
Liebert® Mini-Mate2™

User Manual - 8 Tons, 50 & 60Hz

TABLE OF CONTENTS

IMPO	RTANT SAFETY INSTRUCTIONS	1
Mod	EL NUMBER NOMENCLATURE	3
1.0	Introduction	7
1.1	Designed to Match Computer and Electronic Equipment Needs—From Installation to Operation	7
2.0	STANDARD FEATURES—8 TON SYSTEMS	8
2.1	Evaporator Section—Split System	8
2.2	Condensing Unit Section—Split System	8
	2.2.1 Indoor Centrifugal Fan Condensing Units 2.2.2 Outdoor Prop-Fan Condensing Units 2.2.3 Indoor Water/Glycol Condensing Units	8
2.3	Chilled Water Units	8
2.4	System Controls	8
	2.4.1 Three-Stage Cooling 2.4.2 Other Standard Control Features	
3.0	OPTIONAL FACTORY-INSTALLED FEATURES - EVAPORATOR/CHILLED WATER UNITS	.10
3.1	Reheat	. 10
3.2	Humidifier	. 10
3.3	Sensors	. 10
3.4	Switches and Motors	. 10
3.5	Free-Cooling	. 10
3.6	Optional Configuration—Prop Fan Condensing Units	. 11
3.7	Optional Configurations—Water/Glycol Condensing Units	. 11
3.8	Optional Configuration—Chilled Water Units	. 11
4.0	Ship-Loose Accessories—Field-Installed	.12
4.1	Remote Monitoring, Autochangeover and Leak Detection Equipment	. 12
5.0	SITE PREPARATION AND INSTALLATION	.14
5.1	Installation Considerations	. 14
5.2	Ceiling Unit Weights	
5.3	Equipment Inspection Upon Receipt	
5.4	Installing the Ceiling Units	
	5.4.1 Close-Coupled Installations	. 19 . 19 . 20
5.5	Indoor Air-Cooled Centrifugal Fan Condensing Unit Installation	

	5.5.1 5.5.2 5.5.3 5.5.4	Location Considerations. Electrical Connections - Condensing Unit Piping Connections. Ducting.	. 30 . 31		
5.6	Outdo	oor Air-Cooled Condensing Unit Installation	34		
	5.6.1 5.6.2 5.6.3	Location Considerations. Electrical Connections. Piping Connections.	. 34		
5.7	Indoo	r Water-Cooled and Glycol-Cooled Condensing Unit Installation	37		
	5.7.1 5.7.2 5.7.3	Location Considerations. Electrical Connections. Piping Connections.	. 37		
5.8	Option 5.8.1	nal Equipment Piping			
5.9	Check	klist for Completed Installation	43		
6.0	Micro	OPROCESSOR CONTROL	.44		
6.1	Featu	re Overview	44		
6.2	Main	Menu <menu></menu>	45		
6.3	Setpo	$ ext{ints} \ldots \ldots \ldots \ldots \ldots$	45		
6.4	Statu	s	46		
6.5	Status 46 Active Alarms 46				
6.6	Alarm	n History	46		
6.7	Time.		46		
6.8	Date.		46		
6.9	Setba	ck	47		
6.10	Setup	Operation	47		
		Restart Time Delay			
		C/F Degrees			
	6.10.5 6.10.6	Lead Compressor Show DIP Switch Valve Time CW Flush	. 48 . 48		
6.11	Chang	ge Passwords	49		
6.12	Calibi	rate Sensors	49		
6.13	Alarm	n Enable	49		
6.14	Alarm	n Time Delay	50		
6.15	Comn	non Alarm Enable	50		
6.16	Custo	m Alarms	50		
6.17	Custo	m Text	51		
6.18	Run I	Diagnostics	52		

7.0	SYST	EM PERFORMANCE MICROPROCESSOR CONTROLS	. 56
7.1	Contr	rol Type Response Proportional Control	. 56
7.2	Cooli	ng	. 56
	7.2.1	Multi-Step Cooling, Compressorized Direct Expansion (DX) Systems	. 56
	7.2.2	Chilled-Water Cooling (8 Ton)	
	7.2.3	GLYCOOL Cooling (8 Ton)	
7.3		at	
	7.3.1 7.3.2	Electric Reheat - Staged	
7.4	Dehu	midification / Humidification Percent Required	. 57
	7.4.1 7.4.2 7.4.3	Staged Dehumidification, Compressorized Direct Expansion (DX) Systems	. 57
7.5	Load	Control Features	. 57
7.6	Comr	nunication	. 58
8.0		MS	
8.1		ns: Definitions and Troubleshooting	
0.1	8.1.1	Custom Alarms	
	8.1.2	High Head Pressure	
	8.1.3	Humidity	
	8.1.4	Temperature	
	8.1.5 8.1.6	Humidifier Problem Alarm	
	8.1.7	Loss of Power	
	8.1.8	Short Cycle	. 60
8.2	Optio	nal/Custom Alarms	. 61
	8.2.1	Change Filter	
	8.2.2	High Temperature Sensor	
	8.2.3	Smoke Sensor	
9.0		EM OPERATION, TESTING, AND MAINTENANCE	
9.1	-	m Testing	
	9.1.1	Environmental Control Functions	
	9.1.2 9.1.3	Cooling	
	9.1.4	Humidification	
	9.1.5	Dehumidification	. 62
	9.1.6	Remote Shutdown	. 62
9.2	Main	tenance and Component Operation	. 63
	9.2.1	Electric Panel	
	9.2.2 $9.2.3$	Filters	
	9.2.3 $9.2.4$	Electric Reheat	
	9.2.5	Refrigeration System	
9.3	Repla	cement Procedures	. 66

	9.3.	1 Compressor Replacement	66
	9.3.	2 Steam Generating Humidifier—Operation Procedures	68
	9.3.	3 Humidifier Circuit Board Adjustments	69
10.0	MA	INTENANCE INSPECTION CHECKLIST	70
11.0	TRO	DUBLESHOOTING	71
11.0	1110	COLLEGIO CINO III.III.III.III.III.IIIIIIIIIIIIIIII	•
		FIGURES	
Figure		Model number nomenclature—Evaporator Units	
Figure		Model number nomenclature—Air-cooled indoor condensing units	
Figure		Air-cooled systems—Outdoor prop fan condensing units	
Figure		Water/glycol-cooled systems—Indoor condensing units	
Figure		Model number nomenclature—Chilled water units	
Figure		Improved load tracking	. 9
Figure		Wall-box	
Figure	8	Free-cooling option—example	11
Figure	9	System configurations—air cooled systems	15
Figure	10	System configurations—water/glycol systems	16
Figure	11	System configurations—chilled water systems	16
Figure	12	System configurations - close-coupled components	17
Figure		Threaded rod and hardware kit installation	18
Figure	14	Close-coupled installation	19
Figure	15	Evaporator unit electrical connections	22
Figure	16	Drain installation	23
Figure	17	Condensate pump installation	24
Figure	18	General arrangement diagram - chilled-water systems	25
Figure	19	Refrigerant piping diagram	27
Figure	20	Evaporator or chilled-water unit dimensions	29
Figure	21	Indoor air-cooled centrifugal condenser electrical connections	31
Figure	22	Piping connections - indoor air-cooled centrifugal fan condensing unit	32
Figure	23	Indoor air-cooled centrifugal condensing unit dimensions and pipe connections	33
Figure	24	Electrical field connections - outdoor condensing unit	35
Figure	25	Footprint dimensions - outdoor condensing unit	36
Figure	26	Piping and electrical connections - outdoor condensing unit	37
Figure	27	Indoor water/glycol condensing unit dimensions	39
Figure	28	Electrical field connections—indoor water/glycol condensing unit	40
Figure	29	System piping with indoor water/glycol-cooled condensing unit	41
Figure	30	Optional free cooling coil (3-way valve) on water/glycol units	42
Figure	31	Optional free cooling coil (3-way valve) on air-cooled units	42
Figure	32	Wall box	44
Figure	33	Control menu	54
Figure	34	Control board (inside evaporator)	55
Figure	35	Wall box board	55

TABLES

Table 1	System configurations—60Hz	6
Table 2	System configurations—50Hz	6
Table 3	Application limits, evaporator and chilled-water units*	14
Table 4	Application limits, indoor and outdoor air-cooled condensing units	14
Table 5	Application limits, indoor water/glycol-cooled condensing units	14
Table 6	Unit weights	17
Table 7	Evaporator external static pressure (60Hz) at 3750 CFM (6371 CMH)	20
Table 8	Recommended refrigerant line sizes	26
Table 9	Pipe length and condenser elevation relative to evaporator	26
Table 10	Equivalent lengths for various pipe fittings, ft (m)	26
Table 11	Unit refrigerant charge	27
Table 12	Line charges - refrigerant per 100 ft. (30m) of Type L copper tube	27
Table 13	Refrigerant quick connect sizes and torque	28
Table 14	Dimensions and weight, Prop Fan Condensing modules	36
Table 15	Piping and electrical connections	37
Table 16	Default setpoints and allowable ranges	46
Table 17	Night and weekend setback plan	47
Table 18	Setup functions, default values and allowable ranges	49
Table 19	Alarm default time delays	50
Table 20	Equipment switch settings (unit control board)	51
Table 21	Switch settings (wallbox board)	51
Table 22	Typical discharge pressures	64
Table 23	Humidifier control board DIP switch settings	69
Table 24	Troubleshooting	71

IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTIONS

This manual contains important safety instructions that should be followed during the installation and maintenance of the Liebert Mini-Mate2. Read this manual thoroughly before attempting to install or operate this unit. Only properly trained and qualified personnel should move, install or service this equipment. Adhere to all warnings, cautions and installation, operating and safety instructions on the unit and in this manual. Follow all installation, operation and maintenance instructions and all applicable national, state and local building, electrical and plumbing codes.

WARNING

Arc flash and electric shock hazard. Disconnect all electric power supplies and wear protective equipment per NFPA 70E before working within electric control enclosure. Failure to comply can cause serious injury or death.

Customer must provide earth ground to unit, per NEC, CEC and local codes, as applicable. Before proceeding with installation, read all instructions, verify that all the parts are included and check the nameplate to be sure the voltage matches available utility power.

The Liebert microprocessor control does not isolate power from the unit, even in the Unit Off mode. Some internal components require and receive power even during the Unit Off mode.

The line side of the disconnect switch on the front of the unit contains live high voltage. The only way to ensure that there is NO voltage inside the unit is to install and open a remote disconnect switch and check the internal power supply wires with a voltmeter. Refer to unit electrical schematic. Follow all applicable national, state and local electric codes.

WARNING

Risk of explosive discharge from high-pressure refrigerant. Can cause injury or death. This unit contains fluids and gases under high pressure. Relieve pressure before working with piping.

WARNING

Risk of refrigerant system rupture or explosion from overpressurization. Can cause equipment damage, injury or death.

If a pressure relief device is not provided with the condenser unit, the system installer must provide and install a discharge pressure relief valve per national, state and local codes in the high side refrigerant circuit. Do not install a shutoff valve between the compressor and the field-installed relief valve. Do not isolate any refrigerant circuits from overpressurization protection.

WARNING

Risk of high-speed moving parts. Can cause injury or death.

Open all local and remote electrical power disconnect switches before working in the unit and component electrical enclosures.

CAUTION

Risk of contact with hot surfaces. Can cause injury.

The refrigerant discharge lines, humidifiers and reheats are extremely hot during unit operation. Allow sufficient time for them to cool before working within the unit cabinet. Use extreme caution and wear protective gloves and arm protection when working on or near hot discharge lines, humidifiers and reheats.

CAUTION

Risk of sharp edges, splinters and exposed fasteners. Can cause injury.

Only properly trained and qualified personnel wearing appropriate safety headgear, gloves, shoes and glasses should attempt to move the unit, lift it, remove packaging from or prepare the unit for installation.

NOTICE

Risk of leaking water/glycol. Can cause equipment and building damage.

Improper installation, application and service practices can result in water/glycol leakage from the unit. Do not mount this unit over equipment or furniture that can be damaged by leaking water/glycol. Install a watertight drain pan with a drain connection under the cooling unit and the ceiling mounted water/glycol condenser unit. Route the drain pan to a frequently used maintenance sink so that running water/glycol can be observed and reported in a timely manner. Post a sign to alert people to report water/glycol flowing from the secondary drain pan. Emerson recommends installing monitored leak detection equipment for unit and supply lines and in the secondary drain pan. Check drain lines periodically for leaks, sediment buildup, obstructions, kinks and/or damage and verify that they are free running.

NOTICE

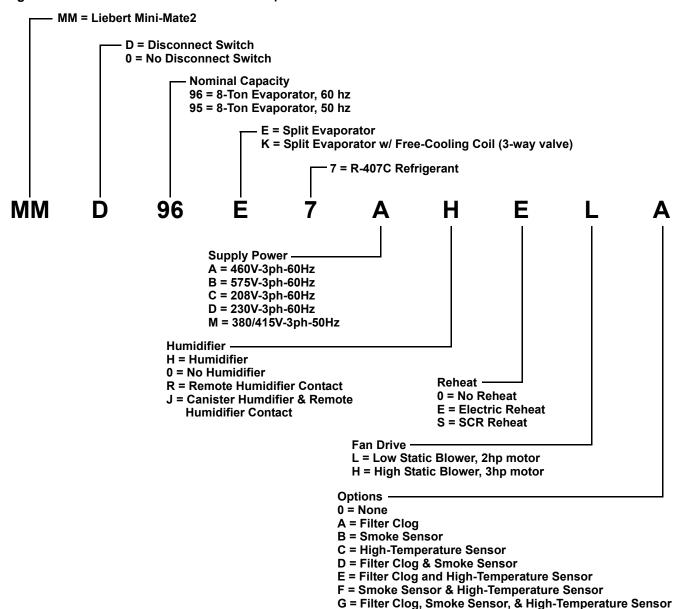
Risk of a leaking coil due to freezing and/or corrosion. Can cause equipment and building damage.

Cooling coils and piping systems that are connected to open cooling towers or other open water/glycol systems are at high risk for freezing and premature corrosion. Fluids in these systems must contain the proper antifreeze and inhibitors to prevent freezing and premature coil corrosion. The water or water/glycol solution must be analyzed by a competent water treatment specialist before startup to establish the inhibitor requirement. The water or water/glycol solution must be analyzed every six months to determine the pattern of inhibitor depletion. The complexity of water-caused problems and their correction makes it important to obtain the advice of a water treatment specialist and follow a regularly scheduled maintenance program.

NOTICE

Risk of damage from forklift. Can cause unit damage.

Keep tines of the forklift level and at a height suitable to fit below the skid and/or unit to prevent damage.


NOTICE

Risk of improper storage. Can cause unit damage.

Keep the Liebert Mini-Mate2 upright, indoors and protected from dampness, freezing temperatures and contact damage.

MODEL NUMBER NOMENCLATURE

Figure 1 Model number nomenclature—Evaporator Units

3

Figure 2 Model number nomenclature—Air-cooled indoor condensing units

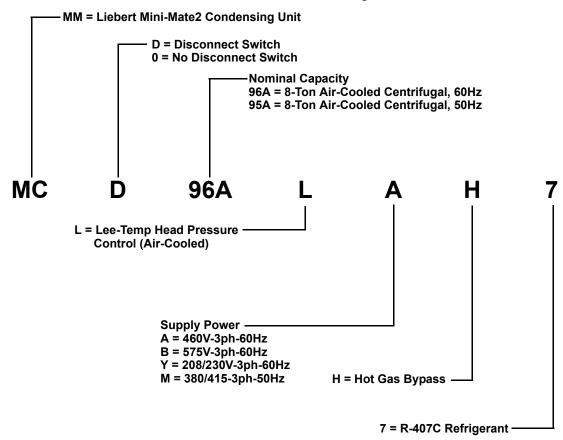


Figure 3 Air-cooled systems—Outdoor prop fan condensing units

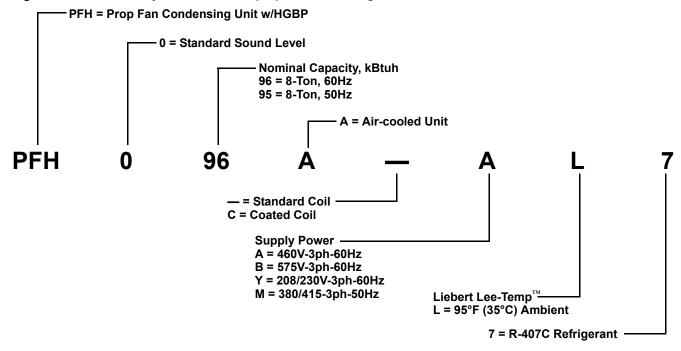


Figure 4 Water/glycol-cooled systems—Indoor condensing units

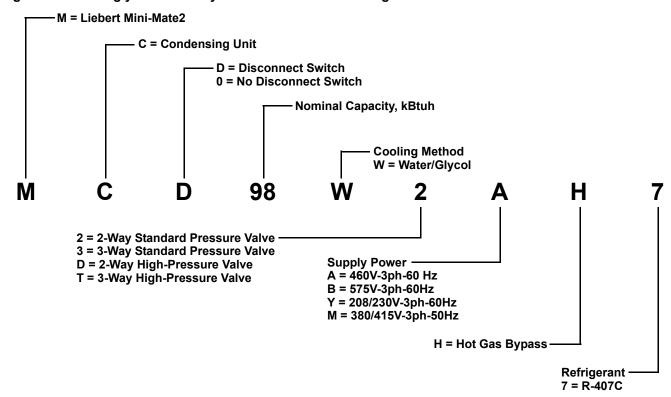


Figure 5 Model number nomenclature—Chilled water units

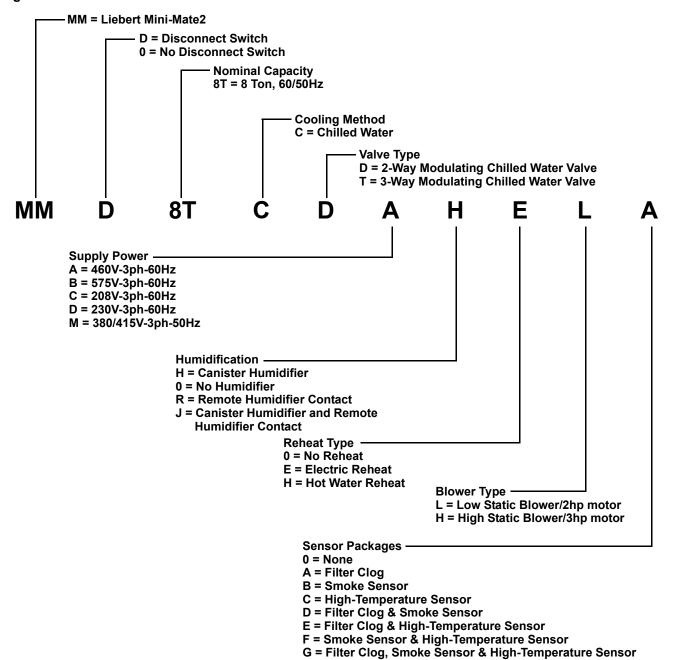


Table 1 System configurations—60Hz

		Condensing Unit		
Nominal Capacity	Cooling Unit	Indoor Air-Cooled Centrifugal Fan	Outdoor Air-Cooled Propeller Fan	Indoor Water/Glycol
8 Tons	MMD96E	MCD96A	PFH096A	MCD98W
8 Tons	MMD8TC	Self-Contained - Chilled Water		

Table 2 System configurations—50Hz

	Con		Condensing Unit	
Nominal Capacity	Cooling Unit	Indoor Air-Cooled Centrifugal Fan	Outdoor Air-Cooled Propeller Fan	Indoor Remote Water/Glycol Cooled
8 Tons	MMD95E	MCD95A	PFH095A	MCD97W
0 10115	MMD8TC	Self-Contained - Chilled Water		

1.0 Introduction

1.1 Designed to Match Computer and Electronic Equipment Needs—From Installation to Operation

Installed above the ceiling, the system controls the cooling, humidity and air distribution required by sensitive electronic equipment. A range of sizes and configurations are available to meet site needs.

