
United States Patent [19]
Buxton et al.

‘ {1300579375211 ‘

5,798,752
Aug. 25, 1998

[11] Patent Number:

[45] Date of Patent:

[54] USER INTERFACE HAVING
SIMULTANEOUSLY MOVABLE TOOLS AND
CURSOR

[75] Inventors: Willaim A. S. Bnxton. Toronto.
Canada; Eric A. Bier. Mountain View.
Calif.

[73] Assignee: Xerox Corporation. Stamford. Conn.

[21] Appl. N0.: 398,420

[22] Filed: Feb. 27, 1995

Related US. Application Data

[63] Continuation of Ser. No. 95,591, Jul. 21, 1993, abandoned.

[51] Int. Cl.6 G09G 5/08

[52] US. Cl. 345/146; 345/113; 345/157
[58] Field of Search 345/145. 146.

345/113, 156. 161. 163. 167. 157; 395/159

[56] References Cited

U.S. PATENT DOCUMENTS

Re. 32,632 3/1988 Atkinson 340/709
4,555,775 1l/1985 Pike 364/900

4,622,545 11/1986 Atkinson 340/747

4,686,522 8/1987 Hernandez et al. 345/146
4,748,441 5/1988 Brzezinski 345/161

4,788,538 11/1988 Klein et al. 340/747
4,827,253 5/1989 Maltz 345/113

4,896,291 1/1990 Gest et a1. . 364/900
4,910,683 3/1990 Bishop et a1. . . 364/518
4,917,516 4/1990 Retter 345/163

4,931,783 6/1990 Atkinson 345/146

4,982,343 1/1991 Hourvilz et al .. 345/113
5,157,384 10/1992 Greanias et a1 . 340/706
5,204,947 4/1993 Bernstein et a1 . 345/146
5,250,929 10/1993 Ho?‘man et al 345/146
5,276,797 1/1994 Bateman et a] 345/145

$283,560 2/1994 Bartlett 345/902

5,287,417 2/1994 Eller et al. 382/41

5,341,466 8/1994 Perlin et al. 395/139

5.381.158 1/1995 Takahara et al. 345/156

OTHER PUBLICATIONS

Canvas 3.0 User Guide: Chapter 1 ("The Fundamentals”). p.
2; and Section 19 (Reference), pp. 14-18. 59-60. 69-70.
90-91. 97-98. 100-102. 130. 150-151. 171-172. 173-174.
181-182. 189-197. 300 (Jun. 15. 1991 (Deneba Software.
Miami. FL)).
Bartlett. Joel F. ‘Transparent Controls for Interactive Graph
ics.” WRL Technical Note TN-30. Digital Equipment Cor
poration. Jul. 1992. pp. 1-9.
Brown et al.. “Windows on tablets as a means of achieving
virtual input devices.” In D. Diaper et al. (Eds). Human
-Computer lnteraction—lnteract ’90. Amsterdam: Elsevier
Science Publishers B.V. (North Holland). 675-681 (1990).
Hardock. Gary. “Design issues for line-driven text editing/
Annotation Systems." 11715 Graphics Interface 1991. 3-7
Jun. 1991. Calgary (1991) Toronto. ON. CA. pp. 77-84.
Macintosh “Macpaint”, 1983.

(List continued on next page.)

Primary Examiner-Regina Liang
Attorney Agent, or Firm—Townsend and Townsend and
Crew LLP

[57]

A user interface technique operates in the environment of a
processor-controlled machine for executing a program that
operates on a set of underlying data and displays a visible
representation thereof. The user simultaneously and inde
pendently moves the tools with one hand. normally the
non-dominant hand (e.g.. a right-handed user’s left hand)
and operates on the visible representation with the other.
nonnally the dominant hand. In a speci?c implementation.
the input devices include a trackball for positioning the tools
and a mouse for positioning a cursor and initiating actions.

