D

7 SUNPLUS

SPCE SACM Library User’'s Manual v3.0
(For SACM V40)

03/30/2004

SUNPLUS TECHNOLOGY CO. reserves the right to change this documentation without prior notice. Information
provided by SUNPLUS TECHNOLOGY CO. is believed to be accurate and reliable. However, SUNPLUS
TECHNOLOGY CO. makes no warranty for any errors which may appear in this document. Contact SUNPLUS
TECHNOLOGY CO. to obtain the latest version of device specifications before placing your order. No
responsibility is assumed by SUNPLUS TECHNOLOGY CO. for any infringement of patent or other rights of third
parties which may result from its use. In addition, SUNPLUS products are not authorized for use as critical
components in life support devices/ systems or aviation devices/systems, where a malfunction or failure of the
product may reasonably be expected to result in significant injury to the user, without the express written approval

of Sunplus.

SUNPLUS TECHNOLOGY CO., LTD. 19, Innovation First Road, Science-Based Industrial Park, Hsin-Chu, Taiwan, R. O. C.
[] 886-3-578-6005 (0 886-3-578-4418 g Www.sunplus.com.tw

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

0 Table of Content

O TABLE OF CONTENT oottt ettt e e st e e s e e s s e b e b e et e e e ssas bbbt e e e e esssasabbbeseeesssasasrbaaasessssssee 2
1 REVISION HISTORY ..ttt ettt e e e ettt e e e e s e s bbb e et e e e e s e sb bbb et e e eesesabbeaeseessesabbbaeess 7
1.1 DOCUMENT HISTORY ...iiiiiiiiiieeitie et e ettt e et e ettt e e et ee e et e e e eaa e e e st e e e st e sebaeesatanaeesaneestnneesstnaaeernnns 7

1.2 LIBRARY HISTORY ..otuiiiiiiiiiiiiiiee it e e ie e ettt e e ettt e ettt e e et e e e et e e s e aa e e e st e e e st e s ebanaesataaessaneeestneessnnaaesrannes 7

2 TYPE OF SPEECH COMPRESSION ALGORITHM. ...ttt s e 8
2.1 SUMMARY ...iitiiiiiii et e et ee e et e e ettt e e ettt aeeeat e e e et e eessaaeeratnrerstnaeesstnanesssheesthn e herteeeetaeee haeeertnneaeeraraaes 8

2.2 NAMING CONVENTION ..uuuuiiitieeetteetetieeesteesssaeeeestaeeessnaeesssnsesssneeesnssssiesstberesneessssaeedbsntbersuneeessneerennneeens 8

2.3 ALGORITHM SUPPORTED BY SPCE ...t 000 et S L8 et e e 9

2.4 DIFFERENCE BETWEEN SACM V40 AND SACM V32 ..ot S et e e e et e e eaa e 9

3 AUTO MODE VS. MANUAL MODKE. ...ttt et D ittt ettt 11
Y L = AV L8 o O 1] L S T 12
5 MEMORY ALLOCATION ..ottt i 50ttt ettt e ettt e e e s s ettt e e e e e s s s s sb b ea e e e e s s ssbbbeteesesssassbabeeeseesas 17
6 API FOR SACM-ALB00cciiii e ittt e e sttt e e s e s s ebbabe e e s e s s s aababeeesesssasabbbeeaseessasbbbesesesssssabbabeeesessns 19
6.1 HARDWARE DEPENDENT FUNCTION:INITIALIZES SACM-ALB00ciiiiiiiiiieeeeeeeeeeeeee e 19

6.1.1 Function: Initialize the AL600 HBrary ..o s 19

6.2 SERVICE LOOP FUNCTIONS: SERVICE LOOP FOR SACM-A1600 DECODINGccvvunererieeeerneeeeiieeeerieeeennns 19

6.2.1 /Function: FOreground SErviCe I00P:......cccciiiiiiiecieicese e 19

6.2.2 Function: Background SErviCe l00P:cocccveiiiiieii e 19

6.3 PLAYBACK FUNCTIONS: PLAYBACK CONTROL ..ccuuuiiittuetetuneerstntererieesstaeeestneesstnaeesstaesssnaeesssaeessnneeeesnnns 20

6.3.1 Function: Play @ SACM-AL600 SPEECHciviiiiiiiiiecececeeere et 20

6.3.2 Function: Stop playing SACM-AL1600 SPEECHccuviiiieieiiercie e 21

6.3.3 Function: Pause playing SACM-AL600 SPEECH.........ccoveieiieriie e 22

6.3.4 Function: Resume paused SACM-AL1600 SPEECN.........cccevveieriiieiiciese e 22

6.3.5 Function: Change the volume of SACM-AL600ccccceverriieiieieeieeie e 22

6.3.6 Function: Get the status of the SACM-A1600 MOAUIE...........cceeveiiiiirieireiieiriecre e 22

6.3.7 Function: Change the speed index of SACM-AL600ccccceveieniiiiecieeieeieeire e 23

6.4 ISR FUNCTIONS: INTERRUPT SERVICE ROUTINE FOR SACM-AL600ccovviiiiiiiieeiiiiieeeee e, 23

6.5 USER FUNCTIONS: FOR SACM-A1600 PLAYBACK IN MANUAL MODEuccivtieeiiineeerineeeetneeessinaeessneesennns 24

6.5.1 Function: Set start address for SACM-A1600 speech data.c.ccccvevveivevcieienesesnnnne, 24

© Sunplus Technology Co., Ltd. PAGE 2 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

6.5.2 Function: Read the speech data from user’s storage and write to buffer...........c..cc.co....... 24

T AP FOR SACM-S200 ettt ettt ettt tee e e steante e e saeeabeesbeesbeesbeeseesbeesbeesbeesteaneesneeaneenseenes 27
7.1 HARDWARE DEPENDENT FUNCTION: INITIALIZES SACM-S200coviiiieiiiiiiiiiiiee e 27
7.1.1 Function: Initialize the S200 lIBrarycccccveiiii s 27

7.2 SERVICE LOOP FUNCTIONS: SERVICE LOOP FOR SACM-S200 DECODINGcvvvireeeiiiiirereeeeeesnineneeeeeenns 27
7.2.1 Function: Foreground SErviCe 100Dcccoviiiiiiie i 27

7.2.2 Function: Background ServiCe l00P:cocccveiiiiieie e 27

7.3 PLAYBACK FUNCTIONS: PLAYBACK CONTROL ...utrrtiieeiiainrreeereessanunnnnereeessnaennneresesssassnnnnneeessssssnns fhne dimes 28
7.3.1 Function: Play @ SACM-S200 SPEECHccveieiiiiieiieiriieete e sine e ste e e e ee s b e b 28

7.3.2 Function: Stop playing SACM-S200 SPEECH.........ccviiieiie e dleeiin et ene e 29

7.3.3 Function: Pause playing SACM-S200 SPEECHcuvcveivuee it se el st b i 30

7.3.4 Function: Resume paused SACM-S200 SPEECh ... e iereee i e e 30

7.3.5 Function: Change the volume of SACM-S200...... 00 ceeieiieiieie s b 30

7.3.6 Function: Get the status of the SACM-S200 MOGUIE ...« 0 e 30

7.3.7 Function: Change the speed index 0f SACM-S200...ci....cciviiiiiiisieiecieieene e 31

7.3.8 Function: Set constant pitch index 0f SACM=S200........ccccieiiiienenieie e 31

7.3.9 Function: Change the pitch index of SACM-S200........c.ccccoeviiiininiinieceeeeee e 31
7.3.10 Function: Change voiced index of SACM-S200........ccccceveiireiieiisieseciee e 32

7.4 ISR FUNCTIONS: INTERRUPT SERVICE ROUTINE FOR SACM-S200cccoiiiiiriiiieeiiiiiiieieee e 32
7.5 USER FUNCTIONS: FOR SACM-S200 PLAYBACK IN MANUAL MODEcctveiiiiitrerereeeaeneinnneeeeessnineneeeeesens 33
7.5.1 Function: Set start address for SACM-S200 speech data..........ccccvevviiveiieieiieieieniese e 33

7.5.2 Function: Read-the'speech data from user’s storage and write to buffer...........c..cc.c........ 33

8 AP FOR SACM-SA80/ST20u . 1eueereeiesiesiestesieeieesiestestestestestesseeseeseestestessessessessesseesseseessessessessessesssessessessenns 36
8.1 HARDWARE DEPENDENT FUNCTION: INITIALIZES SACM-S480/S720cceeiiiiiieiiiiieiiieee e 36
8.1.1 Function: Initialize SACM-S480/S720 lIDrarycccceveieneiieiisiesecesee e 36

8.2 SERVICE/LOOP FUNCTIONS: SERVICE LOOP FOR SACM-S480 DECODINGvvvvieeeiiiiirrrieeeeennirnneeeeeens 36
8.2.1 Function: Foreground SErviCe 100Dccccviiiiiiieii e 36

8.2.2 Function: Background ServiCe l00P:ccccceiiiiieii e 36

8.3 PLAYBACK FUNCTIONS: PLAYBACK CONTROL ...utrrtiieessaitrreetreessasstnnneseeesassinnneeeeesssasnnnneeeeessesnnnneeeeeens 37
8.3.1 Function: Play @ SACM-S480/S720 SPEECH ...c.vecviiiiiiiieciciece e 37

8.3.2 Function: Stop playing SACM-S480/S720 SPEECH.......cccceieiiiiiice e 38

8.3.3 Function: Pause playing SACM-S480/S720 SPEECHccveiiiiiii i 39

8.3.4 Function: Resume paused SACM-S480/S720 SPEECHcccecvieeieieeiieie e 39

8.3.5 Function: Change the volume of SACM-S480/S720..........ccccevvvieiesieiiecieiecieie e 39

8.3.6 Function: Get the status of the SACM-S480/S720 Module..........cccovevvrniienneienincerinnes 39

© Sunplus Technology Co., Ltd. PAGE 3 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

8.3.7 Function: Change the speed index of SACM-S480/S720ccccoveiviiveieieneie e 40

8.4 ISR FUNCTIONS: INTERRUPT SERVICE ROUTINE FOR SACM-S480/S720ovveiiiiieiiiieee e 40
8.5 USER FUNCTIONS: FOR SACM-S480/S720 PLAYBACK IN MANUAL MODEcvvteiitriessireeeesireeesannneesnanens 41
8.5.1 Function: Set start address for SACM-S480/S720 speech data..........cccccevevevenenciecnnnnn, 41

8.5.2 Function: Read the speech data from user’s storage and write to buffer...........c..cc.co....... 41

O API FOR SACM-S530. ... ittt ettt ettt be e sbeante et st e sbe e sbe e bt esbeeseesbeesbeenbeenbesneeaneeaneenreenns 44
9.1 HARDWARE DEPENDENT FUNCTION: INITIALIZES SACM-S530commiiiiiiiiiiiiiiiee e 44
9.1.1 Function: Initialize SACM-S530 HBraryccccoeviiiiiiiiciecie e G s 44

9.2 SERVICE LOOP FUNCTIONS: SERVICE LOOP FOR SACM-S530 DECODINGctrvvereeeeiiiimnnireee s ibheee it i 44
9.2.1 Function: Foreground SErviCe 100Dcccoveiiiiiieireieeevie s ieaitie e e s sne e sne s 44

9.2.2 Function: Background Service l00P:cccocveiiieieiie s it se e B et b ae e e 44

9.3 PLAYBACK FUNCTIONS: PLAYBACK CONTROL ...utvrriieeiiainennereeesfee i theeeeeseneenn b e 500 sbeneeeeeeesesnnneeeeeens 45
9.3.1 Function: Play @ SACM-S530 SPEECHctiiieesinesreieeieeiesees Bsasbes e ereeeeee e e te e sreens 45

9.3.2 Function: Stop playing SACM-S530 SPEECH ... viivi il 46

9.3.3 Function: Pause playing SACM-S530 SPEECHcomuiereierieieierieinieiesesieiesie e seeesne e 47

9.3.4 Function: Resume paused SACM-S530 SPEECHcl uiiciie i 47

9.3.5 Function: Change the volume of SACM-S530.coeiiiiiiie e 47

9.3.6 Function: Get the status ofthe SACM-S530 MOAUIEcccvrvriierireiiirieeee e 47

9.3.7 Function: Change the speed index of SACM-S530 while playing.......c.ccoceovvvreiivennennns 48

9.4 ISR FUNCTIONS: INTERRUPT SERVICE ROUTINE FOR SACM-S530cociiiiiiiiiiiiieiiiiiieeeee e 48
9.5 USER FUNCTIONS: FOR SACM-S530 PLAYBACK IN MANUAL MODEccteeiiiiirrrrereeesaniineneeeeessnnnnneeeseeens 49
9.5.1 Function: Set startaddress for SACM-S530 speech data..........cccceevvvivevieiieienescncse e 49

9:5.2+ Function: Read the speech data from user’s storage and write to buffer..........c..cc.c........ 49

10 APIFOR SACM-MSOL ...ttt ettt et st te et e et sae e ebe e sb e e beasbessbenbeesbeenbeeneeaneas 52
10.1 HARDWARE DEPENDENT FUNCTION: INITIALIZES SACM-MSOLcoiiiiiiiiiiiiiee e 52
10.1.1 Function: Initialize SACM-MSO01 [IDrarycccccoiieieiineie s 52
10.2SERVICE LOOP FUNCTIONS: SERVICE LOOP FOR SACM-MSO01 DECODING ...cceeeiiiiiiiriireeeeaniineeeeeeeeeneene 52
10.2.1 Function: Foreground SErVICE [00P:.......cciiiiieiieieicie st seeneas 52

10.2.2 Function: Background SErVICE l00P:coeiveieiiiiiicieiecie ettt ae et eneas 52

10.3 PLAYBACK FUNCTIONS: PLAYBACK CONTROL....ecietiiiuirtreeeteessantreeereessasssnnneeeeesassssnnnneesesssssnnnneeesesnnnsns 53
10.3.1 Function: Play a SACM-MSO0L MelOdyccvcvveieiiiiiiescse e 53

10.3.2 Function: Stop playing SACM-MS01 Melody........ccccevieriiieiieniiiie s 54

10.3.3 Function: Pause playing SACM-MSOL Melodyccoevviveiiiiiieii s 55

10.3.4 Function: Resume paused SACM-MS0L MElOdYc.cocevveveieiisieiieieierie e sve e 55

10.3.5 Function: Change the volume of SACM-MSOLcccoiiiiiiiinnieinceereee e 55

© Sunplus Technology Co., Ltd. PAGE 4 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

10.3.6 Function: Get the status of the SACM-MSO0L module.........ccoovvriiiiniiiiniecee 55

10.4 ISR FUNCTIONS: INTERRUPT SERVICE ROUTINE FOR SACM-MSOL.......cccuiiiiiiiiiiiiiiiee e 57
10.5 USER FUNCTIONS: FOR SACM-MSO01 PLAYBACK IN MANUAL MODEuuutreiiieesnainnneereessaninnnneeeesaennnns 58
10.5.1 Function: Set start address for SACM-MSO01 speech data.ccccvevvivercviencie i 58
10.5.2 Function: Read the speech data from user’s storage and write to buffer.............c..c........ 58

11 API OF SACM-DVRIBO0........cceeiieiiiieieeiee st et et e tee st et e stessaesaeesbeesbeenbeasbesssesbeesbeesbesseesseesbeesteeneeannas 61
11.1 HARDWARE DEPENDENT FUNCTION: INITIALIZES SACM-DVRI1600covviiieeiiiiiiiiiiee e 61
11.1.1 Function: Initialize SACM-DVR1600 lIDrary........ccccccoeviiiiieiiieiesisieeiesese e in e 61

11.2 SERVICE LoOP FUNCTIONS: S SERVICE LOOP FOR SACM-DVR1600 DECODINGcvvvvreeeiiieireeithennitiente 61
11.2.1 Function: Foreground SErVICE [00Pcccviiiieiieeiicie st e e sisiue et eeea e e esn e sreeneas 61
11.2.2 Function: Background SErVICE 100cocevveieriiiuiiiesismse e beresieseesvesdonaataeseeneeseesseseesnens 62

11.3 PLAYBACK FUNCTIONS: RECORD/PLAYBACK CONTROL ...eetuscvessfe th e inneeeeenereee st 80 b e aineeenniieee e e 63
11.3.1 Function: Start recording data from MIC to external memory module.............cccceevvrurenene 63

11.3.2 Function: Play DVR1600 SPEECHc.oiture et evreeei s fesfeitesestesese e seeee e sve e sre e sneanens 63

11.3.3 Function: Stop recording/playback 4. .t st 64
11.3.4 Function: Pause currently playing SACM-DVR1600 SPEECh........cccccvvveverieiiieieeeinannns 64

11.3.5 Function: Resume paused SACM-DVR1600 SPEECHccccveiviieieeiiieieieesese e e e 65

11.3.6 Function: Change the'volume of SACM-DVR1600..........cccccceviireiininieeieiiesesesie e sie e 65

11.3.7 Function: Get'the status from-SACM-DVR1600 MOdule............cocevvireirirneiinnieennenene 65

11.3.8 Function: Change the speed index of SACM-DVR1600...........ccccceeveviieiieieenenesesesie e 66

11.4 ISR FUNCTIONS: INTERRUPT SERVICE ROUTINE FOR SACM-DVR1600 PLAYBACK / RECORDING............... 66
11.5 USER FUNCTIONS: FOR SACM-DVR1600 PLAYBACK IN MANUAL MODEeeuiieeiiiiirrreireeesaninneneeaesaenenns 67
14.5.1 Function: Set start address for SACM-DVR1600 speech data.ccccevveveveieienieinnnnns 67

11.5:2 Function: Read the speech data from user’s storage and write to buffer.............c..c......... 67

11.5.3 Function: Read the speech data from buffer and write to user’s storage..........cc.cceevvvenine 68

12 HARDWARE DEPENDENCE API IN SACMVXX.ASM (OPEN SOURCE)ccccoevvvnineeieierienn 71
T2 " RAMP FUNCTIONS ...ttt e e sttt e e e sttt e e e e e ettt e e e e e et e et e e e e e e et e e e e e s s s nrnn e e e e e e e aaennnnneeeeenenas 71
12.1.1 Function: RamMp UP DACL ..ottt sttt sttt sresnesreene s 71
12.1.2 Function: RAMP UP DAC2.......ooicieiece sttt ettt sttt sresaesreane s 71
12.1.3 Function: Ramp doWn DACLccocieieieiece sttt sre et ene s 72
12.1.4 Function: Ramp doWn DAC2coveieiiieie ettt sttt aesre e sreane s 72

12.2 AD/DA FUNCTION ..ttt titttee ettt e ettt et e e skt e s st e e s me e e e e ek b et e e ekt e e e b b e e e e as b b e e e aabee e e e enb et e e anbb e e e anbe e e e nanee s 72
12.2.1 Function: Switch SPCE ADC channel for recording..........ccccvevveivevieieienesesese e sesnennns 72
12.2.2 Function: Get ADC data for reCOrdingccoviiveiiiiiiieicne e se e s sreenens 73
12.2.3 Function: Send data to DACL ..o 73

© Sunplus Technology Co., Ltd. PAGE 5 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

12.2.4 Function: SeNd data t0 DAC2ocviiiiiiiriecte ettt ebe bbb srae s 73

13 HOW TO ADAPT YOUR OLD PROJECT FOR NEW LIBRARYcoo oottt 75
13.1 THE SACM PROJECT ARCHITECTUREuuiiittnieittteettteesetiaeesstneessstaesstaeesstneessstaesstaeserteesssnnaessnnaeesses 75

13.2 STEP-BY-STEP PROCEDUREucitttutetttteetttuaeeettntestttaaesstaeeeataessttaesstaeestteeesttaaerataeserteesssnneessnnaeesses 76

14 HOW TO USE THE SPEECH LIBRARY ...ttt ettt ettt e st ee s e s s s e sabbbaae e e e s s e saaees 77
14.1 THE PROGRAMMING FLOW0uuieitunetettneesstiaeesstneesettaesstaeesstneesssnneesstaesesaneessteaesstaesereeesstaeessnneesenns 77

14.2 LINK THE LIBRARIES TO USER’'S PROGRAMuiittueiitteesttiaeesttneessttaesstnaeessteessrtaeesstaaessreeesssneessnaaesenss 77

