
Pololu USB AVR Programmer
User's Guide

1. Overview . 2
1.a. Module Pinout and Components . 3
1.b. Supported Microcontrollers . 5
1.c. Supported Operating Systems . 5

2. Contacting Pololu . 6
3. Getting Started in Windows . 7

3.a. Installing Windows Drivers and Software . 7
3.b. Programming AVRs Using AVR Studio . 12

3.b.1. Using Advanced Features of AVR Studio . 18
3.c. Programming AVRs Using AVRDUDE . 20
3.d. Configuring the Programmer . 20

4. Getting Started in Linux . 24
4.a. Linux Driver . 24
4.b. Programming AVRs in Linux . 24

5. Getting Started in Mac OS X . 27
5.a. Firmware Support for Mac OS X . 27
5.b. Programming AVRs in Mac OS X . 28

6. Communicating via the USB-to-TTL-Serial Adapter . 30
6.a. Communicating via the Serial Control Lines . 32

7. Measuring Voltages Using the SLO-scope . 35
8. Troubleshooting . 38
9. Upgrading Firmware . 41

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

Page 1 of 43

http://www.pololu.com/docs/0J36
http://www.pololu.com/docs/0J36

1. Overview
The Pololu USB AVR programmer [http://www.pololu.com/catalog/product/1300] is a programmer for Atmel’s AVR
microcontrollers and controller boards based on these MCUs, such as Pololu Orangutan robot
controllers [http://www.pololu.com/catalog/category/8] and the 3pi robot [http://www.pololu.com/catalog/product/975]. The
programmer emulates an AVRISP v2 on a virtual serial port, making it compatible with standard AVR
programming software. Two additional features help with building and debugging projects: a TTL-level serial
port for general-purpose communication and a SLO-scope for monitoring signals and voltage levels.

Please note that this guide applies to Pololu’s second-generation AVR programmer (pictured to the left below),
not the original, similar-looking Orangutan USB programmer [http://www.pololu.com/catalog/product/740] (pictured
to the right).

USB AVR programmer PGM03A. Orangutan USB programmer PGM02A/B.

If you have the original Orangutan USB programmer, you can find it’s user’s guide here [http://www.pololu.com/docs/
0J6].

Important Safety Warning and Handling Procedures
The USB AVR programmer is not intended for young children! Younger users should use this product only
under adult supervision. By using this product, you agree not to hold Pololu liable for any injury or damage
related to the use or to the performance of this product. This product is not designed for, and should not be used
in, applications where the malfunction of the product could cause injury or damage. Please take note of these
additional precautions:

• The USB AVR programmer contains lead, so follow appropriate handling procedures, such as washing
hands after handling.

• Since the PCB and its components are exposed, take standard precautions to protect your programmer
from ESD (electrostatic discharge), such as first touching the surface the programmer is resting on before
picking it up. When handing the programmer to another person, first touch their hand with your hand to
equalize any charge imbalance between you so that you don’t discharge through the programmer as the
exchange is made.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

1. Overview Page 2 of 43

http://www.pololu.com/catalog/product/1300
http://www.pololu.com/catalog/category/8
http://www.pololu.com/catalog/category/8
http://www.pololu.com/catalog/product/975
http://www.pololu.com/catalog/product/740
http://www.pololu.com/picture/view/0J1422
http://www.pololu.com/picture/view/0J1422
http://www.pololu.com/picture/view/0J1421
http://www.pololu.com/picture/view/0J1421
http://www.pololu.com/docs/0J6
http://www.pololu.com/docs/0J6

1.a. Module Pinout and Components

Pololu USB AVR programmer, labeled top view.

The Pololu USB AVR programmer connects to a computer’s USB port via an included USB A to mini-B
cable [http://www.pololu.com/catalog/product/1129], and it connects to the target device via an included 6-pin ISP
programming cable [http://www.pololu.com/catalog/product/972] (the older, 10-pin ISP connections are not directly
supported, but it is easy to create or purchase a 6-pin-to-10-pin ISP adapter).

The USB AVR programmer has three indicator LEDs:

• The green LED indicates the USB status of the device. When you connect the programmer to the
computer via the USB cable, the green LED will start blinking slowly. The blinking continues until it
receives a particular message from the computer indicating that the drivers are installed correctly. After
the programmer gets this message, the green LED will be on, but it will flicker briefly when there is USB
activity.

• The yellow LED indicates that the programmer is doing something. When it is blinking, it means that the
programmer has detected the target device (the voltage on the target VDD line is high). When it is on solid,
it means that the SLO-scope is enabled, and lines A and B are used for the SLO-scope instead of the USB-
to-TTL-serial adapter.

• The red LED indicates an error or warning. When it is blinking, it means that the target device is not
detected (the voltage on the target VDD line is low). When it is on solid, it means that the last attempt at
programming resulted in an error. You can determine the source of the error by running the configuration
utility (see Section 3.d).

The VBUS line provides direct access to the 5V VBUS line on the USB cable and can be used to power additional
devices. The line can provide up to 100 mA, so the current draw of your programmer plus any additional devices

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

1. Overview Page 3 of 43

http://www.pololu.com/picture/view/0J1356
http://www.pololu.com/picture/view/0J1356
http://www.pololu.com/catalog/product/1129
http://www.pololu.com/catalog/product/1129
http://www.pololu.com/catalog/product/972
http://www.pololu.com/catalog/product/972

should not exceed this amount. If you attempt to draw more than this limit, your computer might disconnect the
USB port temporarily or take other actions to limit the use of USB power.

The GND line provides direct access to the grounded line on the USB cable (and ground on the programmer).

The TX and RX lines are the TTL serial port for the USB-to-TTL-serial adapter. They are labeled from the
computer’s perspective: TX is an output that connects to your target’s serial receive pin and RX is an input that
connects to your target’s serial transmit pin. Section 6 describes how to use these lines to communicate with your
devices from the computer.

The A and B lines can be used as serial control/handshaking lines for the USB-to-TTL-serial adapter (see Section
6.a) or as analog voltage inputs for the SLO-scope (see Section 7).

Pololu USB AVR programmer bottom view with
dimensions.

The USB AVR programmer has a standard 6-pin AVR ISP connector for programming AVRs, and the pins are
labeled on the silkscreen on the bottom side of the board. The pins on the connector are:

1. MISO: The “Master Input, Slave Output” line for SPI communication with the target AVR. The
programmer is the master, so this line is an input.

2. VDD: An input line that the programmer uses to measure the voltage of the target AVR. While
programming the target device, the programmer uses this line to constantly monitor the target VDD. If the
voltage goes too low or varies too much, then the programmer aborts programming in order to avoid damage
to the target AVR. Section 3.d has more information about target VDD monitoring. The VDD line is not
used to power the programmer; the programmer is powered from the USB. This line cannot be used to power
the target device; the target device must be independently powered for programming to work.

3. SCK: The clock line for SPI communication with the target AVR. The programmer is the master, so this
line is an output during programming.

4. MOSI: The “Master Output, Slave Input” line for SPI communication with the target AVR. The
programmer is the master, so this line is an output during programming.

5. RST: The target AVR’s reset line. This line is used as an output driven low during programming to hold
the AVR in reset.

6. GND: Ground. This line should be connected to the target device’s ground.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

1. Overview Page 4 of 43

http://www.pololu.com/picture/view/0J1328
http://www.pololu.com/picture/view/0J1328

1.b. Supported Microcontrollers
The programmer should work with all AVRs that can be programmed with the AVR ISP interface and have
128 KB of flash or less, but it has not been tested on all devices. It has been tested with all Orangutan robot
controllers [http://www.pololu.com/catalog/category/8] and the 3pi Robot [http://www.pololu.com/catalog/product/975]. The
programmer features upgradable firmware, allowing updates for future devices. It does not currently work with
Atmel’s XMega line of microcontrollers.

The programmer is powered by the 5V USB power bus, and it is intended for programming AVRs that are running
at close to 5 V (note that the programmer does not deliver power to the target device).

1.c. Supported Operating Systems
The Pololu USB AVR programmer has been tested under Microsoft Windows XP (Service Pack 3), Windows
Vista, Windows 7, and Linux. See Section 5 for limited Mac OS X support.

The programmer’s configuration utility works only in Windows, but this should not be a big problem for Linux
users because all the options that can be set in the configuration utility are stored in persistent memory, so you
would only have to use Windows when you want to change those parameters, which should be rarely (if ever).
The programmer does not require the configuration to program AVRs or to use the TX and RX USB-to-TTL-
serial adapter pins.

The SLO-scope application works only in Windows.

The programmer is compatible with a variety of AVR programming utilities for Windows, Linux and Mac OS.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

1. Overview Page 5 of 43

http://www.pololu.com/catalog/category/8
http://www.pololu.com/catalog/category/8
http://www.pololu.com/catalog/product/975

2. Contacting Pololu
You can check the Pololu USB AVR programmer
page [http://www.pololu.com/catalog/product/1300] for additional information.
We would be delighted to hear from you about any of your projects and
about your experience with the Pololu USB AVR Programmer. You can
contact us [http://www.pololu.com/contact] directly or post on our
forum [http://forum.pololu.com/]. Tell us what we did well, what we could
improve, what you would like to see in the future, or anything else you
would like to say!