The Liebert Mini-Mate2 is also easy to use. Advanced microprocessor technology allows easy, precise control, and menu-driven monitoring keeps you informed of system operation through the LCD readout. These features, combined with Liebert quality construction and reliable components, guarantee satisfaction from installation through operation.

Liebert Precision Cooling

Liebert Precision Cooling systems are designed to control the temperature and humidity required for computers and other sensitive electronic equipment. Liebert Mini-Mate2 provides complete control on an around-the-clock basis, as well as the high sensible heat ratio required by sensitive electronic equipment.

Easy Installation

The Liebert Mini-Mate2 is a split-system air, water- or glycol-cooled unit or a self-contained, chilled water unit. Each split system has thermostat-type wiring to the controls and condensing unit.

Easy to Service

Low-maintenance components are easily accessed through removable panels. Spare parts are always in Liebert's inventory and available on short notice.

Advanced Control Technology

A menu-driven microprocessor control system provides precise temperature and humidity control and accurate alarm setpoints. Using touch sensitive buttons, the wall-mounted monitor/control panel allows you to display temperature and other monitored parameters.

High Efficiency

High system efficiency is a result of high sensible heat ratio, two selectable fan speeds and precise microprocessor control.

Space Saving Design

All indoor components are installed above the ceiling, so no floor space is required.

Reliable

The Liebert Mini-Mate2 family installed base is a testimony to the system's reliability. Components include a rugged compressor, high-efficiency copper tube, aluminum fin evaporator coil and a double inlet, direct drive fan.

Agency Listed

Standard 60Hz units are CSA certified to the harmonized U.S. and Canadian product safety standard, CSA C22.2 No 236/UL1995 for "Heating and Cooling Equipment" and are marked with the CSA c-us logo.

Location

When considering installation locations, consider that these units contain water and that water leaks can cause damage to sensitive equipment below. Do not mount these units above sensitive equipment. A field-supplied pan with drain must be supplied beneath cooling units and water/glycol condensers.

Do not install units where normal unit operating sound may disturb the working environment.

2.0 STANDARD FEATURES—8 TON SYSTEMS

2.1 Evaporator Section—Split System

The evaporator section is designed for ceiling installation. The cabinet and chassis are constructed of heavy gauge galvanized steel. The unit can be serviced using only one side, increasing its versatility in mounting locations. Mounting brackets are factory-attached to the cabinet. Internal cabinet insulation meets ASHRAE 62.1 requirements for Mold Growth, Humidity & Erosion, tested per UL 181 & ASTM 1338 standards.

The evaporator section includes includes a dual-circuited evaporator coil, R-407C charge, filter driers, expansion valves, adjustable belt-driven blower assembly and a microprocessor control with wall-mounted control box. Unit is provided with supply and return air openings for field-supplied ducting. Evaporators can be configured with canister humidifier and/or reheat. An indoor or outdoor condensing unit must be selected for each evaporator.

2.2 Condensing Unit Section—Split System

2.2.1 Indoor Centrifugal Fan Condensing Units

Indoor Air-Cooled Centrifugal Condensing Units include 3-ton and 5-ton scroll compressors, dual-circuited condenser coil with R-407C refrigerant charge, adjustable belt-driven centrifugal blower assembly, factory-mounted disconnect switch, high pressure switches and built-in Liebert Lee-Temp™ head pressure controls, hot gas bypass, liquid line solenoid valves and receivers for operation down to -30°F (-34°C) ambient. Duct flanges are provided. Condensing unit is rated at 95°F (35°C) ambient air.

2.2.2 Outdoor Prop-Fan Condensing Units

Outdoor Prop-Fan Condensing Units include 3-ton and 5-ton scroll compressors, two condenser coils, propeller fan, high pressure switches, hot gas bypass, Liebert Lee-Temp head pressure controls, liquid line solenoid valves and built-in receivers for operation down to -30°F (-34.4°C) ambient. Condensing unit is rated at 95°F (35°C) ambient air.

2.2.3 Indoor Water/Glycol Condensing Units

Indoor Water/Glycol Condensing Units include 3-ton and 5-ton scroll compressors, coaxial condensers, R-407C refrigerant charge, high head pressure switches, factory-mounted disconnect switch, hot gas bypass and 2-way water/glycol regulating valves. Design pressure is 150psi (1034kPa). Condensing unit can be used on either water or glycol loops.

2.3 Chilled Water Units

Chilled Water Units include chilled water coil, 2-way proportional modulating valve, adjustable belt-driven blower assembly and factory mounted disconnect switch. Design pressure is 400psi (2757kPa), 86psi (593kPa) close-off differential. Unit is provided with supply and return air openings for field-supplied ducting. Unit insulation meets ASHRAE 62.1 requirements for Mold Growth, Humidity & Erosion, tested per UL 181 & ASTM 1338 standards.

2.4 System Controls

System controls include a microprocessor control board mounted in the evaporator/chilled water unit and a wall-mounted interface with a two-line, 16-character liquid crystal display. A seven-key, membrane keypad for setpoint/program control, unit On/Off and alarm silence is below the LCD screen. It provides temperature setpoint and sensitivity adjustment, humidity setpoint and sensitivity adjustment, digital display of temperature, humidity, setpoints, sensitivities and alarm conditions.

The wall-box is field-wired to the microprocessor control using standard four-conductor thermostat wire (field-supplied). The temperature and humidity sensors are in the wall box, which can be installed up to 300 feet (91.4m) from the evaporator unit. The unit-mounted control board also includes common alarm terminals and shutdown terminals. The unit automatically restarts after a power outage.

2.4.1 Three-Stage Cooling

A unique compressor staging system utilizes independent 3-ton and 5-ton circuits to provide better control of room conditions. The unit microprocessor continuously monitors recent cooling operation and selects the most economical cooling stage to satisfy demand.

2.4.2 Other Standard Control Features

- Adjustable auto restart
- 5 day/2 day setback
- · Password protection
- · Alarm enable/disable
- Self-diagnostics

- Calibrate sensors
- · Predictive humidity control
- · Common alarm output
- · Remote shutdown terminals

Figure 6 Improved load tracking

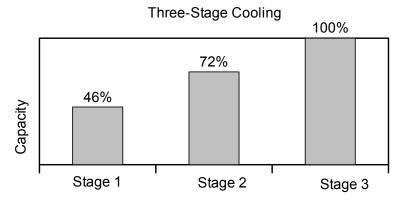


Figure 7 Wall-box

9

3.0 OPTIONAL FACTORY-INSTALLED FEATURES - EVAPORATOR/CHILLED WATER UNITS

3.1 Reheat

Electric reheat includes 2-stage, 304/304 stainless steel finned tubular reheat elements for added durability. Also includes high limit safety switch.

SCR Reheat provides tight temperature control by rapidly pulsing the 304/304 stainless steel reheat elements in small increments. A solid-state relay is factory-installed and wired to the microprocessor control. The compressor is locked on, with the reheat modulated to track the load. Not available on chilled water, GLYCOOL™, free-cooling or 575V units.

Hot Water Reheat includes a hot water coil, two-way solenoid valve and Y-strainer. This option is available only on chilled water units; not available with other reheat options.

3.2 Humidifier

The **Canister Humidifier** includes a steam generating-type humidifier with automatic flushing circuit, inlet strainer, drain, 1" (25.4mm) air gap on fill line and solenoid valves. Humidifier problem alarm annunciates at the wall-mounted display panel.

Remote Humidifier Contact allows the unit's humidity controller to control a humidifier outside the unit. Power to operate the external humidifier <u>does not</u> come from the Liebert Mini-Mate2. Available on units with or without internal humidifier.

3.3 Sensors

The **Smoke Sensor** senses return air, shuts down the unit upon sensing smoke and activates visual and audible signals at the wall box. This smoke sensor is not intended to function as or replace any room smoke detection system that may be required by local or national codes.

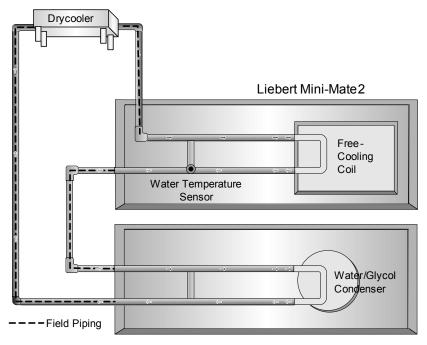
High-Temperature Sensor senses return air temperature and shuts down unit if temperature reaches 125°F (52°C). This device is not meant to replace any fire detection system that may be required by local or national codes.

3.4 Switches and Motors

Filter Clog Switch senses pressure drop across the filters and activates visual and audible alarms at the wall-box display. The wall-box display annunciates the alarm audibly and flashes a notification upon reaching a customer setpoint.

A **Factory-Installed Non-Fused Disconnect Switch** allows unit to be turned off for maintenance. A disconnect switch is standard for the evaporators, chilled water units and indoor condensing units, but these units may be specified without the switch.

3hp Blower Motor is available for high static pressure applications (0.9 to 1.9in [23 to 48mm] w.g.). Standard 2hp motor allows for ESP of 0.5 in (13 mm). Free-cooling or hot water reheat coils reduce the available ESP by 0.3" (8mm). Maximum return air static pressure should not exceed 0.3" (8mm) for drain to work properly.


3.5 Free-Cooling

GLYCOOL™ (free-cooling) coil can be ordered with the evaporator section. This option contains a 3-way modulating valve, fluid temperature sensor and supply/return piping. System includes an adjustable timed flush cycle. Coil is active anytime there is a call for cooling and fluid temperature is 8°F (4.4°C) below room air temperature. The coil can provide the majority of the cooling with DX compressor coil cycled on as needed to complete the cooling requirements.

Air-cooled condensing units can be matched with evaporators using free-cooling coils with chilled water sources to serve as backup cooling. When matched with a water/glycol condensing unit, a three-way water regulating valve is recommended for the condensing unit to simplify piping to the main supply pipes. The coil is designed for closed-loop applications using properly treated and circulated fluid. Not available with SCR reheat options.

Figure 8 Free-cooling option—example

A free-cooling coil allows the system to take advantage of a primary chilled water source or colder water/glycol temperatures available during colder outdoor temperatures. The free-cooling coil is used for cooling whenever fluid temperature is 8°F (4.4°C) or more below room air temperature, reducing the need for compressor operation.

NOTE

If free-cooling is applied to an open water tower, an optional cupro-nickel (CuNi) coil is required to prevent premature corrosion, or a heat exchanger must separate the tower water from the free-cooling loop. The cupro-nickel coil requires an extended lead time.

3.6 Optional Configuration—Prop Fan Condensing Units

Outdoor Prop Fan Condensing Units are available with condenser coils that can be phenolic-coated for extended coil life in coastal areas.

3.7 Optional Configurations—Water/Glycol Condensing Units

Indoor Water/Glycol Condensing Units are available with the following piping options:

- 2-way water regulating valves with 350psi (2413kPa) design pressure.
- 3-way water regulating valves with 150psi (1034kPa) design pressure.
- 3-way water regulating valves with 350psi (2413kPa) design pressure.

3.8 Optional Configuration—Chilled Water Units

Chilled Water units are available with a 3-way modulating chilled water valve, rated for 400psi (2757kPa) operating pressure. Valve is non-spring return.

4.0 Ship-Loose Accessories—Field-Installed

Filter box kit (for ducted applications) includes filter box with duct flange connection, one MERV 8 (ASHRAE 52.2-2007) filter (20" x 25" x 4" [508mm x 635mm x 102mm]) and a duct flange for use on the supply air opening of the unit.

The **Condensate Pump** is field-mounted on the outside of the cabinet, wired to the unit power block and is equipped with a discharge check valve. A secondary float is field-wired to shut down the unit upon high condensate level.

Condensate Pump Mounting Bracket mounts on the end of the evaporator, easing alignment and installation of the condensate pump.

A Remote Temperature and Humidity Sensor package includes sensors in an attractive case with 30 ft. (9m) of cable. Can be wall- or duct-mounted. Remote sensors should be used when the wall box is not located in the space to be conditioned.

NOTE

Installing the remote sensors disables the sensors included in the wall box, allowing the wall box to be mounted up to 300 ft (91m) from the Liebert Mini-Mate2 unit.

Field-Installed Kits available for filter clog, smoke sensor, high-temperature sensor, electric reheat and humidifier. The kits include installation instructions and are designed to be added to the evaporator unit before it is installed in the ceiling. Electric reheat kits cannot be installed in units with free-cooling. Humidifier kit cannot be installed on units with SCR reheat.

The **Refrigerant-Line Sweat Adapter Kit** contains four suction line and four liquid line fittings that allow field-supplied refrigerant piping between the evaporator and condensing unit.

Single-Point Power Kit contains the necessary electrical components to interconnect the high-voltage sections of a close-coupled evaporator and MCD condensing unit.

4.1 Remote Monitoring, Autochangeover and Leak Detection Equipment

The **Liebert RCM4**TM is a four-point, normally open, dry contact monitoring panel. One Form-C, dry contact common alarm relay output (rated at 24 VAC, 3 Amp) is provided. Four red LEDs illuminate on the respective alarm and the alarm buzzer is silenced by a front panel switch. The RCM4 requires a 24VAC or 24VDC power source. Power supply is not included.

The **Liebert AC4**TM **Autochangeover Controller** provides autochangeover and autosequence control for up to four Liebert Mini-Mate2 units within a room. The Liebert AC4 will enable redundant units in an alarm condition, balance usage and test standby units at programmed intervals. Two common alarm relay outputs are available. A built-in LCD and RS-232 port for direct PC/terminal connection provides two options for configuration and monitoring of the product. The Liebert AC4 requires 24VAC input power.

The **Liebert AC8**TM is ideal for coordinated control of systems with redundant units. The Liebert AC8 enables redundant devices during an alarm condition, balances usage of devices and tests standby devices at programmable intervals. Supports four zones and can use the 4-20mA temperature sensor (TW420) for temperature staging in each zone. Two programmable output control relays are available for auxiliary control such as humidity lockout. Emergency power operation input provided for device control during an emergency. Two common alarm relay outputs are available. A built-in LCD and RS-232 port for direct PC/terminal connection provides two options for configuration and monitoring of the product.

The **Liebert ENV-DO**TM interface card provides 16 discrete outputs, corresponding to status and major alarm conditions of Environmental units. The Liebert ENV-DO-ENCL1 packages one Environmental DO interface card in its own steel enclosure and the ENV-DO-ENCL2 packages two Environmental DO interface cards in one enclosure for installation external to the Liebert Mini-Mate2. The self-contained kit includes an external 120VAC-to-24VAC power transformer. Wiring harnesses are not provided. Power and communication wiring is field-provided.

The Liebert Liqui-tect[®] 410 Point Leak Detection Sensor detects the presence of conductive liquid using a pair of corrosion-resistant, gold-plated probes mounted in a painted, height-adjustable enclosure. Dual Form-C, dry contact common alarm relays (rated at 24VAC, 3A) signal a leak detected as well as loss of power and cable fault. The Liebert Liqui-tect 410 requires an external 24VAC or 24VDC power source.

Liebert LT460 Zone Leak Detection Kits include one LT460 sensor, a specified length of LT500-xxY cable (maximum length is 100 ft [30.5m]) and a corresponding number of hold-down clips. The Liebert LT460 requires an external 24VAC, 0.12A power source, such as EXT-XFMR or XFMR24.

Liebert SiteScan[®] is a monitoring solution that gives you decision-making power to effectively manage the equipment critical to your business.

Liebert SiteScan enables communication from Liebert environmental and power units, as well as many other pieces of analog or digital equipment, to a front-end software package that provides real-time status and alarms so you can react quickly to changing situations.

Liebert SiteScan is designed with flexibility for both small systems and large, complex systems such as those in computer rooms, telecommunications facilities or industrial process control rooms. Contact your local Emerson representative for assistance with a Liebert SiteScan system.

The NIC-ENCL1 and NIC-ENCL2 package one or two Liebert IntelliSlot® Web/485 Cards with Adapters, respectively, in one steel enclosure for installation external to the Liebert Mini-Mate2™. The Liebert IntelliSlot Web/485 Card with Adapter provides communication with Liebert Mini-Mate2 via SNMP, HTTP, RTU Modbus 485 and BACnet IP. The self-contained kit includes an external 120VAC-to-24VAC transformer as a power source. Wiring harnesses are not provided. Power and communication wiring are field-provided.

5.0 SITE PREPARATION AND INSTALLATION

NOTE

Before installing unit, determine whether any building alterations are required to run piping, wiring, and duct work. Carefully follow all unit dimensional drawings and refer to the submittal engineering dimensional drawings of individual units for proper clearances.

5.1 Installation Considerations

The evaporator unit is usually mounted above the suspended ceiling using field supplied threaded rods. Refer to **Figures 9**, **10** and **11** for possible configurations. The condensing unit may be:

- Indoor Air-Cooled Centrifugal Fan Condensing Unit mounted remotely or close coupled to the evaporator in the ceiling space.
- · Outdoor Air-Cooled Propeller Fan Condensing Unit.
- Indoor Water/Glycol-Cooled Condensing Unit, mounted remotely or close coupled to the evaporator.

Table 3 Application limits, evaporator and chilled-water units*

Input Voltage		Range of Return Air Conditions to Unit		
Minimum Maximum		Dry Bulb Temp.	Relative Humidity	
-5%	+10%	65°F to 85°F (18°C to 29°C)	20% to 80%	

^{*}Unit will operate at these conditions but will not control to these extremes.

Table 4 Application limits, indoor and outdoor air-cooled condensing units

Input Voltage			Entering Dry Bulb Air Temperature	
Minimum	Maximum	Condensing Units	Min	Max
		Outdoor Prop Fan Condensing Unit	-30°F (-34°C)	115°F (46°C)
-5%	+10%	Indoor Air-Cooled Centrifugal Condensing Unit	-20°F (-29°C)	115°F (46°C)

Table 5 Application limits, indoor water/glycol-cooled condensing units

Input Voltage		Entering Fluid Temperature	
Minimum	Maximum	Minimum	Maximum
-5%	+10%	65°F (18.3°C) *	115°F (46°C)

^{*}Operation below 65°F (18°C) may result in reduced valve life and fluid noise.

5.1.1 Room Preparation

The room should be well-insulated and must have a sealed vapor barrier. The vapor barrier in the ceiling and walls can be a polyethylene film. Paint on concrete walls and floors should be vapor resistant.

