
LOOM

Users Guide

Version 1.4

ISX Corporation

9 August 1991

Contents

1 Introduction 1

2 An Overview of LOOM Concepts 3

2.1 The LOOM System : 3
2.2 Knowledge Representation Theory in LOOM : : : : : : : : : : : : : : : : : : 4

3 An Example LOOM Program 6
3.1 The Modelling Language : 7

3.1.1 De�nitions: Concepts, Relations, and Intervals : : : : : : : : : : : : : 7
3.1.2 Implications and More Complex De�nitions : : : : : : : : : : : : : : 9
3.1.3 Open and Closed-World Semantics: 10
3.1.4 Facts: 10

3.2 The Behavior Language : 11
3.2.1 Actions and Methods: 12
3.2.2 Productions: 13

4 Modelling in LOOM 15
4.1 De�nitions : 16

4.1.1 What is a \De�nition" : 16
4.1.2 Primitive and De�ned Concepts : 17

4.2 Concept-Expressions : 19
4.3 Relation-Expressions : 24
4.4 Sets and Intervals : 26
4.5 Implications/Constraint Rules : 27
4.6 Default Rules : 28
4.7 Attributes : 29
4.8 Partitions and Coverings : 31

5 Reasoning about LOOM Instances 35

5.1 Assertion: \tell" : 35
5.2 Retraction: \forget" : 38
5.3 Queries: \retrieve" and \ask" : 40

5.3.1 Query Expression Constructors : 42

i

5.4 Open and Closed World Semantics : 46
5.5 The Query Optimizer : 47
5.6 Queries as Generators : 48
5.7 Invoking the Matcher: \tellm" and \forgetm" : : : : : : : : : : : : : : : : : 48

6 Actions and Methods 50

6.1 Actions : 50
6.2 Methods : 51

6.2.1 De�ning Methods : 51
6.2.2 Method Selection : 52

6.3 Productions : 53
6.4 Tasks : 55

7 Using Knowledge Bases 57

A Grammar for TBox Language 61

B Grammar for ABox Language 62

C Glossary of LOOM Terms 64

ii

Chapter 1

Introduction

This guide is an introduction to the LOOM1 system and includes a brief overview of the
theory of knowledge representation on which LOOM is based. LOOM is a high-level pro-
gramming language and environment intended for use in constructing expert systems and
other intelligent application programs. This guide will provide an introduction to LOOM

concepts, de�nitions of key commands, and examples of usage. This guide is intended for
readers who are looking for a conceptual grasp of the LOOM system. For example, people
who wish to evalutate LOOM may want to start by reading this guide. It gives an overview
of all major components of the LOOM system as well as a simple example of a LOOM ap-
plication. The end of this introduction describes other available documentation on LOOM

.
Chapter 2 describes the basic concept of operation for LOOM and provides an overview of

the knowledge representation theory underlying LOOM. Chapter 3 completes the introduc-
tory material by o�ering a short example to illustrate a typical LOOM application. Chapter
4 introduces the knowledge representation modelling structures used in LOOM and de�nes
concepts key to understanding and using the system. Chapter 5 continues the discussion
of system elements with a description of the reasoning mechanisms provided by LOOM and
Chapter 6 introduces the facilities available for building procedural and control elements
within LOOM. Chapter 7 discusses the use of knowledge base packages within LOOM , and
the �nal chapter introduces advanced LOOM concepts. Several appendices are provided
including a glossary of terms, selected technical papers, and an example LOOM program.

This document is written for a technical audience, well versed in knowledge based system
concepts. Readers are expected to have had experience with other knowledge representa-
tion systems and techniques. The information provided to users wishing to construct new
knowledge based applications with LOOM presumes prior experience with the development
of knowledge based systems and their architectural issues.

In addition to this User's Manual, there are a number of other documents included in the
LOOM Distribution Package that contain important information. These other documents
include:

1LOOM: \A frame . . . for interlacing . . . sets of threads or yarns to form a cloth." Webster's.

1

� The LOOM Reference Manual | detailed technical information on all aspects of the
implemented LOOM system.

� The LOOM Tutorial | guided examples illustrating LOOM programming.

� The LOOM Installation Guide | detailed instructions for installing LOOM on sup-
ported hardware platforms and preparing it for use.

2

Chapter 2

An Overview of LOOM Concepts

2.1 The LOOM System

LOOM is a high-level programming language and environment intended for use in construct-
ing expert systems and other intelligent application programs. The LOOM language targets
a programming methodology that places heavy emphasis on the speci�cation of explicit,
declarative domain models. The LOOM system is built around a knowledge representa-
tion system that provides e�cient support for on-line deductive query processing. In its
inception, the LOOM system was designed as a self-contained, logic-based knowledge repre-
sentation (KR) system. From observing early applications based on LOOM it was concluded
that this \black box" approach to building a KR system was wrong: for most applications
a great deal of e�ort was expended in developing useful programming interfaces to the KR
system. The response to this was to extend the scope of the LOOM languages to incorpo-
rate several programming paradigms which are directly connected to the KR system. Now,
instead of being a black box to be queried, LOOM represents an environment within which
application programs can be written.

The LOOM language provides:

� A precise and expressive declarative model-speci�cation language.

� Powerful deductive support, including both strict and default reasoning, and automatic
consistency checking.

� Multiple programming paradigms that interface smoothly with a declarative model
speci�cation.

� Knowledge-base facilities: a full �rst-order query language; multiple knowledge bases;
dumping and loading of knowledge base objects (persistent objects).

The present LOOM language is designed to capture the best features among the following
programming paradigms: object-oriented programming, data-driven programming, problem
solving, and constraint programming. In order to make multiple paradigms work together it

3

is essential that a common representational framework is used, and that the mechanisms that
implement control-ow should complement one another; in particular, they should be or-

thogonal (non-overlapping). The knowledge representation framework in LOOM was derived
from the language KL-ONE and forms the common basis for integrating the paradigms.

Unlike expert system shells or commercial knowledge-base tools, LOOM does not include
a graphic user interface or interface construction tools. LOOM does not follow the tool-box
metaphor which seeks to provide a user with a collection of special purpose modules. Instead,
LOOM o�ers a highly expressive representation system which is tightly integrated to powerful
reasoning mechanisms. In this way, LOOM users may make use of any of several common
programming paradigms as appropriate to their application while relying on a powerful KR
system. Future releases of LOOM may include graphical interfaces to the KR system.

While we expect many users of LOOM to be interested in the system as a basis for
the development of practical knowledge-based applications to be quickly �elded, there are
a number of additional roles in which LOOM may be of use. Researchers in the �eld of
knowledge representation will �nd the techniques embedded in LOOM as an interesting
example of a self contained, logic-based knowledge representation system that has been
extended to incorporate powerful reasoning techniques. Researchers working in the areas of
natural language, machine learning, and other areas having extensive KR requirements will
�nd LOOM to be a powerful environment for experimentation.

2.2 Knowledge Representation Theory in LOOM

LOOM's architecture achieves a tight integration between rule-based and frame-based para-
digms, by providing the capability to use terminological reasoning within the pattern match-
ing and control components of a rule processing system architecture. By terminological
reasoning, we mean the ability to represent knowledge about the de�ning characteristics of
concepts, and to use that knowledge to automatically infer and maintain a complete and
accurate taxonomic lattice of logical subsumption relations between concepts. LOOM is a
descendent of the KL-ONE family of languages that feature e�cient automatic classi�ers to
compute subsumption relationships.

A number of knowledge representation systems are appearing that incorporate a descrip-
tion classi�er (also called a term classi�er) into their deductive reasoning component. LOOM
is based on the notion that the ability to de�ne and reason with descriptions is basic to the
task of knowledge representation. The frame component present in many of todays expert
system tools provides a means for introducing terms present in the model of an application
domain, and for attaching constraint knowledge to individual terms. In LOOM, a description
language provides a principled means to describe the knowledge commonly associated with
the frame component of a knowledge representation system.

The inheritance mechanism found in many frame systems is actually a simple form of
deductive inference, but a specialized technology for reasoning with descriptions has been
developed that extends the class of useful inferences far beyond simple inheritance schemes.
LOOM captures this technology in the form of an inference engine, the classi�er. LOOM

4

supports both a description language and a rule language, and uses its classi�er to help
bridge the gap between the description component and the rule component. The additional
deductive power provided by the classi�er enables LOOM to provide inference capabilities
not found in current generation KR tools.

LOOM's modelling language is a hybrid consisting of two sublanguages, a de�nition lan-
guage and an assertion language.1 The de�nition language expresses knowledge about unary
relations (referred to as c

�
oncepts within LOOM) and binary and n-ary relations (referred to

simply as r
�
elations in LOOM). The assertion language is used to specify constraints on

concepts and relations, and to assert facts about individuals. If the assertions about an indi-
vidual I collectively satisfy the de�nition of a concept C, then I is recognized as an instance
of C. Each concept P is associated with a pattern P (x); thus matching an individual to a
pattern corresponds to recognizing an instantiation relationship between the individual and
the corresponding concept.

The integration of terminological capabilities with rules is intended to address three prob-
lems with rule-based systems that critics have identi�ed as hindering system maintenance
and limiting the ability to generate high-quality explanations and justi�cation. First, the
meaning of the terminology used within rules is often ill-de�ned. This makes it di�cult to
determine when rules are, or should be, relevant to some shared abstraction|which, in turn,
makes it di�cult to �nd and change abstractions. Second, it is di�cult to structure large
rule sets. This makes it di�cult to decompose the set into smaller, more comprehensible and
maintainable subsets. Third, rules fail to explicitly separate di�erent kinds of knowledge;
di�erent clauses in the same rule may implicitly serve to represent contexts, a�ect control,
or capture structural knowledge. Because the intent behind them is unclear, it is hard to
explain rules and di�cult to determine how to correctly add or revise them.

The LOOM language attacks the problems just described from several di�erent angles.
LOOM's term de�nition facility enables users to construct de�nitions for domain concepts
that are both rich and precise. By automatically validating concept de�nitions and orga-
nizing them into an abstraction hierarchy, the LOOM classi�er supports the development
of large-scale concept taxonomies. Once a deep abstraction hierarchy has been constructed
for a domain, it is relatively easy for users to compose rule conditions to match against
very speci�c situations. LOOM makes a sharp distinction between purely deductive rules,
and side-e�ecting, procedural rules (LOOM calls the latter class of rules production rules.
The LOOM language is designed so that that part of a behavioral speci�cation that deter-
mines when to �re a production rule is distinct from a speci�cation that determines how to
select among multiple actions/responses to a rule invocation. In summary, LOOM di�eren-
tiates among several kinds of knowledge that traditional rule-based systems lump together
as \rules", partitioning them into distinct classes that reect the various uses and purposes
that knowledge.

1This distinction is standard in KL-ONE based KR systems.

5

Chapter 3

An Example LOOM Program

This chapter is intended to give the reader an overview of the LOOM programming language.
The basic features of the language are introduced without a formal speci�cation; their formal
speci�cations are given in later sections. Each LOOM statement is followed by an English
annotation. By reading the individual LOOM declarations and comparing each of them with
the corresponding English annotations, the reader should rapidly develop the ability to read
a LOOM model speci�cation.

The LOOM language draws an explicit boundary between declarative, modelling, knowl-
edge and procedural, behavioral, knowledge. The declarative knowledge in LOOM consists
of de�nitions, implications, facts, and default rules. Procedural knowledge consists of pro-
duction rules, actions, and methods. The distinction that LOOM draws between modelling
declarations and behavior declarations is analogous to the distinction made in procedural
languages between type declarations and procedure declarations. However, the model- driven
style of programming exempli�ed by LOOM advocates that a model speci�cation should do
more than simply de�ne a type lattice and bind �eld-like objects to record-like objects.
A comprehensive model speci�cation will contain assertions about the logical relationships
(constraints) that hold between di�erent conceptual entities.

To clarify these concepts and provide insight into the look and feel of LOOM and a typical
LOOM application, the remaining portion of this chapter introduces a short LOOM example
constructed from the domain of a robot driven factory. The factory will contain entities such
as robots, lathes, widgets, etc. In this section we implement the following scenario: factory-

parts (widgets, gizmos, and doohickeys) are generated at a location called the Assembly-Site.
Finished parts are placed in a box. When a box becomes almost-full, the box is moved to
another location called the Warehouse. At the Warehouse, the parts are removed from the
box. Doohickies are fragile, and extra care must be taken when moving a box containing
one or more doohickies.

6

3.1 The Modelling Language

The subset of the LOOM language used to specify de�nitions, declarative rules, and facts is
referred to as the modelling language.

3.1.1 De�nitions: Concepts, Relations, and Intervals

De�nitions provide a formal means for introducing the terminology used in a particular
application domain. Collectively, the set of de�nitions in a model speci�cation establish the
conceptual components relevant to that domain. A de�nition binds a symbol to a concept (an
abstract class of individuals) or to a relation (an abstract relationship between individuals).
Concepts in LOOM are used to represent such declarative statements as \There exists a
class of Robot entities" or \A Factory-Robot is a Robot with exactly two arms." The LOOM
notion of a concept is similar to the notion of a \class" found in many object-oriented
systems. Here are two examples of concepts declarations:

(defconcept Robot)

(defconcept Factory-Robot :is (:and Robot (:exactly 2 robot-arm)))

The �rst declaration above declares a new (primitive) class of individuals named Robot.
The second declaration declares a concept named Factory-Robot, comprised of those in-
stances of the concept Robot for which there are exactly two �llers of the role robot-arm.
The following LOOM statements de�ne concepts for our factory domain and introduces the
use of the :constraints keyword. We start with the taxonomy of concepts that de�ne
factory-parts, consisting of widgets, gizmos, and doohickeys:

[1] (defconcept Physical-Object

:constraints (:and (:exactly 1 weight) (:exactly 1 has-location)))

\A Physical-Object has exactly one weight and one location."

[2] (defconcept Fragile-Thing :is-primitive Physical-Object)

\A Fragile-Thing is a basic kind of Physical-Object."

[3] (defconcept Factory-Part :is-primitive Physical-Object)

\A Factory-Part is a kind of Physical-Object. It is not de�ned in terms of more
basic concepts."

[4] (defconcept Widget :is-primitive Factory-Part

:constraints (:the weight-in-kilos 3))

\A Widget is a kind of Factory-Part. All instances of Widgets weigh of 3 kilos."

7

[5] (defconcept Gizmo :is-primitive Factory-Part

:constraints (:the weight-in-kilos 2))

\A Gizmo is a kind of Factory-Part. All instances of Gizmos weigh 2 kilos."

[6] (defconcept Doohickey :is-primitive Factory-Part

:constraints (:the weight-in-kilos 1))

\A Doohickey is a kind of Factory-Part. All instances of Doohickeys weigh 1
kilo."

