
EAAT User Manual

A guide how to use the Object Modeler

Dept of Industrial Information and Control Systems, KTH

November 2012

Content
EAAT User manual 3	

1	
 Background 4	

1.1	
 P2AMF: Predictive, Probabilistic Architecture Modeling Framework 5	

1.2	
 The theory behind the tool .. 9	

2	
 Modeling Object Diagrams in EAAT using the Object Modeler
 12	

2.1	
 Starting EAAT .. 12	

2.1.1	
 Getting familiar with the user interface 12	

2.1.2	
 Menu bar ... 14	

2.1.3	
 Tool bar ... 16	

2.2	
 Info palette ... 16	

2.3	
 Model library ... 18	

2.4	
 Instantiating Classes .. 22	

2.5	
 Instantiating relationships ... 23	

2.6	
 Adding evidence .. 23	

2.6.1	
 Copy & paste of parts of the model .. 23	

2.7	
 Calculating the model ... 24	

2.8	
 Replacement of used theory .. 25	

2.9	
 Export to excel .. 25	

3	
 Quick reference 27	

4	
 Appendix 29	

4.1	
 The structure of the Excel exports .. 29	

EAAT User manual

This document is a user manual for the Object Modeler part of the
Enterprise architecture Assessment (EAAT) tool. For more information
about the tool project, confer http://www.ics.kth.se/eaat.

1 Background

The discipline of enterprise architecture advocates the use of models to
support decision-making on enterprise-wide information system issues. In
order to provide such support, enterprise architecture models should be
amenable to analyses of various properties, as e.g. the availability,
performance, interoperability, modifiability, and information security of
the modeled enterprise information systems. This manual describes a
software tool for such analyses. EAAT is an acronym for Enterprise
Architecture Analysis Tool and is a software system for modeling and
analysis of enterprises and their information systems.

The EAAT tool supports analysis of enterprise architecture models. The
tool guides the creaation of enterprise information system scenarios in the
form of enterprise architecture models and generates quantitative
assessments of the scenarios as they evolve. Assessments can be of
various quality attributes, such as information security, interoperability,
maintainability, performance, availability, usability, functional suitability,
and accuracy.

The EAAT tool consists of two parts, the Class modeler for defining the
underlying theory for the assessment and the Object modeler for modeling
enterprises and performing assessments. Theory definition is the activity
of identifying which phenomena are relevant for achieving the system
properties. For instance, security analysis requires modeling of
components such as firewalls, intrusion detection systems, anti malware
functions, access right definition and implementation, training of
personnel, the existence of business continuity plans and much more. In
the Class modeler, the structure and importance of these phenomena is
modeled. The Class modeler is thus mainly aimed to be used by
researchers. The second part of the tool is the Object modeler, which is
used to model instances of system scenarios. The Object modeler uses the
theoretical framework developed in the Class modeler. The Object
modeler is mainly intended to be used by the industry. While this manual
focuses on the Class modeler, information about the Object modeler can
be obtained from the project webpage at http://www.ics.kth.se

1.1 P2AMF: Predictive, Probabilistic Architecture
Modeling Framework

The Object Constraint Language (OCL) is a formal language typically used to describe
constraints on UML models. These expressions typically specify invariant conditions
that must hold for the system being modeled, pre- and post conditions on operations
and methods, or queries over objects described in a model.

P2AMF, the Predictive, Probabilistic Architecture Modeling Framework is an
extension of OCL for probabilistic assessment and prediction of system qualities. The
main feature of P2AMF is its ability to express uncertainties of objects, relations and
attributes in the UML-models and perform probabilistic assessments incorporating
these uncertainties.

A typical usage of P2AMF would thus be to create a model for predicting, e.g., the
availability of a certain type of application. Assume the simple case where the
availability of the application is solely dependent on the availability of the redundant
servers executing the application; a P2AMF expression might look like this,

context Application :

���attribute available : Boolean = s e l f . s e r v e r −> e x i s t s (s : S e r v e r | s .
a v a i l a b l e)

This example demonstrates the similarity between P2AMF and OCL, since the
expression is not only a valid P2AMF expression, but also a valid OCL expression.
The fist line defines the context of the expression, namely the application. In the
second line, the attribute available is defined as a function of the availability of the
servers that execute it. In the example, it is sufficient that there exists one available
server for the application to be available.

