CSE 379 Design Project

Robert DeBortoli

05/04/2015

Table of Contents

Section 1: The INtrodUCTION.cc.oiiiiiii ettt st st st e b e e b e 2
1.2 INEFOTUCTION ittt ettt ettt et e s bt e e bt e e s ab e e s abe e e sabeesabeesbeeesabeeeseeesnseesareeesareenn 3
1.2: USE CASE OVEIVIEWeiiiiuiieeiiiuiteeesitteeeseteeeessbeeeesaareeeesaabe e eesaabeeeesaaneeeessaneeeesaaneeeesanneneesaneneesanreneesannes 3
1.3: CONVENTIONS «.ceieiieiitie ettt et e et e e s et e e s e et e e s e ar e e e e s eab et e e s aane e e e s aaneeeessaneeeesaananeesanneneesanneneessanee 3
O e o £ N1 TP P PO PPPROTPPRROR 4

Section 2: The FIOWCRAITSc..oiiiiieie ettt ettt st st be s 5

Section 3: The General Hardware DIaBramscooociiiiiiiiiiie et sre e e esar e e e et e e e e snaeeeeas 11
3.1 AIMIBA OVEIVIEW ...eeiiiiiiiieeiittee sttt e ettt e e sttt e e sttt e s sttt e s s b e e e s amb e e e e s ambe e e s enreeeseanreeeeenreeesenreeesenreees 12
3.2: BUS INtErface diagram ...cci i eiie ettt e e e et ee e e et ae e e e b e e e e e b ee e e e abreeeenaraeas 13
R 1Y/ [T g ToT VA VL (=11 o IO PPNt 14
R A |V =T g Vo] oV | - T o JO Rt 15
3.5: General Decoder LOZIC DIAgramccccueie i ittt ettt e e tte e e e tte e e eebae e s e eabae e e eeabaaesenbaeeeenrenas 16
R R o Lol N (ol = Tolo Yo [=T gl 1Yy F-={ o PP 17
3.7: UART 10 KEYPAA DESIZNeeriiieeiiiieeeitee ettt e e ette e e e ette e e e ate e e e e aba e e s enataeeeenntaeeeenseeeeennseneeennsenas 19

Section 4: The Component-Specific DIagBrams............ccoccviiiiiiiiiiiiiiiie e rre e e s saaeeeeas 21
4.1: PrimeECell UART OVEIVIEW c...ueiiiiiieiieeeiee ettt sitee sttt e sateestte e site e sbeeesabeesabeesnteesabeeesaseesaseesnnseesaseeennnes 22
4.2: PrimeECell RTC OVEIVIEW. ...ccueieieeiieeiieeiie ettt ettt ettt st st s bt e she e sae e satesabeeabeebe e bt e smeesaeeeneeeneean 24
4.3: PrimeECell GPIO OVEIVIEW......eiiuiiiieiieeie ettt ettt ettt st sttt e bt esheesatesatesabeeabeebe e bt e sbeesaeeeneeeneean 26

SECtioN 5: The REFEIENCESc..oiiiiiiiiie ettt e b e sttt et e bt e s bt e sbeesaeeeaeean 30

Robert DeBortoli Page 1

Section 1: The Introduction

1.1: Introduction

1.2: Use Case Overview
1.3: Conventions

1.4: Parts List

Robert DeBortoli Page 2

1.1 Introduction

This document serves to describe in detail the design of a functional alarm clock. Functions that must be
included are displaying the time, buzzing for the alarm, allowing the user to set the time, set the alarm,
turn off the alarm, and snooze. The following components that should be used to complete these
functionalities are: An ARM microprocessor, UART, PrimeCell RTC module, PrimeCell GPIO module, 4
momentary push buttons, 3 LEDs, a buzzer, as well as a keypad. Additional system details include: 1 MB
ROM, 2MB RAM, and partial decoding must be used. The AMBA system is also utilized.