De�nitions for terms are expressed using the keywords :is and :is-primitive. For ex-
ample, LOOM statement [2] de�nes the term Fragile-Thing. The keyword :is-primitive

is employed to introduce a new property (e.g. \fragility") into a knowledge base. A simple
way to think of primitiveness is that it designates concepts that are not or cannot be fully
de�ned by references to other concepts. The designation of :is-primitive has the seman-
tics of declaring that there is important hidden information that separates this concept from
others in the knowledge base; this information is left unspeci�ed and is not known to LOOM.
In simple frame systems such as CLOS, all concepts are primitive in this sense; there is no
mechanism for de�ning concepts whose instances can be recognized by their description in
terms of other concepts. See Section 4.1.2 for an in-depth discussion on primitive concepts.
Also, see the LOOM tutorial for more examples and discussion of primitiveness. Declarations
that omit the :is clause, [1], are taken to de�ne new primitive concepts or relations.

Constraints are implications introduced within a defconcept or defrelationdeclaration
by one of the keywords :constraints, :domain, or :range. A constraint states a necessary
condition that applies to instance matching a de�nition, e.g., \If W is an instance of Widget,
then necessarily W weighs 3 kilos"[4].

To complete the de�nition of the Factory-Part taxonomy, we must de�ne how the roles
weight-in-kilos and has-location can be �lled. Relations de�ne how the roles of a
concept instance can be �lled. The following interval and relation de�nitions complete the
model for factory parts.

[7] (defconcept Weight-in-Kilos :is

(:and Number (:through 0 +INFINITY)))

\Weight-in-Kilos is a kind of non-negative number."

[8] (defrelation weight-in-kilos

:domain Physical-Object :range Weight-in-Kilos

:attributes :single-valued)

\A Physical-Object's role weight-in-kilos can be �lled with an instance of Weight-
in-Kilos. weight-in-kilos is a single valued relation."

[9] (defrelation has-location :domain Physical-Object)

8

\Has-location is a legal role of Physical-Object."

Intervals in LOOM are concepts, and represent a (possibly in�nite) sequence of scalar
elements. The built-in interval Number represents the sequence of real numbers from minus
in�nity to plus in�nity. [7] de�nes Weight-in-Kilos as a subset of Number containing only
numbers from zero to plus in�nity.

3.1.2 Implications and More Complex De�nitions

Above, we have de�ned the concept of a Fragile-Thing [2]. Now we would like to imply that
a Doohickey is a Fragile-Thing as well as a Factory-Part.

[10] (implies Doohickey Fragile-Thing)

\All instances of Doohickey are Fragile-Things."

We will now complete the de�nitions of concepts and implications needed for our factory
example.

[11] (defconcept Physical-Container

:is-primitive (:and Physical-Object Generalized-Container))

\A Physical-Container is a kind of Physical-Object and a kind of Generalized-
Container."

[12] (defrelation has-item

:is-primitive container--containee

:domain Physical-Container

:range Physical-Object

:attributes :closed-world)

\The relation has-item is a kind of container{containee relation."
\A Physical-Container's role has-item is �lled by an instance of a Physical-

Object."

[13] (defrelation weight-of-items

:is (:satisfies (?container ?weight)

(sum (weight (has-item ?container)) ?weight))

:domain Physical-Container

:range Weight-in-Kilos)

\A Physical-Container's role weight-of-items is �lled by an instance of Weight-
in-Kilos." \The relation weight-of-items is computed as the sum of all the weights
of the items in the container."

[14] (defrelation capacity-in-kilos :range Weight-in-Kilos)

9

\The role capacity-in-kilos is �lled by an instance of Weight-in-Kilos."

[15] (defconcept Box-of-Parts :is (:and Physical-Container :primitive)

:constraints (:and (:all has-item Factory-Part)

(:exactly 1 capacity-in-kilos))

:defaults (:filled-by capacity-in-kilos 5))

\A Box-of-Parts is a kind of Physical-Container."
\All �llers of the role has-item are Factory-Parts."
\A Box-of-Parts has exactly one capacity-in-kilos."
\By default, the capacity of a Box-of-Parts is 5 kilos."

[16] (defconcept Almost-Full-Box

:is (:and Box-of-Parts

(:at-least 3 has-item)))

\An Almost-Full-Box is a kind of Box-of-Parts which has at least three items."

De�nition [13] shows how the LOOM programming language incorporates pattern match-
ing and computation with declarative knowledge. A symbol preceded with a ? represents a
variable. The relation weight-of-items [13] uses a :satisfies clause to de�ne the com-
position of the binary relations has-item, weight, and sum.

3.1.3 Open and Closed-World Semantics:

To enable LOOM to compute values for the weight-of-items function applied to speci�c con-
tainers, we have declared that closed-world semantics1 apply to the relation has-item [12].
This localized closed-world assumption implies that those instances explicitly asserted to be
items in a container C are in fact all of the items in C, and hence makes it possible for LOOM
to compute the function which returns the set of of items in a container. If instead, open-
world semantics applied to the has-item relation, then it would not be possible in general
to determine the entire set of items for any particular container. The default setting for re-
lations in LOOM is to assume an open-world semantics. The concept Almost-Full-Box [16]
relies on the count of the has-item role �llers to determine which instances of Box-of-Parts
are Almost-Full-Boxes.

3.1.4 Facts:

Facts are used to tell LOOM about an instance of a concept. LOOM is designed not only
to de�ne models but also to dynamically match object instances in the database against
de�ned models. That is, the LOOM environment provides an active classi�er in addition to
a modelling language. The LOOM construct tell is used to \tell" LOOM about an instance

1See Appendix A: A Glossary of LOOM Terms for a de�nition of closed-world semantics

10

to be added to a database. The construct tellm invokes the matcher as well as adding an
instance of a concept to the database.

[17] (tellm (Box-of-Parts box1)

(capacity-in-kilos 7))

\box1 is an instance of a Box-of-Parts; box1 has a capacity of 7 kilos."

[18] (tellm (Widget w1)

(has-item box1 w1))

\w1 is an instance of a Widget; w1 is placed in box1."

[19] (tellm (Doohickey d1)

(has-item box1 d1))

\d1 is an instance of a Widget; d1 is placed in box1."

The �rst database event [17] is the creation of the instance box1 having a capacity of
7 kilos. Next, an instance of Widget identi�ed as w1 is created and placed into box1 by
asserting that box1 has-item w1. The subsequent code creates a doohickey and another
widget, both are put in box1.

The concluding operation of a tellm function is to alert the LOOM matcher to the
presence of database modi�cations. At this time, the pattern matcher checks the database
to see if new pattern matches can be inferred. After the �rst three calls to tellm, the
following facts have been asserted or deduced:

(Widget w1)

(has-item box1 w1)

(Doohickey d1)

(Fragile-Thing d1) ;; deduced fact

(has-item box1 d1)

(weight-of-items box1 4) ;; deduced fact

3.2 The Behavior Language

The behavior language is employed to capture the procedurally-expressed aspects of both
the domain and the application program. A behavioral speci�cation consists of declarations
of actions, methods, and production rules.

11

3.2.1 Actions and Methods:

An action declaration introduces a generic operation that can be invoked to accomplish some
speci�c tasks. A LOOM action is implemented by a set of methods, each of which speci�es a
situation-speci�c implementation for that action. Each method is associated with a pattern
that identi�es the situation (set of states) when that particular method may be applied. In
the case that an operator is to be applied and more than one method is applicable, LOOM
compares the patterns for each of the candidate methods and chooses for execution the
method with the most-speci�c matched pattern. The assumption governing this behavior is
that methods which are tied to more speci�c situations are to be preferred over methods tied
to more general situations. This type of control strategy, which represents a generalization
of the techniques used for dispatching methods in object-oriented languages, provides LOOM
programmers with a very powerful control heuristic.

Continuing with the factory example, we will implicitly de�ne the action move-object

by de�ning two move-object methods, one which is applicable to any object, the second
applicable only to boxes which contain one or more fragile parts.

[20] (defmethod move-object (?object ?to)

:situation (Physical-Object ?object)

:response

((format t "Move ~S to ~ location ~S~%" ?object ?to)

(tell (has-location ?object ?to)))

Method: move-object.
Used when ?object is a kind of Physical-Object.

[21] (defmethod move-object (?box ?to)

:situation (:and (Box-of-Parts ?box)

(:about ?box (:some has-item Fragile-Thing)))

:response

((format t

"CAREFULLY Move ~S to ~ location ~S~%" ?box ?to)

(tell (has-location ?box ?to))

Method: move-object.
Used when ?box is a kind of Box-of-Parts that contains a Fragile-Thing.

The move-object method in [20] is applicable when the instance bound to the formal
parameter ?object is a kind of Physical-Object. This method can move any object from
one place to another. The move-objectmethod de�ned by [21] responds to the more speci�c
situation when the object to be moved is a box which contains one or more fragile parts. In
the case, the object (the box) is moved carefully. Hence, whenever an object to be moved is
a box containing a fragile part, the second method [21] will be executed.

We will now de�ne two more actions for our factory example: remove-full-box and
unload-box.

12

[22] (defmethod remove-full-box (?box)

:response

((perform (move-object ?box (get-instance 'Warehouse)))

(perform (unload-box ?box)))

Method: remove-full-box.
Move a box of parts from the Assembly site to the Warehouse and unload the

box.

[23] (defmethod unload-box (?box)

:situation (Box-of-Parts ?box)

:response

((format t "Unload the contents of the box ~S~%" ?box)

;; remove each item in the box "?box" and set its

;; location to the box's current location

(do-retrieve ?part (has-item ?box ?part)

(forget (has-item ?box ?part))

(tell (has-location ?part (has-location ?box)))))

Method: unload-box
Unload a Box-of-Parts. For each item in the box, remove it from the box and

assign the box location to the has-location role of the part.

The function get-instance (such as (get-instance 'Warehouse) in [22]) retrieves an
instance from the database. In this case, (get-instance 'Warehouse) retrieves the instance
of a location bound to the symbol Warehouse.

3.2.2 Productions:

A LOOM production rule speci�es a task to be invoked whenever a particular event occurs.

[24] (defproduction P1

:when (Almost-Full-Box ?box)

:schedule (remove-full-box ?box))

The production P1 [24], de�nes a rule that detects the event that a box becomes almost
full using the pattern (Almost-Full-Box ?box) (de�ned by declaration [13]). The e�ect of
the production P1 is to schedule a task to apply the operator remove-full-box to a box in
the event that the box becomes almost full.

To show the interaction between asserting facts and the behavioral portion of the factory
model we add a third item to box1.

[25] (tellm (Widget w2)

(has-item box1 w2))

\w2 is an instance of a Widget, w2 is placed in box1."

13

This causes the database to now have the following form.

(Widget w1)

(has-item box1 w1)

(Doohickey d1)

(Fragile-Thing d1) ;; deduced fact

(has-item box1 d1)

(Widget w2)

(has-item box1 w2)

(weight-of-items box1 7) ;; deduced fact

(Almost-Full-Box box1) ;; deduced fact

When the (Almost-Full-Box box1) fact is deduced, the production rule P1 [24] �res
due to its :when condition (Almost-Full-Box ?box). P1 then schedules a task to apply
the operator remove-full-box to the object box1. Because box1 contains a doohickey d1

that is fragile, the test conditions of both move-object methods are satis�ed. Because the
second method's pattern is more speci�c (applies to a more speci�c concept in the concept
taxonomy) than the �rst method's pattern, the second method will be selected and box1

will be moved carefully to the Warehouse.

14

Chapter 4

Modelling in LOOM

This Chapter introduces the syntax and semantics of the constructs that declare de�nitions,
implications, and default rules. These constructs are all based upon a syntactic variant
of �rst-order logic, called a terminological logic, that facilitates the expression of the most
frequently referenced forms of descriptive knowledge.1

The Lisp operators defconcept, defrelation, and defset declare the following kinds
of objects: concepts, relations, and sets de�ned as follows:

concept: A concept is the LOOM speci�c construct that binds a name to a
description of a class of entities. Concepts are used similar to frames in other
knowledge representation systems.

relation: A relation de�nes a linkage between elements of represented knowledge.
A link between two concepts is a binary relation. The LOOM description language
for relations provides particular support for de�ning binary relations. Unary
relations are de�ned as concepts.

set: In LOOM, a set is a specialized kind of concept that identi�es a collection of
constants. The set may be �nite or in�nite. Examples of constants are the color
red or the number 5.

Expressions representing concepts and relations are either primary or compound. Some
primary expressions are

(:at-least 1 has-arm) the concept whose individuals all have
at least one arm

(:range Integer) the relation whose range �llers have
type Integer

1Because a di�erent syntax (closer to that of standard �rst-order logic) is used for asserting and retracting
facts, we have placed the presentation of the fact language in its own Chapter, 5.

15

The logical operators :and, :or, and :not2 can be employed to synthesize compound
expressions. They have the semantics of intersection, union, and relative complement, re-
spectively, e.g., ifC1 and C2 are concepts, then (:and C1 C2) represents the concepts formed
by intersecting C1 and C2.

4.1 De�nitions

This section opens by describing the role that de�nitions play in the declaration of a concept
or relation. We pay special attention to the semantic distinction between primitive and
de�ned de�nitions. The remaining subsections present the syntantic constructs used to
de�ne concepts, relations, and sets, respectively.

4.1.1 What is a \De�nition"

The primary function of a defconcept (or defrelation) function is to associate a name
with a LOOM concept or relation. For example, to associate the name 2-Armed-Robot with
a LOOM concept representing \a Robot with exactly two arms" we might declare

(defconcept 2-Armed-Robot

:is (:and Robot (:exactly 2 has-arm)))

In this defconcept declaration, the term (:and Robot (:exactly 2 has-arm)) refers
to (de�nes) a concept, and the keyword :is states that the symbol 2-Armed-Robot denotes
that concept. The term introduced by the :is keyword represents a necessary and su�cient
condition for membership in the concept. Let us assume that closed-world semantics3 apply
to the relation has-arm. Then if we make the assertions

(tell (Robot Daneel)

(has-arm Daneel A1)

(has-arm Daneel A2))

then Daneel satis�es the condition (:and Robot (:exactly 2 has-arm)) and hence the
system will deduce

==> (2-Armed-Robot Daneel).

Conversely, if we assert

(tell (2-Armed-Robot Giscard))

the system will deduce the necessary condition

==> (:about Giscard (:exactly 2 has-arm))

2The :not operator is currently implemented only for the case of �nite sets.
3See Appendix A: A Glossary of LOOM Terms for a de�nition of closed-world semantics.

16

meaning that \Giscard has two arms" (but the identity of each arm may not be known).
By attaching a necessary and su�cient condition to the symbol 2-Armed-Robot we are

telling the system \what it means to be a 2-Armed-Robot." For example, if we evaluate the
query

(retrieve ?x (:about ?x Robot

(:at-least 2 has-arm)))

which translates as \retrieve all robots which have at least two arms" the system will return
a set containing both Daneel and Giscard. To generate this response, the system must infer
for the case of the robot Giscard that \a robot with exactly two arms" is necessarily \a
robot with at least two arms."

