountered during script 

execution, the output of the execution process is Written to 
a target ?le Which may be another script ?le Which can be 
subsequently executed. 

The operation of the Target and Source commands may be 
more fully understood by reference to FIG. 10. During the 
execution of a script ?le 122, if a source command is 
encountered 124, a comparison is made to determine 
Whether the source or current ?le is neWer 134. If the source 

?le is neWer, the execution process sWitches to the source 
?le 136 and executes the source ?le 122. If the current ?le 
is neWer, execution of the current ?le proceeds. The Source 
command can, therefore, be used to ensure that the most 
current version of a ?le is used. 

If a target command is not encountered 126 during 
execution of a script ?le, the output of the script execution 
Will be sent to a client broWser 132 or other source Which 
initiated the scripted document request. When a Target 
command is encountered the output of the script ?le execu 
tion process Will be Written to a target ?le rather than being 
sent to the client 128. The execution process Will then sWitch 
to the target script ?le and execute the target ?le. The Target 
command alloWs intermediate ?les, Which may be more 
easily edited, to be created and programmed. It also alloWs 
?le execution to become an iterative process and alloWs for 
the dynamic document to be cached in a ?le. 

In FIG. 11, the syntax of the scripting language of the 
preferred embodiment of the present invention is illustrated. 

10 

20 

25 

30 

35 

40 

45 

55 

60 

65 

8 
An example line of code is shoWn 140 With various tags and 
commands therein. Within the code are some HTML tags 
142 Which Will be differentiated and processed by the HTML 
parser 72. Script command syntax 144 is parsed and pro 
cessed by the command parser 74. Database sWitching 
syntax 146 Within the code line is parsed and sent to the SQL 
interpreter 87 for processing. When found in the code, 
expression syntax 148 is parsed and sent to the expression 
parser 76 for processing. When database access and manipu 
lation is performed, SQL syntax 150 Will be present. This 
Will be sent to the database SQL interpreter 88 for process 
mg. 

In order to more fully demonstrate the capabilities of the 
preferred embodiment of the present invention, the folloW 
ing list of program properties, commands and functions is 
presented along With an explanation of each. This listing is 
offered as an example of the inventive commands of the 
preferred embodiment of the present invention and is not to 
be construed as a limitation to the scope of the claims of this 
patent. 
0.1 Standards 
The format of this listing is as folloWs: syntax is in italics, 

and commands and functions are bolded Within paragraph 
descriptions. Also example scripts use Courier Font. 
0.2 Introduction 
The server-side scripting language and programming tool 

of the present invention is called BroWZ Script. Its purpose 
is to greatly simplify programming for many types of Web 
database applications. To use it, create normal HTML pages, 
then place special tags containing BroWZ Script commands 
in the pages. These tags are replaced dynamically With the 
result of the command execution When the script is 
requested by a broWser and executed by the server. Several 
of the commands execute SQL statements against a 
database, and others retrieve data from the resulting roWs 
and columns. BroWZ Script takes full advantage of the 
poWer of SQL and relies heavily on the resulting data. 
BroWZ Script also supports the retrieving of data from 

HTML page forms as Well as arguments passed after a 
question mark ‘?’ at the end of an Internet address or URL. 
BroWZ Script has extra features for ease of programming, 

such as alloWing you to use your favorite Web page designer 
and editor for adding and editing of your script tags. Some 
knoWledge of HTML is needed to take advantage of this 
feature. 
1.0 Installation 
1.1 Server 
BroWZ Script is implemented as a Java servlet. So, your 

Web server must support servlets, either natively or by use 
of a server plug-in or CGI. If your server does not have 
built-in servlet support you must install one of several server 
plug-ins. Most of these servlet add-ons are free or inexpen 
sive. Most of these plug-ins, hoWever, Will also require that 
you have a version of Java installed on your server. This can 
be freely doWnloaded from Sun’s Java Web site, WWW.j ava 
soft.com. You’ll need to doWnload and install the JRE (Java 
Runtime Environment) or the JDK (Java Development Kit). 
BroWZ Script is implemented in Java therefore you can 

run it on any operating system platform for Which the Java 
runtime is available, Which includes just about all of the 
modern ones. 

1.2 Files 
BroWZ Script is entirely contained Within the BZScript.j ar 

?le. You’ll need to con?gure your server (or the server 
plug-in) by adding this ?le to its Java CLASSPATH. Some 
servers may Work if you simply copy this ?le into the 
Servlets folder. Check With your server or plug-in for proper 
installation of servlets. 