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

2. Contacting Pololu Page 6 of 43

http://www.pololu.com/picture/view/0J1326
http://www.pololu.com/picture/view/0J1326
http://www.pololu.com/catalog/product/1300
http://www.pololu.com/catalog/product/1300
http://www.pololu.com/contact
http://forum.pololu.com/

3. Getting Started in Windows
The Pololu USB AVR programmer works in Windows XP, Windows Vista, and Windows 7.

3.a. Installing Windows Drivers and Software

If you use Windows XP, you will need to have either Service Pack 3 [http://www.microsoft.com/
downloads/details.aspx?FamilyId=68C48DAD-BC34-40BE-8D85-6BB4F56F5110] or Hotfix KB918365
installed before installing the drivers for the Pololu USB AVR programmer. Some users who
installed the hotfix have reported problems using the programmer which were solved by upgrading
to Service Pack 3, so we recommend Service Pack 3 over the hotfix.

Please note that these drivers will only work for the USB AVR programmer; if you have Pololu’s original
Orangutan USB programmer [http://www.pololu.com/catalog/product/740], you will need to install the drivers
specific to that device.

Before you connect your Pololu USB AVR programmer to a computer running Microsoft Windows, you must
install its drivers:

1. Download and install the Pololu AVR Development Bundle [http://www.pololu.com/file/download/
avr_development_bundle_110524.exe?file_id=0J481] (173MB exe). This includes the drivers and software for the
Pololu USB AVR Programmer, along with WinAVR, AVR Studio 4, and the Pololu AVR C/C++ Library.
If you are not sure which of these components you need, it is OK to install all of them. If you only need
to install the drivers and software for the programmer, you can download those separately: USB AVR
Programmer Windows Drivers and Software [http://www.pololu.com/file/download/pololu-usb-avr-programmer-
win-110524.exe?file_id=0J486] (3MB exe).

2. During the installation, Windows will warn you that the drivers have not been tested by Microsoft and
recommend that you stop the installation. Click “Continue Anyway” (Windows XP) or “Install this driver
software anyway” (Windows 7 or Vista).

Windows Vista and Windows 7 users: After the installation has finished, your computer should automatically
install the necessary drivers when you connect a Pololu USB AVR programmer, in which case no further action
from you is required.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 7 of 43

http://www.microsoft.com/downloads/details.aspx?FamilyId=68C48DAD-BC34-40BE-8D85-6BB4F56F5110
http://www.microsoft.com/downloads/details.aspx?FamilyId=68C48DAD-BC34-40BE-8D85-6BB4F56F5110
http://www.pololu.com/catalog/product/740
http://www.pololu.com/file/download/avr_development_bundle_110524.exe?file_id=0J481
http://www.pololu.com/file/download/avr_development_bundle_110524.exe?file_id=0J481
http://www.pololu.com/file/download/pololu-usb-avr-programmer-win-110524.exe?file_id=0J486
http://www.pololu.com/file/download/pololu-usb-avr-programmer-win-110524.exe?file_id=0J486
http://www.pololu.com/file/download/pololu-usb-avr-programmer-win-110524.exe?file_id=0J486
http://www.pololu.com/picture/view/0J1349
http://www.pololu.com/picture/view/0J1349
http://www.pololu.com/picture/view/0J1348
http://www.pololu.com/picture/view/0J1348

Windows XP users: After the installation has finished, follow steps 3-7 for each new Pololu USB AVR
programmer you connect to your computer.

3. Connect the USB AVR programmer to your computer’s USB port. The programmer is actually three
devices in one so your XP computer will detect all three of those new devices and display the “Found
New Hardware Wizard” three times. Each time the “Found New Hardware Wizard” pops up, follow steps
4-7.

4. When the “Found New Hardware Wizard” is displayed, select “No, not this time” and click “Next”.

5. On the second screen of the “Found New Hardware Wizard”, select “Install the software automatically”
and click “Next”.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 8 of 43

6. Windows XP will warn you again that the driver has not been tested by Microsoft and recommend that
you stop the installation. Click “Continue Anyway”.

7. When you have finished the “Found New Hardware Wizard”, click “Finish”. After that, another wizard
will pop up. You will see a total of three wizards when plugging in the programmer. Follow steps 4-7 for
each wizard.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 9 of 43

If you use Windows XP and experience problems installing the serial port drivers, the cause of your problems
might be a bug in older versions of Microsoft’s usb-to-serial driver usbser.sys. Versions of this driver prior to
version 5.1.2600.2930 will not work with the USB AVR programmer. You can check what version of this driver
you have by looking in the “Details” tab of the “Properties” window for C:\Windows\System32\drivers\usbser.sys.
To get the fixed version of the driver, you will need to either install Service Pack 3 [http://www.microsoft.com/
downloads/details.aspx?FamilyId=68C48DAD-BC34-40BE-8D85-6BB4F56F5110] or Hotfix KB918365. Some users who
installed the hotfix have reported problems using the programmer which were solved by upgrading to Service
Pack 3, so we recommend Service Pack 3 over the hotfix.

After installing the drivers, if you go to your computer’s Device Manager and expand the “Ports (COM & LPT)”
list, you should see two COM ports: “Pololu USB AVR Programmer Programming Port” and “Pololu USB AVR
Programmer TTL Serial Port”. In parentheses after these names, you will see the name of the port (e.g. “COM3”
or “COM4”). If you expand the “Pololu USB Devices” list you should see an entry for the Pololu USB AVR
programmer.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 10 of 43

http://www.microsoft.com/downloads/details.aspx?FamilyId=68C48DAD-BC34-40BE-8D85-6BB4F56F5110
http://www.microsoft.com/downloads/details.aspx?FamilyId=68C48DAD-BC34-40BE-8D85-6BB4F56F5110

Windows XP device manager showing the Pololu USB AVR
Programmer

Windows Vista device manager showing the Pololu USB AVR Programmer

Some software will not allow connection to higher COM port numbers. If you need to change the COM port
number assigned to your USB device, you can do so using the Device Manager. Bring up the properties dialog for
the COM port and click the “Advanced…” button in the “Port Settings” tab. From this dialog you can change the
COM port assigned do your device.

Once your have successfully installed the device drivers, you can run the configuration utility that came in the
ZIP file, pgm03a_config.exe. This is a stand-alone Windows application that allows you to change many of the
settings of your programmer. Please see Section 3.d for more information.

This software package also contains the installation files for the Pololu SLO-scope application for Windows.
Please see Section 7 for installation and usage instructions.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 11 of 43

3.b. Programming AVRs Using AVR Studio
The following tutorial covers the steps needed to program AVRs in Windows using AVR Studio and a Pololu
USB AVR programmer. Specifically, we will write a simple program to blink an LED connected to pin
PD1 of an AVR. On any of the Orangutan robot controllers [http://www.pololu.com/catalog/category/8] and the 3pi
Robot [http://www.pololu.com/catalog/product/975], this program will blink the red user LED. If you want to program
an AVR that does not have an LED connected to pin PD1, the LED-blinker code in this tutorial will have no
visible effect.

In this tutorial, we will be using WinAVR and AVR Studio 4. WinAVR [http://winavr.sourceforge.net/] is an open
source suite of software development tools for the Atmel AVR series of microcontrollers. It includes the GNU
GCC compiler for C and C++. WinAVR alone will give you all the tools you need to start programming
AVRs with the USB AVR programmer, but Atmel offers AVR Studio 4 [http://www.atmel.com/forms/
software_download.asp?category_id=163&family_id=607&subfamily_id=760&fn=dl_AvrStudio4Setup.exe], a free integrated
development environment (IDE) designed to work with the WinAVR GCC C/C++ compiler. AVR Studio 4
includes a simulator and other useful tools, and supports the AVR ISP protocol used by the Pololu USB AVR
Programmer.

You will need to have the Pololu USB AVR Programmer’s drivers, Win AVR, and AVR Studio 4 installed on
your computer. If you have not done so already, you can install all of these components by installing the Pololu
AVR Development Bundle (see Section 3.a).

Atmel has released AVR Studio 5, but at the time of this writing it is still in beta. This tutorial applies
to AVR Studio 4 only.

If you have an Orangutan or 3pi and want to jump straight in to using your USB AVR programmer, you can
skip steps 1-3 by downloading the AVR Studio project these steps would create. Determine the microcontroller
on your device, download the corresponding file below, extract all the files to a directory, open the AVR Studio
project file (BlinkLED.aps), and proceed to step 4.

