US006470349B1

a2 United States Patent (10) Patent No.: US 6,470,349 B1
Heninger et al. 5) Date of Patent: Oct. 22, 2002
(54) SERVER-SIDE SCRIPTING LANGUAGE AND 5,727,156 A 3/1998 Herr-Hoyman et al.
PROGRAMMING TOOL et e et e e ... 395/200.49
5,737,592 A 4/1998 Nguyen et al. 395/604
(75) Inventors: Troy Heninger, South Ogden, UT 27;46“13’;52 2 Z }ggg gu ‘1’: al. e %gﬁéi
. ,761, ookman et al.
Eggg Rama Rasmussen, Ogden, UT 5812134 A 9/1998 Pooser et al. woooo........ 345/356
5,890,170 A * 3/1999 Sidana
)) 5,898,835 A * 4/1999 Truong ...
(73) Assignee: Browz, Inc., Salt Lake City, UT (US) 5063952 A * 10/1999 Smith
.)) o . 5,987,523 A * 1171999 Hind et al.
(*) Notice: Subject to any disclaimer, the term of this 6073160 A * 6/2000 Grantham et al. 709/200
patent is extended or adjusted under 35 6,119,166 A * 9/2000 Bergman et al. 709,232
U.S.C. 154(b) by 0 days. 6,178,439 Bl * 1/2001 Feit ..ocovovveverveverrrenan. 709/204

* cited by examiner
(21) Appl. No.: 09/266,357

Primary Examiner—David Jung

(22) Filed: Mar. 11, 1999 (74) Anorney, Agent, or Firm—XKirton & McConkie,
(51) It CL7 oo GO6F 17/00 ~ Michael F. Krieger

(52) US.CL .. 707/102; 707/513; 717/143 57 ABSTRACT

(58) Field of Search 707/1-529; 709/100-322;

345/716-749; 717/143 Software loads script file and strips markup language tags.

This software can be located on a server. In order to prepare

(56) References Cited for operation, markup language pages are created. Then,
special tags containing script commands are placed in the

U.S. PATENT DOCUMENTS pages. These tags are replaced dynamically with the result of

5.530.852 A 6/1996 Meske. Jr. et al. 395/600 the command execution when the script is requested by a
5,537,586 A 7/1996 Amram et al. 395/600 browser and executed by the server.

5,708,825 A 1/1998 Sotomayor 395/762

5,708,826 A 1/1998 TIkeda et al.cc....... 395/762 1 Claim, 11 Drawing Sheets

142

—~

146 <p>.. .</p> 148
\ \

140 db clients [quote(var.text)]

<p>{!p while #n db clients select * from TABLE where NAME =
[quote(var.text)]}</p>

Select * from TABLE

, :
['p while #n...} where NAME =

144 150

U.S. Patent Oct. 22, 2002 Sheet 1 of 11 US 6,470,349 B1

A

RAM/ROM Memory <«—» Display \
4 14
4 CPU
\ 12
L 4
I/0 Processors
Hard Disk Mouse Keyboard
6 8

Figure 1

U.S. Patent Oct. 22, 2002 Sheet 2 of 11 US 6,470,349 B1

16\ /‘16

L blient Client

18
Database
/ 20 \
24
Server
22
™ vT
Database

Figure 2

U.S. Patent Oct. 22, 2002 Sheet 3 of 11 US 6,470,349 B1

_— Client Browser

32 l

_—1 Internet or Intranet

34 l

— Web Server

36 i

— Request Interpreter

yes

42 — Load Script File

l a

a4 — Parse Script Execute Script {

e

Send Results

to Client

Figure 3

U.S. Patent Oct. 22, 2002 Sheet 4 of 11 US 6,470,349 B1

Client Browser \

32
Internet or Intranet \

1 34
Server
RN

Novel Script Interpreter

T NN

File Programmatic
System Databases Objects
S
50 52 ~ /
54

Figure 4

U.S. Patent Oct. 22, 2002 Sheet 5 of 11 US 6,470,349 B1

— Load Script File
60

—1 Parse Script

c

—— Execute Token Sequence
64

— Client Browser

32

Figure 5

U.S. Patent Oct. 22, 2002 Sheet 6 of 11 US 6,470,349 B1

— HTML Parser

72 l

/ Command Parser

v

—1 Expression Parser

70

76

Figure 6

U.S. Patent Oct. 22, 2002 Sheet 7 of 11 US 6,470,349 B1

80\v s 82

LStatement Interpreter

Scan Interpreter \
7 P

84 Array Interpreter -\

89

K Dir Interpreter

86

\ 4

_—1 SQL Interpreter

A
Database SQL
Interpreter

88

87

Figure 7

U.S. Patent Oct. 22, 2002 Sheet 8 of 11 US 6,470,349 B1

T For each command token

90
s For each attached expression tree
] Walk the tree, executing in depth first
94 order

h 4

96 —1—_| Insert each expression tree result into
the parameter statement

Y
— Execute the resulting statement

98

A
Execute the command token,
— using the statement as the
parameter

100

\ 4
102 ™\ Insert the command result into the
output buffer

104

™\ Return the output buffer to the
client

Figure 8

U.S. Patent Oct. 22, 2002 Sheet 9 of 11 US 6,470,349 B1

/ Request for a Script

110 l / 118

2 —»{ Load Script File
112 no 120
yes /
' !
114 Execute Script «—— Parse Script

|

116
\ Result Return to
Client Browser

Figure 9

U.S. Patent

Oct. 22, 2002

Sheet 10 of 11

136

-

Switch to

122 \
—— > Execute Script
124

Source
command
entcountered?

source script

yes

/ 134

Is source

Y

ile newer?

126

Target
command
encountered

Save ouput as
target script

\ 4

Switch to

target script

/ 132

Return output
to client browser

yes

130

Figure 10

US 6,470,349 Bl

U.S. Patent Oct. 22, 2002 Sheet 11 of 11 US 6,470,349 B1

142

\

146 <p>...</p> 148
\ \

140 db clients [quote(var.text)]

<p>{!p while #n db clients select * from TABLE where NAME =
[quote(var.text)]}</p>

. Select * from TABLE
|
['p while #n...} where NAME =

144 / \ 150

Figure 11

US 6,470,349 B1

1

SERVER-SIDE SCRIPTING LANGUAGE AND
PROGRAMMING TOOL

BACKGROUND OF THE INVENTION

1. The Field of the Invention

The present invention relates generally to the field of
dynamic computer document creation and file serving. In
particular, the present invention relates to a scripting lan-
guage and method of use which provides for the use of
inventive script codes in a document formatted for an
independent application. The present invention is particu-
larly well suited for creating dynamic HTML documents
with database information using inventive scripting com-
mands.

2. The Relevant Technology

The Internet is a world-wide network of computers which
is now accessible to almost any potential user with a
computer and a means for network access. Hundreds of
Internet Service Providers (ISP’s) have emerged to provide
Internet access to millions of users who now use the Internet
for personal and business communications, information
retrieval, advertising, publishing, sales and document deliv-
ery.

In order to better implement many of these applications,
the World Wide Web (WWW or Web), was created. The Web
allows access to information and documents using “hyper-
media” or “hypertext” links embedded into the document.
This linking system allows documents to be accessed and
linked in a “non-linear” fashion. Non-linear access allows a
user to “jump” from one point in a document to another
simply by selecting the link. It also allows jumping from one
document to another whether the documents are on the same
computer or across the world. Documents available on the
WWW include text, sound, graphics images and even full-
motion video.

Hypertext Markup Language (HTML), a specialized
document formatting language, is typically used to create
and format documents for viewing and linking on the Web.
HTML uses special tags or codes embedded into a text
document that format the document and allow linking to
other documents or other locations in the same document.
These links may also access files, such as sound files or
graphics files which are played or displayed upon selection
of a link. A document in HTML format that is available on
the Web is typically referred to as a “Web page” or “Web
site.”

The WWW also implements a unique addressing system
which allocates an address or Uniform Resource Locator
(URL) for each document on the Web so that Web docu-
ments may be selectively accessed, sorted and indexed.

A computer with a dedicated connection to the Internet
and specialized server software that enables Web access is
called a “Web server.” Web documents are located on
storage devices connected to Web servers. A person seeking
access to a Web page uses a computer with “Web browser”
software which allows access to specified URL’s as well as
searching and other functions.

Generally, when a user accesses a specific Web page, the
user enters the URL of the desired Web page into a computer
which is running browser software. The browser software,
then, sends a request across the internet to the server at the
destination designated by the URL. The destination server
will then send an electronic copy of the desired document to
the browser computer where it can be displayed to the user.