ABSTRACT

27 Claims, 16 Drawing Sheets

12 25

PROCESSOHI l KEYBOARD I
15

17 ,20

MEMORY I IFILE STORAGE’

5,798,752
Page 2

OTHER PUBLICATIONS

Eric A. Bier and Maureen C. Stone. Snap-Dragging. In
Proceedings of Siggraph ’86 (Dallas. Aug.). Computer
Graphics. vol. 20. No. 4. ACM. 1986. pp. 233-240.
Eric A. Bier. Snap-Dragging: Interactive Geometric Design
in Two and Three Dimensions. Xerox PARC Technical
Report EDL-89-2 (Sep. 1989). Also available as Report No.
UCB/CSD 88/416. Apr. 28. 1988. Computer Science Divi
sion. Department of Electrical Engineering and Computer
Science. University of California. Berkeley. CA 94720.
Eric A. Bier and Aaron Goodisman. Documents as User
Interfaces. In R. Furuta (ed). EP90. Proceedings of the
International Conference on Electronic Publishing. Docu
ment Manipulation and Typography. Cambridge University
Press. 1990. pp. 249-262.
Eric A. Bier. EmbeddedButtons: Documents as User Inter
faces. In Proceedings of the ACM SIGGRAPH Symposium
on User Interface Software and Technology (Hilton Head.
South Carolina. Nov.). ACM. 1991. pp. 45-53.
Eric A. Bier and Steve Freeman. MMM: A User Interface
Architecture for Shared Editors on a Single Screen. In
Proceedings of the ACM SIGGRAPH Symposium on User
Interface Software and Technology (UIST ‘91 Hilton Head.
South Carolina. Nov. 11-13). ACM. 1991. pp. 79-86.
Eric A. Bier. EmbeddedButtons: Supporting Buttons in
Documents. Xerox PARC Technical Report ISI‘L -ADo
c-Oct. 1. 1992 (Oct. 1992). Also available in ACM Trans
actions on Information Systems. vol. 10. No. 4. Oct. 1992.
pp. 381-407.
Paul M. English. Ethan S. Jacobson. Robert A. Morris.
Kimbo B. Mundy. Stephen D. Pelletier. Thomas A. Polucci.
and H. David Scarbro. An Extensible. Object-Oriented
System for Active Documents. In R. Furuta (ed). EP90.
Proceedings of the International Conference on Electronic
Publishing. Document Manipulation and Typography. Cam
bridge University Press. 1990. pp. 263-276.
David Goldberg and Aaron Goodisman. Stylus User Inter
faces for Manipulating Text. In Proceedings of the ACM
Symposium on User Interface Software and Technology
(UIST ’91. Hilton Head. South Carolina. Nov.). ACM 1991.
pp. 127-135.
Don Hopkins. The Design and Implementation of Pie
Menus. Dr. Dobb’s Journal. vol. 16. No. 12. Dec. 1991. pp.
16-26.
David Kurlander and Steven Feiner. Interactive Constraint
-Based Search and Replace. In Proceedings of CHI ‘92
(Monterey. California. May 3-7. 1992). Human Factors in
Computing Systems. ACM. New York. 1992. pp. 609-618.
Gordon Kurtenbach and William Buxton. Issues in Com
bining Marking and Direct Manipulation Techniques. In
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST ’91 Hilton Head. South
Carolina. Nov. 11-13). ACM. 1991. pp. 137-144.

J. K. Ousterhout. Tcl: An Embeddable Command Language.
In winter USENIX Conference Proceedings. 1990. pp.
133-146.

Ken Pier. Eric A. Bier. and Maureen C. Stone. An Introduc
tion to Gargoyle: An Interactive Illustration Tool. Xerox
PARC Technical Report EDL-89-2 (Jan. 1989). Also avail
able in Proceedings of the Intl. Conf. on Electronic Publish
ing. Document Manipulation and Typography (Nice. France.
Apr. 1988). Cambridge Univ. Press. (1988). pp. 223-238.
Dean Rubine. Specifying Gestures by Example. In Proceed
ings of ACM SIGGRAPH ‘91. Computer Graphics. vol. 25.
No. 4. Jul. 1991. pp. 329-337.

Daniel C. Swinehart. Polle T. Zellweger. Richard J. Beach.
Robert B. Hagmann. A Structural View of the Cedar Pro
gramming Environment. Xerox PARC Technical Report
CSL-86-1. Also available as ACM Transactions on Pro
gramming Languages and Systems. vol. 8. No. 4. 1986. pp.
419-490.

David Kurlander and Eric A. Bier. Graphical Search and
Replace. Computer Graphics. vol. 22. No. 4. Aug. 1988. pp.
113-120.

Myron W. Kmeger. Thomas Gionfriddo. and Katn'n Hin
richsen. Videoplaoe-An Arti?cial Reality. CHI ’85 Pro
ceedings. Apr. 1985. pp. 35-40.