• mega48: BlinkLED_m48.zip [http://www.pololu.com/file/download/BlinkLED_m48.zip?file_id=0J188] (9k zip)

• mega168: BlinkLED_m168.zip [http://www.pololu.com/file/download/BlinkLED_m168.zip?file_id=0J189] (9k zip)

• mega328: BlinkLED_m328.zip [http://www.pololu.com/file/download/BlinkLED_m328.zip?file_id=0J190] (9k zip)

1.
Open AVR Studio and click New Project. Select AVR GCC for the project type. Enter the project name
and initial file name. In the screenshot below, we named our project “BlinkLED” and elected to have a
folder called “C:\BlinkLED” created containing the blank file “BlinkLED.c”. Click Next >>. DO NOT click
“Finish” yet. If you do accidentally click “Finish”, you will not be able to perform step 2 and will instead
have to set the device by going to the “Project” menu and selecting “Configuration Options”.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 12 of 43

http://www.pololu.com/catalog/category/8
http://www.pololu.com/catalog/product/975
http://www.pololu.com/catalog/product/975
http://winavr.sourceforge.net/
http://www.atmel.com/forms/software_download.asp?category_id=163&family_id=607&subfamily_id=760&fn=dl_AvrStudio4Setup.exe
http://www.atmel.com/forms/software_download.asp?category_id=163&family_id=607&subfamily_id=760&fn=dl_AvrStudio4Setup.exe
http://www.pololu.com/file/download/BlinkLED_m48.zip?file_id=0J188
http://www.pololu.com/file/download/BlinkLED_m168.zip?file_id=0J189
http://www.pololu.com/file/download/BlinkLED_m328.zip?file_id=0J190

Creating a new AVR Studio project, step 1

2.
Select AVR Simulator as the debug platform and then select the appropriate device for your target AVR.
For an Orangutan or 3pi Robot, this will either be ATmega48, ATmega168, or ATmega328P depending on
which chip your Orangutan or 3pi Robot has. Click Finish.

Creating a new AVR Studio project, step 2

3.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 13 of 43

Write your program in BlinkLED.c as seen in the screen shot below and click the Build button on the toolbar
(or press F7).

Building a project with AVR Studio

Note: You will probably want to customize this program slightly if the clock frequency of
your AVR is not 20 MHz. F_CPU should be defined as the clock frequency of your AVR in
units of Hz. If you do not make this change, the timing of delayms() will be off, but the LED
will still blink.

4.
Make sure your USB AVR programmer is connected to your computer via its USB A to mini-B cable and
then click the Display the ‘Connect’ Dialog button on the toolbar. You can also accomplish this by going
to the “Tools” menu and selecting Program AVR > Connect….

Connecting to the programmer with AVR Studio

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 14 of 43

5.
This will bring up a programmer selection dialog. Select AVRISP as the platform. The USB AVR
programmer uses AVR ISP version 2, which is written as AVRISPv2. Please note that this is not the same
as AVR ISP mkII. Select the port name of your programmer if you know what it is, or select Auto and AVR
Studio will try all the ports until it detects the programmer. You can determine your programmer’s port name
by looking in the “Ports (COM & LPT)” list of your Device Manager for “Pololu USB AVR Programmer
Programming Port”. Click “Connect…” to bring up the ISP window.

AVR Studio’s programmer-selection dialog

If the ISP window does not appear when you click “Connect…”, your computer cannot detect the
programmer. Please see Troubleshooting (Section 8) for help identifying and fixing the problem.

If AVR Studio brings up a dialog asking if you want to upgrade (or downgrade) your programmer’s
firmware, click Cancel to ignore the message and use your programmer. To prevent this dialog from
appearing in the future, use the Configuration Utility (Section 3.d) to change the programmer’s hardware
and software version numbers.

6.
Select the Main tab. In the dropdown box that lists AVR models, select the same device that you selected
when you created the project. For an Orangutan or 3pi Robot, this will either be ATmega48, ATmega168,
or ATmega328P.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 15 of 43

Selecting the device for ISP programming in AVR Studio

7.
If you have not done so already, connect the programmer to the target device using the 6-pin ISP cable. Make
sure the cable is oriented so that pin 1 on the connector lines up with pin 1 on your target device! You can
test the connection by going to the Main tab and clicking the Read Signature button. This sends a command
to the target AVR asking for its device signature. If everything works correctly, you should see “Signature
matches selected device”. If the signature does not match the selected device, you probably have the wrong
device selected (or possibly your target device is turned off). If reading the signature fails entirely, please see
Troubleshooting (Section 8) for help getting your connection working.

Reading the device signature in AVR Studio’s Main ISP tab

8.
Now it is time to program your target device. Select the Program tab. Your Input HEX File in the Flash
section needs to be the hex file that was generated when you built your program. You can browse for this
using the "..." button to the right of the input file text box. If you navigate to your project’s folder, you
should find it as “default\<project name>.hex”. Click the Program button (make sure you click the one in
the Flash section, not one in the “EEPROM” or “ELF Production File Format” sections!).

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 16 of 43

AVR Studio’s Program ISP tab

As your USB AVR programmer programs the AVR, you should see all three LEDs flicker and you should
see the following text appear at the bottom of the window:

Reading FLASH input file.. OK
Setting mode and device parameters.. OK!
Entering programming mode.. OK!
Erasing device.. OK!
Programming FLASH .. OK!
Reading FLASH .. OK!
FLASH contents is equal to file.. OK
Leaving programming mode.. OK!

If there were no problems, the LED connected to PD1 of your AVR should now be flashing! Note that if you
are trying this on a 3pi robot and you have not yet soldered in the optional through-hole LEDs, the flashing

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 17 of 43

LED will be on the bottom of the robot. If there was a problem, please see Troubleshooting (Section 8) for
help identifying and fixing it.

3.b.1. Using Advanced Features of AVR Studio
This section provides a brief overview of the programming features of AVR Studio that were not covered in
Section 3.b. You will not typically need to use of these advanced features, but it is good to know about them for
the rare occasions when you will need them. Please see the Atmel’s AVR Studio documentation for more detailed
descriptions of these features.

ISP Frequency
In the ISP window, under the Main tab, the Programming Mode and Target Settings section lets you set
the frequency of the clock used when programming the target device. The higher the ISP frequency, the faster
the target AVR will be programmed, but this frequency must be less than a quarter of the target AVR’s clock
frequency. Click Read to read the frequency from the programmer and click Write to write the selected frequency
to the programmer. It is important to note that the frequencies in the ISP Freq list are not correct when you are
using the Pololu USB AVR programmer. See Section 3.d for a list of the actual frequencies and more information
about selecting the ISP frequency.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 18 of 43

AVR Studio’s interface for setting the ISP frequency.

Fuses (proceed with caution!)
Clicking on the Fuses tab automatically causes the programmer to read the fuse settings of the target AVR. If the
programmer is not connected to the target AVR when you select this tab, AVR Studio displays an error message.
Fuses allow you to configure certain persistent, fundamental aspects of your AVR such as boot flash size, brown-
out detection level, and the clock off of which it should run (e.g. external crystal or internal oscillator). To learn
more about the fuses and what they do, see the datasheet for your specific AVR.

Warning: You can permanently disable your AVR by setting the fuses incorrectly. Only
advanced users who know precisely what they are doing should change the fuse settings!

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 19 of 43

Lock Bits
Clicking on the Lock Bits tab automatically causes the programmer to read the lock bits of the target AVR. If the
programmer is not connected to the target AVR when you select this tab, AVR Studio displays an error message.
Lock bits allow you to secure your AVR by preventing further flash writing or reading. The lock bits can be reset
to a fully unlocked state by performing a chip erase (i.e. by clicking the Erase Device button in the Main tab).
Lock bits are usually only important if you wish to release a product to other people without giving them access
to the program it is running, or if you wish to make it slightly more difficult to overwrite a programmed chip.

3.c. Programming AVRs Using AVRDUDE
It is possible to program AVRs in Windows using AVRDUDE [http://www.bsdhome.com/avrdude/]. AVRDUDE is
free and included in the WinAVR [http://winavr.sourceforge.net/] package. To program a hex file on to your AVR,
you would type something similar to the following into a command prompt:

cd C:\BlinkLED\default
avrdude -p m168 -P COM2 -c avrispv2 -e -U flash:w:BlinkLED.hex

• The argument following the -p is the part number of the AVR. For an Orangutan or 3pi Robot, the part
number should be m328p, m168, or m48.

• The argument following the -P is the port name. You can determine your programmer’s port name by
looking in the “Ports (COM & LPT)” list of your Device Manager for “Pololu USB AVR Programmer
Programming Port”.

• The argument following the -c is the programmer protocol and should be avrispv2.

• The -e option requests an initial chip erase.

• The -U option is used for writing, reading, or verifying flash, EEPROM, fuses, or lock bits. In this
example we are using -U to write BlinkLED.hex to flash.

Please see the AVRDUDE documentation [http://www.nongnu.org/avrdude/user-manual/avrdude.html] for more
detailed information.

3.d. Configuring the Programmer
The Pololu USB AVR programmer can be configured using the Pololu USB AVR Programmer Configuration
Utility for Windows. The utility comes with the Windows drivers (Section 3.a) and can be run by double clicking
on the executable pgm03a_config.exe. This section describes all the available settings and what they do.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 20 of 43

http://www.bsdhome.com/avrdude/
http://winavr.sourceforge.net/
http://www.nongnu.org/avrdude/user-manual/avrdude.html

Pololu USB AVR programmer configuration utility for Windows.

Target VDD Monitor
The USB AVR programmer monitors the voltage of the target AVR while it is being programmed to ensure
that ISP commands are only sent when the AVR’s VDD is at a safe level, since attempting to program an
underpowered AVR can permanently disable it. There are two parameters that control this feature:

• Minimum Allowed: This parameter determines the lowest level (in millivolts) that the target AVR’s
VDD is allowed to go. If the target AVR’s VDD drops below this level, the programmer immediately aborts
programming and turns on the red programming LED. Lowering this value will allow programming of AVRs
at lower voltages, but will make it more likely that the programmer will send ISP commands to the AVR
while the AVR is running at an unsafe voltage. The default value is 4384 mV.

