
The Big Online Book of Linux Ada
Programming
An online documentation project over 27,000 lines long.

Last Updated: July 20, 2001

Copyright © 1999-2001, Ken O. Burtch. All Rights Reserved. Permission given to copy (including
photocopying) this document for education purposes provided this notice is kept intact.

Do you want to develop Linux applications twice as fast as the C language?
Read on!

Latest version: [North America/Canada]

Download files: [.zip HTML] [PDF]

Unofficial mirrors: [Europe/Spain] [Asia/Japan] [OOP Web]

Search the Big Book for a word or phrase

Special Thanks To

Jeff Creem (user stack and errno clarifications)
Wilhelm Spickermann (CVS)
Leonid A. Timochouk (Florist clarifications)
Jürgen Pfeifer (Multithreading information)
Bernhard Gubanka (Debugging Pools clarifications)
Eric L. Schott, Warren W. Gay, Jean-Marc Bourguet (Adjust vs. C++ Copy Constructors)
Jean-Marc Bourguet (C++ exceptions)
Warren W. Gay (Ada Streams)
Rush Kesler (PDF version)
Duncan Sands (Fortran, Elaborate_All)
Erik Sigra (Automake)

Talk with the author at ken-nospam@tiamet.vaxxine.com (remove the "-nospam"). Hosted by
PegaSoft Canada. Special thanks to the Ada Linux Team.

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (1 of 10) [7/20/2001 11:22:56 AM]

http://www.vaxxine.com/pegasoft/homes/book.html
http://www.vaxxine.com/pegasoft/homes/book.zip
http://www.vaxxine.com/pegasoft/homes/book.pdf
http://sibila.edv.uniovi.es/ada-ken/book.html
http://www.swlab.csce.kyushu-u.ac.jp/~yoshimi/book/
http://www.oopweb.com/Ada/Documents/AdaLinux/Volume/book.html
http://www.vaxxine.com/pegasoft
http://www.gnuada.org/alt.html

Table of Contents
i. Preface

1 Introduction

1.1 A Brief History of Linux
1.2 1995: The Year of Ada and Gnat
1.3 Why use Ada?
1.4 Why Ada and Linux?
1.5 Linux Ada Resources

2 Installing Gnat on Linux

2.1 Installing the ALT RPMs
2.2 Installing the ACT Binaries
2.3 Compiling Gnat from its Sources
2.4 Case Study: Installing Gnat 3.11 on over an old Linux Distribution

3 The Integrated Development Environments

3.1 TIA: The Console IDE
3.1.1 Quick Start
3.1.2 TIA Keyboard Legend
3.1.3 The File Menu
3.1.4 The Edit Menu
3.1.5 The Find Menu
3.1.6 The Misc Menu
3.1.7 The Project Menu
3.1.8 The ? Menu
3.2 GRASP-the X windows IDE
3.2.1 Installation
3.2.2 QuickStart
3.2.3 The Project Window
3.2.4 The Source File Window
3.2.5 The Button Bar
3.3 Other Tools and IDEs
3.3.1 VAD
3.3.2 Jessie
3.3.3 RAPID
3.3.3 VIDE
3.3.5 GLIDE

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (2 of 10) [7/20/2001 11:22:56 AM]

4 From Source Code to Executable

4.1 Gnat Filename Conventions
4.2 Writing Your First Ada Program
4.2.1 Writing a Program with an IDE
4.2.2 Writing a Program without an IDE
4.2.3 After Building
4.3 The Three Step Process
4.4 Gnat Compiling Options
4.4.1 Run-time Error Checking
4.4.2 Checking without Compiling
4.4.3 When you have Too Many Errors
4.5 Gnat Binding Options
4.6 Gnat Linking Options
4.7 Gnatmake Options
4.7.1 So you changed the comments ?

5 Building Large Projects

5.1 Make: the Traditional Project Builder
5.1.1 A Simple Ada Makefile
5.2 Cook: A Parallel Make

5.2.1 Cooking in Parallel
5.2.2 A Simple Ada Cookbook
5.3 Automake and Autoconf: UNIX Portability

6 Development Utilities

6.1 Saving Time with Gnatstub
6.2 Crossreferencing with Gnatxref
6.3 Eliminating Dead Code with Gnatelim
6.4 Execution Stack & Memory Leak Detection
6.5 Conditional Compiling with Gnatprep
6.6 Profiling with gprof
6.7 Shared Libraries Using GnatDLL
6.8 Source as Web Pages Using GnatHTML
6.9 GnatFIND

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (3 of 10) [7/20/2001 11:22:56 AM]

7 Optimizing Your Project

7.1 Compiler Optimization Options
7.2 Gnat Source Optimization Options
7.3 CPU Optimization Options
7.4 What Differnece Does Optimization Make?
7.5 Working with the Assmebly Source

8 Debugging Your Project

8.1 Limit and the Heap Size
8.2 The Debugging Pragmas
8.3 Identifying Files
8.4 Compiler Info with -gnatG
8.5 Floating Point Numbers
8.6 Gdb: The GNU Debugger
8.7 Code Restrictions

9 Team Development

9.1 Change Logs
9.2 RCS: Revision Control System
9.3 CVS: Concurrent Versions System
9.4 Creating Transcripts with Script
9.5 Timing Execution with Time

10 An Introduction to Ada

10.1 Your Main Program
10.2 Text_IO
10.3 Fundamental Data Types
10.4 Type Attributes
10.5 Operatiors and Expressions
10.6 Variable Declarations
10.7 New Types
10.7.1 Modular Types
10.7.2 Text_IO and New Types
10.8 Aggregate Types

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (4 of 10) [7/20/2001 11:22:56 AM]

10.9 Enumerated Types
10.10 Procedures and Function
10.11 Flow of Control

11 Advanced Ada Programming

11.1 Packages
11.2 Controlling Elaboration
11.2.1 First line of defense: Pure, Preelaborate and No_Elaboration_Code
11.2.2 Second line of defense: Elaborate, Elaborate_Body, Elaborate_All
11.2.3 Other Elaboration Pragmas
11.3 Objects
11.4 Objects with Automatic Initialization/Finalization
11.5 Multiple Inheritance
11.6 Private Objects
11.7 Generics
11.8 Exceptions
11.9 Dynamic Allocation
11.10 Callbacks
11.10.1 Storage Pools
11.10.2 Access Parameters
11.11 Multithreading
11.11.1 FSU vs. Native Threads
11.11.2 Tasks
11.11.3 Task Types
11.11.4 Protected Items/Types
11.12 Ada Text Streams
11.13 Pragmas
11.14 Low-Level Ada

12 Standard Gnat Packages

12.1 Standard String and Character Packages
12.2 Advanced Input/Output
12.2.1 GNAT.IO
12.2.2 GNAT.IO_Aux
12.3 Sequential_IO
12.4 Direct_IO
12.5 Formatted Output
12.6 Calendar Package

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (5 of 10) [7/20/2001 11:22:56 AM]

12.7 Tags Package
12.8 Tables
12.9 Hash Tables
12.10 Bubble and Heap Sorts
12.11 Regular Expressions
12.12 Advanced String Processing
12.13 GLADE Distributed Processing [not finished]
12.14 Basic Math Packages
12.15 Exception Handling and Traceback Packages

13 Linux Introduction

13.1 Introduction to Processes
13.1.1 Parents, Children and Families
13.1.2 Ownership and Permissions
13.2 Using System and OsLib.Spawn
13.3 The Linux Environment
13.4 Standard C Libraries
13.5 The Linux Kernel
13.5.1 Kernel Calls
13.5.2 Devices
13.5.3 Proc File System
13.5.4 AudioCD: An Example Program
13.6 Standard Input/Output/Error
13.8 Linux Binary Formats
13.9 Linux Libraries
13.10 Libc5, Libc6 and Upward Compatibility
13.11 Linux Basics

14 Linux Programming

14.1 Gnat OS Library
14.2 Installing Binding Packages
14.3 Catching Linux Signals
14.4 Working with the Command Line
14.4 Linux Environment Variables
14.6 GNAT.Directory_Operations Package
14.7 GNAT.Lock_Files Package

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (6 of 10) [7/20/2001 11:22:56 AM]

15 Free Ada Bindings

15.1 Using Florist, a POSIX binding
15.2 Using Texttools
15.2.1 Installation
15.2.2 Introduction
15.2.3 Package Overview
15.2.4 Window Overview
15.2.5 Other Useful Window Manager Subprograms
15.2.6 Alerts
15.2.7 Other Predefined Windows
15.2.8 Control Overview
15.2.9 OS Package
15.2.10 UserIO Overview
15.2.11 Appearance and Keys
15.3 Using Ncurses [not finished]
15.4 Using GTK+ Widgets [not finished]
15.5 Using Motif Widgets [not finished]
15.6 Using the TASH TCL Binding [not finished
15.7 Using the Mesa/OpenGL Binding [not finished]
15.8 Engine_3D [not finished]

16 Advanced Linux Programming

16.1 Writing Your Own Bindings
16.2 Linux Errors and Errno
16.3 The Linux Clock
16.3.1 Basic time functions
16.3.2 Timeval Calls - Microsecond Accuracy
16.3.3 Functions Using the tm Record
16.3.4 Time as a String
16.3.5 Timer Functions
16.4 Process Information
16.4.1 Ownership
16.4.2 Other Functions
16.5 Environment Variables
16.6 Multitasking
16.7 Linux File Operations
16.8 Opening and Closing Files
16.9 Directories

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (7 of 10) [7/20/2001 11:22:56 AM]

16.10 Stdio Files
16.11 Stdio Pipes
16.12 Memory Management
16.13 The Virtual Consoles
16.14 Making Database Queries
16.14.1 mySQL [not finished]
16.14.2 PostgreSQL [not finished]
16.15 Dynamic Loading [not finished]
16.16 A Word on Device Drivers
16.17 Linux Sound
16.17.1 Detecting a Sound Card
16.17.2 Playing Sound Samples
16.17.3 Using the Mixer
16.17.4 Recording Sound Samples [not finished]
16.18 Audio CDs
16.19 Kernel Pipes [not finished]
16.20 Shared Memory [not finished]
16.21 Message Queues [not finished]
16.22 Semaphores [not finished]
16.23 Sockets
16.24 Memory Management
16.25 Exit Procedures

17 Moving C Programs To Ada

17.1 c2ada: Translating Your Programs
17.2 Interfaces.C package
17.3 Interfaces.C.Pointers package
17.4 Interfaces.C_Streams package
17.5 Ada and C Files
17.6 A Word on Interfaces.Fortran