Alto User’s Handbook. Chapter 4 (Markup User’s Manual).
Xerox Corporation Sep. 1979. pp. 85-95.

Ken Perlin and David Fox. Pad An Alternative Approach to
the Computer Interface. Proceedings of Siggraph ’93 (Ana
heim. California Aug. 1-6. 1993) Computer Graphics Pro
ceedings. Annual Conference Series. pp. 57-64.

Manojit Sarkar and Marc H. Brown. Graphical Fisheye
Views of Graphs. CHI ’92 Proceedings. May 3-7. 1992. pp.
83-91.

William Buxton and Brad A. Myers. A Study in Two
-Handed Input. CHI ’86 Proceedings. Apr. 1986. pp.
321-326.

Joel F. Bartlett. Transparent Controls for Interactive Graph
ics. WRL Technical Note TN-30. Digital Equipment Cor
poration. Jul. 1992. pp. 1-9.

Paul Kabbash. I. Scott MacKenzie and William Buxton.
Human Performance Using Computer Input Devices in the
Preferred and Non-Preferred Hands. Proceedings of Inter
Chi Conference (Human Factors in Computing Systems)
(Amsterdam Apr. 1993) ACM. pp. 474-481.
William Buxton. There’s More to Interaction Than Meets
the Eye: Some Issues in Manual Input. Chapter 8: The
Haptic Channel. pp. 366-375 (from Readings in Human
Computer Interaction: A Multidisciplinary Approach. Mor
gan Kaufman Publishers. Inc. 1987).

US. Patent Aug. 25, 1998 Sheet 1 of 16 5,798,752

human-wanna...‘
I III

I

\\¥ : k
I I- _ _

27 j
I

{12 ,25
PROCESSOR KEYBOARD

; A

‘\ v r15 I v \
‘ A A 7

I r17 v (20

/ MEMORY FILE STORAGE
10

FIG. 1

,/B3
DISPLAY IMAGE

/30 [73
IMAGE DATA STRUCTURE IMAGE DATA STRUCTURE

FOR OVERLAY 82 FOR PROGRAMS
A A

/77 (72
RENDERER RENDERER

A A

('75 (7O
UNDERLYING DATA UNDERLYING DATA
FOR OVERLAY FOR PROGRAMS

FIG. 2

US. Patent Aug. 25, 1998 Sheet 2 0f 16 5,798,752

RAW DEVICE DRAG AND DROP ANOTHER ANOTHER
INPUT (OS) OBJECT OVERLAY APPLICATION

A

, (85
OVERLAY

I

,92
WINDOW

UNIVERSAL MANAGER
LANGUAGE

/93 ,97

TRANSLATOR #1 TRANSLATOR #2

I A

APP. #1 APP. #2
INPUT INPUT

LANGUAGE LANGUAGE
r95 r98

APPLICATION PROCEDURE APPLICATION PROCEDURE
PARSER #1 CALLS PARsER #2 CALLs

PROCEDURE PROCEDURE
CALLs CALLS

{a7 ,88

APPLICATION #1 APPLICATION #2

FIG. 3

5,798,752

\\\§

Sheet 3 of 16

b\\\

Aug. 25, 1998 US. Patent

"Copy “Delete, mav'e'

US. Patent Aug. 25, 1998 Sheet 4 0f 16 5,798,752

SUMLIA RY OF THE INVENTION
1 use: interface .___), The present invention provides a user interface

many common technique allows a use(to pufonn many common
enhmcing tasks with ct actions, themby signi?cantly enhanc'

technique that allows a uset to

productivity. The technique makes use of actions wi productivity, The technique makes of actions wi
which the user tends to be Familiar, and therefot'e In: which the user tend: to be familiar. therefore may be
learned rather quickly. learned rather quickly.

[J
Y

FIG. 8

"é i Q?

f L

US. Patent

‘ Line

‘ l Color

Aug. 25, 1998 Sheet 5 0f 16 5,798,752

' '- -J-—:— l: —> i i 5E
l__:____-| “

SelectVertex
J

,J" ,Ih,
____> Shape il \ __+ AU”

US. Patent Aug. 25, 1998 Sheet 6 of 16 5,798,752

US. Patent Aug. 25, 1998 Sheet 7 0f 16

lllwlluim. |||||| ... §
-- NW. N m H W “W %

Y
G 1

FIG. 20

o ¢ ' a ~ u u u a a - o - n u Q

a n ‘ I - - . o | - I l I | l l I I I IJ

n a a - . o - n

US. Patent Aug. 25, 1998 Sheet 8 0f 16 5,798,752

Coords .00 5. Coords Coords .
Slope ,k Slope Slope 150
Length Length Length
Angle ———> Angle ——> Angle