NOTE

The single most important requirement for maintaining environmental control in the conditioned room is the vapor barrier.

Outside or fresh air should be kept to a minimum when tight temperature and humidity control is required. Outside air adds to the cooling, heating, dehumidifying and humidifying loads of the site. Doors should be properly sealed to minimize leaks and should not contain ventilation grilles.

5.1.2 Location Considerations

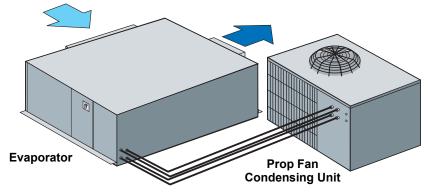
NOTICE

Risk of leaking water/glycol. Can cause equipment, furniture and building damage.

Do not mount units over equipment or furniture that can be damaged by leaking water/glycol. Install a watertight drain pan with a drain connection under the cooling unit and ceiling mounted water cooled condensing unit. Route the drain line to a frequently used maintenance sink so that running water can be observed and reported in a timely manner. Post a sign to alert people to report water flowing from the secondary drain pan.

NOTE

Do not mount units in areas where normal unit operating sound may disturb the working environment.


Locate the evaporator unit over an unobstructed floor space if possible. This will allow easy access for routine maintenance or service. Do not attach additional devices to the exterior of the cabinet, as they could interfere with maintenance or service.

NOTE

Temperature and humidity sensors are located in the wall box. Carefully select a position for the box where discharge air DOES NOT blow directly on the sensors.

Figure 9 System configurations—air cooled systems

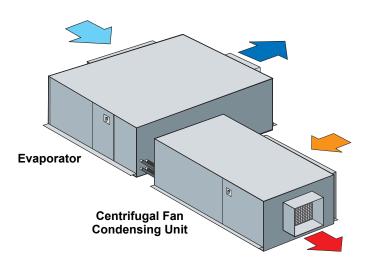


Figure 10 System configurations—water/glycol systems

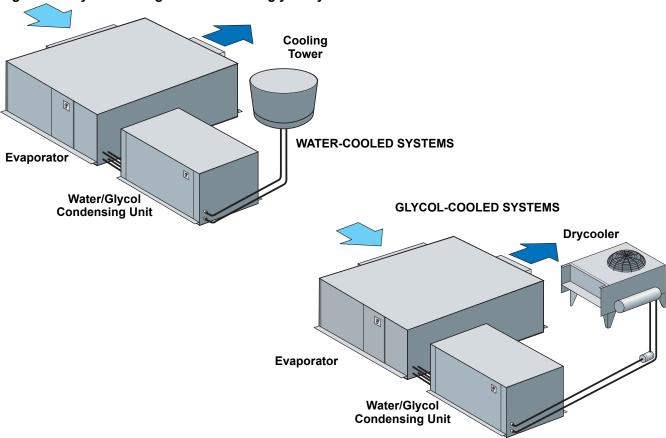


Figure 11 System configurations—chilled water systems

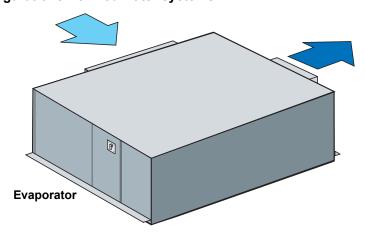
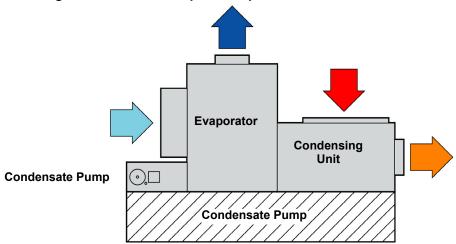



Figure 12 System configurations - close-coupled components

5.2 Ceiling Unit Weights

Table 6 Unit weights

Unit Type, Model	Weight, lb (kg)			
Cooling Units*				
MMD8TC	665 (302)			
MMD96E	665 (302)			
MMD95E	665 (302)			
Condensing Units				
MCD96A	530 (241)			
MCD95A	530 (241)			
MCD98W	470 (213)			
MCD97W	470 (213)			

^{*} Add 40 lb. (20kg.) to units with free cooling or hot water reheat coils.

5.3 Equipment Inspection Upon Receipt

When the unit arrives, do not uncrate equipment until it is close to its final location. All required assemblies are banded and shipped in corrugated containers. If you discover any damage when you uncrate the unit, report it to the shipper immediately. If you later find any concealed damage, report it to the shipper and to your Liebert supplier.

5.4 Installing the Ceiling Units

WARNING

Risk of ceiling collapse and heavy unit falling. Can cause building damage, serious injury or death.

Verify that the supporting roof structure is capable of supporting the weight of the unit(s) and the accessories during installation and service. (See **5.2** - **Ceiling Unit Weights**.)

Securely anchor the top ends of the suspension rods, and verify that all nuts are tight.

The evaporator unit and indoor condensing unit are usually mounted above the ceiling and must be securely mounted to the roof structure. The ceiling and ceiling supports of existing buildings may require reinforcements. Be sure to follow all applicable national, state and local building codes. Use field-supplied 1/2"-13 TPI threaded suspension rods and 1/2"-13 TPI factory hardware kit.

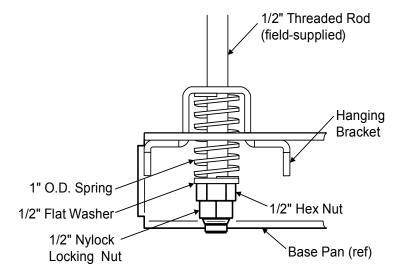
Recommended clearance between ceiling grids and building structural members is unit height plus 3" (76mm).

Install the four field-supplied rods by suspending them from suitable building structural members. Locate the rods so that they will align with the holes in the four hanging brackets factory-secured in the unit base.

Using a suitable lifting device that is rated for the weight of the unit (see **5.2 - Ceiling Unit Weights**), raise the unit and pass the threaded rods through the holes in the four hanging brackets factory-provided in the unit base.

Attach the threaded rods to the hanging brackets using the factory-supplied hardware kit. (See **Figure 13**). The coil springs provide vibration isolation.

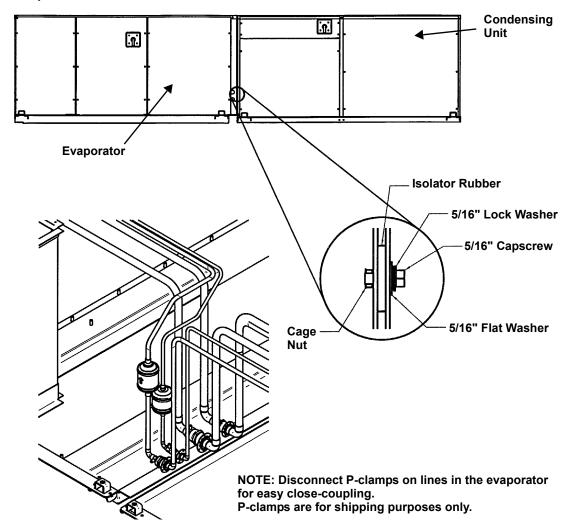
1. Use the plain nuts to hold unit in place. Adjust these nuts so that the weight of the unit is supported by the four rods, does not rest on the ceiling grid, and is level. Ensure none of the springs are compressed to solid height. The coil side of the unit is heavier, so these springs will be compressed more than the other side.



NOTE

The units must be level in order to drain condensate properly.

2. Use the Nylock nuts to "jam" the plain nuts.


Figure 13 Threaded rod and hardware kit installation

5.4.1 Close-Coupled Installations

If the evaporator and condensing units are to be mounted side-to-side (close-coupled), hang each unit before connecting them together (See **Figure 14**). If Single Point Power Kit is used, install the box into the evaporator prior to suspending the units. Route power wire flex conduit into condensing unit as units are suspended. Refer to instructions supplied with kit for details. Align bolt holes in the condensing unit and in the evaporator. Insert rubber spacers and secure four (4) sets of hardware provided. Align the refrigerant connections and tighten them as described in **5.4.4 - Piping Connections and Coolant Requirements**. Remove "P" clamps from piping to aid fitting alignment.

Figure 14 Close-coupled installation

5.4.2 Evaporator Air Distribution

Filter Box

The optional filter box attaches directly to the return air opening of the evaporator. The filter box is supplied with 1" (25.4mm) duct flange connection, quantity two, 20" x 25" x 4" nominal (508mm x 635mm x 102mm) filters and a 1" (25.4 mm) duct flange for use on the supply air opening. Filters are MERV 8 efficiency per ASHRAE Standard 52.2-2007...

19

NOTE

Do not operate the unit without filters installed in return air system.

Connections for Ducted Systems

Use flexible duct work or non-flammable cloth collars to attach duct work to the unit and to help control the transmission of vibrations to building structures. Duct work must be insulated to prevent condensation during the cooling cycle. A vapor barrier is required to prevent absorption of moisture from the surrounding air into the insulation.

If the return air duct is short, or if noise is likely to be a problem, sound-absorbing insulation should be used on the duct. Duct work should be fabricated and installed in accordance with national, state and local codes.

Table 7 Evaporator external static pressure (60Hz) at 3750 CFM (6371 CMH)

	Low Static Drive (2 hp Motor)		High Static Drive (3 hp Motor)		
Turns Open RPM External Static, in.		External Static, in.	RPM	External Static, in.	
0	_	N/A	1146	1.9	
0.5	_	N/A	1125	1.8	
1.0	_	N/A	1104	1.7	
1.5	946	0.9	1083	1.6	
2.0	922	0.8	1063	1.5	
2.5	972	0.7	1042	1.4	
3.0	899	0.6	1021	1.3	
3.5	851	0.5	1000	1.2	
4.0	828	0.4	979	1.1	
4.5	804	0.3	958	1.0	
5.0	780	0.2	938	0.9	
5.5	757	0.1	917	0.8	
6.0	733	0	896	0.7	

If free-cooling or hot water coil is ordered, reduce available external static pressure by 0.3" (8 mm). Contact your Emerson representative for other air volumes.

Factory setting is 0.5" (13mm) with 2 hp motor. Field adjust to suit application.

NOTE

Maximum return air static pressure should not exceed 0.3" (8 mm) to provide proper drainage of the unit.

5.4.3 Electrical Connections, Evaporator or Chilled-Water Unit

WARNING

Arc flash and electric shock hazard. Disconnect all electric power supplies and wear protective equipment per NFPA 70E before working within electric control enclosure. Failure to comply can cause serious injury or death.

Customer must provide earth ground to unit, per NEC, CEC and local codes, as applicable. Before proceeding with installation, read all instructions, verify that all the parts are included and check the nameplate to be sure the voltage matches available utility power.

The Liebert microprocessor control does not isolate power from the unit, even in the Unit Off mode. Some internal components require and receive power even during the Unit Off mode.

The line side of the disconnect switch on the front of the unit contains live high voltage. The only way to ensure that there is NO voltage inside the unit is to install and open a remote disconnect switch and check the internal power supply wires with a voltmeter. Refer to unit electrical schematic. Follow all applicable national, state and local electric codes.

Each unit is shipped from the factory with internal wiring completed. Refer to electrical schematic, **Figure 15**, **Figure 34**, **and Figure 35** when making connections. Electrical connections to be made at the installation site are:

- · Power supply to each ceiling unit
- · Control wiring between the evaporator unit and the condensing unit, if applicable
- Control wiring between the control panel (wallbox) and the evaporator or chilled-water unit control board
- · Power supply to outdoor condensing unit, if applicable

Power Connections

All power and control wiring and ground connections must be in accordance with the National Electrical Code (NEC) and local codes. Refer to Unit serial tag data for electrical requirements.

WARNING

Risk of loose electrical wiring connections. Can cause overheating of wire, smoke and fire resulting in building and equipment damage, serious injury or death.

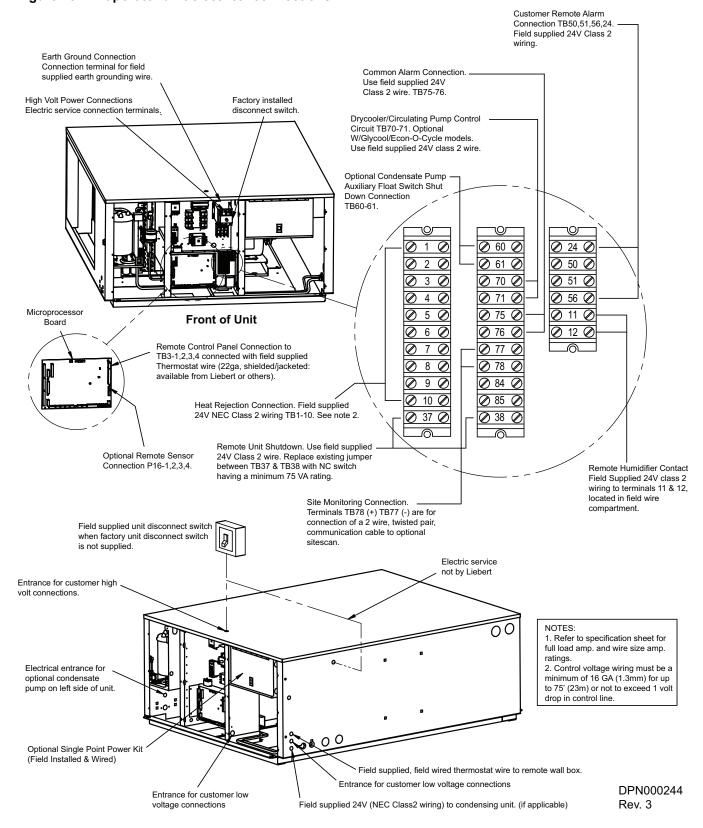
Use copper wiring only. Verify periodically that all connections are tight.

Voltage supplied must agree with the voltage specified on the unit serial tag. If a field-supplied disconnect switch is required, it may be bolted to the ceiling unit but not to any of the removable panels. This would interfere with access to the unit. Make sure that no refrigerant lines are punctured when mounting the disconnect switch.

Route the electrical service conduit through the hole provided in the cabinet and terminate it at the electric box. Make connections at the factory terminal block or disconnect switch, L1, L2, L3. Connect earth ground to lug provided. See transformer label for primary tap connections. Installer will need to change transformer primary taps if applied unit voltage is other than pre-wired tap voltage.

An optional single point power kit is available for units that are close coupled (refer to **Figure 15** and **5.4.4 - Piping Connections and Coolant Requirements**). This kit should be mounted inside the evaporator unit before installing the unit in the ceiling. Specific installation instructions are included with the single point power kit.

Control Connections (10-Wire on Air-Cooled, 8-Wire on Water/Glycol Cooled)


A field-supplied control connection (24 VAC) is required between the evaporator and the condensing unit. Control wiring must be installed in accordance with the National Electrical Code (NEC) Class 2 circuit. Glycol-cooled units also require a two-wire control connection to the drycooler/pump control box. A Class 1 circuit is required for water/glycol units.

Control wiring between the evaporator and the condensing unit must not allow a voltage drop in the line of more than 1 volt (16 gauge minimum for 75 feet). **Do not connect additional electrical devices to the control circuit.** The internal control transformer is only sized for factory-supplied components.

Additional control wiring will be required if your system includes other optional monitoring and control devices.

Four (4) wire (thermostat type) must be connected between the evaporator control board and the wall box. See **Figure 34** and **Figure 35** and see **Figure 15** for electrical connections.

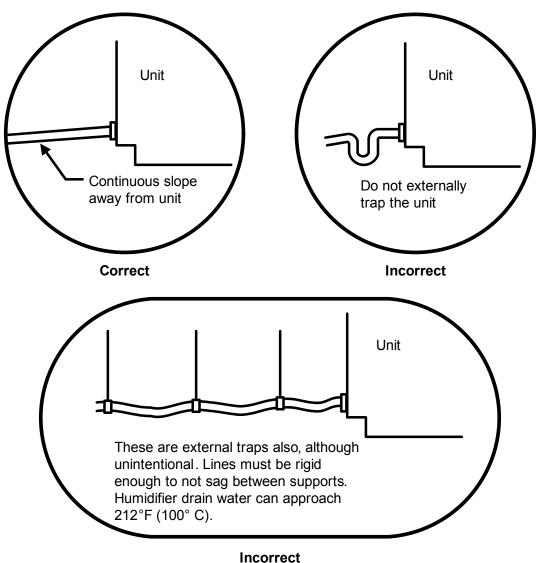
Figure 15 Evaporator unit electrical connections

5.4.4 Piping Connections and Coolant Requirements

Drain Line

NOTICE

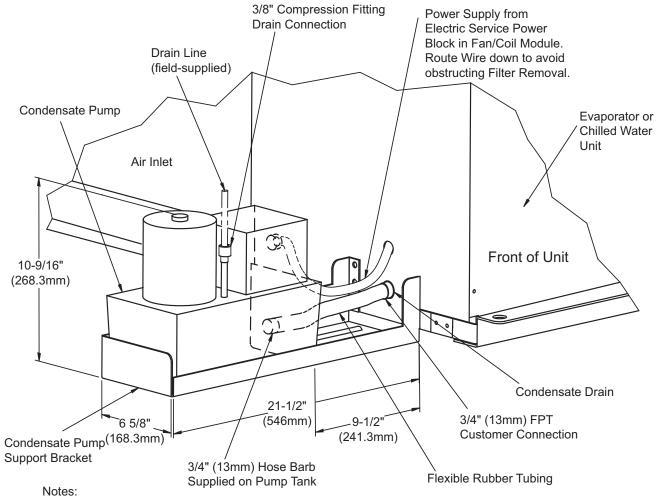
Risk of water backing up in the evaporator coil drain line and overflowing the drain pan, Leaking water can cause building and equipment damage.


Do not install an external trap in the drain line. This line already has a factory-installed trap inside the cabinet.

This line may contain boiling water. Use copper or other suitable material for the drain line. Sagging condensate drain lines may inadvertently create an external trap.

A 3/4" (19.1mm) NPT-female connection is provided for the evaporator coil condensate drain. This line also drains the humidifier, if applicable. The drain line must be located so it will not be exposed to freezing temperatures. The drain should be the full size of the drain connection.

The evaporator drain pan includes a float switch to prevent unit operation if drain becomes blocked.


Figure 16 Drain installation

Condensate Pump

The optional condensate pump kit is required when the evaporator is installed below the level of the gravity-fed drain line. Refer to the installation instructions provided with the condensate pump kit.

Figure 17 Condensate pump installation

- 1. 3/4" (13mm) Flexible Rubber Tubing Assembly (supplied with pump kit) must be installed on pump end.
- 2. The High Water Safety Float included with pump must be interlocked with unit control. Wire to terminals 60 & 61 on evaporator terminal strip to shut down unit.

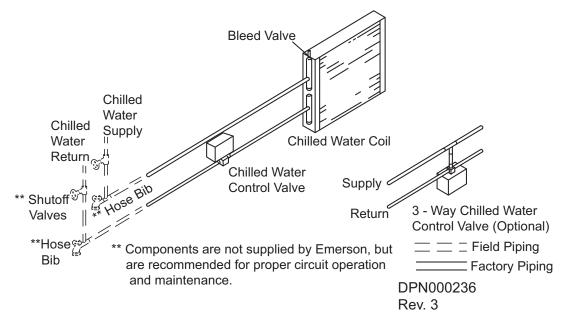
DPN000239 Rev. 1

Humidifier Water Supply Line

Units supplied with the optional humidifier package have a 1/4 in. (6.4 mm) copper compression fitting connection for water inlet. Supply pressure range is 10 psig to 150 psig. Required flow rate is 1 gpm (3.8 lpm). A shutoff valve should be installed in this line to isolate the humidifier for maintenance.

