

CSE 379 Design Project
Robert DeBortoli

05/04/2015

Robert DeBortoli Page 1

Table of Contents
Section 1: The Introduction .. 2

1.1: Introduction ... 3

1.2: Use case overview .. 3

1.3: Conventions ... 3

1.4: Parts List ... 4

Section 2: The Flowcharts .. 5

Section 3: The General Hardware Diagrams ... 11

3.1: AMBA overview .. 12

3.2: Bus interface diagram .. 13

3.3: Memory System ... 14

3.4: Memory Map ... 15

3.5: General Decoder Logic Diagram .. 16

3.6: Specific Decoder Design ... 17

 3.7: UART to Keypad Design .. 19

Section 4: The Component-Specific Diagrams .. 21

4.1: PrimeCell UART Overview .. 22

4.2: PrimeCell RTC Overview ... 24

4.3: PrimeCell GPIO Overview ... 26

Section 5: The References .. 30

Robert DeBortoli Page 2

Section 1: The Introduction

1.1: Introduction
1.2: Use Case Overview
1.3: Conventions
1.4: Parts List

Robert DeBortoli Page 3

1.1 Introduction

This document serves to describe in detail the design of a functional alarm clock. Functions that must be

included are displaying the time, buzzing for the alarm, allowing the user to set the time, set the alarm,

turn off the alarm, and snooze. The following components that should be used to complete these

functionalities are: An ARM microprocessor, UART, PrimeCell RTC module, PrimeCell GPIO module, 4

momentary push buttons, 3 LEDs, a buzzer, as well as a keypad. Additional system details include: 1 MB

ROM, 2MB RAM, and partial decoding must be used. The AMBA system is also utilized.

1.2 Use case overview:

Basic operation of the clock will go as such:

 To start, power on the system and then set the time by punching in 4 consecutive digits on the

keypad and pressing the set-time momentary push button.

 Set alarm proceeds in a similar manner.

 To snooze or disable the alarm simply press the corresponding momentary push buttons.

Snoozing the alarm momentarily disables it for 10 minutes.

 All digits that are not pressed into the keypad will be assumed to be 0. For example, if the

buttons 1, 0, and then “set time” are pressed, then the time that will be taken in is 10:00.

1.3 Conventions:

Conventions to be used for this document include:

 P0-P3 are the 4 momentary push buttons, in the following order: set_time, set_alarm, snooze,

and diable_alarm.

 LED1 and LED2 are the colons for the time. They are always lit. LED3 is the AM/PM LED. It is lit

when the time is in the PM.

 TR is the time register in memory (stored in clock cycles)

 AR is the alarm register in memory (stored in clock cycles)

Robert DeBortoli Page 4

1.4 Parts list:

Name Manufacturer Part Number Quantity

ARM7TDMI
Microprocessor

ARM 1

7-Sement display China Young Sun LE
Technology Co.

YSD-160AR4B-8 4

LED China Young Sun LE
Technology Co.

YSL-R531R3D-D2 3

Push button Sparkfun COM-11966 4

Buzzer CUI Inc. CEM-1203(42) 1

Keypad Sparkfun COM-08653 1

Parallel to Serial
Converter

Micrel SY10E446 1

Robert DeBortoli Page 5

Section 2: The Flowcharts

Robert DeBortoli Page 6

To demonstrate the flow of operation by the user, for the purpose of programming this system, the

following flowcharts were designed to organize this information. These are very general as the scope of

the project calls for this. For a more detailed approach to programming this system please review the

entire document, which contains pertinent and specific information on this topic.

Robert DeBortoli Page 7

Robert DeBortoli Page 8

Robert DeBortoli Page 9

Robert DeBortoli Page 10

Robert DeBortoli Page 11

Sections 3: The General
Hardware Diagrams

3.1: AMBA Overview
3.2: Bus Interface Diagrams
3.3: Memory System
3.4: Memory map
3.5: Decoder Logic Diagram
3.6: Specific Decoder Truth Table
3.7: UART to Keypad Design

Robert DeBortoli Page 12

General hardware diagrams:

This sections details overview system organization in a variety of forms and areas including: An AMBA

Overview, Bus Interface Diagrams, Memory System Diagram, Memory Map Diagram, a General and

Specific Decoder Logic Diagram, and finally a UART to keypad diagram.

3.1 AMBA overview

The following is an overview of how this system utilizes the AMBA architecture. In this system there are 5

PrimeCell GPIO modules however for cleanliness of the diagram, this is simply notated with (Quantity: 5)

instead of drawing each individual module.