A primary purpose of LOOM's de�nitional facility is that it allows a programmer to de�ne
complex terms, and to make assertions using those terms.4 It remains the responsibility
of the LOOM system (speci�cally, of its deductive component) to correctly interpret the
implications or consequences inherent in each new term de�nition.

To avoid complicating the semantics, LOOM requires that de�nitions of concepts and
relations not be cyclic. For example, the following de�nition is self-referential, and therefore
illegal:5

(defconcept Part

:is-primitive (:and Physical-Object (:all has-part Part)))

We can repair this de�nition by moving the constraint (:all has-part Part) out of the
de�nition of Part, and into a separate constraint clause:

(defconcept Part :is-primitive Physical-Object

:constraints (:all has-part Part))

With respect to LOOM's pattern-matching and retrieval operations, this latter de�nition
exhibits the same behavior as would be the case for the former (circular) de�nition (if it
were legal). This technique of repairing circular de�nitions by substituting constraints is a
general one. The constraint language thus compensates for the inability of the de�nition
language to express circularly-de�ned concepts.6

4.1.2 Primitive and De�ned Concepts

It is important to understand the semantic import that accompanies the distinction between
primitive concepts (ones which either explicitly or implicitly contain the term :is-primitive

in their de�nitions) and de�ned concepts (ones which don't). This section �rst illustrates the

4Contrast this with the view mechanisms found in relational database systems, which allow views to
participate in retrieval expressions, but place severe limitations on how views can be used in assertional
(update) expressions.

5The :satisfies clause is an exception to this rule, i.e., it can be self-referential.
6We have not yet encountered an application for LOOM which would bene�t materially by introducing

circularly-de�ned concepts.

17

di�erence conceptually, and then presents an example illustrating the di�erence in behavior
associated with the two kinds of concepts.

Many words used to describe real-world objects defy exact description. Words such as
\rock", \chair", or \bird" denote object classes such that the most exact thing we can say
is \I know one when I see it." Such concepts are sometimes referred to as \natural kinds".
In LOOM these are examples of primitive concepts. Other concepts, such as \a smooth red
rock" or \a 3-legged chair", can be de�ned with precision, given that the terms referenced in
their de�nitions (\smooth", \red", \rock", \leg", \chair") are independently de�ned. These
two composite concepts are examples of de�ned concepts.7 Another way of thinking of
primitive concepts is that a primitive concept has unrepresented features that characterize
an object as an instance of that concept. In this sense, the name of the concept itself carries
the semantics necessary to distinguish it from other concepts, even though there may not
be de�ned attributes and features to separate it. LOOM will merge de�ned concepts that
appear to be identical, but primitive concepts are never merged since LOOM realizes there
are features important to their de�nitions that will alway be unknown to the system.

Consider the following two concept de�nitions, whose semantics di�er only in the use of
the :is-primitive (rather than :is) in the second de�nition:

(defconcept 5-Kilo-Part

:is (:and Part

(:the weight-in-kilos 5)))

(defconcept Primitive-5-Kilo-Part

:is-primitive (:and Part

(:the weight-in-kilos 5)))

An instance B is recognized by the LOOM pattern matcher as a 5-Kilo-Part if it is a Part
that weights 5 kilos. However, B is not recognized as a Primitive-5-Kilo-Part unless it
is directly asserted to be one. More concretely, suppose we make the factual assertions

(tell (Part B1)

(weight-in-kilos B1 5)

(Primitive-5-Kilo-Part B2))

The query (retrieve ?x (5-Kilo-Part ?x)) will return a set containing both B1 and B2,
because for each of the instances LOOM will recognize that their weight-in-kilos is 5
and will classify them as instances of 5-Kilo-Parts. In constrast, the query (retrieve

?x (Primitive-5-Kilo-Part ?x)) will return a set containing only B2, since B1 was not
directly asserted to be a Primitive-5-Kilo-Part.

7An explicit representation of primitiveness is absent in nearly all of the currently-available knowledge-
based programming systems. This is because those systems lack any facility for representing a de�ned

concept, i.e., the concepts represented by their frames, classes, sorts, etc. are all primitive; hence, attaching
the notation primitive to a frame, class, etc. would be redundant.

18

4.2 Concept-Expressions

Below, we present the atomic concept-forming expressions. In these expressions, the symbol
k represents a non-negative integer. The symbols R and Rj stand for relation expressions
(either a unary or a binary relation). The term role is often used to refer to a relation R

which appears within a concept expression. Each role R maps an instance of a concept to a
set of instances which are called the �llers of that role, e.g., the items in a box of parts are
considered to be �llers of the role has-item with respect to that box. The symbol T below
stands for a concept expression.

19

(:and C1 ... Cn) | Intersection

De�nes a concept representing the intersection of the concepts C1, ..., Cn.

Example: (:and Physical-Container Fragile-Thing)

describes an object that is a physical container and
is also fragile.

(:or C1 ... Cn) | Union

De�nes a concept representing the union of the concepts C1, ..., Cn.

Example: (:or Widget Gizmo)

Describes an object that is either a widget or a gizmo.

Comment1: The performance of the LOOM classi�er will degrade if signi�cant
numbers of concepts are created that are not themselves primitive, and that do
not inherit any primitiveness. A disjunction of two widely dissimilar concepts
may create one of these undesirable concepts. Disjunctions of concepts that all
specialize a common primitive ancestor do not exhibit this negative property. For
example, both of the concepts Widget and Gizmo specialize the primitive concept
Part, and hence their union (:or Widget Gizmo) also specializes Part.

Comment2: The :or operator has not been implemented for relation expressions
(because doing so is non-trivial, and because users don't seem to miss it).

(:not C) | Complement

De�nes a concept representing the set of objects that are not instances of C.8

Example 1: (:and Part (:not Gizmo))

Describes an object that is a part but that is not a gizmo.
Example 2: (:not Gizmo)

Describes an object that is not a gizmo.

Comment: It is strongly recommended (for performance reasons) that the :not
operator only be used to de�ne a relative complement (of a concept other than
Thing). By this we mean that a :not expression always be contained within an
enclosing conjunction expression. The expression (:and Part (:not Gizmo))

represents a correct use of :not, since it de�nes the complement of Gizmo relative

to the complement Part. Explicit introduction of the concept (:not Gizmo) is
undesirable because it de�nes Gizmo relative to everything, i.e., relative to Thing.

8Implementation Note: At present the :not operator has only been implemented for set concepts.

20

(:at-least k R) | Min Restriction
(:at-most k R) | Max Restriction
(:exactly k R) | Min-Max Restriction

De�nes a concept C such that each instance of C has at-least/at-most/exactly k

�llers for the role R.

Example1: (:and Box-of-Parts (:at-most 0 has-item))

Describes a box with no items.
Example2: (:and Robot

(:exactly 4 (:compose has-arm has-finger)))

Describes a robot which possesses a total of four �ngers.

(:all R T) | Type Restriction

De�nes a concept C such that for each instance of C, all �llers of the role R have
type T .

Example: (:and Robot (:all has-arm (:exactly 2 has-finger)))

Describes a robot each of whose arms has exactly two �ngers.

(:some R T) | Typed Existential

De�nes a concept C such that for each instance of C, R has at least one �ller of
type T .

Example: (:and Box-of-Parts (:some has-item Gizmo))

Describes a box containing at least one gizmo.

(:the R T) | Singular Type Restriction

De�nes a concept C such that for each instance of C, R has exactly one �ller,
and R's �ller has type T .

Example: (:and Lathe

(:the (:compose has-bit thickness)

(:through 30 50)))

Describes a lathe which has a (single) bit whose thickness
is between 30 and 50 (inclusive).

(:filled-by R T) | Role Filler

21

De�nes a concept C such that for each instance of C, R has a �ller whose value
is T .

Example: (tellm (:about Joe

(:filled-by parent Fred Mary)))

For the concept Joe, the parent slot is given the
values Fred and Mary.

(:same-as R1 R2) | Equivalence (Same Fillers)

De�nes a concept C such that for each instance of C, the sets of �llers of the
roles R1 R2 are the same.

Example: (:and Robot (:same-as (:compose left-arm location)

(:compose right-arm location)))

Describes a robot whose left and right arms are (currently)
in the same location.

(REL R1 R2) | Comparison
(REL R1 const)

(REL const R2)

De�nes a concept C such that for each instance of C, the j-place or 2-place
predicate REL is true when applied to the sets of �llers of the roles R1 ... Rj

(or to a role Ri and a constant const). REL must belong to the set of built-
in relations f<, >, <=, >=, =, /=, :subsetg. In the usual case that some
or all of the arguments to REL are required to be single values rather than
sets, LOOM coerces the corresponding (singleton) sets of role values into non-set-
valued values, e.g., the set \f3g" becomes the value \3".

Example1: (:and Box-of-Parts

(> weight-of-items capacity-in-kilos))

Describes a box of parts whose items collectively weigh more
than its capacity.

Example2: (:and Box-of-Parts

(>= weight-of-items 10))

Describes a box of parts whose items collectively weigh more
than ten kilos of its capacity.

(:satisfies (arg) query) | Satisfies Queries

De�nes a concept C of all instances such that the query query is satis�ed when
the variable arg is bound to that instance. arg is a symbol beginning with

22

the character `?', and query is an open sentence (expressed in the LOOM query
language) having arg as its only free variable.

Example: (:and Box-of-Parts

(:satisfies ?box

(:for-some (?m1 ?m2)

(:and (has-item ?box ?m1)

(has-item ?box ?m2)

(/= (weight-in-kilos ?m1)

(weight-in-kilos ?m2))))))

Describes a box of parts containing two items of
unequal weight.

(:predicate (arg) body) | Compiled Lisp Predicate

De�nes a concept C of all instances such that body, a list of Lisp forms, returns
a non-nil value when evaluated with the variable arg bound to that instance.

Example: (:and Number

(:predicate ?number

(integerp ?number)))

Describes a number that is an integer (\integerp" is
a built-in Lisp function).

Comment: The :predicate operator provides a formal way to introduce Lisp-
de�ned predicates into a LOOM knowledge base. Concepts whose de�nitions
include a :predicate operator are treated as pseudo-primitive concepts because
LOOM cannot reason about the contents of the bodies of these de�nitions.

(:changed R) | Changed Values

De�nes a concept C such that for each instance of C, the set of �llers of R has
changed during the last match cycle.9

Example: (:and Box

(:changed location))

Describes a box whose location has just changed.

Comment: Because LOOM does not yet include a representation of time, the
:changed construct operates by assuming that each call to the LOOM matcher
represents a time increment. The :changed feature represents a �rst small step
in the direction of a temporal calculus for LOOM.

9Implementation Note: The :changed construct has not been implemented yet.

23

4.3 Relation-Expressions

This section illustrates the operators available for de�ning new relations. Each relation
expression corresponds either to a binary predicate whose �rst argument is called its domain,
and whose second argument is called its range, or to an n-ary predicate whose �rst n-1
arguments are called its domains, and whose last argument is called its range.

(:and R1 ... Rn) | Intersection

De�nes a n-ary relation representing the intersection of the relations R1, ..., Rn.

Example: (defrelation length-in-meters :is-primitive

(:and unit-of-length metric-measurement))

De�nes a length relation that is both a kind of
unit-of-length and a kind of metric-measurement.

(:range C) | Range Restriction

De�nes a binary relation R such that for each instance <d,r> of R, r has type
C.

Example: (defrelation has-arm

:is (:and has-part (:range Robot-Arm)))

De�nes a has-part relation whose range �llers are robot arms.

Comment: Given the assertions (Robot-Arm A1) and (has-part Shakey A1),
the above de�nition allows LOOM to infer (has-arm Shakey A1). The :range
of a relation is also checked when using the set-value function.

(:domain C) | Domain Restriction

De�nes a binary relation R such that for each instance <d,r> of R, d has type
C.

Comment: Domain restrictions occur very seldom in user's relation de�nitions.
However, they do appear occasionally in a system-de�ned de�nition, e.g., if an
inverse of the relation has-part called part-of were de�ned, then upon de�ning
the range-restricted relation has-arm (as in the previous example) LOOM would
(on its own) construct an inverse of the relation has-arm whose de�nition would
be:

(defrelation part-of-1

:is (:and part-of (:domain Robot-Arm))).

24

(:inverse RI) | Inverse Relation

De�nes a binary relation R such that for each instance <d,r> of RI, <r,d> is
an instance of R.

Example: (defrelation item-of :is (:inverse has-item))

De�nes the inverse of the relation has-item

Comment: Suppose we want to de�ne a concept Boxed-Part to indicate a
factory part which is an item of some box. This is easy if we have the inverse to
has-item available:

(defconcept Boxed-Part

:is (:and Factory-Part (:some item-of Box-of-Parts))).

(:compose R1 ... Rn) | Composition

De�nes a binary relation R as the composition of the relations Rj, i.e., <i1,in> is
an instance of R if and only if there exists i2 ... in�1 such that for each j between
1 and n-1, <ij,ij+1> satis�es Rj .

Example: (defrelation has-in-hand

:is (:compose has-arm has-hand grasp))

De�nes a composition of the relations has-arm,
has-hand, and grasp

(:satisfies (args) query) | Satisfies Query

De�nes an n-ary relation R whose arity equals the number of arguments listed
in args. query is an open sentence (expressed in the LOOM query language)
having free variables corresponding to the members of the list args. A tuple
<i1,i2,...,ik> is an instance of R if and only if query is satis�ed when its free
variables are bound (in the order listed in args) to the instances i1, i2, ... ,ik.

Example: (defrelation has-item*

:is (:satisfies (?x ?z)

(:or (has-item ?x ?z)

(:for-some ?y

(:and (has-item ?x ?y)

(has-item* ?y ?z))))))

De�nes a relation named has-item* representing the
transitive closure of the relation has-item.

Comment: The restriction that concept or relation de�nitions cannot be self-
referential is lifted inside of a :satisfies clause.

25

(:predicate (args) body) | Compiled Lisp Predicate

De�nes an n-ary relation R whose arity equals the number of arguments listed in
args. LOOM generates a compiled Lisp function with arguments args and body
body which is used to recognize instances of R.

Example: (defrelation >=

:is (:predicate (?v1 ?v2) (>= ?v1 ?v2))

:domain Number :range Number)

De�nes a relation representing the Lisp predicate \>=".

Comment: The :predicate operator provides a formal way to introduce Lisp-
de�ned predicates into a LOOM knowledge base. Relations whose de�nitions
include a :predicate operator are treated as pseudo-primitive relations because
LOOM cannot reason about the contents of the bodies of these de�nitions.

(:function (args) body) | Compiled Lisp Function

De�nes an n-ary relation R whose arity equals one more than the number of
arguments listed in args. LOOM generates a compiled Lisp function with argu-
ments args and body body which is used to generate instances of the range of R,
when applied to a set of instances from the domains of R.