In P2AMF, two kinds of uncertainty are introduced. Firstly, attributes may be
stochastic. When attributes are instantiated, their values are thus expressed as
probability distributions. For instance, the probability distribution of the instance
myServer.available might be

P(myServer . available)=0.99

The probability that a myServer instance is avail- able is thus 99%. For a normally
distributed attribute operatingCost of the type Real with a mean value of $ 3 500 and a
standard deviation of $ 200, the declaration would look like this,

P (m y S e r v e r . o p e r a t i n g C o s t) =N o r m a l (3 5 0 0 , 2 0 0)

i.e. the operating costs of server is normally distributed with mean 3500 and standard
deviation 200.

Secondly, the existence of objects and relationships may be uncertain. It may, for

instance, be the case that we no longer know whether a specific server is still in service
or whether it has been retired. This is a case of object existence uncertainty.

Such uncertainty is specified using an existence at- tribute E that is mandatory for all
classes (here using the concept class in the regular object-oriented aspect of the word),
where the probability distribution of the instance myServer.E might be

P(myServer .E) =0.8

i.e. there is a 80% chance that the server still exists.

We may also be uncertain of whether myServer is still in the cluster servicing a
specific application, i.e. whether there is a connection between the server and the
application. Similarly, this relationship uncertainty is specified with an existence
attribute E on the relationships.

In this manual the reader will be confronted with P2AMF in three ways: (i) in the form
of metamodel attribute specifications, (ii) as metamodel invariants which constrain the
way in which the model may be constructed and (iii) as operations which are methods
that aid the specification of invariants and attributes.

An example metamodel attribute expression is shown below:

context UsageRelation ���

attribute self . ApplicationWeight : Real = getFunctionality
()/isAffected_1_inv .use_5_inv . Functionality

This is referring to the class UsageRelation in Figure 2 and specfies that
getFunctionality() operation should be utilized. The operation getFunctionality() is
specified as follows:

context UsageRelation

 operation getFunctionality () : Real = self . isAffected_2 .
assigned_inv−>select (

oclIsKindOf (ApplicationFunction)) . oclAsType (ApplicationFunction) .
Functionality−>sum()

where it says that getFunctionality() requires no input, and generates a Real as output
according to a statement.

An example invariant, noWriteAndRead, can be found below:

context InternalBehaviorElement invariant noWriteAndRead = not (
read_Function_inv−>e x i s t s (do :

PassiveComponentSet | write_Function−> i n c l u d e s (do)))

This specifies that objects of the class InternalBehaviorElement from Figure 2 are not

allowed to both write and read the same data object.

A full exposition of the P2AMF language is beyond the scope Sufficient to say here
that the EAAT tool now implements P2AMF using the EMF-OCL plug-in to the
Eclipse Modeling Framework and has been employed to implement the metamodels of
this paper. The probabilistic aspects are implemented in a Monte Carlo fashion: In
every iteration, the stochastic P2AMF variables are instantiated with instance values
according to their respective distribution. This includes the existence of classes and
relationships, which are sometimes instantiated, sometimes not, depending on the
distribution. Then, each P2AMF statement is transformed into a proper OCL statement
and evaluated using the EMF-OCL interpreter. The final value returned by the model
when queried is a weighted mean of all the iterations.

Figure 1 P2AMF Example

Service

Response Time

Workload

InternalBehavioralElement (Function)

Arrival Frequency
Service Time

Realize_1

ActiveStructureElement
CapacityAssigned

0..* 0...1
Availability

Availability

Use_3

 Gate_use
Type

Use_1

GateToGate_use_Bottom

0...1

 Use

Use_2

Infrastructure Function ApplicationFunction

InfrastructureService ApplicationService

nentSet

racy

epresentationSet

BusinessProcess

rite_Service

rvice

Write_Function

Read_Function

Correction
Deterioration

Correction
Deterioration

Node

 ApplicationComponent
Usage

 Gate_realize
Type

GateToGate_realize_top

 Realize

1

0..1

Realize_2

Realize_3
1

1

Execution Pattern GateToGate_realize
Weight

Execution Pattern
GateToGate_us

e Weight (n)

