

IISSOO99000011 aanndd AASS99110000 CCeerrttiiff iieedd

SWM-640020007

rev C

ECAN527/ECAN1000/CMK6486DX

CAN Bus Interface Driver for Linux

Driver Version 3.0.0 User’s Manual

ECAN 527/1000 Driver for Linux

ii

RTD Embedded Technologies, INC.

103 Innovation Blvd.

State College, PA 16803-0906

Phone: +1-814-234-8087

FAX: +1-814-234-5218

E-mail

sales@rtd.com

techsupport@rtd.com

web site

http://www.rtd.com

ECAN 527/1000 Driver for Linux

iii

Revision History

02/12/2004 Revision A issued

 Documented for ISO9000

09/30/2004 Revision B issued

 Cleaned up trademark references

 Added hardware/software diagram to “Introduction” section

 Added “Notational Conventions” section

 Rewrote “Extracting the Software” section

 Updated all driver versions from 2.0 to 2.1.x

 Documented need to have kernel source installed to build driver

 Mentioned warnings generated by insmod when driver loaded

 Removed obsolete example program descriptions

 Added description of new example programs

 Added documentation for bus bit rate and ECAN1000 filter functions

 Updated rtd_ecan_get_driver_version() documentation to reflect new driver

 version encoding

 Added “Message Filtering” section

04/16/2010 Updating for API changes in version 3.0.0

ECAN 527/1000 Driver for Linux

Published by:

RTD Embedded Technologies, Inc.

103 Innovation Blvd.

State College, PA 16803-0906

Copyright 2010 by RTD Embedded Technologies, Inc.

All rights reserved

Printed in U.S.A.

The RTD Logo is a registered trademark of RTD Embedded Technologies. cpuModule and

utilityModule are trademarks of RTD Embedded Technologies. All other trademarks appearing

in this document are the property of their respective owners.

ECAN 527/1000 Driver for Linux

iv

Table of Contents

TABLE OF CONTENTS .. 4

INTRODUCTION ... 5

NOTATIONAL CONVENTIONS ... 6

INSTALLATION INSTRUCTIONS.. 7

EXTRACTING THE SOFTWARE ... 7

CONTENTS OF INSTALLATION DIRECTORY .. 7

BUILDING THE DRIVER ... 7

BUILDING THE LIBRARY ... 8

BUILDING THE EXAMPLE PROGRAMS ... 8

MESSAGE FILTERING .. 9

ECAN527 MESSAGE FILTERING ... 9

ECAN1000 MESSAGE FILTERING ... 10

USING THE API FUNCTIONS ... 12

FUNCTION REFERENCE .. 13

API FUNCTION GROUPS .. 14

BOARD CONTROL ... 14

DIGITAL I/O .. 14

GENERAL .. 14

RECEIVE AND TRANSMIT QUEUE .. 14

ALPHABETICAL FUNCTION LISTING .. 15

EXAMPLE PROGRAMS REFERENCE.. 48

LIMITED WARRANTY... 50

ECAN 527/1000 Driver for Linux

5

Introduction

This document targets anyone wishing to write Linux applications for an RTD ECAN527 or

ECAN1000 board. It provides information on building the software and using the Application

Programming Interface to communicate with the hardware and drivers. Each high-level library

function is described as well as any low-level ioctl() system call interface it may make use of.

The diagram below 1) provides a general overview of what hardware and software entities are

involved in device access, 2) shows which units communicate with each other, and 3) illustrates

the methods used to transfer data and control information.

Application

Application

Application

Library

Driver

Hardware

User Space

Kernel Space

C Function Calls C Function Calls C Function Calls

Bus

Electrical Signals

ioctl() System Calls

Software

Hardware Memory Accesses

ECAN 527/1000 Driver for Linux

6

Notational Conventions

RTD Linux drivers are assigned version numbers. These version numbers take the form “A.B.C”

where:

 * A is the major release number. This will be incremented whenever major changes are

 made to the software. Changing the major release number requires updating the

 software manual.

 * B is the minor release number. This will be incremented whenever minor, yet

 significant, changes are made to the software. Changing the minor release number

 requires updating the software manual.

 * C is the patch level number. This will be incremented whenever very minor changes

 are made to the software. Changing the patch level number does not require updating

 the software manual.

Occasionally you will notice text placed within the < and > characters, for example <installation

path>. This indicates that the text represents something which depends upon choices you have

made or upon your specific system configuration.

ECAN 527/1000 Driver for Linux

7

Installation Instructions

Extracting the Software

All software comes packaged in a gzip’d tar file named Ecan_Linux_V03.00.00.tar.gz. First,

decide where you would like to place the software. Next, change your current directory to the

directory in which you have chosen to install the software by issuing the command “cd installation

path>”. Then, extract the software by issuing the “tar -xvzf <path to tar

file>/Ecan_Linux_V03.00.00.tar.gz” command; this will create a directory

Ecan_Linux_V03.00.00/ that contains all files comprising the software package.

Contents of Installation Directory

Once the tar file is extracted, you should see the following files and directories within

Ecan_Linux_V03.00.00/:

 driver/

 examples/

 include/

 lib/

 CHANGES.TXT

 LICENSE.TXT

 README.TXT

The file CHANGES.TXT describes the changes made to the software for this release, as well as

for previous releases. The file LICENSE.TXT provides details about the RTD end user license

agreement which must be agreed to and accepted before using this software. The file

README.TXT contains a general overview of the software and contact information should you

experience problems, have questions, or need information. The directory driver/ contains the

source code and Makefile for the drivers. The directory examples/ holds the source code and

Makefile for the example programs. The directory include/ contains all header files used by the

driver, example programs, library, and your application programs. Library source code and

Makefile reside in the directory lib/.

Building the Driver

Driver source code uses files located in the kernel source tree. Therefore, you must have the full

kernel source tree available in order to build the driver. The development system, which provides

a full compilation environment, must be running the exact same version of the kernel as your

production machine(s); otherwise the kernel module may not load or may load improperly. After

the code is built, you can then move the resulting object files, libraries, and executables to the

production system(s).

Building the driver consists of several steps: 1) compiling the source code, 2) loading the

resulting kernel module into the kernel, and 3) creating hardware device files in the /dev directory.

To perform any of the above steps, you must change your current directory to driver/. The file

Makefile contains rules to assist you.

ECAN 527/1000 Driver for Linux

8

To compile the source code, you need to know which driver you want to build. If the ECAN527

driver is desired, issue the command “make MODEL=527”. Use the command “make

MODEL=1000” to compile the ECAN1000 driver. Simply issuing the “make” command will

result in usage information. The GNU C compiler gcc is used to build the driver code.

Before the driver can be used, it must be loaded into the currently running kernel. Using the

command “make insmod527” will load the ECAN527 driver into the kernel using the board

default I/O address and IRQ jumper values for an ECAN527D (0xD0000, 0xD0100 and

IRQ5,IRQ11). If you have special requirements, you may need to manually issue an insmod

command. The command “make insmod1000” will load the ECAN1000 driver into the kernel;

this target assumes that a single ECAN1000 is installed and that its base I/O address and IRQ are

set to the factory defaults (0x300 and IRQ5 respectively). You may need to edit the Makefile and

change this rule to reflect your board configuration or manually issue an appropriate insmod

command.