14.3 ADDING RESOURCEScuuuiiiittneeittteertttaesstaeeesteesetiaaesstaeeestneesstaeesstaaesstnaeesssaeessnaeesesnseesssnness@iinestaes 78

J4.4 A SIMPLE EXAMPLE ..uuuiiittiesitieeeetteeeettaeesstaeesttneesetaaaesssnaeesstneesssnessssnnesssdieesbanneesssneesesnioesssneatessteeeenns 79

14.5 QUICK INSTRUCTIONS ...uuuuuuuuununnnnnnnssssssssssassssssassssssassssssssssssssssionssbneiiesasssssnssssamasssssassessssssaenesns 80

14.6 INTERRUPT STATUS REGISTER....ceuuiiitieeeitiieeettieeeitieaessteeeesteesesiinesssteeeesnnsenesssiorsnne s iinneersnineessnneeeesns 80

15 HOW TO SETUP CONCURRENT ALGORITHMS IN YOUR APPLICATION.........ccocovviiiieeeeiene. 82
16 RESOURCES LIST OF SACM ALGORITHM.....oiin i e 5 ittt 93
16.1 TABLE 1: RAM SIZE (UNIT: DECIMAL WORD) ..o1uuvvieiiresiensres e s nnee s siiree ettt e et e et e e 93

16.2 TABLE 2: ROM SIZE (UNIT: DECIMALWORD)vvie i e e ettt siiee ettt e e 93

16.3 TABLE 3: HARDWARE RESOURCES V'S LIBRARY & teettuuieitiieiitieeeetteeeestaeesetneessstiaeessnaeesssneeesssaeessnnaesens 93

16.4 TABLE 4: CPU USAGE RATE (APPROXIMATE)vvubitreeeeautreeessteeessinseesasseeessnneeesssnseesaasnneessnnneessnneens 94

16.5 TABLE 5: TIMING LIMITATION (APPROXIMATE)utvteitreeeeautreeesuteeessinseesasseeesasnseesssnneessasneeessnnneessnneess 94

16.6 TABLE 6: NAME OF OVERLAP RAM INTHE LIBRARYuciituuieittteeitteeeetiaeesstneesestaaesstaesesteesssnnaessnnaeesses 95

© Sunplus Technology Co., Ltd. PAGE 6 March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

1 Revision History

1.1 Document History
Revision Date By Remark
V3.0 03/30/2004 |Ray Cheng Add DVR1600 (A1600 encoder and decoder)
Add speed control function in A1600, S480/S720, S530, S200
and DVR1600
Remove A2000, A3200, S240
V2.0 12/26/2002 |Arthur Shieh Add A1600, A3200, S200, S530
Add new features to MS01
V1.0 12/26/2001 [Andy Hsu New release
Revised by Michael Lin
1.2 Library History
Revision Date By Remark
V40a 03/30/2004 Ray Cheng SACM library'is separated to-several individual libraries. Include
A1600, A1600 SC, S480/S720, S480_SC/S720_SC, S530,
S530_SC,.S200_SC, MS01, DVR1600, DVR1600_SC. Where
SC = speed control.
V32f 05/16/2003 Arthur Shieh Modified FIR_MOV style
Rison Lo Add C ISR API
V32e 04/16/2003 Arthur Shieh Add MS01+S200, S240, S480,S530
Rison Lo Modify SACM library for concurrent
V32 12/26/2002 Arthur. Shieh Add A1600, A3200, S200, S530
, Adamcar Tseng & [New Auto/manual mode
Andy Hsu New background service loop
New MSO01 features.(Play note, Event....)
V1.0 05/27//2001 Andy Set .OSRM section for 4 algorithms
V0.9B 05/20//2001 Andy Add Ramp Up/Dn control for speech playing
V0.9A 04/12//2001 Andy Add Manual Mode for SACM-A2000
V0.8A 05/08/2001 Andy Add Queue Interface for DVR(Record/Playback)
V0.3A 01/11/2001 Andy SACM-DVR new functions
V0.2B 12/14/2000 Andy New version for A2000, S480/720, S240, MS01, DVR
(With PC Play function
VO0.2A 12/14//2000 Andy New version for A2000, S480/720, S240, MS01, DVR
(No PC Play function)
V0.1 11/15//2000 Andy Fix a2000 ending bug, add speech status function
V0.0 09/20//2000 Andy First release

© Sunplus Technology Co., Ltd.

PAGE 7 March 30, 2004

SUNPLUS

O

SPCE SACM Library User’s Manual v3.0

2 Type of Speech Compression Algorithm

21 Summary

Audio
Present Algorithm Title Ibatarate ________|application
SACM-A1600 10/12/14/16/20/ 24 Kbps Audio
SACM-A1600-SC 10/12/14/16/20/ 24 Kbps Audio with Speed Control
Speech
Present Algorithm Title
SACM-S200-SC 0.8K/0.9K/1K/1.2K/1.4K/ 1.6K/ Speech
1.8k /2K /2.4K/2.8K/ 3.36Kbps
SACM-S480/S720 4.8/7.2 Kbps Speech
SACM-S480/S720-SC 4.8 /7.2 Kbps Speech with Speed Control
SACM-S530 5.3K/5.96K / 6.63K / 7.29K / 7.95 Kbps |Speech
SACM-S530 5.3K/5.96K / 6.63K / 7.29K/ 7.95 Kbps |Speech with Speed Control
Melody
Present Algorithim Tite Appncauon
SACM-MS01 6 (4 FM+ 2 ADPCM) [Music Synthesizer ‘
Recording
Present Algorithm Title Ibatarate ________|application
SACM-DVR1600 10/12/14/16/20/ 24 Kbps Recording. A1600 decoder and encoder.
SACM-DVR1600-SC 10/12/14/16/20/ 24 Kbps Recording with Speed Control. A1600

decoder and encoder. Speed control only for

decoder.

2.2 Naming convention

SACM-Xnnn [-SC]
SACM: Speech Audio Coding Method
X= A: Audio

S: Speech

MS: Melody
nnn = Data rate (for X=Aor S)

= Synthesizer type (for X = MS); 01 = FM, 02 = Wave table.

SC: Speed Control.

© Sunplus Technology Co., Ltd. PAGE 8 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

DVR: Digital Voice Recording
Example: SACM A1600 stands for Sunplus audio algorithm with nominal data rate of 16Kbps.The actual data rate

depends on the options provided and the sampling rate adopted.

2.3 Algorithm supported by SPCE

Due to the RAM size and CPU speed limitations, some SPCE series cannot support all SACM algorithms. The

following table shows the available SACM algorithm to SPCE series.

‘ SPCE500A/380A/250A/120A SPCE040A/060A/061A SPCE1070A/1080A
SACM-A1600 YES YES YES
SACM-A1600-SC NO YES NO
SACM-S530 YES YES YES
SACM-S530-SC NO YES NO
SACM-S480/S720 YES YES YES
SACM-S480/S720-SC NO YES NO
SACM-S200-SC NO YES NO
SACM-MSO01 YES YES YES
SACM-DVR1600 NO YES NO
SACM-DVR1600-SC NO YES NO

2.4 Difference between-SACM V40.and SACM V32

Unlike SACM v32, which includes'several libraries as'a'whole, the SACM v40 library is separated into 10 subsets
and each corresponds to a different SACM algorithm. That is, each of these subsets is an individual SACM library.
You just include whatever you needinto your program project. They are SACM_A1600_V40a.lib,
SACM_A1600 SC V40alib, SACM_S530 V40alib, SACM_S530 SC_V40alib, SACM_S480 V40a.lib,
SACM_S480 SC_V40a.lib,, SACM:S200_SC_V40a.lib, SACM_MS01_V40a.lib, SACM_DVR1600 V40a.lib and
SACM_DVR1600_SC_V40a:dib, where “SC” means Speed Control. You can change the playing speed without
altering the pitch of the sound. That is, A1600, S480, S530, S200 and DVR1600 support speed control function.
SACM V40 library adds DVR1600 (A1600 encoder and decoder), but removes the S240, A2000, A3200 and DVR
(A2000°encader).

For SACM v32, there are different sets of APIs for Auto mode and Manual mode while in SACM v40 library.
They share the same API architecture between Auto mode and Manual mode but controlled by the parameter of
the playback API. Please refer to the SACMxxxx API's description in the following chapters for details. It is very

convenient for users to develop their programs and easy to manage their projects.

Please note that in a project using SACM v40, user cannot include one algorithm with speed control

(Ex:SACM_S530_SC.lib) and the same algorithm without speed control(Ex:SACM_S530.lib) simultaneously.

© Sunplus Technology Co., Ltd. PAGE 9 March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Because they will have the same APIs only except speed control APl and will not be able to compile successfully.
For example, user cannot link SACM_S480_V40.lib and SACM_S480_V40_SC.lib simultaneously in one project.
If users want to have speed control function in a project that originally do not have, they just remove the original
library SACM_XXXX_V40x.lib which without speed control function and add the SACM_XXXX_SC_V40x.lib into

the u'nSP IDE and then you can use speed control API in your program.

Important: The file format of SACM V40 library is different from SACMV32. Please use appropriate encoder tools.

Please refer to the following list.

Algorithm Encode Tool

SACM-A1600 DVR1600.exe
SACM-DVR1600 DVR1600.exe
SACM-S480/S720 S485372C.exe + Add_Header.exe
SACM-S530 S485372C.exe + Add. Header.exe
SACM-S200 S200.exe
SACM-MS01 Midi2Pap.exe, scfm.exe

© Sunplus Technology Co., Ltd. PAGE 10 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

3 Auto mode vs. Manual mode

For SACM playback, auto mode and manual mode are distinguished by the ways library fetches data. In auto
mode playback, library fetches the speech data automatically from internal ROM. In manual mode playback, users
have to handle the speech/song data fetch byte-by-byte, word-by-word or block-by-block. Manual mode can work

with external devices such as CPU + external memory or CPU + CPU system configuration topologies.

For auto mode and manual mode designation, the auto mode and manual mode are designated in the play
function. For example, SACM_S200_Play(-1, DAC1+DAC2,Ramp_Up+Ramp_Dn);. —1 as speech index is for

manual mode and therefore the algorithm initialization would not have to specify.the operating mode.

In new version of SACM library, the new manual mode requires the sacm_XXXX_userasm, where XXXX is
algorithm name. For example, sacm_A1600_userasm. User has to implement the functions of
F_USER_XXXX_SetStartAddr , F_USER_XXXX_GetData and.F_USER_XXXX_WriteData (only for DVR1600) in

order to execute manual mode. These functions are call-back functions for library to access memory storage.

For DVR1600, user can find the call-back function, F_ USER_DVR1600_WriteData in sacm_DVR1600_user.asm
to be implemented. User can actually hooki.DVR1600 to-various types of external memory storage for audio
recording through the call-back functions, F. USER_DVR1600. WriteData and F_USER_DVR1600_GetData. The
DVR1600 can be viewed as the.encoder of A1600 and thus user can use A1600 manual mode to playback

DVR1600 recording.

© Sunplus Technology Co., Ltd. PAGE 11 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

4 Service loop

In new SACM library, it supports both foreground and background service loops. In the old fashion foreground
service loop, users have to put service loop in main. Main loop will keep entering the service loop. Inside the
SACM service loop, there will be a mechanism to determine if any task should be carried on. Some overheads

are produced inevitably. The amount of overhead varies depends on the payload of CPU.

For background service loop, the program checks if the service-loop tasks should take place right after exiting
interrupt. It means, program checks the demand for service loop tasks more efficiently and therefore grants users
better flexibility to arrange user-defined tasks in main. Since the background /Service loop eliminates some
unnecessary overheads, the background service loop programming can save more CPU resources and boost its

throughput.

Both methods can facilitate building a SACM project by user.

Example:

Foreground service loop:

In main.c :
int main()
{
System_Initial();
SACM_A1600_Initial();
SACM_A1600_Play (0, DAC1+DAC2, Ramp_Up+Ramp_Dn);

while(1)

{
System_ServiceLoop(); I/ Service loop for watchdog clear
SACM_A1600_ServiceLoop(); /I Foreground Service loop

} /'end of while(1)
return O;

} /1 end of main

In isr.asm:

_FIQ:
push R1, R5 to [SP]; Il save registers
call F_ISR_Service_SACM_A1600; I interrupt service routine
R1=C_FIQ_TMA /I clear interrupt.

© Sunplus Technology Co., Ltd. PAGE 12 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

[P_INT_Clear] = R1;
pop R1, R5 from [SP]; /I restore registers

reti;

Background service loop:

In main.c :
int main()
{
System_Initial();
SACM_A1600_Initial();
SACM_A1600_Play (0,DAC1+DAC2,Ramp_Up+Ramp_Dn);
while(1)
{
System_ServiceLoop(); /I Service loop for.watchdog clear
} /l end of while(1)
return O;

} /1 end of main

In isr.asm:
_FIQ:
push R1, R5 to [SP]; Il save registers
call F_ISR_Service_SACM_A1600; I interrupt service routine

1

/I User interrupt routine must-be placed before this line.
I
R1 = F_SACM_A1600_ServiceLoop_ISR; /I Get function Address of background service loop

Il It restores registers r1~ r5 internally.

push R1to [SP]; // push address to stack for PC to refer
push SRto [SP]; I/l push SR to stack
R1=C_FIQ_TMA,; /I clear interrupt.

[P_INT_Clear] = R1;

reti;

© Sunplus Technology Co., Ltd. PAGE 13 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

For SACMV40:

Foreground Service Loop Background Service Loop
S200 YES YES
S480/S720 YES YES
S480/S720-SC YES YES
S530 YES YES
S530-SC YES YES
A1600 YES YES
A1600-SC YES YES
DVR1600 YES NO
DVR1600-SC YES NO
MS01 YES YES
main.c sacmVnn.lib sacm.asm...sacm_XXXX_user.asm isr.asm
Hardware

Initialization

Initialization,

Play

 J

Service Loop
(Foreground)

\

o

[ntejrupt Service Routine)

Service Loop
(Foreground)

\J

I

Service Loop
(Foreground)

>

Service
tasks
processed

Service
tasks not
executed

Interrupt Service Routine)

[

Service Loop
(Foreground)

-

Service Loop
(Foreground)

.
-

Service
tasks not
executed

Service
tasks not
executed

[ntejrupt Service Routine)

[
>

O U U]

Service
tasks
processed

[ntejrupt Service Routine)

A

Timing diagram: Auto mode, Foreground service loop

© Sunplus Technology Co., Ltd.

PAGE 14 March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

main.c sacmVnn.lib sacm.asm sacm_XXXX_user.asm isr.asm
Hardware
Initialization o Initialization
) > Interrupt Service Routine|
Service Loop < Sort
ervice
(Foreground) tasks not
Play - executed
- > Fetch data from rhemory(Manual mode)
Service Loop >
(Foreground) Q Service
L tasks
] > processed Interrupt Service Routine|
Service Loop <
(Foreground)
atl Fetch data from rhemory(Manual mode)
Service Loop O tSekrVicet
. asks nof
(Foreground) > exeouted
Service Loop P Interrupt Service:Routine
(Foreground) -)
> Service
O tasks not
Service Loop executed
(Foreground) O Service
> tasks not
executed
Service Loop P Interrupt Service Routine)
(Foreground) -~)
> Service
Q tasks
processed

Timing diagram: Manual mode, Foreground-service loop

main.c sacmVnn.lib sacm.asm. Sacm_XXXX_user.asm isr.asm
Hardware
Initialization _ Initialization
9 Inteprupt Service Routine|
> Servige Loop (If Backgnound)
Service
O tasks not
executed
Play _
> [ntejrupt Service Routine)
- Servige Loop (If Backgnound)
Service
Q tasks
processed
P Inteprupt Service Routine|
> Servige Loop (If Backgnound)
Service
O tasks not
executed
L Interrupt Service Routine|
> Servige Loop (If Background)
Service
tasks
processed

Timing diagram: Auto mode, Background service loop

© Sunplus Technology Co., Ltd. PAGE 15 March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

main.c sacmVvnn.lib sacm.asm sacm_XXXX_user.asm isr.asm
Hardware
Initialization o Initialization

Inteprupt Service Routine|

A

A

Service Loop (Backgr

und)

Service
tasks not
executed

[ntejrupt Service Routine)

Service Loop (Backgro

und)

Service
tasks not
executed

DA A

Play

\

IntepriptService Routine|

A

Serv|

ice Loop (Backgrg

und)

Fetch data from

emory

Manual mode) <

processed

Inte,

Tupt Service Routine

Service
tasks
<
.

Timing diagram: Manual mode, Background service loop

© Sunplus Technology Co., Ltd.

PAGE 16

March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

5 Memory Allocation

For each SACM algorithm, it is necessary to use a size of RAM blocks for encoding or decoding purposes. The
RAM space taken can be shared among algorithms or with user application by aligning the RAM blocks manually.
The memory allocation manifest can be found as the name “project_name.map” in the directory, “release”
or "debug”. The u'nSP IDE(v1.6 or later) also provides a convenient tool, memory map, to graphically list the

memory space taken by each module, section, public function and variable.

The principle of sharing RAM is that as long as the algorithms or applications are not active simultaneously... The
RAM block can be shared through ORAM or OSRAM section declaration. For details of RAM/ORAM/OSRAM

section, please refer to “Sunplus u'nSP Assembly Tools User’s Manual”.

If user plans to build an application with both speech (S200, S480 or S530).and background'music (MS01) up and
running at the same time, the RAM allocation would also have to.be'separated as the section names suggest. In
newer version of SACM library (V40 or later), each speech algorithm has-‘a unique section name, which

guarantees the simultaneity of speech and music synthesizer.

If user chooses more than one algorithm in the same:project but.the program is not going to run more than one
algorithm at the same time, the advantage of ORAM section is to allow user to share the same physical memory
block among different algorithms. User can use u'nSP IDE. (Project> Setting—> redefine) to align the ORAM
address. If user is not satisfied with the manual allocation and wants to return to default compiler arrangement,
users only have to delete the file, “project_name.lik” in project folder, and rebuild all projects. The memory

allocation will be realigned based on default compiler rules.

© Sunplus Technology Co., Ltd. PAGE 17 March 30, 2004

J SUNPLUS

D

SPCE SACM Library User’s Manual v3.0

The RAM block section definitions as follows:

Table: Name and size of Overlap RAM in the library

‘ Overlap RAM definition

Algorithm Overlap RAM Label Size (word)

A1600 *OQVERLAP DVR1600 RAM BLOCK 319 (0x13F)
OVERLAP_A1600_API_BLOCK 2 (0x2)

*OVERLAP DVR1600 DM BLOCK 136 (0x88)

*A1600-SC *OQVERLAP DVR1600 RAM BLOCK 781 (0x30D)
OVERLAP_A1600_API_BLOCK 2 (0x2)
*OVERLAP_DVR1600 DM_BLOCK 136 (0x88)

*QVERLAP DVR1600 SPEED RAM BLOCK 529 (0x211)

DVR1600 OVERLAP_DVR1600 RAM BLOCK 354-(0x162)
OVERLAP_DVR1600 APl BLOCK 351+(0x23)

OVERLAP DVR1600 DM BLOCK 136 (0x 88)

*DVR1600-SC |OVERLAP_DVR1600 RAM BLOCK 786 (0x312)
OVERLAP_DVR1600 APl BLOCK 35 (0x23)
OVERLAP_DVR1600 DM BLOCK 136 (0x88)

OVERLAP DVR1600 SPEED. RAM BLOCK 529 (0x211)

S530 OVERLAP_S530 RAM BLOCK 169 (0xA9)
OVERLAP_S530 API. BLOCK 2 (0x2)

OVERLAP S530 DM BLOCK 228 (OXE4)

*S530-SC OVERLAP_S530. RAM_BLOCK 613 (0x265)
OVERLAP. S530 API. BLOCK 2 (0x2)
OVERLAP_S530'DM_BLOCK 228 (0XE4)

OVERLAP S530/SPEED RAM BLOCK 529 (0x211)

S480 OVERLAP _S480 RAM_ BLOCK 170 (OxAA)
OVERLAP_S480 APl BLOCK 2 (0x2)

OVERLAP_S480 DM BLOCK 292 (0x124)

*S480-SC OVERLAP_S480 RAM_BLOCK 614 (0x266)
OVERLAP_S480 APl BLOCK 2 (0x2)

OVERLAP_S480 DM BLOCK 292 (0x124)

OVERLAP S480 SPEED RAM BLOCK 529 (0x211)

*S200-SC OVERLAP_S200_RAM_BLOCK 718 (0x2CE)

OVERLAP_S200 API BLOCK

2 (0x2)

OVERLAP S200 DM BLOCK

500 (Ox1F4)

MS01 OVERLAP_MS01_RAM_BLOCK

318 (0x13E)

OVERLAP MS01 DM BLOCK

130 (0x82)

* XXXX_SC means that algorithm support speed control function.