Example: (defrelation +

:is (:function (?v1 ?v2) (+ ?v1 ?v2))

:domains (Number Number) :range Number)

De�nes a relation representing the Lisp function \+".

Comment: The :function operator provides a formal way to introduce Lisp-
de�ned functions into a LOOM knowledge base. Relations whose de�nitions
include a :function operator are treated as pseudo-primitive relations because
LOOM cannot reason about the contents of the bodies of these de�nitions.

4.4 Sets and Intervals

Sets and intervals are viewed as a special type of concept. In LOOM , a set is considered to
be a group of constants and an interval is a set with an ordering of \<" over the members
of the set. Named sets are declared with the use of the defset operator. Also, LOOM
provides two set constructors :one-of to build a set from a collection of symbolic literals,
and :the-ordered-set to build a set of symbolic literals which contain an ordering from
the �rst element to the last element. Intervals are declared using defconcept and use the
constructor :through. The examples below illustrate the use of declared sets, constructed
sets, and intervals.

26

(defset Tire-Pressure :is (:the-ordered-set FLAT LOW NORMAL))

(defrelation tire-pressure :is-primitive

:domain Wheel :range Tire-Pressure

:attributes :single-valued)

\For Wheels, the role tire-pressure must have exactly one �ller taken from the
interval Tire-Pressure and is either LOW, FLAT, or NORMAL."

(defconcept Low-Wheel

:is (:and Wheel (:the tire-pressure (:through FLAT LOW))))

(defconcept Flat-Wheel

:is (:and Wheel (:the tire-pressure (:one-of FLAT))))

\Low-Wheels are Wheels whose tire pressure is in the interval from FLAT to
LOW. Flat-Wheels are Wheels whose tire pressure equals FLAT."

(defconcept Weight-in-Kilos :is

(:and Number (:through 0 +INFINITY)))

\Weight-in-Kilos is a kind of non-negative number found in the interval from zero
to in�nity."

(defset Door-Status :is (:and (:one-of OPEN CLOSED) Symbol))

(defrelation door-status :is

:domain Car :range Door-Status

:attributes :single-valued)

(defconcept Car-with-Open-Door

:is (:and Car (:the door-status (:one-of OPEN))))

\Door-Status names the set of symbols {OPEN CLOSED }. A Car-With-Open-
Door is a Car whose door-status role is �lled by the symbol {OPEN}."

4.5 Implications/Constraint Rules

A constraint declaration attaches a rule of implication to a concept or relation. Constraints
are attached to concepts using the keyword :constraints, and to relations using the key-
words :domain and :range. The :constraints keyword introduces a `necessary' quali�er to
concept membership, that is, all instances of a concept must satisfy each of the constraint(s)
associated with that concept. As an example, in the concept

(defconcept Object

:constraints (:and (:exactly 1 weight) (:exactly 1 location)))

27

we see that an Object has two constraints: it can have precisely one weight and precisely
one location. An alternative means for declaring constraint rules is supplied via the implies
operator. The above de�nition of the concept Object could be restated using the implies

operator as follows:

(defconcept Object)

(implies Object

(:and (:exactly 1 weight) (:exactly 1 location)))

The :domain keyword restricts the type of objects that can appear as the �rst element
of a relation. As an example of its use, the LOOM construct

(defrelation location :domain Object)

says that \objects may have locations". Note that no constraint has been placed on �llers
of the role location.

To restrict the type of the �llers of a role, the keyword :range is used. For example,
in order to de�ne a numeric range (\range checking"), one can de�ne an interval (using
defconcept) that bounds the desired numeric range, and then use that de�ned interval as
an argument to the :range keyword. To say that the weight of an object must be non-
negative, we can �rst de�ne an interval Non-Negative-Number as follows:

(defconcept Non-Negative-Number :is

(:and Number (:through 0 +INFINITY)))

and then use the interval Non-Negative-Number in de�ning the concept Weight:

(defrelation Weight :domain Object :range Non-Negative-Number)

This LOOM construct is read as \An Object may have �ller(s) for the role Weight. Fillers
of a Weight role must be instances of Non-Negative-Number."

4.6 Default Rules

LOOM provides two syntactic forms for representing default rules, the keyword :defaults

within a defconcept declaration and default rules using the macro default (no preceding
colon). Defaults cannot be attached to relations. Essentially both the :defaults keyword
and the defaultmacro form an associative rule between a concept and a default expression.
The default expression can be a concept, an :at-least, :at-most, :exactly, :all, or
:filled-by clause, or a conjunction of these clauses or concepts.

:defaults (default��� expression) | Default Expression

28

Keyword on defconcept. For all instances of the concept C, the default� expr

is held to be TRUE unless explicitly changed.

Example: (defconcept 2-Armed-Robot

:is (:and Robot (:exactly 2 has-arm)))

:defaults (:filled-by Weight 500)

Declares that 2-Armed-Robots are assumed to
have a weight of 500.

Comment: The :defaults keyword clause speci�ces the consequent to a rule
whose antecedent is the concept being de�ned.

(default antecedent consequent) | Default Rule

A macro declaring that for concept expressions matching antecedent, the conse-
quent is held to be true unless it is inconsistent with the current state of the
knowledge base.

Example: (default Part (:not Fragile-Thing))

Declares that if p is a part, and p is
not known to be fragile, it is assumed that
p is not fragile.

Comment: A default rule expresses an conditional implication that applies only
when its consequent is consistent with current state of the knowledge base.

4.7 Attributes

In many frame and object based representation systems, the term attribute is used to denote
a role or relation describing the concept; the attributes de�ne the class. In LOOM however,
the word attributes is reserved for describing special properties associated with concepts and
relations. The :attributes keyword is used with defrelation or defconcept and can take
on any or all of the following values:

:backward-chaining Indicates that instances do not classify under a concept during the
normal match cycle. Instead, instantiation relationships are deduced in response to
queries from either LOOM or the user. This often makes the matching process more
e�cient.

:cache-computation Used with relations whose de�nition includes the :function operator.
Causes computed values to be cached as ordinary role �llers, so that subsequent accesses
do not require recomputation. The cached values are not truth-maintained, but they
may be explicitly retracted.

29

:clip-roles Used with (:single-value) relations, this attribute causes clipping to be
performed, in the case that clipping has been turned o� globally. By default, clipping
is on.

:closed-world Over the range of this concept or relation, all propositions not proven TRUE
are taken to be FALSE. The default condition for LOOM is :open-world semantics; see
Section 3.1.3.

:monotonic Indicates that any instance �ller that is asserted to belong to this concept/relation
will always belong to it. Accelerates performance of truth maintenance10.

:multiple-valued Used with relations whose de�nition includes the :function operator; declares
that more than one value will be returned when the relation is used as a role. By default
:function relations are :single-valued and all other relations are multiple-valued. Used
with relations only.

:predicate-specializes-parent Used in concepts and relations whose de�nition includes a
:predicate or :satisfies operator. Indicates the concept or relation does not need to
inherit predicates from its parents since its own predicates imply those of its parents.

:single-valued This relation describes a role that can have only one value as a �ller at a time.
This declaration has three e�ects: 1) clipping, which causes each new role �ller to supersede
the previous role value; 2) in conjunction with :same-as, causes �llers of equivalent single-
valued roles to be merged; and 3) making it easy to \close" a role. Used with relations
only.

:sequence R's role �llers form a sequence11. Used with relations only.

:symmetric Indicates that a relation is its own inverse: R(x; y) = R(y; x). Used with relations
only.

Additionally, LOOM concepts and relations may have the following LOOM-assigned at-
tributes:

:incoherent Indicates that the current de�nition of the concept or relation includes an
inconsistency. For example a concept that specializes two disjoint concepts would be
marked :incoherent.

:system-defined Indicates the concept or relation was created by LOOM (it has a de�ni-
tion, but no user-supplied name).

:undefined Used to mark a concept or relation which has been referenced but not yet
de�ned (it has a name, but no de�nition).

10This attribute is only partially implemented.
11Not yet implemented

30

4.8 Partitions and Coverings

By default, the extensions of any pair of concepts in LOOM are assumed to overlap unless
those concepts are explicitly or implicitly declared to be disjoint. Two concepts are consid-
ered to be disjoint (from each other) if no single individual can simultaneously be an instance
of both concepts. The library function disjoint-concepts-p provides a means for testing
the disjointness of pairs of concepts. During a match cycle, LOOM automatically applies a
test to see if an instance belongs to two or more disjoint concepts. Whenever it is proved
that an instance belongs to a pair of disjoint concepts, the instance is labelled :incoherent.
A concept that specializes two or more disjoint concepts is also marked :incoherent.

Earlier versions of LOOM (Version 1.3.1 and earlier) used the keyword
:disjoint-covering to divide a concept into a group of disjoint subconcepts. Beginning
with LOOM 1.4, this has been replaced by two constructs: :partitions and
:exhaustive-partitions, which designate partial and complete disjoint coverings respec-
tively.

Often it is helpful to partition some or all instances of a concept into exclusive groups.
The set of subordinate concepts then forms a partition of the domain of the concept. If
the partitions that are known su�ce to cover all possible instances of the concept, this is
called an exhaustive partition. However, we frequently would like to use partitions to classify
objects as being an instance of only one subconcept at a time without having to explicitly
represent all of the possible partitions. For example:

(defconcept Part

...

:partitions $PartTypes$)

(defconcept Widget

:is (:and Part

...)

:in-partition $PartType$)

(defconcept Gizmo

:is (:and Part

...)

:in-partition $PartType$)

(defconcept Doohickey

:is (:and Part

...)

:in-partition $PartType$)

declares that any given instance of Part, P1may be either a Widget, a Gizmo, or a Doohickey.
P1 could be some other type of part not yet known, but it cannot be both a Gizmo and a
Doohickey. The use of the :partition/:in-partition syntax enables the user to add
additional partitions of the parent concept at any time. In contrast, the statements:

31

(defconcept Part :is-primitive

...

:exhaustive-partitions $PartTypes$)

(defconcept Widget

:is-primitive (:and Part

...)

:in-partition $PartType$)

(defconcept Gizmo

:is-primitive (:and Part

...)

:in-partition $PartType$)

(defconcept Doohickey

:is-primitive (:and Part

...)

:in-partition $PartType$)

declares that all instances of Part will be exactly one of the set [Widget Gizmo Doohickey].
Section 5.4 shows how open and closed world semantics can interact with the behavior of

LOOM with disjoint-coverings. The examples below show how exhaustive and non-exhaustive
partitions may be combined in to enable reasoning over complex knowledge structures.

(defrelation has-feature :domain animal)

(defconcept Animal

"The Animal Kingdom"

:is-primitive Thing

:exhaustive-partition (Protozoan Metazoan))

(defconcept Metazoan

"The Subkingdom Metazoa: all animals with more than one cell"

:is-primitive (:and Animal Many-celled-organism)

:partitions $Metazoan-Phylii$)

(defconcept Protozoan

"The Subkingdom Protozoa: the single-celled animals"

:is-primitive (:and Animal Single-celled-organism)

:partitions $Protozoan-Phylii$)

All instances of animals will either be single-celled protozoa, or multi-celled animals called
metazoa. By using the exhaustive partition form, we enable LOOM to infer membership in
the set that is not eliminated by known facts. If we assert that Fred does not have more
that one cell, we know that he is a protozoa.

When we do not know all of the disjoint partitions of a class, or when we do not wish
to represent all of them, the use of :partitions allows us to make inferences of exclusion.
In the example below, we have chosen to represent only four of the seven vertabrate classes
(leaving out Agnatha, Chondricthyes, and Amphibia).

32

(defconcept Chordate :is-primitive Metazoan

:in-partition $Metazoan-Phylii$)

(defconcept Vertebrate

"The Subphylum Vertebrata: animals with a

backbone and skeletal structure"

:is-primitive (:and Chordate (:the has-feature Backbone))

:partitions $Vertebrate-Classes$)

(defconcept Fish

"The Class of Fishes: cold-blooded, marine

vertebrates that have gills"

:is-primitive (:and Vertebrate

(:the has-feature gills)

(:the has-feature cold-blooded)

(:the has-feature marine))

:in-partition $Vertebrate-Classes$)

(defconcept Mammal

"The Class of Mammals: warm-blooded vertebrates

whose females bear live offspring and give milk"

:is-primitive (:and Vertebrate

(:the has-feature female-gives-milk)

(:the has-feature lungs)

(:the has-feature warm-blooded)

(:the has-feature live-young))

:in-partition $Vertebrate-Classes$)

(defconcept Bird

"The Class of Birds: warm-blooded

vertebrates, covered with feathers,

breathe with lungs and have wings"

:is-primitive (:and Vertebrate

(:the has-feature wings)

(:the has-feature lungs)

(:the has-feature warm-blooded)

(:the has-feature feathered))

:in-partition $Vertebrate-Classes$)

(defconcept Reptile

"The Class of Reptiles: cold-blooded

vertebrates that have lungs and scales"

:is-primitive (:and Vertebrate

(:the has-feature lungs)

(:the has-feature cold-blooded)

(:the has-feature scalely-skin))

:in-partition $Vertebrate-Classes$)

33

(defconcept warm-blooded :is-primitive Thing)

(defconcept female-gives-milk :is-primitive Thing)

(defconcept live-young :is-primitive Thing)

(defconcept wings :is-primitive Thing)

(defconcept marine :is-primitive Thing)

(defconcept gills :is-primitive Thing)

(defconcept Backbone :is-primitive Thing)

(defconcept Many-celled-organism :is-primitive Thing)

(defconcept Single-celled-organism :is-primitive Thing)

(defconcept feathered :is-primitive Thing)

(defconcept lungs :is-primitive Thing)

(defconcept cold-blooded :is-primitive Thing)

(defconcept scalely-skin :is-primitive Thing)

34

Chapter 5

Reasoning about LOOM Instances

LOOM's assertion, retraction, and query languages are all object-based. We use the term
instance to refer to a knowledge base object that represents a single individual. The assertion
language is limited to asserting facts about instances, and asserting relationships that hold
between instances. Because the full expressive power of the concept de�nition language is
available to the assertional language, facts about individuals can be arbitrarily complex.
Knowledge base retrievals return sets of instances, or sets of lists of instances.

5.1 Assertion: \tell"

The only kinds of facts that can be entered into a LOOM knowledge base are either (1)
assertions that an instance belongs to a particular concept, (2) assertions that some binary
relationship holds between two knowledge base instances, or (3) assertions of the equivalence
of two single-valued (functional) role chains.1 Thus, there are some kinds of facts that one
cannot state in LOOM's assertion language. For example, one cannot state something like
\either widget w1 is in the box, or widget w2 is fragile."