1.2 Use case overview:

Basic operation of the clock will go as such:

e To start, power on the system and then set the time by punching in 4 consecutive digits on the
keypad and pressing the set-time momentary push button.

e Set alarm proceeds in a similar manner.

e To snooze or disable the alarm simply press the corresponding momentary push buttons.
Snoozing the alarm momentarily disables it for 10 minutes.

e All digits that are not pressed into the keypad will be assumed to be 0. For example, if the
buttons 1, 0, and then “set time” are pressed, then the time that will be taken in is 10:00.

1.3 Conventions:

Conventions to be used for this document include:

e PO-P3 are the 4 momentary push buttons, in the following order: set_time, set_alarm, snooze,
and diable_alarm.

e LED1 and LED2 are the colons for the time. They are always lit. LED3 is the AM/PM LED. It is lit
when the time is in the PM.

e TRis the time register in memory (stored in clock cycles)

e ARis the alarm register in memory (stored in clock cycles)

Robert DeBortoli Page 3

1.4 Parts list:

Name Manufacturer Part Number Quantity

ARM7TDMI ARM 1

Microprocessor
7-Sement display China Young Sun LE YSD-160AR4B-8 4
Technology Co.
LED China Young Sun LE YSL-R531R3D-D2 3
Technology Co.

Push button Sparkfun COM-11966 4
Buzzer CUl Inc. CEM-1203(42) 1
Keypad Sparkfun COM-08653 1

Parallel to Serial Micrel SY10E446 1
Converter
Robert DeBortoli Page 4

Section 2: The Flowcharts

Robert DeBortoli

Page 5

To demonstrate the flow of operation by the user, for the purpose of programming this system, the
following flowcharts were designed to organize this information. These are very general as the scope of
the project calls for this. For a more detailed approach to programming this system please review the
entire document, which contains pertinent and specific information on this topic.

Pawaser on
Startup

Usad at the very beginmning of
operation

Liagghit aap &
COMmpanenis
{luding the
LED=S)

81 The wEer mg
tram the keyhogrn

as

IS "sel_tme”
baattan pregssed?

h (=

¥

SEl_time

MainDperation

Robert DeBortoli Page 6

MainDperation
Far wihen the cock is running
nommaly, this is used

Did an intemuapt

acour’?

Mo

e 51T PrEssa ol

Prassing of anather bution
Whal was tha
saurca of the

intemupt?

ciock ona higher than

Is tha RTC

it was?

a5

cock_ncrement

Robert DeBortoli

Page 7

set_gme
Lers the ime

¢

Laad from
m=mory the first

keypress

:

Display the digil

)

Laoad from
mEEmory e
second keypress

:

Display the digil

i

Laad from
memory the drd

keypress

H

Display the digil

L

Laad from
memory the fourth

keypress

]

Display the digil

Lightt ARVFM LED

Robert DeBortoli

Page 8

clock incremeni
On ewery clock pulse ths
fAowschart is gane frough.

(=D

I

| increment gie TH By 1.

'

ci=mplay this walue to the clock

s srw:_handhl]-

\lE

&

I=
Appiy voliage
FTCITR i &
bigh the buzzer line.
I= dhe
snooze bumon
pressed?
k]
Clesar the intermupe.
e —— .
5TR #1, RTCKCR
r
Erd

Robert DeBortoli

Page 9

sel_alam
Sets the alam

Start

)
N

Convert the
antered time o
clock cycles

l

Store this value in
the RTC maitch
reqgisier

'
'f/_ Enm \
. J

smooze_handler
Increases the AR by the
equivalent of 10 minutes of
clock cycles

Stant

Y
N

Disahla the alarm

l

Increass the AR
by 10 minutes of
clock cycles

Emd

Y
N

Robert DeBortoli

Page 10

Sections 3: The General
Hardware Diagrams

3.1: AMBA Overview

3.2: Bus Interface Diagrams

3.3: Memory System

3.4: Memory map

3.5: Decoder Logic Diagram

3.6: Specific Decoder Truth Table
3.7: UART to Keypad Design

Robert DeBortoli Page 11

General hardware diagrams:

This sections details overview system organization in a variety of forms and areas including: An AMBA
Overview, Bus Interface Diagrams, Memory System Diagram, Memory Map Diagram, a General and
Specific Decoder Logic Diagram, and finally a UART to keypad diagram.