**: A1600 is decoder of DVR1600. So, some A1600 overlap RAM labels are the same as DVR1600.

© Sunplus Technology Co., Ltd. PAGE 18

March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

6 APIfor SACM-A1600

6.1 Hardware Dependent Function: Initializes SACM-A1600

6.1.1 Function: Initialize the A1600 library

Syntax}

C: void SACM_A1600_lInitial(void)
ASM: call F_SACM_A1600_lInitial
Parameters: None

Return Value: None
Library: <Sacm_A1600_Vxxx.LIB>, <Sacm_A1600_SC_Vxxx.LIB>
Remark:
1. This function initializes the SACM-A1600.decoder. It also initializes the system clock, Timer
A, DAC and enables the Timer A FIQ with:16KHz .sample rate.
2. The hardware setting is opened for user’s reference (see F_SP_SACM_A1600_lInit_
function in sacmvxxx.asm);
3. This function utilizes:a‘register, R_InterruptStatus (spce.asm), to work with user’s program if

for SPCE500A: It'uses P_INT -Mask instead if for SPCE 061A/060A

6.2 Service Loop.Functions: Service loop for SACM-A1600 decoding

6.2.1 Function: Foreground service loop:

[Syntax

C: void, SACM_A1600_ServiceLoop(void);
ASM: call /F_SACM_A1600_ServiceLoop
Parameters: None

Return.Value: None
Library: <Sacm_A1600_Vxxx.LIB>, <Sacm_A1600_SC_Vxxx.LIB>

Remark: Foreground service loop has to be placed in main loop.

6.2.2 Function: Background service loop:

[Syntaxt

C: N/A

© Sunplus Technology Co., Ltd. PAGE 19 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

ASM:
Parameters:
Return Value:
Library:

Remark:

F_SACM_A1600_ServiceLoop_ISR

None
None

<Sacm_A1600_Vxxx.LIB>, <Sacm_A1600_SC_Vxxx.LIB>

Background service loop is placed in either FIQ or IRQ and it must be placed before
leaving the FIQ or IRQ. Please refer to the following example.

Please make sure that the A1600 code is allocated in page 0 to assure that program flow
can proceed to F_SACM_A1600_ServiceLoop_ISR correctly.

This background service loop will pop the R1-R5 register. Program does not-have to pop
the registers before reti.

The advantage users can get from background service loop is that program can reduce
unnecessary overhead in main and as a result program can yield -better performance in
terms of throughput.

Example: By this manner of programming, the program-allows the background service loop
to take place right after leaving~the FIQ/IRQ and meanwhile the next interrupt can still
intrude the service loop even when the background service loop is still running. Please
refer to “Sunplus u'nSP."Assembly Tools' User Manual” for the detail of the argument

passing in library routine:

push R1, R5 to'[SPJ;
call F_ISR_Service_ SACM_A1600; /I Interrupt service routine.
R1 ="F. SACM_A1600-ServiceLoop_ISR; // Background Service loop

/I for SACM A1600 playing

push R1:to[SP]; /l push function address to stack
push SR'to [SP]; // push SR to stack

R1=C FIQ TMA;

[P_INT_Clear] = R1;

6.3 Playback Functions: Playback control

6.3.1 Function: Play a SACM-A1600 speech

[syntax}
C:
ASM:

void SACM_A1600_Play(int Speech_Index, int Channel, int Ramp_Set)

R1 = Speech_Index

© Sunplus Technology Co., Ltd. PAGE 20 March 30, 2004

D

D SUNPLUS

SPCE SACM Library User’s Manual v3.0

Parameters:

Return Value:
Library:

Remark:

R2 = Channel
R3 = Ramp_Set
call F_SACM_A1600_Play

Speech_Index: -1: Manual Mode

0 ~ max. of speech index: Auto Mode
Channel: : To DACL1 only
: To DAC2 only
: To both DAC1 and DAC2
Ramp_Set : Disable both ramp up and down
: Enable ramp up only

: Enable ramp down only

w N P O W N P

: Enable both ramp up and ramp.down
None

<Sacm_A1600_Vxxx.LIB>, <Sacm_A1600_.SC . Vxxx.LIB>

1. The data rate of SACM-A1600 can be compressed by 10/12/14/16/20/24Kbps. The data rate
is selected by decoder automatically.

2. The Speech_Index_is “the speech' sequence of T_SACM_A1600_SpeechTable in
resource.asm. For.manual mode playback, the Speech_Index should be set as —1. And user
should implement the {USER_A1600_SetStartAddr and F_USER_A1600_GetData in
sacm_A1600 user.asm on users’ own.

3. The FLISR_Service. SACM_A1600 can be hooked on the _FIQ:, _IRQ1:, or _IRQ2: label
(see isr.asm far details) before using this function.

4. The interrupt service routine (ISR) is working on 16KHz after calling this subroutine.

5. About'the details of Ramp Up/Down function, please refer to section 12.1 Ramp Functions.

6.32 Function: Stop playing SACM-A1600 speech

[Syntax]

C:

ASM:
Parameters:
Return Value:
Library:

Remark:

void SACM_A1600_Stop(void);

call F_SACM_A1600_Stop

None

None

<Sacm_A1600_Vxxx.LIB>, <Sacm_A1600_SC_Vxxx.LIB>

This function will not change the interrupt setting.

© Sunplus Technology Co., Ltd. PAGE 21 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

6.3.3 Function: Pause playing SACM-A1600 speech

[Syntax]

C: void SACM_A1600_Pause(void);
ASM: call F_SACM_A1600_Pause
Parameters: None

Return Value: None
Library: <Sacm_A1600_Vxxx.LIB>, <Sacm_A1600_SC_Vxxx.LIB>

Remark: None

6.3.4 Function: Resume paused SACM-A1600 speech

[Syntax

C: void SACM_A1600_Resume(void);
ASM: call F_SACM_A1600_Resume
Parameters: None

Return Value: None
Library: <Sacm_A1600_Vxxx.LIB>, <Sacm_A1600_SC_ Vxxx.LIB>

Remark: None

6.3.5 Function: Change the volume of SACM-A1600

[Syntax]
C: void ~SACM_A1600_Volume(int Volume_Index)
ASM: R1 = Volume_Index
call F/SACM_A1600_Volume
Parameters: Volume_Index: [0..15], 0:Min volume, 15:Max volume

Return Value: None
Library: <Sacm_A1600_Vxxx.LIB>, <Sacm_A1600_SC_Vxxx.LIB>

Remark: None

6.3.6 Function: Get the status of the SACM-A1600 module

[Syntax]
C: unsigned int SACM_A1600_Status(void);
ASM: call F_SACM_A1600_Status

[Retrun_Value] = R1

© Sunplus Technology Co., Ltd. PAGE 22 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Parameters: None
Return Value: bit 0: 0: Speech ended
1: Speech Playing
bit 1-15: Reserved
Library: <Sacm_A1600_Vxxx.LIB>, <Sacm_A1600_SC_Vxxx.LIB>

Remark: None

6.3.7 Function: Change the speed index of SACM-A1600

[Syntax]
C: void SACM_A1600_Speed(int Speed_Index)
ASM: R1 = [Speed_Index]

call F_SACM_A1600_Speed

Parameters: Speed_Index: [-12..12], 0:Normal speed, -12:Min‘speed, 12:Max speed

Return Value: None

Library: <Sacm_A1600_SC_Vxxx.LIB>

Remark:
1. Min speed (Speed_Index ==12) is 1/2 of Normal speed (Speed_Index = 0).
2. Max speed (Speed _Index = 12) is twice of Normal speed (Speed_Index = 0).

6.4 ISR Functions:Interrupt service routine for SACM-A1600

This routine will get the decoded data from service loop subroutine and send data to DAC for playing. It can be
placed in FIQ or IRQL or-IRQ2 depending on Timer used. The initial function, F_SP_SACM_A1600_lInit_, in

sacmvxxx.asm must-also be updated-as well.

[Syntax

C: N/A

ASM: call” F_ISR_Service_ SACM_A1600
Parameters: None

Return Value: None
Library: <Sacm_A1600_Vxxx.LIB>, <Sacm_A1600_SC_Vxxx.LIB>
Remark:
1. This function is used in assembly only and it can be hooked on the _FIQ, _IRQ1 or _IRQ2:
label. (See isr.asm for details)
2. The F_ISR_Service_SACM_A1600 will not take up any time to process the Interrupt routine
except minor overheads if the program is not playing. It is possible for users to place

user-define function in the same FIQ or IRQ.

© Sunplus Technology Co., Ltd. PAGE 23 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

EX:
_FIQ:

push R1, R5 to [SP];
call F_ISR_Service_SACM_A1600
call F_User_ISR
R1=C_IRQ1_TMA;
[P_INT_Clear] = R1;
pop R1, R5 from [SP]

reti

6.5 User Functions: for SACM-A1600 playback in manual-mode

6.5.1 Function: Set start address for SACM-A1600.speech data.

[Syntax

C: USER_A1600_SetStartAddr (,,)
ASM: call F_USER_A1600_SetStartAddr
Parameters: User-defined

Return Value: User-defined
Library: sacm_A1600_user.asm
Remark: 1. Manual mode use only.
2. User implements the function based on the storage type. The memory interface has to be
constructed in advance.if user intends to access the data from external storage, e.g. ROM,

FLASH.

6.5.2 Function: Read the speech data from user’s storage and write to buffer

[Syntax]
C: N/A
ASM: R1 = the start address of buffer to write
R2 = the length of data
call F_USER_A1600_GetData
Parameters: R1 = the start address of buffer to write

R2 = the length of data
Return Value: User-defined
Library: sacm_A1600_user.asm

Remark:

© Sunplus Technology Co., Ltd. PAGE 24 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

1. Manual mode use only

2. User implements the function based on the storage type. The memory interface has to be
constructed in advance if user intends to access the data from external storage, e.g. ROM,
FLASH.

3. This function is call-back function for SACM A1600 library to read speech data from memory
storage. Where R1 is the beginning address of internal buffer and R2 is the data length that
library wants to get.

Example:
Play a SACM-A1600 speech with Auto mode or Manual mode.
(a). In main.c:

#include “sacmv40.h”

#define Manual_Mode_Index -1

#define Manual 0

#define Auto 1

#define DAC1 1

#define DAC2 2

#define Ramp_Up 1

#define Ramp_Dn 2

int Mode;

int Speechindex = 0;

main()

{
Mode = Auto; /I Play mode setting
if(Mode == Auto) /I Auto mode play
{

SACM_A1600_Initial(); I/ Initialization

SACM” A1600_Play(Speechindex, DAC1+DAC2, Ramp_Up+Ramp_Dn);// Play 1° speech
While(1)
{
SACM_A1600_ServiceLoop(); /I Service loop for decode
} /1 end of While(1)
} /I end of if(Mode == Auto)
if(Mode == Manual) // Manual mode play
{
SACM_ A1600_Initial(); /I Initialization
USER_A1600_SetStartAddr(Speechindex); /I Set start address of speech data
SACM_A1600_Play(Manual_Mode_Index, DAC1+DAC2, Ramp_Up+Ramp_Dn);

© Sunplus Technology Co., Ltd. PAGE 25 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

SACM_A1600_ServiceLoop();
} /1 end of SACM_A1600_Play
} /I end of if(Mode == Manual)
} /l end of main()
(b). In ism.asm:
_FIQ:
push R1, R5 to [SP];
call F_ISR_Service_SACM_A1600;
R1=C_FIQ TMA;
[R_INT_Clear] = R1;
pop R1, R5 from [SP];
reti;
(c). In sacm_A1600_user.asm: (manual mode only)
_USER_A1600_SetStartAddr:
I/l defined by user

/I Manual mode play speech

/I Service loop for decode

I/l push registers

/'SR

/I clear TimerAFIQ interrupt flag
I/ pop registers

// return

/I F_USER_A1600_SetStartAddr are Manual mode.use only: User implements this function based on the

/I storage type. The memory interface has to'be constructed in advance if user intends to access the data

/I from external storage, e.g. ROM, FLASH.

retf;

F_USER_A1600_GetData:
/I defined by user

/I F_USER_A1600_GetData are Manual mode use only. User implements this function based on the

/I storage type. The memory interface has to be constructed in advance if user intends to access the data

/I from external storage, e.g. ROM, FLASH.

retf;

© Sunplus Technology Co., Ltd. PAGE 26

March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

7 API for SACM-S200

7.1 Hardware Dependent Function: Initializes SACM-S200

7.1.1 Function: Initialize the S200 library

[Syntax

C: void SACM_S200_lInitial (void);
ASM: call F_SACM_S200_lInitial
Parameters: N/A

Return Value: N/A
Library: <Sacm_S200_SC_Vxxx.LIB>
Remark:
1. This function initializes the SACM-S200.decoder. It alsotinitializes the system clock, Timer
A, DAC and enables the Timer'/A FIQ with 16KHz/sample rate.
2. The hardware setting is opened for user's reference (see F_SP_SACM_S200_Init_:
function in sacmvxxx.asm).
3. This function utilizes.a register, R_InterruptStatus (spce.asm), to work with user’s program

for SPCE500A: Ituses P_INT_ Mask instead for SPCE 061A/060A

7.2 Service Loop Functions:-Service loop for SACM-S200 decoding

7.2.1 Function: Foreground service loop

[Syntax

C: void SACM_S200_ServiceLoop(void);
ASM: call F_SACM_S200_ServiceLoop
Parameters: None

Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>

Remark: Foreground service loop has to be placed in main loop.

7.2.2 Function: Background service loop:

[Syntaxt

C: N/A

© Sunplus Technology Co., Ltd. PAGE 27 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

ASM:
Parameters:
Return Value:
Library:

Remark:

Call F_SACM_S200_ServiceLoop_ISR

<Sacm_S200_SC_Vxxx.LIB>

Background service loop is placed in either FIQ or IRQ and it must be placed before
leaving the FIQ or IRQ. Please refer to the following example.

Please make sure that the S200 code is allocated in page O to assure that program flow
can proceed to F_SACM_S200_ServiceLoop_ISR correctly.

This background service loop will pop the R1-R5 register. Program does not-have to pop
the registers before reti.

The advantage users can get from background service loop is that program can reduce
unnecessary overhead in main and as a result program can yield -better performance in
terms of throughput.

Example: By this manner of programming, the program-allows the background service loop
to take place right after leaving~the FIQ/IRQ and meanwhile the next interrupt can still
intrude the service loop even when the background service loop is still running. Please
refer to “Sunplus u'nSP."Assembly Tools' User Manual” for the detail of the argument

passing in library routine:

push R1, R5 to'[SPJ;
call F_ISR_Service_SACM_S200; /I Interrupt service routine.
R1 ='F> SACM_S200_ServiceLoop_ISR; /I Background Service loop

/I for SACMS200 playing

push R1:to[SP]; /I push function address to stack
push SR'to [SP]; // push SR to stack

R1=C FIQ TMA;

[P_INT_Clear] = R1;

7.3 Playback Functions: Playback control

7.3.1 Function: Play a SACM-S200 speech

[syntax}
C:
ASM:

void SACM_S200_Play(int Speech_Index, int Channel, int Ramp_Set)
R1 = Speech_Index

© Sunplus Technology Co., Ltd. PAGE 28 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

R2 = Channel

R3 = Ramp_Set

call F_SACM_S200_Play
Parameters:

Speech_Index: -1: Manual Mode

0 — max. of speech index: Auto Mode

Channel: 1: To DAC1 only
2: To DAC2 only
3: To both DAC1 and DAC2
Ramp_Set 0: Disable both ramp up and down
1: Enable ramp up only
2: Enable ramp down only
3: Enable both ramp up and down
Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>
Remark:

1. The data rate of SACM-S200 can be compressed by 0.8K~3.36K Kbps. The data rate is
determined at encoding and selected by the'decoder automatically at decoding. The data
rate can be 0.8K, 0.9K, 1K, 1:2K, 1.4K, 1.6K, 1.8K, 2K, 2.4K, 2.8K or 3.36Kbps.

2. The Speech_Index" is the speech. sequence of T_SACM_S200_SpeechTable in
resource.asm. For.manual mode playback, the Speech_Index should be set as —1. And
user should implement the _USER_S200_SetStartAddr and F_USER_S200_GetData in
sacm_S200 user.asm on users’ own.

3. The F_ISR_Service /SSACM_S200 can be hooked on the FIQ:, IRQ1:, or IRQ2: label
(see isr.asm for details) before using this function.

4. The.interrupt'service routine (ISR) is working on 16KHz after calling this subroutine.

5. Aboutthe details of Ramp Up/Down function, please refer to section 12.1 Ramp Functions.

7.3:2 \Function: Stop playing SACM-S200 speech

[Syntax

C: void SACM_S200_Stop(void);
ASM: call F_SACM_S200_Stop
Parameters: None

Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>

Remark: This function will not change the interrupt setting.

© Sunplus Technology Co., Ltd. PAGE 29 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

7.3.3 Function: Pause playing SACM-S200 speech

[Syntax]

C: void SACM_S200_Pause(void);
ASM: call F_SACM_S200_Pause
Parameters: None

Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>

Remark: None

7.3.4 Function: Resume paused SACM-S200 speech

[Syntax

C: void SACM_S200_Resume(void);
ASM: call F_SACM_S200_Resume
Parameters: None

Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>

Remark: None

7.3.5 Function: Change the volume of SACM-S200

[Syntax]
C: void ~SACM_S200_Volume(int Volume_Index)
ASM: R1 = Volume_Index
call F/SACM_S200_Volume
Parameters: Volume_Index: [0..15], 0:Min volume, 15:Max volume

Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>

Remark: None

7.3.6 Function: Get the status of the SACM-S200 module

[Syntax]
C: unsigned int SACM_S200_Status(void);
ASM: call F_SACM_S200_Status

[Retrun_Value] = R1

© Sunplus Technology Co., Ltd. PAGE 30 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Parameters: None
Return Value: bit 0: 0: Speech ended
1: Speech Playing
bit 1-15: Reserved
Library: <Sacm_S200_SC_Vxxx.LIB>

Remark: None

7.3.7 Function: Change the speed index of SACM-S200

[Syntax
C: void SACM_S200_Speed(int Speed_Index)
ASM: R1 = [Speed_Index]

call F_SACM_S200_Speed
Parameters:

Speed_Index: [-2..2], 0:Normal speed, -2:Min speed, 2:Max speed
Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>
Remark:
1. Min speed (Speed_Index= -2) is 1/2'of Normal speed (Speed_Index = 0).

2. Max speed (SpeedIndex = 2) is;twice of Normal speed (Speed_Index = 0).

7.3.8 Function: Set constant pitch index of SACM-S5200

[Syntax]
C: void SACM_S200_Pitch0O(int PitchO_Index)
ASM: R1 = [Pitch0_Index]

call F_SACM_S200_Pitch0
Parameters:

PitchO_Index: [-2..2], 0:Normal pitch, -2:lowest pitch, 2:highest pitch
Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>

Remark: None

7.3.9 Function: Change the pitch index of SACM-S200
[Syntax]

C: void SACM_S200_Pitchl(int Pitchl_Index)

© Sunplus Technology Co., Ltd. PAGE 31 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

ASM: R1 = [Pitch1_Index]
call F_SACM_S200_Pitchl
Parameters:
Pitch1_Index: [-2..2], 0:Normal pitch, -2:lowest pitch, 2:highest pitch
Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>

Remark: None

7.3.10 Function: Change voiced index of SACM-S200

[Syntax
C: void SACM_S200_Voice(int Voice_Index)
ASM: R1 = [Voice_Index]

call F_SACM_S200_Voice
Parameters:

Voice_Index: [-2..2], 0:Normal, -2:pure-unvoiced, 2:pure voiced
Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>

Remark: None

7.4 ISR Functions:Interrupt service routine for SACM-S200

This routine will get the decoded data from service loop subroutine and send data to DAC for playing. It can be

placed in FIQ or IRQL or-IRQ2 depending on Timer used. The initial function, F_SP_SACM_S200_lInit_, in

sacmvxxx.asm must-also be updated-as well.