GateToGate_use_Top

1

1

0..1

GateToGate_realize_bottom

1

1

FunctionalityTaskFulfillment

Functionality

ProcessService-
Association

UsageRelation

Regr.Coeff.TTF
Use_4

Use_5

IsAffected_1

IsAffected_2

Role

RoleComponent-
Association

PerceivedUsefulness
PerceivedEaseofUse

Use_6

Use_7

Arrival Frequency

y

1

1

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..1

0..*

0...1

0..*0..*

0..*

1

1

1

1

0..*

0..*

0..*

BusinessService

EvidentialResponseTime

EvidentialAvailability

Availability

Availability

Availability
Evidential availability

0..*

ResponseTime

Weight
WeightedWorkload

WeightedResponseTime

Weight
WeightedWorkload

WeightedResponseTime

ResponseTime

In this manual the historic name POCL will be used as a synonym to
P2AMF. The wording will be unified with the next major release of the tool
and its describing documentation.

1.2 The theory behind the tool
Enterprise architecture models serve several purposes. Kurpjuweit and
Winter identify three distinct modeling purposes with regard to
information systems, viz. (i) documentation and communication, (ii)
analysis and explanation and (iii) design. The present article focuses on
the analysis and explanation (which is not to denigrate the usefulness of
the others). The reason is that analysis and explanation are closely related
to the notion of proper goals for enterprise architecture efforts. For
example, a business goal of decreasing downtime costs immediately leads
to an analysis interest in availability. This, in turn, defines the modeling
needs, e.g. the need to collect data on mean times to failure and repair.
In this sense, analysis is at the core of making rational decisions about
information systems. An analysis-centric process of enterprise architecture
is illustrated in Figure 2. In the first step, assessment scoping, the
problem is described in terms of one or a set of potential future scenarios
of the enterprise and in terms of the assessment criteria with its theory
(the PRM in the figure) to be used for scenario evaluation. In the second
step, the scenarios are detailed by a process of evidence collection,
resulting in a model (instantiated PRM, in the figure) for each scenario. In
the final step, analysis, quantitative values of the models' quality
attributes are calculated and the results are then visualized in the form of
e.g. enterprise architecture diagrams.

Figure 2 The process of enterprise architecture analysis with three main activities: (i)

setting the goal, (ii) collecting evidence and (iii) performing the analysis.

More concretely, assume that a decision maker in an electric utility is
contemplating changes related to the configuration of a substation. The
modification of a new access control policy would reduce the probability
that someone installs malware on a system and thereby reduce the risk
that this type of unwanted software is executed. The question for the
decision maker is whether this change is feasible or not. As mentioned in
the first step assessment scoping the decision maker identifies the
available decision alternatives, i.e. the enterprise information system
scenarios. In this step, the decision maker also needs to determine how

the scenario should be evaluated, i.e. the goal of the assessment. One
such goal could be to assess the security of an information system. Other
goals could be to assess the availability, interoperability or data quality of
the proposed to-be architecture. Often several quality attributes are
desirable goals. In this paper, without loss of generality, we simplify the
problem to the assessment of security of an electric power-station.
Information about the involved systems and their organizational context is
required for a good understanding of their data quality. For instance, it is
reasonable to believe that a firewall would increase the probability that
the system is secure. The availability of the firewall is thus one factor that
can affect the security and should therefore be recorded in the scenario
model. The decision maker needs to understand what information to
gather and also ensure that this information is indeed collected and
modeled. Overall, the effort aims to understand which attributes causally
influence the selected goal, viz. data quality. It might happen that the
attributes identified do not directly influence the goal. If so, an iterative
approach can be employed to identify further attributes causally affecting
the attributes found in the previous iteration. This iterative process
continues until all paths of attributes and causal relations between them,
have been broken down into attributes that are directly controllable for
the decision maker (cf. Figure 3).

Figure 3 Goal decomposition method.

In the second step collecting evidence the scenarios need to be detailed
with actual information to facilitate their analysis of them. Thus, once the
appropriate attributes have been set, the corresponding data is collected
throughout the organization. In particular, it should be noted here that the
collected data will not be perfect. Rather, it risks being incomplete and
uncertain. The tool handles this by allowing the user to enter the
credibility of the evidence depending on how large the deviations from the
true value are judged to be. In the third and final step, performing the
analysis, the decision alternatives are analyzed with respect to the goal
set e.g. security. The mathematical formalism plays a vital role in this
analysis. Using conditional probabilities and Bayes' rule, it is possible to
infer the values of the variables in the goal decomposition under different
architecture scenarios. By using the PRM formalism, the architecture
analysis accounts for two kinds of potential uncertainties: that of the

attribute values as well as that of the causal relations as such. Using this
analysis framework, the pros and cons of the scenarios can be weighted
against each other in order to determine which alternative ought to be
preferred.