NOTE

DO NOT route humidifier supply line in front of filter box access panel.


Chilled-Water Piping—Chilled-Water Systems Only

Refer to Figure 18 for recommended field installed hardware such as shutoff valves and hose bibs.

Chilled-water supply and return lines must be insulated to prevent condensation.

The minimum recommended water temperature is 42°F. Connection sizes are 1-3/8" (34.9mm) OD copper.

Figure 18 General arrangement diagram - chilled-water systems

Water/Glycol Piping

Water-cooled and glycol-cooled systems require coolant loop connections as specified in the condensing unit installation instructions.

Refrigerant (R-407C) Piping

WARNING

Risk of explosive discharge of high pressure refrigerant. Can cause serious injury. Relieve refrigerant system pressure before working with piping/connections.

All split systems require two sets of refrigerant lines (two insulated copper suction lines and two copper liquid lines) between the evaporator and the condensing unit.

Two possible methods exist for installing the copper suction and liquid lines.

- Close coupling the units together using the quick connects (see **Figure 12**).
- · Using an optional Sweat Adapter Kit and hard piping between the two units.

All refrigeration piping should be installed with high temperature brazed joints. Prevailing good refrigeration practices should be employed for piping supports, leak testing, evacuation, dehydration, and charging of the refrigeration circuits. The refrigeration piping should be isolated from the building by the use of vibration isolating supports. To prevent tube damage when sealing openings in walls and to reduce vibration transmission, use a soft flexible material to pack around the tubes.

When installing remote condensing units above the evaporator, the suction gas lines should be trapped at the evaporator. These traps will retain refrigerant oil in the off cycle. When the unit starts, oil in the traps is carried up the vertical risers and returns to the compressors.

Table 8 Recommended refrigerant line sizes

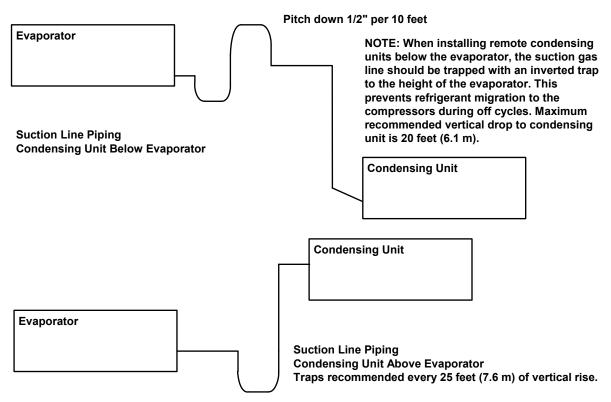
Equivalent	3 T	on	5 Ton		
Length, ft (m)	Suction	Liquid	Suction	Liquid	
50 (15.2)	7/8"	1/2"	1-1/8"	1/2"	
100 (30.5)	1-1/8" ²	1/2"	1-1/8"	5/8"	
150 (45.7)	1-1/8" ²	1/2"	1-3/8"	5/8"	

Suction and liquid line sizing based on < 3 psi pressure drop in each, minimum horizontal suction line velocity > 700FPM (3.6m/s).

Table 9 Pipe length and condenser elevation relative to evaporator

Nominal System	Max. Equiv. Pipe	Max. PFH Level	Max. PFH Level
Size, Tons	Length, ft. (m)	Above Evaporator, ft. (m)	Below Evaporator, ft. (m)
8	150 (45)	50 (15)	

Maximum recommended total equivalent pipe length is 150 ft (46m). Suction and liquid lines may require additional specialty items when vertical lines exceed 20ft. (6m) and/or condensing unit installation is more than 15 ft. (4.6m) below the evaporator. Contact Emerson Application Engineering for assistance.


Table 10 Equivalent lengths for various pipe fittings, ft (m)

- auto io - = quitaient ionguie ioi taneae pipe namige, it (iii)							
Copper Pipe OD, in.	90 Degree Elbow Copper	90 Degree Elbow Cast	45 Degree Elbow	Tee	Gate Valve	Globe Valve	Angle Valve
1/2	0.8 (0.24)	1.3 (0.39)	0.4 (0.12)	2.5 (0.76)	0.26 (0.07)	7.0 (2.13)	4.0 (1.21)
5/8	0.9 (0.27)	1.4 (0.42)	0.5 (0.15)	2.5 (0.76)	0.28 (0.08)	9.5 (2.89)	5.0 (1.52)
3/4	1.0 (0.3)	1.5 (0.45)	0.6 (0.18)	2.5 (0.76)	0.3 (0.09)	12.0 (3.65)	6.5 (1.98)
7/8	1.45 (0.44)	1.8 (0.54)	0.8 (0.24)	3.6 (1.09)	0.36 (0.1)	17.2 (5.24)	9.5 (2.89)
1-1/8	1.85 (0.56)	2.2 (0.67)	1.0 (0.3)	4.6 (1.4)	0.48 (0.14)	22.5 (6.85)	12.0 (3.65)
1-3/8	2.4 (0.73)	2.9 (0.88)	1.3 (0.39)	6.4 (1.95)	0.65 (0.19)	32.0 (9.75)	16.0 (4.87)
1-5/8	2.9 (0.88)	3.5 (1.06)	1.6 (0.48)	7.2 (2.19)	0.72 (0.21)	36.0 (10.97)	19.5 (5.94)

Refrigerant trap = Four times equivalent length of pipe per this table

^{2.} Suction sizes marked with * should be reduced one pipe size for vertical riser sections to maintain suction line velocity > 1000FPM (5.1m/s) for proper oil return.

Figure 19 Refrigerant piping diagram

Refrigerant Charge Requirements: Total refrigerant charge (R-407C) will be required only if units are evacuated during installation or maintenance. For safe and effective operation, refer to **5.4.4** - **Piping Connections and Coolant Requirements**.

NOTE

If field-supplied refrigerant piping is installed, refrigerant (R-407C) must be added to the system.

Total refrigerant = Units and Lines

Table 11 Unit refrigerant charge

Model #		R-407C, oz (kg)		
60Hz 50Hz		3-Ton Circuit	5-Ton Circuit	
MM*96E	MM*95E	7 (0.20)	7 (0.20)	
MM*96K	MM*95K	7 (0.20)	7 (0.20)	
MC*96A	MC*95A	210 (6.0)	402 (11.4)	
PFH096A	PFH095A	361 (10.2)	581 (16.5)	
MC*98W	MC*97W	54 (1.5)	94 (2.7)	

All evaporator units and condensing units are fully factory-charged with refrigerant. If field-supplied refrigerant piping is installed, refrigerant charge must be added; refer to **Table 12** to determine the additional charge.

27

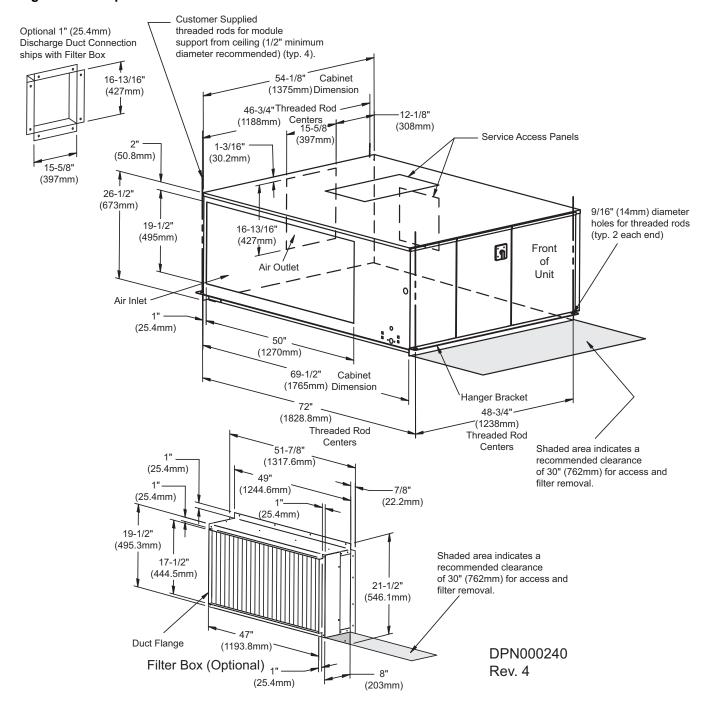
Table 12 Line charges - refrigerant per 100 ft. (30m) of Type L copper tube

Line Size,	R-407C, lb/100 ft. (kg/30m)			
O.D., in.	Liquid Line	Suction Line		
3/8	3.7 (1.7)	_		
1/2	6.9 (3.1)	_		
5/8	11.0 (5.0	0.4 (0.2)		
3/4	15.7 (7.1)	0.6 (0.3)		
7/8	23.0 (10.4)	1.0 (0.4)		
1-1/8	_	1.7 (0.7)		
1-3/8	_	2.7 (1.1)		

Quick Connect Fittings

NOTE

When hard piping is used, complete all piping and evacuate lines before connecting quick connects.


Be especially careful when connecting the quick connect fittings. Read through the following steps before making the connections.

- 1. Remove protector caps and plugs.
- 2. Carefully wipe coupling seats and threaded surfaces with a clean cloth.
- 3. Lubricate the male diaphragm and synthetic rubber seal with refrigerant oil.
- 4. Thread the coupling halves together by hand to ensure that the threads mate properly.
- 5. Tighten the coupling body hex nut and union nut with the proper size wrench until the coupling bodies "bottom out" or until a definite resistance is felt.
- 6. Using a marker or pen, make a line lengthwise from the coupling union nut to the bulkhead.
- 7. Tighten the nuts an additional quarter-turn; the misalignment of the lines shows how much the coupling has been tightened. This final quarter-turn is necessary to ensure that the joint will not leak. Refer to **Table 13** for torque requirements.

Table 13 Refrigerant quick connect sizes and torque

Size O.D. Cu	Coupling Size	Torque lb-ft (Nm)
3/8"	#6	10-12 (13.6-16.43)
1/2"	#10	35-45 (47.5-61)
7/8"	#11	35-45 (47.5-61)
1-1/8"	#12	50-65 (67.8-88.1)

Figure 20 Evaporator or chilled-water unit dimensions

5.5 Indoor Air-Cooled Centrifugal Fan Condensing Unit Installation

NOTE

Follow all national, state and local building, electrical and plumbing codes.

5.5.1 Location Considerations

The centrifugal fan air-cooled condensing unit may be located above the dropped ceiling or any remote indoor area. If noise is of concern, the condensing unit should be located away from personnel. Normal operating sound may be objectionable if the condensing unit is placed near quiet work areas.

To mount the unit in the ceiling, refer to **5.4** - **Installing the Ceiling Units** for hanging guidelines and to **Figure 23** for dimensional data.

5.5.2 Electrical Connections - Condensing Unit

Refer to **5.4.3** - Electrical Connections, Evaporator or Chilled-Water Unit and Figure 21 for general wiring requirements and cautions. Refer to electrical schematic when making connections. Refer to unit serial tag for full load amp and wire size amp ratings.

Power Connections

The condensing unit requires its own power source and earth ground, with a disconnect switch to isolate the unit for maintenance.

NOTE

Refer to serial tag for full load amp and wire size amp ratings

Control Connections

Field-supplied control wires must be connected between the evaporator and the condensing unit (See **Figure 21** and the electrical schematic on the units for more details.) Ten (10) wires are required between the evaporator and condensing unit.

Field-Supplied Unit Disconnect Switch when factory unit disconnect switch is not supplied Electric Service (not by Emerson) Line Voltage Electric Power Supply Removable Conduit Access Panels Connection Terminal for field-supplied earth grounding wire Factory-Installed Disconnect Switch Heat rejection connection Field supplied 24V NEC class 2 wiring; see Note 2. Wire connections from evaporator module: Low Voltage Electric Power 1. 24V GND System 1 Supply Conduit Entrance 2. 24V Supply System 1 3. High Pressure Alarm System 1 4. Hot Gas Bypass Connection System 1 Openings for field-supplied 24V NEC Class 2 wiring 5. 24V GND System 2 between condensing unit and 6. 24V Supply System 2 fan/coil unit 7. High Pressure Alarm System 2 8. Hot Gas Bypass Connection System 2 9. 24V GND Condenser Fan 0 . 10. 24V SUPPLY Condenser Fan 0 4" _ 6" _ (101.6mm) (152.4mm) NOTES: 8 1/2" 1. Refer to specification sheet for full load amp and (215.9mm) wire size ratings. 12 1/2" 2. Control voltage wiring must be a minimum of (317.5mm) 16GA (1.3mm) for up to 75' (23m) or not to exceed 1 volt drop in control line. 16 1/2"

Figure 21 Indoor air-cooled centrifugal condenser electrical connections

5.5.3 Piping Connections

Details for refrigerant (R-407C) loop piping are in **5.4.4** - **Piping Connections and Coolant Requirements**.

31

5.5.4 Ducting

Fan operation is designed for 5000 CFM (8495 CMH) at 0.5" external static pressure.

(4191mm)

Liebert[®] Mini-Mate2[™]

DPN000249 Rev. 2

General Considerations

Use flexible duct work or nonflammable cloth collars to attach duct work to the unit and to control vibration transmission to the building. Attach the duct work to the unit using the flanges provided. Locate the unit and duct work so that the discharge air does not short circuit to the return air inlet.

Duct work that runs through a conditioned space or is exposed to areas where condensation may occur must be insulated. Duct work should be suspended using flexible hangers. Duct work should not be fastened directly to the building structure.

For multiple unit installations, space the units so that the hot condensing unit exhaust air is not directed toward the air inlet of an adjacent unit.

Considerations for Specific Applications

In applications where the ceiling plenum is used as the heat rejection domain, the discharge air must be directed away from the condensing unit air inlet and a screen must be added to the end of the discharge duct to protect service personnel. Locate the air discharge a minimum of 4 feet from an adjacent wall. Failure to do so may result in reduced air flow and poor system performance.

If the condensing unit draws air from the outside of the building, rain hoods must be installed. Hood intake dimensions should be the same as the condensing unit duct dimensions. In addition, install a triple layer bird screen over rain hood openings to eliminate the possibility of insects, birds, water, or debris entering the unit. Avoid directing the hot exhaust air toward adjacent doors or windows.

Figure 22 Piping connections - indoor air-cooled centrifugal fan condensing unit

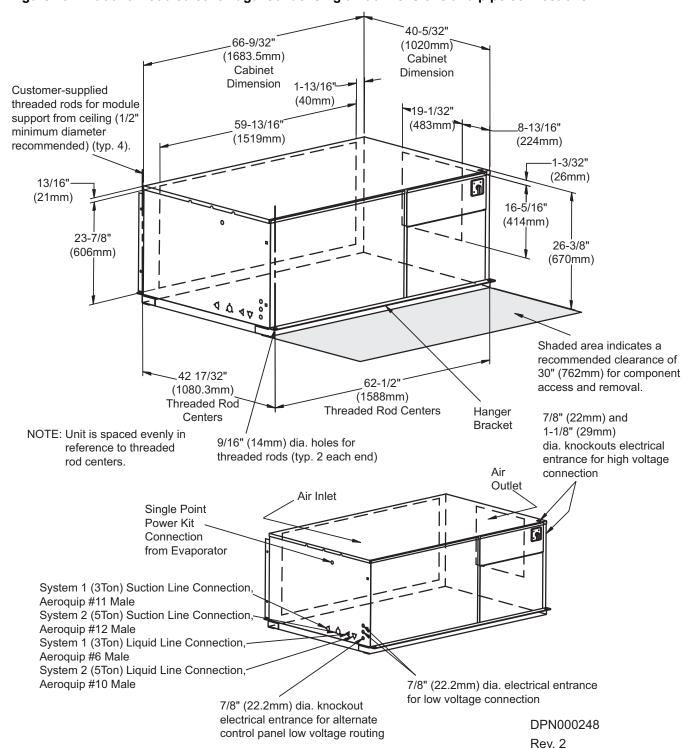


Figure 23 Indoor air-cooled centrifugal condensing unit dimensions and pipe connections

Liebert[®] Mini-Mate2[™]

5.6 Outdoor Air-Cooled Condensing Unit Installation

NOTE

Follow all local, state and national building, electrical and plumbing codes.

5.6.1 Location Considerations

To ensure a satisfactory air supply, locate air-cooled propeller fan condensing units in an environment providing clean air, away from loose dirt and foreign matter that may clog the coil. Condensing units must not be located in the vicinity of steam, hot air, or fume exhausts, or closer than 18 inches from a wall, obstruction, or adjacent unit. Avoid areas where heavy snow will accumulate at air inlet and discharge locations.

The condensing unit should be located for maximum security and maintenance accessibility. Avoid ground-level sites with public access.

The condensing unit should be located within maximum distance from evaporator guidelines as shown in **Table 9**.Install a solid base, capable of supporting the weight of the condensing unit.

The base should be at least 2 inches (51mm) higher than the surrounding grade and 2 inches (51mm) larger than the dimensions of the condensing unit base. For snowy areas, a base of sufficient height to clear snow accumulation must be installed.

5.6.2 Electrical Connections

Refer to **5.4.3** - **Electrical Connections**, **Evaporator or Chilled-Water Unit** for general wiring requirements and cautions. Refer to electrical schematic when making connections.

Power Connections

The outdoor condensing unit requires its own power source and earth ground, with a disconnect switch (field supplied) to isolate the unit for maintenance.

Control Connections

Field-supplied control wires must be connected between the evaporator and the condensing unit. (See **Figure 21** and the electrical schematic on the units for more details.) Ten wires are required between the evaporator and condensing unit.

5.6.3 Piping Connections

Details for Refrigerant (R-407C) Loop piping are in **5.4.4** - **Piping Connections and Coolant Requirements**.