10

15

20

25

30

35

40

45

50

55

60

65

2

This is the typical procedure used for static Web pages that
exist as unchanging files on a server storage device.

Web pages may also exist as dynamic documents that
change or update themselves when conditions are met.
Dynamic documents may update themselves each time they
are accessed. This is achieved by allowing the server to
execute a program when a given URL is accessed.

A current standard for enabling dynamic pages is the
Common Gateway Interface (CGI) which allows a server to
run programs which can change, update or customize the
web page as it is being accessed.

Programs which reside on the server and are invoked by
requests from client browser applications are referred to as
“server side” programs. After these programs are run and the
page is modified thereby, the newly modified “dynamic”
page is sent to the browser which requested the page so it can
be displayed to the user.

Another method for providing a dynamic Web page
employs programs which are not operating system specific.
These programs can be executed on any operating system
supported by the programming language. One very popular
example is the Java programming language created by Sun
Microsystems, Inc. With Java, a programmer can create
programs and include them in her web site where the
programs will run when the site is accessed by other
computers on the Web. The programs will run whether the
accessing computer uses an operating system identical to
that of the Web site or another operating system supported
by Java. Java programs which are embedded in a site and
executed by the accessing computer are called “applets.”
Java programs which are executed by the site server when
the site is accessed by another computer are called “servlets”
or more generically, “server side programs.” A specialized
programming language which operates exclusively with
scripts interpreted by server side programs may be referred
to as a “server side scripting language.”

CGI and other dynamically enabled servers can allow
dynamic pages to access date or time information, weather
information, files with pricing or inventory data or other web
pages. They may also allow access to databases stored on the
same server or at another location on the Internet or a local
network. This capability greatly enhances the utility of web
pages and allows access to databases containing huge quan-
tities of information.

SUMMARY AND OBJECTS OF THE
INVENTION

The present invention is a server side scripting language
and programming tool designed to simplify programming
for web pages using databases or other dynamic informa-
tion. The present invention is implemented by adding inven-
tive script to a normal text-based document, such as an
HTML document, a spreadsheet, a word processing docu-
ment or any other text-based document which can benefit
from a dynamic document architecture. The document is
subsequently processed by the interpreter of the present
invention to access database or other information when the
document is requested by a browser or at some other time or
interval specified by the programmer.

When a browser requests a document enhanced by the
present invention, the interpreter processes the document by
scanning for the inventive script commands. When a script
command is encountered, the interpreter executes the script
command, typically by retrieving or processing database
information, returns the result to the web page and strips the
executable script command from the resulting “pure-format”

US 6,470,349 B1

3

document. Once all executable script commands have been
executed and stripped, the resulting document is in a “pure-
format” form. In the case of a typical web page, the
“pure-format” form would be a pure HTML document
containing no extraneous tags or commands. This “pure-
format” document is, then, sent by the server to the client
computer whose browser initiated the document request.

Due to the text-based format of the present invention, the
novel script commands may be added, deleted or edited from
a typical HTML or Web page editor or from a word
processor or text editor.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the manner in which the above-recited and
other advantages and objects of the invention are obtained,
a more particular description of the invention briefly
depicted above will be rendered by reference to a specific
embodiment thereof which is illustrated in the appended
drawings. With the understanding that these drawings depict
only a typical embodiment of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 is a computer hardware diagram of prior art
computer as used in the implementation of a preferred
embodiment of the present invention.

FIG. 2 is computer hardware diagram showing the inter-
connection of prior art client and server hardware used to
implement a preferred embodiment of the present invention.

FIG. 3 is a flow chart showing a dynamic document
access process of a preferred embodiment of the present
invention wherein a caching process is used to speed per-
formance when a client accesses a dynamic document.

FIG. 4 is a data flow chart showing data requests and file
transfer between components of a preferred embodiment of
the present invention.

FIG. § is a flow chart depicting the process whereby the
inventive script of the preferred embodiment of the present
invention is loaded, parsed, interpreted and executed and
sent to the client.

FIG. 6 is a flow chart showing details of the script parsing
process.

FIG. 7 is a flow chart showing details of statement
handling or interpreting.

FIG. 8 is a flow chart showing the process of interpreting
expressions and tokens.

FIG. 9 is a flow chart showing how a caching process of
the present invention is implemented.

FIG. 10 is a flow chart showing the function of TARGET
and SOURCE commands in script execution.

FIG. 11 illustrates the components of an inventive script
command as used in a HTML document.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The figures listed above are expressly incorporated as part
of this detailed description.

It will be readily understood that the components of the
present invention, as generally described and illustrated in
the Figures herein, could be arranged and designed in a wide
variety of different configurations. Thus, the following more
detailed description of the embodiments of the system and
apparatus of the present invention, as represented in FIGS.

10

15

20

25

30

35

45

50

55

60

65

4

1 through 11, is not intended to limit the scope of the
invention, as claimed, but it is merely representative of the
presently preferred embodiments of the invention.

The presently preferred embodiments of the invention
will be best understood by reference to the drawings,
wherein like parts are designated by like numerals through-
out.

The preferred embodiment of the present invention is a
server side scripting language and programming tool which
greatly simplifies programming of many types of Web pages
including Web database applications.

The first step in using the preferred embodiment of the
present invention is to create an initial HTML document
with the desired structure, layout and format defined by
HTML code. After the initial HIML document is complete,
the inventive commands of the scripting language of the
preferred embodiment of the present invention are added to
the initial HTML document to transform the initial HTML
document into a mixed-format scripted document. This
mixed-format scripted document contains the HTML code
of the initial HTML document combined with the inventive
script commands of the preferred embodiment of the present
invention. These inventive script commands, which are
input by a programmer, contain commands which add
functionality to the Web page being created. Some of these
commands may implement procedures which are executed
when the resulting Web page is accessed thereby creating a
dynamic Web page.

The currently preferred embodiment of the present inven-
tion utilizes a Java servlet to interpret the novel script
commands. Accordingly, the server must support servlets for
this embodiment. Servlets may be supported natively or
through the use of plug-in programs which are common in
the industry. The majority of these plug-in programs require
that a version of Java be installed on the server. The Java
Runtime Environment (JRE) or the Java Development Kit
(JDK) may be installed on the server to enable servlet
support. The Java environment also provides compatibility
with virtually all established operating systems in use today.

The presently preferred embodiment of the present inven-
tion is entirely contained within one or more files stored in
a standard file system thereby eliminating the need for a
bulky, cumbersome database for program operation and
functionality. This structure can improve performance and
eliminate the need for licensing of third party database
technology.

This implementation may be quickly and easily employed
for many applications, however, if more speed is required or
if speed takes precedence over ease of implementation,
another embodiment may be used which employs a server
add-on using the Common Gateway Interface (CGI) stan-
dard or a server plug-in using the Internet Server Application
Programming Interface—Dynamic Load Library (ISAPI—
DLL) standard.

When the presently preferred embodiment of the present
invention is used to provide database connectivity to Web
pages or other documents, a Java Database Connectivity
(JDBC) or Open Database Connectivity (ODBC) driver is
utilized to communicate with the database. Currently, JDBC
is the preferred driver as it provides better performance with
the preferred software embodiment.

A preferred embodiment of the present invention gener-
ally utilizes computers in a network environment. These
computers, as basically illustrated in FIG. 1 may be
mainframes, mini-computers, micro-computers or other
variations, however, the most commonly used variations

US 6,470,349 B1

5

will employ a central processing unit (CPU) 12, with RAM
and/or ROM memory 2, a display device 14 such as a
cathode ray tube (CRT), one or more input/output processors
4, a hard drive 6 or other mass storage device, a pointing
device such as a keyboard 10 and various other peripherals
or other devices.

A simple networking environment is illustrated in FIG. 2
where one or more client computers 16 is connected to a
computer network 18. This computer network 18 may be a
localized network or intranet or may utilize a wide-area
network structure or the Internet to communicate with a
server 20. Server 20 may communicate with a database
engine 22 which can be physically located on the server
hardware itself or elsewhere. In some embodiments, server
20 may communicate directly with database engine 22 or
may employ the network or Internet communications capa-
bility to access the database engine. In a preferred embodi-
ment of the present invention, as shown in FIG. 3, a client
computer running web browser software 32 is connected to
the Internet or an intranet 34. The client web browser
initiates a request for a specific Web page represented by a
URL address. The request is sent over the Internet or intranet
34 to the web server 36 where the URL is located. The web
server 36 finds the document associated with the requested
URL and, in a preferred embodiment, checks the file exten-
sion of the document which indicates whether inventive
script commands of the present invention are contained
therein. If the inventive script commands are not present in
the document, the document is immediately sent to the client
web browser in its current form.