2 Modeling Object Diagrams in EAAT using
the Object Modeler

The theory specified in the Class modeler can be applied in the Object
modeler.

2.1 Starting EAAT
EAAT is written in Java to enable platform independence and thus requires
Java JRE® to run (if missing, it can be downloaded at
http://www.java.com).

Ensure that you downloaded the latest version of EAAT at
http://www.ics.kth.se/eaat

On windows the program is started by executing ObjectModeler.exe on

MAC navigate to ObjectModeler.app

2.1.1 Getting familiar with the user interface
When starting the object diagram editor the following dialog is displayed:

Figure 4: Start Up Dialog. 1

In this dialog the user might load a previously created model and continue
his work on that. Alternatively one can start with an empty model. To do
so a class diagram (*.eaat file) needs to be loaded.

Afterwards the following window is displayed:

1 The screenshots displayed in this section are based on the Windows version of the tool. The MAC
version has a similar user interface, however small differences may occur.

Figure 5: The main window of the EAAT Object modeler with modeling pane, menu bar,

tool bar and status bar.

This view is dominated by the large modeling area the white part of the
window. Apart from this there is the menu bar and the tool bar at the top
of the screen and the info palette on the right. To the right a properties
window is presented. In the lower part of the screen several tabs
providing different information on the model can be found. Following is a
short description of the menu choices and buttons in the tool bar, as well
as the info palette.

2.1.2 Menu bar
The menu consists of five top menus: File, Edit, Views, P2AMF and Show.
The File menu offers functionality related to the model. We find Open
Model, Save, Save … as, Refresh Class model, Export to Excel, Export
Class Model and Exit. Refresh Class model allows replacing or updating the
used class diagram and export to excel creates a spreadsheet
representation of the created object diagram, Export Class Model allows
extracting the underlying Class model.

Figure 6 The File menu

The Edit menu allows performing a variety of operations on the model and
its objects. These are Undo, Redo, Delete, Cut, Copy, Paste and Select All.

Figure 7 The Edit menu

The Views menu offers functionality for adding new views, as they have
been defined within the Class diagram.

Figure 8 The Views menu

The P2AMF menu collects all operations to the build in calculation
mechanism. Options to Calculate the Model, use Deterministic Calculations
(without sampling) Check Invariants, Remove all Evidences and perform
Configurations are available.

Figure 9 The P2AMF menu

The show menu can be used to display all menus and dialogs that the tool
offers. This is particullarly important if they have been closed to allocate
more space on the screen

Figure 10 The Show menu

2.1.3 Tool bar
The toolbar, as displayed below, allows for easy access to the most
common functions of the tool

Figure 11: The toolbar of the EAAT Object modeler, containing the most common

commands.

Starting from the left there is a for adding new views (instantiating views
as they have been defined for the class diagram), opening an existing
model, saving the model (including save … as), undoing and redoing a
performed operation, deleting a selected object, taking a screenshot of the
currently opened model, updating the underlying class diagram,
calculating the model, zooming, auto layout, changing the order of
displayed instances (bring to front/ send to back) and finally adding notes
to the model.

2.2 Info palette
Information on the current model is presented in this information area,
located in the lower part of the user interface.

Figure 12: Outline

In one tab an outline providing a global overview can be found. A second
tab displays calculation results (c.f. section 2.7).

Figure 13 Attribute Value View

Additionally we find a section, divided into tabs, provided extra
information on the object diagram.

The following tabs are provided: Error Log, Calculation Problems, Invalid
Invariants, Views Containing Object, Console. The first three of them
provide additional information in case of unexpected tool behavior during
model creation or calculation. The Calculation Problems helps identifying
issues with the model (e.g. multiplicities consideration) that need to be
resolved in order to being able to calculate the model. The Invalid
Invariants shows whether OCL invariants, a feature of P2AMF, are used
properly. Yet another view dealing with OCL invariants is the Console,
allowing to evaluate and test OCL code and to query the Object Diagram
without undergoing the calculation process.