[Syntax

C: N/A

ASM: call F_ISR_Service_ SACM_S200
Parameters: None

Return Value: None
Library: <Sacm_S200_SC_Vxxx.LIB>

Remark:

This function is used in assembly only and it can be hooked on the _FIQ, _IRQ1 or _IRQ2:
label. (See isr.asm for details)
The F_ISR_Service_SACM_S200 will not take up any time to process the Interrupt routine

except minor overheads if the program is not playing. It is possible for users to place

© Sunplus Technology Co., Ltd. PAGE 32 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

user-define function in the same FIQ or IRQ.

EX:
_FIQ:

push R1, R5 to [SP];
call F_ISR_Service_SACM_S200
call F_User_ISR
R1=C_IRQ1_TMA;
[P_INT_Clear] = R1;
pop R1, R5 from [SP]

reti

7.5 User Functions: for SACM-S200 playback in manual mode

7.5.1 Function: Set start address for SACM-S200 speech data.

[Syntax

C:

ASM:
Parameters:
Return Value:
Library:

Remark:

USER_S200_SetStartAddr (,,)

call F_USER_S200_SetStartAddr
User-defined

User-defined
sacm_S200_user.asm

1. Manual mode use only.

2. User implements the function based on the storage type. The memory interface has to be

constructed in-advance if user intends to access the data from external storage, e.g. ROM,

FLASH.

7.5.2 Function: Read the speech data from user’s storage and write to buffer

[syntax}
C:
ASM:

Parameters:

Return Value:

Library:

N/A

R1 = the start address of buffer to write
R2 = the length of data

call F_USER_S200_GetData

R1 = the start address of buffer to write
R2 = the length of data

User-defined

sacm_S200_user.asm

© Sunplus Technology Co., Ltd.

PAGE 33

March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Remark:

1. Manual mode use only

2. User implements the function based on the storage type. The memory interface has to be
constructed in advance if user intends to access the data from external storage, e.g. ROM,
FLASH.

3. This function is call-back function for SACM S200 library to read speech data from memory
storage. Where R1 is the beginning address of internal buffer and R2 is the data length that
library wants to get.

Example:

Play a SACM-S200 speech with Auto mode or Manual mode.
(@). In main.c:

#include “sacmv40.h”

#define Manual_Mode_Index -1

#define Manual 0

#define Auto 1

#define DAC1 1

#define DAC2 2

#define Ramp_Up 1

#define Ramp_Dn 2

int Mode;

int Speechindex = 0;

main()

{
Mode =Auto; /I Play mode setting
if(Mode == Auto) /I Auto mode play
{

SACM- S200_Initial(); /I Initialization

SACM_S200_Play(Speechindex, DAC1+DAC2, Ramp_Up+Ramp_Dn);// Play 1° speech
While(1)
{
SACM_S200_ServiceLoop(); /I Service loop for decode
} /1 end of While(1)
} /I end of if(Mode == Auto)

if(Mode == Manual) // Manual mode play

{
SACM_S200_Initial(); I/ Initialization
USER_S200_SetStartAddr(Speechindex); /I Set start address of speech data

© Sunplus Technology Co., Ltd. PAGE 34 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

SACM_S200_Play(Manual_Mode_Index,DAC1+DAC2,Ramp_Up+Ramp_Dn);
{ /I Manual mode play speech
SACM_S200_ServiceLoop(); /I Service loop for decode
} /1 end of SACM_S200_Play
} /I end of if(Mode == Manual)
} /I end of main()
(b). In ism.asm:
_FIQ:
push R1, R5 to [SP]; I/l push registers
call F_ISR_Service_SACM_S200; /ISR
R1=C_FIQ TMA;

[R_INT_Clear] = R1; /I clear TimerA FIQ interrupt-flag
pop R1, R5 from [SP]; /I pop'registers
reti; /l.return

(). In sacm_S200_user.asm: (manual mode only)

_USER_S200_SetStartAddr:
I/l defined by user
/I F_USER_S200_SetStartAddr are Manual'mode use only. User implements this function based on the
/I storage type. The memory interface has-to be constructed in advance if user intends to access the data

/I from external storage, e.g. ROM, FLASH.

retf;

F_USER_S200_GetData:
I/l defined by user
/I F_USER_S200_GetData are Manual mode use only. User implements this function based on the
/I storage type. The memory interface has to be constructed in advance if user intends to access the data

/I from external storage, e.g. ROM, FLASH.

retf;

© Sunplus Technology Co., Ltd. PAGE 35 March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

8 API for SACM-5480/S720

8.1 Hardware Dependent Function: Initializes SACM-S480/S720

8.1.1 Function: Initialize SACM-S480/S720 library

[Syntax

C: void SACM_S480_Initial(void);
ASM: call F_SACM_S480_lInitial
Parameters: None

Return Value: None
Library: <Sacm_S480_Vxxx.LIB>, <Sacm_S480_SC_Vxxx.LIB>
Remark:
1. This function initializes the decoder_of . SACM-S480. It also initializes the system clock,
Timer A, DAC and enables the Timer AFIQ at 16KHz-sample rate.
2. The hardware setting is opened for user’s reference (see F_SP_SACM_S480_Speed_Init_:
function in sacmvxxx.asm).
3. This function utilizes.a register, R_InterruptStatus (spce.asm), to work with user’s program

if for SPCES00A. It uses P_INT-Mask instead if for SPCE 061A/060A

8.2 Service Loop Functions:-Service loop for SACM-S480 decoding

8.2.1 Function: Foreground service loop

[Syntax

C: void SACM_S480_ServiceLoop(void);
ASM: call F_SACM_S480_ServiceLoop
Parameters: None

Return Value: None
Library: <Sacm_S480_Vxxx.LIB>, <Sacm_S480_SC_Vxxx.LIB>

Remark: Foreground service loop has to be placed in main loop.

8.2.2 Function: Background service loop:

[Syntaxt

C: N/A

© Sunplus Technology Co., Ltd. PAGE 36 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

ASM:
Parameters:
Return Value:
Library:

Remark:

Call F_SACM_S480_ServiceLoop_ISR

<Sacm_S480_Vxxx.LIB>, <Sacm_S480_SC_Vxxx.LIB>

Background service loop is placed in either FIQ or IRQ and it must be placed before
leaving the FIQ or IRQ. Please refer to the following example.

Please make sure that the S480 code is allocated in page O to assure that program flow
can proceed to F_SACM_S480_ServiceLoop_ISR correctly.

This background service loop will pop the R1-R5 register. Program does not-have to pop
the registers before reti.

The advantage users can get from background service loop is that program can reduce
unnecessary overhead in main and as a result program can yield -better performance in
terms of throughput.

Example: By this manner of programming, the program-allows the background service loop
to take place right after leaving~the FIQ/IRQ and meanwhile the next interrupt can still
intrude the service loop even when the background service loop is still running. Please
refer to “Sunplus u'nSP."Assembly Tools' User Manual” for the detail of the argument

passing in library routine:

push R1, R5 to'[SPJ;
call F_ISR_Service_SACM_S480; /I Interrupt service routine.
R1 ='F. SACM_S480 ServiceLoop_ISR; // Background Service loop

/I for SACM S480 playing

push R1:to[SP]; /l push function address to stack
push SR'to [SP]; // push SR to stack

R1=C FIQ TMA;

[P_INT_Clear] = R1;

8.3 Playback Functions: Playback control

8.3.1 Function: Play a SACM-S480/S720 speech

[syntax}
C:
ASM:

void SACM_S480_Play(int Speech_Index, int Channel, int Ramp_Set)
R1 = Speech_Index

© Sunplus Technology Co., Ltd. PAGE 37 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

R2 = Channel

R3 = Ramp_Set

call F_SACM_S480_Play
Parameters:

Speech_Index: -1: Manual Mode

— max. of speech index: Auto Mode

Channel: To DACL1 only

To DAC2 only

To both DAC1 and DAC2

0
1:
2:
3:
Ramp_Set 0: Disable both ramp up and down
1: Enable ramp up only
2: Enable ramp down only
3: Enable both ramp up and down
Return Value: None
Library: <Sacm_S480_Vxxx.LIB>, <Sacm_S480_SC_Vxxx.LIB>
Remark:
1. The data rate of SACM-S480 can.be compressed by 4.8/7.2Kbps. The data rate is selected
by decoder automatically.
2. The Speech_Index is.the speech sequence of T_SACM_S480_SpeechTable in resource.asm.
For manual mode. playback, ithe ~Speech_Index should be set as —1. And user should
implement « the _USER_S480_SetStartAddr and F_USER_S480_GetData in
sacm_S480_user.asm on users’ own.
3. The F_ISR_Service~SACM_S480 can be hooked on the _FIQ:, _IRQ1:, or _IRQ2: label (see
isr.asm for details) before using this function.
4. The interrupt service routine (ISR) is working on 16KHz after calling this subroutine.

5. About the details of Ramp Up/Down function, please refer to section 12.1 Ramp Functions.

8.32 Function: Stop playing SACM-S480/S720 speech
[Syntax]

C: void SACM_S480_Stop(void);
ASM: call F_SACM_S480_Stop
Parameters: None

Return Value: None
Library: <Sacm_S480_Vxxx.LIB>, <Sacm_S480_SC_Vxxx.LIB>

Remark: This function will not change the interrupt setting.

© Sunplus Technology Co., Ltd. PAGE 38 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

8.3.3 Function: Pause playing SACM-5480/S720 speech

[Syntax]

C: void SACM_S480_Pause(void);
ASM: call F_SACM_S480_Pause
Parameters: None

Return Value: None
Library: <Sacm_S480_Vxxx.LIB>, <Sacm_S480_SC_Vxxx.LIB>

Remark: None

8.3.4 Function: Resume paused SACM-S480/S720 speech

[Syntax

C: void SACM_S480_Resume(void);
ASM: call F_SACM_S480 Resume
Parameters: None

Return Value: None

Library: <Sacm_S480_Vxxx.LIB>, <Sacm_S480_SC_Vxxx.LIB>
Remark: None
Example: None

8.3.5 Function: Change.the volume of SACM-S480/S720

[Syntax]
C: void SACM_S480.Volume(int Volume_Index)
ASM: R1 = [Volume_Index]
call . F_SACM_S480_Volume
Parameters: Volume_Index: [0..15], 0:Min volume, 15:Max volume

Return Value:. . None
Library: <Sacm_S480_Vxxx.LIB>, <Sacm_S480_SC_Vxxx.LIB>

Remark: None

8.3.6 Function: Get the status of the SACM-5480/S720 module

[Syntax]
C: unsigned int SACM_S480_Status(void);
ASM: call F_SACM_S480_Status

© Sunplus Technology Co., Ltd. PAGE 39 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

[Retrun_Value] = R1
Parameters: None
Return Value: bit 0: 0: Speech ended
1: Speech Playing
bit 1-15: Reserved
Library: <Sacm_S480_Vxxx.LIB>, <Sacm_S480_SC_Vxxx.LIB>

Remark: None

8.3.7 Function: Change the speed index of SACM-S480/S720

[Syntax]
C: void SACM_S480_Speed(int Speed_Index)
ASM: R1 = [Speed_Index]

call F_SACM_S480_Speed
Parameters: Speed_Index: [-12..12], 0:Normal speed, -12:Min speed, 12:Max speed
Return Value: None
Library: <Sacm_S480_SC_Vxxx.LIB>
Remark: Min speed (Speed_Index = -12)is 1/2 of Normal speed (Speed_Index = 0). Max speed (Speed

_Index = 12) is twice of Normal speed.

8.4 ISR Functions:Interrupt service routine for SACM-S480/S720

This routine will get the decoded data from service loop subroutine and send data to DAC for playing. It can be
placed in FIQ or IRQL or-IRQ2 depending on Timer used. The initial function, F_SP_SACM_S480_lInit_, in

sacmvxxx.asm must-also be updated-as well.

[Syntax

C: N/A

ASM: call” F_ISR_Service_SACM_S480
Parameters: None

Return Value: None
Library: <Sacm_S480_Vxxx.LIB>, <Sacm_S480_SC_Vxxx.LIB>
Remark:
1. This function is used in assembly only and it can be hooked on the _FIQ, _IRQ1 or _IRQ2:
label. (See isr.asm for details)
2. The F_ISR_Service_SACM_S480 will not take up any time to process the Interrupt routine
except minor overheads if the program is not playing. It is possible for users to place

user-define function in the same FIQ or IRQ

© Sunplus Technology Co., Ltd. PAGE 40 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

EX:
_FIQ:

push R1, R5 to [SP];
call F_ISR_Service_SACM_S480
call F_User_ISR
R1=C_IRQ1_TMA;
[P_INT_Clear] = R1;
pop R1, R5 from [SP]

reti

8.5 User Functions: for SACM-S480/S720 playback innmanual mode

8.5.1 Function: Set start address for SACM-S480/S720 speech data.

[Syntax

C: USER_S480_SetStartAddr (,,)
ASM: call F_USER_S480_SetStartAddr
Parameters: User-defined

Return Value: User-defined
Library: sacm_S480_user.asm
Remark: 1. Manual mode use only.
2. User implements the function based on the storage type. The memory interface has to be
constructed in advance.if user intends to access the data from external storage, e.g. ROM,

FLASH.

8.5.2 Function: Read the speech data from user’s storage and write to buffer

[Syntax]
C: N/A
ASM: R1 = the start address of buffer to write
R2 = the length of data
call F_USER_S480_GetData
Parameters: R1 = the start address of buffer to write

R2 = the length of data
Return Value: User-defined
Library: sacm_S480_user.asm

Remark:

© Sunplus Technology Co., Ltd. PAGE 41 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

1. Manual mode use only

2. User implements the function based on the storage type. The memory interface has to be
constructed in advance if user intends to access the data from external storage, e.g. ROM,
FLASH.

3. This function is call-back function for SACM S480 library to read speech data from memory
storage. Where R1 is the beginning address of internal buffer and R2 is the data length that
library wants to get.

Example:
Play a SACM-S480 speech with Auto mode or Manual mode.
(@). In main.c:

#include “sacmv40.h”

#define Manual_Mode_Index -1

#define Manual 0

#define Auto 1

#define DAC1 1

#define DAC2 2

#define Ramp_Up 1

#define Ramp_Dn 2

int Mode;

int Speechindex = 0;

main()

{
Mode = Auto; /I Play mode setting
if(Mode == Auto) /I Auto mode play
{

SACM_S480_Initial(); I/ Initialization

SACM~ S480_Play(Speechindex, DAC1+DAC2, Ramp_Up+Ramp_Dn); // Play 1° speech
While(1)
{
SACM_S480_ServiceLoop(); /I Service loop for decode
} /1 end of While(1)
} /I end of if(Mode == Auto)

if(Mode == Manual) /l Manual mode play

{
SACM_S480_Initial(); /I Initialization
USER_S480_SetStartAddr(Speechindex); /I Set start address of speech data

SACM_S480_Play(Manual_Mode_Index,DAC1+DAC2,Ramp_Up+Ramp_Dn);

© Sunplus Technology Co., Ltd. PAGE 42 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

SACM_S480_ServiceLoop();
} /1 end of SACM_S480_Play
} /I end of if(Mode == Manual)
} /l end of main()
(b). In ism.asm:
_FIQ:
push R1, R5 to [SP];
call F_ISR_Service_ SACM_S480;
R1=C_FIQ TMA;
[R_INT_Clear] = R1;
pop R1, R5 from [SP];
reti;
(). In sacm_S480_user.asm: (manual mode only)
_USER_S480_SetStartAddr:
I/l defined by user

/I Manual mode play speech

/I Service loop for decode

I/l push registers

/'SR

/I clear TimerAFIQ interrupt flag
I/ pop registers

// return

/I F_USER_S480_SetStartAddr are Manual mode use only. User implements this function based on the

/I storage type. The memory interface has to'be constructed in advance if user intends to access the data

/I from external storage, e.g. ROM, FLASH.

retf;

F_USER_S480_GetData:
/I defined by user

/I F_USER_S480_GetData are Manual mode use only. User implements this function based on the

/I storage type. The memory interface has to be constructed in advance if user intends to access the data

/I from external storage, e.g. ROM, FLASH.

retf;

© Sunplus Technology Co., Ltd.

PAGE 43

March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

9 APIfor SACM-S530

9.1 Hardware Dependent Function: Initializes SACM-S530

9.1.1 Function: Initialize SACM-S530 library

[Syntax

C: void SACM_S530_Initial(void);
ASM: call F_SACM_S530_lInitial
Parameters: None

Return Value: None
Library: <Sacm_S530_Vxxx.LIB>, <Sacm_S530_SC_Vxxx.LIB>
Remark:
1. This function initializes the decoder_of . SACM-S530. It also initializes the system clock,
Timer A, DAC and enables the Timer AFIQ at 16KHz-sample rate.
2. The hardware setting is opened for user’s reference (see F_SACM_S530_Init_: function in
sacmvxxx.asm).
3. This function utilizes.a register, R_InterruptStatus (spce.asm), to work with user’s program

if for SPCES00A. It uses P_INT-Mask instead if for SPCE 061A/060A

9.2 Service Loop Functions:-Service loop for SACM-S530 decoding

9.2.1 Function: Foreground service loop

[Syntax

C: void SACM_S530_ServiceLoop(void);
ASM: call F_SACM_S530_ServiceLoop
Parameters: None

Return Value: None
Library: <Sacm_S530_Vxxx.LIB>, <Sacm_S530_SC_Vxxx.LIB>

Remark: Foreground service loop has to be placed in main loop.

9.2.2 Function: Background service loop:

[Syntaxt

C: N/A

© Sunplus Technology Co., Ltd. PAGE 44 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

ASM:
Parameters:
Return Value:
Library:

Remark:

Call F_SACM_S530_ServiceLoop_ISR

<Sacm_S530_Vxxx.LIB>, <Sacm_S530_SC_Vxxx.LIB>

Background service loop is placed in either FIQ or IRQ and it must be placed before
leaving the FIQ or IRQ. Please refer to the following example.

Please make sure that the S530 code is allocated in page 0 to assure that program flow
can proceed to F_SACM_S530_ServiceLoop_ISR correctly.

This background service loop will pop the R1-R5 register. Program does not-have to pop
the registers before reti.

The advantage users can get from background service loop is that program can reduce
unnecessary overhead in main and as a result program can yield -better performance in
terms of throughput.

Example: By this manner of programming, the program-allows the background service loop
to take place right after leaving~the FIQ/IRQ and meanwhile the next interrupt can still
intrude the service loop even when the background service loop is still running. Please
refer to “Sunplus u'nSP."Assembly Tools' User Manual” for the detail of the argument

passing in library routine:

push R1, R5 to'[SPJ;
call F_ISR_Service_SACM_S530; /I Interrupt service routine.
R1 ='F. SACM_S530_ServiceLoop_ISR; // Background Service loop

/I for SACM S530 playing

push R1:to[SP]; /l push function address to stack
push SR'to [SP]; // push SR to stack

R1=C FIQ TMA;

[P_INT_Clear] = R1;

9.3 Playback Functions: Playback control

9.3.1 Function: Play a SACM-S530 speech

[syntax}
C:
ASM:

void SACM_S530_Play(int Speech_Index, int Channel, int Ramp_Set)
R1 = Speech_Index

© Sunplus Technology Co., Ltd. PAGE 45 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Parameters:

Return Value:
Library:

Remark:

Channel:

0
1:
2:
3:
Ramp_Set 0: Disable both ramp up and down
1:
2:
3:

R2 = Channel
R3 = Ramp_Set

F_SACM_S530_Play

Speech_Index: -1: Manual Mode

— max. of speech index: Auto Mode
To DACL1 only

To DAC2 only

To both DAC1 and DAC2

Enable ramp up only
Enable ramp down only

Enable both ramp up and down

None

<Sacm_S530_Vxxx.LIB>, <Sacm_S530_SC_Vxxx.LIB>

The data rate of SACM-S5300 can be compressed by 5.3 Kbps when sampling is 8KHz.
The data rate is selected by decoder automatically at decoding. The data rate can vary
along with the sampling-rate. That’is, data rate can be 5.3 Kbps, 5.96 Kbps, 6.63 Kbps,
7.29 Kbps and. 7.95.Kbps when the sampling rate is 8KHz, 9KHz,10KHz, 11KHz, or 12KHz.
The Speech_Index is(“the speech sequence of T_SACM_S530_SpeechTable in
resource.asm. For manual mode playback, the Speech_Index should be set as —1. And
user should implement the _USER_S530_SetStartAddr and F_USER_S530_GetData in
sacm_S530-user.asm on users’ own.