The final step is to create /dev entries for the hardware. Driver versions prior to 2.0 did this

automatically whenever the driver was loaded into the kernel. Due to changes in the Linux

kernel, this is no longer possible. Instead, the device files must be created manually. Use the

command “make devices527” to create ECAN527 device files; this generates ten files in /dev

named rtd-ecan527-0 through rtd-ecan527-9. Type the command “make devices1000” to make

ECAN1000 device entries; this creates ten files in /dev name rtd-ecan1000-0 through rtd-

ecan1000-9. The driver object file for the ECAN527 is named rtd-ecan527.o or rtd-ecan527.ko

for 2.4 kernel and 2.6 kernel respectively. The ECAN1000 it is called rtd-ecan1000.o or rtd-

ecan1000.ko for 2.4 kernel and 2.6 kernel respectively. The ECAN527 driver will also work with

the CMK6486DX board.

When you load either kernel driver in 2.4 kernel, the insmod command may print the following

message:

 "Warning: loading ./<driver>.o will taint the kernel: no license"

where <driver> is either rtd-ecan1000 or rtd-ecan527. You can safely ignore this message since it

pertains to GNU General Public License (GPL) licensing issues rather than to driver operation.

Building the Library

The example programs and your application use the ECAN library, so it must be built before any

of these can be compiled. To build the library, change your current directory to lib/ and issue the

command “make”. The GNU C++ compiler g++ is used to compile the library source code. To

prevent compatibility problems, any source code which makes use of library functions should also

be built with g++.

The ECAN library is statically linked and is created in the file librtd-ecan.a.

Building the Example Programs

The example programs may be compiled by changing your current directory to examples/ and

giving the command “make”, which builds all the example programs. If you wish to compile a

subset of example programs, there are targets in Makefile to do so. For example, the command

“make rtd-ecan-read rtd-ecan-write” will compile and link the source files rtd-ecan-read.cc and

rtd-ecan-write.cc. The GNU C++ compiler g++ is used to compile the example program code.

ECAN 527/1000 Driver for Linux

9

Message Filtering

Utilizing message filters can be one of the most complex facets of CAN bus operation. Both the

ECAN527 and ECAN1000 implement hardware filtering. The following sections shed some light

on using filters with both boards.

ECAN527 Message Filtering

The ECAN527 contains fifteen message objects. An object can be thought of as a mailbox for

receiving or transmitting messages. Message objects one through fourteen can be configured to

send or receive messages. Message object fifteen can only receive messages. Within each

message object exists a bit pattern which will be compared to the message ID of any message. If

the bit patterns match, the object will receive a message or, if configured to reply to a remote

frame, the object will transmit a message.

Three masks indicate which message ID bits in each message object are considered or ignored

when making message comparisons. These masks are the 1) Global Mask - Standard Register, 2)

Global Mask - Extended Register, and 3) Message 15 Mask Register.

The Global Mask - Standard Register applies to standard frame messages and to objects

configured to receive or send such messages. The Global Mask - Extended Register applies to

extended frame messages and to objects configured to receive or send such messages. The

Message 15 Mask Register applies to both standard and extended frame messages; in addition, it

applies only to message object fifteen.

As stated previously, mask bits control which message object ID bits affect comparisons. A 0 bit

causes any bit value in the corresponding bit position of the incoming message to be accepted. A

1 bit indicates that the bit value in the corresponding bit position of the incoming message must

exactly match the object’s message ID bit.

Consider the following filtering example. Suppose you wish to have message object one accept

odd-numbered message IDs and message object fifteen accept even-numbered message IDs for

standard frame messages. Using one of the message object configuration functions, set message

object one to receive standard frames and set its message ID to 1. Set message object fifteen to

receive standard frames and set its message ID to 0. Make sure all other objects are disabled.

The following code fragment will set up filters to implement this scheme:

 ECAN_FILTER_STRUCTURE filter;

 /*
 * Bit zero in message object one must match exactly. All other bits are
 * ignored. In this case, bit zero must be 1.
 */

 filter.SetAcceptMask(0x1, false);

 /*
 * Bit zero in message object fifteen must match exactly. All other bits
 * are ignored. In this case, bit zero must be 0.
 */

 filter.SetMessage15Mask(0x1, false);

 Ecan_SetFilter(handle, &filter);

ECAN 527/1000 Driver for Linux

10

As another example, suppose you wish to have message object two accept message ID 100 and

message object fifteen accept message ID 333 for extended frames. Using one of the message

object configuration functions, set message object two to receive extended frames and set its

message ID to 100. Set message object fifteen to receive extended frames and set its message ID

to 333. Make sure all other objects are disabled. The following code fragment will set up filters

to implement this scheme:

 ECAN_FILTER_STRUCTURE filter;

 /*
 * All bits in message object two must match exactly. In this case, the
 * message ID must be 100.
 */

 filter.SetExtended(0x1FFFFFFF);

 /*
 * All bits in message object fifteen must match exactly. In this case,
 * message ID must be 333.
 */

 filter.SetMessage15Mask(0x1FFFFFFF, true);

 Ecan_SetFilter(handle, &filter);

For more information regarding message objects and message filtering, please see the Intel

Corporation document 82527 Serial Communications Controller Architectural Overview.

ECAN1000 Message Filtering

The ECAN1000 implements four filtering strategies: 1) dual filter mode on extended frame

messages, 2) dual filter mode on standard frame messages, 3) single filter mode on extended

frame messages, and 4) single filter mode on standard frame messages.

Filters control which message bits are considered or ignored when making comparisons. A 1 bit

causes any bit value in the appropriate bit position of the incoming message to be accepted. A 0

bit indicates that the bit value in the appropriate bit position of the incoming message must exactly

match.

The library function Ecan_SetDualFilterExtended() is used to set a dual mode filter for extended

frames. Consider the following filtering example. Suppose you wish to accept messages with the

most significant 16 bits of the message ID equal to 0xC000 or 0x3000; this is equivalent to

accepting messages with IDs in the range [0x18000000 .. 0x18001FFF] or in the range

[0x06000000 .. 0x06001FFF]. The corresponding function call to set this filter would be:

 Ecan_SetDualFilterExtended(handle, 0xC000, 0x0, 0x3000, 0x0);

The library function Ecan_SetDualFilterStandard() is used to set a dual mode filter for standard

frames. Consider the following filtering example. Suppose you wish to accept messages having a

message ID of 10 or 20 but the Remote Transmission Request bit and the first data byte don’t

matter. The corresponding function call to set this filter would be:

 Ecan_SetDualFilterStandard(
 handle, 0xA, 0x0, 0x14, 0x0, 0x1, 0x1, 0x1, 0x1, 0xFF, 0xFF
);

ECAN 527/1000 Driver for Linux

11

The library function Ecan_SetSingleFilterExtended() is used to set a single mode filter for

extended frames. Consider the following filtering example. Suppose you wish to accept

messages that have an odd-numbered message ID and a Remote Transmission Request bit of 0.