Assertions are made using the Lisp function tell 2. Inside of a tell, the proposition
(Robot Robby) states that \Robby is an instance of the concept Robot," while the propo-
sition (has-arm Robby a1) states that \the relation has-arm is satis�ed by the instances
Robby and a1" (this last proposition can be rephrased as \the role has-arm attached to the
instance Robby contains the �ller a1"). These two propositions are asserted by the form

(tell (Robot Robby)

(has-arm Robby a1))

Within a tell, a non-keyword symbol that is not pre�xed with one of the characters `?' or
`$' is assumed to refer either to a speci�c concept, relation, or instance. The LOOM parser
determines by context which of the three types of objects is being referenced. In the example
just above, Robot refers to a concept, has-arm refers to a relation, and Robby and a1 refer

1See the discussion of :same-as below for an explanation of role chain equivalence.
2The form tellm invokes the matcher following the assertion.

35

to an instances. Concepts and relations referenced by name within a tell must be de�ned
at the time the tell is compiled.3 LOOM evaluates each instance identi�er by �rst looking
for an already existing instance with that identi�er. If none is found, LOOM creates a new
instance, and attaches the identi�er to it.

Within a tell clause, the keyword :about can be employed to escape into the termino-
logical syntax used to de�ne concepts. For example, the statement

(tell (:about Robby

(:exactly 2 has-arm)

(:all has-arm Double-Jointed)))

asserts that \the role has-arm on the instance Robby has exactly two �llers, and both (all)
�llers are instances of the concept Double-Jointed." The :about construct also permits
an abbreviated syntax for asserting grounded atomic formulae, e.g., the meaning of the
statement

(tell (:about Robby

Robot

(has-arm a1)))

is identical to that in our �rst example of tell. In case we wish to assert several �llers
for the same role, the keyword :filled-by can be used within an :about clause to further
abbreviate the syntax. The following three tell statements are equivalent:

(tell (has-arm Robby a1) (has-arm Robby a2))

(tell (:about Robby (has-arm a1) (has-arm a2)))

(tell (:about Robby (:filled-by has-arm a1 a2)))

When role �llers are asserted into a previously empty role using the :filled-by syntax,
LOOM guarantees that the the order of role �llers will be preserved. For example, one can
depend on the following behavior:

(forget (has-arm Robby *))

(retrieve ?a (has-arm Robby ?a)) ==> ()

(tell (:about Robby (:filled-by has-arm a3 a4)))

(retrieve ?a (has-arm[2] Robby ?a)) ==> (|I|A4)

The �llers of a role can be equated with the value of a Lisp expression using the keyword
:filled-by-list inside of an :about clause. For example, the statements

(setq ?arms (list (get-instance 'a3) (get-instance 'a4)))

(tell (:about Robby (:filled-by-list ?arms)))

represents yet another way to provide Robby with two arms. The LOOM function set-value

is a simpler way to accomplish the same e�ect:

(set-value 'Robby 'has-arm '(a3 a4))

3Implementation Note: This restriction may be lifted in a future LOOM release.

36

The :filled-by-list operator is destructive|it has the side-e�ect of retracting any
previously-asserted �llers from a role. This behavior is somewhat analogous to the \clipping"
behavior described in the next section.

The tell syntax permits a formula (a composition of one or more functions, applied to
instances) to be substituted in place of a reference to an instance. For example, if the weight
of instance Robby is known, we can assert that \the weight of Nomad is one greater than the
weight of Robby" by stating

(tell (weight-in-kilos Nomad (+ (weight-in-kilos Robby) 1)))

In this example, the references to + and weight-in-kilos in second argument to the
predicate weight-in-kilos references refer to binary relations that are interpreted as one-
argument functions. The syntax for these formulae is the same as that for the arguments to
predicates inside of a query statement (see section 5.3).

The keyword :same-as can be used inside of a tell to assert that two instances are
equivalent, or that the �llers of two \role chains" are equivalent. If Robby and robot-2

identify two knowledge base instances, then the statement

(tell (:same-as Robby robot-2))

causes them to be merged into a single instance that combines all assertions made about each
of them individually. All references (pointers) to Robby and robot-2 from other instances
are relinked to point to the merged instance. A role chain refers to a binary relation, de�ned
as the composition of other binary relations, that is attached to some concept or instance.
We will call a role chain single-valued if all of the relations in its composition are single-valued
(i.e., functional). The :same-as construct can be used to assert that two single-valued role
chains are equivalent.4 To assert that \the thing that Robby is looking at is the same as the
thing that it is grasping in its right hand" we state

(tell (:same-as (look Robby)

(grasp (has-right-hand Robby))))

If the �llers of both of these role chains are known, (i.e., are represented by actual knowledge
base instances), then they are merged into a single instance. Otherwise, this :same-as

assertion acts as a constraint that can be used during deduction to infer facts about one or
both of the unknown �llers.5

It is important to note that within an :about clause the syntax for :same-as mirrors
that for concept expressions, and hence di�ers from the syntax just described. The following
assertion is semantically equivalent to the one in the previous example.

(tell (:about Robby (:same-as look

(:compose has-right-hand grasp))))

4Implementation Note: At present, the role chains referenced within a :same-as must emanate from the
same instance. In a future release we plan to remove this restriction.

5In the case that neither role chain �ller is known, LOOM creates a skolem instance to represent the
common unknown �ller. However, if :same-as is asserted for role chains that are not single-valued, skolem
instancs are not generated, and merging will not occur.

37

Within a tell, any symbol pre�xed by the character `?' is interpreted as a Lisp variable.
The following code binds the Lisp variable ?r to the instance Robby, and then asserts that
\Robby is squeaky."

(setq ?r (get-instance 'Robby))

(tell (Squeaky ?r))

Variables can appear within a tell anywhere that a reference to a concept, instance, or
relation would be valid. The following code binds the Lisp variable ?concept to the concept
Squeaky and then asserts that \Robby is squeaky."

(setq ?concept (get-concept 'Squeaky))

(tell (?concept Robby))

LOOM provides two additional means for creating a new knowledge base instance. The
form

(create 'R2D2 'Robot)

creates an instance with identi�er R2D2, and asserts that it is an instance of the concept
Robot6. Within a tell, we can cause LOOM to generate a new knowledge base instance
having a system-generated identi�er by referencing a symbol pre�xed by the character `$'.
Subsequent references to that symbol within the same tell form refer to the same instance.
The following form creates a new instance, asserts that it is a robot, and creates two addi-
tional instances �lling the roles of its left and right arms.

(tell (Robot $r)

(has-left-arm $r $a)

(has-right-arm $r $b))

When an :about clause is the �nal form in a tell, the �rst argument to the :about keyword
becomes the return value of the tell, e.g., the code

(tell (:about $r Robot (has-left-arm $a) (has-right-arm $b)))

returns the instance created to �ll the variable $r.

5.2 Retraction: \forget"

Facts are retracted using the Lisp function forget. The syntax for forget is the same as
that for tell (except that `$' variables, which implicitly cause assertions, cannot appear
within a forget form). The e�ect of retracting a fact F is to withdraw explicit support for
that fact. This causes LOOM to compute a new knowledge base state equivalent to what
the state would have been if F had not been previously asserted.

6The form createm invokes the matcher following the creation.

38

(tell (Robot Robby))

(ask (Robot Robby)) ==> t

(forget (Robot Robby))

(ask (Robot Robby)) ==> nil

Note that the e�ect of a retraction in LOOM is to withdraw support for some particular fact|
it does not have the e�ect of negating that fact. Assume that an Android is a special kind of
Robot. Then in the following example, the retraction of explicit support for the proposition
(Robot Robby) does not cause that proposition's truth value to become unknown, because
after the retraction its truth is still derivable from the proposition (Android Robby).

(tell (Robot Robby))

(tell (Android Robby))

(ask (Robot Robby)) ==> t

(forget (Robot Robby))

(ask (Robot Robby)) ==> t

The side-e�ect of creating new instances that sometimes accompanies an assertion is not
retracted by a forget statement /indexget-instance:

(tell (Robot Robby))

(forget (Robot Robby))

(get-instance 'Robby) ==> |I|ROBBY

The function forget-all-about can be called to retract all facts known about an instance,
and to delete that instance from a knowledge base. forget-all-about takes a single argu-
ment, which must be a knowledge base instance.7

(tell (has-item Box5 Widget3))

(retrieve ?x (has-item Box5 ?x)) ==> (|I|WIDGET3)

(forget-all-about 'Widget3)

(retrieve ?x (has-item Box5 ?x)) ==> ()

(get-instance 'Widget3) ==> nil

In order to retract all facts about an instance without destroying the instance, one calls
forget-all-about with the :dont-unintern-p option set to t, for example

(tell (has-item Box5 Widget3))

(forget-all-about 'Widget3 :dont-unintern-p t)

(get-instance 'Widget3) ==> |I|WIDGET3

The symbol *" can be used in place of a role value in order to retract all �llers of a role:

(tell (:about Box5 (:filled-by has-part Widget3 Gizmo2)))

(forget (has-part Box5 *))

(retrieve ?p (has-part Box5 ?p)) ==> ()

7Unlike the tell and forget functions, the forget-all-about function does not implicitly quote symbols
not pre�xed by `?'.

39

When two (or more) di�erent instances are asserted to be �llers of the same single-valued
role, LOOM will automatically retract all but the last assertion. Hence, if the relation color

is single-valued, then the statement sequences

(tell (color W3 GREY))

(tell (color W3 RED))

and

(tell (color W3 GREY))

(forget (color W3 GREY))

(tell (color W3 RED))

are equivalent. This behavior (automatic retraction of singleton role �llers) is called clipping.
The automatic clipping feature can be disabled by evaluating the form:

(unset-features :auto-clip)

If clipping disabled, you can cause LOOM to selectively apply clipping to a speci�c relation
by including the attribute :auto-clip in that relation's de�nition, e.g.,

(defrelation color :range Color

:attributes (:single-valued :auto-clip))

5.3 Queries: \retrieve" and \ask"

The functions retrieve and ask provide the interface to LOOM's deductive query facility.
retrieve is used for retrieving facts (instances) from a knowledge base, while ask is used
to determine whether or not a proposition is true with respect to the currently stated rules
and facts.

A query has one of the forms

(retrieve ?v1 query)

(retrieve (?v1 ... ?vn) query)

(ask query)

The ?vj are called output variables, and query is an open sentence in which the output
variables appear unbound (unquanti�ed). query can be an arbitrary expression in the �rst-
order predicate calculus. The output variables must be pre�xed with the character `?'.
Section 5.3.1 below lists the di�erent keyword expressions that can be used to form a query.

The next few examples assume a knowledge base containing the de�nitions and facts
listed in �gure 5.1.

A retrieve statement having one output variable, with no parentheses around that
variable, returns a list of zero or more instances that satisfy the corresponding query. A
retrieve statement that includes parentheses around its output variables returns a list of
lists such that each sublist contains as many instances as there are output variables. The
three queries below illustrate this behavior.

40

(defconcept Workstation)

(defconcept Lathe)

(defrelation lathe

:domain Workstation :range Lathe

:attributes :closed-world)

(defrelation time-since-last-servicing

:domain Lathe :range Integer)

(tell (lathe Workstation-2 Lathe-12)

(lathe Workstation-2 Lathe-15)

(lathe Workstation-5 Lathe-3)

(time-since-last-servicing Lathe-12 50)

(time-since-last-servicing Lathe-15 60))

Figure 5.1: Workstation/Lathe Model

(retrieve ?l (lathe Workstation-2 ?l))

==> (|I|LATHE-12 |I|LATHE-15)

(retrieve (?l) (lathe Workstation-2 ?l))

==> ((|I|LATHE-12) (|I|LATHE-15))

(retrieve (?w ?l) (lathe ?w ?l))

==> ((|I|WORKSTATION-2 |I|LATHE-12)

(|I|WORKSTATION-2 |I|LATHE-15)

(|I|WORKSTATION-5 |I|LATHE-3))

Any variable (i.e., symbols with the pre�x `?') inside of a query that is not referenced either
as an output variable or as a quanti�ed variable (using one of the quanti�ers :for-some
or :for-all) is assumed to be bound externally by the Lisp environment that encloses the
query. For example, the statements

(setq ?w (get-instance 'Workstation-2))

(retrieve ?l (lathe ?w ?l))

retrieve lathes belonging to Workstation-2. External variables (Lisp variables) cannot be
used to represent unary or binary predicates, e.g., the statement (retrieve ?x (?p ?x))

is not legal8.
LOOM determines by context whether a symbol refers to a unary predicate, a binary

predicate, a (single- or set-valued) function, or an instance, as illustrated by the following
examples:

(retrieve ?l (lathe ?l)) lathe is a unary predicate

8This restriction will be removed in LOOM version 2.0.

41

(retrieve ?w (lathe ?w Lathe-15)) lathe is a binary predicate
(retrieve ?loc (location (lathe Workstation-2) ?loc)) lathe is a function

When a function references a binary relation that is not a single-valued relation, then
the result of evaluating that function may be a set of instances rather than a single value.
If a predicate whose domain does not specialize the built-in concept Collection is applied
to a set of instances, the predicate is applied separately to each element of the set, yielding
multiple sets of bindings to its arguments. The following queries are equivalent:

(retrieve ?t (time-since-last-servicing (lathe Workstation-2) ?t))

==> (50 60)

(retrieve ?t (:for-some ?lathe

(:and (lathe Workstation-2 ?lathe)

(time-since-last-servicing ?lathe ?t))))

==> (50 60)

In the �rst query, the expression (lathe Workstation-2) returns the set of instances
(|I|LATHE-12 |I|LATHE-15). The predicate time-since-last-servicing, is applied re-
peatedly to each of the elements in that set, yielding two bindings for the variable ?t. The
introduction of the existentially-quanti�ed variable ?lathe in the second query permits us to
phrase an equivalent query such that all references to relations take the form of predicates.

LOOM permits the de�nition of relations whose domains are set-valued rather than single-
valued. For example, the built-in relation max has the de�nition

(defrelation max

:is (:function (?numbers) (apply (function max) ?numbers))

:domain Collection :range Number)

If a function whose domain does not specialize the built-in concept Collection is applied to
a set of instances, it returns a set representing the union of applications of that function to
individual elements of the set. These two kinds of semantics are illustrated in the following
query:

(retrieve ?t

(max (time-since-last-servicing (lathe Workstation-2)) ?t))

==> (60)

The expression (lathe Workstation-12) returns the set of instances (|I|LATHE-12

|I|LATHE-15). The application of the function time-since-last-servicing to that set
yields the set (50 60). The predicate max computes the maximum of the set (50 60), and
returns a list containing the number 60.

5.3.1 Query Expression Constructors

This section presents the various kinds of constructs that LOOM provides for composing a
query. The examples refer in most cases to the models de�ned in subsections 3.1.1 and 3.1.2.

42

(:and term1 ...termn) | Logical And

Returns true if each of the terms termj is satis�ed.

Example: (:and (Physical-Container ?x) (Fragile-Thing ?x))

Returns true if ?x is both a ?Physical-Object

and a Fragile-Thing.

(:or term1 ...termn) | Logical Inclusive Or

Returns true if at least one of the terms termj is satis�ed.