18 Data Structures

18.1 Using the Booch Components
18.1.1 Containers
18.1.2 Iterators
18.1.3 Single linked Lists
18.1.4 Double linked Lists
18.1.5 Bags

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (8 of 10) [7/20/2001 11:22:56 AM]

18.1.6 Sets
18.1.7 Collections
18.1.8 Queues
18.1.9 Stacks
18.1.10 Deques
18.1.11 Rings
18.1.12 Maps
18.1.13 Binary Trees
18.1.14 AVL Trees
18.1.15 Multiway Trees
18.1.16 Graphs
18.1.17 Smart Pointers
18.1.18 Booch Multithreading

19 Specialized Topics

19.1 Ada Meets Java
19.1.1 The Java Virtual Machine [unfinished]
19.1.2 JGNAT [unfinished]
19.2 ASIS [unfinished]

20 Developing Your Project

20.1 The Project Proposal
20.2 The Design Phase
20.3 The Development Phase
20.4 The Alpha/Beta Release
20.5 Releasing Your Software
20.5.1 A Third Party Library
20.6 Distribution Formats
20.6.1 RPM: Red Hat Package Manager [not finished]
20.6.2 TGZ Packages
20.6.3 TAR.BZ2 Packages
20.6.4 Other Formats
20.7 Man Pages
20.8 Linux Software Map Entry
20.9 Licensing Options

Appendices

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (9 of 10) [7/20/2001 11:22:56 AM]

Appendix A: The Linux Shell

Appendix B: Linux Error Codes

Appendix C: Linux Kernel Calls

Appendix D: Signals

Appendix E: Ioctl parameters

Appendix F: Overview of Gnat Packages

Glossary

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (10 of 10) [7/20/2001 11:22:56 AM]

i. Preface

I've been working with Linux since kernel 0.97 and with Gnat since version 2.00. In the past five years or
so, I've been frustrated by the lack of documentation on Linux Ada programming. Gnat is one of the most
powerful development environments for Linux, certainly superior to C or C++, and yet most people have
never heard of it. Those that have often ignore it because they can't find enough documentation to install
Gnat, let alone to evaluate it.

After my article "Gnat: C++ and Java under Fire", published in the October 1998 edition of Linux
Journal, I decided to collect my knowledge of Linux Ada programming and set down what I've learned:
from installing Gnat to interfacing with the Linux kernel. I wanted to create a book that had everything I
needed in one place to write professional Linux applications. After publishers declined to put it in print
because Ada developers are a small (though growing) niche in the Linux market, I decided to publish it
online so that the facts about Linux Ada programming would be understood.

This document covers basic software development on Linux, a review of the core Ada 95 language, and
an introduction to designing programs that work with the Linux kernel and standard C libraries. It also
covers some of the Ada bindings that exist for packages like Motif, TCL and GTK+.

This book tries to describe Linux specifics whenever possible. This is not another UNIX book recycled
with the word "Linux" substituted in.

Although many Ada basics are covered, this document assumes the reader is familiar with a high-level
programming language such as BASIC, C, C++, Java . Borland Delphi programmers will notice
similarities between Delphi and Ada.

Because C is the dominant language in the Linux world, the differences between C and Ada are hilighed
throughout the text.

The document is designed to be used as a reference after it's been read, with many tables and examples
covering common Linux programming problems.

Although this book covers a lot of material, it is not intended as an exhaustive survey of Linux Ada
programming.Linux is in a constant state of development. Refer to your Linux documentation for the
latest information and newest features. Also, Ada 95 has several application specific and portability
features which are not covered since they are not related to general Linux Ada programming.

Because of the fast pace of Linux development, information in this document may be obsolete, or (to
paraphrase Douglas Adams) apocryphal or wildly inaccurate. However, most of the facts have been
verified against Gnat 3.11 (or a later version), and most of the examples in this document have been
compiled under Gnat.

Ken O. Burtch, September 1999

The Big Book of Linux Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/0-ii-pref.html [7/20/2001 11:28:01 AM]

http://developer.java.sun.com/developer/infodocs/index.shtml

1 Introduction

 Table of Contents Next Chapter-->

[Rewrite & Expand] Ada 95 is arguably the most powerful development language available for Linux,
with features comparable to Java and execution speeds similar to, and sometimes exceeding, C. gnat, the
main [perhaps only'check at HBAP?--KB] Ada 95 compiler for Linux, is also absolutely free. This makes
a combination that's hard for Linux programmers to ignore.

1.1 A Brief History of Linux

The Linux operating system that was created as a hobby by a young student, Linus Torvalds, at the
University of Helsinki in Finland. Linus, interested in the UNIX clone operating system Minix, wanted to
create an expanded version of Minix with more capabilities. He began his work in 1991 when he released
version 0.02 and invited programmers to participate in his project. Version 1.0 was released in 1994. The
latest version is 2.4 and development continues.

Linux uses GNU General Public License (GPL) and its source code is freely available to everyone. Linux
distributions, CD-ROMs with the Linux kernel and various other software ready for installation, do not
have to be free, but the Linux source code must remain available. Making source code available is known
as 'open source'.

The word "Linux" is properly pronounced using a Swedish accent, making it difficult to pronounce in
North America. It is most often pronounced with a short "i" and with the first syllable stressed, as in
LIH-nicks, but it is sometimes pronounced LYE-nicks (the anglicized "Linus' UNIX") or LEE-nucks.

Strickly speaking, Linux refers to the operating system kernel that starts and manages other programs and
provides access to system resources. The various open source shells, compilers, standard libraries and
commands are a part of another project called GNU. The GNU project was started by the Free Software
Foundation (FSF) as an an attempt to create a free version of UNIX. The main Linux C compiler, gcc, is
a part of the GNU project.

There is also a GNU kernel project, but this has been largely superseded by the Linux kernel.

X Windows is also not strictly a part of Linux. Xfree86, the free version of X Windows, was adapted to
the Linux operating system.

1.2 1995: The Year of Ada and Gnat

In 1974, the US Department of Defense realized it was spending too much on software.
They wanted a new computer language that could handle all of their needs, from
controlling the hardware in a missile guidance system to doing artificial intelligence. In
1983, they created the language Ada (now known as Ada 83), a heavily modified version
of the Pascal language. "Ada", a proper name, refers to Countess Ada Lovelace

Big Online Book of Linux Ada Programming - 1 Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/1.html (1 of 5) [7/20/2001 11:28:29 AM]

(1815-1852), considered by some to be the world's first programmer.

The original Ada had several shortcomings in the areas of software engineering: Ada programs tended to
be big and awkward to maintain over time. In 1990, ANSI began a project to revise Ada, to include
object oriented features, hierarchical program libraries, support for other languages, and add-ons for
specialized applications like systems programming, real-time systems, distributed information
(client/server) systems and scientific programming. The updated language is known as Ada 95.

GNAT is a GPL Ada compiler, available for Linux, Windows NT, and many other platforms. It was
originally created at New York University. GNAT is owned by Ada Core Technologies (ACT,
http://www.gnat.com): although gnat is free, companies who want support can purchase it for a fee. The
Linux version of GNAT supports the entire Ada 95 standard, including all optional features. It includes
many extensions, like cross-compiling and support for the C++ language. ACT also provides GLADE, a
free RPC-based TCP/IP networking implementation Ada 95's distributed systems annex.

The GNAT manual describes their compiler as "an industrial-quality Ada 95 compiler, integrated into the
GCC retargetable compiler system. GNAT is a complete compiler, validated on several platforms, that
includes support for all the Ada 95 annexes specified in the Ada Reference manual. Because of its
integration into the GCC system, GNAT is available on a large number of hardware/operating system
platforms, and can be used as a cross-compiler from any of its targets to any other one. Because of the
common code-generator technology of GCC, GNAT has excellent support for multi-language
programming: Ada, C, C++, Fortran, etc.

GNAT also represents a substantial improvement in Ada compilation technology. It's [sic] open-system
philosophy stands in contrast with the opaque approach of older Ada compilers. There are no hidden and
complex central libraries whose use requires a totally new set of commands, and no rigid development
environments that often force needless recompilations. While preserving all of Ada's safety, GNAT's
source-based model provides the flexibility and efficiency typically encountered in C development
environments. Furthermore, GNAT's flexibility greatly facilitates its integration within third-party
development environments and CASE tools. A number of standard editors, debuggers, profilers, memory
analyzers, test coverage or configuration-management tools, etc. can be used with GNAT, which coexists
comfortably with familiar programming tools (unlike older Ada compilation systems)."

Fun Fact: When Gnat 3.11p was released, Robert Dewar said that Linux would never be a billion
dollar platform and deserved no special consideration by ACT. By the time Gnat 3.12p was released
just over a year later, the Red Hat company was worth more than 18 billion dollars, or 40% of the
server market. The first platform supported by Gnat 3.12p was Linux.

1.3 Why Use Ada?

C and C++ represent the de facto standard for Linux programming. After all, the kernel itself is written in
C. However, C++ is not suitable for all kinds of projects because different computer languages have
different strengths and weaknesses. Ada was designed for team development and embedded systems,
leading to advantages over C in development time and debugging. An in-depth 1995 study by Stephen F.
Zeigler (http://www.adaic.com/docs/reports/cada/cada_art.html) showed that development in Ada costs
about half that of C++. It also suggests that Ada produces "almost 90% fewer bugs for the final

Big Online Book of Linux Ada Programming - 1 Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/1.html (2 of 5) [7/20/2001 11:28:29 AM]

customer".

GNAT was developed closely with gcc, the native C compiler for Linux. Unlike some compilers that
translate a program into C and then feed the C program into gcc, gcc has built-in support for the Ada
language. Like g++, the GNU C++ compiler, gnat works with gcc, allowing it to produce fast, quality
executables without any intermediate steps.

This integration gives a lot of flexibility to programmers who want or need to support multiple
languages. GNAT has an extensive set of features for trading variables and function calls between Ada
and C/C++. It can import C/C++ items into Ada, export Ada items to C/C++. You can also link Ada
functions indirectly into Java, using Java's ability to import C++ functions.

GNAT comes with over 140 standard libraries. These include numeric and string libraries, file
operations, hash tables and sorts. If you would rather work directly with Linux C libraries, a variety of
"binding" libraries exist, available for download from the Public Ada Library or The Home of the Brave
Ada Programmers. These include bindings for POSIX (that is, the Linux kernel), X Windows, Motif,
TCL and WWW CGI applications. The Ada Linux Team prepackage many bindings for use with their
version of the Gnat compiler.

More and more Linux libraries feature Ada bindings, including ncurses (a standard text screen drawing
library) and GTK (the Gimp Toolkit, a graphics package).