The corresponding function call to set this filter would be

 Ecan_SetSingleFilterExtended(handle, 0x1, 0x1FFFFFFE, 0x0, 0x0);

The library function Ecan_SetSingleFilterStandard() is used to set a single mode filter for

standard frames. Consider the following filtering example. Suppose you wish to accept messages

that have any message ID, any Remote Transmission Request bit, and whose first two data bytes

are 0xFFFF. The corresponding function call to set this filter would be

 Ecan_SetSingleFilterStandard(
 handle, 0x0, 0x7FF, 0x0, 0x1, 0xFFFF, 0x0
);

For more information regarding message filtering, please see the Phillips Semiconductors

document SJA1000 Stand-alone CAN Controller Product Specification.

ECAN 527/1000 Driver for Linux

12

Using the API Functions

ECAN hardware and the associated driver functionality can be accessed through the library API

(Application Programming Interface) functions. Applications wishing to use library functions

must include the include/ecanlib.h header file and be statically linked with the lib/librtd-ecan.a

library file.

The following function reference provides for each library routine a prototype, description,

explanation of parameters, and return value or error code. By looking at a function’s entry, you

should gain an idea of: 1) why it would be used, 2) what it does, 3) what information is passed

into it, 4) what information it passes back, 5) how to interpret error conditions that may arise, and

6) the ioctl() system call interface if the function makes use of a single ioctl() call. To obtain

more information about the structures used in the library functions, please consult the files

include/ecanbaseioctl.h and include/ecanioctl.h.

Note that errno codes other than the ones indicated in the following pages may be set by the

library functions. Please see the ioctl(2) man page for more information.

ECAN 527/1000 Driver for Linux

13

Function Reference

ECAN 527/1000 Driver for Linux

14

API Function Groups

Board Control

Ecan_BusConfig

Ecan_GetBuffer

Ecan_SendCommand

Ecan_SetBitRate

Ecan_SetBuffer

Ecan_SetDualFilterExtended

Ecan_SetDualFilterStandard

Ecan_SetFilter

Ecan_SetLeds

Ecan_SetSingleFilterExtended

Ecan_SetSingleFilterStandard

Ecan_SetupBoard

Ecan_StartBoard

Ecan_StopBoard

Digital I/O

Ecan_LoadPortBitDir

Ecan_ReadDigitalIO

Ecan_WriteDigitalIO

General

Ecan_CreateHandle

Ecan_GetBoardName

Ecan_TestBoard

Ecan_Clear_Accounts

Ecan_Get_Accounts

Ecan_Set_TX_Queue_Size

Ecan_Set_RX_Queue_Size

EncodeMessageID

Ecan_GetInterrupts

Ecan_GetMessage

Ecan_GetStatus

Ecan_MessageObjectSetup

Ecan_SendMessage

Receive and Transmit Queue

Ecan_AllowBufferOverwrite

Ecan_GetQueuesCounts

ECAN 527/1000 Driver for Linux

15

Alphabetical Function Listing

Ecan_AllowBufferOverwrite

int Ecan_AllowBufferOverwrite(int handle, bool allow);

Description:

Inform the driver how to process receive queue overruns.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 allow: Flag to indicate whether or not to overwrite receive queue

 contents on overrun. A value of false means do not overwrite

 the oldest queue message with a new message and instead try

 to put an special overrun message in the queue. A value of

 true means overwrite the oldest queue message with a new

 message and do not put a special overrun message in the

 queue.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

IOCTL Interface:

int rc;

/*

 * Don't allow receive queue overwrites when buffer is full. Try to put overrun message in receive

 * queue instead.

 */

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__ALLOW_BUFFER_OVERWRITE, 0);

/*

 * Allow receive queue overwrites when buffer is full. No overrun message is put in receive

 * queue. If the buffer is full, the oldest received message will be overwritten.

 */

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__ALLOW_BUFFER_OVERWRITE, 0xff);

ECAN 527/1000 Driver for Linux

16

Ecan_BusConfig

int Ecan_BusConfig(

 int handle,

 u8_t BusTiming0,

 u8_t BusTiming1,

 u8_t ClockOut = 0,

 u8_t BusConfig = 0xff

);

Description:

Set CAN timing and bus configuration. This function puts the board in reset mode, so you must

start the board afterward.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 BusTiming0: Device specific value for bus timing register 0.

 BusTiming1: Device specific value for bus timing register 1.

 ClockOut: Device specific value for frequency divider at the

 external CLKOUT pin relatively to the frequency of the

 external oscillator. A value of 0 means don't change. The

 The default value is 0.

 BusConfig: Device specific value for Output Control Register

 (ECAN1000) or Bus Configuration Register (ECAN527).

 A value of 0xFF means set the bus to the default

 configuration. The default value is 0xFF.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EINVAL

 Configuration value is not valid.

 EIO

 The driver was unable to turn on the Reset Mode bit in the Mode

 Register to reconfigure the board (ECAN1000 only).

IOCTL Interface:

int rc;

struct __rtd_ecan_ioctl_busconfig bus_config;

ECAN 527/1000 Driver for Linux

17

memset((void *) &bus_config, 0, sizeof(struct __rtd_ecan_ioctl_busconfig));

/*

 * Set CAN bus to default configuration

 */

bus_config.BusConfig = 0xff;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SET_BUS_CONFIG, &bus_config);

Ecan_CreateHandle

int Ecan_CreateHandle(size_t DevNum = 0, bool Ecan1000 = false);

Description:

Open an ECAN device so that other functions may be called for it.

Parameters:

 DevNum: Board minor number. The default value is 0.

 Ecan1000: Selects board type. The value false indicates that the

 device is an ECAN527. The value true indicates that the

 device is an ECAN1000. The default value is false.

Return Value:

 >= 0: Success. The integer returned is the file descriptor from

 open() system call.

 -1: Failure. Please see the open(2) man page for information on

 possible values errno may have in this case.

IOCTL Interface:

None.

Ecan_GetBoardName

int Ecan_GetBoardName(int handle, unsigned long *board_type);

Description:

Get an ECAN board's type.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

ECAN 527/1000 Driver for Linux

18

 board_type: Address in which to store the board type value.

Return Value:

 0: Success.

 -1 Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

IOCTL Interface:

int rc;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__GET_BOARD_NAME);

Ecan_GetBuffer

size_t Ecan_GetBuffer(

 int handle,

 size_t StartAddress,

 size_t Count,

 void *Buffer_p,

 size_t BuffSize,

 uint8_t *BytesRead

);

Description:

Read CAN controller's RAM area into user buffer. This can be used to examine particular

controller registers or see how a board is configured.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 StartAddress: Offset from beginning of RAM area.

 Count: Number of bytes to read from RAM area.

 Buffer_p: Address of buffer in which to place RAM data.

 BuffSize: Size of buffer in bytes pointed to by Buffer_p.

 BytesRead: The integer returned is the number of bytes read

 from board's RAM area.

Return Value:

 0: Success.

ECAN 527/1000 Driver for Linux

19

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EFAULT

 buffer_p is not a valid user address.

 EFAULT

 The buffer is not big enough to store the data read.

 EINVAL

 ram_offset is outside the board's RAM area.

 EINVAL

 ram_len is outside the board's RAM area.

 EINVAL

 ram_offset plus ram_len is outside the board's RAM area.