If the inventive script commands are present in the
document, the document is sent to the interpreter 38 of the
present invention. At this point, the request interpreter 38
checks to see if the script has already been loaded and parsed
making it ready for execution. This may have taken place
during a prior request for the Web page. If so, the script will
be held in a RAM cache or otherwise stored in an executable
form 40 and will be immediately executed 46 when the page
is requested. If the file has not been previously accessed, the
script will have to be loaded 42 and parsed 44 before
execution 46.

The data flow characteristics of the preferred embodiment
of the present invention is shown in FIG. 4 where a client
browser 32 is again shown making a request over the
Internet or an intranet 34 for a specific document. The server
36 receives the request and, when the file extension indicates
that inventive script commands are not present in the
document, accesses the file system 50 to retrieve the
requested document and deliver it to the requesting browser
32. When the inventive script commands of the present
invention are present in the document, the request is passed
to the novel script interpreter 38. The script interpreter 38
interprets the inventive script commands in the document
and, depending on the nature of the script commands, may
access files in the file system 50, access one or more
databases 52 or execute one or more programmatic objects
54. A detailed list of the inventive script commands of the
present invention and the actions they invoke is given below.

The script processing method of the preferred embodi-
ment of the present invention begins by loading the script
file 60. In the Web application of the preferred embodiment,
this file will be an HTML document that contains, in
addition to text and HTML code, novel script commands.
However, in other embodiments of the present invention, the
novel script commands may be used to enhance other types
of files. By way of example and not by limitation, these files
may be spreadsheet files, word processor files or graphics

10

15

20

25

30

35

40

45

50

55

60

65

6

files or combinations of file formats such as graphics or other
files embedded in HTML documents. A script file may be
any file which contains the novel script commands of the
present invention.

Once the script file is loaded, the interpreter of the
preferred embodiment of the present invention parses the
script 62 thereby creating sequentially ordered tokens for
each element of the file. These elements comprise HTIML
tags, text, inventive script commands of the present
invention, and expressions used by these inventive com-
mands such as database or file locations. After the file
elements have been converted to executable tokens they are
assembled into an executable token sequence which will be
executed immediately and cached so it may be re-executed
each time the page is requested in the future. Execution of
the token sequence 64 creates a new “pure-format” or
“pure-HTML” document that is sent to the client browser
that requested the document 32. Accordingly, a dynamic
document is created as the page is updated or recreated each
time the page is requested.

When a script file is initially loaded 70, the elements of
the file are parsed by a series of parsers which recognize and
process individual types of commands and their related
expressions. The HTML parser 72 distinguishes between
HTML tags and inventive script commands in the file and
creates tokens for contiguous HTML blocks. The Command
parser 74 recognizes the inventive script commands of the
present invention and creates tokens for each of these
commands. When an inventive script command contains one
or more expressions, the expression portion of the inventive
script command is sent to the expression parser 76 which
creates an expression tree for the expression which is passed
back to the command parser 74 and incorporated into the
token for the inventive script command.

The statement interpreting process occurs at the time the
token file is executed 80. This occurs each time a statement
is encountered while executing a script. At this point, the
statement interpreter 82 determines the type of statement
and sends the statement to the interpreter appropriate for that
statement.

When a scan statement is encountered by the statement
interpreter, the statement is sent to the Scan interpreter 84
which interprets the statement by extracting designated
words from strings as indicated in the statement.

When a directory statement is encountered by the state-
ment interpreter, the statement is sent to the Dir interpreter
86 which will interpret the statement and enumerate the files
within a directory.

The statement interpreter will, likewise, find array state-
ments and send them to the Array interpreter 89 which will
interpret those statements by iterating through the desig-
nated arrays.

SQL and database related commands are sent by the
statement interpreter 82 to the SQL interpreter 87 which will
directly interpret a database switching modifier. Other data-
base commands or the remainder of a statement containing
a database switching command will be forwarded by the
SQL interpreter 87 to a Database SQL interpreter 88 which
is external to the preferred embodiment of the present
invention and typically resides in a database driver or engine
program.

During the script execution process, as detailed in FIG. 8,
each command token is processed sequentially. If expression
trees are attached to command tokens, they are also pro-
cessed in the order encountered. Expression trees 92 follow
an expression hierarchy or tree structure. When the result of

US 6,470,349 B1

7

an expression is dependent upon another, the script execu-
tion process of the preferred embodiment of the present
invention executes the expressions in order 94 starting with
the outermost expressions on the expression tree. The
expression results are, then, inserted into the expressions of
the next order until all expressions have been processed and
the main parameter statement is ready to execute 96. This
statement is subsequently executed 98 by the statement
interpreter 82 to the appropriate interpreter which executes
the command token 100 thereby returning a result which is
sent to an output buffer 102 where it is combined with the
results of other tokens to form the resulting dynamic Web
page which is sent to the client 104.

In order to increase performance, the preferred embodi-
ment of the present invention utilizes caching techniques. A
RAM cache technique is used to speed response time when
a dynamic document is requested by a client. A file cache
may also be used to increase performance.

When an inventive script document is requested 110, as
shown in FIG. 9, the server checks to see if the script is
stored in RAM cache 112, if so, the script is immediately
executed 114 and the resulting HTML document is sent to
the client browser 116. If the script is not stored in RAM
Cache, the script file is loaded 118, and parsed 120 before
execution 114 and, finally, sent to the client browser 116.

A programmer may use the Source command or Target
command to control program execution for file caching and
to relate script files. Using the inventive scripting language
of the present invention, a script file may contain script
commands which, when executed, create a new script file.
The file from which the new file was created is referred to
as a source file. The Source command initiates a comparison
between the current file and an associated source file from
which the current file was created. When a Source command
is encountered during execution, the creation date of the
current file is compared with the creation date of the
associated source file. The file with the most recent date, the
newer file, is selected for execution.

When a Target command is encountered during script
execution, the output of the execution process is written to
a target file which may be another script file which can be
subsequently executed.

The operation of the Target and Source commands may be
more fully understood by reference to FIG. 10. During the
execution of a script file 122, if a source command is
encountered 124, a comparison is made to determine
whether the source or current file is newer 134. If the source
file is newer, the execution process switches to the source
file 136 and executes the source file 122. If the current file
is newer, execution of the current file proceeds. The Source
command can, therefore, be used to ensure that the most
current version of a file is used.

If a target command is not encountered 126 during
execution of a script file, the output of the script execution
will be sent to a client browser 132 or other source which
initiated the scripted document request. When a Target
command is encountered the output of the script file execu-
tion process will be written to a target file rather than being
sent to the client 128. The execution process will then switch
to the target script file and execute the target file. The Target
command allows intermediate files, which may be more
easily edited, to be created and programmed. It also allows
file execution to become an iterative process and allows for
the dynamic document to be cached in a file.

In FIG. 11, the syntax of the scripting language of the
preferred embodiment of the present invention is illustrated.

10

15

20

25

30

35

40

45

50

55

60

65

8

An example line of code is shown 140 with various tags and
commands therein. Within the code are some HTML tags
142 which will be differentiated and processed by the HTML
parser 72. Script command syntax 144 is parsed and pro-
cessed by the command parser 74. Database switching
syntax 146 within the code line is parsed and sent to the SQL.
interpreter 87 for processing. When found in the code,
expression syntax 148 is parsed and sent to the expression
parser 76 for processing. When database access and manipu-
lation is performed, SQL syntax 150 will be present. This
will be sent to the database SQL interpreter 88 for process-
ing.

In order to more fully demonstrate the capabilities of the
preferred embodiment of the present invention, the follow-
ing list of program properties, commands and functions is
presented along with an explanation of each. This listing is
offered as an example of the inventive commands of the
preferred embodiment of the present invention and is not to
be construed as a limitation to the scope of the claims of this
patent.

0.1 Standards

The format of this listing is as follows: syntax is in italics,
and commands and functions are bolded within paragraph
descriptions. Also example scripts use Courier Font.