The F-ISR_Service_SACM_S530 can be hooked on the _FIQ:, _IRQ1:, or _IRQ2: label
(see'isr.asm for details) before using this function.

The interrupt service routine (ISR) is working on 16/18/20/22/24 KHz after calling this
subroutine. Please refer to F_SP_SACM_S530_Init_ in sacmvxxx.asm for detail.

About the details of Ramp Up/Down function, please refer to section 12.1 Ramp Functions.

9.3.2 Function: Stop playing SACM-S530 speech

Syntax}

C:

ASM:
Parameters:

Return Value:

void SACM_S530_Stop(void);

F_SACM_S530_Stop

None

None

© Sunplus Technology Co., Ltd. PAGE 46 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Library: <Sacm_S530_Vxxx.LIB>, <Sacm_S530_SC_Vxxx.LIB>

Remark: This function will not change the interrupt setting.

9.3.3 Function: Pause playing SACM-S530 speech

[Syntax]

C: void SACM_S530_Pause(void);
ASM: call F_SACM_S530_Pause
Parameters: None

Return Value: None
Library: <Sacm_S530_Vxxx.LIB>, <Sacm_S530_SC_Vxxx.LIB>

Remark: None

9.3.4 Function: Resume paused SACM-S530:speech

[Syntax

C: void SACM_S530_Resume(void);
ASM: call F_SACM_S530_Resume
Parameters: None

Return Value: None
Library: <Sacm_S530 «Vxxx.LIB>, <Sacm_S530_SC_Vxxx.LIB>

Remark: None

9.3.5 Function: Change the volume of SACM-S530

[Syntax]
C: void SACM_S530_Volume(int Volume_Index)
ASM: R1 = [Volume_Index]
call F_SACM_S530_Volume
Parameters: Volume_Index: [0..15], 0:Min volume, 15:Max volume

Return Value: None
Library: <Sacm_S530_Vxxx.LIB>, <Sacm_S530_SC_Vxxx.LIB>

Remark: None

9.3.6 Function: Get the status of the SACM-S530 module
[Syntax]:

© Sunplus Technology Co., Ltd. PAGE 47

March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

C: unsigned int SACM_S530_Status(void);
ASM: call F_SACM_S530_Status

[Retrun_Value] = R1
Parameters: None
Return Value: bit 0: 0: Speech ended

1: Speech Playing

bit 1-15: Reserved

Library: <Sacm_S530_Vxxx.LIB>, <Sacm_S530_SC_Vxxx.LIB>

Remark: None

9.3.7 Function: Change the speed index of SACM-S530.while playing

[Syntax]
C: void SACM_S530_Speed(int Speed_Index)
ASM: R1 = [Speed_Index]

call F_SACM_S530_Speed
Parameters: Speed_Index: [-12..12], 0:Normal speed, -12:Min speed, 12:Max speed
Return Value: None
Library: <Sacm_S530_SC_Vxxx.LIB>
Remark:
1. Min speed (Speed_Index = -12) is 1/2 of Normal speed (Speed_Index = 0).
2. Max.speed (Speed _Index'= 12) is twice of Normal speed (Speed_Index = 0).

9.4 ISR Functions: Interrupt service routine for SACM-S530

This routine will get the decoded data from service loop subroutine and send data to DAC for playing. It can be
placed in FIQ or IRQZ or IRQ2 depending on Timer used. The initial function, F_SP_SACM_S530_lInit_, in

sacmvxxx.asm must also be updated as well.

[Syntax

C: N/A

ASM: Call F_ISR_Service_SACM_S530
Parameters: None

Return Value: None
Library: <Sacm_S530_Vxxx.LIB>, <Sacm_S530_SC_Vxxx.LIB>
Remark:
1. This function is used in assembly only and it can be hooked on the _FIQ, _IRQ1 or _IRQ2:

label. (See isr.asm for details)

© Sunplus Technology Co., Ltd. PAGE 48 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

2. The F_ISR_Service_SACM_S530 will not take up any time to process the Interrupt routine
except minor overheads if the program is not playing. It is possible for users to place
user-define function in the same FIQ or IRQ

EX:

_FIQ:
push R1, R5 to [SP];
call F_ISR_Service_SACM_S530
call F_User_ISR
R1=C_IRQ1_TMA;
[P_INT_Clear] = R1;
pop R1, R5 from [SP]

reti

9.5 User Functions: for SACM-S530 playback'in manual mode

9.5.1 Function: Set start address for SACM-S530 speech data.

[Syntax

C: USER_S530_SetStartAddr(,,)
ASM: call F_USER_S530 SetStartAddr
Parameters: User-defined

Return Value: User-defined
Library: sacm_S530" user.asm
Remark:
1+ Manual mode use only.
2. User implements the function based on the storage type. The memory interface has to be
constructed in advance if user intends to access the data from external storage, e.g. ROM,

FLASH.

9.5.2 Function: Read the speech data from user’s storage and write to buffer

[Syntax
C: User-defined
ASM: R1 = the start address of buffer to write
R2 = the length of data
call F_USER_S530_GetData
Parameters: R1 = the start address of buffer to write

© Sunplus Technology Co., Ltd. PAGE 49 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Return Value:
Library:

Remark:

Example:

R2 = the length of data
User-defined

sacm_S530_user.asm

1. Manual mode use only

2. User implements the function based on the storage type. The memory interface has to be
constructed in advance if user intends to access the data from external storage, e.g. ROM,
FLASH.

3. This function is call-back function for SACM S530 library to read speech data from memary
storage. Where R1 is the beginning address of internal buffer and R2 is the data length that

library wants to get.

Play a SACM-S530 speech with Auto mode or Manual mode.

(a). In main.c:

#include “sacmv40.h”

#define Manual_Mode_Index -1

#define Manual 0

#define Auto 1

#define DAC1 1

#define DAC2 2

#define Ramp_Up 1

#define Ramp_Dn 2

int Mode;

int Speechindex ='0;

main()

{
Mode ="Auto; /I Play mode setting
if(Mode == Auto) /I Auto mode play
{

SACM_S530_Initial(); /1 Initialization

SACM_S530_Play(Speechindex, DAC1+DAC2, Ramp_Up+Ramp_Dn):// Play 1% speech
While(1)
{
SACM_S530_ServiceLoop(); /I Service loop for decode
} /1 end of While(1)

} /I end of if(Mode == Auto)

if(Mode == Manual) // Manual mode play

© Sunplus Technology Co., Ltd. PAGE 50 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

SACM_S530_Initial();
USER_S530_SetStartAddr(Speechindex);

/I Initialization

/I Set start address of speech data

SACM_S530_Play(Manual_Mode_Index,DAC1+DAC2,Ramp_Up+Ramp_Dn);

{
SACM_S530_ServiceLoop();

} /I end of SACM_S530_Play
} /I end of if(Mode == Manual)
} /I end of main()
(b). In ism.asm:
_FIQ:
push R1, R5 to [SP];
call F_ISR_Service_ SACM_S530;
R1=C_FIQ TMA;
[R_INT_Clear] = R1;
pop R1, R5 from [SP];
reti;
(). In sacm_S530_user.asm: (manual mode-only)
_USER_S530_SetStartAddr:
I/l defined by user

/I Manual mode play speech

/I Service loop for decode

I/l push registers

/'SR

[/I'clear TimerA FIQ interrupt flag
Il pop registers

/'return

/I F_USER_S530_SetStartAddr.are Manual mode use only. User implements this function based on the

/I storage type. The memory interface has to be constructed in advance if user intends to access the data

/I from external storage, e.g. ROM; FLASH.

retf;

F_USER_S530_GetData:
/I defined by user

Il F.USER_S530_GetData are Manual mode use only. User implements this function based on the

/I storage type. The memory interface has to be constructed in advance if user intends to access the data

/I from external storage, e.g. ROM, FLASH.

retf;

© Sunplus Technology Co., Ltd.

PAGE 51

March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

10 APl for SACM-MS01

10.1 Hardware Dependent Function: Initializes SACM-MS01

10.1.1 Function: Initialize SACM-MSO01 library

[Syntax

C: void SACM_MSO01_ Initial(void)
ASM: Call F_SACM_MSO01_|nitial
Parameters: None

Return Value: None
Library: <Sacm_MSO01_Vxxx.LIB>
Remark:
1. This function initializes the decoder of MSO01. It also initializes the system clock, Timer A,
DAC and enables the Timer A FIQ at the sample rate-on 16KHz.
2. The hardware setting is opened for user’s' reference (see F_SP_SACM_MSO0L1_Init_:
function in sacmvxxx.asm) .
3. This function utilizes.a register, R_InterruptStatus (spce.asm), to work with user’s program

for SPCE500A: Ituses P_INT_ Mask instead for SPCE 061A/060A

10.2 Service Loop Functions:-Service loop for SACM-MSO01 decoding

10.2.1 Function: Foreground service loop:

[Syntax

C: void SACM_MSO01_ServiceLoop(void);
ASM: call F_SACM_MSO01_ServiceLoop
Parameters: None

Return Value: None
Library: <Sacm_MSO01_Vxxx.LIB>

Remark: Foreground service loop has to be placed in main loop.

10.2.2 Function: Background service loop:

[Syntaxt

C: N/A

© Sunplus Technology Co., Ltd. PAGE 52 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

ASM:
Parameters:
Return Value:
Library:

Remark:

Call F_SACM_MSO01_ServiceLoop_ISR

<Sacm_MS01_Vxxx.LIB>

Background service loop is placed in either FIQ or IRQ and it must be placed before
leaving the FIQ or IRQ. Please refer to the following example.

Please make sure that the MSO1 code is allocated in page 0 to assure that program flow
can proceed to F_SACM_MSO01_ServiceLoop_ISR correctly.

This background service loop will pop the R1-R5 register. Program does not-have to pop
the registers before reti.

The advantage users can get from background service loop is that program can reduce
unnecessary overhead in main and as a result program can yield -better performance in
terms of throughput.

Example: By this manner of programming, the program-allows the background service loop
to take place right after leaving~the FIQ/IRQ and meanwhile the next interrupt can still
intrude the service loop even when the background service loop is still running. Please
refer to “Sunplus u'nSP."Assembly Tools' User Manual” for the detail of the argument

passing in library routine:

push R1, R5 to'[SPJ;
call F_ISR_Service_SACM_S480; /I Interrupt service routine.
R1 ='F. SACM_S480 ServiceLoop_ISR; // Background Service loop

/I for SACM S480 playing

push R1:to[SP]; /l push function address to stack
push SR'to [SP]; // push SR to stack

R1=C FIQ TMA;

[P_INT_Clear] = R1;

10.3 Playback Functions: Playback control

10.3.1 Function: Play a SACM-MS01 melody

[syntax}
C:
ASM:

void SACM_MSO01_Play(int Speech_Index, int Channel, int Ramp_Set)

R1 = Speech_Index

© Sunplus Technology Co., Ltd. PAGE 53 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

R2 = Channel

R3 = Ramp_Set

call F_SACM_S530_Play
Parameters:

Speech_Index: -1: Manual Mode

— max. of speech index: Auto Mode

Channel: To DACL1 only

To DAC2 only

To both DAC1 and DAC2

0
1:
2:
3:
Ramp_Set 0: Disable both ramp up and down
1: Enable ramp up only
2: Enable ramp down only
3: Enable both ramp up and down
Return Value: None
Library: <Sacm_MSO01_Vxxx.LIB>
Remark:
1. The SACM-MSO01 provides six channels melody (0,1 ch are drum channels, 2,3,4,5 are FM
synthesizer channels).
2.The Speech_Index is “the speech. sequence of T_SACM_MS01_SpeechTable in
resource.asm. Forimanual mode playback, the Speech_Index should be set as —1. And user
should implement the <“USER_MSO01_SetStartAddr and F_USER_MSO01_GetData in
sacm_MSO01 user.asm on‘users’ own.
3. The F_ISR_Service-SACM_MSO01 can be hooked on the _FIQ:, _IRQ1:, or _IRQ2: label (see
isr.asm for details) before using this function.
4. The interrupt service routine (ISR) is working on 16KHz after calling this subroutine.

5. About the details of Ramp Up/Down function, please refer to section 12.1 Ramp Functions.

10.3.2 Function: Stop playing SACM-MS01 melody
[Syntax]

C: void SACM_MSO01_Stop(void)
ASM: call F_SACM_MSO01_Stop
Parameters: None

Return Value: None
Library: <Sacm_MSO01_Vxxx.LIB>

Remark: This function will not change the interrupt setting.

© Sunplus Technology Co., Ltd. PAGE 54 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

10.3.3 Function: Pause playing SACM-MS01 melody

[Syntax]

C: void SACM_MSO01_Pause(void)
ASM: call F_SACM_MSO01_Pause
Parameters: None

Return Value: None
Library: <Sacm_MSO01_Vxxx.LIB>

Remark: None

10.3.4 Function: Resume paused SACM-MS01 melody

[Syntax

C: void SACM_MS01_Resume(void);
ASM: call F_SACM_MS01_Resume
Parameters: None

Return Value: None
Library: <Sacm_MSO01_Vxxx.LIB>

Remark:

10.3.5 Function: Change the volume of SACM-MS01

[Syntax]
C: void SACM_MSO01_Volume(int Volume_Index)
ASM: R1 = [Volume_Index]
call F/SACM_MSO01_Volume
Parameters: Volume_Index: [0..15], 0:Min volume, 15:Max volume

Return Value: None
Library: <Sacm_MSO01_Vxxx.LIB>

Remark: None

10.3.6 Function: Get the status of the SACM-MS01 module

[Syntax]
C: unsigned int SACM_MSO01_Status(void);
ASM: call F_SACM_MSO01_Status

[Return_Value] = R1

© Sunplus Technology Co., Ltd. PAGE 55 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Parameters: None

Return Value: bit 0: 0: Speech ended

1: Speech Playing
bit 1~15: Reserved

Library: <Sacm_MSO01_Vxxx.LIB>

Remark: None

MSO01 Built—in Tone Color List

YA SACM-MSO01 Tone colors | Suggested Pitch Range Performance
00 Piano 1,~7 1,~7
01 Marimba 1, ~1"#% The higher pitch, the higher vaelume
02 Music Box 7.~2% 7.~ 2%
03 Guitar 1, ~2% 3, ~2%#
04 Cello 1 1,~2"#% 1, 2%
05 Violin 1,~7 N N g
06 French Horn 5, ~ 2% 5,~2"#
07 Flute 1 1, ~1"% 1,~1"%
08 E. Piano 1, ~2'# The higher pitch, the higher volume
09 Harpsichord 1, ~6# 1, ~ 6#
0A Clav. 1, ~2'# 1,~2%#%
0B Vibraphone 3.~8 3.~3
0oC Bell 4.~7 4.~7
0D Nylon-str. Gt. 1, ~1% 1,~1"%
OE Steel-str. Gt. 1,~7 1,~1
OF Jazz Gt. 1, - 1'% 1, ~1"%
10 Clean Gt. 1,-38 1,~7.
11 Distortion Gt. 1, ~ 6# 1,~7.
12 Bass 1,~7 1,~7
13 Banjo 1 1,~7 1,~7
14 Banjo 2 1, ~4# 1,~7
15 Violin 2 2.~1 2.~1
16 Viola 2.~1 2.~1
17 Cello 2 1,~5 1,~71
18 Contrabass 1,~71 1,~71
19 Trumpet 1,~7 1, ~6#
1A Oboe 1 1,~3 1,~71
1B Oboe 2 1,~3 1, ~2#
1C English Horn 1,~-1" 1,~7
1D Clarinet 1,~7 1, ~2'#
1E Piccolo 1, ~1"% 1, ~1"%
1F Flute 2 1, ~1% 1,~1"%
20 Recorder 1, ~1"# 1,~5%
21 Whistle 1.~ 2% 1. ~2"%
22 SFX 1. ~2"#% 1. ~2"#%
.o, Octave O
°: Octave 1
. Octave 2
© Sunplus Technology Co., Ltd. PAGE 56 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

e<space> Octave 3

o' Octave 4
o Octave 5
o/ Octave 6
ot sharp mark

10.4

Octave0 = {CO, CO#, DO, DO#, EO, FO, FO#, GO, GO#, A0, AO#, BO},
Octavel = {C1, C1#, D1, D1#, E1, F1, F1#, G1, G1#, Al, Al#, B1},
Octave6 = {C6, C6#, D6, D6#, E6, F6, F6#, G6, G6#, A6, A6#, B6}

ISR Functions: Interrupt service routine for SACM-MS01

This routine will get the decoded data from service loop subroutine and-send data to"DAC for playing. It can be

placed in FIQ or IRQ1 or IRQ2 depending on Timer used. The initial function, F.SP_SACM_MSO01_lInit_, in

sacmvxxx.asm must also be updated as well.

[Syntax

C: N/A

ASM: F_ISR_Service_ SACM_MSO01
Parameters: None

Return Value: None

Library:

Remark:

<Sacm_MS01_Vxxx.LIB>

1. This function is used.in.assembly only and it can be hooked on the _FIQ, _IRQ1 or _IRQ2:
label: (See isr.asm for details)
2:The F_ISR_Service_SACM_MSO01 will not take up any time to process the Interrupt routine
except minor overheads if the program is not playing. It is possible for users to place
user-define function in the same FIQ or IRQ
EX:
_FIQ:
push R1, R5 to [SP];
call F_ISR_Service_SACM_MS01
call F_User_ISR
R1=C_IRQ1_TMA;
[P_INT_Clear] = R1;
pop R1, R5 from [SP]

reti

© Sunplus Technology Co., Ltd. PAGE 57 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

10.5 User Functions: for SACM-MSO01 playback in manual mode

10.5.1 Function: Set start address for SACM-MSO01 speech data.

[Syntax]

C:

ASM:
Parameters:
Return Value:
Library:

Remark:

USER_MSO01_SetStartAddr (,,)

call F_USER_ MSO01_SetStartAddr
User-defined

User-defined

sacm_MSO01_user.asm

1. Manual mode use only.
2. User implements the function based on the storage type. The memory interface has to be
constructed in advance if user intends to access the data from.external storage, e.g. ROM,

FLASH.

10.5.2 Function: Read the speech data'from user’s storage and write to buffer

[Syntax}
C:
ASM:

Parameters:
Return Value:

Library:

Remark:

Example:

N/A

R1 = the start address:of buffer to write
R2 = the length of data

call F/USER_MS01.GetData

R1 = the start address of buffer to write
R2 = the length ofdata

User-defined

sacm_MSO01_user.asm

1. Manual mode use only

2. User implements the function based on the storage type. The memory interface has to be
constructed in advance if user intends to access the data from external storage, e.g. ROM,
FLASH.

3. This function is call-back function for SACM MSO01 library to read speech data from
memory storage. Where R1 is the beginning address of internal buffer and R2 is the data

length that library wants to get.

Play a SACM-MSO01 melody with Auto mode or Manual mode.