Although gnat is distributed under the GPL license, gnat and its libraries may be used in commercial
applications.

The GtkAda mailing list is at http://gtkada.eu.org.

The Gnat mailing list is at http://www.diax.ch/users/gdm/gnatlist.htm.

The Gnat Glade chat mailing list is at glade-chat@act-europe.fr.

1.4 Why Ada and Linux?

Ada provides a number of important features for Linux programmers:

Fast Executables - the GNAT compiler produces executables using the same code generator as
gcc.

●

User Friendly - Ada is easy to learn and use, making it a popular choice for introductory
computer science courses. Its source code is much easier to read that C, C++ or Java.

●

Standardized - Ada compilers adhere to a strict standard making Ada programs reliable and
portable. Even Java hasn't been standardized.

●

Flexibility - Ada has many specialized design features that address issues usually ignored by other
languages, such as real-time applications, safety-critical software, and low-level hardware access.

●

Faster, Cheaper Development - As the previously mentioned Zeigler study shows, Ada programs
tend to have fewer errors that C++ programs. This means you can get your work done faster with
less time and money spent on debugging.

●

Scalability - Ada is designed for embedded systems and team projects, making it an ideal choice
for large projects. This same scalability, and the object oriented features of the language, make the

●

Big Online Book of Linux Ada Programming - 1 Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/1.html (3 of 5) [7/20/2001 11:28:29 AM]

source code prone to a longer lifespan.

Ample Libraries - The GNAT compiler comes with many general purpose libraries, and bindings
exist for most of the key Linux libraries.

●

Open Source Friendly - Ada's readability and scalability make it an ideal language for open
source development. Child packages, for example, make it easy to extend someone else's work
without affecting the original source code.

●

1.5 Linux Ada Resources

There are a variety of resouces on the Internet for Linux Ada development.

One important resource is the comp.lang.ada newsgroup, which is frequented by many Ada celebrities,
including Robert Dewar of Ada Core Technologies and Tucker Taft, the principle designer of Ada 95. If
you have questions about the inner workings of Ada 95, this is the place to go.

Ada Linux Team (ALT) is a group of programmers dedicated to Linux programming specifically using
Ada. This site is located at www.gnuada.org/alt.html . They provide the latest versions of software and
libraries for Linux, including bug fixes for Gnat, prepackaged and ready for installation.

The GNU Ada site, www.gnuada.org, is a site for all things related to Gnat, not only Linux Gnat
development.

The Ada Source Code Treasury at www.adapower.com provides examples of both Linux and Windows
Ada applications. Included are examples of sockets, MD5 encryption and packages to work with
Windows servers from a Linux computer.It also has a free, unsupported binding to Motif by
Itermetric/Avestar.

If you are looking for general algorithms and source code examples, PAL (the Public Ada Library), is a
large source code repository located at www.monmouth.edu/faculty/conn/webproj/ppt2/ . It includes
thousdands of source code examples, bindings, compilers and the official Ada 95 documentation.

The Ada Software Engineering Library has over 1 Gig of files. It's available at
http://unicoi.kennesaw.edu/ase/index.htm.

The Home for Brave Ada Programmers at www.adahome.com provides a lot of general reference
material and bindings.

The Ada Information Clearinghouse (AIC) at www.adaic.com contains statistics, studies and other
general information.

http://www.skinner.demon.co.uk/aidan/programming/libra has a tool called Libra (Library of Reusable
Ada Code) for many common data structures such as lists, queues, and Internet sockets such as HTTP
and POP3.

http://www.ainslie-software.com has a tool called AdaJNI (Java Native Interface) that lets you call java
methods from Ada 95.

 Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 1 Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/1.html (4 of 5) [7/20/2001 11:28:29 AM]

http://www.gnuada.org/alt.html
http://www.gnuada.org/
http://www.adapower.com/
http://www.monmouth.edu/faculty/conn/webproj/ppt2/
http://unicoi.kennesaw.edu/ase/index.htm
http://www.adahome.com/
http://www.adaic.com/

Big Online Book of Linux Ada Programming - 1 Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/1.html (5 of 5) [7/20/2001 11:28:29 AM]

2 Installating Gnat on Linux

 <--Last Chapter Table of Contents Next Chapter-->

Gnat is a part of the gcc project. The gcc command itself isn't a compiler: it's a program that determines the kind of
source file you have and runs the appropriate compiler for you. For example, the Ada compiler is called gnat1, and
the C compiler is called cc1. When gcc detects an Ada source file, it runs gnat1 to compile it.

Because gcc and Gnat must work as a team, specific versions of Gnat are created for specific versions of gcc. Gnat
3.10p is compiled against the gcc for kernel 2.0.29 (for example, the version of gcc used in the Slackware 3.2
distribution). Gnat 3.11p, 3.12p and 3.13p are compiled against gcc 2.8.1.

To find out which version of gcc you have, run gcc with the -v switch.

The standard Gnat distribution from ACT comes with its copy of the correct version of gcc and can install Gnat and its
gcc in a separate directory. The binary versions from ACT's web site have C++ support removed, so if you want gcc to
support C++ and Ada simultaneously, you'll have to recompile gcc and Gnat from their sources.

It is possible to install one version of gcc overtop of another and to select one version or the
other using the gcc -V switch, but gcc must again be recompiled from its (newest) sources to make it
aware of the other version.

There are patches available via the ALT web site for compiling gnat from the sources for the egcs compiler instead of
gcc. egcs (pronounced "eggs") is a variation of gcc designed specifically for Pentium computers. Egcs is based on gcc
2.8.0. Slackware 3.6, for example, used egcs. The egcs optimizations are being merged with gcc for the upcoming
release of gcc 3.0. ACT has announced plans to fold Gnat into the Gcc project for Gcc 3.1 and have moved some of
their discussions to the gcc mailing list.

2.1 Installing the ALT RPMs
The Ada Linux Team version of Gnat is available from their web site. Versions exist for the Red Hat, S.u.S.E. and
Debian distributions. They may also work on the Mandrake and Caldera distributions.

The ALT versions include support for ASIS, GLADE and native Linux threads. The package includes gnatgcc, a
version of gcc with Gnat and C++ support, and gnatgdb, a version of gdb that supports Ada source code, plus gnatprep
and the other Gnat utilities.

Big Online Book of Linux Ada Programming - 2 Installing Gnat on Linux

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/2.html (1 of 4) [7/20/2001 11:30:05 AM]

The rpm files are built for Red Hat and S.u.S.E. distributions. If you try installing it on
another distribution, use --nodep to ignore any package dependency warnings.

Download and read the readme file.1.

Download the gnat-3.xxp-runtime* rpm file (where xx is the current version of Gnat and * is the rest of the
filename). For older RPMs, this is gnat-3.xxp*.

2.

Download the gnat-3.xxp rpm file. For older RPMs, this is gnat-3.xxp-devel*.3.

rpm -i gnat-3.xxp-runtime*4.

rpm -i gnat-3.xxp*5.

Download and install any of the additional Gnat packages you need6.

The rpm files on the ALT site are configured to work with the ALT version of gnat. To install them, simply download
them and run rpm with the -i switch.

The ALT GNAT build system is available for those wanting to know more about how the RPMs are constructed. Using
CVS, you can check our the source code.

 export CVSROOT=":pserver:anoncvs@hornet.rus.uni-stuttgart.de:/var/cvs"
 cd $HOME
 cvs login # (use empty password)
 cvs -z9 co -d ALT gnuada/alt-build

2.2 Installing the ACT Binaries
The latest version of the Gnat compiler is available from the ACT FTP site. These binaries do not have the extra
features available with the ALT RPMs, but they include extra installation information, including how to install Gnat's
various add-ons. There are also versions for other operating systems besides Linux.

 Gnat 3.12 and older have an additional install option to overwrite you're existing copy of
gcc, provided it is right version. Since it is rare that a distribution has the exact same version of gcc, this
option is no longer provided.

ACT will sometimes release several versions of Gnat for different C libraries. When downloading the binaries, make
sure that you download the version compiled against the appropriate C library. This is due to the constantly evolving
nature of Linux.

To find out which libc library your distribution uses, examine the /lib/libc.so link to find out
which file it points to. For example, if /lib/libc.so points to a libc5 library, then you'll need the libc5
version.

Big Online Book of Linux Ada Programming - 2 Installing Gnat on Linux

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/2.html (2 of 4) [7/20/2001 11:30:05 AM]

The latest public version from ACT is 3.13p, which has been compiled for gcc 2.8.1.

By default, Gnat is installed in a /usr/gnat subdirectory.

If you don't have gcc 2.8.1, you can specify a separate directory where gnat will install itself and its own personal copy
of gcc 2.8.1. Using this method, you need to perform an additional step. The installation program (doconfig) creates a
shell script containing environment variables that you can copy to your shell startup script (under bash, this is usually
the .profile file in your home directory). Gcc uses these variables to locate the gnat files.

You will need to include the gnat directory in the front of your PATH variable to prevent gnat from using the gcc that
came with your Linux distribution. For example, use the shell command:

 export PATH="/usr/gnat/bin:$PATH"

Only use this command when you want to use Gnat since it effectively hides the copy of gcc that came with your
distribution.

If you don't want gnat to be enabled by default, you can write a short shell script that assigns the environment variables,
sets the path, and starts a new shell.

2.3 Compiling Gnat from its Sources
Occasionally you may want to compile Gnat yourself from its sources. For example,

you may want to learn more about computer language design●

you may want to enable support for other languages (e.g. C++)●

you may want to make libgnat a shared library●

you may want to upgrade gnat for the newest C libraries●

you may want to change the multithreading model●

In order to recompile Gnat, you'll need the following:

A copy of the gcc sources in order to build a copy of gcc that's compatible with Gnat. The required version is
listed in the Gnat documentation.

1.

A copy of the gnat sources. The sources are available for download from the gnat download site and its mirrors.2.

[I should compile gnat and make notes and flush out the details more--KB]

First, you need to recompile the gcc compiler. Make sure you follow gcc's instructions for activating Ada support.

make CFLAGS="-g -fsigned-char" LANGUAGES="c c++ ada"
make stage1
make CC="stage1/xgcc -Bstage1/" CC="-g -O2 -fsigned-char" STAGE_PREFIX="stage1/"
LANGUAGES="c c++ ada"
<build tools and lib with CC="./xgcc -B./">

There are two problems that can arise:

The standard C library may have changed.1.

The souce code for the gcc compiler itself may have changed.2.

Changes to the C library rare unless the library is several generations out of date. Even so, by consulting the man pages
you can usually find out the new parameters the various C functions expect.