0.2 Introduction

The server-side scripting language and programming tool
of the present invention is called BrowZ Script. Its purpose
is to greatly simplify programming for many types of web
database applications. To use it, create normal HTML pages,
then place special tags containing BrowZ Script commands
in the pages. These tags are replaced dynamically with the
result of the command execution when the script is
requested by a browser and executed by the server. Several
of the commands execute SQL statements against a
database, and others retrieve data from the resulting rows
and columns. BrowZ Script takes full advantage of the
power of SQL and relies heavily on the resulting data.

BrowZ Script also supports the retrieving of data from
HTML page forms as well as arguments passed after a
question mark ‘?° at the end of an Internet address or URL.

BrowZ Script has extra features for ease of programming,
such as allowing you to use your favorite web page designer
and editor for adding and editing of your script tags. Some
knowledge of HTML is needed to take advantage of this
feature.

1.0 Installation
1.1 Server

BrowZ Script is implemented as a Java servlet. So, your
web server must support servlets, either natively or by use
of a server plug-in or CGI. If your server does not have
built-in servlet support you must install one of several server
plug-ins. Most of these servlet add-ons are free or inexpen-
sive. Most of these plug-ins, however, will also require that
you have a version of Java installed on your server. This can
be freely downloaded from Sun’s Java web site, www.java-
soft.com. You’ll need to download and install the JRE (Java
Runtime Environment) or the JDK (Java Development Kit).

BrowZ Script is implemented in Java therefore you can
run it on any operating system platform for which the Java
runtime is available, which includes just about all of the
modern ones.

1.2 Files

BrowZ Script is entirely contained within the BZScript.jar
file. You’ll need to configure your server (or the server
plug-in) by adding this file to its Java CLASSPATH. Some
servers may work if you simply copy this file into the
Servlets folder. Check with your server or plug-in for proper
installation of servlets.

US 6,470,349 B1

9

1.3 Database

BrowZ Script requires a JDBC (Java DataBase
Connectivity) or ODBC (Open DataBase Connectivity)
driver to be able to communicate with your database. It is
usually fastest if you have a JDBC driver for your particular
database, but an ODBC driver will work fine if you do not.
If you are using JDBC you’ll need to know the JDBC URL
to your database. Look in your driver’s user manual for the
proper URL to use for each of your databases. If you choose
to use ODBC, you must set up a DSN (Data Source Name)
for each database you wish to communicate with. The JDBC
URL you will use will be as follows: “odbc:your_ dsn”.
2.0 Properties Files

These files give information to BrowZ Script concerning
all of the files in a directory and the databases with which
they plan to connect. For every folder in which BrowZ script
is going to process files there must be a properties file called
“BZScript.properties”. This is a plain text file usually con-
taining four definitions, similar to the following:

driver=sun.jdbc.odbe.JdbcOdbeDriver
database=odbc:MyDSN
username=MyUser

password=MyPassword

The driver parameter defines which Java driver to load. In
this case, we are loading the built-in ODBC driver. If you
use another driver you would place its class name here.
Driver defaults to sun.jdbc.odbc.JdbcOdbeDriver.

The database parameter defines the JDBC URL to the
database. This is dependent on the driver you use and the
database you are connecting to. Since we used the ODBC
driver we specified an ODBC URL containing the DSN.

The username and password parameters are used when
your database requires a user name and password to access
the database. You may include a space character, if needed,
within the value, but do not surround it by quotation marks,
as you might think. Also, do not put spaces or tabs on either
side of the equal sign ‘=". The name, the equals sign, and the
value must be run together with no white space.

BrowZ script is not limited to only one database as
described above. In order to support connections with more
than one database the contents of the BZScript.properties
file has to be changed a little. Let’s start with an example and
then explain the differences:

databases=customers, finance

customers.driver=sun.jdbc.odbe.JdbcOdbeDriver

customers.database=odbc: CLIENTS
finance.driver=sun.jdbc.odbc.JdbcodbeDriver
finance.database=odbc: FINANCE
finance.username=MyUser
finance.password=MyPassword

First notice the databases parameter. This is where you list
all of the databases with which you wish to connect. All
other parameters have the database name and a period before
them, specifying the database to which they belong. Unless
otherwise specified, BrowZ Scripts assume a connection
with only one database. This default database will always be
the first one listed in the databases parameter. To commu-
nicate with another database the programmer will have to
specify the connection change within each script needing it.
This can be done with the db command or with the db
modifier in any command using SQL.

There are other variables allowed in this file that will
enable verbose debugging features of BrowZ Script. To
enable these features you should set the object and either the
debug or trace variable to 1. The debug variable is less

10

15

20

25

30

35

40

45

50

55

60

65

10

verbose, but more useful. The trace variable is only useful if
you have the BrowZ Script source code. It will show you
every function which was called. The recent debug/trace log,
if any, will be attached to the bottom of the each script
output. This log is also appended to a file called BZScript-
Jlog on the server. This log file is cleared each time BrowZ
Script is restarted. The example below turns on all debug and
trace features in BrowZ Script. It is strongly recommend,
however, that you never use all of these together. open.debug
and var.debug are usually the most useful.

open.debug=1 # Logs all statement executions

open.trace=1 # Logs all internal statement related func-

tion calls

vardebug=1 # Logs all input and temporary variable

accesses

var.trace=1 # Logs all internal var related functions calls

prop.debug=1 # Logs all property variable accesses

prop.trace=1 # Logs all internal property related function
calls

session.debug=1 # Logs all session variable accesses

session.trace=1 # Logs all internal session related func-

tion calls

One last thing, the properties file is not limited to just the
variables detailed above. You may place many other param-
eters in this file, and retrieve them from any script in the
same directory, using the prop object. See section 3.5.3 for
more information on prop object.

3.0 Language

This section details the language of BrowZ Script. To
begin with, you need to know that BrowZ Script files are
usually just normal HTML files, containing one or more
BrowZ Script commands. These commands may be placed
anywhere within the HTML document, but it is usually wise
to place them in such a way that you do not break any of the
HTML syntax rules. This recommendation becomes a
requirement if you use an HTML page editor, such as
Microsoft FrontPage, Adobe PageMill, or Netscape Com-
poser to add or edit your BrowZ Script files.

BrowZ Script is designed to be case insensitive, but this
has not been thoroughly tested yet. Only fully lower case
commands, functions, objects, and variables have been
tested.

3.1 Syntax
‘> [*V’ <html tag>] <command> [‘#’ <name>]
[<parameters>] ‘}’
3.1.1 Brace Delimiters

Commands are delimited by curly brace characters, ‘{’
and ‘}’, at the beginning and end of each. When you’re
debugging, always make sure that these braces appear at the
beginning and end of each command.

Note: In BrowZ Script 1.0 the tilde ’ character was used
to delimit BrowZ Script commands. These were harder to
read and match up when lots of commands were placed close
together, so the change was made to curly braces. However,
the tilde characters are still supported in 1.2, and you may
see some BrowZ Script files using them. But, these charac-
ters will not be supported in future versions of BrowZ Script
so it is strongly recommended that you use the preferred
curly braces, and begin fixing all 1.0 BrowZ Script files.
3.1.2 HTML Tag Stripping

Following the open brace is an optional exclamation
point, ‘!’, and an html tag name. BrowZ Script always strips
the entire command from the output. However, in order to
maintain the normal rules of HTML sometimes you have to
place commands within a paragraph or table cell. There are
HTML tags that get added to the document by the editor

US 6,470,349 B1

11

which surround the BrowZ Script command. However, you
usually do not want these extraneous tags to appear in the
output. You can specify that you wish them striped by adding
the exclamation point, ‘!°, and the name of tag you wish to
be stripped. Sometimes there is more than one tag that
surrounds your command. An example of this is when you
place a command in a cell of a table. If you want the entire
row removed, rather than just the cell you are in, you would
use ‘!tr’ as the tag to strip. All tags and text including the one
you specify the BrowZ Script command and those following
the command until the trailing tag will be stripped.

In order for this to work properly you must specify the tag
using the same case as the HTML tag. HTML is not case
sensitive but BrowZ Script is in this instance. Also, there
must be a matching trailing tag. Some page editors do not
add the trailing tag in some instances but this is required for
BrowZ Script stripping, and it follows that the case of the
trailing tag must match also. The best and sometimes only
way to use this feature properly is to switch to HTML mode
temporarily to see what the first tag you wish to strip is and
to note its case.