IOCTL Interface:

char ram_buffer[1];

int rc;

struct __rtd_ecan_ioctl_get_ram get_arguments;

/*

 * Read contents of Control Register on ECAN1000

 */

get_arguments.ram_offset = 0x00;

get_arguments.ram_length = 1;

get_arguments.user_buffer = (void *) &ram_buffer;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__GET_RAM, &get_arguments);

Ecan_GetInterrupts

uint Ecan_GetInterrupts(

 int handle,

 ulong *QueueSize_p = NULL,

 bool DontQueueUse = false

);

Description:

Prepare a received message for subsequent library calls. This function can operate either on the

driver's receive queue or on the board directly.

NOTE: If this function is used to operate on the receive queue, it will remove the first

 available message from that queue. In addition, the queue count stored in the

 memory address referred to by QueueSize_p represents the number of entries

 remaining in the receive queue after removing the message.

ECAN 527/1000 Driver for Linux

20

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 QueueSize_p: Address where to store number of messages in driver's

 receive queue. If this is NULL, do not return this

 information. The default value is NULL.

 DontQueueUse: Flag to indicate whether or not the receive queue should be

 bypassed. A value of true means go to the board for a

 message. A value of false means use the driver's receive

 queue. The default value is false.

Return Value:

 0: Failure. Please see the description of

 rtd_ecan_prepare_received_message() for information on

 possible values errno may have in this case.

 > 0: Success. The unsigned integer returned is a mask of pending

 events.

IOCTL Interface:

int rc;

struct __rtd_ecan_ioctl_prepare_received_message message;

/*

 * Prepare message using driver's receive queue

 *

 * Note: if no message is waiting, both message.rx_queue_count and message.events are set to 0

 */

rc = ioctl(

 descriptor,

 __RTD_ECAN_IOCTL__PREPARE_RECEIVED_MESSAGE,

 &message

);

/*

 * Prepare message by going directly to the board

 *

 * Note: on the ECAN527, message.rx_queue_count is always set to 0

 */

rc = ioctl(

 descriptor,

 (

 __RTD_ECAN_IOCTL__PREPARE_RECEIVED_MESSAGE

 |

 __RTD_ECAN_DONT_USE_QUEUE

),

 &message

ECAN 527/1000 Driver for Linux

21

);

Ecan_GetMessage

int Ecan_GetMessage(int handle, ECAN_MESSAGE_STRUCTURE *message_p);

Description:

Retrieve a received message. This function can operate either on the driver's receive queue or on

the board directly.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 message_p: Address of structure where message should be written. The

 DontQueueUse member is used to indicate whether or not the

 receive queue should be bypassed. A value of true in

 DontQueueUse means go to the board. A value of false in

 DontQueueUse means use the receive queue.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EBADSLT

 The Channel member in the structure pointed to by message_p is zero

 and dont_use_queue is nonzero (ECAN527 only).

 EFAULT

 message_p is not a valid user address.

 EINVAL

 The Channel member in the structure pointed to by message_p is not

 valid and dont_use_queue is nonzero (ECAN527 only).

 EPERM

 The Reset Mode bit is set in the Mode Register and dont_use_queue is

 nonzero (ECAN1000 only).

 EPERM

 The Initialization bit is set in the Control Register and dont_use_queue

 is nonzero (ECAN527 only).

IOCTL Interface:

ECAN 527/1000 Driver for Linux

22

int rc;

struct rtd_ecan_message message;

/*

 * Get message out of driver's receive queue

 */

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__RECV_MESSAGE, &message);

/*

 * Get message by going directly to the board

 */

rc = ioctl(

 descriptor,

 (__RTD_ECAN_IOCTL__RECV_MESSAGE | __RTD_ECAN_DONT_USE_QUEUE),

 &message

);

Ecan_GetQueuesCounts

int Ecan_GetQueuesCounts(

 int handle,

 ulong *TX_Count_p,

 ulong *RX_Count_p,

 bool ClearRX = false,

 bool ClearTX = false

);

Description:

Optionally get current driver receive and transmit queue message counts. Optionally clear driver

receive and transmit queues.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 TX_Count_p: Address where to store the number of messages in the driver's

 transmit queue.

 RX_Count_p: Address where to store the number of messages in the driver's

 receive queue.

 A value of NULL for either address above indicates that the corresponding

 information should not be returned.

 ClearRX: Flag to indicate whether or not the receive queue should be

 cleared.

 ClearTX: Flag to indicate whether or not the transmit queue should be

ECAN 527/1000 Driver for Linux

23

 cleared.

 A value of false for either flag above signifies that the corresponding queue

 should not be cleared. A value of true means that the corresponding queue

 should be cleared. The default value for each flag is false.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EFAULT

 rx_count_p is not a valid user address.

 EFAULT

 tx_count_p is not a valid user address.

Ecan_GetStatus

int Ecan_GetStatus(int handle, ECAN_STATUS_STRUCTURE *status_p);

Description:

Get status of current message. This function can operate either on the driver's receive queue or on

the board directly.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 status_p: Address of structure where status information should be

 written. The DontQueueUse member is used to indicate

 whether or not the receive queue should be bypassed. A

 value of true in DontQueueUse means go to the board. A

 value of false in DontQueueUse means use the receive queue.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EFAULT

 status_p is not a valid user address.

ECAN 527/1000 Driver for Linux

24

 EPERM

 The Initialization bit is set in the Control Register and dont_use_queue

 is nonzero (ECAN527 only).

IOCTL Interface:

int rc;

struct rtd_ecan_status status;

/*

 * Get message status using driver's receive queue

 */

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__GET_STATUS, &status);

/*

 * Get message status by going directly to the board

 */

rc = ioctl(

 descriptor,

 (__RTD_ECAN_IOCTL__GET_STATUS | __RTD_ECAN_DONT_USE_QUEUE),

 &status

);

Ecan_LoadPortBitDir

int Ecan_LoadPortBitDir(

 int handle,

 bool bit7 = false,

 bool bit6 = false,

 bool bit5 = false,

 bool bit4 = false,

 bool bit3 = false,

 bool bit2 = false,

 bool bit1 = false,

 bool bit0 = false

);

Description:

Program the direction (input or output) of each bit in the digital I/O port. ECAN527 only.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 bit7: Direction for bit 7.

 bit6: Direction for bit 6.

ECAN 527/1000 Driver for Linux

25

 bit5: Direction for bit 5.

 bit4: Direction for bit 4.

 bit3: Direction for bit 3.

 bit2: Direction for bit 2.

 bit1: Direction for bit 1.

 bit0: Direction for bit 0.

 For bit7 through bit0, a value of false means input and a value of true means

 output. By default, each bit is set to input.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EFAULT

 direction_p is not a valid user address.

 ENOTSUP

 Operation is not supported (ECAN1000 only).

IOCTL Interface:

int rc;

struct rtd_ecan_load_port_bit_dir bit_mask;

memset((void *) &bit_mask, 0, sizeof(struct rtd_ecan_load_port_bit_dir));

/*

 * Set bits 7, 2, 1, and 0 to output; all others are input

 */

bit_mask.bit7 = 1;

bit_mask.bit2 = 1;

bit_mask.bit1 = 1;

bit_mask.bit0 = 1;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__LOAD_PORT_BIT_DIR, &bit_mask);

Ecan_MessageObjectSetup

int Ecan_MessageObjectSetup(

 int handle,

 ECAN_MESSAGE_OBJECT_SETUP_STRUCTURE *object_p

ECAN 527/1000 Driver for Linux

26

);

Description:

Set up a message object on an interface. This function can instruct the driver to not process the

transmit queue when a message object issues a Transmit Message Successfully interrupt.