Upgrading gcc to a new version of gcc, however, can be difficult. Gnat's gcc patches are designed for a specific version
of gcc. It is usually a good idea to get a copy of the source code for the version of gcc Gnat was designed for and

Big Online Book of Linux Ada Programming - 2 Installing Gnat on Linux

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/2.html (3 of 4) [7/20/2001 11:30:05 AM]

compile a second gcc compiler just for use with Gnat. For gnat 3.13, you'll need the gcc 2.8.1 source code. You should
be able to compile an older version of gcc to work with newer C libraries, provided the compiler is only a few months
out of date.

Now follow the directions to compile Gnat. Make sure libgnat.a is accessible to the linker. If it isn't, copy it to /usr/lib
and run ldconfig to update Linux's shared library tables.

[More here - KB]

2.4 Case Study: Installing Gnat 3.11 on over an old Linux
Distribution
We installed Gnat 3.11p on a Pentium running a Slackware distribution with egcs and lib6. We wanted to replace egcs
with gcc 2.8.1 and install the Gnat binaries (compiled for 2.8.1) over top.

We first went to the Sunsite mirror which provides Linux compiled binaries of gcc, ready to be unpacked and installed
Unfortunately, the readme file reported they had trouble compiling gcc and supplied egcs instead. egcs is based on gcc
2.8.0 which meant that we couldn't use it with gnat 3.11. Instead we downloaded the gcc 2.8.1 source code from a GNU
FTP mirror site and prepared to build the compiler from scratch.

We ran Gnat doconfig program and select option 1. The gcc path that it's expecting is displayed as
i686-pc-linux-gnu. This was going to be our configuration host setting for gcc.

1.

We followed the instructions in the gcc INSTALL file. configure --with-gnu-as --with-gnu-ld
--enable-threads=posix --host i686-pc-linux-gnu

2.

We checked the gcc makefile to make sure i686-pc-linux-gnu was reasonable. It required lib6 and lib6
was installed. The Makefile also showed that the i686 setting is compatible with our Pentium (i586).

3.

Before running make, we changed the Makefile's OLDCC variable from cc to /usr/bin/gcc. There was a
cpp syntax error while building libgcc1.a, probably the error the Slackware people encountered. We tracked
down the line causing the problem in the Makefile and discovered they were calling cc to do the compiling,
which doesn't handle the C preprocessor (cpp) properly. Typing in the line at the shell prompt showed that
/usr/bin/gcc worked fine while /usr/bin/cc would not. The note in the Makefile said we shouldn't use gcc to avoid
circular references in some of the functions (that is, that it might inadvertantly call the 2.8.1 compiler instead of
the old 2.7.2.3 compiler), so we made sure we included the full path.

4.

make LANGUAGES="c c++"5.

mkdir stage1; make stage1
make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O2 -fsigned-char"

6.

mkdir stage2; make stage2
make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O2 -fsigned-char"

7.

make compare reported no errors.8.

make install CC="stage2/xgcc" -Bstage2/" CFLAGS="-g -O2" LANGUAGES="c c++"9.

gcc -v and gcc -dumpversion reported the correct version. We deleted the old
/usr/lib/gcc-lib/i486-linux directory to save some space.

10.

We installed gnat by running doinstall11.

If we were doing C++ programming, we would need to install the standard C++ library, libstdc++, as well. In this case,
we enabled C++ support to avoid recompiling gcc for C++ in the future.

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 2 Installing Gnat on Linux

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/2.html (4 of 4) [7/20/2001 11:30:05 AM]

3 Introduction to the IDE's

 <--Last Chapter Table of Contents Next Chapter-->

There are two IDE's, or Integrated Development Environments, available for gnat and Linux. PegaSoft's TIA (Tiny IDE for
Ada) is a text-based IDE, while GRASP is an X-Windows IDE. Both have similar basic features.

On the other hand, if you are looking just for text editors with Ada syntax hilighting, many exist for Linux including elvis,
emacs/xemacs and nedit.

3.1 TIA: The Console IDE

TIA, Tiny IDE for Ada, is a console IDE for Gnat. Besides being my own program, it was written using Gnat runs using the
GPL texttools packages described later in this document. The screen layout is similar to pico's, with the menu options displayed
along the bottom of the screen. If you are running on the Linux console or a xterm window, you can choose the menu items
with alt key combinations or using your mouse.

This IDE is designed for rapid Ada development.To meet this goal, it uses a number of interesting features:

a ddd style debugger●

automatic saving - whenever you open a new source file, tia saves your old file●

quiet updates - each time a file is saved, TIA will attempt to recompile the file, to reduce the project rebuilding time.●

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (1 of 10) [7/20/2001 11:30:22 AM]

TIA will only update one file at a time to avoid slowing down your machine.

automatic spelling correction - When you press return/enter while editing your source file, TIA automatically corrects
common spelling mistakes for any of the following words or phrases: procedure, function, package, exception, subtype,
"end if;", "end loop;" , "end record;".

●

error hilighting - you can move between compiler errors with a single keypress, and the cursor is automatically
positioned at the exact location of the error and the message displayed at the bottom of the window.

●

quick open - you can open recently opened files with a single keypress●

tight integration with gnat - for example, you can load a package spec and create a body using gnatstub by simply
selecting Stub in the File menu.

●

support for keyboard macros●

If you are interested in an X Windows IDE, you should read the next section on GRASP.

3.1.1 Quick Start

Before you compile a program, you have to set up the project parameters under Proj. For simple, single file programs, put the
name of the program in the main line and select your CPU type. TIA will save this information when you quit in a ".adp" file
(Ada Project).

You can check the current file with Check. If there are errors, use Err to move to the place where an error occurred and the
error message will appear on the bottom of the screen. Repeatedly use Err to fix all errors. Note that as you edit the program,
such as adding or deleting lines, Err may not take you to the exact line because the lines have moved.

Build your project with Build and you're ready to run your program.

3.1.2 TIA Keyboard Legend:

These are the key functions in TIA. If you are running TIA under X Windows, the X window manager may use some of these
key combinations for its own purposes.

Control Keys

Control-6 - Mark/Unmark
Control-A - Execute macro (follow with the key for the macro)
Control-B - Copy (single line or to the mark)
Control-E - End
Control-L - Redraw screen
Control-N - Page Down
Control-P - Page Up
Control-T - Backtab, back one item on screen
Control-V - Paste
Control-X - Cut (single line or to the mark)
Control-Y - Home

Navigating The TIA Screen

End - last line of text
Home - first line of text
Page Up - Up One Page
Page Down - Down One Page
Esc/F1 - TextTools' Accessories Menu
Tab - Next Item On Screen
Backtab - Previous Item On Screen (note: Linux console doesn't support the back tab key--use control-t)
Alt-Char - Jump to the item with hot key Char (Linux Console/xterm)

Scroll Bars Keys

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (2 of 10) [7/20/2001 11:30:22 AM]

Down Arrow - 10% Forward in Document End - Bottom of Document
Home - Top of Document
Left Arrow - Back one line
Right Arrow- Forward one line
Up Arrow - 10% Back in Document

In TIA, the width of the text is limited to size of the edit area. Any lines that are longer that the edit area are denoted with an
ellipsis at the end. The edit area does not scroll left or right as it does in pico.

3.1.3 The File Menu

New Source

Start a new source file.

Open Source

Open a new source code window, or an existing one. Type in the name of the source file and choose open to open it. (.adb is
assumed if you don't specify an ending.) Choose browse to walk through the directories using a open dialog box. Or you can
chose one of the recently opened files that appear at the bottom. On the Linux console, use alt-# to open these files. Chose new
and TIA will create an empty package body for you to fill in--just delete what you don't want.

Save

Saves the file. TIA automatically saves whenever you check or build.

Save As

Save As. Save the file under a different name.

Revert

Reloads the current file, discarding any changes that haven't been saved by you or TIA. (TIA automatically saves a file when a
new one is loaded.)

Diff

Displays the differences between the current file and when it was last saved using the diff command.

Print

Pipes the file, with a header, to the lpr command, printing it on the default line printer.

Stats

Display information about the current file and memory usage.

Stub

Creates an empty package body for the current file. The current file must be a package spec.

Check

Checks the current file for syntax errors.

Xref

Displays a crossreference of all identifiers in the current file.

Quit

Stops the program.

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (3 of 10) [7/20/2001 11:30:22 AM]

3.1.4 The Edit Menu

Cut

Deletes the selected text and puts it in the clipboard. Same as ctrl-x.

Copy

Copies the selected text to the clipboard without deleting it. Same as ctrl-b.

Paste

Inserts the text on the clipboard. Same as ctrl-v.

Append

Moves the cursor to the right end of the current line. This is useful for adding comments at the ends of lines.

3.1.5 The Find Menu

Find/Replace

Find brings up the find dialog to search for text. Fill in the top line and select find to find the next occurrence of the text in your
document. Select backwards to search towards the top of the document instead of towards the bottom. Fill in the replace line
and select replace to replace the text you are searching for with new text. Select cancel to erase the find text.

Next

Next finds (or finds and replaces) the next occurrence of the text in the source code.

If the text is not found, TIA beeps.

Next Err

Moves the cursor to the location of the next error and displays the error message at the bottom of the screen.

Goto

Moves the cursor to a specific line.

3.1.6 The Misc Menu

Edit Macros

Brings up the macro edit screen. Macros are keyboard short cuts you define. Each macro must fit on a line.The first character
on the line is the trigger, and the remaining characters are the keyboard keys the trigger represents. For example, a line
"pprocedure" defines a macro "p" that represents the keystrokes "p","r","o","c","e","d","u","r" and "e".

To use a macro in TIA, press control-A and then the letter of the macro.

Options

Opens the options window. The first option is to allow background updates. Turn this option off on slow machines. The second
option sets the background colour to blue or black on colour displays.

Debugger

Runs TIA's ddd-style debugger.

[Expand--KB]

GDB

This item runs the gdb debugger.

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (4 of 10) [7/20/2001 11:30:22 AM]

3.1.7 The Project Menu

Project Params

The project parameters window. Choose the debugging level, CPU type and optimization level and TIA will pass the
information to gnat accordingly. You can specify additional gnatmake options (like -n for no main program in Ada when you
want to call Ada subprograms from another language), linking options (such as Linux libraries you need to link to), and the
name of the main program. Static binding turns static binding on and off.