Here is an example to illustrate how this stripping works:

<p>{!p while select * from MyTable}</p>

In this example the matching paragraph tags as well as the
BrowZ Script command will be stripped from the output.
Since while commands output no text by themselves the
output will contain no evidence that the command was even
there. Here is another example:

<table><tr><td>To Do List</td></tr>

<tr><td><p>{!tr while select * from PROJECTS where
PROJ=‘My Project’ }</p></td></tr>

<tr><td>{[row. ACTION]} </td></tr>

<tr><td>{'tr end}</td></tr></table>

In this more complicated example the programmer wished
to completely remove the rows containing the if and end
commands, not just the commands themselves. Also, by
using the while command BrowZ Script will repeat every-
thing between the while and end commands for each record
found in the database, which in effect adds a row for each.
The output of this script would look something like this:

<table><tr><td>To Do List</td></tr>

<tr><td>Write the code</td></tr>

<tr><td>Test the code</td></tr>

<tr><td>Write the manual</td></tr>

<tr><td>Prepare the packaging</td></tr>

<tr><td>Ship it!</td></tr>

</table>

If the programmer had not put in both ‘!tr’ options the
output would have looked like the following, which is
definitely not correct HTML.:

<table><tr><td>To Do List</td></tr>
<tr><td><p></p></td></tr>
<tr><td>Write the code</td></tr>
<tr><td></p></td></tr>

<tr><td>Test the code</td></tr>
<tr><td></p></td></tr>
<tr><td>Write the manual</td></tr>
<tr><td></p></td></tr>
<tr><td>Prepare the packaging</td></tr>
<tr><td></p></td></tr>
<tr><td>Ship it!</td></tr>
<tr><td></td></tr>

</table>

w

10

15

20

25

30

35

40

45

50

55

60

65

12

Of course you can avoid this entire problem by simply
using a text editor rather than an HTML editor, and disregard
the rules of HTML. In this case you would have written the
following simpler script to produce the same output:

<table><tr><td>To Do List</td></tr>

{while sclect * from PROJECTS where PROJ=‘My
Project’}
<tr><td>{[row.ACTION]} </td></tr>

{end} </table>

Don’t try to load this script into an editor which knows
HTML, because it will definitely complain, or worse,
attempt to correct the problem. The command itself is not
optional. Also commands are not case sensitive. Each com-
mand is itemized in section 3.2.
3.1.3 Name

You may optionally name any statement using a single
word or number. This is used when you need to refer to the
results of a previous SQL command, after executing another,
but is not needed to refer to the results of the current SQL
command. See the row object for more information.

Here’s an example:
<p>List of items found:</p>

<p>{!p while #tb select * from TABLE}</p>

<p>{!p if select * from ANOTHER where A_ STATE=*
[row.T_STATE] }</p>

<p>{[tb.T_NAME]}</p>

<p>{!p end}

<p>{!p end}

In this example we’re printing the T NAME field from
TABLE, but only if the value of that record’s T__STATE
field is found somewhere in the A_STATE field of the
ANOTHER table. If we didn’t use the #tb name, we would
only have been able to print fields from the ANOTHER
table, using the row object. See section 3.5.4 for an expla-
nation of the row object. We could have accomplished the
same thing by storing the T NAME field into a temporary
variable, using the var object, so we could access it from
within the if command. See section 3.5.6 for an explanation
of the var object.

Note also the use of the row object within the parameter
of the if. Access to fields of the row object does not change
until the closing brace of the next command containing a
statement. This means that row continues to refer to the
current record of the while command until the closing brace
of the if command, at which point it changes to the row
returned from the result of the if. Row again switches back
to the row from the while command after the first end, which
ends the if and closes the statement’s results. See section
3.2.5 for more details on the end command.

3.1.4 Parameters

The parameters to a command vary depending on the
command used. Usually, the parameters are a statement,
such as SQL. Note, one or more expressions may be used
anywhere within the parameters section. See section 3.4 for
information on how to add and use expressions of objects
and functions.

3.1.5 Special Characters and Sequences

Since HTML empowers certain characters with special
meanings BrowZ Script has to be flexible in its interpreta-
tion and use of these. If your HTML editor inserts a &It;
instead of a less-than character ‘<’ into your SQL statement,
BrowZ Script will properly convert it to a less-than character
‘<’ before attempting to execute it. The following are all of
the automatic translations made by BrowZ Script.

US 6,470,349 B1

13

XX

A percent sign ‘%’ followed by two hex digits will be
converted into the corresponding ASCII character.

<, >, , &

These will be converted into less than ‘<’, greater than
‘>’ space ‘ °, and ampersand ‘&’, respectively.

LA AL W

When you need BrowZ Script to ignore any special
meaning of a character in your scripts simply precede the
character by a backslash V.

, Carriage Return and Line Feed

Carriage returns and/or line feeds within commands will
be converted to a space. This is because HTML editors insert
spaces in arbitrary positions within long lines. However, if
you really do want carriage returns within a command, such
as within quoted text, use an HTML line break,
. All

 tags founds within commands will get converted to a
carriage return and line feed.
3.2 Commands

Here is a list of commands in BrowZ Script, grouped by
relationships.

Flow Control Inter-file Assignment File
Do-end Insert Set Copy
If-else-end Redirect Unset

while-else-end Target Default

Db Source

3.2.1 Do Command

Syntax: do <statenment>, [end]

The do command executes a statement unconditionally.
Any statement may be executed, including SQL, scan, dir,
and array statements. See section 3.3 for more information
on statements. The do command produces no direct output
A matching end command, which should follow the do
command somewhere in the script, closes the statement. It is
not necessarily required to have a matching end command
because all open statements will be automatically closed
when a script completes, but it is better to explicitly end
(close) each statement when you are done with it. The end
command is required if you need to access results from an
outer statement, if or while command when you nest more
than one. Here is an example of the use of the do command.
<p>{!p do insert into MyTable (T_NAME, T PHONE,

T_DATE) values ([quote(var.name)], [quote(var.phone)],

[date(sql, today())])} {end}</p>

<p>A new record was added to the database.</p>

Note: mn BrowZ Script 1.1 and previous this command
was named sql. In 1.2 sql is still allowed but is deprecated
in favor of do, because statements are no longer limited to
just SQL any more. Please use do instead of sql and fix your
old scripts, because a future version of BrowZ Script will not
support the sql command.

3.2.2 If Command

Syntax: if [<statement>| ‘[’expression‘]’|], [else], end

The if command executes a statement unconditionally. It
also controls the output and execution of HTML and com-
mands which follow it. If the statement or expression results
in a true condition all html and commands after the if until
the matching else and/or end command are executed and
output. A matching else command is not required, but if
used, the HTML and commands between the else and the
end are executed and output if the condition is false.

The condition is based on the results of the statement or
the value of the expression. The condition will be true if a

10

15

20

25

30

35

40

45

50

55

60

65

14

statement results in 1 or more rows, and false if it results in
no rows. The condition will be true if an SQL insert, delete,
or update statement results in 1 or more rows being modified
and false if no rows were modified.

If you specify an expression as the parameter to if then the
condition is based on the results of the expression. If the
expression results in a number, then O or a negative number
mean false, and 1 or greater mean true. If the expression
results in a string then a null or zero length string mean false,
and a string containing 1 or more characters mean true,
including the word “false” so be careful. If the expression
results in any other object, then a null means false, and any
object means true. Here is an example of the use of an if
command.
<p>{!p if update MyTable set T_ NAME=[quote(var.name)]

where T__ID=[var.id]}</p>

<p>Record # {[var.id]} has been saved.</p>

<p>{!p else}</p>

<p>Error: Record #{[var.id]} does not exist.</p>

<p>{!p end}</p>

If you do not include a parameter of any kind then the
condition is based on the previous statement executed, such
as a previous do, if, or while command, though the most
common of these is the do command. This may be useful
when you wish to execute a command previous to where you
want to conditionally execute other commands or HTML.
3.2.3 While Command

Syntax: while [<statement>| ‘[’expression ‘][], [else], end

The while command is similar to the if command, except
that it repeats in a loop until the condition becomes false. It
also increments the row in the results of the statement when
a statement returns more than one row. Everything after the
while command to the end or else will be output or executed
for each row returned in the result. If there is an else and the
statement results in an empty table or no rows affected then
everything after the else command to the end command is
output once, the same as an if command. If an expression is
used as the only parameter then the while will continue as
long expression evaluates to true. See the if command for
details on how objects are evaluated to a true or false. Here
is an example of the use of the while command.
<p>{!p while select * from MyTable where T_NAME like