US 6,470,349 B1 
9 

1.3 Database 
BroWZ Script requires a JDBC (Java DataBase 

Connectivity) or ODBC (Open DataBase Connectivity) 
driver to be able to communicate With your database. It is 
usually fastest if you have a J DBC driver for your particular 
database, but an ODBC driver Will Work ?ne if you do not. 
If you are using JDBC you’ll need to knoW the JDBC URL 
to your database. Look in your driver’s user manual for the 
proper URL to use for each of your databases. If you choose 
to use ODBC, you must set up a DSN (Data Source Name) 
for each database you Wish to communicate With. The JDBC 
URL you Will use Will be as folloWs: “odbczyouridsn”. 
2.0 Properties Files 

These ?les give information to BroWZ Script concerning 
all of the ?les in a directory and the databases With Which 
they plan to connect. For every folder in Which BroWZ script 
is going to process ?les there must be a properties ?le called 
“BZScript.properties”. This is a plain text ?le usually con 
taining four de?nitions, similar to the folloWing: 

driver=sun.jdbc.odbc.JdbcOdbcDriver 
database=odbc:MyDSN 
username=MyUser 
passWord=MyPassWord 
The driver parameter de?nes Which Java driver to load. In 

this case, We are loading the built-in ODBC driver. If you 
use another driver you Would place its class name here. 
Driver defaults to sun.jdbc.odbc.JdbcOdbcDriver. 

The database parameter de?nes the JDBC URL to the 
database. This is dependent on the driver you use and the 
database you are connecting to. Since We used the ODBC 
driver We speci?ed an ODBC URL containing the DSN. 

The username and passWord parameters are used When 
your database requires a user name and passWord to access 
the database. You may include a space character, if needed, 
Within the value, but do not surround it by quotation marks, 
as you might think. Also, do not put spaces or tabs on either 
side of the equal sign ‘=’. The name, the equals sign, and the 
value must be run together With no White space. 
BroWZ script is not limited to only one database as 

described above. In order to support connections With more 
than one database the contents of the BZScript.properties 
?le has to be changed a little. Let’s start With an example and 
then explain the differences: 

databases=customers, ?nance 
customers.driver=sun.jdbc.odbc.JdbcOdbcDriver 
customers.database=odbc:CLIENTS 

?nance.driver=sun.jdbc.odbc.JdbcodbcDriver 
?nance.database=odbc:FINAN CE 
?nance.username=MyUser 
?nance.passWord=MyPassWord 
First notice the databases parameter. This is Where you list 

all of the databases With Which you Wish to connect. All 
other parameters have the database name and a period before 
them, specifying the database to Which they belong. Unless 
otherWise speci?ed, BroWZ Scripts assume a connection 
With only one database. This default database Will alWays be 
the ?rst one listed in the databases parameter. To commu 
nicate With another database the programmer Will have to 
specify the connection change Within each script needing it. 
This can be done With the db command or With the db 
modi?er in any command using SQL. 

There are other variables alloWed in this ?le that Will 
enable verbose debugging features of BroWZ Script. To 
enable these features you should set the object and either the 
debug or trace variable to 1. The debug variable is less 

10 

15 

20 

25 

30 

35 

40 

45 

55 

60 

65 

10 
verbose, but more useful. The trace variable is only useful if 
you have the BroWZ Script source code. It Will shoW you 
every function Which Was called. The recent debug/trace log, 
if any, Will be attached to the bottom of the each script 
output. This log is also appended to a ?le called BZScript 
.log on the server. This log ?le is cleared each time BroWZ 
Script is restarted. The example beloW turns on all debug and 
trace features in BroWZ Script. It is strongly recommend, 
hoWever, that you never use all of these together. open.debug 
and var.debug are usually the most useful. 

open.debug=1 # Logs all statement executions 
open.trace=1 # Logs all internal statement related func 

tion calls 
var.debug=1 # Logs all input and temporary variable 

accesses 

var.trace=1 # Logs all internal var related functions calls 
prop.debug=1 # Logs all property variable accesses 
prop.trace=1 # Logs all internal property related function 

calls 
session.debug=1 # Logs all session variable accesses 
session.trace=1 # Logs all internal session related func 

tion calls 
One last thing, the properties ?le is not limited to just the 

variables detailed above. You may place many other param 
eters in this ?le, and retrieve them from any script in the 
same directory, using the prop object. See section 3.5.3 for 
more information on prop object. 
3.0 Language 