ECAN527 only.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 object_p: Address of structure where object initialization data is

 stored. The DontQueueUse member indicates whether or not

 to process the transmit queue when an Transmit Message

 Successfully interrupt is generated by a message object. A

 DontQueueUse value of 0 means process the transmit queue

 after such an interrupt. Any other DontQueueUse value

 means do not process the transmit queue after such an

 interrupt.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 ECHNRG

 The Channel member in the structure pointed to by object_p does not

 refer to a valid object.

 EFAULT

 object_p is not a valid user address.

 EINVAL

 The State member in the structure pointed to by object_p does not

 contain a valid value.

 EINVAL

 In the structure pointed to by object_p, the Channel member has the

 value 15, the MakeDefault member is nonzero, and the State member

 is set to either RTD_ECAN_MO_TRANSMIT or

 RTD_ECAN_MO_REMOTE_TRANSMIT.

 EINVAL

 In the structure pointed to by object_p, the Channel member has the

 value 0 and the State member is set to

 ENOTSUP

 Operation is not supported (ECAN1000 only).

ECAN 527/1000 Driver for Linux

27

IOCTL Interface:

int rc;

struct rtd_ecan_msg_obj_setup object;

memset((void *) &object, 0, sizeof(struct rtd_ecan_msg_obj_setup));

/*

 * Object can be used to receive messages

 */

object.status = RTD_ECAN_MO_RECEIVE;

/*

 * Enable receive message interrupt for object

 */

object.RXIE = 1;

/*

 * Target of operation is message object 6

 */

object.Channel = 6;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SETUP_MESSAGE_OBJECT, &object);

Ecan_ReadDigitalIO

int Ecan_ReadDigitalIO(int handle, unsigned char *digital_data_p);

Description:

Read whatever value happens to be currently available on an interface's digital I/O port.

ECAN527 only.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 digital_data_p: Address of user buffer in which to store data.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EFAULT

 digital_data_p is not a valid user address.

ECAN 527/1000 Driver for Linux

28

 ENOTSUP

 Operation is not supported (ECAN1000 only).

IOCTL Interface:

int rc;

unsigned char digital_data;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__READ_DIGITAL_IO, &digital_data);

Ecan_SendCommand

int Ecan_SendCommand(

 int handle,

 bool TR = false,

 bool RRB = false,

 bool AT = false,

 bool CDO = false,

 bool SRR = false

);

Description:

Send a command to an ECAN device. ECAN1000 only.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 TR: Flag to send Transmission Request command.

 RRB: Flag to send Release Receive Buffer command.

 AT: Flag to send Abort Transmission command.

 CDO: Flag to send Clear Data Overrun command.

 SRR: Flag to send Self Reception Request command.

 A value of false for any of the above command flags indicates that the

 corresponding command should not be sent. A value of true for any of the

 above command flags indicates that the corresponding command should be sent.

 By default, none of the commands are sent.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

ECAN 527/1000 Driver for Linux

29

 EBADF

 handle is not a valid file descriptor.

 EFAULT

 command_p is not a valid user address.

 ENOTSUP

 Operation is not supported (ECAN527 only).

IOCTL Interface:

int rc;

struct rtd_ecan_send_command command;

/*

 * Tell device to clear the data overrun status bit

 */

command.TR = 0;

command.RRB = 0;

command.AT = 0;

command.CDO = 1;

command.SRR = 0;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SEND_COMMAND, &command);

Ecan_SendMessage

int Ecan_SendMessage(int handle, ECAN_MESSAGE_STRUCTURE *message_p);

Description:

Send a message either using the driver's transmit queue or by going directly to the board.

NOTE: Regardless of whether or not message transmission succeeds, the driver

 removes the message from the transmit queue. If message send fails, you are

 responsible for retrying the send.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 message_p: Address of structure where message is stored. The

 DontQueueUse member is used to indicate whether or not

 the transmit queue should be bypassed. A value of true in

 DontQueueUse means go to the board. A value of false in

 DontQueueUse means use the transmit queue.

Return Value:

ECAN 527/1000 Driver for Linux

30

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EBADSLT

 The Channel member in the structure pointed to by message_p

 has the value 15 (ECAN527 only).

 EBUSY

 The Transmission Buffer Status bit in the Control Register is

 cleared and dont_use_queue is nonzero (ECAN1000 only).

 EFAULT

 message_p is not a valid user address.

 EINVAL

 The Channel member in the structure pointed to by message_p is not

 valid (ECAN527 only).

 ENOBUFS

 dont_use_queue is 0 and there is no free slot in the driver's transmit

 queue.

 EPERM

 The Reset Mode bit is set in the Mode Register and dont_use_queue is

 nonzero (ECAN1000 only).

 EPERM

 The Initialization bit is set in the Control Register and dont_use_queue

 is nonzero (ECAN527 only).

IOCTL Interface:

unsigned char octet;

int rc;

struct rtd_ecan_message message;

memset((void *) &message, 0, sizeof(struct rtd_ecan_message));

/*

 * Fill message with characters '0' through '7'

 */

for (octet = 0; octet < 8; octet++) {

 message.Data[octet] = (unsigned char) (0x30 + octet);

}

/*

 * Send message, queueing it into driver's transmit queue first

 */

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SEND_MESSAGE, &message);

ECAN 527/1000 Driver for Linux

31

/*

 * Send message by going directly to the board

 */

rc = ioctl(

 descriptor,

 (__RTD_ECAN_IOCTL__SEND_MESSAGE | __RTD_ECAN_DONT_USE_QUEUE),

 &message

);

Ecan_SetBitRate

int Ecan_SetBitRate(int handle, BitRates BitRate);

Description:

Set CAN bus bit rate.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 BitRate: CAN bus bit rate to set. For a list of valid values, please see

 the BitRates enumeration in include/ecanioctl.h.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EINVAL

 BitRate is not valid.

 Please see the description of Ecan_BusConfig() for information on other

 possible values errno may have in this case.

IOCTL Interface:

int rc;

struct __rtd_ecan_ioctl_busconfig bus_config;

/*

 * Set CAN bus bit rate to 1 megabits/second

 */

bus_config.BusTiming0 = 0;

bus_config.BusTiming1 = 0x14;

/*

 * Don’t change CLKOUT pin frequency

ECAN 527/1000 Driver for Linux

32

bus_config.ClockOut = 0;

/*

 * Set CAN bus to default configuration

 */

bus_config.BusConfig = 0xFF;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SET_BUS_CONFIG, &bus_config);

Ecan_SetBuffer

size_t Ecan_SetBuffer(

 int handle,

 size_t StartAddress,

 size_t Count,

 const void *Buffer_p,

 size_t BuffSize,

 uint8_t *ByteWritten);

Description:

Write into CAN controller's RAM area from user buffer. This can be used to write to controller

registers and thus control how the board operates

CAUTION: Use this function with care as writing improper values to the board or writing to

 an incorrect address may cause erratic behavior or may cause the board to lock

 up. It is strongly recommended that other library functions be used to control

 an interface.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 StartAddress: Offset from beginning of RAM area.