‘G[varname]%’ } </p>

<p>Name: {[row.T_NAME]}, Phone: {[row.T__

PHONE]}</p>

<p>{!p else}</p>

<p>No names were found containing ‘{[var.name]}’.</p>

<p>{!p end}</p>

If no statement or expression is included then the while
will be executed based on the result of the previous SQL
executed in the file. This is useful, for instance, when you
want to execute part of your script a single time, if any rows
are returned, and part of your script repeatedly, for each row
returned. Below is an example of this:
<p>{!p if select * from MyTable where T_NAME like

‘9%[var.name]’} Here is the select for both the if and while

commands.</p>

<table><tr><td>Name</td><td>Phone</td></tr>

<tr><td width=2>{!tr while} Notice the lack of a state-

ment here.</td></tr>
<tr><td>{[row.T_NAME]}</td><td>{[row.T__PHONE]

}</td></tr>

<tr><td width=2>{!tr end} This ends the repeated part.</
td></tr>

<tr><td width=2>{[row]} names were found.</td></
table>

US 6,470,349 B1

15
<p>{!p else} Matches the if.</p>
<p>No names were found containing ‘{[var.name]}’.</p>

<p>{!p end} This ends the if.</p>
3.2.4 Else Command

Syntax: if else end

Or: while else end

The else command is used only in conjunction with the if
or while commands. It is always optional and specifies
where to start outputting if the condition of the if or while
is initially false. Any parameters added to this command are
ignored so the parameter may be used as a comment.
3.2.5 End Command

Syntax: do end
Or: if else end

Or: while else end

The end command is used only in conjunction with the do,
if, or while commands. For the all of these commands end
specifies the end of the conditional or repeated output. It
closes the statement, if any were opened in the matching do,
if, or while command. In the case of the while command, it
closes the statement once the last row has been retrieved and
the last loop has completed. End is recommended, but not
necessarily required, for use with the do command, because
all statements are closed when the script completes.
However, if you nest more than one do, if or while you will
be required to have an end statement before you can access
results from the outer command. Any parameters added to
this command are ignored so the parameter may be used as
a comment.
3.2.6 Db Command

Syntax: db <database>

The db command switches the current database to the one
you specify by name. This name must match the name you
used in the properties file. All following SQL statements will
be executed with the new database. Individual SQL state-
ments may override this by specifying a database explicitly.
See section 3.3.4 for more information on specifying a
database from within an SQL statement.

Note: if you used the single database format for the
properties file then the db command will not work and
should not be used.

3.2.7 Insert Command

Syntax: insert <file path>

The insert command loads and runs another script. All
objects, variables and their values are available to the
inserted script. The remainder of the current script is also run
after the inserted file executes, except in the case of redirect.
See section 3.2.8 for more information on redirect. Any
variables that were modified in the inserted script will keep
their modified values after the insert completes and the
current script continues. Insert is somewhat similar to a
function or subroutine call in other languages. Inserted
scripts may also insert other scripts, to as many levels as you
desire. This command is useful when you need to execute
and/or output the same or similar things from more than one
script.
3.2.8 Redirect Command

Syntax: redirect <file path>

The redirect command loads and runs a script from
another file and aborts the current script. All objects, vari-
ables and their values are available to the redirected script.
Any output from the current script already created is dis-
carded and not sent to the client. If the current script had
been executed via an insert from yet another script, that
insert is aborted also. In other words, the inserting script will

10

15

20

25

30

35

40

45

50

55

60

65

16

not continue if a redirect occurs in the inserted script. In fact,
redirect aborts all multiple levels of insert. There is no
problem, however, for a redirected script to redirect or insert
other scripts, as you so desire.

3.2.9 Target Command

Syntax: target [<file path>|*.’<file extension>]

The target command tells the execution engine to create
a file and write the output of the current script to it, once the
script completes. The output is not sent to client, but once
the new script file is written this new script is then executed
itself, and any output it generates will be sent to the client.

It is possible, and sometimes very useful, for the gener-
ated file to also, contain BrowZ Script commands. These
will execute the same as if the file had been requested
directly by the client. One very nice use for the target
command is in the caching of dynamic pages, which change
much less often than they are requested. In the case of
caches, it is also useful to generate a source command to be
placed in your target script referring back to the source
script. This ensures that the target stays synchronized with
the source. See section 3.2.10 for more information on the
source command.

The parameter of this command is either a file path or a
dot extension. The file path may be absolute or relative to the
currently executing scripts folder. If you use a dot extension
parameter then the new script will have the same name as the
current one, but with the extension changed to what you
specify.

The target command may be placed anywhere within the
currently executing script. If it is placed within a conditional
part of your script, such as between if, else, or end then it
will only take effect if the condition allows the target
command to actually execute. If it is skipped, for whatever
reason, the current output will be sent to the requesting client
and no file will be written, just as if the target command was
not there.

I have not tested this yet, but it should be possible to
create a one-shot script, a script that overwrites itself. When
the script executes it changes itself, permanently. A good
application of a one-shot script is left as an exercise to the
reader.

3.2.10 Source Command

Syntax: source [<file path>|*.’<file extension>]

The source command tells the execution engine that the
current script was created by another script. BrowZ Script
will check the dates of the two files. If the current script is
older than the source script then the current script is aborted
and the source script is executed instead. Its is mainly useful
when the script contains a target command. It allows the
target script to refer to its source to maintain synchronization
between the two files. See section 3.2.9 for more information
on the target command.

The parameter of this command is either a file path or a
dot extension. The file path may be absolute or relative to the
currently executing scripts folder. If you use a dot extension
parameter then the source script will have the same name as
the current one, but with the extension as you specified.
3.2.11 Set Command

The set command will set the value of a variable. Once
set, a variable holds and returns its value for the rest of the
script, or until the script sets it again. Input and temporary
variables are accessed through the var object. Currently, you
may only set variables of the session or var objects. If you
do not specify which object the member belongs to, the var
object is assumed.

set <[object.]variable> [=] ‘[* <expression> ‘]’

This variation sets a variable with the value returned by
the expression. The brackets are required and signal BrowZ
Script to not execute a statement.

US 6,470,349 B1

17

set <[object.]variable> [=] <statement>

This variation sets a variable based on the result of an
SQL statement. The variable will be set with the value in the
first column of the first row returned. All others columns and
rows will be ignored. If an empty result set is return from the
statement then the variable will be set to null. The statement
is automatically closed so an end command is not needed, or
allowed. This variation of set is really just a short cut and
could be rewritten as follows:

{unset variable} {if <statement>} {set-variable=[row.1]}

{end}
3.2.12 Default Command

Syntax: default <variable> ‘[’<expression>‘]’

Or: set <variable> <select statement>

The default command is almost the same as the set
command. It differs only in that it does not change the value
of the variable if the variable already has a value assigned.
It will only set the value of the variable if the variable is null
or is not set.

3.2.13 Copy Command

Syntax: copy <sourcefile path> <target file path>

The copy command simply copies one file to another. The
file names for the source and target must be specified. The
path information may be relative to the current script’s
folder or absolute. BrowZ Script makes a copy of the file and
also sets the modified date to be identical with the source.
3.2.14 Expression Command

Syntax: ‘[* <expression> ‘]’

The expression command simply outputs the results of the
expression. It has no command name, just the expression
itself, in square brackets, ‘[” and ‘]’. See section 3.4 for more
information on expressions.

3.3 Statements

Statements are the workhorses of BrowZ Script; you will
use these to do most of your work. Statements are the
parameters to the following BrowZ Script commands: do, if,
while, set and default. Statements include all of SQL, plus
several BrowZ Script only additions. Statements may be
modified in a way unique to BrowZ Script. BrowZ Script
expressions may be used anywhere within the statement to
make changes, customize, and parameterize it. Plus, there is
a db modifier for SQL statements, used to switch connec-
tions between more than one database engine.

Here are the different types of statements:

Statements Description

Array Iterates through an array, a variable which holds more
one or more values

Dir Iterates though a directory of files

Scan Parses a string, interates through the words

(SQL) select
(SQL) insert,
delete, update,
etc.

Iterates through a result set returned from a database
Makes changes to a database, or does other database
related SQL

3.3.1 Array Statement

Syntax: array <variable>

The array statement is used to query and iterate through
the values of a variable. All variables in BrowZ Script may
contain 0 or more values. If the variable has no value, then
the statement returns an empty result set. If the variable
contains one or more values then each value will be accessed
sequentially through the row object. This statement is usu-
ally used only in a while command. However, in an if
command, the condition will be true when the variable has
one or more values, and false otherwise.