Robert DeBortoli Page 13

3.2 Bus Interface Diagram

The following is a table and accompanying diagram detailing how the AHB Slave interface and APB

Bridge interact by describing the signals associated with each. After that ensues a discussion (where

appropriate) on the relevance of these signals to the system is detailed. The AHB is the High-Performance

Bus which is used to interface the processor with modules such as memory and decoders, which can

handle the high speeds (thus the name). The APB is the low power Peripheral Bus, which interfaces with

components such as the GPIOs and the RTC.

Name Description

HSELx Selects the device on the AHB

PSELx Selects the device on the APB. This is done by decoding HADDR.

HCLK, PCLK Simple clocks, They are synchronized so that the AHB and APB are
synchronized on their transactions.

HRESETn An active low signal, it resets the AHB. PRESETn is also tied to this.

HWRITE Used for transferring. 0=>read//1=>write. PWRITE works in the
same way

HTRANS Selects the transfer type from the following options: Busy,
Sequential, Non-sequential, and Idle.

HBURST Details whether the transfer is part of a burst transfer or not.

HSIZE Details the size of the transfer (byte, halfword, word).

Additional notes relevant to this specific system are now discussed. PSEL1…PSELn can be utilized for the

following components: GPIO1-4, the UART, and the RTC. These PSEL signals determine which peripheral

is being utilized. PDATA is used to transfer data from these peripherals to memory. Communication from

AHB level modules (such as the memory) to the peripherals (such as the GPIOs) s done via HDATA.

Robert DeBortoli Page 14

3.3 Memory System
Because RAM requires 18 bits to be addressed (218 = 262,144) and it is byte addressed, line [18:2] are

used to access RAM. Because ROM requires 17 bits to be addressed (217=131,072) and it is also byte

addressed, lines [17:2] are used to access ROM. Because the data is accessed byte by byte and each chip

of RAM has the same amount of memory as the other RAM chips and each ROM chip has the same

amount of memory as the other ROM chips, the data bus breaks up the addressing in groups of 8

([31:24], [23:16], [15:8], [7:0]).

Robert DeBortoli Page 15

3.4 Memory Map

This memory map serves to show the memory for the alarm clock and how it is divided. This is also useful

when formulating decoder logic.

Robert DeBortoli Page 16

3.5 General Decoder Logic Diagram

Below is a schematic for the decoder logic detailing which part of the system is accessed depending on

the address into the decoder. The four lines monitored are A[27:24]. The following truth table shows this

addressing system bit by bit.

A[27] A[26] A[25] A[24] Component of
system

0 0 0 0 ROM

0 0 1 0 RAM

0 1 0 0 GPIO

0 1 0 1 UART

0 1 1 0 RTC

Robert DeBortoli Page 17

3.6 Specific Decoder Design

The next natural area to examine is a decoder for the RAM/ROM operations. The next decoder to look at

is the one mapping address lines to ROMoe, RAMoe, and lines such as we0-we3. The truth table is shown

below and a logical representation of this same information follows.

Operation A25 MAS1 MAS0 A1 A0 R’/W ROMoe RAMoe we0 we1 we2 we3

ROM Read 0 - - - - 0 0 1 1 1 1 1

RAM Read 1 - - - - 0 1 0 1 1 1 1

RAM
Write
(Word)

1 1 0 0 0 1 1 1 0 0 0 0

RAM
Write
(Halfword)

1 0 1 0 0 1 1 1 0 0 1 1

RAM
Write
(Halfword)

1 0 1 1 0 1 1 1 1 1 0 0

RAM
Write
(Byte)

1 0 0 0 0 1 1 1 0 1 1 1

RAM
Write
(Byte)

1 0 0 0 1 1 1 1 1 0 1 1

RAM
Write
(Byte)

1 0 0 1 0 1 1 1 1 1 0 1

RAM
Write
(Byte)

1 0 0 1 1 1 1 1 1 1 1 0

Robert DeBortoli Page 18

Robert DeBortoli Page 19

3.7 UART to Keypad Design

The project specification requires the use of a UART to take information from a keypad and use it

accordingly. This design takes a keypad, uses a decoder to decode the information from this keypad, and

uses a parallel to serial converter to send this data to the UART. The following includes a general

description of the system, diagram of the overall system, a truth table for the decoder, and a discussion

on considerations for the connections of these hardware components. Wire-to-wire diagrams were

deemed out of the scope of this project after a discussion with Rebecca.