This section details the language of BroWZ Script. To 
begin With, you need to knoW that BroWZ Script ?les are 
usually just normal HTML ?les, containing one or more 
BroWZ Script commands. These commands may be placed 
anyWhere Within the HTML document, but it is usually Wise 
to place them in such a Way that you do not break any of the 
HTML syntax rules. This recommendation becomes a 
requirement if you use an HTML page editor, such as 
Microsoft FrontPage, Adobe PageMill, or Netscape Com 
poser to add or edit your BroWZ Script ?les. 
BroWZ Script is designed to be case insensitive, but this 

has not been thoroughly tested yet. Only fully loWer case 
commands, functions, objects, and variables have been 
tested. 
3.1 Syntax 

‘{’ [‘ ! ’ <html tag>] <command> [‘#’ <name>] 
[<parameters>] ‘]>’ 

3.1.1 Brace Delimiters 
Commands are delimited by curly brace characters, ‘{’ 

and ‘}’, at the beginning and end of each. When you’re 
debugging, alWays make sure that these braces appear at the 
beginning and end of each command. 

Note: In BroWZ Script 1.0 the tilde " character Was used 
to delimit BroWZ Script commands. These Were harder to 
read and match up When lots of commands Were placed close 
together, so the change Was made to curly braces. HoWever, 
the tilde characters are still supported in 1.2, and you may 
see some BroWZ Script ?les using them. But, these charac 
ters Will not be supported in future versions of BroWZ Script 
so it is strongly recommended that you use the preferred 
curly braces, and begin ?xing all 1.0 BroWZ Script ?les. 
3.1.2 HTML Tag Stripping 

FolloWing the open brace is an optional exclamation 
point, ‘V, and an html tag name. BroWZ Script alWays strips 
the entire command from the output. HoWever, in order to 
maintain the normal rules of HTML sometimes you have to 
place commands Within a paragraph or table cell. There are 
HTML tags that get added to the document by the editor 



US 6,470,349 B1 
11 

which surround the BrowZ Script command. However, you 
usually do not want these extraneous tags to appear in the 
output. You can specify that you wish them striped by adding 
the exclamation point, ‘V, and the name of tag you wish to 
be stripped. Sometimes there is more than one tag that 
surrounds your command. An example of this is when you 
place a command in a cell of a table. If you want the entire 
row removed, rather than just the cell you are in, you would 
use ‘!tr’ as the tag to strip. All tags and text including the one 
you specify the BrowZ Script command and those following 
the command until the trailing tag will be stripped. 

In order for this to work properly you must specify the tag 
using the same case as the HTML tag. HTML is not case 
sensitive but BrowZ Script is in this instance. Also, there 
must be a matching trailing tag. Some page editors do not 
add the trailing tag in some instances but this is required for 
BrowZ Script stripping, and it follows that the case of the 
trailing tag must match also. The best and sometimes only 
way to use this feature properly is to switch to HTML mode 
temporarily to see what the ?rst tag you wish to strip is and 
to note its case. 

Here is an example to illustrate how this stripping works: 

<p>{!p while select * from MyTable}</p> 
In this example the matching paragraph tags as well as the 

BrowZ Script command will be stripped from the output. 
Since while commands output no text by themselves the 
output will contain no evidence that the command was even 
there. Here is another example: 

<tr><td><p>{!tr while select * from PROJECTS where 
PROJ=‘My Project’}</p></td></tr> 

In this more complicated example the programmer wished 
to completely remove the rows containing the if and end 
commands, not just the commands themselves. Also, by 
using the while command BrowZ Script will repeat every 
thing between the while and end commands for each record 
found in the database, which in effect adds a row for each. 
The output of this script would look something like this: 

<tr><td>Prepare the packaging</td></tr> 

</table> 
If the programmer had not put in both ‘!tr’ options the 

output would have looked like the following, which is 
de?nitely not correct HTML: 

10 

15 

25 

45 

55 

65 

12 
Of course you can avoid this entire problem by simply 

using a text editor rather than an HTML editor, and disregard 
the rules of HTML. In this case you would have written the 
following simpler script to produce the same output: 

{while select * from PROJECTS where PROJ=‘My 
Project’} 

Don’t try to load this script into an editor which knows 
HTML, because it will de?nitely complain, or worse, 
attempt to correct the problem. The command itself is not 
optional. Also commands are not case sensitive. Each com 
mand is itemiZed in section 3.2. 
3.1.3 Name 
You may optionally name any statement using a single 

word or number. This is used when you need to refer to the 
results of a previous SOL command, after executing another, 
but is not needed to refer to the results of the current SOL 
command. See the row object for more information. 