Example: (:or (Widget ?x) (Gizmo ?x))

Returns true if ?x is either a Widget or
a Gizmo.

(:for-some (?v1 ...?vn) term) | Existential Quantification

Returns true if there exist values for the variables ?v1 through ?vn that cause
the boolean expression term to be satis�ed. The symbols ?vj must be pre�xed
with the character `?'. If the variables list has only one variable, then the inner
parentheses can be dropped.

Example: (:for-some (?i1 ?i2)

(:and (has-item ?box ?i1) (has-item ?box ?i2)

(>= (* (weight-in-kilos ?i1) 2)

(weight-in-kilos ?i2))))

Returns true if there exist two items in the box ?box

such that one item weighs at least twice as much as the other.

(:for-all (?v1 ...?vn) (:implies term1 term2)) | Universal Quantification

Returns true if only if all sets of bindings of the variables ?v1 through ?vn that
satisfy the boolean expression term1 also satisfy the boolean expression term2.
The symbols ?vj must be pre�xed with the character `?'. If the variables list has
only one variable, then the inner parentheses can be dropped.

Example: (:for-all (?item)

(:implies (has-item ?box ?item)

(<= (weight-in-kilos ?item)

(/ (weight-of-items ?box) 10))))

Returns true if no item in the box bound to the variable
?box weighs more than 10 percent of the total weight of
items in that box.

43

Comment: The use of an :implies clause at top level within a :for-all ex-
pression is mandatory.9 The reason for this springs from the fact that the LOOM
syntax does not require that variables be \typed." The universally quanti�ed
variables ?vj must all appear within term1, the �rst argument of the (top-level)
:implies clause.

(:not term) | Provably False

Returns true if LOOM can prove that the boolean expression term is not satis�-
able. If LOOM can neither prove nor disprove term, then the entire expression
returns false.10

Example: (:not (weight-in-kilos ?part 5))

Returns true if the weight of ?part is not 5 kilos.

(:and (Robot ?x) (:not (Android ?x)))

Returns true if ?x is a Robot and ?x cannot possibly be an
Android.

Comment: Unbound variables within the negated term term must be bound
during the time that term is evaluated. For example, the query
(retrieve ?x (:not (Robot ?x))) is not legal.

(:fail term) | Not Provably True

Returns true if LOOM cannot prove that the boolean expression term is satis�-
able. The e�ect of the :fail operator is to introduce the semantics of \negation
as failure" into a query.

Example: (:and (Robot ?x) (:fail (Android ?x)))

Returns true if ?x is a Robot and ?x is not
known to be an Android.

Comment: Unbound variables within the negated term term must be bound
during the time that term is evaluated. For example, the query
(retrieve ?x (:fail (Robot ?x))) is not legal.

(:one-of item1 ... itemn) | Set Constructor

Returns a set containing the items itemj.

Example: (member-of (color ?robot)

(:one-of 'Red 'Blue 'Green))

Returns true if the color of the instance that
?robot is bound to is one of red, blue, or green.

9This restriction will be dropped in LOOM version 2.0
10More precisely, the value returned is not false but unknown.

44

(:about instance expr1 ... exprn) | True About Instance

Returns true if the instance bound to the expression instance satis�es each of
the concept expressions exprk.

Example: (:about ?r Robot

(:all has-arm (:exactly 2 has-finger)))

Returns true if the instance bound to ?r is a
Robot and each of its arms has exactly two �ngers.

Comment: The :about clause is provided as a means for introducing concept
expressions into a query. Its syntax is the same as that used within a tell or
forget statement.

R[i] | Evaluate I'th Filler

Evaluates to the ith �ller of the role represented by R.

Example: (:same-as (location (has-finger[1] ?h))

(location (has-finger[2] ?h)))

Returns true the �rst and second �ngers attached to ?h

are in the same place (i.e., are touching).

Comment: This construct provides a way to index into the set of �llers of a
role. If the order of the �llers is signi�cant, the role �llers should be asserted
using one of the constructs :filled-by or :filled-by-list.

(:collect ?v term) | Collect Satisfying Values (Computed Set)

Returns the set of items i such that term is satis�ed when i is bound to ?v.11

Example: (max (:collect ?w

(:for-some ?part

(:and (has-item ?box ?part)

(Widget ?part)

(weight-in-kilos ?part ?w)))))

Returns the maximum weight among the set of items of the box
?box that are widgets.

Comment1: As illustrated in the example, the need for the :collect construct
arises when it is necessary to evaluate a complex expression in order to generate
a set of values as the argument to a predicate or function (recall that the domain
of the relation max is the concept Set).

Comment2: The :collect construct represents a recursive invocation of the
retrieve function.

11:collect will appear in LOOM version 2.0.

45

5.4 Open and Closed World Semantics

Logical deduction in LOOM assumes an open world semantics. This means that the \law
of the excluded middle" does not apply|if LOOM cannot prove or disprove a proposition,
then it assigns that proposition the value UNKNOWN.

The correct interpretation of the ask function is that a non-nil return value means TRUE,
while a nil return value means \FALSE or UNKNOWN." Suppose in our factory domain all
parts are either widgets, gizmos, or doohickeys:

(defconcept Part

...

:disjoint-covering (Widget Gizmo Doohickey))

and suppose that a part P3 is known to be either a widget or a gizmo:

(tell (:about P3 (:or Widget Gizmo)))

(ask (Doohickey P3)) ==> nil

(ask (:not (Doohickey P3))) ==> t

When we ask LOOM if P3 is an instance of Doohickey, LOOM returns nil, which means
\maybe." When we ask if P3 is not an instance of Doohickey, LOOM returns t, which means
\yes."

LOOM's ask facility was designed to return two-valued (rather than three-valued) re-
sponses (1) because application programmers have indicated a strong preference for a binary
response, and (2) because a ternary version of ask would require a search for a disproof
of a proposition each time that a proof of that proposition could not be found (i.e., the
computational overhead of a ternary ask is likely to be signi�cantly greater than that for
a binary ask). Frequently, LOOM application programs interpret a nil value from ask to
mean FALSE. This represents an implicit assumption of a closed-world semantics, e�ectively
saying \If a proposition P cannot be proved TRUE, then assume that P is FALSE."

LOOM supports explicit assumption of closed-world semantics for concepts and relations.
Consider the following sequence of de�nitions and assertions:

(defrelation has-item)

(tell (has-item B3 W5) (Box B3) (Widget W5))

(ask (:about B3 (:all has-item Widget))) ==> nil

(defrelation has-item :attributes :closed-world)

(ask (:about B3 (:all has-item Widget))) ==> t

(tell (:about B3 (:at-least 2 has-item)))

(ask (:about B3 (:all has-item Widget))) ==> nil

Initially, open-world semantics (the default) applies to the relation has-item, and the query
\Are all of B3's items widgets?" returns nil (UNKNOWN) because LOOM assumes that
there might exist items other than W5 that belong to B3. When has-item is rede�ned to
assume closed-world semantics, the same query returns the answer t (TRUE) because LOOM
is now willing to assume that W5 is the only item of B3. Continuing, when we explicitly state

46

that B3 has at least two items, then the closed-world assumption applied to the role has-item
on B3 is revised, leading to the conclusion that B3 has exactly two items (one of which may
or may not be a widget). This example illustrates that the use of closed world semantics
moves us into the realm of non-monotonic logic. Formally, the assumption of closed-world
semantics represents a limited application of circumscription.

Indiscriminate application of the closed-world assumption can lead to anomolous results.
For example, suppose that the closed-world assumption is applied to the concept Part, and
also to the concepts Widget, Gizmo, and Doohickey, which we again assume collectively
constitute a disjoint covering of Part. If all we know about a part P5 is that it is an instance
of Part, then the closed-world semantics infers (:not (Widget P5)), (:not (Gizmo P5)),
and (:not (Doohickey P5)), implying that P5 is not an instance of Part, i.e., we have
a contradiction. However, LOOM's default rule facility provides an alternative means for
closing concepts. For example, the default rule:

(default Part (:not Fragile-Thing))

can be read as \If p is a part, and p is not known to be fragile, then assume that p is not
fragile," i.e., the rule closes the concept Fragile-Thing.

Anomolous results analogous to that just illustrated in the Part-Widget-Gizmo-Doo-
hickey scenario can be achieved by injudicious application of closed-world semantics to
hierarchies of binary relations. Hence, if users want to hang themselves by making too many
closed-world assumptions, LOOM will accomodate them.

Certain syntactic forms within the query language dictate a localized assumption of
closed-world semantics (valid only while evaluating the form). For example, when evaluating
the query

(ask (:for-all ?r (:implies (Robot ?r) (2-Armed-Robot ?r))))

LOOM circumscribes the set of instances of Robot 12. For the query

(retrieve ?t

(max (time-since-last-servicing (lathe Workstation-2)) ?t))

LOOM circumscribes the set represented by (time-since-last-servicing (lathe Work-

station-2)) in order to provide a de�nite input to the function max.

5.5 The Query Optimizer

Instead of implementing a query interpreter, LOOM compiles every query into equivalent
Lisp code. During query compilation, LOOM's query optimizer applies a variety of transfor-
mations to a query, looking for an evaluation strategy that will optimize the query's run-time

12LOOM version 2.0 eliminates the localized closed-world assumption within universally quanti�ed ex-
pressions, e.g., in order to ask this query, LOOM would require that the closed-world assumption apply to
the concept Robot

47

performance. Unlike database query optimizers, whose decisions are based principally on sta-
tistical features of the database, the decisions made by LOOM's query optimizer are based
on semantic knowledge about the concepts and relations referenced within a query. For ex-
ample, the optimizer evaluates the domain and range of each relation, compares the relative
speci�city of pairs of concepts, considers whether relations are single-valued or set-valued,
and considers whether or not relations have inverses. In many cases, the code produced by
the LOOM optimizer is as e�cient as hand-coded Lisp.

The functions retrieve and ask are implemented Lisp macros that invoke the query
optimizer during macro expansion. This means that all concepts and relations referenced

within a query must be fully-de�ned before the Lisp interpreter or compiler macro-expands

that query.13

5.6 Queries as Generators

The function do-retrieve facilitates the use of queries as generators. A query generator
has the form:

(do-retrieve variables query

LispForms)

do-retrieve uses the query query to generate sets of bindings for the variables variables,
and evaluates the code in LispForms once for each set of variable bindings. For example,
the unload-box method de�ned in section 3.2.1 contained the following generator:

(do-retrieve ?part

(has-item ?box ?part)

(forget (has-item ?box ?part))

(tell (location ?part (location ?box))))

In this code, the query \(has-item ?box ?part)" successively binds the variable ?part

to each of the parts that are items of the box ?box. The body of the do-retrieve (the
functions forget and tell) is evaluated once for each binding of the variable ?part.

5.7 Invoking the Matcher: \tellm" and \forgetm"

In order to better utilize LOOM's reasoning capabilities, it is useful for a programmer to
have some awareness of the deductive processing that takes place during the execution of a
LOOM application. This section provides a few details on the LOOM matcher. Internally,
LOOM manages a set of data structures that enable it to e�ciently compute answers to
deductive queries. These data structures usually become invalid when new facts are asserted
or retracted. The process of updating these data structures is called matching. The name

13This restriction may be removed in a future LOOM release.

48

derives from the fact that a signi�cant fraction of the match process is devoted to the
computation of instantiation relationships between instances and concepts, i.e., determining
which instances match which concepts.

In order to guarantee the validity/currency of internal knowledge base structures, func-
tions such as retrieve and ask automatically invoke the matcher (prior to executing a
query) in the case that the matcher hasn't already been invoked subsequent to the most
recent update (assertion, retraction or revision of a de�nition or rule) to the knowledge
base. Hence, even if the user never invokes the matcher explicitly, the query facility will still
function correctly. Unfortunately, the production rule facility does not share this property:

The �ring of production rules occurs only at the end of a match cycle. Hence, in order to
assure the timely �ring of productions, it is necessary that the matcher be invoked frequently.
The simplest strategy for guaranteeing that productions are �red in a timely fashion is to call
the matcher immediately after each update. This can be accomplished by using the functions
tellm, forgetm and forget-all-about-m in place of tell, forget, and forget-all-about,
and by calling the function new-time-stamp14 after each call to other update functions such
as forget-all-about and define-concept.

There are several reasons why continually invoking the matcher might not be desirable,
some having to do with the semantics of transactions, and some having to do with perfor-
mance. Consider a transaction T de�ned as a sequence <U1, ... ,Un> of assertions and
retractions. For some situations, the sequential application of the updates Uj could result
in the generation of intermediate knowledge base states that are in some way invalid. These
invalid states might trigger production rules that should not have been �red. Each call to the
matcher e�ectively causes a transition to a new knowledge base state. If T is programmed
so that the matcher is called only once, at the end of the transaction, then LOOM will
not generate any \intermediate" knowledge base states (e�ectively, all updates are made in
parallel), and hence certain kinds of undesirable side-e�ects can be avoided.

Suppose the e�ect of some application process is to make a series of assertional updates
to a knowledge base (for example, this process might be loading a �le of assertions). In
many cases LOOM's overall performance will be faster if the matcher is called once at the
end of the updates, rather than calling it in between each update. Summarizing, when it can
be reliably determined that the matcher need not or should not be invoked directly after a
knowledge base update, then its preferable to avoid explicit calls to the matcher. Otherwise,
the matcher should be invoked after each knowledge base update.

While on the subject of performance, we also note that while it is perfectly acceptable to
interleave concept and rule declarations with factual assertions, LOOM will tend to perform
better whenever concept and rule declarations collectively precede any factual assertions.

14Not yet implemented.

49

Chapter 6

Actions and Methods

In addition to its powerful classi�cation mechanisms, LOOM provides a number of behavioral
operators to support knowledge-based inferencing. The primary elements are actions, meth-

ods, and productions. Each of these operators, when invoked, creates a task whose execution
may be controlled.

6.1 Actions

An action, in LOOM, is an object that speci�es a procedural operation, or a set of operations.
An action is considered to be a generic operation, analogous to, e.g., a CLOS generic function,
that may take on widely di�erent meanings in di�erent contexts. Each action is de�ned
by a defaction declaration which speci�es the name of the action and lists its formal
parameters. Optional keyword parameters can specify �lters to aid method selection and
error-handling. The speci�c functions to be applied when an action is invoked are de�ned
in one or more methods of the same name as the action. Typically, users will wish to de�ne
actions to represent all physical actions in the domain being modelled and all operations
upon conceptual entities being modelled in LOOM .

An action may be de�ned to take zero or more arguments; the methods which implement
the action must have the same number of arguments as the defaction statement. If the
action accepts arguments, these arguments will be dynamically bound to LOOM objects
to be operated upon by the action. If a method is de�ned (using defmethod) before the
corresponding action is declared, LOOM will create a system-de�ned action using default
values.

(defaction name parameters &key filters missing �methods) | Define an
Action

Defaction declares an operator that will be implemented by one or more methods
of the same name.