10

15

20

25

30

35

40

45

50

60

18

Here are the fields available through the row object when
using this statement with do, if, or while:

Index Fields Description

1 Item The value

3.3.2 Dir Statement

Syntax: dir <folder-path>

The dir statement is used to enumerate the files within a
folder of the file-system. The path should be specified
relative to the directory containing the executing script. Or
it may be an absolute path, starting with the root directory.
The path syntax can be based on the POSIX standard (Unix),
using forward slashes, or it can be platform specific, such as
with backslashes on Windows.

Information about each file will be returned as the result-
set of the statement. This statement is usually used only in
a while command. However, in an if command, the condi-
tion will be true when the folder has one or more files, and
false otherwise.

Here are the fields available through the row object when
using this statement with do, if, or while:

Index Fields Description

1 File A string containing the full file name

2 Name A string containing the file name, without the extension
3 Ext A string containing the file extension, without the period
4 Size An integer containing the file size in bytes

5 Date A date containing the last modified date of the file

3.3.3 Scan Statement

Syntax: scan [<delimiters>] <string>

The scan statement is used to parse a simple, delimited
string. A sequential list of words will be returned as the
result-set. If no delimiters are specified then all white space
is used as the delimiter. Delimiters are specified as one or
more non-alpha-numeric characters, followed by a space
and the string to parse. The only special case delimiter is the
underscore ‘__°. If you put an underscore as the first delim-
iter then whitespace will be added as part of the delimiters.
An underscore may be a delimiter if you put one or more
other delimiters first.

This statement is usually used only with a while com-
mand. However, in an if command, the condition will be true
when the string has one or more words, and false otherwise.

Here are the fields available through the row object when
using this statement with do, if, or while:

Index Fields Description
1 Word A string containing the word
2 Delim A string containing the delimiter(s) encountered

following the word

3.3.4 Select Statement (and all Result-set SQL)
Syntax: [db <database>] select <select clauses>
This includes all variations of the SQL select statement
and any other SQL that returns a result-set. BrowZ
Script sends the entire statement (after expression
evaluation) to the current database. The current data-
base is the latest database specified with a db command,

US 6,470,349 B1

19

or the first (or only) database specified in your
BZScript.properties file. This statement is usually used
with a while command. However, in an if command,
the condition will be true when the result-set contains
one or more rows, and false otherwise. If this is used
with a set or default command, the variable will be
assigned the first value returned, the first column and
first row. All other columns and rows will be ignored.

3.3.5 All other SQL Statements

Syntax: [db <database>] <sql statements>

This includes all other SQL statements, including insert,
delete, update, those that do not return a result set. The SQL
is sent, same as above, to the current database. These types
of statements are usually used with do, if, set, and default
commands. Many, but not all, SQL commands will return a
value, usually the number of rows modified. This number
will be used in the condition of the if command, 0 meaning
false, and all other values meaning true. When used with set
or default, the value returned will be stored in the variable.
It does not usually make sense to use this type of statement
with a while command.

3.4 Expressions

Syntax: ‘[’ [object\[object.]function(<expression>[,

<expression> . . .]) ‘]’

Expressions are designed to return a value. They may be
placed anywhere within the parameters of a command, such
as within a statement. Or, the expression may be the entire
command, (see section 3.2.14). Expressions are delimited by
square brackets, ‘[* and ‘]’. They can be complex or simple.
BrowZ Script 1.2 does not support in-line operator
evaluation, such as ‘+’, or ‘=’°, though this is planned for a
future release, You may use any combination objects, object
members, object functions and global functions. But, with-
out in-line operators, you can only pass results from one
expression as a parameter to a function, and nesting these
function calls as deep as makes sense.

3.5 Global Objects

There are several objects that are accessible globally, to be
used in any expression. Objects may have member variables,
functions or both. The members of an object can only be
retrieved (read), except for the var and prop objects. Use the
set or default command to change member variables of prop
and var. Here is the list of the global objects:

Object Purpose

Init Access initialization parameters of BrowZ Script

Open Access the results of a named statement

Prop Access variables stored in the BZScript.properties file

Row Access the fields; or columns of the current open statement
Session Access the variables associated with a user’s session

Var Access HTTP POST and URL input, and temporary variables

3.5.1 Init Object

The init object allows you to access the servlet initializa-
tion parameters. These are dependent upon how you initial-
ized the BrowZ Script servlet with your web server. Any
parameters you initialized your servlet with may be read, but
you may not set the value of members of this object.

10

15

20

25

30

35

40

45

50

55

60

65

20

Examples

init.user
init.user.id

Returns the value assigned to user
Returns the value assigned to user.id

3.52 Open Object

The open object allows you to access result sets for those
SQL statements that you gave names to in your script. If the
statement has a result set you may access the columns by
name or number, with 1 referring to the first column. If the
statement does not have a result set, you may only retrieve
the number of rows affected. This object is not normally
needed because you may access statements by name alone.
The time this object is needed is if you name a statement
same as one of the other global objects. You may not set the
value of members of this object, only read them. See section
3.1.1 for information on giving a statement a name.

Examples

Returns the value in column user from statement named
abc

open.abc.user

abc.user Same as above

open.def.2 Returns the value in column 2 from the statement named
def

def.2 Same as above

open.ghi Returns the number of the current row from the statement
named ghi, if the statement returns a result set, i.e. select

open.ghi Returns the number of rows affected from the statement
named ghi, if the statement does not return a result set,
i.e. insert, update, or delete

ghi Same as the above two examples

3.5.3 Prop Object

The prop object allows you to access variables in the
BZScript.properties files. You may not set the value of
members of this object, only read the values that you placed
in the properties file. See section 2.0 for information on the
purpose of this file.

Examples

prop.databases
prop abc
prop.abe.jkl

Returns the value of the databases parameter
Returns the value of the abc parameter
Returns the value of the abc.jkl parameter

3.5.4 Row Object

The row object allows you to access result sets for the
current open SQL statement. If the statement has a result set
you may access the columns by name or number, with 1
referring to the first column. If the statement does not have
a result set, you may only retrieve the number of rows
affected. You may not set the value of members of this
object, only read them.

Examples

row.user Returns the value in column user from the current open
statement

Returns the value in column 2 from the current open statement
Returns the number of the current row from the current open

statement, if the statement returns a result set, i.e. select

row.2
row

US 6,470,349 B1

-continued -continued
row Returns the number of rows affected from the current open Category Function Purpose
statement, if the statement does not return a result set,
i.e. insert, update, or delete 5 Int Integer conversion
Math Add Addition
. . Div Division
3.5.5 Session Object Mul Multiplication

The session object allows access to variables associated Mod Modulus, remainder
with a user session. A new session with no member variables Sub Sublraction
X . 10 Query IsDate Date checking
is created each time a new user requests a web page from IsNull Null checking
BrowZ Script. The session stays alive as long as the same String Concat String concatenation
user continues to hit the server with the same browser. If the Himl HTML conversion

. . . . IndexOf Finds sub-string within string
user exits the browser and launches it again a new session Length String length
will be created, with no ir}itial Var.iab.les. These variables 15 Limit String truncation
may be both read and written. This is where you would LowerCase Lower case conversion
normally put variables that need to be passed between and Quote Quotes strings for SQL
: : Strip HTML tag stripping
among multiple scripts, but not among more than one user. U .
A N pperCase Upper case conversion
If you need more permanent or persistent variables you Uil Conversion for URLs
should use records in your database. 5o Time Now Returns the current time
Today Returns the current date
Examples
3.6.1 Add Function
add(pl . ..)_int
session.user Access the variable called user associated with the user’s 25 The add function returns the sum of all its parameters.
) session))) Each parameter is converted to an integer before it is added.
session.name Acc?,ss the variable called name associated with the user’s In the future support for other types will be included, such
session N
as float, date, time, etc.
3.6.2 And Function
3.5.6 Var Ob].ect . o . 30 and(pl...)_ boolean

The var object is the most used object in BrowZ Seript. It The and function returns the boolean and of all its
allows access to input variables from a form POST or URL parameters. Each parameter converted to a boolean before
parameter. You do not need to distinguish between a form its used.
input variables and URL variables, as only one type is 3.6.3 Concat Function
allowed at a time. An HTTP POST only returns form input 35 .

. . concat(pl . . .)_string
variables and an HTTP GET only returns URL variables, - . .

. . . The concat function returns the string concatenation of the
variables passed after the question mark in a URL. These . .