I I I
I I l

c’ i ‘j;

: 1. Introduction

: Interfaces based on use and keyboard have become dominant in recent years.
Format Except during typing. these interfaces make a very uneven use of the user's two
B d n general. th strong (dominant) hand (i.e., the right hand for right-handed
0 y takes of a ri h interaction with the mouse, while the weak (non

, orninanl) hand is rel gated to occasionally holding down a modi?er key.
I

i There is little opportunity in such interfaces to perform independent tasks
' simultaneously. Furthermore, the dominant hand spends time switching from one
: task to another more often than is necessary.

US. Patent Aug. 25, 1998 Sheet 9 of 16 5,798,752

FIG. 26

789+

134.756"

FIG. 27

3*
abcdefghijklmno

abcdefghijkllgin ABCDEFG
._ abodefghijkimnopqrs

ABCDEFGHIJKLMN

abcdefghijklmno

w,» @M MMM
FIG. 28

FIG. 29

US. Patent Aug. 25, 1998 Sheet 10 of 16

:\
F',,"“|| Thisdocunem
I |..__| conlainsloxt
|__|____| andgraphics.

l I l | I | I l I l IJ

FIG. 30

[ilk

FIG. 31

AND

FIG. 32

US. Patent

User input Routine

Aug. 25, 1998 Sheet 11 of 16

Receive
user
input.

Move the Overla
that is connecte
to this device as a
function of the
device movement.

is
input from

Overlay-moving
device?

Resize the oveday
that is connected
to this device as a
function of the
device movement.

Move cursor as
a function of the
device movement. cursor-moving

device’?

5,798,752

Pass event to the root
\ application and periorm the

Event To Application
Routine.

FIG. 33

US. Patent Sheet 12 of 16 Aug. 25, 1998

APP #1

5,798,752

A
OVERLAY #2 APP #4 OVERLAY #1 APP #3 APP #2

APP #38 APP #3A

FIG. 34A

OVERLAY #2

OVERLAY #1

FIG. 34B

APP #1

OVERLAY #2 APP #4 OVERLAY #1 APP #3 APP #2

/
APP #38 APP #3A

FIG. 34C

US. Patent

Event to Application Routine

Aug. 25, 1998 Sheet 13 of 16

Application,
A, receives V

Determine which child, C,
of a is an ancestor of or is
equal to P. Translate <x,y>
of E into the coordinate
system of 0. Pass event
to C.

is C
an overlay?

Perform the Event to
Overlay Routine.

it

belowChild[A] <— C

any program, P,
selected?

is

an event, E.

is
event

from a pointing
device?

Is
any program,
P, in gesture

mode?

Routine.

A handles the event
using the Translate
and Execute

A

Determine the frontmost
child, 0, of A that is behind
belowChild[A] and contains
coordinates <x,y> (if any
such C exists).

Does
such a child 0

exist?

FIG. 35

5,798,752

US. Patent Aug. 25, 1993 Sheet 14 of 16 5,798,752

Event to Overlay
Routine Overlay, 0,

receives point
ing event, E,

pass event to the too], Is Determine the trontmost tool, T,
T, that is the current 0 in gesture of O that is behind belowTool[O]
gesturemand?ng tool. mode? and contains coordinates <x,y>
T looks up E in its (If any such T exists)
event table to
determine the action,
A, to perform.

Let P be the parent program
of 0. Translate <x,y> of E
and any coordinates <x,y> in
E's command list, L, that are tag?
marked for translation, into '

'3 A the end,’ the coordinate system of P.
of a gesture- Pass event E to P. Pertomr

the Event to Application
Routine.

Pass E to T for processing.
Tum on gesture T looks up E inits event
mode for Q table to determine the

action, A, to perform.

Turn on gesture mode for 0,
making T be the current gesture
handling tool. Let the list of
gesture data points be empty.

\

v ’ Process the event by pertormng the
. . . Event to Tool Routine. The Event to

Add ""5 data pqmt to the "St 0’ Tool Routine may process the event
993m“? data po'ms- T may draw > further by recursively executing this
'mmed'ate user ‘eedback based flowchart, beginning at circle A above.
on the partial gesture.