• Maximum Range Allowed: This parameter determines how much the target AVR’s VDD measurements
are allowed to vary (in millivolts). When the programmer recieves an ISP programming request, it starts
keeping track of the maximum and minimum measurements of the AVR’s VDD. If the difference between
the maximum and minimum exceeds the allowed maximum range, the programmer immediately aborts
programming and turns on the red programming LED. Increasing this value will allow programming of
AVRs under less stable power conditions, but will make it more likely that the programmer will send ISP
commands to the AVR while the AVR is running at an unsafe voltage. The default value is 512 mV.

Measurements From Last Programming
This section displays the minimum and range of the target VDD measurements from the last time the programmer
was in programming mode or tried to enter programming mode. This can help determine whether programming
problems are due to the target’s power supply.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 21 of 43

Error From Last Programming
When an error or unexpected condition causes the programmer to leave programming mode, or fail to enter
programming mode, then the programmer turns on the red LED and records the error code. A description of the
error can be found here. See Troubleshooting (Section 8) for details on specific error messages.

ISP Frequency
The higher the ISP frequency, the faster you can program the target AVR, but the ISP frequency must be less than
a quarter of the target AVR’s clock frequency.

The ISP frequency can be set in AVR Studio (see Section 3.b.1) as well as in the Configuration Utility, but the
frequencies listed in the AVR Studio user interface do not match the actual frequencies used by the Pololu USB
AVR programmer.

Frequency Listed
in AVR Studio

Actual Frequency
Allowed Target

Frequency

1.845 MHz 2000 kHz > 8 MHz

460.8 kHz 1500 kHz > 6 MHz

115.2 kHz 750 kHz > 3 MHz

57.6 kHz 200 kHz > 800 kHz

4.00 kHz 4.0 kHz > 16 kHz

1.21 kHz* 1.5 kHz* > 6 kHz

* This ISP frequency is so low that AVR Studio times out while attempting to program flash or EEPROM pages,
but it can be used to program fuses and lock bits on AVRs running at frequencies as low as 6 kHz.

An AVR running at 20 MHz or higher (e.g. the Orangutan SV-xx8, Orangutan LV-168, Baby Orangutan, and 3pi
robot) can be programmed at 2000 kHz (1.845 MHz in AVR Studio), which is the fastest setting.

An AVR running at 8 MHz or higher (e.g. the original Orangutan) can be programmed at 1500 kHz (460.8 kHz
in AVR Studio).

An AVR running at 1 MHz, such as one clocked off of the internal RC oscillator with the divide-by-8 fuse bit
programmed, can be programmed at an ISP frequency as high as 200 kHz (57.6 kHz in AVR Studio). This is the
USB AVR programmer’s default ISP frequency.

The two lowest frequencies support AVRs with a clock frequency under 1 MHz. The 1.5 kHz setting is too
slow to actually program the flash or EEPROM on your target device using AVR Studio (it will timeout while
attempting to program the flash/EEPROM pages), but it will still let you set the fuses. Be aware that if you attempt
to program flash or EEPROM at 4.0 kHz, it might take five minutes or longer to program a 16KB of flash, so we
only recommend this ISP frequency for putting small programs on very low-frequency AVRs.

Serial Number
This is a unique identifier assigned to this programmer by Pololu. This number can not be changed.

TTL Serial Port
This section is used to identify pins A and B with serial handshaking lines so that they can be used as general
purpose user I/O lines. See Section 6.a.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 22 of 43

AVR ISP Emulation
This section is used to change the hardware and software version numbers of the programmer. These numbers
are read by AVR Studio when it connects to the programmer and are expressed in hex. If these numbers do
not match the numbers that AVR Studio expects, then it brings up a dialog asking if you want to upgrade (or
downgrade) your programmer’s firmware; the Pololu AVR USB programmer does not support this method of
firmware upgrading, so this dialog is nothing more than a nuisance to those not using an Atmel programmer.
You should click Cancel to ignore the message and proceed to the AVRISP programming dialog. To prevent this
firmware-upgrade dialog from appearing in the future, set the numbers here to the numbers that AVR Studio says
it expects.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

3. Getting Started in Windows Page 23 of 43

4. Getting Started in Linux
The Pololu USB AVR programmer can be used in Linux to program AVRs and to send and receive bytes on the
USB-to-TTL-serial adapter.

The configuration utility is written for Windows; there is no Linux version. All of the parameters that can be set
in the configuration utility are stored in persistent memory, so Linux users only have to use Windows when they
want to change those parameters, which should not be too often.

The SLO-scope client is written for Windows, and there is no Linux version; Linux users are unable to use the
SLO-scope at this time.

If you would like to write a configuration utility or SLO-scope application for Linux, you can contact
us [http://www.pololu.com/contact] for information.

4.a. Linux Driver
No driver installation is necessary to use the Pololu USB AVR Programmer in Linux. The Linux Kernel comes
with a USB-to-serial driver (the cdc_acm module) that automatically works with the programmer. (The source
code for this driver is in the kernel source under drivers/usb/class/cdc-acm.c.)

When you plug your programmer in to a Linux computer, the CDC ACM driver should automatically detect it
and create two serial port devices. Unless you have other devices plugged in that use the CDC ACM driver, the
names of these two serial port devices should be /dev/ttyACM0 for the programming port and /dev/ttyACM1 for
the USB-to-TTL-serial adapter.

If the programmer is plugged in, but you do not see these devices, please see Troubleshooting (Section 8) for help
identifying and fixing the problem.

4.b. Programming AVRs in Linux
To program AVRs in Linux using the Pololu USB AVR Programmer, you will need to install four software
packages, which can be downloaded from their respective websites. In Ubuntu Linux, these packages are provided
in the “Universe” repository.

1. gcc-avr: the GNU C compiler, ported to the AVR architecture

2. avr-libc: a library giving access to special functions of the AVR

3. binutils-avr: tools for converting object code into hex files

4. avrdude: the software to drive the programmer

Once these packages are installed, you will be able to compile C programs for the AVR with gcc to produce hex
files. These hex files can be loaded on to your AVR using avrdude and a programmer.

We will not go into the details of writing C programs for the AVR here, but, as an example, we will show
you how to use your Linux computer and the USB AVR Programmer to make an LED connected to PD1 of
an AVR blink. On any of the Orangutan robot controllers [http://www.pololu.com/catalog/category/8] and the 3pi
Robot [http://www.pololu.com/catalog/product/975], this program will blink the red user LED. If you want to program
an AVR that does not have an LED connected to pin PD1, the LED-blinker code in this tutorial will have no
visible effect.

If your device is an ATmega48, ATmega168, or ATmega328P, download the corresponding archive below:

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

4. Getting Started in Linux Page 24 of 43

http://www.pololu.com/contact
http://www.pololu.com/contact
http://www.pololu.com/catalog/category/8
http://www.pololu.com/catalog/product/975
http://www.pololu.com/catalog/product/975

• mega48: BlinkLED_m48.zip [http://www.pololu.com/file/download/BlinkLED_m48.zip?file_id=0J188] (9k zip)

• mega168: BlinkLED_m168.zip [http://www.pololu.com/file/download/BlinkLED_m168.zip?file_id=0J189] (9k zip)

• mega328: BlinkLED_m328.zip [http://www.pololu.com/file/download/BlinkLED_m328.zip?file_id=0J190] (9k zip)

If your device is not one of the above, you will need to download one of the above archives and modify the
makefile to use your particular device.

Unpack the archive on your Linux computer. Copy the file BlinkLED/linux/Makefile into the BlinkLED/
directory. You will need to edit this file. Change all instances of “/dev/ttyUSB0” to the name of the programming
port device, usually /dev/ttyACM0. Additionally, it may be necessary to change the settings at the beginning to
reflect the locations where the AVR utilities were installed.

Note: You will probably want to edit BlinkLED.c slightly if the clock frequency of your AVR is
not 20 MHz. F_CPU should be defined as the clock frequency of your AVR in units of Hz. If you
do not make this change, the timing of delayms() will be off, but the LED will still blink.