© Sunplus Technology Co., Ltd. PAGE 58 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

(@). In main.c:

#include “sacmv40.h”

#define Manual_Mode_Index -1
#define Manual 0
#define Auto 1
#define DAC1 1
#define DAC2 2
#define Ramp_Up 1
#define Ramp_Dn 2
int Mode;
int Speechindex = 0;
main()
{

Mode = Auto;

if(Mode == Auto)
{
SACM_MSO01_Initial();

/I.Play mode setting

/'Auto mode play

/nitialization

SACM_MSO01_Play(Speechindex, DAC1+DAC2, Ramp_Up+Ramp_Dn);// Play 1* speech

While(1)
{
SACM_MSO0L1. ServiceLoop();
} /1 end of While(1)
} /I end of if(Mode == Auto)
if(Mode== Manual)
{
SACM_MSO01_|Initial();
USER~MSO01_SetStartAddr(Speechindex);

/I Service loop for decode

// Manual mode play

/I Initialization

/I Set start address of speech data

SACM_MSO01_Play(Manual_Mode_Index,DAC1+DAC2,Ramp_Up+Ramp_Dn);

{
SACM_MSO01_ServiceLoop();

} /I end of SACM_MSO01_Play
} /I end of if(Mode == Manual)
} /I end of main()
(b). In ism.asm:
_FIQ:
push R1, R5 to [SP];
call F_ISR_Service_SACM_MSO01,;

/I Manual mode play speech

/I Service loop for decode

/I push registers

/'SR

© Sunplus Technology Co., Ltd. PAGE 59

March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

R1=C_FIQ TMA;

[R_INT_Clear] = R1; /I clear TimerA FIQ interrupt flag
pop R1, R5 from [SP]; /I pop registers
reti; Il return

(c). In sacm_MSO01_user.asm: (manual mode only)

_USER_MSO01_SetStartAddr:
I/l defined by user
/I F_USER_MSO01_SetStartAddr are Manual mode use only. User implements this function based on the
/I storage type. The memory interface has to be constructed in advance if user intends to access the data

/I from external storage, e.g. ROM, FLASH.

retf;

F_USER_MSO01_GetData:
I/l defined by user
/I F_USER_MSO01_GetData are Manual mode use-only. User implements this function based on the
/I storage type. The memory interface has to be constructed.in\advance if user intends to access the data

/I from external storage, e.g. ROM, FLASH.

retf;

© Sunplus Technology Co., Ltd. PAGE 60 March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

11 APl of SACM-DVR1600

11.1 Hardware Dependent Function: Initializes SACM-DVR1600

11.1.1 Function: Initialize SACM-DVR1600 library

[Syntax

C: void SACM_DVR1600_lInitial(void)
ASM: call F_SACM_DVR1600_Initial
Parameters: None

Return Value: None
Library: <Sacm_DVR1600_Vxxx.LIB>, <Sacm_DVR1600_SC._Vxxx.LIB>
Remark:

1. This function initializes the decoder of SACM-DVR1600.4t also initializes the system clock,
Timer A, DAC and enables the/ Timer AFIQ at the sample rate on 16KHz.

2. The hardware setting is opened for user’s.reference (see F_SP_SACM_DVR1600_lInit_in
sacmvxxx.asm).

3. This function utilizes:a register, R_InterruptStatus (spce.asm), to work with user’s program
for SPCE500A: Ituses P_INT_ Mask instead for SPCE 061A/060A.

4. In SACM-DVR1600, the external memory module is required to store the recording data.
External'memory'module can apply GPIO or Sunplus serial interface to connect to external
memory. The memory access interface must implement the F_USER_DVR1600_GetData,
F_USER_DVR1600_WriteData and User_DVR1600_SetStartAddr in
sacm_DVR1600_user.asm.

5.. The decode engine is the same as that of SACM_A1600.

11.2 ~Service Loop Functions: S Service loop for SACM-DVR1600 decoding

11.2.1 Function: Foreground service loop

[Syntax

C: void SACM_DVR1600_ServiceLoop(void)
ASM: call F_SACM_DVR1600_ServiceLoop
Parameters: None

Return Value: None

Library: <Sacm_DVR1600_Vxxx.LIB>, <Sacm_DVR1600_SC_Vxxx.LIB>

© Sunplus Technology Co., Ltd. PAGE 61 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Remark:

Foreground service loop has to be placed in main loop.

11.2.2 Function: Background service loop

[Syntax]

C:

ASM:
Parameters:
Return Value:
Library:

Remark:

Call F_SACM_DVR1600_ServiceLoop_ISR
None
None

<Sacm_DVR1600_Vxxx.LIB>, <Sacm_DVR1600_SC_Vxxx.LIB>

Background service loop is placed in either FIQ or IRQ ‘and‘it must be placed before
leaving the FIQ or IRQ. Please refer to the following example.

Please make sure that the DVR1600 code isallocated in page 0. to-assure that program
flow can proceed to F_SACM_DVR1600_ServicelLoop_ISR correctly.

This background service loop will pop the R1-R5 register. Program does not have to pop
the registers before reti.

The advantage users can get from background service loop is that program can reduce
unnecessary overhead in main and as a result program can yield better performance in
terms of throughput.

Example: By this.manner of programming, the program allows the background service loop
to take place'right afterleaving the FIQ/IRQ and meanwhile the next interrupt can still
intrude the service loop even when the background service loop is still running. Please
referito “Sunplus”u’nSP Assembly Tools User Manual” for the detail of the argument

passing in library routine.

push R1, R5 to [SP];
call F ASR_Service_SACM_DVR1600; /Il Interrupt service routine.
R1 = F_SACM_DVR1600_ServiceLoop_ISR; /I Background Service loop

/I for SACM A1600 playing

push R1 to [SP]; /l push function address to stack
push SR to [SP]; I/l push SR to stack

R1=C_FIQ TMA;

[P_INT_Clear] = R1;

© Sunplus Technology Co., Ltd. PAGE 62 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

11.3 Playback Functions: Record/Playback control

11.3.1 Function: Start recording data from MIC to external memory module

[Syntax}
C:
ASM:

Parameters:

Return Value:

Library:

Remark:

void SACM_DVR1600_Rec(int RceMonitor, int ADC_Channel, int Bit_Rate)

R1 = RceMonitor

R2 = ADC_Channel

R3 = Bit_Rate

call F_SACM_DVR_Record

RceMonitor : 0: RceMonitorOff, ADC data not sent to DAC
1: RceMonitorOn, ADC data sent to DAC

ADC_Channel: 0: Microphone; 1~7 Line-in for SPCE040A/060A/061A;
0: Microphone; 1 Line-in for SPCE120A/250A/380A/500A,;

Bit_Rate :

: BIT_RATE_10K

: BIT_RATE_12K

: BIT_RATE_14K

: BIT_RATE_16K

: BIT_RATE_20K

a A W N+ O

: BITORATE_24K

N/A
<Sacm.DVR1600_Vxxx.LIB>, <Sacm_DVR1600_SC_Vxxx.LIB>

1. When SACM/DVR1600_Rec is called, it will call, from inside, the F_SP_SwitchChannel

in‘'sacmvxxx.asm according to the ADC channel specified.

11.3.2 Function: Play DVR1600 speech

[Syntax;

C:

ASM:

Parameters:

void SACM_DVR1600_Play(int Speech_Index, int Channel, int Ramp_Set)

R1 = Speech_Index

R2 = Channel

R3 = Ramp_Set

call F_SACM_DVR1600_Play

© Sunplus Technology Co., Ltd. PAGE 63 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Speech_Index: -1: Manual Mode
0 — max. of speech index: Auto Mode
Channel: 1: To DAC1 only
2: To DAC2 only
3: To both DAC1 and DAC2
Ramp_Set 0: Disable both ramp up and down
1: Enable ramp up only
2: Enable ramp down only
3: Enable both ramp up and down
Return Value: None
Library: <Sacm_DVR1600_Vxxx.LIB>, <Sacm_DVR1600_SC_Vxxx.LIB>
Remark:

1. The data rate of SACM-DVR1600 can be compressed by 10/12/14/16/20/24Kbps. The
data rate is selected by the decoder automatically.

2. The Speech_Index is the speech sequence of T SACM_DVR1600_SpeechTable in
resource.asm. For manual mode-playback, the Speech_Index should be set as —1. And
user should implement the _USER_DVR1600_SetStartAddr and
F_USER_DVR1600_GetData in sacm_DVR1600_user.asm on users’ own.

3. The F_ISR_Service. SACM_DVR1600 can be hooked on the _FIQ:, _IRQ1:, or _IRQ2:
label (see isr.asm for-details) before using this function.

4. The interrupt service routine (ISR) is working on 16KHz after calling this subroutine.

5. About the details of Ramp Up/Down function, please refer to section 12.1 Ramp Functions.

11.3.3 Function: Stop.recording/playback

[Syntax]

C: void SACM_DVR1600_Stop(void);
ASM: call F_SACM_DVR1600_Stop
Parameters: N/A

Return Value: N/A
Library: <Sacm_DVR1600_Vxxx.LIB>, <Sacm_DVR1600_SC_Vxxx.LIB>

Remark: This function will not change the interrupt setting.

11.3.4 Function: Pause currently playing SACM-DVR1600 speech
[Syntax]

C: void SACM_DVR1600_Pause(void);

© Sunplus Technology Co., Ltd. PAGE 64 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

ASM:
Parameters:
Return Value:
Library:

Remark:

call F_SACM_DVR1600_Pause

None

None

<Sacm_DVR1600_Vxxx.LIB>, <Sacm_DVR1600_SC_Vxxx.LIB>

None

11.3.5 Function: Resume paused SACM-DVR1600 speech

[Syntax

C:

ASM:
Parameters:
Return Value:
Library:

Remark:

void SACM_DVR1600_Resume(void);

Call F_SACM_DVR1600_Resume

None

None

<Sacm_DVR1600_Vxxx.LIB>, <Sacm_DVR1600.SC_Vxxx.LIB>

None

11.3.6 Function: Change the volume of SACM-DVR1600

[Syntax}
C:
ASM:

Parameters:
Return Value:
Library:

Remark:

11.3.7 Function: Get the status from SACM-DVR1600 module

[syntax}
C:
ASM:

Parameters:

Return Value:

void SACM_DVR1600.Volume(int Volume_Index)

R1 = Volume_Index

call F_SACM DVR1600_Volume

Volume _Index: [0..15];0:Min volume, 15:Max volume

None

<Sacm -DVR1600" Vxxx.LIB>, <Sacm_DVR1600_SC_Vxxx.LIB>

None

unsigned int SACM_DVR1600_Status(void);
call F_SACM_DVR1600_Status
[Retrun_Value] = R1

N/A

bit 0: 0: Stop
1: Recording

© Sunplus Technology Co., Ltd. PAGE 65

March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

bit 1: 0: Stop
1: Playing
bit 2 — bit 15 is reserved
Library: <Sacm_DVR1600_Vxxx.LIB>, <Sacm_DVR1600_SC_Vxxx.LIB>

Remark: For both auto and manual modes

11.3.8 Function: Change the speed index of SACM-DVR1600

[Syntax
C: void SACM_DVR1600_Speed(int Speed_Index)
ASM: R1 = [Speed_Index]

call F_SACM_DVR1600_Speed
Parameters:

Speed_Index: [-12..12], 0:Normal speed, -12:Min‘speed, 12:Max speed
Return Value: None
Library: <Sacm_DVR1600_SC_Vxxx.LIB>
Remark:
1. Min speed (Speed_Index.=+12) is 1/2 of Normal speed (Speed_Index = 0).
2. Max speed (Speed _Index= 12) is twice of Normal speed(Speed_Index = 0).

11.4 ISR Functions:nterrupt service routine for SACM-DVR1600 playback /
recording

This routine will get the decoded data from 'service loop subroutine and send data to DAC for playing. It can be
placed in FIQ or IRQ1 or IRQ2 depending on Timer used. The initial function, F_SP_SACM_DVR1600_lInit_, in

sacmvxxx.asm must also be updated as well.

[Syntax

C: N/A

ASM: Call F_ISR_Service_SACM_DVR1600
Parameters: None

Return Value: None
Library: <Sacm_DVR1600_Vxxx.LIB>, <Sacm_DVR1600_SC_Vxxx.LIB>
Remark:
1. This function is used in assembly only and it can be hooked on the _FIQ, _IRQ1 or _IRQ2:
label. (See isr.asm for details)
2. The F_ISR_Service_SACM_DVR1600 will not take up any time to process the Interrupt

routine except minor overheads if the program is not playing. It is possible for users to

© Sunplus Technology Co., Ltd. PAGE 66 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

place user-define function in the same FIQ or IRQ
EX:
_FIQ:
push R1, R5 to [SP];
call F_ISR_Service_SACM_DVR1600
call F_User_ISR
R1=C_IRQ1_TMA;
[P_INT_Clear] = R1;
pop R1, R5 from [SP]
reti

3. The ISR is working on 16KHz when playback, 32KHz when recording.

11.5 User Functions: for SACM-DVR1600 playback.in manual mode

11.5.1 Function: Set start address for SACM-DVR1600 speech data.

[Syntax

C: USER_DVR1600_SetStartAddr (,,)
ASM: call F_USER_DVR1600 SetStartAddr
Parameters: User-defined

Return Value: User-defined
Library: sacm_DVR1600 "user.asm
Remark: 1. Manual mode use-only.
2. Useriimplements the function based on the storage type. The memory interface has to be
constructed in‘advance if user intends to access the data from external storage, e.g. SRAM,

FLASH.

11.5:2 Function: Read the speech data from user’s storage and write to buffer

[Syntax]
C: N/A
ASM: R1 = the start address of buffer to write
R2 = the length of data
call F_USER_DVR1600_GetData
Parameters: R1 = the start address of buffer to write

R2 = the length of data

Return Value: User-defined

© Sunplus Technology Co., Ltd. PAGE 67 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Library: sacm_DVR1600_user.asm
Remark:
1. Manual mode use only
2. User implements the function based on the storage type. The memory interface has to be
constructed in advance if user intends to access the data from external storage, e.g. SRAM,
FLASH.
3. This function is call-back function for SACM DVR1600 library to read speech data from
memory storage. Where R1 is the beginning address of internal buffer and R2 is the data

length that library wants to get.

11.5.3 Function: Read the speech data from buffer and write to user’s storage

[Syntaxt

C: N/A
ASM: R1 = the start address of buffer to read
R2 = the length of data
call F_USER_DVR1600_WriteData
Parameters: R1 = the start address of bufferto read
R2 = the length of data
Return Value: User-defined
Library: sacm_DVR1600_user.asm
Remark:
1. Manual mode useonly
27 User implements the function based on the storage type. The memory interface has to be
constructed in advance if user intends to access the data from external storage, e.g. SRAM,
FLASH.
3. This function is call-back function for SACM A1600 library to write encoded data to memory
storage. Where R1 is the beginning address of internal buffer and R2 is the data length that

library wants to write.

Example:
SACM-DVR1600 record and playback.
(a). In main.c:

#include “sacmv40.h”

#define Manual_Mode_Index -1
#define DAC1 1
#define DAC2 2

© Sunplus Technology Co., Ltd. PAGE 68 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

#define Ramp_Up
#define Ramp_Dn
#define RceMonitorOff
#define RceMonitorOn
int BIT_RATE
int ADC_Channel
int Speechlndex
int Key;
main()
{

while(1)

{

1

2

0

1
= BIT_RATE_16K;
= Mic;
=0

Key = SP_GetCh();

switch(Key)
{

case 0x0100:

/I BIT_RATE_(10K, 12K, 14K, 16K, 20K, 24K)

/I 0~7 (Mic, Line_Inl ~ Line_In6)

/l I0A8+Vcc: Record

USER_DVR1600_SetStartAddr(4); ///' REC skip 4 Bytes for length header

BIT_RATE = BIT.RATE_16K;

ADC_Channel.=Mic;

/I Bit rate = 16K bps
I ADC channel : Mic_In

SACM_DVR1600_Rec(RceMonitorOff, ADC_Channel, BIT_RATE); // Start recode

break;

case 0x0200:

SACM_DVR1600_Stop();

break;

case-0x0400:

I 1OA9+Vcc: Stop recording/playback
/I Stop recording/playback

/[1OA10+Vcc: Play Manual mode Speech

USER_DVR1600_SetStartAddr(0); // Set start address

SACM_DVR1600_Play(Manual_Mode_Index,DAC1+DAC2,Ramp_Up+Ramp_Dn);

break;

default:

break;

} /1 end of switch(Key)

SACM_DVR1600_ServiceLoop();

System_ServiceLoop();

} /I end of while(1)

} /I end of main()

(b). In ism.asm:

/l Manual mode play

/I Service loop for SACM playing

/I Service loop for Key Scanning

© Sunplus Technology Co., Ltd.

PAGE 69

March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

_FIQ:
push R1, R5 to [SP]; /I push registers
call F_ISR_Service_SACM_DVR1600; /ISR
R1=C_FIQ TMA;

[R_INT_Clear] = R1; /I clear TimerA FIQ interrupt flag
pop R1, R5 from [SP]; /I pop registers
reti; Il return

(). In sacm_DVR1600_user.asm: (manual mode only)

_USER_DVR1600_SetStartAddr:
I/l defined by user
/I F_USER_DVR1600_SetStartAddr are Manual mode use only. User implements-this function.based on the
/I storage type. The memory interface has to be constructed in advance if.user intends to‘access the data

/I from external storage, e.g. SRAM, FLASH.

retf;

F_USER_DVR1600_GetData:
I/l defined by user
/I F_USER_DVR1600_GetData are Manual mode use‘only. User implements this function based on the
/I storage type. The memory interface has to be canstructed in advance if user intends to access the data

/I from external storage, e.g. SRAM, FLASH.

retf;

F_USER_DVR1600_WriteData:
I/l defined by user
/I F_USER_DVR1600_WriteData are Manual mode use only. User implements this function based on the
I storage type. The memory interface has to be constructed in advance if user intends to access the data

Il from-external storage, e.g. SRAM, FLASH.

retf;

© Sunplus Technology Co., Ltd. PAGE 70 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

12 Hardware dependence APl in SACMVxx.asm (Open source)

12.1 Ramp Functions

In current type DAC, the digital input range is 0x0000~OxFFFF and the corresponding result analog range is
0~3mA (or 2mA by setting). The middle value is 0x8000(1.5mA or 1mA). In order to avoid unnecessary power
consumption, we will set the output of current DAC to 0x0000(i.e. OmA) when sound is not playing or especially
before the system enters sleep. If we set the DAC output from 0x8000 to 0x0000 suddenly, a “burst sound”will
be generated due to the sudden change of the DAC value. Therefore, we need to reduce DAC value from what
it is to 0x0000 gradually and smoothly. In other words, the “Ramp Down” process. Similarly, before playing a
sound whose data usually starts from 0x8000, users have to “Ramp Up” the current. DAC from 0x0000 to 0x8000
gradually to avoid the “burst sound” (a sound occurs suddenly without expectation). There are-many methods to
achieve Ramp Up/Ramp Down process. Here only we provide a Ramp Up/Ramp Down method which is easy to

be implemented. Users can rewrite these Ramp Up/Ramp Down functions using other methods.

12.1.1 Function: Ramp up DAC1
[Syntax]

C: void SP_RampUpDAC1L(vaid)
ASM: call F_SP_RampUpDAC1
Parameters: None

Return Value: None

Library: sacmvxx.asm

Remark: Programmers must stop sending data to DAC1 while executing this function. Make sure there is
no interrupt routine still sending data to DAC1now since it will destroy the process of DAC1

Ramp up process and probably cause noise (usually “burst sound”) to audio output.

12.1.2' Function: Ramp up DAC2

Syntax}

C: void SP_RampUpDAC2(void)
ASM: call F_SP_RampUpDAC2
Parameters: None

Return Value: None
Library: sacmvxx.asm

Remark: Programmers must stop sending data to DAC2 while executing this function. Make sure there is

© Sunplus Technology Co., Ltd. PAGE 71 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

no interrupt routine still sending data to DAC1now since it will destroy the process of DAC1

ramp up process and probably cause noise (usually “burst sound”) to audio output.

12.1.3 Function: Ramp down DAC1
[Syntax]

C: void SP_RampDnDAC1(void)
ASM: call F_SP_RampDnDAC1
Parameters: None

Return Value: None

Library: sacmvxx.asm

Remark: Programmers must stop sending data to DAC1 while executing this function.Make sure there is
no interrupt routine still sending data to DAC1now;, since it will destroy-the process of DAC1

Ramp up process and probably cause noise (usually “burst sound”) to"audio output.

12.1.4 Function: Ramp down DAC2
[Syntax]

C: void SP_RampDnDAC2(vaid)
ASM: call F_SP_RampDnDAC2
Parameters: None

Return Value: None

Library: sacmvxx.asm

Remark: Programmers must stop sending data to DAC2 while executing this function. Make sure there is
no interrupt routine still sending data to DAC1now since it will destroy the process of DAC1

Ramp up process and probably cause noise (usually “burst sound”) to audio output.