FIG. 36

US. Patent Aug. 25, 1998 Sheet 15 of 16 5,798,752

EVent t0 TOO’ Let A be a data structure
' representing the action that

Routine T performs in response to E
as computed in the Event
to Overlay Routine.

Perform action A . . .

immediately. Perform Perform any 'nfqal user
any final user feedback. feedback spec'i'ed by A

Determine the frontmost
application, 0. that is
behind T's overlay, O,
and is of a type that T
knows how to
communicate with.

I

From A and coordinates
<x,y >, compose a .
Command to deliver to Q’ Extract from E the list of
and/or a set of cans to the commands, L, that were added to
procedures of 0. Deliver E by any tools that E has been
the commands and/or Passed *0 Previously (If any)
make the calls.

Compose a new list of Use the list of
commands from A and L . No Is L Yes commands that

. . . '2 using the Composition empty' is part of A.
Routine.

t_‘__
v

r Replace the list L in E with the new list
pemrm any final just computed. Set belowTool[O] <—T.
user feedback.

A ,

Recursively call the Event to Overlay
Routine entering at circle A. This routine
may return data (e.g., if T is a clipboard).
Use this data and perform any parts of
action A that T can perform.

FIG. 37

US. Patent Aug. 25, 1998 Sheet 16 0f 16 5,798,752

?lllnValue |::]
Command:

N v r

"GetSelected“ value: NIL
ready'i: FALSE -

‘ Lust of programs
condvar‘ ’ waiting for this value

FIG. 38A

filHnValue :1
TV v

value: > The actual shape
ready?: TRUE

condVar.

APP #1

OVERLAY #2 APP #4 OVERLAY #1 APP #3 APP #2

APP #38 APP #3A

APP #1

APP #3 APP #2

APP #38 APP #3A

FIG. 40

5.798.752
l

USER INTERFACE HAVING
SIMULTANEOUSLY MOVABLE TOOLS AND

CURSOR

This is a Continuation of application Ser. No. 08/095591
?led Jul. 21. 1993. now abandoned.

CROSS REFERENCE TO RELATED
APPLICATIONS

The following three commonly-owned copending
applications. including this one. are being ?led concurrently
and the other two are incorporated by reference into this one:

Eric A. Bier and William A. S. Buxton. entitled “USER
INTERFACE HAVING MOVABLE SHEET WITH
CLICK-THROUGH TOOLS” (Attorney Docket 13188-68.
Xerox Docket D/92492);

William A. S. Buxton and Eric A. Bier. entitled “USER
INTERFACE HAVING SIMULTANEOUSLY MOVABLE
TOOLS AND CURSOR” (Attorney Docket 13188-69.
Xerox Docket D/92492Q); and

Eric A. Bier. William A. S. Buxton. and Maureen C.
Stone. entitled “USER INTERFACE HAVING CLICK
THROUGH TOOLS THAT CAN BE COMPOSED WITH
OTHER TOOLS” (Attorney Docket 13188-70. Xerox
Docket D/92492Q1).

BACKGROUND OF THE INVENTION

The present invention relates generally to processor
controlled machines such as computers and more speci?
cally to user interfaces for allowing a user to interact with
the machine.
A frequent use of a processor-controlled machine such as

a computer is to communicate information to a user of the
machine and accept information from the user. thereby
allowing the user to perform a speci?ed task. Depending on
the task at hand. the user will often make use of a task
speci?c application program such as a word processor
(sometimes referred to as a text editor). a spreadsheet. a
database. or a drawing program (sometimes referred to as a
graphics editor). Areference to a speci?c type of program or
editor is not intended to imply a stand-alone application
program having only the particular functionality. since many
programs have more than one type of functionality.
A typical application program consists of a set of instruc

tions (the “application”) that are executed in response to
input signals to create and modify associated data
(sometimes referred to as the underlying data). In many
instances. this associated data is stored on a disk as a data ?le
(sometimes referred to as “the ?le"). and portions are read
into memory during program execution. For at least some
applications. the data represents a document that is to be
viewed (e.g.. printed or displayed on a screen). and the
application allows a user to modify the document.

In many instances. a user provides at least some of the
input signals through one or more input devices. often a
keyboard and a pointing device such as a mouse. By way of
background. a mouse is a device that is moved over a work
surface. typically next to the keyboard. and provides posi
tion signals so as to cause a cursor on the screen to move in
accordance with the mouse’s movements. The cursor is a
special symbol that is used by an interactive program as a
pointer or attention-focusing device. The mouse contains
one or more pushbutton switches (“buttons”) to provide
additional input signals. which may be interpreted as part of
a cursor event.