3.1 AMBA overview

The following is an overview of how this system utilizes the AMBA architecture. In this system there are 5
PrimeCell GPIO modules however for cleanliness of the diagram, this is simply notated with (Quantity: 5)
instead of drawing each individual module.

I AHB or ASB
R . AHEB or ASE 1o ~ External Memaory
DM bus master AHB decoder AFE Eridge Internal SRAM nteface

4
T 3 T

PrimeCell RTC

UART GPIO (Quantity: 5)

Robert DeBortoli Page 12

3.2 Bus Interface Diagram

The following is a table and accompanying diagram detailing how the AHB Slave interface and APB

Bridge interact by describing the signals associated with each. After that ensues a discussion (where
appropriate) on the relevance of these signals to the system is detailed. The AHB is the High-Performance
Bus which is used to interface the processor with modules such as memory and decoders, which can
handle the high speeds (thus the name). The APB is the low power Peripheral Bus, which interfaces with
components such as the GPIOs and the RTC.

Name Description
HSELx Selects the device on the AHB
PSELx Selects the device on the APB. This is done by decoding HADDR.
HCLK, PCLK Simple clocks, They are synchronized so that the AHB and APB are
synchronized on their transactions.
HRESETn An active low signal, it resets the AHB. PRESETn is also tied to this.
HWRITE Used for transferring. 0=>read//1=>write. PWRITE works in the
same way
HTRANS Selects the transfer type from the following options: Busy,
Sequential, Non-sequential, and Idle.
HBURST Details whether the transfer is part of a burst transfer or not.
HSIZE Details the size of the transfer (byte, halfword, word).
— HWRITE PSELI
HTRANS[1:0] sﬂEE B'?.,%ge :
Control INTERFACE PSELn
Signals HSIZE[2:0]
PENABLE
HBURST[2:0]
~ PWRITE
HRESETn
PRESETn
HCLK
PCLK

HSELx

Additional notes relevant to this specific system are now discussed. PSEL1...PSELn can be utilized for the
following components: GPI01-4, the UART, and the RTC. These PSEL signals determine which peripheral
is being utilized. PDATA is used to transfer data from these peripherals to memory. Communication from
AHB level modules (such as the memory) to the peripherals (such as the GPIOs) s done via HDATA.

Robert DeBortoli

Page 13

3.3 Memory System

Because RAM requires 18 bits to be addressed (2'° = 262,144) and it is byte addressed, line [18:2] are
used to access RAM. Because ROM requires 17 bits to be addressed (2''=131,072) and it is also byte
addressed, lines [17:2] are used to access ROM. Because the data is accessed byte by byte and each chip
of RAM has the same amount of memory as the other RAM chips and each ROM chip has the same
amount of memory as the other ROM chips, the data bus breaks up the addressing in groups of 8

([31:24], [23:16], [15:8], [7:0]).

Address Bus [31:0] l)
A3L,10] | , — web
— wel
Control wel
mas{ 1:0] I rsmul Aa[20:2] l a[20:2] I af20:2] a[20:2]
= ~ ~ N
oW m
RAM RAM RAM RAM
ARMTTDMI
Core
I}}[}l:lﬂ II)[Z 316] Ill)ll_‘:sl II D[7:0)
(‘ Data Bus [31:0] ‘)
]:J[)[.H:H] III)['.’ 3e] U{.ﬂ 15:8] U D70
ROM ROM ROM ROM
g ’\r. \\
a[19:2] | a[19:2] | a[19:2] | | a[19:2] |
Address Bus [31:0] \)
Robert DeBortoli Page 14

3.4 Memory Map

This memory map serves to show the memory for the alarm clock and how it is divided. This is also useful

when formulating decoder logic.