. . all parameters. Each parameter is converted to a string
variables may be both read and written, and you may create L

. S before it is used.

and use more variables than were initially passed to the 3.6.4 Date Function
script. This is where you would normally put all temporary 40 ~ . .

. . date([type,]p1)__object

script variables. :
The date function returns either a string or an int, given
Examples various types of input data, and possibly a type parameter. If
the type parameter is not specified then “short” is assumed.
45 Long
Returns a string formatted as follows: Weekday, Month
var.user Access the variable called user dd, yYVy.
var.name Access the variable called name Short
Returns a string formatted as follows: yyyy-mm-dd.
3.6 Global Functions 50 Sql]]

There are many functions that can be accessed globally, Returns a string for use in an SQL statement formatted as
i.e. without using an object to access them. Below is a follows: .{d yyyy-mmm-dd’}. This variation is requlred.for
summary. all SQL insert or update statements where the field type is a

date or date/time.
<5 3.6.5 Div Function
div(pl, p2 . ..)_int
Category Function Purpose The div function returns the quotient of p1 divided by p2.
Boolean And Boolean and If there are more parameters each is diV.ided into the quo-
Not Boolean negation tient. Each parameter is converted to an integer before it is
Or Boolean or used.
o ; . 60
Conditional Eq Equality comparison 3.6.6 Eq Function
Ge Greater than or equal to comparison e
Gt Greater than comparison eq(pl, p2)7boolean
It Conditional, switched result The eq function returns true if the two parameters are the
i:’ 555 tﬁan or equal to comparison same. A good attempt is made to convert the second param-
N 88 than companson 65 eter to the same type as the first before comparison.
e Not equal comparison it
Conversion Date Date conversion 1 3.6.7 Ge Function

ge(pl, p2)_boolean

US 6,470,349 B1

23

The ge function returns true if pl>=p2. A good attempt is
made to convert the second parameter to the same type as the
first before comparison.

3.6.8 Gt Function

ge(pl, p2)_boolean

The ge function returns true if pl>p2. A good attempt is
made to convert the second parameter to the same type as the
first before comparison.

3.6.9 Html Function

html([noTags,] p1)_string

The html function converts the to HTML format. Its does
this by looking for certain characters and converting them to
the proper HTML tags. If noTags is specified then it is
assumed that the input text contains no HTML, so anything
resembling HTML is fixed. You will probably use this
function heavily for scripts designed for the web, unless you
store HTML directly in your database. Here are the conver-
sions that take place within this function:

10

15

24

3.6.16 Length Function

length(p1)__int

The length function returns the length of pl. P1 is
converted to a string before it is used.
3.6.17 Limit Function

limit(pl, p2)_string

The limit function returns the truncation of the pl if its
length is greater than p2. P1 is converted to a string and p2
is converted to an int before they are used.
3.6.18 LowerCase Function

lowerCase(pl)_string

The lowerCase function converts all characters of p1 to
lower case and returns it.
3.6.19 Lt Function

1t(p1, p2)_boolean

The It function returns true if pl<p2. A good attempt is
made to convert the second parameter to the same type as the
first before comparison.

From To Conditions and Comments

\r, \n, or \r\n

\t

<sp><sp>... ...<sp> <sp> means a space character

< < If no Tags is specified

> &agt; If no Tags is specified

& &

; ;

* Unordered list; must begin a line
w*E Higher level lists; must begin a line
 Ordered list; must begin a line

 Higher level lists; must begin a line
) <blockquote> Indented block

R <blockquote><blockquote> Higher level indents; must begin a line
(© © ©

® ® ®

(tm) <small>TM</small> ™

(sm) <small>SM</small> 5™

3.6.10 If Function

if(p1, p2, p3)_boolean

The if function converts p1 to a boolean and returns p2 if
pl evaluates to true, or p3 otherwise.
3.6.11 IndexOf Function

indexOf(pl1, p2)_int

The indexOf function returns the index of the p2 if found
within p1l. Both parameters are converted to strings before
they are used. If p2 is not found within pl then -1 is
returned.
3.6.12 Int Function

int(p1[, p2, p3]_int

The int function converts pl to an integer. If p2 and p3 are
specified then pl will be range checked. If pl is below p2
then the result will be p2. If pl is above p3 then the result
will be p3.
3.6.13 IsDate Function

isDate(pl)__boolean

The isDate function returns true if pl is or can be
converted to a date.
3.6.14 IsNull Function

isNull(p1)_ boolean

The isNull function returns true if pl is null.
3.6.15 Le Function

le(pl, p2)_boolean

The le function returns true if pl<=p2. A good attempt is
made to convert the second parameter to the same type as the
first before comparison.

45

50

55

60

65

3.6.20 Mod Function

mod(pl, p2 . ..)_int

The mod function returns the remainder of pl divided by
p2. If there are more parameters each is divided into the
previous remainder resulting in new remainder. Each param-
eter is converted to an integer before it is used.
3.6.21 Mul Function

mul(pl . . .)_int

The mul function returns the product of all the parameters.
Each parameter is converted to an integer before it is used.
3.6.22 Ne Function

ne(pl, p2)_boolean

The ne function returns true if the two parameters are not
the same. A good attempt is made to convert the second
parameter to the same type as the first before comparison.
3.6.23 Not Function

not(pl)__boolean

The not function returns the boolean negation of p1. P1 in
converted to a boolean before its used.
3.6.24 Now Function

now()__time

The now function returns the current time of day.
3.6.25 Or Function

or(pl . ..)_boolean

The or function returns the boolean or of all its param-
eters. Each parameter converted to a boolean before it’s
used.

US 6,470,349 B1

25

3.6.26 Quote Function

quote(pl)_string

The quote function returns pl as a string with single
quotes around it, or the word NULL if p1 is null.
3.6.27 Strip Function

strip(links, pl)_string

The strip function returns pl with all hyperlinks URLs,
domain names and image tags removed from it. P1 is

converted to a string before it is used.
3.6.28 Sub Function

sub(pl, p2 . . .)_boolean

The sub function subtracts all other parameters from pl
and returns the result. Each parameter converted to an int
before it’s used.

3.6.29 Today Function

today()_ date

The today function returns the current date.
3.6.30 UpperCase Function

upperCase(pl)_ string

The upperCase function converts all characters of pl to
upper case and returns it.

3.6.31 Url Function

url(pl)_string

The url function formats p1 as a string with characters that
are not allowed in a URL converted to %hex. Use this when
you need to put a field value into an HTML URL.

xor(a, b), neg(a)

These functions will take the place of in-line operators,
which I’'m also planning to add, eventually. They will return
int, float, or boolean results based on their input parameters.

time([<time format>,]<value>)

The time function returns the current time as a formatted
string, or an integer in a few cases. The variation you choose
specifies what the result will look like.

short: 2:32 PM (This is the default)
medium: 2:32:15 PM

long: 2:32:15 PM MDT

hour: 2 (integer)

hour24: 14 (integer)

minute: 32 (integer)

second: 15 (integer)

ampm: PM

sql: {t ‘14:32:15°}

float(data, [digits])_ float

10

15

20

25

30

35

40

45

26

This function converts the data to a floating point number.
If you specify another parameter then the number will be
truncated to that number of digits after the decimal point.

quotes(string)_ string

This is the same a quote but it returns its parameter in
double quotes, “ ”.

The present invention may be embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative, and not restrictive. The scope
of the invention is, therefore, indicated by the appended
claims, rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed is:

1. A computer system comprising one Or more server
computers, said one or more server computers comprising a
display portion, a central processing unit portion, an input
portion, an output portion, and one or more memory
portions, wherein said one or more memory portions of said
one or more server computers comprising:

software for loading a mixed-format script file, said
mixed-format script file containing HTML scripts and
non-HTML script commands, wherein said software
for loading said mixed-format script file is capable of
loading a HTML file;

software for designating specific tags within said mixed-
format script file, wherein said software for designating
allows for inclusion of a stripping tag which corre-
sponds to a HTML tag pair; and

software for stripping script associated with said desig-
nated tags from said mixed-format script file, wherein
said software for stripping strips designated HTML
tags from said mixed-format script file, wherein said
software for stripping strips designated HTML tags and
any additional script between said designated HTML
tags from said mixed-format script file, wherein said
software for stripping removes said HITML tag pair and
removes associated script which is associated with said
HTML tag pair when said mixed-format script file is
interpreted, and wherein said designated tags are
replaced dynamically upon a command execution when
said mixed-format script file is requested by a browser
and executed by said one or more server computers.

#* #* #* #* #*