At this point, you should be ready to compile the example program and load it on to the AVR. Plug in the
programmer and type make. You should see output like this:

/usr/bin/avr-gcc -g -Os -Wall -mcall-prologues -mmcu=atmega168 -c -o BlinkLED.o BlinkLED.c
/usr/bin/avr-gcc -g -Os -Wall -mcall-prologues -mmcu=atmega168 BlinkLED.o -o BlinkLED.obj
/usr/bin/avr-objcopy -R .eeprom -O ihex BlinkLED.obj BlinkLED.hex
/usr/bin/avrdude -c avrispv2 -p m168 -P /dev/ttyACM0 -e
avrdude: AVR device initialized and ready to accept instructions
Reading | ## | 100% 0.08s
avrdude: Device signature = 0x1e9406
avrdude: erasing chip
avrdude: safemode: Fuses OK
avrdude done. Thank you.
/usr/bin/avrdude -c avrispv2 -p m168 -P /dev/ttyACM0 -U flash:w:BlinkLED.hex
avrdude: stk500_2_ReceiveMessage(): timeout
avrdude: AVR device initialized and ready to accept instructions
Reading | ## | 100% 0.03s
avrdude: Device signature = 0x1e9406
avrdude: NOTE: FLASH memory has been specified, an erase cycle will be performed

To disable this feature, specify the -D option.
avrdude: erasing chip
avrdude: reading input file "BlinkLED.hex"
avrdude: input file BlinkLED.hex auto detected as Intel Hex
avrdude: writing flash (224 bytes):
Writing | ## | 100% 0.39s
avrdude: 224 bytes of flash written
avrdude: verifying flash memory against BlinkLED.hex:
avrdude: load data flash data from input file BlinkLED.hex:
avrdude: input file BlinkLED.hex auto detected as Intel Hex
avrdude: input file BlinkLED.hex contains 224 bytes
avrdude: reading on-chip flash data:
Reading | ## | 100% 0.05s
avrdude: verifying ...
avrdude: 224 bytes of flash verified

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

4. Getting Started in Linux Page 25 of 43

http://www.pololu.com/file/download/BlinkLED_m48.zip?file_id=0J188
http://www.pololu.com/file/download/BlinkLED_m168.zip?file_id=0J189
http://www.pololu.com/file/download/BlinkLED_m328.zip?file_id=0J190

avrdude: safemode: Fuses OK
avrdude done. Thank you.
rm BlinkLED.o BlinkLED.obj

This output indicates the AVR was successfully programmed. The LED connected to PD1 of your AVR should
now be flashing! Note that if you are trying this on a 3pi robot and you have not yet soldered in the optional
through-hole LEDs, the flashing LED will be on the bottom of the robot. If there was a problem, please see
Troubleshooting (Section 8) for help identifying and fixing it.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

4. Getting Started in Linux Page 26 of 43

5. Getting Started in Mac OS X
The Pololu USB AVR Programmer can be used to program AVR microcontrollers, using Mac OS X as the
development environment.

The USB AVR Programmer by default supports Windows and Linux as development platforms. A firmware
modification is required to support OS X. The next section explains how to download and apply this modification.

Note: The modified firmware for OS X only allows programming of AVRs; it does not support the
bonus features of the programmer (theTTL-level serial port and the SLO-scope).

5.a. Firmware Support for Mac OS X
To use the Pololu USB AVR Programmer with Mac OS X, a firmware modification is required.

Installing the firmware
To install the firmware modification, the you will need to use a Windows computer, but once the modification has
been applied, all of your further work can be done on the Mac.

1. Follow the steps in Section 3.a to install the Windows drivers and configuration utility for the Pololu
USB AVR Programmer.

2. Download the following file to the Windows computer: Firmware version 1.02nc for the Pololu USB
AVR Programmer [http://www.pololu.com/file/download/pgm03a_v1.02nc.pgm?file_id=0J427] (34k pgm).

3. Using the downloaded file, install the firmware modification by following the procedure explained in
Section 9, starting with step 3 under the heading “Upgrading Firmware”.

Checking the installation
To check the installation, first plug the Pololu USB AVR Programmer into a USB port on your Mac. Click
“Cancel” to dismiss the following dialog:

Next, navigate (using a Terminal window) to the /dev folder on the Mac, and verify that it contains two new
entries of the form <prefix>.usbmodem<serial-number>. For example:

cu.usbmodem00000011
tty.usbmodem00000011

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

5. Getting Started in Mac OS X Page 27 of 43

http://www.pololu.com/file/download/pgm03a_v1.02nc.pgm?file_id=0J427
http://www.pololu.com/file/download/pgm03a_v1.02nc.pgm?file_id=0J427

Later, when you are ready to flash a program to the microcontroller, you will need to pass one of these entries as
a parameter to avrdude.

The serial number is unique to your Programmer.

5.b. Programming AVRs in Mac OS X
Installing CrossPack
To compile programs for AVRs on the Mac, you will need to install the necessary cross-development tools and
libraries.

• Download the CrossPack for AVR Development [http://www.obdev.at/products/crosspack], which is
packaged as a .dmg file.

• Open (mount) the .dmg file, and use the Mac Installer program to install CrossPack-AVR.pkg. This
package will create a sub-directory called CrossPack-AVR-<version-date> on your hard drive (probably
under /usr/local), along with a version-neutral symbolic link CrossPack-AVR referencing the same sub-
directory. It will also add an entry to the PATH environment variable referencing CrossPack-AVR/bin.

• Programs for the AVR can now be compiled at the command line using the avr-gcc C compilers and the
avr-as assembler. For detailed instructions, see the CrossPack development manual, which is installed in the
CrossPack-AVR directory along with the tools.

Using avrdude
Once an AVR program has been compiled to a .hex file, it is ready to be flashed to the AVR. The avrdude program
(which was installed as part of the CrossPack package) may be used for this purpose.

To see the full command-line syntax for avrdude, type avrdude --help at the command line, or consult
the AVRDUDE documentation [http://www.nongnu.org/avrdude/user-manual/avrdude.html]. Typical usage would be as
follows:

avrdude -p <partno> -c avrisp2 -P <port> -U flash:w:<filename>.hex

For example:

avrdude -p m328p -c avrisp2 -P /dev/cu.usbmodem00000011 -U flash:w:test.hex

If all goes well, the output should look something like this:

avrdude: AVR device initialized and ready to accept instructions
Reading | ## | 100% 0.01s
avrdude: Device signature = 0x1e950f
avrdude: NOTE: FLASH memory has been specified, an erase cycle will be performed

To disable this feature, specify the -D option.
avrdude: erasing chip
avrdude: reading input file "test.hex"
avrdude: input file test.hex auto detected as Intel Hex
avrdude: writing flash (3392 bytes):
Writing | ## | 100% 0.88s
avrdude: 3392 bytes of flash written
avrdude: verifying flash memory against test.hex:
avrdude: load data flash data from input file test.hex:
avrdude: input file test.hex auto detected as Intel Hex
avrdude: input file test.hex contains 3392 bytes
avrdude: reading on-chip flash data:

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

5. Getting Started in Mac OS X Page 28 of 43

http://www.obdev.at/products/crosspack
http://www.nongnu.org/avrdude/user-manual/avrdude.html

Reading | ## | 100% 0.72s
avrdude: verifying ...
avrdude: 3392 bytes of flash verified
avrdude: safemode: Fuses OK
avrdude done. Thank you.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

5. Getting Started in Mac OS X Page 29 of 43

6. Communicating via the USB-to-TTL-Serial Adapter
One bonus feature of the Pololu USB AVR programmer is the USB-to-TTL-serial adapter, which can be used
for connecting microcontroller projects to a personal computer. The programmer’s drivers make the USB-to-
TTL-serial adapter look like a standard serial port to the operating system, allowing you to use existing terminal
programs and software that are designed to use serial ports. This feature is similar to the Pololu USB-to-serial
adapter [http://www.pololu.com/catalog/product/391] product, except the programmer has fewer control lines available
and transmits at 5 V.

The TX and RX lines of the programmer are used to send asynchronous serial communication. When the
programmer receives a byte from the computer via USB, it will transmit that byte on the TX line. When the
programmer receives a byte on the RX input line, it will send that byte back to the computer via USB.

The bytes are sent and received eight bits at a time, with no parity and one stop bit. This coding is sometimes
abbreviated 8N1. The bits must be non-inverted, meaning that a zero is sent as low voltage, and a one is sent
as high voltage. All devices involved in asynchronous serial communication need to agree ahead of time on the
duration of one bit (the baud rate), so all devices must be independently configured to run at the same baud rate
before they will be able to communicate with each other. The USB AVR programmer supports all integer baud
rates from 110 to 115200 bits per second. The following figure is an example of an 8N1 TTL serial byte:

To use the USB-to-TTL-serial adapter, you must first determine what port name the operating system has assigned
it.

To determine the port name in Microsoft Windows, open the Device Manager, expand the “Ports (COM & LPT)”
list, and look for the “Pololu USB AVR Programmer TTL Serial Port” entry. The port name will be at the end of
this line in parentheses (e.g. “COM4”). In Windows, a given device will always be associated with the same port
unless you manually change its port assignment (see Section 3.a).

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

6. Communicating via the USB-to-TTL-Serial Adapter Page 30 of 43

http://www.pololu.com/catalog/product/391
http://www.pololu.com/catalog/product/391

In Windows, the Device Manager shows which port name is assigned to the Pololu USB
AVR Programmer’s USB-to-TTL-serial adapter.

To determine the port name in Linux, type ls /dev/ttyACM*. The port name will be one of the devices
listed there. If there are only two ports, then the USB-to-TTL-serial adapter will be /dev/ttyACM1 (and the
programming port will be /dev/ttyACM0). If you see more than two ports, then you should look at the output
from dmesg when you plug in the USB AVR programmer to see which two ports are created; the second port is
the USB-to-TTL-serial adapter. In Linux, the port name depends on how many other devices are using the USB
CDC ACM driver to create virtual serial ports at the time the USB AVR Programmer is plugged in.

The USB AVR Programmer’s two serial ports in
Linux.