 Count: Number of bytes to write into RAM area.

 Buffer_p: Address of buffer which contains data to write.

 BuffSize: Size of buffer in bytes pointed to by Buffer_p.

 BytesWritten: Number of bytes written to the board’s RAM area.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

ECAN 527/1000 Driver for Linux

33

 EFAULT

 buffer_p is not a valid user address.

 EFAULT

 More bytes are to be written than are in the buffer.

 EINVAL

 ram_offset is outside the board's RAM area.

 EINVAL

 ram_len is outside the board's RAM area.

 EINVAL

 ram_offset plus ram_len is outside the board's RAM area.

IOCTL Interface:

char ram_buffer[1];

int rc;

struct __rtd_ecan_ioctl_set_ram set_arguments;

/*

 * Set Hardware Reset Status bit in ECAN527 CPU Interface Register

 */

ram_buffer[0] = 0x80;

set_arguments.ram_offset = 0x02;

set_arguments.ram_length = 1;

set_arguments.user_buffer = (void *) &ram_buffer;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SET_RAM, &set_srguments);

Ecan_SetDualFilterExtended

int Ecan_SetDualFilterExtended(

 int handle,

 uint ID_ACR1,

 uint ID_AMR1,

 uint ID_ACR2,

 uint ID_AMR2

);

Description:

Set up a filter for extended frames in dual filter mode. ECAN1000 only.

NOTE: Unless you feel adventurous enough to undertake determining the exact bit

 patterns to set in the filter structure, do not use Ecan_SetFilter() to set filters on

 the ECAN1000. Use this function instead.

Parameters:

ECAN 527/1000 Driver for Linux

34

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 ID_ACR1: 16-bit Acceptance Code 1 for message ID.

 ID_AMR1: 16-bit Acceptance Mask 1 for message ID.

 ID_ACR2: 16-bit Acceptance Code 2 for message ID.

 ID_AMR2: 16-bit Acceptance Mask 2 for message ID.

Return Value:

 0: Filter set succeeded.

 -1: Filter set failed. Please see the description of Ecan_SetFilter() for

 information on possible values errno may have in this case.

IOCTL Interface:

None.

Ecan_SetDualFilterStandard

int Ecan_SetDualFilterStandard(

 int handle,

 uint ID_ACR1,

 uint ID_AMR1,

 uint ID_ACR2,

 uint ID_AMR2,

 uint RTR_ACR1,

 uint RTR_AMR1,

 uint RTR_ACR2,

 uint RTR_AMR2,

 uint Data_ACR,

 uint Data_AMR

);

Description:

Set up a filter for standard frames in dual filter mode. ECAN1000 only.

NOTE: Unless you feel adventurous enough to undertake determining the exact bit

patterns to set in the filter structure, do not use Ecan_SetFilter() to set filters on

the ECAN1000. Use this function instead.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 ID_ACR1: 11-bit Acceptance Code 1 for message ID.

ECAN 527/1000 Driver for Linux

35

 ID_AMR1: 11-bit Acceptance Mask 1 for message ID.

 ID_ACR2: 11-bit Acceptance Code 2 for message ID.

 ID_AMR2: 11-bit Acceptance Mask 2 for message ID.

 RTR_ACR1: 1-bit Acceptance Code 1 for Remote Transmission Request

 bit.

 RTR_AMR1: 1-bit Acceptance Mask 1 for Remote Transmission Request

 bit.

 RTR_ACR2: 1-bit Acceptance Code 2 for Remote Transmission Request

 bit.

 RTR_AMR2: 1-bit Acceptance Mask 2 for Remote Transmission Request

 bit.

 Data_ACR: 8-bit Acceptance Code for first 8 bits of message data.

 Data_AMR: 8-bit Acceptance Mask for first 8 bits of message data.

Return Value:

 0: Filter set succeeded.

 -1: Filter set failed. Please see the description of Ecan_SetFilter() for

 information on possible values errno may have in this case.

IOCTL Interface:

 None.

Ecan_SetFilter

int Ecan_SetFilter(int handle, const ECAN_FILTER_STRUCTURE *filter_p);

Description:

Set interface's message filters to mask out certain incoming messages. This function can operate

either on the driver's transmit queue or on the board directly. This function puts the board in reset

mode, so you must start the board afterward.

NOTE: On the ECAN527, this function no longer sets the message ID values in the

 default standard and extended frame receive message objects. You must follow

 this function with two calls to a function which will set up those message

 objects.

NOTE: Do not use this function to set filters on the ECAN1000; the filter bits are set

 incorrectly in this case. New functions have been added to set filters on the

 ECAN1000.

ECAN 527/1000 Driver for Linux

36

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 filter_p: Address of structure where filter data is stored.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EBUSY

 dont_use_queue is nonzero and the Transmit Status or Receive Status

 bit is set in the Status Register (ECAN1000 only).

 EFAULT

 filter_p is not a valid user address.

 EIO

 The driver was unable to turn on the Reset Mode bit in the Mode

 Register to reconfigure the board (ECAN1000 only).

 ENOBUFS

 dont_use_queue is 0 and there is no free slot in the driver's transmit

 queue.

IOCTL Interface:

int rc;

struct rtd_ecan_filter filter;

/*

 * Set filter, queueing it into driver's transmit queue first

 */

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SET_FILTER, &filter);

/*

 * Set filter by going directly to the board

 */

rc = ioctl(

 descriptor,

 (__RTD_ECAN_IOCTL__SET_FILTER | __RTD_ECAN_DONT_USE_QUEUE),

 &filter

);

ECAN 527/1000 Driver for Linux

37

Ecan_SetLeds

int Ecan_SetLeds(int handle, bool RedLed, bool GreenLed);

Description:

Turn on or off an interface's LEDs. ECAN527 only.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 RedLed: Flag to turn on red LED.

 GreenLed: Flag to turn on green LED.

 A value of false for any of the above LED flags indicates that the corresponding

 LED should be turned off. A value of true for any of the above LED flags

 indicates that the corresponding LED should be turned on.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EINVAL

 led_mask contains an invalid LED bit.

 ENOTSUP

 Operation is not supported (ECAN1000 only).

IOCTL Interface:

int rc;

unsigned int led_mask;

/*

 * Turns the red LED on and the green LED off

 */

led_mask = RTD_ECAN_LED_RED;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SET_LEDS, led_mask);

/*

 * Turns the green LED on and the red LED off

 */

led_mask = RTD_ECAN_LED_GREEN;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SET_LEDS, led_mask);

ECAN 527/1000 Driver for Linux

38

/*

 * Turns the green LED on and the red LED on

 */

led_mask = (RTD_ECAN_LED_GREEN | RTD_ECAN_LED_RED);

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SET_LEDS, led_mask);

/*

 * Turns the green LED off and the red LED off

 */

led_mask = 0;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SET_LEDS, led_mask);

Ecan_SetSingleFilterExtended

int Ecan_SetSingleFilterExtended(

 int handle,

 uint ID_ACR,

 uint ID_AMR,

 uint RTR_ACR,

 uint RTR_AMR

);

Description:

Set up a filter for extended frames in single filter mode. ECAN1000 only.