OFFFF FFFF
Unuesad
Dx0060 1000
Ox0060 OFFF
RTC
Ox0060 D000
a05F FFFF
Unused
0x0050 1000
Ox0050 OFFF
UARTL
00050 0000
DxDDEF FFFF
unused
Uxd04a0 5000
Ox0040 AFFF
GPlos
D=D04A0 2000
Ox0040 3FFF
GPIO4
00040 3000
Cu0040 25FF
GPIO3
00040 2000
040 1=FF
GPlo2
Owd04a0 1000
Ox0040 OFFF
[ei= [l
OxD040 D000
0003F FRFF
RAM
OxD020 D000
Ow00LF FFFF
Unused
00010 0000
0u000F FFFF
ROM
Ox0000 D000

Robert DeBortoli

Page 15

3.5 General Decoder Logic Diagram

Below is a schematic for the decoder logic detailing which part of the system is accessed depending on
the address into the decoder. The four lines monitored are A[27:24]. The following truth table shows this
addressing system bit by bit.

A[27] A[26] A[25] A[24] Component of
system
0 0 0 0 ROM
0 0 1 0 RAM
0 1 0 0 GPIO
0 1 0 1 UART
0 1 1 0 RTC
3
BIET] Tal
4
ApE]
HE o
AL2E] 1]
e
BIT4]
4
ﬂﬁ}m
s
ur
L=
Ha
UART
1
ez
UWART
L4
Robert DeBortoli Page 16

3.6 Specific Decoder Design

The next natural area to examine is a decoder for the RAM/ROM operations. The next decoder to look at
is the one mapping address lines to ROMoe, RAMoe, and lines such as we0O-we3. The truth table is shown
below and a logical representation of this same information follows.

Operation | A25 | MAS1 | MASO | A1 | AO ROMoe | RAMoe | weO | wel | we2 | we3

ROM Read

RAM Read

=
Rlolol>
s

(RO
1
1
1
1
[y
o
Ok |=-
Ok |k
Ok |k
Ok |k

RAM
Write
(Word)

RAM 1 0 1 0 0 1 1 1 0 0 1 1
Write
(Halfword)

RAM 1 0 1 1 0 1 1 1 1 1 0 0
Write
(Halfword)

RAM 1 0 0 0 0 1 1 1 0 1 1 1
Write
(Byte)

RAM 1 0 0 0 1 1 1 1 1 0 1 1
Write
(Byte)

RAM 1 0 0 1 0 1 1 1 1 1 0 1
Write
(Byte)

RAM 1 0 0 1 1 1 1 1 1 1 1 0
Write
(Byte)

Robert DeBortoli Page 17

i

1y
Vo
|

WSS
.

Robert DeBortoli Page 18

3.7 UART to Keypad Design

The project specification requires the use of a UART to take information from a keypad and use it
accordingly. This design takes a keypad, uses a decoder to decode the information from this keypad, and
uses a parallel to serial converter to send this data to the UART. The following includes a general
description of the system, diagram of the overall system, a truth table for the decoder, and a discussion
on considerations for the connections of these hardware components. Wire-to-wire diagrams were
deemed out of the scope of this project after a discussion with Rebecca.

In general the keypad utilizes 7 pins (shown below at the bottom of the component) and the scheme
shown below to produce values. These values are put into a decoder designed by the engineer, which are
then serialized using a parallel to serial converter, which is then utilized by the UART. An example is
useful in this situation. Take for example the user pressing the “1” button. These sets pin 3 high because
it is in the first column and pin 2 high because it is in the first row. Therefore, we as the engineer know
that a one was pressed because pins 2 and 3 only are high.

%; J {f 3, L J {f
[1]2] 3] 1] (2] [3
4] [5] [6 4] (5] |6
71[8] [9]) 8] 9]
FomHE o

\O\ /o/ NS — ©

000000000 1234567
1234567

Robert DeBortoli Page 19

The overall system. As one can see the input from the keypad goes through decoder logic and a

“serializer” to arrive at the UART, which receives the data into its UARTTRXD register. This data is then

available to the rest of the system.