50

Example: (defaction move-object (?object ?to)

:filters (:overrides :most-specific :last-one)

:missing-method :no-op)

"De�ne an action called move-object and select among
move-object methods by considering override relations,
speci�city, and aging".

When applying this action, LOOM will consider all methods (de�ned by defmethod)
with the name move-object. From the full list, it will consider only those methods whose
:situation patterns are satis�ed by the arguments passed to the action. From this list, it
eliminate methods whose titles were listed in the :overrides argument of another surviving
method. Then it will select those methods with the most speci�c :situation patterns1. If
there remains more than one method remaining, LOOM will select the method most recently
de�ned and evaluate its :response argument. If LOOM can �nd no methods for this action,
it will simply perform no operation and return nil.

6.2 Methods

In the preceding section, we saw that the knowledge base developer could de�ne actions and
associate them with speci�c sets of operations in the knowledge base. The operations that
are associated with an action are termed its methods. Invoking an action, therefore, actually
means setting into motion the operations associated with the action as de�ned in one of its
associated methods.

6.2.1 De�ning Methods

Methods are de�ned using the defmethod macro. Multiple methods may be de�ned with
the same name, corresponding to the name of a generic action the method implements. If
no action of the same name has been previously de�ned, the use of the defmethod macro
will cause LOOM to create a system-de�ned action with that name using default values for
the keywords.

Within the de�nition of the method, the method is given an optional title to distinguish
it from other methods of the same name. The title �eld is useful whenever users need to refer
to that particular method. The :situation keyword is the primary mechanism by which
methods are matched to the appropriate context. The value of the :situation keyword is
a query-forming expression using the same syntax as the argument to a retrieve statement
(see Chapter 5). The query expression can be used to identify those situations for which
this particular method is an appropriate one to execute. When the :most-specific �lter is
speci�ed for an action (the default case), the relative speci�city of each situation �eld will be
examined by the action to select among the possible methods to evaluate. While passed in

1In the current implementation, speci�city is computed only between patterns of the form (C ?X), where
C is a concept and ?x is a variable. This restriction will be removed in a future release

51

parameters may be used freely in the :situation clause, new variables must be introduced
by a :for-some or :for-all. The :response form is performed once for each binding of
the variables.

The :overrides keyword allows the users to directly specify methods which should be
subordinate to the current method. All methods referred to by title in the :overrides list
will be removed from consideration if the :situation clause of this method is valid. In
other words, the continued presence of this method in the action's candidate methods list
will cause these less preferred methods to be dropped from the list.

The :response clause forms the body of the method. This clause is a list of Lisp forms
which are to be evaluated when the method is invoked.

(defmethod name parameters &key title situation overrides response) | Define
a Method

Defmethod declares an operator which implements an associated action of the
same name.

Example: (defmethod move-object (?object ?to)

:title "Move an Object"

:situation (Physical-Object ?object)

:response ((format t "Move S to

location S %" ?object ?to)

(tell (location ?object ?to)))

"De�ne a move-object method with the title given. This
method may be used if the object is a Physical-Object. When
invoked, issue the format statement and execute a tell
changing the location role for the ?object to the value ?to".

Comment: This de�nition of move-object applies only when ?object is bound
to an instance of the concept Physical-Object. If the :situation keyword were
not given, this method would be the default method, to be used when no other
move-object method is appropriate.

6.2.2 Method Selection

As described above, LOOM allows an action to have multiple implementations, i.e. multiple
methods. When LOOM is asked to invoke a multiple method action, it resolves the conict
by choosing a method according to the �lters given in the de�nition of the action. The
default and most commonly used �lters are :most-specific and :last-one. Together,
these �lters select the methods that are most speci�cally de�ned through the :situation

�eld and among these select the one that is the most recently de�ned.
Here is an example. Suppose we have these following de�nitions:

52

[1] (defmethod move-object (?object ?to)

:response

((format t "Move ~S to ~ location ~S~%" ?object ?to)

(tell (location ?object ?to)))

[2] (defmethod move-object (?object ?to)

:situation (Physical-Object ?object)

:response

((format t "Move ~S to ~ location ~S~%" ?object ?to)

(tell (location ?object ?to)))

When LOOM is asked to do the action move-object, it will go through the situation
�elds and try to pick the de�nition that most closely matches the current situation. Since
de�nition [1] has no :situation �eld, we can think of that as the \default" situation,
matching anything not previously matched. De�nition [2] will work if the object is a Box

that doesn't have any Fragile members.
Suppose, however, we want to have another version of move-to, to be invoked if we are

moving a box with any fragile items. In this case, we want to indicate that the box should
be moved carefully. To accomplish this, we will need to indicate to LOOM the additional
speci�cs of the situation { namely, that the box contains fragile items. This is done through
use of the :situation keyword, as follows:

(defmethod move-to (?box ?to)

:situation (:and (Box-of-Parts ?box)

(:about ?box (:some has-item Fragile-Thing)))

:response ((format t "CAREFULLY moving box")

(tell (location ?box ?to))))

This gives a more speci�c situation to LOOM { \if the object is a Box-of-Parts and it
has one or more Fragile-Things in it". LOOM uses the pattern following the :situation
keyword to resolve conicts among multiple candidate methods.

6.3 Productions

A LOOM production is a data-directed (recognize-and-act) rule used to detect a particular
event and to cause a task (one or more actions) to be invoked. The defproduction operator
is used to de�ne or rede�ne such a construct within LOOM. The operator de�nes a produc-
tion using the following arguments: 1) a symbol specifying the name of the to-be-de�ned
production, 2) the keyword :when followed by a predicate pattern to be matched, 3) one of
the keywords :perform or :schedule followed by a LOOM method to be invoked, and 4)
if the keyword :schedule were used, the optional keyword :priority followed by one of
:low, :medium, or :high.

The actions of a production can trigger other productions, allowing for a data-directed
chain of reasoning. Since the actions executed by the production can be any LOOM construct,

53

a very close coupling exists between the behavioral constructs in LOOM and its declarative
representations.

(defproduction name : when : perform : schedule : priority) | Define a
Production

De�nes a production with name name that will cause a particular LOOM method
to be invoked, when the speci�ed situation occurs.

Example: (defproduction move-full-box

:when (Full-box ?object)

:schedule (move-object ?object

(get-instance 'Warehouse))

:priority :high)

\De�ne a production, move-full-box, as follows: When any
object satis�es the concept Full-Box, Schedule the task
of moving that object to the Warehouse, and make it a
high-priority task."

Comment: Note that, while the task is a high-priority one, it is placed on a task
queue. Therefore, the task would not be done immediately if there were other
high-priority tasks already queued. If we wanted the task move-object to be
invoked immediately, we would replace the :schedule keyword with :perform

and remove the (now irrelevant) :priority argument. Also note that, unlike
defconcept and defrelation, any patterns or concepts used in the premise of
the production must already be de�ned.

A production is triggered when its premise is satis�ed. The :when keyword is used to
indicate a premise to be satis�ed by one or more instances in the current knowledge base.

When a production's premise is satis�ed, LOOM looks at the conclusion of the premise
to decide when its actions should be taken. If the keyword :schedule begins the conclusion,
then the actions should be placed at the end of a queue, called the task queue.

Consider the LOOM production:

(defproduction P1

:when (Almost-Full-Box ?box)

:schedule (remove-full-box ?box))

\When a box is an Almost-Full-Box, add to the task queue the task of removing
that box using remove-full-box."

Tasks that are so scheduled will be performed at the end of the current match cycle, after
all productions have �red.

54

6.4 Tasks

A LOOM task is an application of a speci�c action to one or more objects. A task consists
of an operator (which causes a particular method to be invoked as in 6.2) and one or more
objects over which to apply this operator.

Tasks may be started immediately (performed) or scheduled. Tasks that are scheduled
are placed onto a task queue. Queued tasks will be executed, in order of their placement
onto the queue, when the operator perform-all is invoked.

LOOM's behavioral operators permit tasks (collections of operations) to be done imme-
diately or to be queued. We have seen that the conclusion �eld of a production may contain
either the :perform (immediate) or the :schedule (queue) keywords. The task being done
may itself use the perform and/or schedule keywords, without leading colons, to initiate or
queue additional tasks.

(schedule (task) : priority) | Schedule a Task for Later Operation

The schedule keyword (or the :schedule �eld in a production conclusion) causes
LOOM to schedule a task to be done later. In addition to whatever arguments
are necessary for the task, the schedule keyword takes and additional keyword
:priority followed by one of the following keywords: :high, :medium, :low.

Example: (schedule (move-box ?box) :priority :medium puts
the task move-box on the task queue, with priority
medium.

(perform task) | Do a Task Immediately

The perform keyword causes LOOM to immediately execute the speci�ed opera-
tion with the current variable instantiations, if any.

Example: (perform (unload-box ?box))

Causes the operation unload-box to be immediately
performed with the current binding of the free
variable ?box.

In the previous section on productions, we saw the following LOOM construct:

(defproduction move-full-box

:when (Almost-Full-box ?object)

:schedule (move-object ?object (get-instance 'Warehouse))

:priority :high)

The use of the :schedule keyword placed the task move-object on the task queue. Its
arguments are the current object and the current Warehouse. This task will be actually

55

done at the end of the current match cycle (see Chapter 5.7. Had the keyword :perform

been used instead of :schedule, the task would have been done immediately.
A task may also be done immediately by invoking the perform operator (no leading colon)

wihtin a method. As an example, the LOOM construct: (perform (unload-box ?box))

causes the following task to be performed immediately: \Apply the operator unload-box to
the instance bound to the variable box".

56

Chapter 7

Using Knowledge Bases

The set of objects that are de�ned in LOOM at any given point are contained in a set of
LOOM knowledge bases. Since LOOM assumes an open world of objects and knowledge, the
state of these knowledge bases at any point in time may be thought of as LOOM current
image of the world. LOOM provides functions for de�ning and manipulating snapshots of
this image (that is, for manipulating knowledge bases).

The defkb operator associates a new symbol name with a new knowledge base. A
pathname is optionally associated with the new knowledge base and the objects stored to
that �le. From that point on, the knowledge base can be considered as another type of
LOOM object and can be accessed via LOOM functions.

LOOM provides many operators for manipulating all or part of a knowledge base.
LOOM knowledge bases consist of four partitions: concepts, relations, instances, and
behaviors. In the following examples, a :partition argument may be followed by a list
of one or more partitions. If no :partition argument is supplied, then all partitions are
operated on.

The operators described below provide the basis of LOOM's knowledge base capability.

(defkb name parents : pathname) | Define a Knowledge Base

De�nes a new knowledge base with name name and parents parents. LOOM

permits multiple knowledge bases to be loaded simultaneously, and further allows
these multiple knowledge bases to be hierarchically structured.

Example: (defkb 'incore-kb () :pathname "on-disk")

De�nes a knowledge base that will be referred to within LOOM

as incore-kb. This knowledge base will be saved to disk
in the �le named on-disk.

Comment: LOOM automatically creates a \top-level" knowledge base called
upper-structure-kb. Knowledge bases created using defkb are by default made
descendants of upper-structure-kb.

57

Comment2: The in-core and on-disk names could have been the same. We
wanted to make the potentially di�erent names explicit.

58

(save-kb name : partitions : path� name) | Save a LOOM Knowledge Base

The save-kb operator is used to write out the source code for all or part of a
LOOM knowledge base. The developer may specify how much of the knowledge
base is to be saved, and where the saving should take place.

Example1: (save-kb)

Saves the (entire) current knowledge base to the
default �lename (associated with this knowledge base
at creation { see defkb).

Example2: (save-kb 'incore-kb :partitions :instances

:path-name "ergo:/loom/incore-inst.lisp")

Saves the instances from the knowledge base incore-kb
to the �le /loom/incore-inst.lisp on host ergo.

(load-kb name path� name) | Load a LOOM Knowledge Base

The load-kb operator loads a speci�ed LOOM knowledge base from de�nitions
contained in the speci�ed �le. Partitions need not (and in fact, cannot) be
supplied to the load-kb command. The user should, as a reminder, include
some reference to the type of LOOM objects being saved in the knowledge base
name.

Example: (load-kb 'incore-kb :path-name

"ergo:/loom/incore-inst.lisp")

Will load the de�nitions in host ergo's �le
/loom/incore-inst.lisp into the LOOM knowledge
base incore-kb.

(clear-kb name : partitions) | Clear a LOOM Knowledge Base

The clear-kb operator deletes all (or portions) of a speci�ed knowledge base. If
no knowledge base name is speci�ed, the current knowledge base is used.

Example1: (clear-kb)

Clears the entire contents of the current knowledge base.
Example2: (clear-kb 'incore-kb :partitions :relations)

Clears out all the relations from incore-kb.

(list-knowledge-bases) | List All LOOM Knowledge Bases

The list-knowledge-bases operator lists all currently loaded LOOM knowledge
bases.

59

(list-kb name : partitions : sort � p) | List a Knowledge Base

The list-kb operator lists all or a portion of the speci�ed knowledge base onto
the screen. The operator's default behavior is to list all objects in the current
knowledge base, in order of their creation or entry into the knowledge base.

Example1: (list-kb)

Lists the current knowledge base.
Example2: (list-kb 'incore-kb :partitions :concepts

:sort-p 't)

Lists all the concepts de�ned in the knowledge base
incore-kb. The concepts are printed out in alphabetical order.

(in-kb knowledge � base) (change-kb knowledge� base) | Reset the
Knowledge Base

The in-kb operator is a macro that resets the LOOM knowledge base to the
speci�ed knowledge base at either run time or compile time. The change-kb

operator is a function that accomplishes the same purpose at run time only.
Additionally, change-kb takes the key :no-checking-p which, when non-nil,
causes LOOM to assume the argument is a valid object and no error checking is
performed.

Example1: (in-kb foo-kb)

Resets the knowledge base and changes it to foo-kb.
Example2: (change-kb 'bar-kb :no-error-checking-p t)

Changes the knowledge base to the object bar-kb
when called at run time without the normal error checking.

60

Appendix A

Grammar for TBox Language

The following grammar describes the concept-forming and relation-forming expressions that
are used in TBox de�nitions.

concept-expr ::=

ConceptName j
(f:AND j :ORg concept-expr+) j
(:NOT concept-expr) j
(:ONE-OF fInstanceId j Constantg+) j
(:THE-ORDERED-SET Scalar+) j
(:THROUGH Scalar Scalar) j
(f:AT-LEAST j :AT-MOST j :EXACTLYg Integer relation-expr) j
(f:ALL j :SOME j :THEg relation-expr concept-expr) j
(:FILLED-BY relation-expr fInstanceId j Constantg+) j
(f:SAME-AS j :SUBSET j < j > j <= j >= j = j /=g

frelation-expr+ j relation-expr Constantg) j
(:SATISFIES (?Var) Query-Expr) j
(:PREDICATE (Var) Form) ;

relation-expr ::=

RelationName j
(:AND relation-expr+) j
(:DOMAIN concept-expr) j
(:RANGE concept-expr) j
(:INVERSE relation-expr) j
(:COMPOSE relation-expr+) j
(:SATISFIES (?Var+) Query-Expr) j
(:PREDICATE (Var+) Form) j
(:FUNCTION (Var+) Form) ;

In this grammar, ?Var is a symbol beginning with the character ?. ConceptName,
RelationName, and InstanceId are symbols which name LOOM concepts, relations and
instances. Scalar is a number, or a symbol representing a discrete quantity. Constant is
a Lisp symbol, string, or number. Integer and Form are Lisp integers and forms. Query-
Expr is an expression in the LOOM database language (see Appendix B).