In general the keypad utilizes 7 pins (shown below at the bottom of the component) and the scheme

shown below to produce values. These values are put into a decoder designed by the engineer, which are

then serialized using a parallel to serial converter, which is then utilized by the UART. An example is

useful in this situation. Take for example the user pressing the “1” button. These sets pin 3 high because

it is in the first column and pin 2 high because it is in the first row. Therefore, we as the engineer know

that a one was pressed because pins 2 and 3 only are high.

Robert DeBortoli Page 20

The overall system. As one can see the input from the keypad goes through decoder logic and a

“serializer” to arrive at the UART, which receives the data into its UARTTRXD register. This data is then

available to the rest of the system.

The truth table for the decoder:

Output P1 P2 P3 P4 P5 P6 P7

0 1 1

1 1 1

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

7 1 1

8 1 1

9 1 1

Robert DeBortoli Page 21

Section 4: The Component
Specific Diagrams

4.1: PrimeCell UART Overview
4.2: PrimeCell RTC Overview
4.3: PrimeCell GPIO Overview

Robert DeBortoli Page 22

Component-specific overviews:

The next logical step to detail is the function and purpose of each specific component in this system.

After this schematics will be shown to physically demonstrate the component’s place in the system.

4.1 PrimeCell UART Overview:

The PrimeCell Universal Asynchronous Receiver Transmitter (UART) is used in this system for serial

communication. Serial communication in this context means transmitting information one bit at a time.

The UART connects to the APB. This specific UART also features a FIFO buffer for receiving and

transmitting data. A brief description of the component follows which includes initialization as well as

receiving/transmitting data and interrupt support.

Initialization is done first by setting the baud rate (or the rate at which bits and transferred). The

following formula is used:

𝐵𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 =
𝐹𝑈𝐴𝑅𝑇𝐶𝐿𝐾

16 ∗ 𝐵𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 𝑑𝑖𝑣𝑖𝑠𝑜𝑟

The baud rate divisor is comprised of the value in two registers: The 16 bit Integer Baud Rate Divisor

Register (UARTIBRD) and the 6 bit Fractional Baud Rate Divisor Register (UARTFBRD). The last

initialization register detailed is the 30 bit UART Line Control Register. The following table describes its

composition:

Name Bits Description

Line Control Register [29:22] Selects parity, word length, FIFO enable,
number of stop bits, among other properties

Integer Baud Rate Divisor [21:6] see above

Fractional Baud Rate Divisor [5:0] see above

Progressing to receiving and transmitting data, this is done through the UART Data Register (UARTDR).

When reading data 4 status bits and 8 data bits are returned. When writing data 8 data bits are

transmitted.

Finally interrupts are implemented using the UART Interrupt Mask Set/Clear Register (UARTIMSC). This

can be read to determine if an interrupt has occurred. Clearing this interrupt is done using the Interrupt

Clear Register (UARTICR).

Robert DeBortoli Page 23

The PrimeCell UART and the pins described above are demonstrated below.

Robert DeBortoli Page 24

4.2 PrimeCell RTC Overview:

The RTC component is a simple up counter using a 1Hz clock. It is connected to the APB of the AMBA

interface. A match register is used to generate an interrupt. The following lists important registers and

their roles in the system:

 RTCDR -- Data Register – Read to give the count.

 RTCMR -- Match Register – When the count equals this register, an interrupt is generated.

 RTCINTR – Interrupt Register – When the data register and match register are equal, this

register is asserted high.

 RTCICR – Interrupt Clear Register – Writing a 1 to bit position 0 clears the corresponding

interrupt.

The following is a functional diagram of the PrimeCell RTC as well as a discussion of each block and

finally a summary of all applicable registers for the RTC. The functional diagram and register summary

are directly from the ARM documentation on this module. Because the descriptions are quite short in the

documentation for these items, the descriptions follow very closely to the descriptions in the

documentation.

The sections of this diagram include:

 Register block: stores the data to be transmitted across the APB Interface.

 Control block: Controls the updating of the RTC value as well as the generation of the interrupt

associated with the module.

 Update block: is used to determine if an interrupt has occurred (by using the match register) as

well as updating the value of the RTC when two rising edges of the PCLK has occurred.

 Synchronization block: synchronizes the two clocks involved (PCLK and CLK1Hz). By

synchronizing these clocks, it also synchronizes determination of the equality of the match

register and the RTC value.