After determining the port name, you can use any serial port software to communicate on that port.

There are many free terminal programs available, including PuTTY [http://www.chiark.greenend.org.uk/~sgtatham/
putty/] (Windows or Linux), Tera Term [http://hp.vector.co.jp/authors/VA002416/teraterm.html] (Windows), and Br@y
Terminal [http://braypp.googlepages.com/terminal] (Windows). Advanced users developing scripted applications may
prefer the free terminal program kermit [http://www.columbia.edu/kermit/]. To use any of these terminal programs
with the USB-to-TTL-serial adapter, you must specify the port name determined above and your desired baud
rate. The characters you type will be transmitted on the programmer’s TX line. Bytes received by the programmer
on the RX line will be displayed on the screen by the terminal program.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

6. Communicating via the USB-to-TTL-Serial Adapter Page 31 of 43

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://hp.vector.co.jp/authors/VA002416/teraterm.html
http://braypp.googlepages.com/terminal
http://braypp.googlepages.com/terminal
http://www.columbia.edu/kermit/

PuTTY is a free Windows terminal program that can send and receive bytes on a
serial port.

If you need to send and receive non-ASCII bytes, you can use the Pololu Serial Transmitter Utility for
Windows [http://www.pololu.com/docs/0J23].

You can also write a computer program to use the serial port. The freely available Microsoft .NET framework
contains a SerialPort class that makes it easy to read and write bytes from a serial port. Here is some example C#
.NET code that uses a serial port:

// Choose the port name and the baud rate.
System.IO.Ports.SerialPort port = new System.IO.Ports.SerialPort("COM4", 115200);
// Connect to the port.
port.Open();
// Transmit two bytes on the TX line: 1, 2
port.Write(new byte[]{1, 2}, 0, 2);
// Wait for a byte to be received on the RX line.
int response = port.ReadByte();
// Show the user what byte was received.
MessageBox.Show("Received byte: " + response);
// Disconnect from the port so that other programs can use it.
port.Close();

6.a. Communicating via the Serial Control Lines

Firmware version 1.04 (released on April 29th, 2011) fixes a problem with the RTS and DTR control
signal outputs. If you want to use those outputs, you should upgrade your firmware to version 1.04.
Please see Section 9 for information about upgrading your firmware.

Firmware version 1.03 (released on December 22nd, 2010) inverts the TTL serial port’s control
signals so that 0 V corresponds to 1 and 5 V corresponds to 0, making it consistent with other
USB-to-TTL-serial adapters. Prior to version 1.03, the opposite convention was used.

In addition to transmitting bytes on the TX line and receiving bytes on the RX line, the USB-to-TTL-serial adapter
can use programmer pins A and B as serial handshaking lines of your choosing. Each pin can be configured as

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

6. Communicating via the USB-to-TTL-Serial Adapter Page 32 of 43

http://www.pololu.com/docs/0J23
http://www.pololu.com/docs/0J23

an input or an output by identifying it with a serial handshaking line. The table below shows which handshaking
lines are available (CTS is not available because there is no provision for it in the USB CDC ACM subclass).

Direction Name .NET System.IO.Ports.SerialPort member

Output DTR DtrEnable

Output RTS RtsEnable

Input CD CDHolding

Input DSR DsrHolding

Input RI N/A

By default, pins A and B are high-impedance inputs that are not identified with any handshaking line. To use
pins A and/or B, you must configure them to be serial handshaking lines using the Pololu USB AVR Programmer
Configuration Utility (see Section 3.d). The programmer stores the configuration in persistent memory.

Pins A and B can be identified with serial handshaking lines using the Pololu USB AVR
Programmer Configuration Utility.

After your have associated pins A and/or B with serial handshaking lines, you can take advantage of the I/O
capabilities of A and B. For input lines, this means you can get a digital reading of the voltage on the line over
USB. For output lines, this means you can set the voltage on the line over USB. A voltage of 0 V corresponds to
a logical 1, while a voltage of 1 V corresponds to a logical 0.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

6. Communicating via the USB-to-TTL-Serial Adapter Page 33 of 43

For example, if you wanted to connect your Pololu USB AVR Programmer to an AVR running the Arduino
bootloader, you could configure pin A to be DTR and then connect pin A to the AVR’s reset line. When the
Arduino software sets DTR to 1, the programmer will drive the line A low, which puts the AVR in reset mode.

You can read input lines and/or set output lines by either using a terminal program that supports control signals
(such as Bray Terminal [http://braypp.googlepages.com/terminal]) or by writing a computer program. The Microsoft
.NET framework is free to use and it contains a SerialPort class that makes it easy to read and write bytes from a
serial port as well as set and read the control signals. Here is some example C# .NET code that uses a serial port
in this way:

// Choose the port name and the baud rate.
System.IO.Ports.SerialPort port = new System.IO.Ports.SerialPort("COM4", 115200);
// Connect to the port.
port.Open();
// Assuming that line A is identified with RTS, and your firmware version is 1.04
// or greater, this drives line A low (0 V).
port.RtsEnable = true;
// Assuming that line B is identified with DSR, and your firmware version is 1.03
// or greater, this takes an inverted digital reading of line B.
if (port.DsrHolding)
{

MessageBox.Show("Line B is low.");
}
else
{

MessageBox.Show("Line B is high.");
}
// Disconnect from the port so that other programs can use it.
port.Close();

When the SLO-scope feature is enabled, it assumes control of pins A and B and uses them
as analog inputs (or digital outputs controlled by the SLO-scope application). Pins A and B
temporarily lose their serial handshaking line associations while the SLO-scope is active, but these
associations are restored once the SLO-scope is disabled. You can disable the SLO-scope via the
SLO-scope application or by unplugging the programmer and plugging it back in.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

6. Communicating via the USB-to-TTL-Serial Adapter Page 34 of 43

http://braypp.googlepages.com/terminal

7. Measuring Voltages Using the SLO-scope
A second bonus feature of the Pololu USB AVR programmer is the severely limited oscilloscope (SLO-scope),
which uses lines A and B as inputs to measure TTL-level voltages at a sample rate of up to 20 kHz. The SLO-
scope has two operating modes:

• Two 8-bit analog channels sampling at 10 kHz

• One 7-bit analog channel (A) and one digital channel (B) sampling at 20 kHz

The SLO-scope can measure voltages between ground and approximately 5 V (depending on your computer’s
USB bus voltage); you can measure higher voltages by passing them through an external voltage divider before
connecting them to the programmer. The following schematic shows a general voltage divider circuit that can be
used to scale down an input signal to the SLO-scope’s required 0 – 5 V range:

The total resistance of R1+R2 should be as large as possible to minimize the divider’s effect on your signal, but it
should not exceed 100 kΩ or so.

Installing and Runing the Pololu SLO-scope Application
The SLO-scope application for Windows comes with the Windows drivers (Section 3.a) and can be installed by
running the installation batch file sloscope_installer.bat.

Windows Vista: right click on sloscope_installer.bat and select “Run as administrator”.
Windows XP: simply double click on sloscope_installer.bat.

At this time, the SLO-scope can only be used under the Windows operating system. Once installation is complete,
the application should begin running automatically. Note that the application will give you an error message and
close if a programmer is not connected to your computer. To start the SLO-scope application yourself, open the
Start menu and navigate to:

All Programs > Pololu > SLO-scope

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

7. Measuring Voltages Using the SLO-scope Page 35 of 43

http://www.pololu.com/picture/view/0J1424
http://www.pololu.com/picture/view/0J1424

The SLO-scope application was written as a Visual C# 2008 project: SLO-scope client C# source
code [http://www.pololu.com/file/download/sloscope_client_100330.zip?file_id=0J335] (56k zip)

Using the Pololu SLO-scope Application
This application connects to the programmer, streams data from the SLO-scope, and provides the basic
functionality of a 10 or 20 kHz oscilloscope.

Pololu SLO-scope client for Windows.

Controls are available for setting the SLO-scope operating mode, adjusting the horizontal and vertical scales, and
configuring lines A and B as digital outputs.

To start capturing data, click the Run button in the upper right corner. If the horizontal scale is such that it takes
more than 200 ms of data to fill the lower SLO-scope pane, the data will continuously stream across the pane.
If the lower pane displays 200 ms of data or less, the pane will draw all of its data at once when it has enough
new data to warrant an update (or, if triggering is enabled, when the trigger event is satisfied). In this latter time
domain, you can enable the persistence feature (check the Persistence checkbox) to cause the data on the screen
to fade out over time when the next update occurs. The Length parameter determines how long it takes for the
data to fade. The upper SLO-scope pane shows a summary of all of the data currently stored in memory. This is
approximately 10 seconds of data when running at 10 kHz and 5 seconds of data when running at 20 kHz.

To review the captured data in detail, click the Stop button (in the same place that the Run previously occupied).
When the SLO-scope is stopped, you can scroll through the data stored in memory by clicking on the portion of
the upper pane that you want to inspect or by clicking and dragging the cursor in the lower pane to pan through
the data more finely. You can zoom in and out by changing the horizontal scale, and you can inspect the data in

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

7. Measuring Voltages Using the SLO-scope Page 36 of 43

http://www.pololu.com/file/download/sloscope_client_100330.zip?file_id=0J335
http://www.pololu.com/file/download/sloscope_client_100330.zip?file_id=0J335

the lower pane by hovering over it with your cursor. A purple rectangle highlights the portion of the upper pane
is visible in the lower pane.