SRS RE+Y

Keypad

Decoder

The truth table for the decoder:

Parallel to serial

UART

UARTTRXD

Output P1 P2 P3 P4 P5 P6 P7
0 1 1

1 1 1

2 1 1

3 1 1

4 1 1
5 1 1
6 1 1
7 1 1

8 1 1

9 1 1

Robert DeBortoli Page 20

Section 4: The Component
Specific Diagrams

4.1: PrimeCell UART Overview
4.2: PrimeCell RTC Overview
4.3: PrimeCell GPIO Overview

Robert DeBortoli Page 21

Component-specific overviews:

The next logical step to detail is the function and purpose of each specific component in this system.
After this schematics will be shown to physically demonstrate the component’s place in the system.

4.1 PrimeCell UART Overview:

The PrimeCell Universal Asynchronous Receiver Transmitter (UART) is used in this system for serial
communication. Serial communication in this context means transmitting information one bit at a time.
The UART connects to the APB. This specific UART also features a FIFO buffer for receiving and
transmitting data. A brief description of the component follows which includes initialization as well as
receiving/transmitting data and interrupt support.

Initialization is done first by setting the baud rate (or the rate at which bits and transferred). The
following formula is used:

FyartcLk
16 * Baud rate divisor

Baud rate =

The baud rate divisor is comprised of the value in two registers: The 16 bit Integer Baud Rate Divisor
Register (UARTIBRD) and the 6 bit Fractional Baud Rate Divisor Register (UARTFBRD). The last
initialization register detailed is the 30 bit UART Line Control Register. The following table describes its

composition:
Name Bits Description
Line Control Register [29:22] Selects parity, word length, FIFO enable,
number of stop bits, among other properties
Integer Baud Rate Divisor [21:6] see above
Fractional Baud Rate Divisor [5:0] see above

Progressing to receiving and transmitting data, this is done through the UART Data Register (UARTDR).
When reading data 4 status bits and 8 data bits are returned. When writing data 8 data bits are
transmitted.

Finally interrupts are implemented using the UART Interrupt Mask Set/Clear Register (UARTIMSC). This
can be read to determine if an interrupt has occurred. Clearing this interrupt is done using the Interrupt
Clear Register (UARTICR).

Robert DeBortoli Page 22

The PrimeCell UART and the pins described above are demonstrated below.

Ij

POATA15:0]

LARTTXD LART
PADDR[11:2] Trawswair Diara
LIARTRXD LraRT
FReceive Diang
Advanced PrimeCell I S
PEMABLE PLOTL SIRCHUT Serial fr
Peripheral < i Doares €t
Bus (APR) LRl
PWRITE SIRIN Serial Ir
dhara fe
PRESETn UARTRXINTR lnperrups
> Riquesr
PULE
e
b
LIARTRST
LIARTCLE
Robert DeBortoli Page 23

4.2 PrimeCell RTC Overview:

The RTC component is a simple up counter using a 1Hz clock. It is connected to the APB of the AMBA
interface. A match register is used to generate an interrupt. The following lists important registers and
their roles in the system:

e RTCDR -- Data Register — Read to give the count.

e RTCMR -- Match Register — When the count equals this register, an interrupt is generated.

e RTCINTR - Interrupt Register — When the data register and match register are equal, this
register is asserted high.

e RTCICR — Interrupt Clear Register — Writing a 1 to bit position O clears the corresponding
interrupt.

The following is a functional diagram of the PrimeCell RTC as well as a discussion of each block and
finally a summary of all applicable registers for the RTC. The functional diagram and register summary
are directly from the ARM documentation on this module. Because the descriptions are quite short in the
documentation for these items, the descriptions follow very closely to the descriptions in the

documentation.
PCLK CLK1HZ
Wri|=h
Register .| Control
 Reat block block
PCLK —¥ "~
F Y I
AMBA Cartiral
rd
amBa | | APE etsive
APE interface
Read Updale |
data data N Maich value -
N Update | Counter
black Sync block RTCINTR
block | calat
— valus
APOR—» L— ARTCRST

The sections of this diagram include:

e Register block: stores the data to be transmitted across the APB Interface.

e Control block: Controls the updating of the RTC value as well as the generation of the interrupt
associated with the module.

e Update block: is used to determine if an interrupt has occurred (by using the match register) as
well as updating the value of the RTC when two rising edges of the PCLK has occurred.

e Synchronization block: synchronizes the two clocks involved (PCLK and CLK1Hz). By

synchronizing these clocks, it also synchronizes determination of the equality of the match
register and the RTC value.