Figure 14 The Info tab section

The most important tab is the Properties tab, located to the right of the
user interface of the Object modeler. The Properties tab always displays
information of the selected concept whether it is a View, Class, Object or
Relationship. These characteristics can be modified directly from the tab.

Figure 15 The Properties tab

2.3 Model library
In the upper left corner, information on the created model can be found,
as well as the class diagram it is based upon. Four tabs provide an
Instance Model Explorer, View Explorer, Navigator and the Viewpoint
Explorer.

In the Instance Model Explorer we find an overview over all concepts that
are defined in the loaded Class Diagram, as well as the Objects that are
instantiating them

Figure 16 The Instance Model Explorer

In the View Explorer the created views are presented. Each view can be
considered as a sub set of model. The User can define as many views as
he/she desires.

Figure 17 The View Explorer

The Navigator provides an overview over all the instances that are part of
the currently displayed view.

Figure 18 The Instance Diagram Explorer

Finally the Viewpoint Explorer allows considering the used class diagram
and its included viewpoints.

Figure 19 The Viewpoint Explorer

2.4 Instantiating Classes
Classes are instantiated from the Instance Diagram Explorer. At first the
concept to be instantiated needs to be selected followed by a dragging to
the currently opened view leads to an addition to the currently displayed
model (subset). If an already existing instance is dropped into the
modeling area, a reference to it is added to the model subset, whereas
new instances are created if a concept that is part of the Class Diagram is
dropped into the modeling area.

Instantiating a Class means that the created Object has attributes
associated with that type in the class model. For instance, the class
“system” might contain attributes such as information security or
performance whereas for the class “process”, attributes such as efficiency
or cycle time could be appropriate. (Attributes of the classes, as well as all
classes are specified by the class model (the theory) – developed in the
EAAT Class Modeler.)

2.5 Instantiating relationships
Relationships are created between two objects and which relationships are
valid is defined in the underlying class diagram.

To create a relationship the source object needs to be clicked. Second the
Alt button needs to be pressed. A drag from source to target, while
holding ALT pressed, relates the two objects.

2.6 Adding evidence

Creating instances of classes and relationships builds up the skeleton of
the model. This provides basic knowledge for performing the assessment,
based upon prior knowledge about the various attributes (i.e. properties)
of the model. In order for the assessment to be specific for the case at
hand, this skeleton must be augmented with information about the actual
states of the attributes in the model.

In most cases, it is very difficult to have direct knowledge about complex
attributes such as the information security of an enterprise (otherwise this
tool would serve little purpose). However, more low-level attributes such
as minimum password length or number of open ports in the firewall can
usually be found. While this information is generally not hard to find, it is
potentially very resource demanding to actually gather it all. The concept
of evidence handles this. Evidence is knowledge about the actual states of
attributes that is not certain, but has a level of credibility that can be
taken into account when performing the analysis. The EAAT Object
modeler allows the user to provide evidence(s) regarding the states of
every attribute, including the more complex ones, in case such knowledge
is available.

Evidence can be added in the Properties tab of a selected attribute (c.f.
Figure 14)

2.6.1 Copy & paste of parts of the model
User can copy any object or a collection of objects from any view and the
user can paste copied elements to any view as well. This functionality
enables fast creation of models. This is done using the short cut CTR+C
and CTR+V (CMD on MAC).

2.7 Calculating the model

Once the model is complete in terms of objects, relationships, and
evidence on the attributes, it is possible to perform the actual assessment.
Since each object model instance has an underlying class model that
defines the theory, the user only have to request that the analysis is to
take place. The theory is then applied to the model using and all the
attributes are evaluated.

The performed calculations can be configured from the properties dialog of
the currently created object diagram. At first the object diagram needs to
be selected in the Instance Diagram Explorer.

Figure 20 In order to configure the calculations at first the Object Diagram needs to be
selected

As a 2nd and final step the calculation can be adopted in the Properties
Dialog

Figure 21 Calculations are configured from the Object Diagram's Properties Dialog

The Model is calculated by pressing the “calculate” button in the tool bar.
To display the result of the assessment consider the Result View, as
described in section 2.2 .