15

25

35

45

65

2
A display device. typically a visual display device such as

a cathode ray tube (CRT) or a liquid crystal display (LCD).
provides the user with information about the application and
the underlying data. and allows the user to generate appro
priate input signals and thus control the operation of the
machine to produce the intended work product. The com
bination of input devices. display devices. and the nature of
the information that the application provides the user may be
thought of as the user interface to the application.

Although it is in principle possible for every application
program to be entirely self-sufficient. it is almost universally
the case that the application program executes in conjunc
tion with an operating system (“OS”). The OS is a program
that schedules and controls the machine resources to provide
an interface between the application programs and the
machine hardware. The OS typically provides the basic
housekeeping functions that all application programs are
likely to require. such as maintaining a ?le system. sched
uling the CPU. receiving input from input devices. commu
nicating with storage devices. sending data to display
devices. and providing a generic mechanism according to
which a user can manage ?les and cause various applications
to execute. In the world of personal computers (“PCs") and
workstations. operating systems are often associated with a
particular type of hardware con?guration. but this is not
necessarily the case. Unix is an example of an OS that has
been ported to run on many types of machine.

One type of operating system that has come into increas
ing use in recent years provides a graphical user interface
(“GUI”). Apple Computer’s Macintosh OS. IBM’s 08/2.
and Microsoft’s Windows (actually a GUI shell that runs on
top of a character-based operating system known as DOS)
are the best known GUIs in the PC realm The Macintosh OS
has to date been available only on Apple’s own Macintosh
PCs based on the Motorola 680x0 family of microprocessors
while 05/2 and Windows have only been available on
so-called [BM-compatible PCs based on the Intel 80x86
family of microprocessors. This trend is in the process of
changing. with Microsoft's Windows NT having versions
capable of running on more than one type of microprocessor.
One relevant aspect of a GUI is that an open ?le for a

given application is typically given a window. which is a
movable and resizable region on the screen. The OS can
have its own windows showing directory structures. with
files and applications possibly being represented by icons
(small graphical objects representing actions or items).
There may be other windows that do not correspond to open
?les. An advantage of a GUI is that it provides a rather
consistent user environment across applications. Some GUIs
allow multiple applications to be open at the same time.

Regardless of the type of OS. the application program.
with varying amounts of help from the OS. typically pro
vides the user with a visible representation (sometimes
referred to as the “screen image” or the “display image”) of
the underlying data. The user acts on the visible
representation. and the program translates these actions to
operations on the underlying data. As used herein. the term
“visible representation” will refer to the visual representa
tion of the underlying data not only for application
programs. but for all ldnds of programs. including the OS
and various types of utility programs.

For example. in a word-processor. the underlying data
consists of text with associated information specifying how
the document will look when it is printed out on a printer.
The associated information relates to document layout such
as paragaphs and columns. and to text attributes such as

5.798.752
3

font. size. style. and color. Depending on the particular
word-processor and the operating system. the screen image
may be limited to the text content. or may show the
document substantially as it will appear when printed
(WYSIWYG—pronounced “wizzywig." an acronym for
‘What you see is what you get”). A program designed for a
character-based OS such as DOS is likely to provide some
thing approaching the forrner. one designed for a GUI is
likely to provide something approaching the latter.
A s'unilar range of possible screen images will be found in

other types of application programs. For example. in a
drawing program. the underlying data will contain a descrip
tion of each graphical object that will appear on the docu
ment. The description includes what is needed to give the
object its intended appearance. including shape. size. line
color and thickness. ?ll color and pattern. relative position in
the plane of the document. and stacking order (whether the
object is in front of or behind other objects). The screen
image may show only the outlines of the objects (wireframe
view) or may be a full WYSIWYG view.

Regardless of the type of application. the user manipu
lates input devices with reference to the screen image in
order to effect desired changes. This is typically done by
placing a cursor at a particular position on the screen that
corresponds to the displayed location of an object to be
modi?ed. and executing one or more user events such as
keystrokes or mouse actions. Mouse actions include button
depression. button release. mouse movement. clicks. and
drags. A mouse click refers to the user depressing and
releasing one of the buttons without moving the mouse. but
the term is also used to refer to the act of depressing one of
the buttons. A drag (or sometimes click-and-drag) refers to
the user positioning the cursor with the mouse. depressing
one of the buttons. moving the mouse to a new position with
the button still down. and releasing the button at the new
location. The effect of mouse button depressions. mouse
button releases. clicks. and drags may be modi?ed by
holding down a keyboard key or a diiferent mouse button (if
present).