Robert DeBortoli Page 24

e Counter block: Simply an up counter running at 1Hz. It is 32 bits and ranges from 0x00000000 to
OxFFFFFFFF. When it reaches OxFFFFFFFF it wraps around to 0x00000000.
o Test register and logic: out of this project scope. Used at the manufacturing and non-consumer

level to test the different functional areas of this system.

Finally in this section, a largely comprehensive list of the RTC registers:

Table 3-1 PrimeCell RTC register summary

Address Type Width Resetvalue Name Description

RTC Base + Oxg¢d Read 32 [ER LT BT RTCDR Data register

RTC Base + 0x@64 Readfwrite 32 Dx0AH000 RTCMR Match register

RTC Base + 0x@08 Readfwrite 32 Dx0AH000 RTCLR Load register

RTC Base + 8x@éC Readfwrite 1 LR RTCCR Control register

RTC Base + 8xd18 Readiwrite 1 RG] RTCIMSC Interrupt mask set and clear
register

RTC Base + @x@l14 Read 1 LR R RTCRIS Raw interrupt status register

RTC Base + Gx@18 Fead 1 LR R RTCMIS Masked interrupt status register

RTC Base + 8x@1C Write 1 LR R RTCICR Interrupt clear register

RTC Base + 0x820—0x07C - - - - Reserved

RTC Base + 0x080—998 - - - - Reserved for test purposes

RTC Base + 8x@34—FCC - - - - Reserved.

RTC Base + 8xFD8—FDC - - - - Reserved for future ID expansion

RTC Base + BxFE Read B Bx31 RTCPeriphlDd) Peripheral ID register bits [7:0]

RTC Base + BxFE4 Read B Bx18 RTCPeriphlD}l Peripheral ID register bits [15:8]

RTC Base + BxFEE Read B Bxeh42 RTCPeriphlD2 Peripheral ID register bits [23:16]

RTC Base + BxFEC Read B B8 RTCPeriphlD3 Peripheral ID register bits [31:24]

RTC Base + @xFFd Read B L) RTCPCellIDOD PrimeCell ID register bits [7:0]

RTC Base + @xFr4 Read B Fé RTCPCellID1 PrimeCell ID register bits [15:8]

RTC Base + OxFFg Read 8 o5 RTCPCelllD2 PrimeCell ID register bits [23:16]

RTC Base + OxFFC Read 8 Bl RTCPCellID? PrimeCell ID register bits [31:24]

a. *indicates the revision number (see RTCPeriphlD2 register on page 3-9).

Robert DeBortoli

Page 25

4.3 PrimeCell GPIO Overview:

The GPIO will be covered in 3 main sections: first initialization of the component, then reading to and
writing from the GPIO module, and finally interrupt operation on the GPIO.

Initialization is completed mainly by utilizing 2 registers: the Mode Control Register and the Data
Direction Register. The Mode Control Register configures the ports for software (value =0) or hardware
(value = 1) control. The value of the Data Direction Register determines whether each of the software
controlled ports and inputs (value =0) or outputs (value = 1).

Reading and writing (or more generally transmitting data) is done with an 8-bit data register. It also has
a masking feature for data which is demonstrated by the image shown below:

Address Bus (PADDR) Position |

GPIO Port Position |

This masking allows for data to be changed (value = 1) or not changed (value = 0).