Robert DeBortoli Page 25

 Counter block: Simply an up counter running at 1Hz. It is 32 bits and ranges from 0x00000000 to

0xFFFFFFFF. When it reaches 0xFFFFFFFF it wraps around to 0x00000000.

 Test register and logic: out of this project scope. Used at the manufacturing and non-consumer

level to test the different functional areas of this system.

Finally in this section, a largely comprehensive list of the RTC registers:

Robert DeBortoli Page 26

4.3 PrimeCell GPIO Overview:

The GPIO will be covered in 3 main sections: first initialization of the component, then reading to and

writing from the GPIO module, and finally interrupt operation on the GPIO.

Initialization is completed mainly by utilizing 2 registers: the Mode Control Register and the Data

Direction Register. The Mode Control Register configures the ports for software (value =0) or hardware

(value = 1) control. The value of the Data Direction Register determines whether each of the software

controlled ports and inputs (value =0) or outputs (value = 1).

Reading and writing (or more generally transmitting data) is done with an 8-bit data register. It also has

a masking feature for data which is demonstrated by the image shown below:

This masking allows for data to be changed (value = 1) or not changed (value = 0).

Finally, the GPIO can generate a single interrupt (GPIOINTR) when a 1 or more of the GPIO lines cause an

interrupt. This is done through the utilization of 5 registers outlined below:

Name Description

Interrupt Sense Register (GPIOIS) Configures a port for detecting an interrupt on
either level or transition clock pulses.
0=>edge//1=>level

Interrupt Event Register (GPIOEV) Based on GPIOIS this configures the interrupt to
occur on rising or falling edges.
0=>high(rising)//1=>low(falling)

Interrupt Mask Register (GPIOIE) Allows a port to trigger and interrupt.
0=>disable//1=>enable

Interrupt both edges register(GPIOIBE) This register allows for the interrupts to be dual
edge triggered. 0=>controlled by GPIOIE//1=>dual-
edge triggered

Interrupt clear register (GPIOICE) The clears the interrupt for a port where edge
detection is enabled. 0=>nothing//1=>clear

Robert DeBortoli Page 27

GPIO connections

The following are 5 diagrams showing in detail the connections from each port of each GPIO to each

external component. The circuit design software used does not explicitly show each port being grounded,

however it may be assumed that each connection is grounded (see the bus at the far right of every

image. GPIO modules 1, 2, and 3 all show the connection of each port to a resistor, LED, and to ground.

Each LED may be assumed to be a segment in a 7 segment display and they are labelled as such (for

example the first display segment a is labelled a1). The first 5 ports of GPIO4 are used for the same

purpose as 1, 2, and 3. The last 4 ports of GPIO4 are used for push button support. Each push button is

labelled as px where x is the number of the push button. Please refer to the “Conventions” section to see

what this numbering means. GPIO5 contains the LEDs1-3 as well as the buzzer. Please refer to the

conventions section to view refer to information regarding this numbering scheme.

Robert DeBortoli Page 28

Robert DeBortoli Page 29

Robert DeBortoli Page 30

Section 5: The References

Robert DeBortoli Page 31

References:

[I] Kris Schindler, Introduction to Microprocessor Based Systems Using the ARM Processor,

Pearson, 2012

[II] UM10120 - Volume 1: LPC213x User Manual, Rev. 01, Philips, June 24, 2005

[III] Andrew N. Sloss, Dominic Symes, and Chris Wright, ARM System Developer’s Guide - Designing

and Optimizing System Software, Morgan Kaufmann, 2004

[IV] Steve Furber, ARM System-on-chip Architecture, 2nd Edition, Addison-Wesley, 2000 User’s

Manual KS32C50100 32-bit RISC Micro Controller Embedded Network Controller, Samsung

Electronics, March 1999

[V] http://en.wikipedia.org/wiki/Microprocessor

[VI] Lectures given by Kris Schindler privately available at: http://www.cse.buffalo.edu/~kds/cse-

379/lectures.html

[VII] Keypad documentation available at: https://www.sparkfun.com/products/8653

[VIII] General component documentation available privately through the course website at:

http://www.cse.buffalo.edu/~kds/cse-379/documentation.html

http://www.cse.buffalo.edu/~kds/cse-379/lectures.html
http://www.cse.buffalo.edu/~kds/cse-379/lectures.html
https://www.sparkfun.com/products/8653
http://www.cse.buffalo.edu/~kds/cse-379/documentation.html