CPU Options: 486, Pentium, Pentium II, Other

Optimize Options: None, Basic, Size, Speed

Debugging Options:

Prelease (assert/debug pragma's on, basic and elaboration checks on)●

Alpha/Beta (assert/debug pragma's on, basic checks on, no elaboration checks)●

Release (assert/debug pragma's off, all non-essential checks off)●

Project Type:

Program (compile and link project as an executable program●

Package (compile, but don't link project since there's no main program)●

Static Library ((unfinished) compile and generate a static library file named lib<project>.a)●

Shared Library ((unfinished) compile and link a shared library file named lib<project>.so.a)●

Builder:

Specify the name of the program to build the project with, usually gnatmake:

Gnatmake (Gnat's project builder)●

Make (Linux's standard project builder)●

Cook (an enhanced project builder based on make).●

Static Linking: select this to link in all the libraries used into a self-contained executable

Egcs: select this to run egcs instead of gcc [untested]

ALT: select this to compile on a system using the ALT version of gnat

Build

TIA attempts to build the project and create a working executable file.

People

To be finished

3.1.8 The ? Menu

This is the About window. It shows information about the current version of TIA, including the version and copyright notice.

3.2 GRASP: The X Windows IDE

GRASP is a free X-Windows IDE that supports Ada 95. It's based on Motif and provides similar basic features to TIA. The
main difference is that GRASP is a multi-language IDE and that it supports source code analysis, annotating your source code
with Control Structure Diagrams (CSD's) and showing code complexity with graphs called CGP's.

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (5 of 10) [7/20/2001 11:30:22 AM]

Besides Ada 95, GRASP supports C, C++, Java and VHML source files. It supports operating systems other than Linux and
can also work with Ada compilers other than gnat.

GRASP is available for download from that GRASP home page at http://www.eng.auburn.edu/grasp.

3.2.1 Installation

Download a version of GRASP from the GRASP web site. GRASP uses the Motif widget library. The static version has
a copy of Motif included with it: download this version of you don't have a Motif compatible library (such as LessTif).

If you have a Motif compatible library, download the dynamic version to save disk space. If you are using LessTif, make
sure that the libXm and related files are properly linked in /lib and run ldconfig to ensure Linux sees the changes.

1.

Move the tar archive to the location you want to install GRASP in. For example, "/usr/local" would be a good choice.2.

Unpack the grasp archive with "tar xfvz".3.

GRASP requires an environment variable called "GRASP_HOME" to be set so GRASP knows where it was installed.
To define GRASP_HOME every time for any user, add the following line to the end of your /etc/profile file:

export GRASP_HOME=graspdir/graspada
export PATH="$PATH:$GRASP_HOME/bin"

where graspdir is the directory where you installed grasp (eg./usr/local").

4.

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (6 of 10) [7/20/2001 11:30:22 AM]

http://developer.java.sun.com/developer/infodocs/index.shtml

Login in again to make the changes take effect and type "grasp&" to start GRASP.

GRASP provides online help. Extensive documentation is provided in HTML format, but it's not lynx browser friendly. You'll
have to use a GUI browser like Netscape.

3.2.2 Quick Start

Open a new source window using "File / Ada 95...".1.

Type in your program.2.

Save the source file as "test1.adb".3.

Add "test1.adb" to your project by chosing "File / Add to Project"4.

If you are using ALT gnat, change the compiler configuration under "Compiler / Command Setup":5.

Select Compiler / Command Setup. You'll see the list of commands Grasp uses to invoke gnat.1.

Change the Compile and Check commands from "gcc" to "gnatgcc", the name used by ALT.2.

6.

Compile the program by chosing "Compiler / Compile and Link". If there were no errors, the message window will
appear with the message "Grasp: operation completed" and no error messages above it.

7.

3.2.3 The Project Window

The first window that appears is the GRASP project window. It contains the word "GRASP", but as you add source files to
your project, they will be added to this window.

The File Menu

Ada 95 et al. - opens a new source file window. Choose a language: Ada 95, C, C++, Java or VHDL.

Save all files - saves all open files.

Exit GRASP - quits GRASP, closes all open windows.

The Project Menu

New - start a new project

Open - open an exisiting project

Close - close current project

Save - save current project

Create / Save as - save current project under a new name, creating a new project.

Open Selected File- opens hilighted source file in the project window

Remove Selected Files - deletes these files from the project window

Add Files to Project - add source files to the project window

The Search Menu - search for files to add to the project

The Preferences Menu

Colour/Font - change the appearance of the source code window

Tab Size - change the number of spaces to indent when the tab key is pressed

Generate .gml files - NQS--KB

The Window Menu

Message Window - opens the GRASP error message window.

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (7 of 10) [7/20/2001 11:30:22 AM]

Search Window - opens the file searching window

3.2.4 Source File Window

This is the window where you type up your Ada programs and packages.

The File Menu

Clear - erase the entire source file

Open - open a new source file

Save - save the source file

Save as - save the source file under a new name

Print - prints the source file to a postscript printer, or to a file to be printed with ghostscript

Language - change the source file language. This doesn't translate the file to a new language, but tells GRASP how the file
should be hilighted.

Exit- closes the source file window

The Edit Menu

Undo - undoes last edit change

Cut, Copy, Paste - standard cut, copy and pasting text

Paste Primary - NQS--KB

Search / Replace - standard search /replace

Comment - turns hilighted text into a comment

Uncomment - removes comment marks from hilighted text

Convert Keywords to Upper/Lowercase - changes the case of all keywords in the document.

Goto Line - goto a particular line

Insert File - insert a source file into this one.

The View Menu

Show Unit Symbols - toggles module symbols in CSD diagram

Show Data Symbols - toggles data symbols in CSD diagram

Show Boxes - toggles boxes around multiline statements in CSD diagram

Intrastatement Align - If on, for statements longer than one line, the second line and onward will be indented to the position of
the first open paranthesis.

Force Newlines - If on, divides up statements so they will be on separate lines.

Auto Line Numbers - toggles line number display in CSD diagram

Auto Indent - toggles indentation in CSD diagram

Line Numbers - adds line number to CSD diagram corresponding to lines in source code

Generate CSD - creates a Control Structure Diagram for source code

Remove CSD - removes CSD diagram from source code

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (8 of 10) [7/20/2001 11:30:22 AM]

Show Controls - toggles button bar at top of edit area

Show message Bar - toggles message bar at bottom of window

The Templates Menu - insert source code for typical Ada multiline statements. The source code must be edited to fit the
current program.

The Window Menu - opens various grasp windows

The Compiler Menu

Make - builds the project using the make command defined in command setup (typically make)

Compile and Link - builds the project using gnatmake

Compile - compiles the source file without building the project

Semantic Check - checks the source code for errors

Flag Setup - configures the switches for compiling, linking, etc.

Command Setup - configures the commands to compile, link, etc.

The Run Menu

Run - runs the program using popen

Run Previous - runs the last file that was run

Run File - runs a particular file

Cleanup Session - kills any hung processes.Doesn't affect daemons.

The CPG Menu

Generate CPG - create a Compilexity Profile Graph

Weights - configure the CPG weights

3.2.5 The Button Bar

Auto - automatically rebuild the CSD whenever a major change occurs, such as inserting a template or loading a new file.

Generate CSD - same as choosing View/ Generate CSD

Font Size - changes the font size

3.3 Other Tools and IDEs

3.3.1 VAD-Visual Ada Developer

VAD is an Ada code generator written in the TCL/TK graphics scripting language. Besides gnat, there are about 10 additional
packages you must install before VAD will run. You type in a TCL/TK description of a VAD widget in a text file and VAD
will produce all the necessary source code to use the widget. Most graphics formats are supported. VAD is available from
http://ada95.freeservers.com/index.html.

3.3.2 Jessie

Jessie is an X Windows IDE for building large projects and designing multiple executables at once. It's an open source project
of Silicon Graphics (http://www.sgi.com) and works with multiple languages. ACT has announced that Gnat will provide Jessie
support in the future. Jessie is downloadable from http://oss.sgi.com.

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (9 of 10) [7/20/2001 11:30:22 AM]

3.3.3 Rapid

RAPID is an X Windows GUI Builder that works with TASH (the Ada TCL/TK package). You can draw TCL/TK windows
containing Labels, Text Buttons, Radio Buttons, Check Boxes, and other widgets. When you select "Compile", RAPID saves
the Ada source code necessary to display using TASH the window you drew. RAPID is available from ALT.

3.3.4 VIDE

VIDE is a C/C++/Java IDE, but it will work with Gnat if configured correctly. However, it doesn't support Ada keyword
hilighting.

3.3.5 GLIDE

3.3.6

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (10 of 10) [7/20/2001 11:30:22 AM]

4 From Source Code to Executable

 <--Last Chapter Table of Contents Next Chapter-->

This section is an overview of creating new programs on Linux.

4.1 Gnat Filename Conventions

Unlike Microsoft Windows, Linux filenames do not require a suffix to indicate the filetype.
Nevertheless, Linux files often have suffixes to make it easier to identify the type of files by their names.
gnat makes extensive use of suffixes. Here are some filename conventions:

.ads - Ada package specification●

.adb - Ada package body or program●

.adc - Gnat configuration file (for dead code elimination)●

.adt - Gnat tree file (for dead code elimination)●

.adj - Defaults for [NQS-KB]●

.adp - TIA project file or Gnat gnatxref/gnatfind project file●

.cfg - GLADE distributed program configuration file●

.ali - debugging and linking information produced by gnat●

.xrb - cross-reference file generated by gnatf●

GRASP_defaults... - GRASP defaults file, holds your preferences●

.gpj - a grasp project file●

.gui - a VAD TCL/TK widget description●

For example, demo.adb would be an Ada program named demo.

You can change the colour used by ls to display these filenames by changing the
/etc/DIR_COLORS file. Directions on how to do this are included in the file.

4.2 Writing Your First Ada Program

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (1 of 8) [7/20/2001 11:31:15 AM]

4.2.1 Writing a program with an IDE:

Start a new project. For example, with TIA type

tia hello

to create a new project called "hello.adp". Type in the following Ada program.

with text_io;
use text_io;
procedure hello is
begin
 put_line("Hello World!");
end hello;

This Ada program will print a short message on the screen. Save the file and build the project.

If there is a problem with your program, TIA will show you the line number, the position on the line, and
an error message describing the problem. If you typed in the program correctly, you should now have an
executable file called hello in your directory. TIA will ask you if you want to run your program.

Your program should display the message

Hello World!

before TIA's window reappears.

4.2.2 Writing a Program without an IDE

With a standard UNIX editor such as pico or vi, create the following file called "hello.adb". For example,

 pico hello.adb

Type in the following Ada program.

with text_io;
use text_io;
procedure hello is
begin
 put_line("Hello World!");
end hello;

This Ada program will print a short message on the screen. When the file is saved, the gnatmake
command to build the project:

 gnatmake hello.adb

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (2 of 8) [7/20/2001 11:31:15 AM]

If there is a problem with your program, gnatmake will show you the line number, the position on the
line, and an error message describing the problem. If you typed in the program correctly, you should now
have an executable file called hello. Run the file by typing

 hello

(or ./hello on some distributions) and Linux will respond by displaying the message

 Hello World!