61

Appendix B

Grammar for ABox Language

The following grammar has been generalized to cover both assertion and retrieval. Certain
constructs (see comments below) can be used in one mode but not the other.

statement ::=

(ASK query-expr) j (RETRIEVE ?varlist query-expr) j
(fTELL j TELLM j FORGET j FORGETMg term*) ;

query-expr ::=

term j
(f:AND j :ORg query-expr+) j
(f:NOT j :FAILg query-expr) j
(:IMPLIES query-expr query-expr) j
(f:FOR-SOME j :FOR-ALLg ?varList query-expr) ;

term ::=

(concept instance) j
(relation instance+ value) j
(:SAME-AS instance instance) j
(:ABOUT instance about-term*) ;

about-term ::=

concept j (concept) j
(relation value) j
(:FILLED-BY relation value*) j
(:FILLED-BY-LIST relation List) j
(f:AT-LEAST j :AT-MOST j :EXACTLYg Integer relation) j
(f:ALL j :SOME j :THEg relation concept) ;

?varlist ::=

?Var j (?Var+) ;

concept ::=

ConceptName j ?Var ;

relation ::=

RelationName j RelationName[Scalar] j ?Var ;

instance ::=

InstanceId j ?Var j $Var j (relation instance) ;

value ::=

instance j Constant j (:ONE-OF Constant+) j * ;

62

In this grammar, ?Var and $Var are symbols beginning with the characters ? and $

respectively. ConceptName, RelationName, and InstanceId are symbols which name
LOOM concepts, relations and instances. Scalar is an integer, or a symbol representing a
discrete quantity. Constant is a Lisp symbol, string, or number. List is a Lisp list.

The grammar is constrained as follows: 1) assertions and retractions cannot contain
:SOME, :THE, or :ONE-OF operators, or indexed relations; 2) the * value is only mean-
ingful in retractions; 3) queries cannot contain :SAME-AS or :FILLED-BY-LIST oper-
ators, or $Var variables, or ?Var variables used as concepts or relations.1

In assertions and retractions, if a ?Var variable is used in place of a concept, relation, or
instance, it should be bound to a concept, relation, or instance object rather than the name
of such an object.

1LOOM version 2.0 will remove some of these restrictions.

63

Appendix C

Glossary of LOOM Terms

This Glossary includes all signi�cant terms used in the LOOM User's Manual. Speci�c
LOOM functions, keywords, and constructs (such as defrelation, defconcept, :is, etc.)
are described in the LOOM Reference Manual.

Action An action is a generic operation that can be invoked to accomplish some speci�c
task, implemented as a set of methods.

Assertion A statement of a particular fact or constraint that describes a given domain.

Assertional Language An assertional language is designed to state constraints or facts
that apply to a particular domain or world.

Behavior Language The portion of LOOM used to represent the procedurally-expressed
aspects of both the application domain and the application program. Includes decla-
rations of actions, methods, and production rules.

Binary Relation A relation between exactly two concepts.

Classi�cation-Based Knowledge Representation Classi�cation-based knowledge rep-
resentation systems are characterized by three common architectural features: 1. they
are logic-based (ie. they appeal to �rst-order logic for their semantics), 2. they draw a
distinction between terminological and assertional knowledge, and each system imple-
ments its own specialized term-forming language, and 3. they include a classi�er that
organizes terms (concepts) into a taxonomy, based on the subsumption relationships
between terms. LOOM is a classi�cation-based knowledge representation system.

Classi�er A classi�er is a type of an inference engine that can reason with descriptive
knowledge. Key features of a classi�er are its ability to determine subsumption re-
lationships between descriptions (when one description is implied by another) and to
combine (unify) sets of descriptions to form new descriptions.

64

Clipping When two or more di�erent instances are asserted to be �llers of the same single-
valued role, LOOM will automatically retract all but the last assertion. This behavior
is called clipping, and may be toggled on/o� in LOOM .

Closed-World Semantics Under closed-world semantics it is assumed that \if proposition
P cannot be proved TRUE, then assume that P is FALSE." LOOM allows programmers to
explicitly declare that concept or a relation operates under the assumption of closed-
world semantics (See also Open-World Semantics).

Concept A concept is the LOOM knowledge base construct that binds a symbol to a de�ni-
tion. Concepts are used similar to frames or classes in other knowledge representation
systems. A concept is also considered as a unary relation.

Constraint A necessary condition that applies to all instances of a concept or to all tuples
in a relation. (See Constraint Rule).

Constraint Rule A rule of the form \if < a > then < b > de�nes a constraint on the
class of entities satisfying the expression < a >. If the expression < a > denotes
membership in a concept or relation A, then this rule is said to represent a constraint
on A.

Data-Driven Programming A programming style emphasizing the use of condition /
action rules for which the existence of the condition will cause the performance of the
action.

Default A default rule expresses an conditional implication that applies only when its con-
sequent is consistent with current state of the knowledge base.

De�ned Concept A de�ned concept is a concept that is described in terms of one or more
other concepts and/or relations. All concepts that are not primitive are considered to
be de�ned concepts.

De�nition A de�nition binds a predicate symbol to a description. The LOOM knowledge
base object representing this de�nition is called a concept or relation.

Description A description is a lambda expression that de�nes a class of individuals or
tuples. LOOM concepts are an example of descriptions and are analogous to frames or
schemata in other knowledge representation systems.

Description Language The term description language refers to the set of LOOM con-
structs used to represent declarative knowledge. LOOM's description language provides
a principled means for describing much of the knowledge that is commonly associated
with the frame component of a knowledge representation tool. The description lan-
guage in LOOM is designed to facilitate the construction of expressions that describe
classes of individuals.

65

Dispatching A dispatch mechanism has the function of �ltering a set of possible actions
and selecting a subset (typically a singleton) for execution.

Domain The �rst argument of a binary predicate.

Fact In LOOM a fact asserts either an instantiation relationship between a concept and an
individual or a relationship between two individuals.

Filler An instance of a concept that is pointed to by a role within another concept (See
Role).

Implication An implication relationship de�nes a non-de�nitional constraint, i.e., one that
must be true for some particular model or models, but is not necessarily true in all
models. In LOOM, the implies operator permits one to state conditions for a concept
that are necessary but not su�cient (or vice versa).

Instantiation, Instance The term instance refers to a knowledge base object that rep-
resents a single individual. The process of creating an instance of a representational
class or concept is called instantiation. For example if Widget is a de�ned concept in
LOOM, the process of representing a particular widget and giving it a name such as
Widget-1 is the process of instantiation.

Interval A set for which there is total ordering of \<" over members of the set.

Method An element of procedural code attached to an object. Methods are selected for
execution via a dispatching mechanism (typically message-passing or a generalization
upon it).

Model-Driven Programming A programming style in which the declarative knowledge
present in an application program (the model) actively controls the behavior of a
running application.

Modelling Language The subset of LOOM used to specify de�nitions, rules, and facts.

Object-Oriented Programming A programming style which represents information in
frame-like data objects arranged in a hierarchy of inheritance relationships with proce-
dural methods that are activated by a message passing paradigm. The use of message
passing and inheritance typically characterize object-oriented programming.

Open-World Semantics LOOM assumes an open-world semantics. Under this assump-
tion, if LOOM cannot prove or disprove a proposition, then it assigns that proposition
the value UNKNOWN (See also Closed-World Semantics).

Pattern-Directed Dispatching Pattern-directed dispatching represents a generalization
of the message-passing mechanism found in object-oriented languages. In pattern-
directed dispatching, a pattern that de�nes the situation for a LOOM method typically

66

references one or more of the method's formal parameters, so that the choice of which
action methods to invoke is sensitive to the types and attributes of the objects passed
as actual parameters to an action.

Primitive Concept A concept or relation is primitive if it cannot be completely charac-
terized in terms of other concepts (relations) and is unique.

Production Rule An condition/action pair.

Query Language The interface to LOOM's deductive query facility, provided by the
retrieve and ask constructs. The query is an argument to either of these functions
and may be an arbitrary expression in the �rst-order predicate calculus.

Range The second argument of a binary predicate, or last argument of a n-ary predicate.

Recognizer A recognizer is a assertional reasoner whose function is to maintain the current
values for the types of all individuals in a knowledge base. LOOM refers to its recognizer
as \the matcher".

Relation A relation establishes a semantically instantiated relationship between elements
of represented knowledge. A relationship between two concepts is a binary relation
and is the most common usage of the term relation.

Retraction The withdrawing of a particular previously asserted fact.

Role The term role is often used to refer to a particular relation that appears within a
concept expression. A role is a semantic link to other concept instances which are
called the �llers of the role. In other words, a role establishes a mapping between an
instance of that concept and a set of instances (�llers) that �ll that role.

Role Chain A role chain refers to a binary relation, de�ned as the composition of other
binary relations, that is attached to some concept or instance.

Role-Relating Concept A role-relating concept expression speci�es a relationship which
constrains the �llers of two or more of the concept's roles. For example, the ex-
pression (= input-voltage output-voltage) speci�es that the �llers of the roles
input-voltage and output-voltage have the same value.

Role-Restricting Concept A role-restricting concept is a concept de�ned by a restriction
placed on a particular relation. For example, the expression (:at-least 2 child)

denotes the concept for which the role \child" must have at least two �llers. Both
role-restricting and role-relating concepts are types of constraints.

Set In LOOM, a set is a specialized kind of concept that identi�es a group of constants. The
set may be a �nite or an in�nite group of atomic individuals. Examples of constants
are the color red or the number 5.

67

Situation A set of states described as a pattern that indicates when a particular method
is applicable.

Subsumption Subsumption describes the relative generality of two concepts. A concept A
subsumes a concept B if the de�nitions of A and B logically imply that members of B
must also be members of A.

Task A binding between a LOOM action and a set of arguments.

Term Classi�cation Term Classi�cation is an equivalent way of describing Classi�cation-
Based Knowledge Representation.

Terminological Language A terminological language is designed to facilitate the con-
struction of expressions that describe classes of individuals.

Terminological Reasoning The ability to represent knowledge about the de�ning char-
acteristics of concepts, and to use that knowledge to automatically infer and maintain
a complete and accurate taxonomic lattice of logical subsumption relations between
concepts.

Truth-Maintenance Mechanism The function of a truth-maintenance system (TMS) is
to ensure that at any point in time all facts inferrable by the matcher have been
inferred, and that logical support exists for each inferred fact. LOOM performs truth
maintenance as a byproduct of its instance-matching process.

Type In LOOM the type of a database object is held as a dynamic expression which is
maintained by the pattern matcher. The matcher keeps track of all instantiates
relationships between an individual object and the concepts whose de�nition matches.
The intersection of all concepts matched by a particular individual is called the type
of the individual.

Uni�cation, Unify Uni�cation is the formal term for the operation that combines the
structural components of facts and rules. LOOM uses the classi�er to perform uni�ca-
tion over descriptions. The uni�cation routine in LOOM places fewer restrictions on
the syntax of uni�able facts and rules than in typical current generation systems.

68

Index

:about, 36, 45
:all, 21, 28
:and, 20, 24, 43
:at-least, 21, 28
:at-most, 21, 28
:attributes, 29, 40, 46
:auto-clip, 40
:backward-chaining, 29
:changed, 23
:clip-roles, 30
:closed-world, 30, 46
:collect, 45
:compose, 25, 37
:constraints, 17, 27
:defaults, 28
:domain, 24, 27
:dont-unintern-p, 39
:exactly, 21, 28
:fail, 44
:�lled-by, 21, 28, 45
:�lled-by-list, 45
:for-all, 43
:for-some, 43
:function, 26, 30
:has, 39
:incoherent, 30
:inverse, 25
:last-one, 52
:monotonic, 30
:most-speci�c, 51, 52
:multiple-valued, 30
:not, 20, 44
:one-of, 26, 44
:open-world, 30
:or, 20, 43

:overrides, 51, 52
:partition, 57
:perform, 53, 55
:predicate, 23, 26
:predicate-specializes-parent, 30
:priority, 53, 55
:range, 24, 27
:response, 51, 52
:same-as, 22, 30, 37
:sati�es, 10, 22
:satis�es, 25
:schedule, 53{55
:sequence, 30
:single-value, 30
:single-valued, 30
:situation, 12, 51, 53
:some, 21
:symmetric, 30
:system-de�ned, 30
:the, 21
:the-ordered-set, 26
:through, 26
:unde�ned, 30
:when, 53, 54
?, 40

action, 12, 50
ask, 40, 46, 48
assertion, 35
attributes, 29

behavior language, 11
behavioral operators, 50

change-kb, 60
circumscription, 47

69

classi�er, 4
clear-kb, 59
clipping, 30, 40
closed world semantics, 46
closed-world semantics, 10
comparisons, 22
concept, 15
concept expressions, 19
constraint, 27
constraints, 8
create, createm, 38
cyclic de�nitions, 17

declarative knowledge, 6
defaction, 50
default, 29
defconcept, 7, 15
de�ned concepts, 17
de�nition, 16, 17
defkb, 57
defmethod, 50{52
defproduction, 53, 54
defrelation, 15
defset, 15, 26
design features, 3
disjoint-concepts-p, 31
do-retrieve, 48

facts, 10
�lled-by, 36
�llers, 19
forget, 36, 38
forget-all-about, 39

in-kb, 60
interval, 8, 26, 28

knowledge base, 57
knowledge representation, 3

list-kb, 60
list-knowledge-bases, 59
load-kb, 59
LOOM language, 3

matcher, 48
merging, 30
method, 12
methods, 51
modelling, 5

Number, 9

open world semantics, 46
open-world semantics, 10
output variables, 40

partition, 31
partition, exhaustive, 31
perform, 55
perform-all, 55
performance, 20
predicate, 41
primitive, 8, 16
primitive concepts, 17
production, 13, 53
programming language, 6

query, 40
query expression constructors, 42
query optimizer, 47

relation, 8, 15
relation expression, 24
retraction, 39
retrieve, 36, 40, 48
rules, 5

sample application, 6
save-kb, 59
schedule, 55
set, 15, 26

task, 55
tell, 10
tell, tellm, 35
tellm, 10, 11

unset-features, 40
upper-structure-kb, 57

variables, 40

70