Continuous variables are either presented as single value or as probability
distribution, depending on the result. The distributions are presented in
terms of:

• Mean value

• Variance
• Skewness
• Kurtosis
• Samples
• Histogram with individual amount of bins

2.8 Replacement of used theory

As mentioned previously, the tool supports the replacement and update of
the used theory. The tool tries to match and perform updates as far as
possible without user involvement. In case of ambiguities the tool
questions the user to solve them.

Figure 22 If an update of the used theory was performed properly a message is
displayed in the Error Log

It is possible to change evidence in case the attributes have been
changed.

2.9 Export to excel
The Object modeler of EAAT allows exporting the calculated models to
Excel. This allows posting process the results in other tools.

This can be done from the “file”-menu through a usage of the “Export to
Excel” option.

Figure 23: Export to CSV.

In the resulting document each attribute of the model is represented as a
row. The complete structure of the document is described in the Appendix.

3 Quick reference

Class modeler. The Class modeler is the part of the EAAT where the
underlying theory for enterprise architecture assessments is specified.
Here, the concepts and relationships relevant for different kinds of
analysis is defined, thus enabling the users of the Object modeler to
perform advanced assessments in an automatic, easy fashion.

Class. A class is a category that modeled elements can belong to. When a
modeled element in a object model belongs to a class, it means that it has
assigned the attributes associated with that class as defined in the class
model. For instance, the class “system” might contain attributes such as
“information security” or “performance” whereas for the class “process”
might have attributes such as “efficiency” or “cycle time”.

Credibility. Different data have different credibility, depending on
whether the source is reliable, whether it is recently collected etc. When
conducting enterprise architecture analyses, it is of greaat importance that
models and decisions are not based on flawed or biased data. By requiring
the user to specify the credibility of the data used, the EAAT tool manages
this aspect of data collection.

Enterprise architecture. The discipline of advocates the use of models
to support decision-making on enterprise-wide information system issues.
By analyzing the relevant data in a structured, and preferably
quantitative, way, better management decisions can be made.

Evidence. Evidence is the data about real world circumstances, collected
for the purpose of enterprise architecture analysis. Such evidence is never
certain, but rather has a level of credibility that can be taken into account
when performing the analysis. The EAAT Object modeler allows the user to
provide evidence(s) regarding the states of every attribute, including the
more complex ones, should such knowledge be available.

Model. A model is a simplified representation of the real world,
specifically designed to capture the aspects relevant for a certain purpose,
and leave other aspects out. Enterprise architecture models try to
incorporate those feaatures relevant to decision making on enterprise-
wide information system issues. The EAAT tool distinguishes two types of
models: the class model that speaks of general relationships such as
availability and maintenance organizations, and object models that speak
of particular companies and situations, such as the availability of system X
on company Y. The idea is that the class models are provided by
researchers as support for the industry that deals primarily with object
models.

Object. An object is a modeling concept, usually referring to something
that is part of the real world. Enterprise, CRM system, computer, and
project team are all examples of possible objects. Objects have attributes
and belong to classes

Object modeler. The Object modeler is used to model instances of
system scenarios. The Object modeler uses the theoretical framework
developed in the Class modeler to direct and enable complicated
enterprise architecture analyses, without a need for the user to be a
theoretical expert. The Object modeler is mainly intended to be used by
enterprise architects in the industry.

Relationship. Relationships describe how different classes relate to each
other. Observable regularities in the real world are modeled as
relationships, such as when the “reliability of components decreases, the
maintenance costs increase”. Relationships based on research are created
in the Class modeler, where they serve as templates for analyses in the
Object modeler.

View. Represents sub set of model designed to have specialized
visualizations. There can be two types of views. First type is normal views
which are creaated by user to have some specific visualization and second
type views are called analysis view which comes into being to show

4 Appendix

4.1 The structure of the Excel exports
The following schema describes how the resulting excel files are
structured:

Name Meaning

Object-name The name of the object

Attribute-name The name of the attribute

Class The class that the object is an instance of

Attribute-type The type of the attribute (which right now is either
discrete or continuous)

Continuous-
value

If the attribute is continuous than the continuous value
(after calculation)

State1-name If the attribute is discrete than the name of the fist state

State1-value If the attribute is discrete than the probability for that
state (after calculation)

... If the attribute is discrete than the name of the next
state

... If the attribute is discrete than the probability for that
state (after calculation)

Staten-name If the attribute is discrete than the name of the nth state

Staten-value If the attribute is discrete than the probability for that
state (after calculation)