Field supplied unit disconnect switch. Single or three phase electric service not provided by Liebert. જાં જા Field supplied 24V NEC class 2 wiring to evaporator module. Factory wired to components Electric service connection on Electric service connection to contactor or terminal block. electric panel. Single or three phase electric service not provided by Liebert. High voltage electric power Heat rejection connection. Field supply entrance. supplied 24V NEC class 2 wiring. Wire connections from evaporator module: Low voltage electric power supply 1 24V GND System 1 entrance. 2 24V Supply System 1 3 High Pressure Alarm System 1 4 Hot Gas Bypass Connection System 1 5 24V GND System 2 6 24V Supply System 2 Earth ground connection 7 High Pressure Alarm System 2 terminal for field wiring. 8 Hot Gas Bypass Connection System 2 9 24V GND Condenser Fan 10 24V SUPPLY Condenser Fan

Figure 24 Electrical field connections - outdoor condensing unit

NOTE: Refer to specification sheet for full load amp. and wire size amp. ratings

Liebert[®] Mini-Mate2[™]

DPN000135 Rev. 1

Rev. 0

Guard Height Top Air Discharge D Right Air Intake Shaded area Left 0 indicates a recommended Air 0 clearance of 18" (457mm) Intake for proper air flow (51mm) Shaded area indicates a recommended Shaded area indicates Removable front panel for clearance of 18" (457mm) a recommended clearance access to high voltage & for proper air flow of 24" (610mm) for component low voltage connections access and removal and refrigeration components 36-1/8" 53-3/16" (918mm) (102mm) Typ. (1351mm) 1/2" Bolt-Down Holes (51mm) Typ. (6 Places) 4-23/32" (120mm) (51mm) 32-1/8" 25-3/32" (816mm) (637mm) (51mm) 46-7/32" (1174mm) DPN000131 **Footprint Dimensions**

Figure 25 Footprint dimensions - outdoor condensing unit

Table 14 Dimensions and weight, Prop Fan Condensing modules

Model #		Dimensions, in (mm)				Net Weight
60Hz	50Hz	Α	В	С	D	lb (kg)
PFH096A-L	PFH095A-L	53 (1343)	36-1/4 (918)	38-1/2 (978)	5-1/2 (140)	570 (259)

Source: DPN000131, Rev. 0

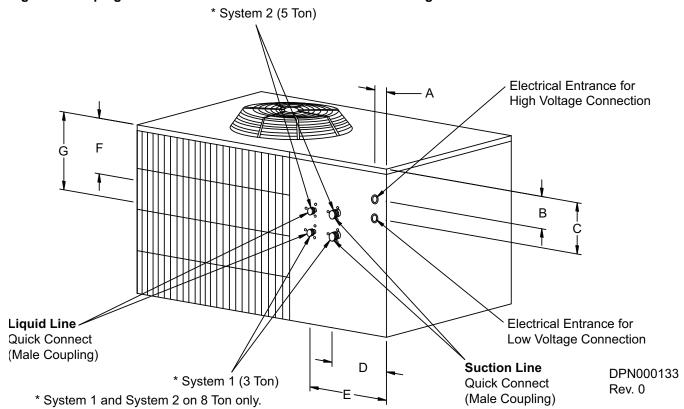


Figure 26 Piping and electrical connections - outdoor condensing unit

Table 15 Piping and electrical connections

Model Numbers		Electrical Connections, In. (mm)		Piping Connections, In. (mm)				
60 Hz	50 Hz	Α	В	С	D	E	F	G
PFH096A-L	PFH095A-L	2 (51)	6 (152)	8-1/2 (216)	4-3/4 (121)	7-3/4 (197)	8-1/2 (216)	11-1/2 (292)

Source: DPN000133, Rev. 0

5.7 Indoor Water-Cooled and Glycol-Cooled Condensing Unit Installation

 \mathbf{NOTE}

Follow all national, state and local building, electrical and plumbing codes.

5.7.1 Location Considerations

The condensing unit may be located above the dropped ceiling or any remote indoor area. If noise is of concern, the condensing unit should be located away from personnel. Normal operating sound may be objectionable if the condensing unit is placed near quiet work areas.

To mount the unit in the ceiling, refer to 5.4 - Installing the Ceiling Units.

5.7.2 Electrical Connections

Refer to **5.4.3** - **Electrical Connections**, **Evaporator or Chilled-Water Unit** for general wiring requirements and cautions. Refer to electrical schematic when making connections. Refer to serial tag for full load amp and wire size amp ratings.

Control Connections

An eight-wire control connection is required from the evaporator unit to the water/glycol condensing unit. Glycol-cooled units also require a two-wire control connection to the drycooler/pump control panel.

Liebert[®] Mini-Mate2[™]

5.7.3 Piping Connections

Details for Refrigerant (R-407C) Loop piping are in **5.4.4** - **Piping Connections and Coolant Requirements**.

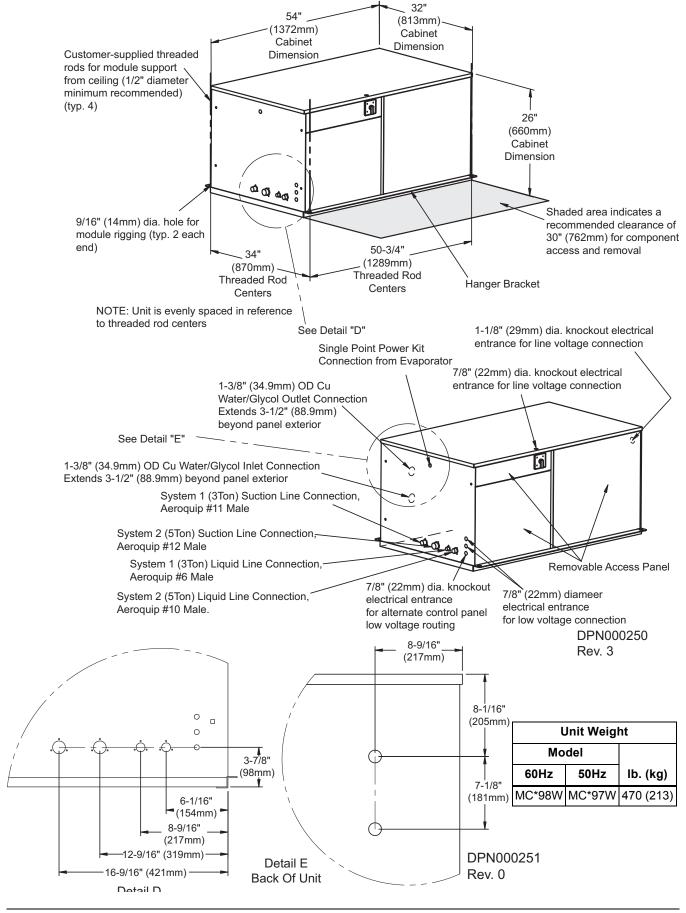
Water/Glycol Piping Considerations

Refer to **Figure 29** for recommended field installed piping hardware such as shut-off valves and hosebibs. Water filters should be installed if water quality is poor. Filters will extend the service life and efficiency of the condensers.

Condensing Unit Fluid Requirements

The maximum fluid pressure is 150 psi standard pressure or 350 psi for high pressure units (Refer to unit serial tag and model number description page at beginning of this manual).

NOTE


HVAC grade ethylene or propylene glycol should be used on glycol systems. Automotive antifreeze must not be used.

Regulating Valve

Water/Glycol-cooled units include a coolant flow regulating valve which is factory adjusted and should not need field adjustment.

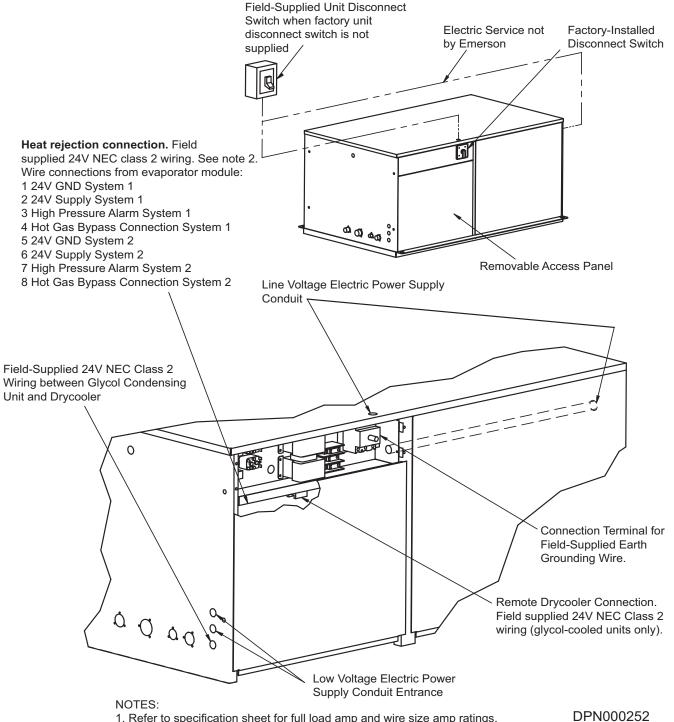

Standard water pressure and high water pressure valves are adjusted differently. Contact Liebert Service before making any adjustments.

Figure 27 Indoor water/glycol condensing unit dimensions

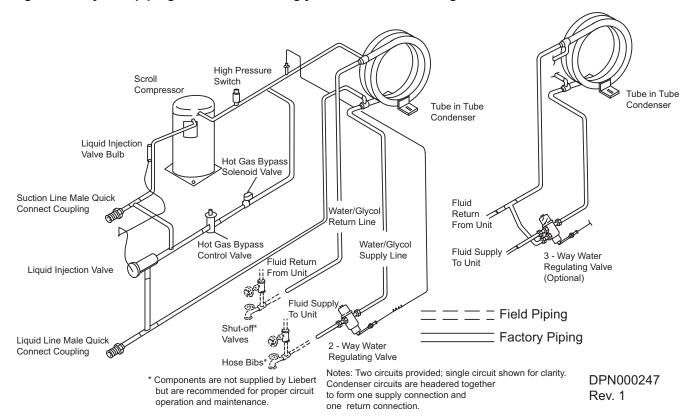

Rev. 2

Figure 28 Electrical field connections—indoor water/glycol condensing unit

- 1. Refer to specification sheet for full load amp and wire size amp ratings.
- 2. Control voltage wiring must be a minimum of 16GA (1.3mm) for up to 75' (23m) or not to exceed 1 volt drop in control line.

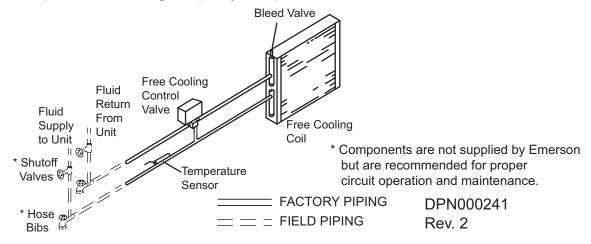
Figure 29 System piping with indoor water/glycol-cooled condensing unit

5.8 Optional Equipment Piping

5.8.1 Free-Cooling Coil (GLYCOOL)

The free-cooling coil is a secondary coil located upstream of the DX coil. To take maximum advantage of available free-cooling, the secondary coil may operate at the same time as the DX coil. A temperature sensor is factory-mounted to the free-cooling piping. When fluid temperature is sufficiently below the room temperature, cooling is provided by circulating the fluid through the secondary cooling coil (flow is controlled by a motorized valve). Compressors are staged on if needed to supplement the free-cooling. To keep deposits from building up in the free-cooling coil, the coil is flushed periodically.

NOTE


If the free-cooling coil is piped to an open water tower, a Cu/Ni (cupro-nickel) type coil must be ordered to prevent corrosion of the copper tubes; or a heat exchanger must separate the tower water from the free-cooling loop.

On water-cooled systems, the free-cooling coil outlet can be field piped to the condensing unit inlet, if a 3-way regulating valve has been installed within the water/glycol condensing unit (see **Figure 30**).

Figure 30 Optional free cooling coil (3-way valve) on water/glycol units

Figure 31 Optional free cooling coil (3-way valve) on air-cooled units

5.9 Checklist for Completed Installation

 1.	Proper clearance for service access has been maintained around the equipment.
 2.	Equipment is level and lock-nuts are installed with the leveling nuts on the spring isolators.
 3.	Piping completed to refrigerant or coolant loop (if required). Refrigerant charge added (if required).
 4.	Condensate pump installed (if required).
 5.	Drain line(s) connected and checked for leaks.
 6.	Water supply line connected to humidifier (if required). Route to allow air filter removal.
 7.	Field provided pan with drain installed under all cooling units and water/glycol condensing units.
 8.	Filter box installed.
 9.	Ducting completed.
 10.	Filter(s) installed in return air duct.
 11.	Line voltage to power wiring matches equipment serial tag.
 12.	Power wiring connections completed and phased correctly between disconnect switch, evaporator, and condensing unit, including earth ground.
 13.	Power line circuit breakers or fuses have proper ratings for equipment installed.
 14.	Control wiring connections completed to evaporator and condensing unit (if required, including wiring to wall-mounted control panel and optional controls).
 15.	Control panel DIP switches set based on customer requirements.
 16.	All wiring connections are tight.
 17.	Foreign materials have been removed from in and around all equipment installed (shipping materials, construction materials, tools, etc.)
 18.	Fans and blowers rotate freely without unusual noise.
 19.	Inspect all piping connections for leaks during initial operations. Correct as needed.
 20.	Drain pan is installed under cooling and ceiling-mounted condensing unit.
 21.	Rubber band is removed from evaporator condensate pan float switch.

6.0 MICROPROCESSOR CONTROL

The Microprocessor Control for the Liebert Mini-Mate2 unit features an easy to use menu-driven LCD display. The menus, control features and circuit board details are described in this section. Detailed information concerning controls (7.0 - System Performance Microprocessor Controls) and alarms (8.0 - Alarms) are provided.

6.1 Feature Overview

To turn the unit ON, press the **ON/OFF (I/O)** key after power is applied. To turn the unit OFF, press the **ON/OFF (I/O)** key before power is disconnected.

The following control keys may be used to move through the menus, as prompted on the LCD display:

- I/O—turns unit On or Off (top far left).
- **MENU**—Enables user to access the program menu to change control parameters, alarms, setback schedule, etc. (top near left).
- UP ARROW—Increases the value of displayed parameter while in a set mode (setpoints, time, etc.) (top near right).
- ESC—Escape; allows user to move back to a previous menu (top far right).
- Alarm Silence/? (Help)—If an alarm is present, pressing this key will silence the alarm. If this key is pressed when no alarms are present, help text will appear (bottom near left).
- **DOWN ARROW**—Decreases the value of displayed parameter while in a set mode (bottom near right).
- **ENTER**—After setting a control point, press ENTER to store the information in the microprocessor (bottom far right).

Figure 32 Wall box

Active alarms are displayed on the LCD screen and sound an audible beeper. To silence an alarm, press the **ALARM SILENCE/HELP** key as prompted on the display.

Setpoints, DIP switch settings and other selections were made during factory testing of the unit and are based on typical operating experience. (Other default selections were made according to options included with your unit). MAKE ADJUSTMENTS TO THE FACTORY DEFAULT SELECTIONS ONLY IF THEY DO NOT MEET YOUR SPECIFICATIONS.

Allowable ranges are displayed by pressing the **HELP** key. A password will be required (if enabled) to change setpoints, time delays, etc.

The display normally shown includes the present room temperature, humidity, active status functions (cooling, heating, dehumidifying, humidifying) and active alarms. The Status Display may also be selected from the Main Menu.

6.2 Main Menu < Menu>

Press the MENU key to display the Main Menu. The menu selections (in the following order) include:

- · SETPOINTS
- · STATUS
- · ACTIVE ALARMS
- TIME
- · DATE
- SETBACK
- SETUP OPERATION
- · SET PASSWORD
- · SETUP PASSWORD
- · CALIBRATE SENSOR
- ALARM ENABLE
- · ALARM TIME DELAY
- COM ALARM ENABLE
- CUSTOM ALARMS
- CUSTOM TEXT
- · DIAGNOSTICS
- · END OF MENU

Use the **UP** and **DOWN** arrows to scroll through the selections; when ready to select a particular function press Enter.

6.3 Setpoints

Setpoints and system setup parameters are kept in nonvolatile memory. Selecting **SETPOINTS** from the Main Menu will display the following selections:

- TEMPERATURE SETPOINT
- TEMPERATURE SENSITIVITY
- · HUMIDITY SETPOINT
- · HUMIDITY SENSITIVITY
- HIGH TEMPERATURE ALARM
- LOW TEMPERATURE ALARM
- · HIGH HUMIDITY ALARM
- LOW HUMIDITY ALARM

Scroll through this submenu by using the **UP** and **DOWN** arrows, then press **ENTER** to select a particular function. To change a particular value, press **ENTER** and use the **UP** and **DOWN** arrows to change the value. When the value has been changed press **ENTER** to store the value. For example, to change the temperature setpoint from the main status display.

- 1. Press the MENU key to display main menu.
- 2. Scroll to **SETPOINTS** using the **UP** and **DOWN** arrows. Press **ENTER**.
- 3. Scroll to TEMP SETPOINT using the UP and DOWN arrows. Press ENTER.
- 4. Use the **UP** and **DOWN** arrows to change the value. Press **ENTER**.

Table 16 Default setpoints and allowable ranges

Setpoint	Default	Range
Temperature Setpoint	72°F	40-90°F (5-32°C)
Temperature Sensitivity	2.0°F	1-9.9°F (0.6-5.6°C)
Humidity Setpoint	50%	20-80% RH
Humidity Sensitivity	5%	1-30% RH
High Temperature Alarm	80°F	35-95°F (2-35°C)
Low Temperature Alarm	65°F	35-95°F (2-35°C)
High Humidity Alarm	60%	15-85% RH
Low Humidity Alarm	40%	15-85% RH

6.4 Status

The operator can monitor the percentage heating, cooling, dehumidifying and humidifying status of the unit by selecting the **STATUS** submenu.

6.5 Active Alarms

The operator can monitor the alarms status by selecting **ALARMS** which will display a **NO ALARM PRESENT** or **Alarm XX of YY** alert and description. If more than one alarm is activated, use the **UP** or **DOWN** arrow to scroll through the alarms list. ("XX" reference is the number of the alarm shown, while the "YY" reference is the total number of alarms activated).

6.6 Alarm History

A history of the 10 most recent alarms is kept in non-volatile memory complete with the date and time of their occurrence. The first alarm in the history is the most recent, and the 10th is the oldest. If the ALARM HISTORY is full (10 alarms) and a new alarm occurs, the oldest is lost and the newest is saved in ALARM HISTORY location 1. The rest are moved down the list by 1. ALARM HISTORY on new units may show the results of factory testing.

6.7 Time

The controller time clock must be set to allow for the setback control. The clock uses the 24-hour system (i.e., midnight is entered as 24:00). To change the time press **ENTER** to select the function, then use the **UP** and **DOWN** arrows to change the first character, press **ENTER** to store, then press the **UP** or **DOWN** arrows to change the character, press Enter to store, etc. THERE IS A BATTERY BACKUP FOR THE DATE AND TIME FEATURES.

6.8 Date

The controller date must be set to allow for setback control. To change the date, press **ENTER**, then use the **UP** and **DOWN** arrows to change the first character, press **ENTER** to store, press the **UP** and **DOWN** arrows to change the second character, etc.

6.9 Setback

The microprocessor can be programmed for night and weekend setback. Two (2) events can be programmed for a five-day work week and two (2) events can be programmed for a two-day weekend. The following table can be used to devise a setback plan.

Table 17 Night and weekend setback plan

Event	Weekend	Weekday
Time 1		
Temperature1		
Sensitivity 1		
Humidity 1		
Humidity Sensitivity 1		
Time 2		
Temperature 2		
Sensitivity 2		
Humidity 2		
Humidity Sensitivity 2		

6.10 Setup Operation

Selecting SETPOINT/SETUP from the MAIN MENU will display the following selections:

- RESTART TIME DELAY
- · C/F DEGREES
- · HUMIDITY CONTROL METHOD
- · SHOW DIPSWITCH
- · CW FLUSH
- VALVE TIME

Use the **UP** and **DOWN** arrows to scroll through the submenu. Press **ENTER** to select a particular function.