Here’s an example: 

<p>List of items found:</p> 
<p>{!p while #tb select * from TABLE}</p> 
<p>{!p if select * from ANOTHER where AiSTATE=‘ 

In this example we’re printing the TiNAME ?eld from 
TABLE, but only if the value of that record’s TiSTATE 
?eld is found somewhere in the AiSTATE ?eld of the 
ANOTHER table. If we didn’t use the #tb name, we would 
only have been able to print ?elds from the ANOTHER 
table, using the row object. See section 3.5.4 for an expla 
nation of the row object. We could have accomplished the 
same thing by storing the TiNAME ?eld into a temporary 
variable, using the var object, so we could access it from 
within the if command. See section 3.5.6 for an explanation 
of the var object. 

Note also the use of the row object within the parameter 
of the if. Access to ?elds of the row object does not change 
until the closing brace of the next command containing a 
statement. This means that row continues to refer to the 
current record of the while command until the closing brace 
of the if command, at which point it changes to the row 
returned from the result of the if. Row again switches back 
to the row from the while command after the ?rst end, which 
ends the if and closes the statement’s results. See section 
3.2.5 for more details on the end command. 

3.1.4 Parameters 

The parameters to a command vary depending on the 
command used. Usually, the parameters are a statement, 
such as SOL. Note, one or more expressions may be used 
anywhere within the parameters section. See section 3.4 for 
information on how to add and use expressions of objects 
and functions. 

3.1.5 Special Characters and Sequences 
Since HTML empowers certain characters with special 

meanings BrowZ Script has to be ?exible in its interpreta 
tion and use of these. If your HTML editor inserts a &It; 
instead of a less-than character ‘<’ into your SQL statement, 
BrowZ Script will properly convert it to a less-than character 
‘<’ before attempting to execute it. The following are all of 
the automatic translations made by BrowZ Script. 



US 6,470,349 B1 
13 

A percent sign ‘%’ followed by tWo hex digits Will be 
converted into the corresponding ASCII character. 

These Will be converted into less than ‘<’, greater than 
‘>’, space ‘ ’, and ampersand ‘&’, respectively. 

When you need BroWZ Script to ignore any special 
meaning of a character in your scripts simply precede the 
character by a backslash ‘\’. 

<br>, Carriage Return and Line Feed 
Carriage returns and/or line feeds Within commands Will 

be converted to a space. This is because HTML editors insert 
spaces in arbitrary positions Within long lines. HoWever, if 
you really do Want carriage returns Within a command, such 
as Within quoted text, use an HTML line break, <br>. All 
<br> tags founds Within commands Will get converted to a 
carriage return and line feed. 
3.2 Commands 

Here is a list of commands in BroWZ Script, grouped by 
relationships. 

FloW Control Inter-?le Assignment File 

Do-end Insert Set Copy 
If-else-end Redirect Unset 
While-else-end Target Default 
Db Source 

3.2.1 Do Command 

Syntax: do <statenment>, [end] 
The do command executes a statement unconditionally. 

Any statement may be executed, including SQL, scan, dir, 
and array statements. See section 3.3 for more information 
on statements. The do command produces no direct output 
A matching end command, Which should folloW the do 
command someWhere in the script, closes the statement. It is 
not necessarily required to have a matching end command 
because all open statements Will be automatically closed 
When a script completes, but it is better to explicitly end 
(close) each statement When you are done With it. The end 
command is required if you need to access results from an 
outer statement, if or While command When you nest more 
than one. Here is an example of the use of the do command. 
<p>{!p do insert into MyTable (TiNAME, TiPHONE, 
TiDATE) values ([quote(var.name)], [quote(var.phone)], 

<p>A neW record Was added to the database.</p> 
Note: mn BroWZ Script 1.1 and previous this command 

Was named sql. In 1.2 sql is still alloWed but is deprecated 
in favor of do, because statements are no longer limited to 
just SQL any more. Please use do instead of sql and ?x your 
old scripts, because a future version of BroWZ Script Will not 
support the sql command. 
3.2.2 If Command 

Syntax: if [<statement>| ‘[’expression‘]’|], [else], end 
The if command executes a statement unconditionally. It 

also controls the output and execution of HTML and com 
mands Which folloW it. If the statement or expression results 
in a true condition all html and commands after the if until 
the matching else and/or end command are executed and 
output. A matching else command is not required, but if 
used, the HTML and commands betWeen the else and the 
end are executed and output if the condition is false. 