You can adjust the vertical scaling of a channel’s data by changing its volts-per-division parameter, and you can
adjust the amount of data that is shown in the lower pane by changing the SLO-scope’s milliseconds-per-division
(horizontal scale) parameter.

Triggering can be used when horizontal scaling is 20 ms/div or less. You can trigger on rising or falling edges of
either channel A or channel B, and you can adjust the trigger level by directly setting the value in millivolts or by
dragging the trigger level scrollbar on the right side of the lower pane to the desired position. When triggering is
enabled, the data in the lower pane will update whenever a trigger event occurs. Triggering can help you to better
identify and analyze periodic signals (such as motor noise, PWMs, etc.) while the SLO-scope is running.

To change the color used to draw a channel’s data, double click on the colored square in either the Channel A or
Channel B box.

To change the vertical position of the 0V level of a channel, click and drag that channel’s corresponding 0V-
indicator triangle on the left side of the lower pane.

While the SLO-scope is running, lines A and B do not function as serial handshaking lines as discussed in Section
6.a. Rather, the SLO-scope can control the I/O states of A and B. The SLO-scope application lets you configure
these pins as inputs (their default settings when you first enable the SLO-scope) or as digital outputs driven high
or low.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

7. Measuring Voltages Using the SLO-scope Page 37 of 43

8. Troubleshooting
This section helps solve problems you might have using the Pololu USB AVR programmer.

If the computer fails to connect to the programmer:
• Make sure your programmer is connected to your computer via a USB A to mini-B cable. If the
programmer was previously working and has since stopped, try closing all programs using the programmer
(the configuration utility, the SLO-scope client, and the AVR Studio ISP dialog), and cycle the power by
unplugging it from your computer and then reconnecting it.

• If you are in Windows, make sure you have installed the drivers the programmer needs to operate. Section
3.a describes how to install the drivers in Windows.

• Is the programmer’s green USB status LED on? This is the LED next to the USB mini-B connector. If
this LED is blinking, then your drivers are not properly installed.

• If you are in Windows, can you see your programmer listed in the Device Manager? The Device Manager
should show three devices: under “Pololu USB Devices” should be “Pololu USB AVR Programmer”, and
under “Ports (COM & LPT)” should be “Pololu USB AVR Programmer Programming Port” and “Pololu
USB AVR Programmer TTL Serial Port” and there should be no error symbols on the icons representing
these devices.

• If you are in Linux, check that /dev/ttyACM0 and /dev/ttyACM1 exist. If they do not, see the section
below.

• Your computer will only let one program at a time have a given COM port open. If you are connected
to your programmer’s programming port using another program, such as a terminal or a second instance of
AVR Studio, you will not be able to connect to that same COM port with your programming software. Please
make sure you do not have any terminal programs connected to your programmer’s programming port. If
you have multiple versions of AVR Studio running, make sure that you have closed the ISP programming
dialogs in all of them. When the ISP dialog is open, that instance of AVR Studio has an open connection to
your programmer’s programming port.

• If you are using AVR Studio, try connecting to your programmer’s specific COM port instead of selecting
the “Auto” option, which attempts to locate the port automatically. Some versions of AVR Studio fail to
automatically programmers on virtual COMs port that are too high (e.g. above COM9). If your programming
COM port is too high to select from the connection dialog box and AVR Studio does not automatically
detect the programmer, you will need to reassign the programming port to a lower virtual COM port. You
can do this by opening the properties dialog of the “Pololu USB AVR Programming Port” (found in the
“Ports (COM & LPT)” section of the Device Manager) and clicking the “Advanced…” button under the
“Port Settings” tab.

If the programmer has problems connecting to the target AVR:
• The most common cause for this problem is an incorrect connection between your programmer and your
target device. If the ISP pins are misaligned between the programmer and the target AVR, the two will not be
able to communicate. Please make sure that the ISP pins as numbered in Section 1.a are correctly connected
between your AVR and your programmer (i.e. 1 goes to 1, 2 goes to 2, etc.).

• The target AVR must be powered for programming to work. Please make sure that your target device has
power and is turned on.

• If the target AVR is running at a voltage lower than 5 V, you may need to decrease the minimum allowed
target VDD setting using the configuration utility (Section 3.d). The default minimum allowed target VDD
setting is too high to allow the programmer to program at low voltages. Please note that you might need to
take additional special steps to safely program an AVR that is running off of a voltage below VUSB-0.5 V.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

8. Troubleshooting Page 38 of 43

• Your programmer’s ISP frequency must be less than a quarter of your target AVR’s clock frequency.
If you are having trouble communicating with your target AVR, try lowering the ISP frequency using
configuration utility (Section 3.d) or the Main tab of AVR Studio’s ISP dialog (Section 3.b.1).

• If the red error LED is on, then run the configuration utility (Section 3.d) to determine the cause of the
error.

• There may be a problem with the target device. It is possible to kill a device with a static shock, by
incorrectly connecting power, or by programming the fuses incorrectly. There could also be a short or cut
trace somewhere on your target device. The ideal way to test for this is to try programming a different device
with your USB AVR programmer, or try using a different programmer to program your target device. If this
is not an option, try verifying that the target device is still functional and perform some continuity tests to
check for shorts or disconnections on the ISP programming lines. Don’t forget to check the 6-pin ISP cable
for shorts as well.

If /dev/ttyACM0 or /dev/ttyACM1 do not exist in Linux:
• Try closing all programs using the programmer, unplugging the programmer, and plugging it back in.

• If the programmer is connected, the lsusb command should output a line like this (the important thing is
the 1ffb:0081):
Bus 002 Device 002: ID 1ffb:0081

• If the CDC ACM driver detected the programmer when it was plugged in, then the dmesg command
should have some output like this:
[26.378771] /build/buildd/linux-2.6.24/drivers/usb/class/cdc-acm.c: This
device cannot do calls on its own. It is no modem.
[26.380858] cdc_acm 2-1:1.0: ttyACM0: USB ACM device
[26.413512] /build/buildd/linux-2.6.24/drivers/usb/class/cdc-acm.c: This
device cannot do calls on its own. It is no modem.
[26.413542] cdc_acm 2-1:1.2: ttyACM1: USB ACM device
[26.421314] usbcore: registered new interface driver cdc_acm
[26.421333] /build/buildd/linux-2.6.24/drivers/usb/class/cdc-acm.c: v0.25:USB
Abstract Control Model driver for USB modems and ISDN adapters

• If the CDC ACM driver is associated with both serial ports of the programmer, then the /dev/bus/usb/
devices file (or /proc/bus/usb/devices) should have a group of lines like this (the important thing is that
Driver=cdc_acm should appear in four places):
T: Bus=02 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 0
D: Ver= 2.00 Cls=ef(unk.) Sub=02 Prot=01 MxPS= 8 #Cfgs= 1
P: Vendor=1ffb ProdID=0081 Rev= 0.01
S: Manufacturer=Pololu Corporation
S: Product=Pololu USB AVR Programmer
S: SerialNumber=00000005
C:* #Ifs= 5 Cfg#= 1 Atr=80 MxPwr=100mA
A: FirstIf#= 0 IfCount= 2 Cls=02(comm.) Sub=02 Prot=01
A: FirstIf#= 2 IfCount= 2 Cls=02(comm.) Sub=02 Prot=01
I:* If#= 0 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=cdc_acm
E: Ad=81(I) Atr=03(Int.) MxPS= 10 Ivl=1ms
I:* If#= 1 Alt= 0 #EPs= 2 Cls=0a(data) Sub=00 Prot=00 Driver=cdc_acm
E: Ad=02(O) Atr=02(Bulk) MxPS= 8 Ivl=0ms
E: Ad=82(I) Atr=02(Bulk) MxPS= 8 Ivl=0ms
I:* If#= 2 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=cdc_acm
E: Ad=83(I) Atr=03(Int.) MxPS= 10 Ivl=1ms
I:* If#= 3 Alt= 0 #EPs= 2 Cls=0a(data) Sub=00 Prot=00 Driver=cdc_acm
E: Ad=04(O) Atr=02(Bulk) MxPS= 8 Ivl=0ms
E: Ad=84(I) Atr=02(Bulk) MxPS= 8 Ivl=0ms
I:* If#= 4 Alt= 0 #EPs= 1 Cls=ff(vend.) Sub=01 Prot=01 Driver=(none)
E: Ad=85(I) Atr=03(Int.) MxPS= 22 Ivl=1ms

Try comparing the outputs on your system to the outputs above to determine what went wrong.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

8. Troubleshooting Page 39 of 43

Still need help?
If none of the above troubleshooting suggestions help, please contact us [http://www.pololu.com/contact] for support.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

8. Troubleshooting Page 40 of 43

http://www.pololu.com/contact

9. Upgrading Firmware
The program that runs on the USB AVR Programmer (the firmware) can be upgraded with bug fixes or new
features.

Firmware Versions
• Version 1.00, released 2009-06-02: This is the original firmware for the programmer. All programmers
that shipped before 2009-12-17 were shipped with this version.