Finally, the GPIO can generate a single interrupt (GPIOINTR) when a 1 or more of the GPIO lines cause an
interrupt. This is done through the utilization of 5 registers outlined below:

Name Description

Interrupt Sense Register (GPIOIS) Configures a port for detecting an interrupt on
either level or transition clock pulses.
0=>edge//1=>level

Interrupt Event Register (GPIOEV) Based on GPIOIS this configures the interrupt to
occur on rising or falling edges.
0=>high(rising)//1=>low(falling)

Interrupt Mask Register (GPIOIE) Allows a port to trigger and interrupt.
0=>disable//1=>enable

Interrupt both edges register(GPIOIBE) This register allows for the interrupts to be dual
edge triggered. 0=>controlled by GPIOIE//1=>dual-
edge triggered

Interrupt clear register (GPIOICE) The clears the interrupt for a port where edge

detection is enabled. 0=>nothing//1=>clear

Robert DeBortoli Page 26

GPIO connections

The following are 5 diagrams showing in detail the connections from each port of each GPIO to each
external component. The circuit design software used does not explicitly show each port being grounded,
however it may be assumed that each connection is grounded (see the bus at the far right of every
image. GPIO modules 1, 2, and 3 all show the connection of each port to a resistor, LED, and to ground.
Each LED may be assumed to be a segment in a 7 segment display and they are labelled as such (for
example the first display segment a is labelled al). The first 5 ports of GPIO4 are used for the same
purpose as 1, 2, and 3. The last 4 ports of GPIO4 are used for push button support. Each push button is
labelled as px where x is the number of the push button. Please refer to the “Conventions” section to see
what this numbering means. GPIO5 contains the LEDs1-3 as well as the buzzer. Please refer to the
conventions section to view refer to information regarding this numbering scheme.

AP — 1 —
A ——P—

AW —P—
AW ——P— @
AP —
A —P—
A —P— o

PrimeCall GPIO 1

 MA——P— 5
o
R0 L1
 AM—P—
i
R L1g
- MA—B— =
R1Z Wy
omecmamns [VWP — =
T R13 Wi
L AMA——B— =
R14 W
MA@
R15 W
L AMA——B— =
RIS W
AMA——P— o
A% 1

Robert DeBortoli Page 27

RIT L17
A P— o —
A"y
18 L18
A Pp— o
A"t
R13 L24
AV Pp— =
L WY
PrimeCall GPID 3 N‘;ﬂ .\‘!n ,
AN P— o
R22 Wy
A P
R2s Wy
A Pp— be
R23 ALY
A Ppt— o
"
25 L25
AA P o —
"
25 L6
AN P— =
M
Ra7 L3z
AAV p— =
lwnz-a Wy
W P— o
PrimeCell GRIO 4) W
A p
30
A P
Ra?
AN P2
31
A p3

Robert DeBortoli Page 28

A L LEDT =

R
35 L3
AAA P LED2
R3s Wy
AV o0
R37 R
AN buzzer

PrimeaCall GPID 5

wiragreement o the Scheme-it License and Terms gl

Robert DeBortoli Page 29

Section 5: The References

Robert DeBortoli Page 30

References:

[11 Kris Schindler, Introduction to Microprocessor Based Systems Using the ARM Processor,
Pearson, 2012

[l UM10120 - Volume 1: LPC213x User Manual, Rev. 01, Philips, June 24, 2005

[111] Andrew N. Sloss, Dominic Symes, and Chris Wright, ARM System Developer’s Guide - Designing
and Optimizing System Software, Morgan Kaufmann, 2004

[IV] Steve Furber, ARM System-on-chip Architecture, 2nd Edition, Addison-Wesley, 2000 User’s
Manual KS32C50100 32-bit RISC Micro Controller Embedded Network Controller, Samsung
Electronics, March 1999

[V] http://en.wikipedia.org/wiki/Microprocessor

[VI] Lectures given by Kris Schindler privately available at: http://www.cse.buffalo.edu/~kds/cse-
379/lectures.html

[vi Keypad documentation available at: https://www.sparkfun.com/products/8653

[vin General component documentation available privately through the course website at:
http://www.cse.buffalo.edu/~kds/cse-379/documentation.html

Robert DeBortoli Page 31

http://www.cse.buffalo.edu/~kds/cse-379/lectures.html
http://www.cse.buffalo.edu/~kds/cse-379/lectures.html
https://www.sparkfun.com/products/8653
http://www.cse.buffalo.edu/~kds/cse-379/documentation.html