The condition is based on the results of the statement or 
the value of the expression. The condition Will be true if a 

10 

15 

25 

35 

45 

55 

65 

14 
statement results in 1 or more roWs, and false if it results in 
no roWs. The condition Will be true if an SQL insert, delete, 
or update statement results in 1 or more roWs being modi?ed 
and false if no roWs Were modi?ed. 

If you specify an expression as the parameter to if then the 
condition is based on the results of the expression. If the 
expression results in a number, then 0 or a negative number 
mean false, and 1 or greater mean true. If the expression 
results in a string then a null or Zero length string mean false, 
and a string containing 1 or more characters mean true, 
including the Word “false” so be careful. If the expression 
results in any other object, then a null means false, and any 
object means true. Here is an example of the use of an if 
command. 
<p>{ !p if update MyTable set TiNAME=[quote(var.name)] 

<p>Record # {[var.id]} has been saved.</p> 

<p>Error: Record #{[var.id]} does not exist.</p> 

If you do not include a parameter of any kind then the 
condition is based on the previous statement executed, such 
as a previous do, if, or While command, though the most 
common of these is the do command. This may be useful 
When you Wish to execute a command previous to Where you 
Want to conditionally execute other commands or HTML. 
3.2.3 While Command 

Syntax: While [<statement>| ‘[’expression ‘]’|], [else], end 
The While command is similar to the if command, except 

that it repeats in a loop until the condition becomes false. It 
also increments the roW in the results of the statement When 
a statement returns more than one roW. Everything after the 
While command to the end or else Will be output or executed 
for each roW returned in the result. If there is an else and the 
statement results in an empty table or no roWs affected then 
everything after the else command to the end command is 
output once, the same as an if command. If an expression is 
used as the only parameter then the While Will continue as 
long expression evaluates to true. See the if command for 
details on hoW objects are evaluated to a true or false. Here 
is an example of the use of the While command. 
<p>{!p While select * from MyTable Where TiNAME like 

<p>Name: {[roW.TiNAME]}, Phone: {[roWTi 

<p>No names Were found containing ‘{[var.name]}’ .</p> 

If no statement or expression is included then the While 
Will be executed based on the result of the previous SQL 
executed in the ?le. This is useful, for instance, When you 
Want to execute part of your script a single time, if any roWs 
are returned, and part of your script repeatedly, for each roW 
returned. BeloW is an example of this: 
<p>{!p if select * from MyTable Where TiNAME like 

‘%[var.name]’} Here is the select for both the if and While 
commands.</p> 

<tr><td Width=2>{!tr While} Notice the lack of a state 



US 6,470,349 B1 
15 

<p>{!p else} Matches the if.</p> 
<p>No names Were found containing ‘{[var.name]}’ .</p> 
<p>{!p end} This ends the if.</p> 

3.2.4 Else Command 

Syntax: if else end 
Or: While else end 
The else command is used only in conjunction With the if 

or While commands. It is alWays optional and speci?es 
Where to start outputting if the condition of the if or While 
is initially false. Any parameters added to this command are 
ignored so the parameter may be used as a comment. 
3.2.5 End Command 

Syntax: do end 
Or: if else end 

Or: While else end 
The end command is used only in conjunction With the do, 

if, or While commands. For the all of these commands end 
speci?es the end of the conditional or repeated output. It 
closes the statement, if any Were opened in the matching do, 
if, or While command. In the case of the While command, it 
closes the statement once the last roW has been retrieved and 
the last loop has completed. End is recommended, but not 
necessarily required, for use With the do command, because 
all statements are closed When the script completes. 
HoWever, if you nest more than one do, if or While you Will 
be required to have an end statement before you can access 
results from the outer command. Any parameters added to 
this command are ignored so the parameter may be used as 
a comment. 