12.2 . /AD/DA Function

12.2.1 Function: Switch SPCE ADC channel for recording
[Syntax]

C: void SP_SwitchChannel(int ADC_Channel);
ASM: R1 = [ADC_Channel]
Call F_SP_SwitchChannel

© Sunplus Technology Co., Ltd. PAGE 72 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Parameters:

Return Value:
Library:

Remark:

ADC_Channel: 0: Microphone, 1~7 for Line-in for SPCE040A/060A/061A

0: Microphone, 1 for Line-in for SPCE120A/250A/380A/500A
None
sacmvxx.asm

None

12.2.2 Function: Get ADC data for recording

[Syntaxt

ASM:
Parameters:
Return Value:
Library:

Remark:

Call F_SACM_DVR1600_GetADC
None
ADC data from SPCE hardware

sacmvxx.asm

This hardware dependent function will-implement different code segment based on the

BODY_TYPE setting. For details, please refer to’ spce.inc and sacmvxx.asm.

12.2.3 Function: Send data to DAC1

[Syntaxt

ASM:

Parameters:
Return Value:
Library:

Remark:

R4 = 16-bit'unsigned PCM data
Call F_SACM_XXXX_SendDAC1
R4 = 16-bit unsigned PCM data
None

sacmvxx.asm

1. This hardware dependent function will implement different code segment based on the
BODY_TYPE setting. For detail, please refer to spce.inc and sacmvxx.asm.

2. XXXX means algorithm title, e.g. S200, S480, S530, MS01, A1600, DVR1600...

12.2.4 Function: Send data to DAC2

[Syntaxt

ASM:

Parameters:

R4 = 16-bit unsigned PCM data
Call F_SACM_XXXX_SendDAC2
R4 = 16-bit unsigned PCM data

© Sunplus Technology Co., Ltd. PAGE 73 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Return Value: None
Library: sacmvxx.asm

Remark:

1. This hardware dependent function will implement different code segment based on the

BODY_TYPE setting. For detail, please refer to spce.inc and sacmvxx.asm.

2. XXXX means algorithm title, e.g. S200, S480, S530, MS01, A1600, DVR1600...

© Sunplus Technology Co., Ltd.

PAGE 74

March 30, 2004

n

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

13 How to adapt your old project for new library

13.1 The SACM project architecture

Since SACMV32, the library has some minor changes over its architecture so that the project architecture has a

minor adjustment as well.

main.c
[\
sacmVnn.h sp_lib.h
. .) User
sacm_user.asm sacmvnn.lib sacmVnn.asm sp_lib.asm Isr.asm spce.asm system.asm Modules
; . Resource 7 . . . S . ;
spce.inc spce.inc asm spce.inc spce.inc | | Annn.inc spce.inc sp_lib.inc | | spce.inc | | SPCe.Inc

Fig. A typical SACM project architecture

In the SACM examples, user shall see an‘architecture like the demonstration above. User will also notice that the
hardware.asm and key.asm (if applicable) are disappeared. In the hardware.asm, there are 3 types of information
included, SPCE port definition,.SACM related functions (initializations, queue and hardware dependent functions),

and SPCE dependent APIs. For the purpose of modulization, it is split since SACMv32.lib.

Hardware.asm.is.now split and some header files are also arranged into 3 modules
(1) spceinc: SPCE port definition, spce.asm: R_InterruptStatus for SPCE500A to keep tack of interrupt setting
status.
(2) sacmVnn.asm: Library initializations, queue functions and ramp up/down hardware dependent functions.
sacmVnn.h: C function declarations for SACM APIs.
xxxx.inc (s200.inc, s480.inc, s530.inc, al600.inc, ms01 and DVR1600.inc): Assembly function declarations
for each algorithm.

(3) sp_lib.asm: General APIs for SPCE, key scan and I/O configuration function.

© Sunplus Technology Co., Ltd. PAGE 75 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

13.2 Step-by-step procedure

For a programmer to update old projects to under new SACM library structure, the procedures are

(2). Find each line, “.include hardware.inc” inside assembly files in project .

(2) Check the files where the line, “.include hardware.inc”, presents .
(2.1) If SPCE port definition is used in the module, then add “.include spce.inc” on the top of the file.
(2.2) If any key function is used in the module, then add “.include sp_lib.inc” on the top of the file.
(2.3) If any SACM library function is used in the module, then add “.include xxxx.inc” on the top of the file.
Where xxxx.inc can be s200.inc, s480.inc, s530.inc, A1600.inc, ms01.inc or DVR1600.inc.

(2.4) If R_InterruptStatus is used, add “.external R_InterruptStatus” to the top of.the file.

(3) Find each line, “#include “hardware.h” " inside C files in project.

(4) Check the file where the line, “#include “hardware.h” ", presents.
(2.1) If SPCE port definition is used in the module, then.add “#include “spce:” ” on the top of the file.
(2.2) If any key function is used in the module, then add“#include “sp_lib.h” " on the top of the file.
(2/3) If any SACM library function is used in the module, then add_“#include “sacmvxx.h” " on the top of the

file.

(5) Remove hardware.asm, hareware.inc, key.asm(if.applicable), key.inc (if applicable) from project and add in
source files , sacmVxx.asm, spce.asm, sp_lib.asm, sacm_user.asm(if applicable), and header files, spce.inc,

xxxx.inc and sacmVxx.h'to project

(6) Open spce.inc.to check out the “Body_Type” definition on the top of the file. Change the definition according to

the body used.
(7) Remove the old library and link the new library in [Project] = [Setting] = [Link]

(8) Check the project content, and see if the library API is still supported in new library structure. If not, modify the
program structure according to the examples (foreground/background, auto mode/manual mode and

SACM_XXXX_user.asm).

User will see that the new SACM library structure is more accessible. It will take some efforts to change from old
version project to new one. User can contact Sunplus representative for technical support through Sunplus web

site, http://www.sunplus.com.tw.

© Sunplus Technology Co., Ltd. PAGE 76 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

14 How to use the speech library

14.1 The programming flow

ISR

Set Storage
Start Address

Set Storage
Start Address

v

v

Initial Encoder

Initial Decoder

v

(Get ADC Data)

v

Encoder In Buffer

Read Data
From Storage

Encoder

v

Encoder Out Buffer

Decoder In Buffer

ISR

(Send to DAC)

¢ Decoder
Write Data
To Storage Decoder Out Buffer —»|
Record Playback

14.2 Link the libraries to‘user’s program

[Project] = [Setting] = [Link] and @dd library;i.e. sacmv40a.lib to the library modules text box.

B#-{] Source Files
[¥-{_] Head Files

1] |

-2 External Depen

El--- 5480 files General | Option Link |Section | Redefinel Hardware I

— Oukpuk:

Cutput file name: I.'l,Debug'l,S48l3.53?

V¥ Generate Interrupt Vector Table

[~ align all resources with IU

L - S Ol

v Include Start-Up Code
¥ Generate Initial Table

—External Symbol Files:

—Library modules;

ICMacro.Iib, ALibrarydSac_S480_440a.lib|

|

Cancel |

Note: If there is any C program in user’s project, user must add Cmacro.lib in library modules.

© Sunplus Technology Co., Ltd.

PAGE 77

March 30, 2004

3 SUNPLUS

\

SPCE SACM Library User’s Manual v3.0

14.3 Adding resources

For adding new resources, user can click on the resource tab in the workspace window, and add in the resource
from the file dialogue popped up. Then check out the resource.asm for the speech table for SACM library and edit

the speech sequence for users’ application.

- I 18]
BEila Edit Wiew Project Buld Toolks Window Help ;|§|5||

BEEg g(,I%E,‘nn”E’E%"%|ERSZDDjetEtartAddj|§|?|\Jmﬂ‘”@lﬁﬁ ! ‘Qi_a‘
TEEHED B0 B EEEE D]

// By dam 3ung
// Modified by Ray Cheng
M6 —————— | // Platforn: SPCE0E1A, wnSP IDE 1.12.0, Tindows 2000
RES M, Hide /¢ Dast modified date:
DR 2003.10.22 :First version

s -
// BACE-3480 algorithm with play, stop, pause, resume, volume up, volume down function

Properties

/¢ General Pmction call:
fF woid dystem Tnitial (void); For Hardware, Reyboard scan, see system.asm in detail
// void dystem Serviceloop(void); For Regyhoard scan, see system.asm in detail

/¢ 8tandard Function call:
/¢ int 8P_BetCh(void);
// PReturn values of 3P GetCh() : {0x00,0x01,0x02,0x04, 008, O0x10, 0x20, 0x40, O30}

/¢ Punction call for SACM-Speed only:
f! smtax:
F¢ void HACH 0COE Tnitiali)

/¢ void SACM XCCC Playiint Speech Index, int Charnel, int Ramp_Set)

i ool Tondlanrs =
4] 2 I | »

Resnurce\/\ew 4| Ema,n[

£
I~

|| Build £ Debug » Find In Files 1_» Find In Fles 2 <l |

Resource Window:

3 =181 %]
f=] Fle Edit Wiew Project Buld Took Wincow Help ;IEIZIJ
BEEE R oo D o e o | &) P |md“|@|"_‘7£|\ ' Ell\&’@ﬂ‘

VEBEE e U & R e EE |
2=l R 7
=8l 5480 Resources /¢ BACM-3480 algorithm with play, stop, pause, resume, volume up, volume down function
RES_F2_548 // By Sam sung
RES_F2_572 7/ Modified by Ray Cheng
/¢ Platform: SPCEQ6LA, unSP TDE 1.1Z.0, WUindows 2000
/# Tast modified date:
i 2003.10.22 :First version
E i 2lx

1] & B o B ¥
/ 5
i
, .
/ L]
i
/ .
i &
i St
/ BEEHW W55 BEO) &
Jf, ERIBET): [Resouree Fies () | A
g I bEEEHRERER) -

! juol [E-ForkingFollerLibrosy_RelessACMT40ASPCEOR0A_051A'WECEDG0A 614 Without Speed Controli$480_Foregrownd I

[ResourceView | | T=Tman.c

]

|

| +|*Build {Debug 7 _Fnd In Files 1_»_Find In Files 2 KT |

Adding resources:

© Sunplus Technology Co., Ltd. PAGE 78 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

i =18
le Edit View Project Buld Tooks Window Help ;|§|5||
BEEE@ B o o B EE | G Fren setttatads <] | & | R |um{‘“@|ﬁﬁ\ ! \Q’@E‘
¢ EEn sl = =
'EERER PG 0 HE Mg EEE RN
BE DN offsst _RES Ma_948_sa,seq _ FEA_Wa 548_sa; =
EEA 5480 fles
E423 Source Files _RES_F2_§48_8A:
-[# Isr.asm .DU offset _ HES_FZ_848_sa,sey _ RES FZ 548 sa;
main.c _FES_F2_$48_E:
~[#] Resaurce.asm DU offset RES FZ 548 ea,seg RES FZ 348 ea;
s480.rc
-] sacm_S480_user.asm
sacmiv40.asm /¢ End Table
SP_lib.asm 74
o
Sprs.asm 7/ SACH 3480 Spesch Tahls
systemn, asm i
=23 Head Fies /{ -- User ness to add in ths song/spesch
50 Exterral Depndencies ﬁ; for plagback based on the RES Table above.
.public T_SACH £480_SpeechTable;|
T_SACH_5480_speechTable:
.dv _FES_F2_g48_8;
.dv _BES M6 48 84;
.dv _RES F2_872_8A;
.dv _RES M6 872 8A;
L] -
&) ResourceView | (2] Fileview | v | = main.c | f Resource.asm
=
(]
< |_+| “Build 4 Debug j Find InFiles 1 3 Find In Files 2 M _’I
Ready [Ln54, Col 33 [o [

Edit the Speech table (e.g. T_SACM:- S480_SpeechTable for SACM S480)
Note: The _RES_F2_S48 SA means the “S"tart “A”ddress of “RES"ource file F2.548.

14.4 A simple example

Main()
{
SACM_A1600_dnitial(); /I Initialization for playing
SACM_A1600"Play(Speech_Index, DAC1+DAC2, Ramp_UpDn_On);
While(1)
{
SACM_A16000_ServiceLoop();

}
Return 0O;

Note: The Speech Index is the sequence in speech table, i.e. T_SACM_A1600_SpeechTable in resource.asm.

ISR.ASM
_FIQ:
push R1, R5 to [SP];

© Sunplus Technology Co., Ltd. PAGE 79 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

call F_FIQ_Service_SACM_A1600; /I Interrupt Service
R1 = C_FIQ_TMA,; /I Clear Interrupt flag
[P_INT_Clear] = R1;

pop R1, R5 from [SP];

reti;

Resource.asm

T_SACM_A1600_SpeechTable:

.DW Speech_Addrl /I Speech index =0
.DW Speech_Addr2 /I Speech index =1

14.5 Quick instructions

The easiest way to start your own SACM project is to start from-a sample projectin SACM library package. Then

you can simply insert your application code into the sample project.

Instructions:

1. Open the sample project that contains the SACM algorithm you need.

2. Modified the Hardware setting in‘spce.inc and sacmvxx.asm in necessary. (e.g. BODY_TYPE,
C_SystemClock, C_A1600_Timer_Setting, F_SP.SACM_A1600_Init_)

3. Rebuild project

4. Add user resources’into the project resources, rebuild project, check ROM allocation and edit Speech Tables.
(e.g. T_SACM_A1600_SpeechTable)

5. Rebuild project.

6. Rewrite main.c and.rebuild project to test the speech files you just added. (e.g. MaxSpeechNum)

7. Add application code to the project in either C or assembly and modified the main.c (main.asm) for flow

control.

14.6 Interrupt Status Register

Programmers may share the interrupt source with SACM library, A register, R_InterrruptStatus is a public interrupt

control register in spce.asm for SPCE120A/250A/380A500A. This register is reserved for sharing the interrupt

source and it records the status of occupied interrupt by library; therefore, it is an interface to identify which

interrupt is used by library. If a content of “0x2000” is in the R_InterruptStatus, it means the Timer A FIQ is being

© Sunplus Technology Co., Ltd. PAGE 80 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

used by library subroutines at this moment. For example, the R_InterruptStatus will be changed from “0x0000”
to “0x2000" when SACM_A1600_Play() is called. In contrast, SACM_A1600_Stop() will not change the INT
setting from “0x2000” to “0x0000” when SACM_A1600 is called. Every interrupt setting must follow the rule to

share the interrupt resource. The following is an example to enable IRQ4 while SACM-A1600 speech is playing.

R1=0; /I At beginning, R_InterruptStatus = 0x0000
call F_SACM_A1600_Play /l The R_InterruptStatus change to 0x2000 by
/I F_SACM_A1600_Play, TimerA FIQ enable and the speech playing.

.if BODY_TYPE == SPCE061A
R1 =[P_INT_Mask] /I Get current interrupt setting status from P_INT_Mask if for
/I SPCE040A/060A/061A
.endif
.if BODY_TYPE == SPCE500A
R1 = [R_InterruptStatus] /I Get current interrupt setting.status from R. InterruptStatus if for

/I SPCE120A/250A380A/500A

.endif /I Enable IRQ2 at this‘'moment

R1 |= 0x0400 /I Set Timer B IRQ2
[R_InterruptStatus] = R1 /Il Update R-InterruptStatus to 0x2400
[P_INT_Ctrl] = R1 /[Setinterrupt control port 0x7010

For SPCE040A/060A/061A,.a new hardware port' P_INT_Mask(702DH) serves the purpose as well and it is
advised for users to take advantage of it In'SPCE.inc, the BODY_TYPE definition determines the SPCE body
type and as a resultiprogram can know whether R_InterruptStatus or P_INT_Mask should be refered in

sacmvxx.asm.

© Sunplus Technology Co., Ltd. PAGE 81 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

15How to setup concurrent algorithms in your application

For users who would like to design an application with 2 algorithms up and running, there are 2 issues to consider,

real-time and resources.

Resource issue is quite straight forward, and it is about if IC can afford 2 algorithm running at the same time in
terms of CPU performance, RAM, ROM and interrupts. The resource information of each individual algorithm can
be referred in the appendix of this document. For RAM allocation, there is a technique, ORAM section, which-is
also covered in this document and can be applied at users’ convenience. Currently, only SPCEQ60A/061A/040A
can support concurrent algorithm applications. For interrupt issue, since each of the SACM-algorithms requires
one or more interrupts to deliver audio output to DAC, the concurrent algorithms will either.takes up 2 interrupts or
share the same interrupts at the same interrupt frequency. User is free to choose either user 1 timer or 2 timers

for concurrent algorithms.

The real time issue is about the service loop and ISR. In each algorithm, certain decode process has to be carried
out in a certain of period. If the decode process cannot be executed successfully, it will cause malfunction of
algorithm. User has to refer to the service:loop timing requirement information in the appendix. It is advised that
for the concurrent algorithm applications, user can use-one foreground service loop and one background service
loop to allow the background service/loop to be executed timely. If user chose both to be with foreground service

loop, user is advised to handle the service loop sequence with discretion.

After the evaluation based on real-time and resource issues, user may still need to try the possible combinations

for optimal presentation of the SACM-algorithms.

Instructions:
Auto Mode+(MS01 + A1600):

In SPCE060/061, SACM MSO01 can play with other algorithms such as A1600, S200, S480, and S530. Below is

an example showing how to play ms01 and A1600 (background) simultaneously.

Step 1: Decide what FIQ or IRQ service routine your service loop want to hooks on. It is suggested that hooks

your ms01 service loop and A1600 service loop on FIQ Timer A at the same interrupt frequency.

Step 2: Modified the parameter setting in sacmv40.asm. First check F_SP_SACM_A1600_Init_

a. Set the P_SystemClock in Sacm_A1600_Init_ to choose system clock.