6.10.1 Restart Time Delay

This function delays unit restart after main power is restored to the unit. If several systems are operating, the time delays should be set to different values to cause a sequential start. Delay can be set from 0.1 minutes to 9.9 minutes (6 seconds to 594 seconds). Setting the value to zero (0) will prevent the unit from restarting when power is restored. In this case, the unit must be restarted manually by pressing the **ON/OFF** button on the keypad.

6.10.2 C/F Degrees

The control may be selected to show readings and setpoints in either degrees Fahrenheit (°F) or Celsius (°C). To change the value, use **ENTER** to select this function, then use the **UP** and **DOWN** arrows to change the value. Press **ENTER** to store the value.

6.10.3 Humidity Control Method

The operator may select either relative (direct) or absolute (predictive) humidity control. If "relative" is selected, the RH control is taken directly from the RH sensor. If "absolute" is selected, the RH control is automatically adjusted whenever return air temperature deviates from the desired temperature setpoint (i.e., predictive humidity control). The LCD will indicate percentage relative humidity for both methods of control. If the "absolute" feature is selected, the adjusted humidity reading will also be shown. When utilizing the predictive humidity control feature, the humidity level is automatically adjusted ~2% RH for each degree difference between the return air temperature and the temperature setpoint.

Unnecessary dehumidification can result when overcooling occurs during a dehumidification cycle. This is due to a higher than normal RH reading caused by overcooling the room (about 2% RH for each degree of overcooling). This drop in temperature extends the dehumidification cycle. Later, when the dehumidification ends and the temperature rises to the setpoint, the RH reading falls. The final RH reading will then be lower than actually desired. If the temperature drop was significant enough, the percentage RH could be low enough to activate the humidifier.

If the absolute humidity control is selected, over-dehumidification may be avoided. When overcooling occurs (i.e., causing an increase in the RH reading) the humidity control program estimates what the RH will be when the dehumidification cycle ends and temperature returns to the setpoint. This allows the dehumidification cycle to end at the proper time. Predictive humidity control can greatly reduce energy consumption by minimizing both compressor/reheat operation. Use the **UP** or **DOWN** arrow key to select the desired humidity control method.

6.10.4 Lead Compressor

This function allows the user to select which compressor is the lead: Compressor 1 (3 ton), Compressor 2 (5 ton), or Auto. The factory default is **AUTO**. If **AUTO** is selected, the control will determine which compressor is to be the lead compressor based on the average room load over the previous one hour of operation.

6.10.5 Show DIP Switch

This function shows the position of the DIP switches, which are located on the control board in the unit; 1 = Switch is "ON" and 0 = Switch is "OFF." For more information on the DIP switches and their functions, see **Table 20**.

6.10.6 Valve Time

This function shows the full valve travel time of the modulating valve on a chilled water system. This is the time it takes for the valve to travel from fully closed to fully open. It is programmable from 50 to 250 seconds; factory default time is 165 seconds and should not be changed. The full valve travel time is used by the control to determine the appropriate valve position. For example, if the valve travel time is 165 seconds and 50% cooling is being called for, the valve will open for 83 seconds to achieve 50% open.

6.10.7 CW Flush

This function shows the interval time at which the system will perform a modulating chilled water valve system flush cycle. The factory default is 24 (hours) and is programmable from 0 (hours) which signifies to never flush, to 99 (hours) which signifies to flush after every 99 hours of valve non-use. If the valve is called on by the control to open within the programmed interval time, the timer will be reset to 0. The flush cycle is active even when the fan is turned off, but power is applied to the unit. When the interval timer reaches the programmed time, the valve will be opened for 3 minutes to flush any contaminants that may have collected in the system.

Table 18 Setup functions, default values and allowable ranges

Function	Default	Range
Restart Time Delay	0.1	0 to 9.9 min (0 = manual restart)
C/F Degrees	°F	°C or °F
Humidity Control	Rel	Relative or Absolute
Valve Time	165	50 to 250 seconds
CW Flush	24	0 to 99 hours

6.11 Change Passwords

The display will prompt the operator to enter a three digit password when attempting to make changes. The system includes two (2) passwords, one for setpoints and one for setup. The system allows the password to be changed by first entering the default password set at the factory (1-2-3) for setpoints and (3-2-1) for setup. The password function provides system security so that only authorized personnel are allowed to make changes to the system. (If unauthorized changes are being made, the passwords may be compromised and new ones should be selected). The password function can be disabled by setting DIP switch 8 in the wall box to Off, then resetting power to the unit.

6.12 Calibrate Sensors

The temperature and humidity sensors can be calibrated by selecting the **CALIBRATE SENSORS** menu item. The temperature sensor can be calibrated $\pm 5^{\circ}$ F, while the humidity sensor can be calibrated $\pm 10\%$ RH. When calibrating the humidity sensor, the value shown will always be % RH, even though absolute humidity control may be selected. If absolute humidity control is selected, the Normal Status Display will display the adjusted reading. This reading may not agree with the relative humidity reading displayed while in calibration.

If the sensors are subject to frequent wide temperature and humidity swings, it may be necessary to shorten the cycling by increasing the sensor time delay. If the sensors are located too close to the air discharge, they will likely experience rapid swings in measurement. Another method in reducing compressor cycling is to increase the temperature and/or humidity sensitivity.

6.13 Alarm Enable

Each alarm can be disabled or enabled. Use the **UP** and **DOWN** arrows to select a particular alarm, press **ENTER** to select either **ENABLE** or **DISABLE**. Press **ENTER** again to store the change. When the alarm is disabled it will NOT report to either the wall box beeper or to the common alarm relay.

NOTE

The high-water alarm will automatically shut the unit Off.

6.14 Alarm Time Delay

Each individual alarm can be programmed with a time delay (**Table 19**), causing the unit to delay a specified amount of time (0-255 seconds) before recognizing the alarm. The alarm condition must be present for the full amount of the time delay before the alarm will sound. If the alarm condition is diverted prematurely, the alarm will not be recognized and the time delay will automatically reset.

NOTE

For software alarms such as "loss of power" and "short cycle," the time delay should be left at the factory default of 0.

Table 19 Alarm default time delays

Alarm	Default Time Delay (seconds)
Hum Prob	2
Chng Fltr	2
Custom Alarm #1	0
Custom Alarm #2	0
Custom Alarm #3	0
High Temperature	30
Low Temperature	30
High Humidity	30
Low Humidity	30
Short Cycle 1 & 2	0
Loss of Power	0

6.15 Common Alarm Enable

Each individual alarm can be selected to activate or deactivate the common alarm relay. If the energize common alarm function is set to **YES**, the relay is energized immediately as the alarm is annunciated and de-energized when the alarm condition has been resolved. If the alarm is disabled, the alarm has no effect on the common alarm relay. Use the **UP/DOWN** arrows to scroll to a particular alarm, press the **ENTER** button to select it, then press the **ENTER** key again to select **YES** or **NO**.

6.16 Custom Alarms

The custom alarm messages can be selected from a list of standard alarm messages, or the operator can write his/her own message. A MAXIMUM OF THREE (3) ALARM MESSAGES CAN BE CUSTOMIZED.

The text for custom alarms can be changed at any time by selecting **CUSTOM ALARMS**. To change the text for a custom alarm, select the alarm you would like to change, 1, 2 or 3. Using the **UP/DOWN** arrows, step through the list of seven standard alarm messages (listed below) and two custom alarms. Select the alarm message desired and store it by pressing **ENTER**.

- SMOKE DETECTED
- · CUSTOM 2
- · CUSTOM 3
- · STANDBY GC PUMP
- WATER FLOW LOSS
- STANDBY UNIT ON
- · CUSTOM 1

6.17 Custom Text

To modify the two custom alarm messages select **CUSTOM TEXT**. Then select "**CUSTOM TEXT #1**, **Custom Text #2** or **Custom Text #3**. Text can be up to 16 characters in length and can be either a blank space or any of the following alphanumeric characters and symbols:

- A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z
- #,%,*,-
- 0,1,2,3,4,5,6,7,8 or 9

Use the **UP/DOWN** arrows to select a character, then press **ENTER**. The cursor will move to the next space where you may once use the **UP/DOWN** arrows to select another character, etc. The custom text alarm will be displayed only if the alarm is selected in **CUSTOM ALARMS**.

LCD Display Contrast

The level of contrast due to the viewing angle of the LCD can be adjusted using a potentiometer screw inside the wall box next to the display.

Nonvolatile Memory

All critical information is stored in nonvolatile memory. Setpoints and setup parameters are kept inside the microcontroller in **EEPROM**.

Equipment Options Switches

Equipment options are selected and enabled using DIP switches 1 through 7. These are located on the control board near TB3. These switches are factory-set and should not require any user changes. The setting and function of the switches can be individually read on the LCD.

NOTE

To update the DIP switch settings, power must be cycled Off, then On from the unit disconnect switch.

Table 20 Equipment switch settings (unit control board)

Switch OFF Position		ON Position
Ownton	OTT TOORION	ON TOOLSON
1	Step Cool	Ramp Cool
2	Step Heat	Ramp Heat
3	Not Used	Not Used
4	No GLYCOOL	GLYCOOL
5	Disable 1 stage CW	Enable 1 stage CW
6	Not used	Not used
7	1-stage dehumidification	2-stage dehumidification
8	Disable SCR Reheat	Enable SCR Reheat

Table 21 Switch settings (wallbox board)

Switch	OFF Position	ON Position
1	Beeper Disable	Beeper Enable
2	Not Used	Not Used
3	Not Used	Not Used
4	Enable Reheat	Disable Reheat
5	Enable Hum.	Disable Hum.
6	Enable Dehum.	Disable Dehum.
7	Disable Setback	Enable Setback
8	Enable Password	Disable Password

6.18 Run Diagnostics

By selecting **RUN DIAGNOSTICS**, maintenance personnel can check system inputs, outputs, and conduct a test of the microcontroller circuit board from the wall box control. A review of the system inputs and the microcontroller test can be done without interrupting normal operation.

Show Inputs

With the unit On and the fan running, the input states may be displayed for the following devices:

- · High Water Alarm: Normally off unless High Water Alarm is active.
- · High Head Pressure Alarm: Normally off unless High head Pressure alarm is active.
- · Custom alarm #1: Normally off unless this special customer selectable alarm is active.
- · Custom alarm #2: Normally off unless this special customer selectable alarm is active.
- Power: Normally on unless unit is turned off through the wall box or any of the following optional devices: High Temperature Sensor, Smoke Sensor, High Water Alarm or Remote Shutdown

Test Outputs

• When this feature is selected, the controller is effectively turned off. When stepping from one load to the next, the previous load is automatically turned off. The loads can also be toggled on/off by selecting "ENTER". Once turned on, the output will remain on for five minutes unless toggled off or the test outputs function is exited by selecting "MENU/ESC" (Compressor is limited to 15 seconds on to prevent damage.

NOTICE

Risk of overheating the compressor during the Test Outputs mode. Can cause compressor damage.

Testing the compressor output for more than a few seconds can damage the compressor. Do not operate the unit in the Test Outputs mode any longer than is necessary for troubleshooting.

NOTICE

Risk of extended unit operation in the Test Outputs mode for troubleshooting. Can cause damage to unit.

DO NOT operate unit in the Test Outputs mode any longer than is necessary for troubleshooting.

NOTE

Fan turned on with all loads.

The outputs are:

- · Main Fan
- Compr1 (3-ton)
- Compr1 & HGBP1
- Compr2
- · Compr2 & HGBP2
- Compr1 & Compr2
- Chill Water/Gly (if present)
- · Reheat 1
- · Reheat 2
- SCR Reheats (if present)
- · Humidifier
- · Common Alarm

Test Inputs

With the unit On and the fan running, the input states may be displayed for the following devices:

- · Input Power
- · High Water in Pan
- · High Head Comp1
- · High Head Comp2
- · Air Sail Switch (requires additional factory-installed components)
- Filter Clog
- · Humidifier Prob.
- · Custom Alarm #1
- Custom Alarm #2
- · Custom Alarm #3

Test Micro

By selecting this function, the microcontroller will perform a sel-test lasting approximately 10 seconds. When the test is complete, the display will show the ROM checksum, ROM part number and the firmware revision number.

Figure 33 Control menu

Setpoints Temp Setpt Temp Sens **Hum Setpt** Hum Sens Hi Temp Alm Lo Temp Alm Hi Hum Alm Lo Hum Alm

Setup Operation Restart TD C/F Degrees **Humidity Control** Lead Compr Dipswch 00000000 Pos 12345678 Valve Time **CW Flush**

Alarm Time Delay Hum Prob Chng Filt Loss Air Custom #1 Custom #2 Custom #3 **High Temp** Low Temp **High Hum** Low Hum **Short Cyc1 Short Cyc2** Fan Ovrld **Loss Pwr**

Status Dx Cool % 0 CW Valve % 0 **Econo Cool %** 0 Heat % 0 Dehumidify % 0 **Humidify %** 0

Setpoint Password **Enter New PSW** Setpt PSW = 000

Com Alarm Enable

No Alarms orAlarm 01 of 01 **High Head**

Active Alarms

Setup Password Enter New PSW Setup PSW = 000

Hum Prob Hi Head 1 Hi Head 2 **Chng Fltr** Loss Air Custom #1 Custom #2 Custom #3 Hi Water **High Temp Low Temp High Hum** Low Hum **Short Cyc1** Short Cyc2 Fan Ovrld

Status Display 72 F 50 %RH **NO ALARMS**

Active Alarms Alarm History Time Date Setback **Setup Operation** Setpoint **Password Setup Password Calibrate Sensor** Alarm Enable **Alarm Time Delay** Com Alarm Enable **Custom Alarms Custom Text Diagnostics End of Menu**

<u>Menu</u>

Setpoints

Status

Time Date

<u>Setack</u> Wknd Time 1 On/Off: Wknd Temp 1 Wknd Tsens 1 Wknd Humd 1 Wknd Hsens 1 Wknd Time 2 On/Off: Wknd Temp 2 Wknd Tsens 2 Wknd Humd 2 Wknd Hsens 2 Wkdy Time 1 On/Off: Wkdy Temp 1 Wkdy Humd 1 Wkdy Hsens 1 Wkdy Time 2 On/Off: Wkdy Temp 2 Wkdy Tsens 2 Wkdy Humd 2 Wkdy Hsens 2 Calibrate sensor Temp Cal Hum Cal **Temp Delay Hum Delay**

Alarm Enable **Hum Prob Chng Fltr** Loss Air Custom #1 Custom #2 Custom #3 **High Temp Low Temp High Hum** Low Hum **Short Cyc1 Short Cyc2** Fan Ovrld **Loss Pwr**

Custom Alarms Custom Alarm #1 Custom Alarm #2 Custom Alarm #3

Loss Pwr

Custom Text Custom Text #1 Custom Text #2 **Custom Text #3**

Diagnostics Test Outputs **Test Inputs Test Microcontroller**

Figure 34 Control board (inside evaporator)

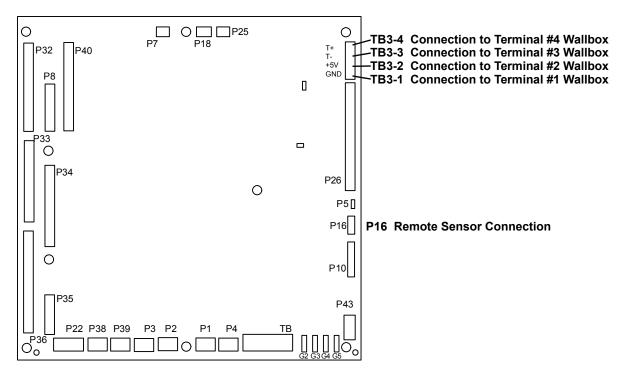
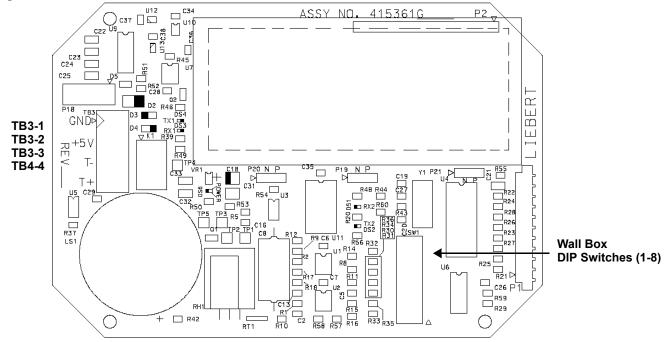



Figure 35 Wall box board

55

Liebert[®] Mini-Mate2[™]

7.0 System Performance Microprocessor Controls

7.1 Control Type Response Proportional Control

The percent requirement is determined by the difference between the return air temperature and the temperature setpoint. As the return air temperature rises above the temperature setpoint, the percent cooling required increases proportionally (from 0 to 100%) over a temperature band equal to the temperature sensitivity plus 1 degree Fahrenheit. The heating requirement is determined in a similar manner as the temperature decreases below the setpoint. With this control type the temperature at which the room is controlled increases as the room load increases. At full load the room would be controlled at a temperature equal to the setpoint plus the sensitivity.

7.2 Cooling

7.2.1 Multi-Step Cooling, Compressorized Direct Expansion (DX) Systems

The system will use the 3-ton (compressor #1) and 5-ton (compressor #2) compressors in an 8-ton system. The control will determine the average cooling requirement updated every hour and select the lead compressor or, the user can select the lead compressor through the "Setup Operation" menu. At startup, the 3-ton compressor will be the lead compressor. The compressors will be staged on with hot gas bypass energized at 50 and 100% cooling requirements. The compressors will turn off at 75% and 25% requirements.

7.2.2 Chilled-Water Cooling (8 Ton)

The chilled-water control valve is adjusted proportionally as the temperature control varies the requirement for cooling from 0% to 100%. This is based on the full valve travel time programmed in the "Setup Operation" menu.

7.2.3 GLYCOOL Cooling (8 Ton)

When GLYCOOL is available, the temperature control will calculate a total cooling requirement of 200%. Assuming that full GLYCOOL capacity is available, the GLYCOOL valve opens proportionally as the requirement for cooling rises from 0 to 100%. If the call for cooling continues to increase, the control will energize the compressors as needed to match the average cooling requirement. As long as GLYCOOL is available, the control will leave the valve 100% open. If GLYCOOL cooling is not available, the temperature control will operate the compressors in the same manner as the Multi-Step without GLYCOOL.

7.3 Reheat

7.3.1 Electric Reheat - Staged

For 2-stage electric reheat, they are activated when the temperature control calculates a requirement of 50% and 100%. They are deactivated when the requirement decreases to 75% (reheat 2) and 25% (reheat 1).

7.3.2 SCR Electric Reheat

The SCR (Silicon Controlled Rectifier) controller shall proportionally control the stainless steel reheats to maintain the selected room temperature. The rapid cycling made possible by the SCR controller provides precise temperature control, and the more constant element temperature extends heater life. During operation of the SCR control, the compressor(s) operate(s) continuously. The heaters are modulated to provide temperature control. If overcooling occurs, the compressor(s) will be locked off when the temperature drops to the low temperature alarm. SCR reheats are 15 kW, closely matching 5-Ton capacity. Unit control will choose and run continuously the correct combinations of compressors (5T, 3T or both) to offset room load. The SCR Reheat is modulated to precisely maintain room temperature with output typically between 10 to 85% of full output.