• Version 1.01, released on 2009-12-17: This version contains two bug fixes related to the programmer’s
TTL serial port.

• Special Modified Version 1.01nc, released 2010-12-9: This modified firmware makes the programmer
appear as a single virtual COM port instead of a composite device with two virtual COM ports and a native
USB interface. This version of the firmware does not support the TTL serial port, the SLO-scope, or the
configuration utility. This special firmware version is provided to support Mac OS X.

• Special Modified Version 1.02nc, released 2010-12-21: This version is very similar to 1.01nc but it has
improved support for older versions of Mac OS X.

• Version 1.03, released on 2010-12-22: This firmware version inverts the TTL serial port’s control signals
so that 0 V corresponds to 1 and 5 V corresponds to 0.

• Version 1.04, released on 2010-04-29: This firmware version fixes a bug where if the sum of the
minimum measured target VDD and the maximum allowed range of the target VDD exceeds 8160 mV,
the programmer will incorrectly think that the AVR is not properly powered and refuse to program it. This
version also fixes a problem with the optional RTS and DTR control signal outputs on the A and B lines.

We have shipped programmers with firmware version 1.01 for over a year now, and continue to ship that version.
The fixes contained in versions 1.03 and 1.04 are not essential for AVR programming, using the TTL serial port’s
RX and TX lines, or using the SLO-scope. If you have trouble using a later version, please try downgrading to
version 1.01 and contact [http://www.pololu.com/docs/0J36/2] us.

Determining your firmware version
You can determine the firmware version by following the steps below.

To determine the programmer’s revision code in Windows: If you only see one entry for the programmer in
your Device Manager, then you have a special modified firmware version, either 1.01nc or 1.02nc. If you see
multiple entries for the programmer, then you have one of the standard firmware versions and you can determine
the exact version number by following these steps:

1. Double click on the “Pololu USB AVR Programmer” entry in the “Pololu USB Devices” list.

2. In the Details tab, select the “Hardware Ids” property in the dropdown box.

3. The first value displayed should be something like USB\VID_1FFB&PID_0081&REV_0101&MI_04. The
number after the REV_ is your revision code. If the revision code is “0001” then you have firmware version
1.00. If the revision code is “0101” then you have firmware version 1.01. If the revision code is “0103” then
you have firmware version 1.03. If the revision code is “0104” then you have firmware version 1.04.

To determine the programmer’s revision code in Linux: If you only see one device with a name matching
/dev/ttyACM* appear when you connect the programmer to your computer, then you have a special modified
firmware version, either 1.01nc or 1.02nc. If you see two such devices appear, then you have one of the standard
firmware versions and you can determine the exact version number by following these steps:

1. Connect the programmer to your computer via USB.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

9. Upgrading Firmware Page 41 of 43

http://www.pololu.com/docs/0J36/2

2. Run the following command: lsusb -v -d 1ffb:0081 | grep bcdDevice

3. This should output a line that has a number on it. That number is the revision code. If the revision code is
“0.01” then you have firmware version 1.00. If the revision code is “1.01”, then you have firmware version
1.01. If the revision code is “1.03” then you have firmware version 1.03. If the revision code is “1.04” then
you have firmware version 1.04.

Upgrading Firmware
To upgrade your programmer’s firmware, follow these steps:

1. If you have changed any of the programmer’s settings in the configuration utility or with PgmCmd, record
your current settings because the firmware upgrade process will reset the settings.

2. Download the desired version of the firmware here:
◦ Firmware version 1.04 for the USB AVR Programmer [http://www.pololu.com/file/download/
pgm03a_v1.04.pgm?file_id=0J479] (34k pgm) — released April 29th, 2011. Recommended.

◦ Firmware version 1.01 for the USB AVR Programmer [http://www.pololu.com/file/download/
pgm03a_v1.01.pgm?file_id=0J316] (34k pgm) — released December 17th, 2009.

3. Get your programmer in to bootloader mode. If you are using Windows and your programmer has the
standard firmware, this can be done by clicking the “Start Bootloader” button in the lower left corner of the
configuration utility.

If you are using a different operating system, or you have installed a special modified firmware, or your
firmware has been corrupted during an upgrade attempt, then you will need to use the programmer’s
bootloader pads to get it in to bootloader mode. To do this, first unplug everything from your programmer.
Short out the two bootloader pads highlighted below by touching them both to a wire, screwdriver, or other
conductive tool. While the pads are shorted out, plug the programmer in to USB. This may take a few tries.
You can stop shorting out the pads after the programmer is plugged in to USB.

[http://www.pololu.com/picture/view/0J2175]
The Pololu USB AVR Programmer’s bootloader pads.

4. Once the programmer is in bootloader mode, it will appear to your computer as a new device called
“Pololu pgm03a Bootloader”.

◦ Windows 7, Vista and Linux: The driver for the bootloader will automatically be installed.

◦ Windows XP: When the “Found New Hardware Wizard” is displayed, follow steps 4–6 in Section
3.a to get the driver working.

5. Once the bootloader’s drivers are properly installed, the green LED should be blinking in a double heart-
beat pattern, and there should be an entry for the bootloader in the “Ports (COM & LPT)” list of your
computer’s Device Manager in Windows.

6. Use a terminal program (such as Br@y Terminal [http://sites.google.com/site/terminalbpp/]) to connect to the
bootloader’s virtual serial port. In Windows, you can determine the port name of the bootloader (e.g. COM5)

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

9. Upgrading Firmware Page 42 of 43

http://www.pololu.com/file/download/pgm03a_v1.04.pgm?file_id=0J479
http://www.pololu.com/file/download/pgm03a_v1.04.pgm?file_id=0J479
http://www.pololu.com/file/download/pgm03a_v1.01.pgm?file_id=0J316
http://www.pololu.com/file/download/pgm03a_v1.01.pgm?file_id=0J316
http://www.pololu.com/picture/view/0J2175
http://www.pololu.com/picture/view/0J2175
http://www.pololu.com/picture/view/0J2175
http://sites.google.com/site/terminalbpp/

by looking in the Device Manager. In Linux, you can determine the port name (e.g. /dev/ttyACM0) by
running dmesg. You can use any baud rate.

7. Type the following lower-case letters in to your terminal program to send them to the bootloader:
fwbootload. After each letter is sent, the bootloader should echo back the upper-case version of that letter.
After you have finished typing this sequence, you should see “FWBOOTLOAD” as the output from the
bootloader in your terminal program, and the programmer’s yellow LED should be on.

8. Now send lower-case “s”. The bootloader will spend a few seconds erasing the current firmware and
settings, and then it will echo back an upper-case S. Do not disconnect the programmer from the computer
after this point until the upgrade is complete.

9. Now send the contents of the downloaded firmware upgrade file to the bootloader. The firmware upgrade
file is a plain-text (ASCII) file, so you can open it in a text editor (such as notepad), copy the whole thing,
and then paste it into your terminal program. Br@y terminal has a “Send File” button you can use.

10. While the file is being sent, the bootloader will send back period characters (“….”). This process will
take about 5 seconds. When the firmware upgrade is complete, the bootloader should send back a pipe
character (“|”) and turn the red LED on.

11. You can now unplug your programmer, plug it back in to the computer, and use the new firmware.

If you run into problems during a firmware upgrade, please contact us [http://www.pololu.com/contact] for assistance.

Pololu USB AVR Programmer User's Guide © 2001–2010 Pololu Corporation

9. Upgrading Firmware Page 43 of 43

http://www.pololu.com/contact

	Pololu USB AVR Programmer User's Guide
	1. Overview
	Important Safety Warning and Handling Procedures
	1.a. Module Pinout and Components
	1.b. Supported Microcontrollers
	1.c. Supported Operating Systems

	2. Contacting Pololu
	3. Getting Started in Windows
	3.a. Installing Windows Drivers and Software
	3.b. Programming AVRs Using AVR Studio
	3.b.1. Using Advanced Features of AVR Studio

	ISP Frequency
	Fuses (proceed with caution!)
	Lock Bits
	3.c. Programming AVRs Using AVRDUDE
	3.d. Configuring the Programmer
	Target VDD Monitor
	Measurements From Last Programming
	Error From Last Programming

	ISP Frequency
	Serial Number
	TTL Serial Port
	AVR ISP Emulation

	4. Getting Started in Linux
	4.a. Linux Driver
	4.b. Programming AVRs in Linux

	5. Getting Started in Mac OS X
	5.a. Firmware Support for Mac OS X
	Installing the firmware
	Checking the installation
	5.b. Programming AVRs in Mac OS X
	Installing CrossPack
	Using avrdude

	6. Communicating via the USB-to-TTL-Serial Adapter
	6.a. Communicating via the Serial Control Lines

	7. Measuring Voltages Using the SLO-scope
	Installing and Runing the Pololu SLO-scope Application
	Using the Pololu SLO-scope Application

	8. Troubleshooting
	If the computer fails to connect to the programmer:
	If the programmer has problems connecting to the target AVR:
	If /dev/ttyACM0 or /dev/ttyACM1 do not exist in Linux:
	Still need help?

	9. Upgrading Firmware
	Firmware Versions
	Determining your firmware version
	Upgrading Firmware