NOTE: Unless you feel adventurous enough to undertake determining the exact bit

patterns to set in the filter structure, do not use Ecan_SetFilter() to set filters on

the ECAN1000. Use this function instead.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 ID_ACR: 29-bit Acceptance Code for message ID.

 ID_AMR: 29-bit Acceptance Mask for message ID.

 RTR_ACR: 1-bit Acceptance Code for Remote Transmission Request bit.

 RTR_AMR: 1-bit Acceptance Mask for Remote Transmission Request bit.

Return Value:

 0: Filter set succeeded.

 -1: Filter set failed. Please see the description of Ecan_SetFilter() for

 information on possible values errno may have in this case.

ECAN 527/1000 Driver for Linux

39

IOCTL Interface:

 None.

Ecan_SetSingleFilterStandard

int Ecan_SetSingleFilterStandard(

 int handle,

 uint ID_ACR,

 uint ID_AMR,

 uint RTR_ACR,

 uint RTR_AMR,

 uint Data_ACR,

 uint Data_AMR

);

Description:

Set up a filter for standard frames in single filter mode. ECAN1000 only.

NOTE: Unless you feel adventurous enough to undertake determining the exact bit

patterns to set in the filter structure, do not use Ecan_SetFilter() to set filters on

the ECAN1000. Use this function instead.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 ID_ACR: 11-bit Acceptance Code for message ID.

 ID_AMR: 11-bit Acceptance Mask for message ID.

 RTR_ACR: 1-bit Acceptance Code for Remote Transmission Request bit.

 RTR_AMR: 1-bit Acceptance Mask for Remote Transmission Request bit.

 Data_ACR: 16-bit Acceptance Code for first 16 bits of message data.

 Data_AMR: 16-bit Acceptance Mask for first 16 bits of message data.

Return Value:

 0: Filter set succeeded.

 -1: Filter set failed. Please see the description of Ecan_SetFilter() for

 information on possible values errno may have in this case.

IOCTL Interface:

 None.

ECAN 527/1000 Driver for Linux

40

Ecan_SetupBoard

int Ecan_SetupBoard(

 int handle,

 bool ReceiveIntEn = true ,

 bool ErrorIntEn = false,

 bool TransmitIntEn = false,

 bool BusErrorIntEn = false,

 bool DataOverrunIntEn = false,

 bool ArbitrationLostIntEn = false,

 bool ErrorPassiveIntEn = false,

 bool WakeUpIntEn = false,

 unsigned long int RxSize = 0,

 unsigned long int TxSize = 0

);

Description:

Set an interface's event mask and default receive/transmit queue sizes. This function puts the

board in reset mode, so you must start the board afterward.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 ReceiveIntEn: Flag to indicate interest in Receive Interrupt.

 ErrorIntEn: Flag to indicate interest in Error Warn Interrupt.

 TransmitIntEn: Flag to indicate interest in Transmit Interrupt.

 BusErrorIntEn: Flag to indicate interest in Bus Error Interrupt.

 DataOverrunIntEn: Flag to indicate interest in Data Overrun Interrupt.

 ArbitrationLostIntEn: Flag to indicate interest in Arbitration Lost Interrupt.

 ErrorPassiveIntEn: Flag to indicate interest in Error Passive Interrupt.

ECAN 527/1000 Driver for Linux

41

 WakeUpIntEn: Flag to indicate interest in Wake Up Interrupt.

 A value of false for any of the above interrupt interest flags indicates that the

 application is not interested in the corresponding interrupt. A value of true for

 any of the above interrupt interest flags indicates that the application is

 interested in the corresponding interrupt. By default, only the Receive Interrupt

 is of interest.

 RxSize: Size of driver's receive queue.

 TxSize: Size of driver's transmit queue.

 A value of 0 for either of the above queue sizes indicates that the corresponding

 queue size should not be changed. The default value for either queue size is 0.

Return Value:

 0: Success.

 -1: Failure.

Ecan_StartBoard

int Ecan_StartBoard(int handle);

Description:

Put an interface into operating mode.

NOTE: This function overwrites any filters you may have set. You must set up your

 filters again after calling this function.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EIO

 The driver was unable to turn on the Reset Mode bit in the Mode

 Register to reconfigure the board (ECAN1000 only).

ECAN 527/1000 Driver for Linux

42

IOCTL Interface:

int rc;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__START);

Ecan_StopBoard

int Ecan_StopBoard(int handle);

Description:

Put an interface into reset mode.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EIO

 The driver was unable to turn on the Reset Mode bit in the Mode

 Register to reconfigure the board (ECAN1000 only).

IOCTL Interface:

int rc;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__STOP);

Ecan_TestBoard

int Ecan_TestBoard(int handle);

Description:

Test an interface. This function puts the board in reset mode, so you must start the board

afterward. On the ECAN1000, this function also will clear the receive and transmit queue

contents.

Parameters:

ECAN 527/1000 Driver for Linux

43

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EIO

 The driver was unable to turn on the Reset Mode bit in the Mode

 Register (ECAN1000 only).

 EIO

 The interface failed the test which writes indicator values into the

 thirteen bytes of the Transmit Buffer, reads them back, and verifies

 values read match the values written (ECAN1000 only).

 EIO

 The interface failed the test which sets the Init bit in the Control

 Register and then reads it back in to verify it was set (ECAN527 only).

 EIO

 The interface failed the test which attempts to write to Bit Timing

 Register 1 while the Init bit in the Control Register is set but the

 Change Configuration Enable bit is cleared. When these Control

 Register bits are so set, a write to the Bit Timing Register 1 should not

 change its value. In this case, it did (ECAN527 only).

 EIO

 The interface failed the test which attempts to write to Bit Timing

 Register 1 while the Init bit in the Control Register is set and the

 Change Configuration Enable bit is set. When these Control Register

 bits are so set, a write to the Bit Timing Register 1 should change its

 value. In this case, it did not (ECAN527 only).

IOCTL Interface:

int rc;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__TEST);

Ecan_WriteDigitalIO

int Ecan_WriteDigitalIO(HANDLE handle, unsigned char *digital_data_p);

Description:

ECAN 527/1000 Driver for Linux

44

Write a value to an interface's digital I/O port. ECAN527 only.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 digital_data_p: Address of user buffer containing data to write.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EFAULT

 digital_data_p is not a valid user address.

 ENOTSUP

 Operation is not supported (ECAN1000 only).

IOCTL Interface:

int rc;

unsigned char digital_data;

digital_data = 0xc5;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__WRITE_DIGITAL_IO, &digital_data);

Ecan_Clear_Accounts

int Ecan_Clear_Accounts(int handle);

Description:

Clear the statistics the driver keeps internally about device and driver operation.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

ECAN 527/1000 Driver for Linux

45

 handle is not a valid file descriptor.

IOCTL Interface:

int rc;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__CLEAR_ACCOUNTS);

Ecan_Get_Accounts

int Ecan_Get_Accounts(int handle, rtd_ecan_accounts_t *accounts_p);

Description:

Clear the specified queue on an interface.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 queue_mask: Bit mask of queues to clear. Valid bits are

 RTD_ECAN_RX_QUEUE and RTD_ECAN_TX_QUEUE.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 EINVAL

 queue_mask contains an invalid bit.