7.4 Dehumidification / Humidification Percent Required

The humidity control for the MM2 is based on a calculated percent requirement for dehumidification or humidification. The percent requirement is calculated from the difference between the sensor reading and the humidity setpoint, divided by the sensitivity. The control method is selectable between relative and absolute. Relative humidity control is the default.

7.4.1 Staged Dehumidification, Compressorized Direct Expansion (DX) Systems

For the 8-ton unit operation, 1- or 2-stage dehumidification is selected through DIP switch #7. For 2-stages, the 5-ton compressor is the lead compressor when dehumidifying. Dehumidification will be staged on at 50 and 100% call. The electric reheats are turned on at 25% cooling (reheat 1) and 25% heating (reheat 2) for improved temperature control. The reheats are deactivated at 0% and 50% cooling requirement, respectively. If overcooling occurs, the first stage of dehumidification is disabled at 125% call for heating. If 1-stage or 2-stage is selected, dehumidification is disabled at 200% call for heating. Dehumidification is re-enabled at 66% call for 2-stage and 33% call for 1-stage.

7.4.2 Humidification Operation

System Activation

The humidifier is activated when the humidity control calculates a requirement for 100% humidification, and is deactivated when the requirement falls below 50%.

7.4.3 Dehumidification Lockout

Dehumidification is locked out if overcooling occurs. Dehumidification on the 8-ton unit is disabled at 125% (first stage) and 200% (all stages) heating requirement. Dehumidification is re-enabled at 66% and 33% heating requirement.

7.5 Load Control Features

The control system monitors the compressor and prevents it from turning on within a 3-minute period of being off. If this On-Off cycle occurs too often (e.g., 10 times within 60 minutes) a Short Cycle Alarm will occur.

7.6 Communication

The control system uses a two-wire, RS-422 channel to communicate with Liebert Site Products via a proprietary protocol. The **NIC-ENCL1** and **NIC-ENCL2** package one or two Liebert IntelliSlot® Web/485 Cards with Adapters, respectively, in one steel enclosure for installation external to the Liebert Mini-Mate2. The Liebert IntelliSlot Web/485 Card with Adapter provides communication with the Liebert Mini-Mate2[™] via SNMP, HTTP, RTU Modbus 485 and BACnet IP. The self-contained kit includes an external 120VAC-to-24VAC transformer as a power source. Wiring harnesses are not provided. Power and communication wiring are field-provided.

The communications channel provides both monitoring and control options, including:

- TEMPERATURE/HUMIDITY: Current temperature and humidity readings.
- STATUS (%), Cooling/heating and humidify/dehumidify operating status.
- PRESENT ALARMS: Alarms currently activated.
- · SETPOINTS:
 - Temperature Setpoint
 - · Temperature Sensitivity
 - · Humidity Setpoint
 - · Humidity Sensitivity
 - · High Temperature Alarm
 - · Low Temperature Alarm
 - · High Humidity Alarm
 - · Low Humidity Alarm
- · ON/OFF STATUS and CONTROL
- · SILENCE ALARM

8.0 ALARMS

The microprocessor control system will audibly and visually signal all ENABLED Alarms (including two (2) custom alarms). These special alarms can be chosen from the optional alarm list and/or can have their own fully custom text. The custom alarm inputs are contact closures wired from terminal 24 through a normally open contact to either 50 (alarm 1), 51 (alarm 2), or 56 (alarm 3). The alarms can be enabled/disabled (refer to **6.0 - Microprocessor Control**) and a time delay of 0-255 seconds can be set. The alarms can also be programmed to either sound the alarm & activate the common alarm relay OR to sound the alarm only.

When a new alarm occurs, it is displayed on the screen and the audible alarm is activated. (If communicating with a Liebert Site Product, the alarm is also transmitted). The message "PRESS ALARM SILENCE" will prompt the operator to silence the alarm. After the alarm is silenced, the display will return to the Normal Status Display. Alarms can be reviewed by selecting the "ACTIVE ALARMS" feature. The alarms can also be silenced through communications with a Liebert Site Products Unit.

Many alarms will reset automatically when the alarm condition is no longer present and only after it has been acknowledged by being "Silenced." The exceptions are:

- 1. Software alarms, i.e., Loss of Power and Short Cycle alarms will reset automatically 30 seconds and 90 minutes respectively, after being silenced or acknowledged; and
- 2. Specific alarms monitoring overload or high pressure switches may require a manual reset depending upon the model.

8.1 Alarms: Definitions and Troubleshooting

The following list provides a definition and troubleshooting suggestions for each type of alarm. Refer to 11.0 - Troubleshooting for additional details. If you need further assistance, contact your Liebert supplier. THE CUSTOMER MUST SPECIFY ALARM(S) AT THE TIME OF ORDER. OTHER DEVICES AND WIRING MAY BE REQUIRED AT THE FACTORY FOR SOME OF THE ALARMS.

8.1.1 Custom Alarms

Custom alarm(s) messages are programmed at the LCD display. The message displayed may be included in a list of provided alarms or it may be customized text (for up to three alarms). IF CUSTOMIZED TEXT IS USED, MAINTENANCE PERSONNEL SHOULD BE INFORMED OF THE ALARM FUNCTION AND THE REQUIRED ACTION.

8.1.2 High Head Pressure

Compressor head pressure is monitored with a pressure switch. (One SPDT pressure switch is used per refrigerant circuit). If head pressure exceeds 400 psig (2785kPa), the switch turns off the compressor contactor and sends an input signal to the control. The condition is acknowledged by pressing the alarm silence button on the wall box, which will clear if the high head pressure condition is alleviated. If the head pressure alarm has activated three times, the alarm will lock until the unit is serviced. After the head-pressure problem is fixed, reset the control by disconnecting power to the evaporator unit.

Air-Cooled Systems

Check for power shut off to the condenser, condenser fans not working, defective head pressure control valves, dirty condenser coils or crimped lines.

Water/Glycol Systems

Check water regulating valves. Verify water/glycol flow (i.e., pumps operating and service valves open). Is water tower or drycooler operating? Is the coolant temperature entering the condenser at or below design conditions? Is AUX relay (terminals 70 & 71) operating during cooling to turn on the drycooler?

8.1.3 Humidity

The humidity alarm may be activated under the following conditions:

- **High:** The room return air humidity exceeds the pre-set high humidity alarm setpoint. Is the unit set up for dehumidification? Check DIP switch.
- Low: The room return air humidity decreases to the low humidity alarm setpoint. Is the unit setup for humidification? Check DIP switch.
- **High and Low Humidity (simultaneously):** The simultaneous display of two alarms results in loss of the humidity input signal. DASHES WILL BE DISPLAYED IN THE HUMIDITY READING DISPLAY. Under these conditions, the control system deactivates both humidification and dehumidification. Check for a disconnected cable or failed sensor.

NOTE

Check for proper setpoints. Does the room have a vapor barrier to seal it from outdoor humidity? Are doors or windows open to outside air?

8.1.4 Temperature

The temperature level alarm may be activated under the following conditions:

- **High:** The room return air temperature increases to the high temperature alarm setpoint. Check for proper setpoint value. Is the room load more than the unit can handle (i.e., capacity too small)? Make sure cooling components are operating (compressor or valves).
- Low: The room return air temperature decreases to the low temperature alarm setpoint. Check for proper setpoint value. Make sure all heating components are operating (e.g., contactors, reheats, etc.). Are reheats drawing the proper current (refer to amp rating on nameplate).
- **High and Low (simultaneously):** The simultaneous display of these two alarms results in loss of the temperature input signal (or the humidity is out of sensor range-15 to 85% RH). Dashes will be displayed for the temperature reading. The control system will initiate 100% cooling. Check for a disconnected cable or a failed sensor.

8.1.5 Humidifier Problem Alarm

The Humidifier Problem Alarm will sound and display a message if any of the following humidifier conditions occur: overcurrent detection; fill system fault or end of cylinder life.

Check fault indicator LED on humidifier control board:

- Constant LED on = Overcurrent
- 1 second LED Flash = Fill System Fault
- 1/2 second LED Flash = End of cylinder life, replace tank

8.1.6 High-Water Alarm

A float switch in the evaporator pan will shutdown the evaporator on a high water level. Clear the drain and reset power to the unit in order to clear the alarm.

8.1.7 Loss of Power

The Loss of Power Alarm will activate (after power is restored to the unit) if the unit has lost power or the disconnect switch was incorrectly turned off before the unit ON/OFF switch was pressed. A Liebert remote monitoring unit (optional) will immediately indicate loss of power.

8.1.8 Short Cycle

A Short Cycle Alarm will occur if a compressor system has exceeded 10 cooling start attempts in a one-hour period. This can be caused by room cooling load is small compared to capacity of the unit. If room load is low, increase temperature sensitivity to reduce cycle.

8.2 Optional/Custom Alarms

8.2.1 Change Filter

Periodically, the return air filters in the evaporator must be changed. The Change Filter alarm notifies the user that filter replacement is necessary. A differential air pressure switch closes when the pressure drop across the filters becomes excessive. The switch is adjustable using the procedure on the switch label.

8.2.2 High Temperature Sensor

The optional high temperature sensor is a bi-metal operated sensing device with a closed switch under normal conditions. Connected between pins 1-8 and 1-9, this device will shut down the entire unit.

8.2.3 Smoke Sensor

The optional smoke sensor constantly samples return air through a tube. Its power supply is located in the electric panel. The smoke sensor shuts down the unit upon detecting smoke, and activates visual and audible alarms. This smoke sensor is not intended to function as or replace any room smoke detection system that may be required by local or national codes. Locate the source of the smoke and follow appropriate emergency procedures.

9.0 System Operation, Testing, and Maintenance

This section describes system testing, maintenance and replacement procedures. Use copies of the **Maintenance Inspection Checklist** to record preventive maintenance inspections.

WARNING

Risk of electric shock. Can cause injury or death.

Open all local and remote electric power disconnect switches before working within the electrical enclosures. The Liebert microprocessor control does not isolate power from the unit in the Unit Off mode. Some internal components require and receive power even during the Unit Off mode. The line side of the disconnect switch on the front of the unit contains live high voltage. The only way to ensure that there is NO voltage inside the unit is to install and open a remote disconnect switch and check the internal power supply wires with a voltmeter.

9.1 System Testing

9.1.1 Environmental Control Functions

The performance of all control circuits can be tested by changing the setpoints, which activates each of the main functions.

9.1.2 Cooling

To test the cooling function, set the setpoint to a temperature of 10°F (5°C) below room temperature. A call for cooling should register and prompt the equipment to begin cooling cycle. (Disregard any temperature alarms). Upon completion of testing, return setpoint to the desired temperature.

9.1.3 Heating

Reheat may be tested by setting the setpoint 10°F (5°C) above room temperature. A call for heating should register and prompt the equipment to begin heating cycle. (Disregard any temperature alarms). Upon completion of testing, return setpoint to the desired temperature.

9.1.4 Humidification

To check humidification, set the humidity setpoint at RH 10% above the room humidity reading. After a short delay, the canister will fill with water and steam will be produced. Upon completion of testing, return the humidity setpoint to the desired humidity.

9.1.5 Dehumidification

The dehumidification performance can be tested by setting the humidity setpoint at RH 10% below room relative humidity. The compressor should turn on. Upon completion of testing, return humidity setpoint to the desired humidity.

9.1.6 Remote Shutdown

A connection point is provided for remote shutdown devices supplied by the customer. This terminal strip is located in the electric panel. (Terminals 37 and 38 are fitted with a jumper when no remote shutdown device is installed).

9.2 Maintenance and Component Operation

9.2.1 Electric Panel

The electric panel should be inspected on a semi-annual basis for any loose electrical connections.

9.2.2 Filters

Filters are usually the most neglected item in an environmental control system. In order to maintain efficient operation, they should be checked monthly and changed as required. ALWAYS TURN POWER OFF BEFORE REPLACING FILTERS.

Filters are replaced by opening the hinged door on the return air filter box.

9.2.3 Blower System

Monthly inspection of the blower package includes: motor mounts, belts, fan bearings, and impellers.

Fan impellers should be thoroughly inspected and any debris removed. Check to see if they are tightly mounted on the fan shaft and do not rub against the fan housing during rotation. Motor and fan bearings are permanently sealed and self-lubricating and do NOT need lubricated.

The drive belt should be checked monthly for signs of wear and proper tension. Pressing on belts midway between the sheave and pulley should produce from 1/2" to 1" (12 to 25 mm) of deflection. Belts that are too tight can cause excessive bearing wear.

Belt tension can be adjusted by raising or lowering the fan motor base. Loosen nut above motor mounting plate to remove belt. Turn nut below motor mounting plate to adjust belt tension. If belt appears cracked or worn, it should be replaced with a matched belt (identically sized). With proper care, a belt should last several years.

NOTE

After adjusting or changing the belt, always be certain that motor base nuts are tightened. The bottom adjustment nut should be finger tight. The top locking nut should be tightened with a wrench.

Air Distribution

Since all unit models are designed for constant volume air delivery, any unusual restrictions within the air circuit must be avoided. High efficiency filters can reduce air performance and evaporator capacity.

Blower Removal (Evaporator)

NOTICE

Risk of refrigerant and water/glycol piping damage. Can cause leaks that result in equipment and building damage and loss of cooling.

Use caution and do not contact piping when removing the blower motor and blower sled.

If the blower or bearings must be removed or serviced, use the following procedure.

- 1. Prepare the main center section of the three (3) piece electric panel by first marking and disconnecting all power and control wiring entering the panel.
- 2. Remove the electric panel by removing screws from top and bottom sections
- 3. Remove the bottom electric panel mounting flange from unit base.
- 4. Remove the belt, motor, motor mounting plate, and tensioning bolt.
- 5. Remove the four (4) screws holding the blower mounting rails to the sled.
- 6. Remove the (4) screws holding the blower mounting rails to the sled.
- 7. Slide the blower/rail assembly forward and rotate approximately 45 degrees and remove from unit.
- 8. Replace failed parts.

9.2.4 Electric Reheat

Reheat element sheets and fins are manufactured with stainless steel. Regular inspections are necessary to assure proper cleanliness of the reheating element. Should inspection reveal corrosion particles on the reheating element or adjoining surfaces (including ducts and plenums), appropriate cleaning should be performed. Periodic replacement of the reheating element may be necessary to meet specific application requirements.

9.2.5 Refrigeration System

Each month the components of the refrigeration system should be inspected for proper function and signs of wear. Since in most cases evidence of malfunction is present prior to component failure, periodic inspections can be a major factor in the prevention of most system failures. Refrigerant lines must be properly supported and not allowed to vibrate against ceilings, floors, or the unit frame. Inspect all refrigerant lines every six months for signs of wear and proper support. Inspect the capillary and equalizer lines from the expansion valve.

Suction Pressure

Suction pressure will vary with load conditions. Suction pressure normally ranges from 58 psi to 75 psi (405 kPa to 517 kPa). When the 3-ton circuit is operating alone, the upper range of suction pressure may approach 100 psig. This is a function of the unit design and is acceptable for scroll compressors.

Discharge Pressure

The discharge pressure will vary greatly with load and ambient conditions (**Table 22**). The high-pressure switch will shut the compressor down at its cut-out setting.

Table 22	Typical	discharge	pressures
----------	---------	-----------	-----------

System Design	Discharge Pressure, psig (kPa)
Air-Cooled	200-300 (1380-2070)
Water-Cooled 65 to 85°F water (18 to 29.4°C)	200-250 (1380-1725)
Glycol-Cooled	250-350 (1725-2415)
High-Pressure Cut-Out	400 (2760)

Thermostatic Expansion Valve

The thermostatic expansion valve keeps the evaporator supplied with enough refrigerant to satisfy load conditions. Proper valve operation can be determined by measuring superheat level. If too little refrigerant is being fed to the evaporator, then the superheat will be high. Conversely, if too much refrigerant is being supplied, then the superheat will be low. The correct superheat setting is between 10 and 15°F (5.6 and 8.3°C). Only the 5-ton valve is adjustable.

Air-Cooled Condensing Units

Restricted airflow through the condenser coil will reduce the operating efficiency of the unit. Additionally, it can result in high compressor head pressure and loss of cooling. Using compressed air or commercial coil cleaner, clean the condenser coil of all debris that will inhibit airflow. In winter, do not permit snow to accumulate around the side or underneath the condenser. At the same time check for bent or damaged coil fins and repair as necessary. Check all refrigerant lines and capillaries for vibration and support as necessary. Carefully inspect all refrigerant lines for signs of oil leaks.

Coaxial Condensers (Water/Glycol-Cooled Condensing Units)

Each water or glycol-cooled condensing unit has a coaxial condenser consisting of an exterior steel tube and an interior copper tube. If the water supply is clean, coaxial condensers do not normally require maintenance or replacement. Should your system begin to operate at high head pressure with reduced capacity, and all other causes have been eliminated, the condenser may be obstructed or fouled and should be replaced.

Regulating Valves (Water/Glycol Condensing Units)

The water regulating valve automatically regulate the amount of fluid necessary to remove the heat from the refrigeration system, permitting more fluid to flow when load conditions are high and less fluid to flow when load conditions are low.

The water regulating valve is designed to begin opening at 180 psi (1240 kPa) and be fully opened at 240 psi (1655 kPa). The valve is factory set and should not need adjustment.

Glycol Solution Maintenance

It is difficult to establish a specific schedule of inhibitor maintenance since the rate of inhibitor depletion depends upon local water conditions. Analysis of water samples at time of installation and every six (6) months should help to establish a pattern of depletion. A visual inspection of the solution and filter residue is often helpful in judging whether or not active corrosion is occurring. The complexity of problems caused by water requires expert advice from a water treatment specialist plus a regular maintenance program schedule. It is important to note that improper use of water treatment chemicals can cause severe problems.

Proper inhibitor maintenance must be performed in order to prevent corrosion of the glycol system. Consult your glycol manufacturer for proper testing and maintenance procedures. Do not mix products from different manufacturers.

Hot Gas Bypass

Operation

The hot gas bypass valve is installed between the compressor discharge piping and suction piping, bypassing the condenser and evaporator coils. The discharge gas mixes with the suction gas, raising the suction temperature and pressure and decreasing the mass flow through the evaporator. The higher suction temperatures could cause compressor overheating, therefore a separate liquid quenching valve is provided to mix refrigerant from the system liquid line with the discharge gas before mixing with the suction gas entering the compressor.

During normal operation, when the evaporator is under full load the hot gas bypass equalizer pressure will remain high enough to keep the valve port closed. If the evaporator load decreases, the evaporator temperature and pressure will drop. When the suction pressure reduces below the hot gas bypass valve setting the hot gas bypass valve opens diverting some of the refrigerant flow back to the compressor suction. The liquid quenching valve bulb senses this increased superheat and opens, allowing liquid refrigerant to mix with the discharge gas, desuperheating it.

Proper mixing of the three refrigerant paths ensures stable operation and system performance. The liquid quenching valve bulb must be located downstream of all these connections to control superheat at the compressor inlet. Superheat settings for the liquid quenching valve are chosen to maintain consistency with the system expansion valve. During hot gas bypass operation higher superheats, 25-40°F (14-22°C), may be observed at the compressor. The liquid quenching valve is internally equalized and superheat is not adjustable.