4.2.3 After Building

After building your project, there should be several files in your directory:

hello.adb - this is the Ada program you typed in. The is called a source file.●

hello.o - this is the binary code created by the compiler. This is called an object file.●

hello.ali - this is additional information about the program created by gnat.●

hello - this is the executable program●

If you want to clean up your directory, the hello.o and hello.ali are information files and can be safely
erased. However, on large project with multiple files, leaving them will speed up the building process.

4.3 The Three Step Process

When you build a project using gnatmake, or when you use an IDE to run gnatmake for you, gnatmake
performs three operations:

Compiling: gnatmake checks your file for errors. If there are no errors, it creates an object file
containing the binary version of your program. If there are any errors in your file, gnatmake stops.

1.

Binding: gnatmake verifies that all the files in the project are up to date. If there are files that need
to be compiled, gnatmake will compile them as well.

2.

Linking: gnatmake combines all the object files to create an executable program.3.

On simple projects, these steps can all be done automatically. However, on some projects with particular
requirements, you may need to take special actions during one of these steps. You can perform these
separate steps yourself. For example, using the hello.adb program:

Compile the program with: gcc -c hello.adb1.

Bind the program with: gnatbind hello.ali2.

Link the program with: gnatlink hello.ali3.

Once again, you have an executable program called "hello".

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (3 of 8) [7/20/2001 11:31:15 AM]

4.4 Gnat Compiling Options

The version of gcc for gnat has all of the normally document gcc switches, plus some new switches for
gnat. You can run gcc by itself, or have gnatmake run gcc for you. Unless otherwise noted, these
switches can be applied to both gcc and gnatmake.

-b - For crosscompiling, compile for a target machine●

-Bdir Multiple gnats, load the gnat compiler from directory dir instead of the default one●

-c - gcc only, tells gcc to compile only and not to try to link with the C linker●

-g - create an executable that can be used with the gdb debugger●

-Idir - Beside the directory with the first file, check directory dir for more source files●

-I- - Do not look for source files in the directory where the first file resides●

-On -On Optimize, from 0 (none) to 3 (maximum, automatic internal inlining). See below.●

-s - gcc only, create an assembly language source file instead of an object file●

-Wuninitialized - warnings on uninitialized variables●

-v - show what steps the gcc compiler is performing●

-gnata - turn on debugging pragmas. See below.●

-gnatb - keep messages brief●

-gnatc - check the program, but don't compile it●

-gnatdx - activate ACT internal debugging switch 'x', where x is a character●

-gnatD - with -gnatG, save debugging info to files ending in .dx●

-gnate - display error message immediately instead of waiting until end of compile●

-gnatE - turn on dynamic elaboration checks●

-gnatf - give more information about errors●

-gnatg - turn on gnat style checks●

-gnatG - show pseudo-code of how Gnat interprets your source code●

-gnatic - use character set c●

-gnatkn- constrain file names to n characters●

-gnatl - include source code with error messages●

-gnatL - C++ exception handling (setjmp/longjmp)●

-gnatmn - show no more than n errors●

-gnatn - allow inline subprograms across source code in different files●

-gnatN - inline as much as possible, even subprograms not marked for inlining●

-gnato - turn on checks normally turned off (such as numeric overflow checking)●

-gnatp - turn all checks off●

-gnatq - don't quit because of errors--compile entire source file●

-gnatr - check for reference manual source code layout●

-gnatR - listing with alignment info●

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (4 of 8) [7/20/2001 11:31:15 AM]

-gnats - synatx check only●

-gnatt - create tree output file●

-gnatu - list units being compiled●

-gnatwm - warning mode(s) m. These include

-gnatwa - show all optional warnings❍

-gnatwA - show no optional warnings❍

-gnatwc - warnings for always true/false expressions in statements❍

-gnatwe - treat warnings as errors❍

-gnatws - suppress warnings❍

-gnatwl - warnings on elaboration errors❍

-gnatwu - warnings on unused variables, uninitialized parameters, unused packages❍

-gnatyk - check indentifier case❍

●

-gnatx - suppress cross-reference information●

-gnaty - Impose line length limit, etc. [? - KB]●

-gnatzm - generate distribution stubs for m●

-gnatZ - zero-cost exceptions (default)●

-gnat83 - enforce old Ada 83 conventions●

-gnat95 - enforce Ada 95 conventions (default)●

-mno-486 - create an executable that can run on a Intel 386 or newer●

-m486 - create an executable that can run on a Intel 486 or newer●

-mcpu=model - compile an executable for the given cpu model●

-fstack-check - check for stack overflows●

The -gnat switches can be combined together, such as -gnatbcs for -gnatb, -gnatc, and -gnats.

Many of the GCC switches listed in 4.5 can be used as well.

4.4.1 Run-time Error Checking

Ada has extensive checking for run-time errors. By default, gnat turns off some of these checks to
improve the speed of the programs. To turn on all error checking, you need to use -gnato -gnatE
switches. To turn off all error checking, you need to use -gnatp.

IDE: TIA sets these switches for you based on your choices in the project parameters window.

4.4.2 Checking without Compiling

In gnat 3.10, if you want to check a source file without actually compiling it, use the gnatf utility. In gnat
3.11 or later, you can use gcc with the -gnatc option to check a source file.

IDE: TIA uses -gnatc when you chose File/Check.

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (5 of 8) [7/20/2001 11:31:15 AM]

4.4.2 When you have Too Many Errors

When you have so many compiling errors that they run off the top of the screen, you can redirect the
errors to a file and list them with the less command by adding the following to the end of your compiling
command: "2> temp.out; less temp.out".

4.5 Gnat Binding Options

gnatbind checks the integrity of a project before the linking phase. You can run gnatbind by itself, or
have gnatmake run it for you.

-A - (default) generate binder program in Ada. See -C, -x.●

-aIdir - besides the directory of the file, search for source files in directory dir●

-aOdir - besides the directory of the file, search for .ali files in directory dir●

-b - brief messages●

-C - generate binder program (in C, not Ada). See -A, -x.●

-c - check only●

-e - list elaboration dependancies●

-E - exception stack traceback (when compiling with -funwind-tables)●

-f - use full reference manual semantics in an attempt to find a legal elaboration order●

-h - help●

-Idir -combination of -aI and -aO●

-I- - don't look for source and .ali files in regular places●

-l - list the chosen elaboration order●

-mn - show no more than m binding errors●

-Mn - main program to be called n, not the default name●

-n - no main program, for when the main program is written in another language●

-nostdinc - (no standard includes) ignore default directory when looking for sources●

-nostdlib - (no standard libraries) ignore default directory when looking for libraries●

-o file - output to a file name file●

-O - list objects●

-p - pessimistic - try worst case elaboration order●

-r - renames the main program from main to gnat_main●

-s - require all source files to be present●

-shared - link in Gnat run-time library as a shared library (if available--for example, ALT version)●

-static - link in Gnat run-time library statically●

-t - ignore time stamp errors●

-Tn - tasking time slices are n milliseconds long. n=0 means no time slicing, as per Annex D.●

-we - treat warnings as errors●

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (6 of 8) [7/20/2001 11:31:15 AM]

-ws - suppress all binder warnings●

-v - verbose messages●

-x - check only, ignore source files. Don't generate a binder program. See -s.●

-z - same as -n [?-KB]●

4.6 Gnat Linking Options

gnatlink combines object files together to form a finished executable program. You can run it by itself,
or gnatmake can run it for you.

-o file - name of executable file to create●

-v - verbose messages●

-gnatlink n instead of gcc, use linker named n●

-l lib in the specified library●

When linking in libraries, the order of the libraries is important. When libraries depend on
each other, libraries must be listed before the libraries that they use.

4.7 Gnatmake Options

To compile any Ada program, use the gnatmake command. gnatmake checks all the packages a program
relies upon and automatically compiles any packages that need compiling. For example,

gnatmake main.adb

will compile the file main.adb, automatically compiling all Ada files referenced by main.adb, if
necessary. This is unlike other building tools like make and cook because the dependancy of source files
is listed in every Ada file by the with statement. make and cook are designed to work with C which has
no equivalent statement and requires the programmer to list the dependencies in a separate file.

When gnatmake is finished compiling, it will automatically bind and link the program, producing an
executable file called main.

There are times when you want gnatmake to compile the project, but not to bind or link it. You can tell
gnatmake not to link by using the -n option:

gnatmake -n main.adb

Here is a summary of the gnatmake switches:

-a - consider all files, even read-only source files and standard system files like ada.text_io●

-c - compile only●

-f - recompile entire project●

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (7 of 8) [7/20/2001 11:31:15 AM]

-jn - on multiprocessor machiens, compile using n processes at once●

-k - ignore errors, and compile as much as possible●

-M - create a list of dependences suitable for make's Makefile●

-i - instead of the current directory, keep intermediate files in directories where their sources are
found

●

-m - update dependancies without compiling●

-n - check dependencies, but don't do anything●

-o name - save the executable as name●

-q - quiet - no status messages●

-s - switch change - recompile if the switches have changed●

-v - verbose - explain why files are compiled●

-aIdir - besides the directory of the first file, search directory dir for source files●

-aOdir - besides the directory of the first file, search directory dir for object and .ali files●

-Adir - same as -aIdir and -aLdir●

-Idir - same as -aodir -aIdir●

-I- - don't look for source files in the directory of the first file●

-Ldir - besides directory of the first file, look for libraries in directory dir●

-cargs s - pass switches s to compiler●

-bargs s - pass switches s to binder●

-largs s - span>pass switches s to linker (e.g. -largs somefile.o to link in the somefile object file)●

4.7.1 So you changed the comments...

Use gnatmake with the -m option, which updates gnat's files without producing a new object code file.
Use this to avoid pointless recompilations when all you changed were the comments in a source file.

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (8 of 8) [7/20/2001 11:31:15 AM]

5 Building Large Projects

 <--Last Chapter Table of Contents Next Chapter-->

5.1 Make: The Traditional Project Builder

IDE: TIA supports make. To use make, select it in the project parameters window.

Gnatmake is the best tool for building small projects. However, if you have a lot of C functions, you may
want to use Linux's traditional project building command, make.

The make command interprets a series of rules saved in a file called "Makefile". These rules describe
which files are dependent on which other files. Each rule is followed by the command needed to update
the files, such as the command to compile them.