IOCTL Interface:

int rc;

unsigned int queue_mask;

/*

 * Clear the receive queue

 */

queue_mask = RTD_ECAN_RX_QUEUE;

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__CLEAR_QUEUES, queue_mask);

/*

 * Clear the transmit queue

 */

queue_mask = RTD_ECAN_TX_QUEUE;

ECAN 527/1000 Driver for Linux

46

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__CLEAR_QUEUES, queue_mask);

/*

 * Clear both the receive and transmit queues

 */

queue_mask = (RTD_ECAN_RX_QUEUE | RTD_ECAN_TX_QUEUE);

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__CLEAR_QUEUES, queue_mask);

Ecan_Set_RX_Queue_Size

int Ecan_Set_RX_Queue_Size(int handle, size_t queue_size);

Description:

Set interface's receive queue size. Doing so will also clear the the receive queue contents.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 queue_size: Size of receive queue in message items.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 ENOMEM

 No memory available for given number of message items.

IOCTL Interface:

int rc;

/*

 * Set receive queue size to 16 message items

 */

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SET_RX_MAX_QUEUE_SIZE, 16);

Ecan_Set_TX_Queue_Size

int Ecan_Set_TX_Queue_Size(int handle, size_t queue_size);

Description:

ECAN 527/1000 Driver for Linux

47

Set interface's transmit queue size. Doing so will also clear the the transmit queue contents.

Parameters:

 handle: Device handle from Ecan_CreateHandle() or file descriptor

 from open() system call.

 queue_size: Size of transmit queue in message items.

Return Value:

 0: Success.

 -1: Failure with errno set as follows:

 EBADF

 handle is not a valid file descriptor.

 ENOMEM

 No memory available for given number of message items.

IOCTL Interface:

int rc;

/*

 * Set receive queue size to 500 message items

 */

rc = ioctl(descriptor, __RTD_ECAN_IOCTL__SET_RX_MAX_QUEUE_SIZE, 500);

ECAN 527/1000 Driver for Linux

48

Example Programs Reference

 Name Remarks

rtd-ecan1000-send-command Demonstrates how to send a command to an ECAN1000 board by

using Ecan_SendCommand().

rtd-ecan527-digital-io Demonstrates how to read data from and write data to an ECAN527

board’s digital I/O port.

rtd-ecan527-test-hardware Test the ECAN527 board by exercising the message objects both

receiving and sending messages. The driver is bypassed as much as

possible. Receive and transmit interrupts are not used.

rtd-ecan527-test-hardware-int Test the ECAN527 board by exercising the message objects both

receiving and sending messages. The driver is bypassed as much as

possible. Receive interrupts are used but not transmit interrupts.

rtd-ecan527-test-leds

Performs the following operations in the this exact sequence: 1) turns

both LEDs off, 2) turns red LED on and green LED off, 3) turns red

LED off and green LED on, 4) turns both LEDs on, and 5) turns both

LEDs off.

rtd-ecan-clear-accounts Demonstrates how to clear the statistics kept internally by the driver.

rtd-ecan-print-accounts Demonstrates how to print the statistics kept internally by the driver.

rtd-ecan-read Demonstrates reading messages from a CAN interface. A simple file

transfer is implemented which receives a file from rtd-ecan-write.

rtd-ecan-test-bit-rates Test message receive and send at the following CAN bus bit rates:

1) 50,000 bps, 2) 62,500 bps, 3) 100,000 bps, 4) 125,000 bps,

5) 250,000 bps, 6) 500,000 bps, and 7) 1,000,000 bps. The tests are

not stress tests to see how fast messages can be sent and received.

Rather, they simply test that a single message can be sent and

received at each bit rate.

rtd-ecan-test-board Demonstrates using Ecan_TestBoard().

rtd-ecan-test-filter Test driver filter operation. This program can test both standard and

extended filters on both the ECAN527 and the ECAN1000. Only

one type of filter can be tested with each invocation of the

executable.

rtd-ecan-test-id-read Test driver message ID logic. This program receives special

messages sent by rtd-ecan-test-id-write. For each message received,

the message ID (as set by rtd-ecan-test-id-write) is verified to ensure

the driver encoded the ID properly for transmission and then

decoded the ID properly upon reception. Both standard and

extended frames are tested.

rtd-ecan-test-id-write Test driver message ID logic. This program sends special messages

to rtd-ecan-test-id-read. Each message is given a message ID. The

message ID is also sent in the message data so that rtd-ecan-test-id-

read can verify what message ID it should be receiving. Both

standard and extended frames are tested.

rtd-ecan-test-tx-error-code Tests driver error code processing on transmit error. This program

requires user intervention in the form of installing and removing the

CAN cable. The user is prompted when to install and when to

remove the cable. A series of 6 messages are sent and the GetStatus

error code of each one is verified against expected behavior.

rtd-ecan-throughput Calculates the throughput rate for a CAN interface. Seven different

CAN bus bit rates are supported.

rtd-ecan-write Demonstrates writing messages to a CAN interface. A simple file

transfer is implemented which sends a file to rtd-ecan-read.

ECAN 527/1000 Driver for Linux

49

ECAN 527/1000 Driver for Linux

50

Limited Warranty

RTD Embedded Technologies, Inc. warrants the hardware and software products it

manufactures and produces to be free from defects in materials and workmanship for one

year following the date of shipment from RTD Embedded Technologies, INC. This

warranty is limited to the original purchaser of product and is not transferable.

During the one year warranty period, RTD Embedded Technologies will repair or

replace, at its option, any defective products or parts at no additional charge, provided

that the product is returned, shipping prepaid, to RTD Embedded Technologies. All

replaced parts and products become the property of RTD Embedded Technologies.

Before returning any product for repair, customers are required to contact the factory for

an RMA number.

THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCTS WHICH

HAVE BEEN DAMAGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE (such

as: use of incorrect input voltages, improper or insufficient ventilation, failure to follow

the operating instructions that are provided by RTD Embedded Technologies, "acts of

God" or other contingencies beyond the control of RTD Embedded Technologies), OR

AS A RESULT OF SERVICE OR MODIFICATION BY ANYONE OTHER THAN

RTD Embedded Technologies. EXCEPT AS EXPRESSLY SET FORTH ABOVE, NO

OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT

LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-

NESS FOR A PARTICULAR PURPOSE, AND RTD Embedded Technologies

EXPRESSLY DISCLAIMS ALL WARRANTIES NOT STATED HEREIN. ALL

IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES FOR

MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE

LIMITED TO THE DURATION OF THIS WARRANTY. IN THE EVENT THE

PRODUCT IS NOT FREE FROM DEFECTS AS WARRANTED ABOVE, THE

PURCHASER'S SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS

PROVIDED ABOVE. UNDER NO CIRCUMSTANCES WILL RTD Embedded

Technologies BE LIABLE TO THE PURCHASER OR ANY USER FOR ANY

DAMAGES, INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES,

EXPENSES, LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PRODUCT.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF

INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS,

AND SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN

IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATIONS OR

EXCLUSIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY

ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

ECAN 527/1000 Driver for Linux

51

 RTD Embedded Technologies, Inc.

 103 Innovation Blvd.

 State College PA 16803-0906

 USA

 Our website: www.rtd.com