Adjustment

- 1. Install the suction and discharge pressure gauge.
- 2. Adjust temperature setpoint to call for cooling so that the refrigeration compressor will run continuously.
- 3. Remove the TOP adjusting nut from the valve.
- 4. Insert an Allen wrench in the brass hole at top of valve in adjusting port, and turn CLOCKWISE if a higher evaporator temperature is required. Adjust no more than 1/4 turn at a time. Let the system stabilize for 15 minutes before determining if additional adjustment is necessary.
- 5. After obtaining the suction pressure required, reinstall cap tightly making sure there are no leaks.
- 6. Let the evaporator operate for approximately 10 to 15 minutes to make sure the suction pressure is within the range desired.
- 7. There may be a fluctuation of approximately 3 to 6 psig (21 to 41 kPa) on the evaporator due to the differential on the hot gas bypass.
- 8. Return temperature setpoint to the desired setting.

9.3 Replacement Procedures

9.3.1 Compressor Replacement

Infrequently a fault in the motor insulation may result in a motor burnout (if system is properly installed, motor burnout rarely occurs). Primarily this type of failure is due to mechanical or lubrication problems, where the burnout is a secondary consequence.

Early detection can prevent a large percentage of the problems that can cause compressor failures. Periodic maintenance inspections by alert service personnel (i.e., identification of abnormal operation) can be a major factor in reducing maintenance costs. It is easier and more cost-effective to implement the necessary preventative steps that ensure proper system operation; rather than ignore a problem until it results in compressor failure and costly replacement. When troubleshooting a compressor problem, check all electrical components for proper operation:

WARNING

Risk of explosive discharge from high-pressure refrigerant. Can cause injury or death. This unit contains fluids and gases under high pressure. Relieve pressure before working with piping. Recover refrigerant per national, state and local codes.

CAUTION

Risk of contacting caustic substances. Can cause injury.

Do not touch or contact the gas or oils with exposed skin. Severe burns will result. Wear protective clothing, safety goggles and long rubber gloves when handling contaminated parts.

- · Check all fuses and circuit breakers.
- · Check pressure switch operation.
- If a compressor failure has occurred, determine whether its cause is an electrical or mechanical problem.

Mechanical Failure

If you have determined that a mechanical failure has occurred, the compressor must be replaced. If a burnout occurs, correct the problem and clean the system. It is important to note that successive burnouts OF THE SAME SYSTEM are usually caused by improper cleaning. If a severe burnout has occurred, the oil will be black and acidic.

Electrical Failure

In the event of an electrical failure and subsequent burnout of the refrigeration compressor motor, proper procedures must be followed to thoroughly remove any acids that would cause a future failure. There are two kits that can be used with a complete compressor burnout - Sporlan System Cleaner and Alco Dri-Kleener. Follow the manufacturer's procedure. DAMAGE TO A REPLACEMENT COMPRESSOR DUE TO IMPROPER SYSTEM CLEANING CONSTITUTES ABUSE UNDER THE TERMS OF THE WARRANTY, THEREBY VOIDING THE WARRANTY

Replacement compressors are available from your Emerson supplier and will be shipped to the job site in a reusable crate (as required by the service contractor). If the compressor is under warranty, it must be returned to Emerson, in order to receive proper warranty credit. It should be returned in the same container it was shipped in. The possible cause(s) or condition(s) of the damage should be recorded on the provided return tag.

Replace a Failed Compressor

Proper procedures to remove and replace the failed compressor are:

- 1. Disconnect power
- 2. Attach suction and discharge gauges to access fittings.
- 3. Recover refrigerant using standard recovery procedures and equipment. Use a filter-drier when charging the system with recovered refrigerant.

NOTE

Release of refrigerant to the atmosphere is harmful to the environment and unlawful. Refrigerant must be recycled or discarded in accordance with national, state and local regulations.

- 4. Remove failed compressor.
- 5. Install replacement compressor and make all connections. Use a flow of dry nitrogen through the piping during brazing to prevent formation of copper oxide scale inside the piping. Copper oxide forms when copper is heated in the presence of air. POE oil will dissolve these oxides from inside the copper pipes and deposit them throughout the system, clogging filter driers and affecting other system components.
 - A pure dry nitrogen flow of 1-3 ft³/min (0.5-1.5 l/s) inside the pipe during brazing is sufficient to displace the air. Control the flow using a suitable metering device. Pressurize and leak test the system at approximately 150 psig (1034kPa) pressure.
- 6. Follow manufacturer's instructions for clean out kits.
- 7. Evacuate the system twice to 250 microns. Break the vacuum each time with clean, dry nitrogen.
- 8. Evacuate the system a third time to 250 microns.
- 9. Charge the system with refrigerant (R-407C) based on requirements of the evaporator, condensing unit and lines. Refer to the unit nameplate.
- 10. Apply power and operate the system. Check for proper operation. Refer to **Table 22**.

9.3.2 Steam Generating Humidifier—Operation Procedures

Steam generating humidifiers operate efficiently over a wide range of water quality conditions and automatically adjust to changes in the conductivity of water. The system will automatically drain and refill to maintain a current setpoint and alert the operator when the humidifier canister needs to be replaced.

The humidifier RUN/DRAIN switch is located in the humidifier assembly. This switch should be in the RUN position when the humidifier is in normal operation, and in the DRAIN position during service. The electronic control board for the humidifier is also located in the humidifier assembly. When the unit is energized, power is available to humidifier. Operation involves the following steps:

- 1. During start-up, when the humidity control calls for humidification, the fill valve will open, allowing water to enter the canister. When the water level reaches the electrodes, current flows and the water will begin to warm. The canister fills until the amperage reaches the setpoint and the fill valve closes. As the water warms, its conductivity increases and the current flow, in turn, rises. If the amperage reaches 115% of the normal operating amperage, the drain valve opens and flushes some of the water out of the canister. This reduces electrode contact with the water and lowers the current flow to the amperage setpoint. Boiling soon commences and the canister operates normally.
- 2. If the conductivity of the water is low, the canister fills and the water level reaches the canister full electrode before the amperage setpoint is reached. The humidifier stops filling to prevent overflow. Boiling should commence in time. As water is boiled off, the mineral concentration in the canister increases and current flow also increases. The canister eventually reaches full output and goes to normal operation. No drain is permitted until then.
- 3. When full output is reached the circuit board starts a time cycle which is factory set at 60 seconds. During this repeating time cycle, the fill valve will open periodically to replenish the water being boiled off and maintain a steady state output at the setpoint. The amperage variance will depend on the conductivity of the water.
- 4. After a period of time, the mineral concentration in the canister becomes too high. When this occurs, the water boils too quickly. As the water quickly boils off and less of the electrode is exposed, the current flow decreases. When the current crosses the low threshold point (factory set at 85%) before the end of the time cycle, the drain valve opens, draining the mineral laden water out and replacing it with fresh water. This lowers the mineral concentration and returns the canister to steady state operation and prolongs canister life. The frequency of drains depends on water conductivity.
- 5. Over a period of time, the electrode surface will become coated with a layer of insulating material, which causes a drop in current flow. As this happens, the water level in the canister will slowly rise exposing new electrode surface to the water to maintain normal output. Eventually, the steady state water level will reach the canister full electrode and indicate so by activating the canister full alarm. At this point, all of electrode surface has been used up and the canister should be replaced.
- 6. After the entire electrode surface has been coated, the output will slowly decrease. During these last hours of electrode life, the mineral concentration can increase and arcing can occur. If the electrodes start to arc, turn off the humidifier immediately and replace the canister with the identical part.

Replacing the Humidifier Canister

CAUTION

Risk of extremely hot surfaces. Can cause injury.

Do not attempt to replace parts until the humidifier has cooled down to a temperature that is safe for human contact. Allow time for the humidifier to cool before replacing parts.

The proper procedure to replace the humidifier canister is:

- 1. Turn Off the humidifier by lowering the humidity setpoint below the ambient humidity level. Record the original setpoint.
- 2. Turn unit Off at wallbox.
- 3. Place the RUN/DRAIN switch in the DRAIN position to drain the water from the canister.
- 4. Return the RUN/DRAIN switch to the RUN position after the canister has drained.
- 5. Turn Off the power at the main unit.
- 6. Remove the cover from the humidifier cabinet.
- 7. Locate the power wires to the steam canister. They are connected to the canister with 1/4" quick connects. Make note of the wiring configuration before removing any wires. Refer to schematic on unit. Slide the rubber boot back to expose the connections. Remove the three (3) power wires and the canister full wire. Do not loosen the screws that secure the electrodes.
- 8. Loosen the steam outlet hose clamps and slide the steam hose away from the canister fitting.
- 9. Remove the canister.
- 10. Reverse previous steps to reassemble humidifier.

9.3.3 Humidifier Circuit Board Adjustments

WARNING

Risk of electric shock. Can cause injury or death.

Open all local and remote electric power disconnect switches before working on the humidifier printed circuit board. Circuit board adjustment should be performed by properly trained and qualified personnel only.

Power should be disconnected prior to the procedure.

The humidifier control board governs humidifier operation. There are three potentiometers mounted on the board and can be used to adjust for extreme water conductivity conditions.

POT2 controls the amperage at which the drain will energize and is clearly marked in percentages. This adjustment is factory set at 85%, which indicates that the unit will drain when the amperage falls off to 85% of the capacity setpoint. Raising the value increases the frequency of drain cycles. Lowering the value decreases the frequency of drain cycles.

The frequency should be increased for highly conductive water and decreased for less conductive water. If adjustment is necessary, and a change of three to four percent in either direction does not permit normal operation of the unit, consult your Liebert supplier.

The POT1 controls the duration of the drain cycle. This adjustment is factory set at 60 seconds (1 VDC) and should not be readjusted without consulting your Liebert supplier.

The DIP switch settings are used to set the capacity of the humidifier. If the humidifier is replaced in the field the DIP switches should be set to the required settings described below.

Table 23 Humidifier control board DIP switch settings

Voltage	SW1	SW2	SW3	SW4	Amps
208	On	On	On	Off	8.9
240	Off	On	On	Off	8.5
380/415	Off	Off	Off	Off	5.2
460	On	On	On	Off	4.5
575	On	On	Off	Off	3.4

10.0 Maintenance Inspection Checklist

Liebert Mini-Mate2

Date:		Prepared By:			
lodel #:		Serial Number:			
Q	are necessary to assure proper of corrosion particles on the rehea	es are manufactured with stainless steel. Regular inspection cleanliness of the reheating element. Should inspection reve ting element or adjoining surfaces (including ducts and s should be performed. Periodic reheating element replacem c application requirements.			
MONTHLY Filters		Humidifier			
	. Check for restricted airflow	1. Check canister for mineral deposits			
	. Check for filter	2. Check condition of electrodes			
3	. Wipe section clean	3. All hoses and fittings tight			
an Section	•	4. Check water make-up valve for leaks			
	. Impellers free of debris and	Drain lines			
	move freely	1. Check for obstructions and sediment			
2	8. 8	buildup.			
3	. Check belt tension and condition	2. Check for damage and/or corrosion 3. Check for leaks			
SEMIANNU		5. Check for leaks			
Compresso		Flood Back Head Pressure Control			
-	. Signs of oil leaks	1. Check refrigerant level			
	. Vibration isolation	Water- or Glycol-Cooled Condensing Unit			
Refrigeration Cycle		1. Water valve adjustment			
_	. Suction pressure	2. Water flow			
	. Head pressure	3. Water leaks			
	. Superheat	Glycol Pump (if applicable)			
	. Evaporator coil clean	1. Glycol leaks			
5	. Insulation intact	2. Pump operation			
Air-Cooled Condensing Unit (if		3. Glycol solution			
applicable)		4. pH level			
	. Condenser coil clean	Electric Panel			
	. Motor mount tight	1. Check electrical connections			
3	Refrigerant lines properly supported	2. Operational sequence			
		Electric Reheat 1. Check element for corrosion			
		1. Uneck element for corrosion			

Make photocopies of this form for your records

11.0 TROUBLESHOOTING

Table 24 Troubleshooting

Symptom	Possible Cause	Check or Remedy		
Unit will not start	No power to unit	Check voltage at input terminal block.		
	Control voltage fuses (at transformer) open	Locate and repair short. Replace fuses.		
	Float switch relay has closed due to high water in the condensate pan.	Check drain and line. Access through left panel. Power must be cycled at the disconnect to reset. Check return air static pressure is less than 0.3" wg.		
	Jumper not in place	Check terminal 37 and 38 for jumper or N/C contact. Check pins P39-1 and P39-2 for jumper, or N/C firestat contact. Check pins P40-12 and 1HWAR-Com for jumper or N/C smoke detector contact.		
	"Cooling" is not displayed at the control panel.	Adjust TEMP control setpoint and sensitivity to require cooling.		
No cooling	Short cycle prevention control.	Control software delays compressor 3 minutes cooling, from stop to start		
	Compressor contactor not pulling in.	Check for 24 VAC \pm 2 VAC at terminals TB2 to TB1 for Compressor 1; TB6 to TB5 for Compressor 2. If voltage is present, check contactor. If voltage is present, check freeze stat (FR1 and FR2).		
	Compressor high head pressure.	See below for cause.		
	Plugged filter/dryer.	Replace filter/dryer.		
	Low refrigerant charge.	Check pressure gauges. At low ambient temperatures, proper refrigerant charge is very important on units with Liebert Lee-Temp receivers.		
	Insufficient air flow across condenser coil	Remove debris from coil and air inlets.		
Compressor high head pressure	Water/Glycol-Cooled only: No fluid flowing through condenser.	Check fluid supply to regulating valve. Adjust valve if necessary		
	Condenser fan not operating	Check fan operation.		
	DIP switch not set to enable humidifier option	See DIP switch settings Table 23 .		
Humidifier does not operate	"HUMIDIFY" not displayed at control panel	Increase humidity control setpoint and sensitivity to require humidification.		
	Defective board	Check voltage at 35-1 and 35-5 on interface board for 24 VAC ±2 VAC. If no voltage, check wiring and/or replace board. Check wiring from control panel to board.		
	Failed humidity sensor	Humidity display will indicate dashes. Check wiring from temperature/humidity board to the control board and from the wall box to the control board. Replace wallbox or temperature/humidity circuit board (if remote).		
	No water flow	Make sure switch is in Run position. Check humidifier water supply (including filter screen) and check nylon overflow line if canister is full.		
	Canister fill rate is not keeping up with the steam output	Check fill valve screen opening and capillary tube for obstructions. Check water supply pressure (minimum 10 psig).		

Table 24 Troubleshooting (continued)

Symptom	Possible Cause	Check or Remedy		
	DIP switch not set to enable reheat option	See DIP switch settings Table 23 .		
Reheat will not operate	"HEAT" not displayed at the control panel	Increase temperature setpoint to require heating.		
	Reheat safety open, defective reheat contact or defective board	Check voltage at P34-4 or P34-6 to P34-10 on interface board for 24 VAC \pm 2 VAC. If voltage, check reheat contactor and reheat safety. If no voltage, check wiring and/or replace board.		
	Element is burned out	Turn off power. Check element continuity with Ohm meter.		
Cooling cycle too short	Sensor response delay too short	Increase sensor response delay. See 6.12 - Calibrate Sensors .		
Display freezes and control pads do not respond	Static discharge	During period of low humidity, static electricity can cause the control program to freeze or display incorrect information. Although this is unlikely, the control can be reset by cycling power from the disconnect switch.		
Condensate pump does not operate	Open or short circuit in wiring	Find open or short circuit and repair power to pump.		
Continuous Cooling	Failed temperature sensor	Temperature display will indicate dashes. Check wiring from temperature/humidity board (remote sensors) to the control board or from control board to wallbox. Replace temperature/humidity circuit board (remote sensors) or wallbox.		
Continuous Heating Dehumidification Humidification	Shorted wiring or failed control board	Check wiring and/or replace control board.		
Display Problem Incorrect wiring Incorrect wiring Chilled-Pin 1 (Gi box. If the only the sec. If Tevery 2-7 sec. If Tevery 2-7 sec. If Tevery 2-7 sec. If The lit and NOTE: It there is reference these cousing the board to NOTE: If		Review 5.4.3 - Electrical Connections, Evaporator or Chilled-Water Unit. Verify VDC between 5 to 6 Volts at TB-3 Pin 1 (Ground) and TB-3 Pin 2 of the control board and wall box. If the transmit lines (TB-3 Pin 3 & 4) are not connected, only the POWER LED will be lit. It will flash once every 10-12 sec. If T- is connected, but not T+, TX1 will flash approximately every 2-3 sec. And the POWER LED will flash once every 10-12 sec. If T+ and T- are reversed, the POWER LED and RX1 Will be lit and flash every 10-12 sec. NOTE: Erratic operation of the unit could occur. If no LED is lit, there is no power or the +5VDC polarity is reversed. If any of these conditions occur, remove power from the evaporator using the disconnect switch, and correct wiring from the control board to the wall box. NOTE: It may take up to 20 seconds for the display to appear on the wall box LCD after power is applied.		

NOTES

Ensuring The High Availability Of Mission-Critical Data And Applications.

Emerson Network Power, a business of Emerson (NYSE:EMR), is the global leader in enabling Business-Critical Continuity™ from grid to chip for telecommunication networks, data centers. health care and industrial facilities. Emerson Network Power provides innovative solutions and expertise in areas including AC and DC power and precision cooling systems, embedded computing and power, integrated racks and enclosures, power switching and controls, infrastructure management, and connectivity. All solutions are supported globally by local Emerson Network Power service technicians. Liebert AC power, precision cooling and monitoring products and services from Emerson Network Power deliver Efficiency Without Compromise[™] by helping customers optimize their data center infrastructure to reduce costs and deliver high availability.

Technical Support / Service Web Site

www.liebert.com

Monitorina

liebert.monitoring@emerson.com 800-222-5877

Outside North America: +00800 1155 4499

Single-Phase UPS & Server Cabinets

liebert.upstech@emerson.com 800-222-5877

Outside North America: +00800 1155 4499

Three-Phase UPS & Power Systems

800-543-2378

Outside North America: 614-841-6598

Environmental Systems

800-543-2778

Outside the United States: 614-888-0246

Locations

United States

1050 Dearborn Drive P.O. Box 29186 Columbus, OH 43229

Europe

Via Leonardo Da Vinci 8 Zona Industriale Tognana 35028 Piove Di Sacco (PD) Italy +39 049 9719 111 Fax: +39 049 5841 257

29/F, The Orient Square Building F. Ortigas Jr. Road, Ortigas Center Pasig City 1605 Philippines +63 2 687 6615

SL-10533_REV3_07-13

All names referred to are trademarks

© 2009 Liebert Corporation

While every precaution has been taken to ensure the accuracy and completeness of this literature, Liebert Corporation assumes no responsibility and disclaims all liability for damages resulting from use of

® Liebert is a registered trademark of Liebert Corporation

All rights reserved throughout the world. Specifications subject to change

this information or for any errors or omissions.

or registered trademarks of their respective owne

Emerson Network Power.

without notice.

The global leader in enabling Business-Critical Continuity EmersonNetworkPower.com Embedded Computing **Outside Plant** Racks & Integrated Cabinets Connectivity Embedded Power Power Switching & Controls Services Infrastructure Management & Monitoring