© Sunplus Technology Co., Ltd. PAGE 82 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

b. Because A1600 service loop is on FIQ timer A, select the clock source of timer A in P_TimerA_Ctrl and
timer setting in P_TimerA_Data.
C. Turn off ADC and Mic by setting P_ADC_Ctrl, if not use.
d. Assign DAC channels to your speech and melody . For example, if user wants to play A1600 on DAC1 and
melody on DAC2, user shall write 0X00AQ to P_DAC_Citrl.
e. Enable timer A FIQ for A1600 service loop.
Below is an example of initial A1600.
EX:
F_SP_SACM_A1600_lInit_:
R1 = C_SystemClock; /I CPU Clock setting
[P_SystemClock]=R1;
R1 = 0x0030; /I TimerA CKA=Fosc/2 CKB=1 Tout:off
[P_TimerA_Ctrl] = R1,;
R1 = C_A1600_Timer_Setting; /] TimerA setting
[P_TimerA_Data] = R1;
R1 = 0x0002; /I Disable ADC, disable MIC_In
[P_ADC_Ctrl] = R1;
R1 = 0x00AOQ; /F'Latch DAC1 by Timer A; Latch DAC2 by Timer A,
[P_DAC_Ctrl] = R1;

R1 = Oxffff;

[P_INT_Clear] = R1; /I Clear interrupt occupied events

.if BODY_TYPE == SPCE061A
R1 = [P_INT_Mask];

.endif

.if BODY_TYPE == SPCE500A
R1 = [R_InterruptStatus];

.endif

R1 |= C_FIQ_TMA; // Enable Timer B FIQ
[R_InterruptStatus] = R1;
[P_INT_Ctrl] = R1;

retf

Step 3: Check the F_SP_SACM_MSO01_Init_ for system clock, and timer A setting.
F_SP_SACM_MSO01_Init_:

© Sunplus Technology Co., Ltd. PAGE 83 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

R1 = C_SystemClock; /I CPU Clock setting

[P_SystemClock]=R1;

R1 = 0x0030; /I TimerA CKA=Fosc/2 CKB=1 Tout:off
[P_TimerA_Ctrl] = R1,;

R1 = C_MSO01_Timer_Setting; /I TimerA setting

[P_TimerA_Data] = R1;

R1 = 0x0002; /I Disable ADC, disable MIC_In

[P_ADC_Ctrl] = R1;

R1 = 0x00AOQ; /I Latch DAC1 by Timer A; Latch DAC2 by Timer A;
[P_DAC_Ctrl] = R1;

R1 = Oxffff;

[P_INT_Clear] = R1; /I Clear interrupt occupied events

.if BODY_TYPE == SPCE061A
R1 = [P_INT_Mask];

.endif

.if BODY_TYPE == SPCE500A
R1 = [R_InterruptStatus];

.endif

R1 |= C_FIQ./TMA; // Enable Timer B FIQ
[R_InterruptStatus] = R1;
[P_INT_Ctrl] = R1;

retf

Step 4: In order.to play two algorithms simultaneously and correctly, the service loop routines of MS01 and A1600
are set according to user’s choice in stepl.
EX:
_FIQ:

push R1,R5 to [SP];

R1=C_FIQ TMA;

test R1,[P_INT_Ctrl];

jne L_FIQ_TimerA, /I Timer A FIQ entrance

R1=C_FIQ TMB;

test R1,[P_INT_Ctrl];

© Sunplus Technology Co., Ltd. PAGE 84 March 30, 2004

D

D SUNPLUS

SPCE SACM Library User’s Manual v3.0

jne L_FIQ_TimerB; I/l Timer B FIQ entrance
L_FIQ_TimerA:
I

// hook Timer A FIQ subroutine here and define it to be external

call F_ISR_Service_SACM_A1600; //A1600 FIQ TMA Service
call F_ISR_Service_SACM_MSO01; /I MS01 FIQ_TMA Service
1l

R1 = F_SACM_A1600_ServiceLoop_ISR; I/ Background Service loop for SACM1600
push R1 to [SP];
push SR to [SP];

R1=C_FIQ TMA;
[P_INT_Clear] = R1;
reti;
L_FIQ_TimerB:
R1=C_FIQ TMB;
[P_INT_Clear] = R1;
pop R1, R5 from [sp];

reti;

Step 5: In the main.c, initialize the SACM-MS01“and SACM-A1600. Users can arrange the songs and instruments
in T_SACM_MSO01_SpeechTable, and T_SACM_MSO01_DrumTable in resource.asm at you own. The speech table
for A1600 is T_SACM_A1600_SpeechTable:

EX:

main()

{
System_Initial();
SACM_A1600_Initial(); /I Initial A1600
SACM.MSO01_Initial(); /1 Initial MS01
SACM_A1600_Play(0,DAC1,Ramp_Up+Ramp_Dn); /I Play speech on DAC2
SACM_MSO01_Play(0,DAC2,Ramp_Up+Ramp_Dn); /I Play melody on DAC1
while(1)
{

SACM_MSO01_ServiceLoop(); /I Service loop for MS01

}

}

© Sunplus Technology Co., Ltd. PAGE 85 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

Step 6: Add user application code and it is done.

Manual Mode: (MS01+ A1600)

In manual mode, users can read speech data from internal ROM or external memory. User implements
USER_XXXX_SetStartAddr and F_USER_XXXX_GetData based on the storage type. The memory interface has

to be constructed in advance if user intends to access the data from external storage, e.g. ROM, FLASH.

Step 1: Decide what FIQ or IRQ service routine your service loop want to hooks on. It is suggested that hooks

your ms01 service loop and A1600 service loop on FIQ Timer A at the same interrupt frequency.

Step2 : Modify USER_A1600_SetStartAddr, F_USER_A1600_GetData, USER_MSO01_SetStartAddr and
F_USER_MSO01_GetData. User implements these functions based on the‘external storage-type. For example, the

speech data are stored in internal ROM area.

I
/I-- Procedure: _USER_A1600_SetStartAddr

/l-- Syntax: USER_A1600_SetStartAddr(int)
/I-- Parameter: R1 = Playlndex
/I-- Return: NONE

//-- Description: This API allows users to set'the beginning address

1 to fetch data. This address can be either a ROM address
1 or a external storage address, User would have to modify
1 the function body basedon the application's need.

I
_USER_A1600_SetStartAddr: .proc

F_USER_A1600_SetStartAddr:
push R1, R2 to-[sp};
R1 += TASACM_A1600_SpeechTable;
R1 = [R1];
R2'= [R1 ++];
[R_A1600_Resouce_BS] = R2;
R1 = [R1];
R1 =R1 LSL 4,
R1 =R1 LSL 4,
R1 =R1LSL 2;
[R_A1600_Resouce_DS] = R1;
pop R1, R2 from [sp];

© Sunplus Technology Co., Ltd. PAGE 86 March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

retf

.endp

I
/I-- Procedure: _USER_MSO01_SetStartAddr

/l-- Syntax: USER_MSO01_SetStartAddr(int)
/I-- Parameter: R1 = Playlndex
/I-- Return: NONE

//-- Description: This API allows users to set the beginning address

1 to fetch data. This address can be either a ROM address
1 or a external storage address. User would have to modify
1 the function body based on the application's need.

I
_USER_MSO01_SetStartAddr: .proc

F_USER_MSO01_SetStartAddr:
push R1, R2 to [sp];
R1 += T_SACM_MSO01_SpeechTable;
R1 = [R1];
R2 = [R1 ++];
[R_Resouce_BS] = R2;
R1 = [R1];
R1 =R1 LSL 4,
R1 =R1 LSL 4,
R1 =R1LSL 2;
[R_Resouce_DS] = R1;
pop R1, R2 from [sp];
retf

.endp

1
/I-- Function: F_USER_A1600_GetData

//-- Parameter: R1 = the address to store ()

I R2 = the to store

//-- Return: Block data (can be a word, a byte or an array)

/I-- Description: This function called by library to fetch data blocks

1 for playback. The Library needs a data block specified
1 by R1,the start address, and R2, the length of the block.

© Sunplus Technology Co., Ltd. PAGE 87

March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

1 Uaser would have to compose the function body

1 based on the storage type to fulfill this demand from library.
Il

F_USER_A1600_GetData: .proc

/l... user implement this interface to get external data
push R1, R4 to [SP];
SR = [R_A1600_Resouce_DS];
R3 =[R_A1600_Resouce_BS];
?L_Get_Loop:
cmp R2, 0;
jz ?L_End;
R4 = D:[R3++];
[R1++] = R4;
R2 -=1;
cmp R3, 0;
jnz ?L_Get_Loop;
SR += 0x0400;
[R_A1600_Resouce_DS] = SR;
jmp ?L_Get_Loop;
?L_End:
[R_A1600_Resouce_BS] =/R3;
pop R1, R4 from [SP];
retf;

.endp

1l
/l-- Function: F_USER_MS01_GetData

//-- Parameter:<R1 = the address to store ()
1 R2 = the to store
/I-- Return: Block data (can be a word, a byte or an array)

//-- Description: This function called by library to fetch data blocks

1 for playback. The Library needs a data block specified

1 by R1,the start address, and R2, the length of the block.

1 Uaser would have to compose the function body

1 based on the storage type to fulfill this demand from library.
Il

F_USER_MSO01_GetData: .proc

© Sunplus Technology Co., Ltd. PAGE 88 March 30, 2004

D SUNPLUS

D

SPCE SACM Library User’s Manual v3.0

/l... user implement this interface to get external data

push R1, R4 to [SP];

SR = [R_Resouce_DS];

R3 = [R_Resouce_BS];
?L_Get_Loop:

cmp R2, 0;

jz ?L_End;

R4 = D:[R3++];

[R1++] = R4;

R2 -=1;

cmp R3, 0;

jnz ?L_Get_Loop;

SR += 0x0400;

[R_Resouce_DS] = SR;

jmp ?L_Get_Loop;
?L_End:

[R_Resouce_BS] = R3;

pop R1, R4 from [SP];

retf;

.endp

Step 3: Modified the parameter setting inssacmv40.asm. First check F_SP_SACM_A1600_Init_

a. Set the P_SystemClock in Sacm~A1600_Init_ to choose system clock.

b. Because A1600 service loop is on FIQ timer A, select the clock source of timer A in P_TimerA_Ctrl and

timer setting in P_TimerA_Data.

C. Turn off ADC and Mic-by setting P_ADC_Citrl, if not use.

d. Assign DAC channels to your speech and melody . For example, if user wants to play A1600 on DAC1 and

melody on DAC2, user shall write 0X00AO to P_DAC_Citrl.
e. Enable.timer A FIQ for A1600 service loop.
Below is an example of initial A1600.
EX:
F_SP_SACM_A1600_lInit_:
R1 = C_SystemClock; /I CPU Clock setting
[P_SystemClock]=R1;

R1 = 0x0030; /I TimerA CKA=Fosc/2 CKB=1 Tout:off

[P_TimerA_Ctrl] = R1,;

R1 = C_A1600_Timer_Setting; I/l TimerA setting

© Sunplus Technology Co., Ltd. PAGE 89

March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’

s Manual v3.0

[P_TimerA_Data] = R1;

R1 = 0x0002; /I Disable ADC, disable MIC_In

[P_ADC_Ctrl] = R1;

R1 = 0x00AOQ; /I Latch DAC1 by Timer A; Latch DAC2 by Timer A,
[P_DAC_Ctrl] = R1;

R1 = Oxffff;

[P_INT_Clear] = R1; /I Clear interrupt occupied events

.if BODY_TYPE == SPCE061A
R1 = [P_INT_Mask];

.endif

.if BODY_TYPE == SPCE500A
R1 = [R_InterruptStatus];

.endif

R1 |= C_FIQ_TMA; // Enable Timer B FIQ
[R_InterruptStatus] = R1;
[P_INT_Ctrl] = R1;

retf

Step 4: Check the F_SP_SACM_MSO0L1_ Init_ for system clock, and timer A setting.
F_SP_SACM_MSO01_Inity:
EX:
R1 = C_SystemClock; /I CPU Clock setting
[P_SystemClock]=R1;
R1 = 0x0030; /I TimerA CKA=Fosc/2 CKB=1 Tout:off
[P_TimerA_Ctrl] = R1,;
R1'=.C_MSO01_Timer_Setting; /I TimerA setting
[P_TimerA_Data] = R1;
R1 = 0x0002; /I Disable ADC, disable MIC_In
[P_ADC_Ctrl] = R1;
R1 = 0x00AOQ; /I Latch DAC1 by Timer A; Latch DAC2 by Timer A,
[P_DAC_Ctrl] = R1;

R1 = Oxffff;

[P_INT_Clear] = R1; /I Clear interrupt occupied events

© Sunplus Technology Co., Ltd. PAGE 90

March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

.if BODY_TYPE == SPCE061A
R1 = [P_INT_Mask];

.endif

.if BODY_TYPE == SPCE500A
R1 = [R_InterruptStatus];

.endif

R1|= C_FIQ TMA;
[R_InterruptStatus] = R1;
[P_INT_Ctrl] = R1;

retf

// Enable Timer B FIQ

Step 5: In order to play two algorithms simultaneously and correctly, the service loop routines of MS01 and A1600

are set according to user’s choice in stepl.

EX:
_FIQ:
push R1,R5 to [SP];
R1=C_FIQ TMA;
test R1,[P_INT_Ctrl];
jne L_FIQ_TimerA,
R1=C_FIQ TMB;
test R1,[P_INT_Ctrl];
jne L_FIQ_TimerB;
L_FIQ_TimerA:

/I Timer A FIQ entrance

/I Timer B FIQ entrance

I

// hook Timer A FIQ subroutine here and define it to be external
call F_ISR_Service_ SACM_A1600;
call F_ISR_Service_SACM_MSO01,;

I

//A1600 FIQ TMA Service

/I MS01 FIQ_TMA Service

R1 =F_SACM_A1600_ServiceLoop_ISR;

push R1 to [SP];
push SR to [SP];

R1 = C_FIQ_TMA,
[P_INT_Clear] = R1;

reti;

I/ Background Service loop for SACM1600

© Sunplus Technology Co., Ltd.

PAGE 91

March 30, 2004

D

~J SUNPLUS

SPCE SACM Library User’s Manual v3.0

L_FIQ_TimerB:
R1=C_FIQ TMB;
[P_INT_Clear] = R1;
pop R1, R5 from [sp];

reti;

Step 6: In the main.c, initialize the SACM-MS01 and SACM-A1600. Users can arrange the songs and instruments

in T_SACM_MSO01_SpeechTable, and T_SACM_MS01_DrumTable in resource.asm at you own. The speech table

for A1600 is T_SACM_A1600_SpeechTable.

EX:

main()

{
System_Initial();
SACM_A1600_Initial();
SACM_MSO01_|Initial();
USER_A1600_SetStartAddr(Speechindex);
SACM_A1600_Play(0,DAC1,Ramp_Up+Ramp_Dn);
USER_MSO01_SetStartAddr(Songindex);
SACM_MSO01_Play(0,DAC2,Ramp_Up+Ramp_Dn);
while(1)
{

SACM_MSO01_SetviceLoop();

Step 7: Add user application code and it is done.

/i, Initial A1600

[FInitial MSOL

/I Set start address of A1600 speech data
//'Play speech on DAC2

/I Set start address of MS01 music data
/I Play melody on DAC1

/I Service loop for MS01

© Sunplus Technology Co., Ltd. PAGE 92

March 30, 2004

D SUNPLUS

D

SPCE SACM Library User’s Manual v3.0

16 Resources List of SACM algorithm

16.1 TABLE 1: RAM Size (Unit: Decimal Word)

IRAM ‘ ISRAM RAM ‘ SRAM ORAM OSRAM ‘

A1600 - - - - 457 -
S530 - - - - 399 -
S480/S720 - - - - 464]
MSO01 - - - - 448 -
DVR1600 - - - - 525 \
A1600_SC - - - - 1448 -
S530_SC - - - - 1372 -
S480_SC/S720 _SC - - - ’ 1437 -
S200_SC - - - \ 1220 -
DVR1600 SC - - - - 1486 -

Note: DVR1600 includes both A1600 Encoder and A1600 Decoder algorithm

16.2 TABLE 2: ROM Size (Unit: Deecimal-Word)

TEXT CODE ‘ DATA ‘ USER DEFINE ‘

A1600 ~3.5K
S530 =8.3K
S480/S720 ~1.5K
MSO01 ~3.4K
DVR1600 ~4.5K
A1600_SC ~5.0K
S530_SC ~9.8K
S480_SC/S720_SC ~3.8K
S5200_SC ~7.5K
DVR1600_SC ~5.5K

16.3 TABLE 3: Hardware Resources VS Library

‘ Interrupt ‘ Timer Setting ‘ Audio ‘

A1600 TMAFIQ 16 KHz DAC
S530 TMA FIQ 16 KHz~24 KHz DAC
S480/S720 TMA FIQ 16 KHz DAC
MS01 TMA FIQ 16 KHz DAC
DVR1600 TMAFIQ 16 KHz(Play) /32 KHz(Rec) |ADC/DAC

© Sunplus Technology Co., Ltd. PAGE 93 March 30, 2004

J SUNPLUS

D

SPCE SACM Library User’s Manual v3.0

‘ Interrupt ‘ Timer Setting ‘

Audio
A1600_SC TMA FIQ 16 KHz DAC
S530_SC TMAFIQ 16 KHz~24 KHz DAC
S480_SC/S720_SC TMAFIQ 16 KHz DAC
S200_SC TMA FIQ 16 KHz DAC
DVR1600 SC TMA FIQ 16 KHz(Play) /32 KHz(Rec) |[ADC/DAC

16.4 TABLE 4: CPU Usage Rate (approximate)

SPCES500A at 24 MHz SPCEO61A at 24M Hz SPCEO61A at 49 MHz ‘

A1600 52% 38% 19%

S530 58%@8KHz(5.3Kbps) 46%@8KHz(5.3Kbps) 21%@8KHz(5.3Kbps)
75%@10KHz(6.6Kbps) 56%@10KHz(6.6Kbps) 28%@10KHz(6:6Kbps)
N/A @12KHz(7.9Kbps) 65% @12KHz(7.9Kbps) 34% @12KHz(7.9Kbps)

S480/S720 |50%@8KHz(4.8Kbps) 35%@8KHz(4.8Kbps) 20%@8KHz(4.8Kbps)
52% @8KHz(7.2Kbps) 39% @8KHz(7.2Kbps) 21% @8KHz(7.2Kbps)

S200 N/A 78% 37%

MS01 67% 1Ch@16KHz 50% 1Ch@16KHz 24% 1Ch@16KHz
78% 2Ch@16KHz 59% 2Ch@16KHz 28% 2Ch@16KHz
88% 3Ch@16KHz 68% 3Ch@16KHz 31% 3Ch@16KHz
N/A 4Ch@16KHz 76% 4Ch@16KHz 36% 4Ch@16KHz

DVR1600 N/A 81% 39%

16.5 TABLE 5: Timing Limitation{(approximate)

Service Loop Time Limit

A1600 16 ms

S530 7.5 ms (5.3Kbps)
6.0 ms (6.6Kbps)
5.0 ms (7.2Kbps)

5480 7.5 ms

S720 5.0ms

S200 12.5ms

MS01 16ms

DVR1600 16ms

Note:
1. The number is the maximum interval in which the program have to execute service loop. These figures are
measured with SACM v40 library

2. For example, the F_SACM_A1600_ServiceLoop must be called each 16ms in user’s main loop. Otherwise, It

© Sunplus Technology Co., Ltd. PAGE 94 March 30, 2004

J SUNPLUS

D

SPCE SACM Library User’s Manual v3.0

may cause noise to audio output.
main()
{
SACM_A160_|Initial();
SACM_A1600_Play(0,3,3);
While(1)
{

User_Function();

SACM_A1600_ServiceLoop(); <= Go here in each 16ms

16.6 TABLE 6: Name of Overlap RAM in the library

Table: Name and size of Overlap RAM in the library

‘ Overlap RAM definition

Algorithm Overlap-RAM Label Size (word)

A1600 OVERLAP_DVR1600.RAM BLOCK 319 (0x13F)
OVERLAP_A1600_API BLOCK 2 (0x2)

OVERLAP DVR1600 DM BLOCK 136 (0x88)

A1600-SC OVERLAP. DVR1600- RAM. BLOCK 781 (0x30D)
OVERLAP_A1600 API_BLOCK 2 (0x2)

OVERLAP DVR1600 DM _ BLOCK 136 (0x88)

OVERLAPR DVR1600 SPEED RAM BLOCK 529 (0x211)

DVR1600 OVERLAP_DVR1600 RAM BLOCK 354 (0x162)

OVERLAP_DVR1600 APl BLOCK 351 (0x23)

OVERLAP DVR1600 DM BLOCK 136 (0x 88)

DVR1600-SC OVERLAP_DVR1600 RAM BLOCK 786 (0x312)
OVERLAP_DVR1600 APl BLOCK 35 (0x23)

OVERLAP_DVR1600 DM BLOCK 136 (0x88)

OVERLAP DVR1600 SPEED RAM BLOCK 529 (0x211)

S530 OVERLAP_S530 RAM BLOCK 169 (0XA9)
OVERLAP_S530 APl BLOCK 2 (0x2)

OVERLAP S530 DM BLOCK 228 (OXE4)

S530-SC OVERLAP_S530_RAM_BLOCK 613 (0x265)
OVERLAP_S530 APl BLOCK 2 (0x2)

OVERLAP_S530 DM BLOCK 228 (0XE4)

OVERLAP_S530 SPEED RAM BLOCK 529 (0x211)

© Sunplus Technology Co., Ltd.

PAGE 95

March 30, 2004

J SUNPLUS

D

SPCE SACM Library User’s Manual v3.0

S480 OVERLAP_S480 RAM BLOCK 170 (OXAA)
OVERLAP_S480_API_BLOCK 2 (0x2)
OVERLAP S480 DM BLOCK 292 (0x124)
S480-SC OVERLAP_S480 RAM BLOCK 614 (0x266)
OVERLAP_S480_API_BLOCK 2 (0x2)
OVERLAP_S480 DM _BLOCK 292 (0x124)
OVERLAP S480 SPEED RAM BLOCK 529 (0x211)
S200-SC OVERLAP_S200 RAM BLOCK 718 (0x2CE)
OVERLAP_S200 API BLOCK 2 (0x2)
OVERLAP S200 DM BLOCK 500 (Ox1F4)
MS01 OVERLAP_MS01 RAM BLOCK 318 (0x13E)
OVERLAP MS01 DM BLOCK 130 (0x82)

Where XXXX_SC means that algorithm support speed control function.

© Sunplus Technology Co., Ltd.

PAGE 96 March 30, 2004