3.2.6 Db Command 

Syntax: db <database> 
The db command sWitches the current database to the one 

you specify by name. This name must match the name you 
used in the properties ?le. All folloWing SQL statements Will 
be executed With the neW database. Individual SQL state 
ments may override this by specifying a database explicitly. 
See section 3.3.4 for more information on specifying a 
database from Within an SQL statement. 

Note: if you used the single database format for the 
properties ?le then the db command Will not Work and 
should not be used. 
3.2.7 Insert Command 

Syntax: insert <?le path> 
The insert command loads and runs another script. All 

objects, variables and their values are available to the 
inserted script. The remainder of the current script is also run 
after the inserted ?le executes, except in the case of redirect. 
See section 3.2.8 for more information on redirect. Any 
variables that Were modi?ed in the inserted script Will keep 
their modi?ed values after the insert completes and the 
current script continues. Insert is someWhat similar to a 
function or subroutine call in other languages. Inserted 
scripts may also insert other scripts, to as many levels as you 
desire. This command is useful When you need to execute 
and/or output the same or similar things from more than one 
script. 
3.2.8 Redirect Command 

Syntax: redirect <?le path> 
The redirect command loads and runs a script from 

another ?le and aborts the current script. All objects, vari 
ables and their values are available to the redirected script. 
Any output from the current script already created is dis 
carded and not sent to the client. If the current script had 
been executed via an insert from yet another script, that 
insert is aborted also. In other Words, the inserting script Will 

10 

15 

25 

35 

45 

55 

65 

16 
not continue if a redirect occurs in the inserted script. In fact, 
redirect aborts all multiple levels of insert. There is no 
problem, hoWever, for a redirected script to redirect or insert 
other scripts, as you so desire. 
3.2.9 Target Command 

The target command tells the execution engine to create 
a ?le and Write the output of the current script to it, once the 
script completes. The output is not sent to client, but once 
the neW script ?le is Written this neW script is then executed 
itself, and any output it generates Will be sent to the client. 

It is possible, and sometimes very useful, for the gener 
ated ?le to also, contain BroWZ Script commands. These 
Will execute the same as if the ?le had been requested 
directly by the client. One very nice use for the target 
command is in the caching of dynamic pages, Which change 
much less often than they are requested. In the case of 
caches, it is also useful to generate a source command to be 
placed in your target script referring back to the source 
script. This ensures that the target stays synchroniZed With 
the source. See section 3.2.10 for more information on the 
source command. 

The parameter of this command is either a ?le path or a 
dot extension. The ?le path may be absolute or relative to the 
currently executing scripts folder. If you use a dot extension 
parameter then the neW script Will have the same name as the 
current one, but With the extension changed to What you 
specify. 
The target command may be placed anyWhere Within the 

currently executing script. If it is placed Within a conditional 
part of your script, such as betWeen if, else, or end then it 
Will only take effect if the condition alloWs the target 
command to actually execute. If it is skipped, for Whatever 
reason, the current output Will be sent to the requesting client 
and no ?le Will be Written, just as if the target command Was 
not there. 

I have not tested this yet, but it should be possible to 
create a one-shot script, a script that overWrites itself. When 
the script executes it changes itself, permanently. A good 
application of a one-shot script is left as an exercise to the 
reader. 
3.2.10 Source Command 

The source command tells the execution engine that the 
current script Was created by another script. BroWZ Script 
Will check the dates of the tWo ?les. If the current script is 
older than the source script then the current script is aborted 
and the source script is executed instead. Its is mainly useful 
When the script contains a target command. It alloWs the 
target script to refer to its source to maintain synchroniZation 
betWeen the tWo ?les. See section 3.2.9 for more information 
on the target command. 
The parameter of this command is either a ?le path or a 

dot extension. The ?le path may be absolute or relative to the 
currently executing scripts folder. If you use a dot extension 
parameter then the source script Will have the same name as 
the current one, but With the extension as you speci?ed. 
3.2.11 Set Command 
The set command Will set the value of a variable. Once 

set, a variable holds and returns its value for the rest of the 
script, or until the script sets it again. Input and temporary 
variables are accessed through the var object. Currently, you 
may only set variables of the session or var objects. If you 
do not specify Which object the member belongs to, the var 
object is assumed. 

set <[object.]variable> [=] ‘[’ <expression> ‘]’ 
This variation sets a variable With the value returned by 

the expression. The brackets are required and signal BroWZ 
Script to not execute a statement. 