For example. placing a cursor at a particular location in a
word processor image may operate to insert typed text at that
location. Dragging the cursor over a portion of the displayed
text may select the text (shown on the screen as highlighted)
so that the user can apply an operation (such as deleting.
moving. or changing the font) to the selected text by some
other mechanism. Depending on the application and the
desired operation. the mechanism may be selecting the
operation from a menu or entering a command from the
keyboard.

Similarly. in a drawing program. the cursor em be placed
in a mode by clicking on a tool icon (e.g.. rectangle tool. line
tool. polygon tool) so that subsequent clicks and drags with
the cursor result in the creation of graphical objects. Click
ing on an existing object with a plain cursor may result in
selecting the object so that an operation may be applied via
some other mechanism. If a drag is initiated with the cursor
on an object. the result of the drag may be to cause the object
to move along with the cursor. or may be to cause the object
to be resized. depending on the cursor location on the object.

For users to be more productive. they should be provided
with tools that are relatively easy to learn. easy to use. and
powerful. These goals are sometimes easy to achieve
individually. but rarely in combination. Nevertheless. con
siderable e?orts have been expended in attempts to design
user interfaces that are more intuitive. e?icient. and versa
tile. The example discussed below. taken from the realm of

20

25

35

45

50

SS

65

4
drawing programs. shows the direction in which some of
these e?orts have led. and the way that improving one aspect
of a user interface can degrade another.
A common configuration for drawing programs has a

?xed tool palette to one side of the drawing area and a menu
bar above the drawing area. To change tools. the user moves
the cursor to the palette. clicks on the icon for the desired
tool. and moves the cursor back to the appropriate location
in the drawing area. To etfect a desired operation on a
desired object. the user moves the cursor to the object. clicks
the object to select the object. moves the cursor to the menu
bar. depresses the mouse button to pull down the menu.
drags to the desired menu item. and releases the mouse
button. The user then moves the cursor to the drawing area.
to another item in the menu bar. or to the tool palette. This
is a lot of mouse movement for even the simplest actions.

Tear-off menus and movable tool palettes allow the user
to position what amount to pm'manently open menus and the
tool palette near the area where drawing is actively
occurring. and thereby reduce the length of mouse travel.
Tear-off menus and movable palettes have made drawing
more e?icient in the sense of reducing the distances the user
has to move the cursor. but have made it less e?cient in
another. They tend to take up a lot of the drawing area.
especially near where the user is drawing. This can result in
the user’ 5 constantly having to interrupt the drawing tasks to
move the menus and palettes out of the way. This di?iculty
is compounded by the fact that as programs have gotten
more powerful (geater functionality). the menus have
grown longer and take up even more area. Unfortunately.
this example of the trade-otfs encountered in trying to meet
the above goals is far from rare.

SUNIMARY OF THE INVENTION

The present invention provides a user interface technique
that allows a user to perform many common tasks with fewer
actions. thereby signi?cantly enhancing productivity. The
technique makes use of adions with which the user tends to
be familiar. and therefore may be learned rather quickly. The
invention may be implemented in the context of a single
program. or may be incorporated into the operating system
so as to be available across different programs. including the
operating system.
The invention operates in the environment of a processor

controlled machine for executing a program that operates on
a set of underlying data and displays a visible representation
thereof. The system further provides a visual depiction of a
set of controlla's. such as tool palettes. property palettes.
menus. switches. dialog boxes. and sliders. The controllers
are collectively referred to as tools. and in some embodi
ments include transparent click-through tools that are placed
over objects on which they are to operate. The user normally
speci?es operations to the program by interacting with the
tools and the visible representation (using a set of input
devices). and views the results of those operations on a
display device.
The invention is characterized by allowing the user to

simultaneously and independently move the tools with one
hand. normally the non-dominant hand (e.g.. a right-handed
user‘s left hand) and operate on the visible representation
with the other. normally the dominant hand. As used herein.
the term “visible representation” refers to the visual repre
sentation of underlying data produced by a program. which
may be an application program or any other type of program.
including the OS.
The simultaneous and independent movement of the tools

and operation on the visible representation is preferably

