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A user interface technique operates in the environment of a 
processor-controlled machine for executing a program that 
operates on a set of underlying data and displays a visible 
representation thereof. The user simultaneously and inde 
pendently moves the tools with one hand. normally the 
non-dominant hand (e.g.. a right-handed user’s left hand) 
and operates on the visible representation with the other. 
nonnally the dominant hand. In a speci?c implementation. 
the input devices include a trackball for positioning the tools 
and a mouse for positioning a cursor and initiating actions. 
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: 1. Introduction 

: Interfaces based on use and keyboard have become dominant in recent years. 
Format Except during typing. these interfaces make a very uneven use of the user's two 
B d n general. th strong (dominant) hand (i.e., the right hand for right-handed 
0 y takes of a ri h interaction with the mouse, while the weak (non 

, orninanl) hand is rel gated to occasionally holding down a modi?er key. 
I 

i There is little opportunity in such interfaces to perform independent tasks 
' simultaneously. Furthermore, the dominant hand spends time switching from one 
: task to another more often than is necessary. 
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USER INTERFACE HAVING 
SIMULTANEOUSLY MOVABLE TOOLS AND 

CURSOR 

This is a Continuation of application Ser. No. 08/095591 
?led Jul. 21. 1993. now abandoned. 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

The following three commonly-owned copending 
applications. including this one. are being ?led concurrently 
and the other two are incorporated by reference into this one: 

Eric A. Bier and William A. S. Buxton. entitled “USER 
INTERFACE HAVING MOVABLE SHEET WITH 
CLICK-THROUGH TOOLS” (Attorney Docket 13188-68. 
Xerox Docket D/92492); 

William A. S. Buxton and Eric A. Bier. entitled “USER 
INTERFACE HAVING SIMULTANEOUSLY MOVABLE 
TOOLS AND CURSOR” (Attorney Docket 13188-69. 
Xerox Docket D/92492Q); and 

Eric A. Bier. William A. S. Buxton. and Maureen C. 
Stone. entitled “USER INTERFACE HAVING CLICK 
THROUGH TOOLS THAT CAN BE COMPOSED WITH 
OTHER TOOLS” (Attorney Docket 13188-70. Xerox 
Docket D/92492Q1). 

BACKGROUND OF THE INVENTION 

The present invention relates generally to processor 
controlled machines such as computers and more speci? 
cally to user interfaces for allowing a user to interact with 
the machine. 
A frequent use of a processor-controlled machine such as 

a computer is to communicate information to a user of the 
machine and accept information from the user. thereby 
allowing the user to perform a speci?ed task. Depending on 
the task at hand. the user will often make use of a task 
speci?c application program such as a word processor 
(sometimes referred to as a text editor). a spreadsheet. a 
database. or a drawing program (sometimes referred to as a 
graphics editor). Areference to a speci?c type of program or 
editor is not intended to imply a stand-alone application 
program having only the particular functionality. since many 
programs have more than one type of functionality. 
A typical application program consists of a set of instruc 

tions (the “application”) that are executed in response to 
input signals to create and modify associated data 
(sometimes referred to as the underlying data). In many 
instances. this associated data is stored on a disk as a data ?le 
(sometimes referred to as “the ?le"). and portions are read 
into memory during program execution. For at least some 
applications. the data represents a document that is to be 
viewed (e.g.. printed or displayed on a screen). and the 
application allows a user to modify the document. 

In many instances. a user provides at least some of the 
input signals through one or more input devices. often a 
keyboard and a pointing device such as a mouse. By way of 
background. a mouse is a device that is moved over a work 
surface. typically next to the keyboard. and provides posi 
tion signals so as to cause a cursor on the screen to move in 
accordance with the mouse’s movements. The cursor is a 
special symbol that is used by an interactive program as a 
pointer or attention-focusing device. The mouse contains 
one or more pushbutton switches (“buttons”) to provide 
additional input signals. which may be interpreted as part of 
a cursor event. 

15 

25 
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65 

2 
A display device. typically a visual display device such as 

a cathode ray tube (CRT) or a liquid crystal display (LCD). 
provides the user with information about the application and 
the underlying data. and allows the user to generate appro 
priate input signals and thus control the operation of the 
machine to produce the intended work product. The com 
bination of input devices. display devices. and the nature of 
the information that the application provides the user may be 
thought of as the user interface to the application. 