For example, if you had a Ada program called dbase and it relied on the source files common.adb,
scanner.adb and parser.adb, a Makefile might include the rule:

dbase: common.o scanner.o parser.o

 gnatlink —o dbase

This rule says that the dbase executable file depends on the object files for the 3 Ada source files, and to
update dbase make has to link the object files with the gnatlink command.

If you are writing an Ada program with C source files, the basic strategy for using make with gnat is to
make rules than ensure the C files are compiled properly, and then to finish the project using Gnatmake.

Makefiles can have comments and variables and rules that refer to parameters to the make command as
opposed to files. The many options can't be covered here.

5.1.1 A Simple Ada Makefile

The following Makefile will compile an Ada program called main.adb, plus any packages used by main.
This should work for most small projects. Edit the OBJS variable to include the object files for every
package used by your program.

To use this make file, type "make" to build your Ada project, or "make clean" to remove any
intermediate files produced by the compiler.

The ALT version of Gnat uses uses the name gnatgcc, not gcc, for the GCC compiler.

Big Online Book of Linux Ada Programming - 5 Building Large Projects

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (1 of 6) [7/20/2001 11:31:40 AM]

Sample Ada makefile

#

Assumes main program is named main.adb

#

by Ken O. Burtch

OBJS = main.o somepackage.o

How to compile Ada files

.adb.o:

 gcc -c $<

.SUFFIXES: .adb .o

How to link the main program

main: $(OBJS)

 gnatbind -xf main.ali; gnatlink main.ali

clean:

 rm *.o *.ali core

5.2 Cook: A Parallel Make

IDE: TIA supports cook. To use cook, select it in the project parameters window.

cook is a program for building projects. Unlike make, cook has additional features such as the ability to
define true variables and functions, and the ability to build a project using multiple machines in parallel.
This can be a useful tool for large Ada projects.

cook also comes with a tool to convert Makefiles to cook Howto.cook files.

If you need to install cook, there are four basic steps are:

configure # run GNU configure●

make # build cook●

make sure # verify cook by running tests●

make install # install cook on your computer●

When you type "cook", cook looks for a file called Howto.cook. This file, called a "cookbook", contains
rules, or "recipes", for building a project.

Each rule has three parts:

targets - the files built with this rule (e.g. the object file names)●

Big Online Book of Linux Ada Programming - 5 Building Large Projects

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (2 of 6) [7/20/2001 11:31:40 AM]

ingredients - the files need to do the building (e.g. source code fields)●

body - the commands to do the work. these can include other rules.●

Here is an example Howto.cook file with one rule:

main: main.adb

{

 gnatmake main.adb;

}

The target is "main". To create main, cook must examine main.adb. If main.adb is newer than main, cook
creates a new main by running the Gnatmake command.

Cook comes with some predefined rules for compiling certain kinds of files. These predefined cookbooks
can be attached to your Howto.cook file by using "#include". For example,

#include "c"

includes basic rules describing the relationships of C files to each other.

5.2.1 Cooking in Parallel

Cook can use the rsh command to build several parts of a program at once, either on a computer with
multiple CPU's or over a network. If rsh hasn't been configured, you'll need to do this before you can run
cook. For example, all the computers should have the source directory mounted via NFS under the same
mount directory. Also, the clocks on all the computers should be set identically or cook may be confused
by the age of the files.

To cook in parallel, run cook with the -par switch. This option indicates the number of computers cook
can use, the default being 4. You can indicate fewer computers. For example, -par=2 will run cook using
2 computers.

To indicate which machines to use, assign the hosts to the parallel_hosts variable.

parallel_hosts = first_computer second_computer third_computer

Simple Howto.cook files will compile in parallel without any modification.

5.2.2 A Simple Ada Cookbook

The following Howto.cook file will compile an Ada program called main.adb, plus any packages used by
main. This should work for most small projects. Edit the OBJS variable to include all the object files
from the packages you are using.

To use this make file, type "cook" to build your Ada project, or "cook clean" to remove any intermediate
files produced by the compiler.

Big Online Book of Linux Ada Programming - 5 Building Large Projects

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (3 of 6) [7/20/2001 11:31:40 AM]

The ALT version of Gnat uses uses the name gnatgcc, not gcc, for the GCC compiler.

/* -- */

/* This is a simple Ada Howto.cook cookbook */

/* */

/* it assumes the main program is named */

/* main.adb */

/* */

/* by Ken O. Burtch */

/* -- */

OBJS = main.o somepackage.o;

/* How to compile individual Ada files */

%.o: %.adb {

 gcc -c %.adb;

}

/* How to compile individual C files */

/* (Just in case we want to mix C and Ada) */

%.o: %.c {

 gcc -c %.c;

}

/* How to bind and link the main program */

main: [OBJS] {

 gnatbind -xf main.ali;

 gnatlink main.ali;

}

/* How to clean up intermediate files */

clean: {

 rm *.o *.ali core;

}

There are many other features in cook not covered here. More information about cook can be found in
the Cook User Manual and the Cook Reference Manual.

Big Online Book of Linux Ada Programming - 5 Building Large Projects

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (4 of 6) [7/20/2001 11:31:40 AM]

5.3 Automake and Autoconf: UNIX Portability

If you want to create projects that run on a variety of UNIX platforms, not just Linux, you'll want to look
at GNU autoconf and automake. The GNU tools use these programs extensively.

Included with Linux, autoconf creates a shell script called "configure". Customized for your project,
when this script is executed, it scans the features of the particular UNIX that it is running on and tailors
all Makefiles accordingly. It optionally produces a C file called "config.h" which contains information
about the features it found.

automake, the other half of autoconf, creates a Makefile.in using templates called "Makefile.am". Once
automake is finished, all you have to do is run "configure" to make your final makefile and type "make"
to build the project on any version of UNIX.

It is possible to use autoconf and automake on Ada Makefiles, but this topic is beyond the scope of this
book. More information on automake and autoconf can be found using "info autoconf" and "info
automake".

The following is an example of what happens when you run an autoconf configure script, as run for the
FreeAmp program.

checking host system type... i686-pc-linux

checking for a BSD compatible install... (cached) /usr/bin/install -c

checking whether build environment is sane... yes

checking whether make sets ${MAKE}... (cached) yes

checking for working aclocal... found

checking for working autoconf... found

checking for working automake... found

checking for working autoheader... found

checking for working makeinfo... found

checking whether make sets ${MAKE}... yes

checking for gcc... gcc

checking whether the C compiler (gcc) works... yes

checking whether the C compiler (gcc) is a cross-compiler... no

checking whether we are using GNU C... yes

checking whether gcc accepts -g... yes

checking for c++... c++

checking whether the C++ compiler (c++) works... yes

checking whether the C++ compiler (c++) is a cross-compiler... no

checking whether we are using GNU C++... yes

checking whether c++ accepts -g... yes

Big Online Book of Linux Ada Programming - 5 Building Large Projects

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (5 of 6) [7/20/2001 11:31:40 AM]

checking for POSIXized ISC... no

checking for ranlib... ranlib

...

checking for libc5... no

checking for dlopen in -ldl... yes

checking for MIT PThreads... no

checking for Base LinuxThreads... yes

checking for LinuxThreads w/ErrorCheck Mutex... yes

checking for sys/asoundlib.h... no

creating ./config.status

creating Makefile

...

creating config/config.h

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 5 Building Large Projects

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (6 of 6) [7/20/2001 11:31:40 AM]

6 Development Utilities

 <--Last Chapter Table of Contents Next Chapter-->

6.1 Saving Time with Gnatstub

Starting with gnat 3.11p, gnat provides a prototyping tool called Gnatstub.Gnatstub takes an Ada package
specification and creates a corresponding body, ready to have the details outlined in the spec filled in. These
empty subprograms are sometimes called "stubs".
 This is especially useful on a large project where programmers write a series of package specs to test their
design. Once the package design is set, Gnatstub can create a basic body and save the programmers the work
of copying and modifying the specification by hand.

IDE: TIA will run gnatstub on the current file using Stub in the File menu.

For example, suppose you have the following package specification in a file called tiny.ads:

package tiny is

 procedure simple_procedure;
 function simple_function return boolean;

end tiny;

You can create a stub body for this package using

 gnatstub tiny.ads

Gnatstub produces the following tiny.adb file:

package body tiny is

-- simple_function --

function simple_function return boolean is
begin
 return simple_function;
end simple_function;

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (1 of 14) [7/20/2001 11:31:53 AM]

-- simple_procedure --

procedure simple_procedure is
begin
 null;
end simple_procedure;

end tiny;

This package body is in proper Ada format, ready to be compiled. Of course, it doesn't actually do anything
useful. It's up to the programmer fill in the implementation details.

6.2 Cross-referencing with Gnatxref

Gnatxref (or gnatf in gnat 3.10) is a utility that produces an index of every occurrence of an identifier in a
program, including all identifiers used by packages that the program depends upon.

The -v option produces a listing in the format for a vi editor tags file.

IDE: TIA will run gnatxref on the current file by chosing Xref in the File menu.

For our hello.adb program, Gnatxref produces the following:

 Text_IO U a-textio.ads:51:13 {} {hello.adb:1:10 4:7 }
 Put_Line U a-textio.ads:260:14 {} {hello.adb:4:15 }
 Ada U ada.ads:18:9 {} {hello.adb:1:6 4:3 }
 hello U hello.adb:2:11 {} {}

Each line begins with the identifier being indexed. The "U" means [not sure-KB]. The next segment is the
file that defines the identifier, and the position in the file. The {} means [not sure-KB]. The final bracketed
section lists all occurrences of the identifier in the program.

In this example, identifier text_io appears in the first line (the with) and the fourth line (the put_line).

6.3 Eliminating Dead Code with Gnatelim

gnatelim is a utility that searches for unused parts of your program in the object files and removes them from
the final executable. It works by creating a list of subprograms that the compiler shouldn't compile. If you
save this list as gnat.adc, gnatmake will automatically read this file and will skip these subprograms when
compiling.

To use gnatelim, you need to generate tree files using the -gnatt switch. The Gnat manual recommends these
steps when using gnatelim (assuming that your main program is main.adb):

gnatmake -c main1.

gnatbind main2.

gnatmake -f -c -gnatc -gnatt main3.

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (2 of 14) [7/20/2001 11:31:53 AM]

gnatelim main > gnat.adc4.

gnatmake -f main5.

These commands will generate a complete set of tree files for your project, strip out all unused subprograms,
and will then recompile the project as a finished executable.

gnatelim is is based on ASIS.