Although it is in principle possible for every application 
program to be entirely self-sufficient. it is almost universally 
the case that the application program executes in conjunc 
tion with an operating system (“OS”). The OS is a program 
that schedules and controls the machine resources to provide 
an interface between the application programs and the 
machine hardware. The OS typically provides the basic 
housekeeping functions that all application programs are 
likely to require. such as maintaining a ?le system. sched 
uling the CPU. receiving input from input devices. commu 
nicating with storage devices. sending data to display 
devices. and providing a generic mechanism according to 
which a user can manage ?les and cause various applications 
to execute. In the world of personal computers (“PCs") and 
workstations. operating systems are often associated with a 
particular type of hardware con?guration. but this is not 
necessarily the case. Unix is an example of an OS that has 
been ported to run on many types of machine. 

One type of operating system that has come into increas 
ing use in recent years provides a graphical user interface 
(“GUI”). Apple Computer’s Macintosh OS. IBM’s 08/2. 
and Microsoft’s Windows (actually a GUI shell that runs on 
top of a character-based operating system known as DOS) 
are the best known GUIs in the PC realm The Macintosh OS 
has to date been available only on Apple’s own Macintosh 
PCs based on the Motorola 680x0 family of microprocessors 
while 05/2 and Windows have only been available on 
so-called [BM-compatible PCs based on the Intel 80x86 
family of microprocessors. This trend is in the process of 
changing. with Microsoft's Windows NT having versions 
capable of running on more than one type of microprocessor. 
One relevant aspect of a GUI is that an open ?le for a 

given application is typically given a window. which is a 
movable and resizable region on the screen. The OS can 
have its own windows showing directory structures. with 
files and applications possibly being represented by icons 
(small graphical objects representing actions or items). 
There may be other windows that do not correspond to open 
?les. An advantage of a GUI is that it provides a rather 
consistent user environment across applications. Some GUIs 
allow multiple applications to be open at the same time. 

Regardless of the type of OS. the application program. 
with varying amounts of help from the OS. typically pro 
vides the user with a visible representation (sometimes 
referred to as the “screen image” or the “display image”) of 
the underlying data. The user acts on the visible 
representation. and the program translates these actions to 
operations on the underlying data. As used herein. the term 
“visible representation” will refer to the visual representa 
tion of the underlying data not only for application 
programs. but for all ldnds of programs. including the OS 
and various types of utility programs. 

For example. in a word-processor. the underlying data 
consists of text with associated information specifying how 
the document will look when it is printed out on a printer. 
The associated information relates to document layout such 
as paragaphs and columns. and to text attributes such as 
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font. size. style. and color. Depending on the particular 
word-processor and the operating system. the screen image 
may be limited to the text content. or may show the 
document substantially as it will appear when printed 
(WYSIWYG—pronounced “wizzywig." an acronym for 
‘What you see is what you get”). A program designed for a 
character-based OS such as DOS is likely to provide some 
thing approaching the forrner. one designed for a GUI is 
likely to provide something approaching the latter. 
A s'unilar range of possible screen images will be found in 

other types of application programs. For example. in a 
drawing program. the underlying data will contain a descrip 
tion of each graphical object that will appear on the docu 
ment. The description includes what is needed to give the 
object its intended appearance. including shape. size. line 
color and thickness. ?ll color and pattern. relative position in 
the plane of the document. and stacking order (whether the 
object is in front of or behind other objects). The screen 
image may show only the outlines of the objects (wireframe 
view) or may be a full WYSIWYG view. 

Regardless of the type of application. the user manipu 
lates input devices with reference to the screen image in 
order to effect desired changes. This is typically done by 
placing a cursor at a particular position on the screen that 
corresponds to the displayed location of an object to be 
modi?ed. and executing one or more user events such as 
keystrokes or mouse actions. Mouse actions include button 
depression. button release. mouse movement. clicks. and 
drags. A mouse click refers to the user depressing and 
releasing one of the buttons without moving the mouse. but 
the term is also used to refer to the act of depressing one of 
the buttons. A drag (or sometimes click-and-drag) refers to 
the user positioning the cursor with the mouse. depressing 
one of the buttons. moving the mouse to a new position with 
the button still down. and releasing the button at the new 
location. The effect of mouse button depressions. mouse 
button releases. clicks. and drags may be modi?ed by 
holding down a keyboard key or a diiferent mouse button (if 
present). 

For example. placing a cursor at a particular location in a 
word processor image may operate to insert typed text at that 
location. Dragging the cursor over a portion of the displayed 
text may select the text (shown on the screen as highlighted) 
so that the user can apply an operation (such as deleting. 
moving. or changing the font) to the selected text by some 
other mechanism. Depending on the application and the 
desired operation. the mechanism may be selecting the 
operation from a menu or entering a command from the 
keyboard. 

Similarly. in a drawing program. the cursor em be placed 
in a mode by clicking on a tool icon (e.g.. rectangle tool. line 
tool. polygon tool) so that subsequent clicks and drags with 
the cursor result in the creation of graphical objects. Click 
ing on an existing object with a plain cursor may result in 
selecting the object so that an operation may be applied via 
some other mechanism. If a drag is initiated with the cursor 
on an object. the result of the drag may be to cause the object 
to move along with the cursor. or may be to cause the object 
to be resized. depending on the cursor location on the object. 

For users to be more productive. they should be provided 
with tools that are relatively easy to learn. easy to use. and 
powerful. These goals are sometimes easy to achieve 
individually. but rarely in combination. Nevertheless. con 
siderable e?orts have been expended in attempts to design 
user interfaces that are more intuitive. e?icient. and versa 
tile. The example discussed below. taken from the realm of 
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drawing programs. shows the direction in which some of 
these e?orts have led. and the way that improving one aspect 
of a user interface can degrade another. 
A common configuration for drawing programs has a 

?xed tool palette to one side of the drawing area and a menu 
bar above the drawing area. To change tools. the user moves 
the cursor to the palette. clicks on the icon for the desired 
tool. and moves the cursor back to the appropriate location 
in the drawing area. To etfect a desired operation on a 
desired object. the user moves the cursor to the object. clicks 
the object to select the object. moves the cursor to the menu 
bar. depresses the mouse button to pull down the menu. 
drags to the desired menu item. and releases the mouse 
button. The user then moves the cursor to the drawing area. 
to another item in the menu bar. or to the tool palette. This 
is a lot of mouse movement for even the simplest actions. 

Tear-off menus and movable tool palettes allow the user 
to position what amount to pm'manently open menus and the 
tool palette near the area where drawing is actively 
occurring. and thereby reduce the length of mouse travel. 
Tear-off menus and movable palettes have made drawing 
more e?icient in the sense of reducing the distances the user 
has to move the cursor. but have made it less e?cient in 
another. They tend to take up a lot of the drawing area. 
especially near where the user is drawing. This can result in 
the user’ 5 constantly having to interrupt the drawing tasks to 
move the menus and palettes out of the way. This di?iculty 
is compounded by the fact that as programs have gotten 
more powerful (geater functionality). the menus have 
grown longer and take up even more area. Unfortunately. 
this example of the trade-otfs encountered in trying to meet 
the above goals is far from rare. 

SUNIMARY OF THE INVENTION 

The present invention provides a user interface technique 
that allows a user to perform many common tasks with fewer 
actions. thereby signi?cantly enhancing productivity. The 
technique makes use of adions with which the user tends to 
be familiar. and therefore may be learned rather quickly. The 
invention may be implemented in the context of a single 
program. or may be incorporated into the operating system 
so as to be available across different programs. including the 
operating system. 
The invention operates in the environment of a processor 

controlled machine for executing a program that operates on 
a set of underlying data and displays a visible representation 
thereof. The system further provides a visual depiction of a 
set of controlla's. such as tool palettes. property palettes. 
menus. switches. dialog boxes. and sliders. The controllers 
are collectively referred to as tools. and in some embodi 
ments include transparent click-through tools that are placed 
over objects on which they are to operate. The user normally 
speci?es operations to the program by interacting with the 
tools and the visible representation (using a set of input 
devices). and views the results of those operations on a 
display device. 
The invention is characterized by allowing the user to 

simultaneously and independently move the tools with one 
hand. normally the non-dominant hand (e.g.. a right-handed 
user‘s left hand) and operate on the visible representation 
with the other. normally the dominant hand. As used herein. 
the term “visible representation” refers to the visual repre 
sentation of underlying data produced by a program. which 
may be an application program or any other type of program. 
including the OS. 
The simultaneous and independent movement of the tools 

and operation on the visible representation is preferably 










