[gnatelim doesn't work under gnat 3.11.--KB]

6.4 Execution Stack & Memory Leak Detection

Gnat 3.11 does not display the execution stack in the event of of an exception. Gnat 3.12 provides additional
information about the source of an exception. You can get additional information about the execution stack
using the gnat.traceback package (12.15).

The gnatmem utility monitors a running programming using the Gnat gdb debugger. When the program is
finished running, gnatmem displays a summary of dynamically allocated memory. You can use this
information to find "memory leaks", places in your program where allocated memory was not deallocated.
Because gnatmem uses gdb, the program should be compiled with gdb support turned on (the -g switch).

Note: gnatmem doesn't work with Gnat 3.11.

To run gnatmem, type

 gnatmem program

The gnatmem switches are:

-q - quiet - hides statistics and shows only potential memory leaks
n - a number between 1 and 10 indicating the depth of the backtrace information
-o file - save the gdb output to the indicated file. The gdb script is saved as gnatmem.tmp
-i file - processing using the file previously saved with -o. Use this to test a program that crashed while
gnatmem was running.

6.5 Conditional Compiling with Gnatprep

Although the Ada 95 design team decided against including preprocessing compiler directives like C does,
gnat provides a preprocessor so you can use conditional compiling directives in your Ada programs.

Gnatprep, the Gnat PREProcessor, takes a source file with conditional directives, a file with variable
assignments for the conditional directives, and produces a source file with all statements not satisfying the
conditional directives removed.

C: The conditional directives do not allow expressions. There must only be a variable, and that variable
must be true or false.

IDE: No IDE's currently support gnatprep.

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (3 of 14) [7/20/2001 11:31:53 AM]

Suppose you create a file called "prepvalues" with the following Gnatprep definitions:

 ALPHAVERSION := true
 BETAVERSION := false
 RELEASEVERSION := false
 TRANSLATION := English

Suppose also that you had a short program with Gnatprep statements in it:

with text_io;
use text_io;

procedure preptest is

 -- only include the relevant parts for this version
 #if ALPHAVERSION
 s_version : string := "alpha";
 #elsif BETAVERSION
 s_version : string := "beta";
 #elsif RELEASEVERSION
 s_version : string := "release";
 #else
 s_version : string := "unknown";
 #end if;

 -- string is the value of the gnatprep variable named translation
 s_translation : string := "$TRANSLATION";

begin
 Put_Line("This is the " & s_version & " edition");
 Put_Line("This is the " & s_translation & " translation");
end preptest;

Running gnatprep on the above program with the prepvalues file gives you the following program:

with text_io;
use text_io;

procedure preptest is

 -- only include the relevant parts for this version

 s_version : string := "beta";
 -- string is the value of the gnatprep variable named translation
 s_translation : string := "English";

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (4 of 14) [7/20/2001 11:31:53 AM]

begin

 Put_Line("This is the " & s_version & " edition");
 Put_Line("This is the " & s_translation & " translation");

end preptest;

The Gnatprep command switches are:

-Dsymbol=value - define values on the command line instead of a prep values file, same as -D in C. For
example, -DMacintosh=FALSE
-b - replace gnatprep commands with blank lines (instead of -c)
-c - comment out gnatprep commands (instead of -b)
-r - generate a Source_Reference pragma
-s - print a sorted list of symbols and values
-u - treat undefined symbols as if they were FALSE

C: There is no gnatprep equivalent of __FILE__ (name of current source file) or __LINE__ (number of
current line).

6.6 Profiling with Gprof

Gprof in the GNU profiler. It shows which subprograms in a program are being executed the most. You can
use this information to find the parts of a program with the greatest need for CPU efficiency and hand
optimize those parts accordingly.

To use Gprof, you must rebuild your project using the -pg switch at both the compiling and linking stages.
With Gnatmake, you must include -pg with both -cargs and -largs switches.

IDE: TIA will profile your project with gprof if you select Profile in the Project menu. It automatically
rebuilds your project with the necessary gprof switches, starts your main program, and then displays the
gprof results.

For example, we can use Gprof on the following factorial program:

package fact is
 function factorial(param : integer) return integer;
end fact;

package body fact is

 function factorial(param : integer) return integer is
 begin
 if param < 2 then
 return 1;
 end if;

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (5 of 14) [7/20/2001 11:31:53 AM]

 return param * factorial(param - 1);
 end factorial;

end fact;

with fact;
use fact;
procedure bench2 is

 maxFactorials : constant integer := 1000;

 type factorialArray is
 array(1..maxFactorials) of integer;

 list : factorialArray;

begin

 for i in 1..maxFactorials loop
 list(i) := factorial(i);
 end loop;

end bench2;

After compiling and linking the program with the -pg switch, run the program. The program produces a
gmon.out file containing profile information about the program. Now we can use Gprof to get an analysis of
the program.

Running gprof -c bench2 returns the following information. Note that Ada subprograms are labeled with the
package name, a double underscore, and the subprogram name.

[Need to clean this up--KB]

Flat profile:

Each sample counts as 0.01 seconds.

%cumulative self self total

time seconds seconds callsus/callus/callname

62.500.050.05__mcount_internal

25.000.070.02mcount

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (6 of 14) [7/20/2001 11:31:54 AM]

12.500.080.01100010.0010.00fact__factorial

0.000.080.0010.00
10000.00_ada_bench2

0.000.080.0010.000.00fact___elabb

%the percentage of the total running time of the
time program used by this function.

cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.

self the number of seconds accounted for by this

seconds function alone.This is the major sort for this listing.

calls the number of times this function was invoked, if
this function is profiled, else blank.

self the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
else blank.

total the average number of milliseconds spent in this
ms/callfunction and its descendents per call, if this
function is profiled, else blank.

name the name of the function. This is the minor sort
for this listing. The index shows the location of
the function in the gprof listing. If the index is
in parenthesis it shows where it would appear in
the gprof listing if it were to be printed.

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 100.00% of 0.01 seconds

index % time self children called name

499500fact__factorial [1]

0.010.001000/1000_ada_bench2
[3]

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (7 of 14) [7/20/2001 11:31:54 AM]

[1]100.00.010.001000+499500fact__factorial
[1]

0.000.000/0mcount (177)

499500fact__factorial [1]

0.000.000/0_start [473]

[2]100.00.000.01main [2]

0.000.011/1_ada_bench2 [3]

0.000.000/0__gnat_initialize
[399]

0.000.000/0adainit [61]

0.000.000/0__gnat_break_start
[395]

0.000.000/0adafinal [60]

0.000.000/0__gnat_finalize
[397]

0.000.000/0exit [95]

0.000.011/1main [2]

[3]100.00.000.011_ada_bench2
[3]

0.010.00 1000/1000fact__factorial
[1]

0.000.000/0mcount (177)

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (8 of 14) [7/20/2001 11:31:54 AM]

0.000.001/1adainit [61]

[6]0.00.000.001fact___elabb
[6]

0.000.000/0mcount (177)

This table describes the call tree of the program, and was sorted by
the total amount of time spent in each function and its children.

Each entry in this table consists of several lines.The line with the
index number at the left hand margin lists the current function.

The lines above it list the functions that called this function,
and the lines below it list the functions this one called.

This line lists:

index A unique number given to each element of the table.
Index numbers are sorted numerically.
The index number is printed next to every function name so
it is easier to look up where the function in the table.

% time This is the percentage of the `total' time that was spent
in this function and its children.Note that due to
different viewpoints, functions excluded by options, etc,
these numbers will NOT add up to 100%.

self This is the total amount of time spent in this function.

children This is the total amount of time propagated into this
function by its children.

called This is the number of times the function was called.
If the function called itself recursively, the number
only includes non-recursive calls, and is followed by
a `+' and the number of recursive calls.

name The name of the current function. The index number is
printed after it. If the function is a member of a
cycle, the cycle number is printed between the

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (9 of 14) [7/20/2001 11:31:54 AM]

function's name and the index number.

For the function's parents, the fields have the following meanings:

self This is the amount of time that was propagated directly
from the function into this parent.

children This is the amount of time that was propagated from
the function's children into this parent.

called This is the number of times this parent called the
function `/' the total number of times the function
was called. Recursive calls to the function are not
included in the number after the `/'.

name This is the name of the parent.The parent's index
number is printed after it.If the parent is a
member of a cycle, the cycle number is printed between
the name and the index number.

If the parents of the function cannot be determined, the word
`<spontaneous>' is printed in the `name' field, and all the other
fields are blank.

For the function's children, the fields have the following meanings:

self This is the amount of time that was propagated directly
from the child into the function.

children This is the amount of time that was propagated from the
child's children to the function.

called This is the number of times the function called
this child `/' the total number of times the child
was called. Recursive calls by the child are not
listed in the number after the `/'.

name This is the name of the child.The child's index
number is printed after it.If the child is a
member of a cycle, the cycle number is printed
between the name and the index number.

If there are any cycles (circles) in the call graph, there is an
entry for the cycle-as-a-whole. This entry shows who called the
cycle (as parents) and the members of the cycle (as children.)

The `+' recursive calls entry shows the number of function calls that

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (10 of 14) [7/20/2001 11:31:54 AM]

were internal to the cycle, and the calls entry for each member shows,
for that member, how many times it was called from other members of
the cycle.

Index by function name

(418) __mcount_internal[1]
fact__factorial[5] <cycle 2>

[3] _ada_bench2(177) mcount

[6] fact___elabb[4] <cycle
1>

If factorial is a function internal to program bench2, the function name won't show up in Gprof. For
example:

procedure bench2 is

 function factorial(param : integer) return integer is
 begin
 if param > 1 then
 return param * factorial(param - 1);
 end if;
 return 1;
 end factorial;

 maxFactorials : constant integer := 100;
 type factorialArray is
 array(1..maxFactorials) of integer;

 list : factorialArray;

begin

 for i in 1..maxFactorials loop
 list(i) := factorial(i);
 end loop;

end bench2;

gprof -c bench2 returns the following information:

Flat profile:

Each sample counts as 0.01 seconds.

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (11 of 14) [7/20/2001 11:31:54 AM]

no time accumulated

%cumulativeselfselftotal

time seconds seconds callsTs/callTs/callname

0.000.000.00990.000.00main

0.000.000.0010.000.00_ada_bench2

etc.

Note: gnatmem doesn't work with Gnat 3.11.

6.7 Shared Libraries Using GnatDLL

[To be written--KB]

6.8 Source as Web Pages Using GnatHTML

This utility converts an Ada source file into a series of indexed, coloured HTML web pages. By default, the
web pages are stored under a subdirectory called HTML. By posting your source code on a network or the
Internet, developers can examine your work with a web browser.

The gnathtml switches are:

-83 - look for Ada 83 keywords only●

-cc color - comment colour●

-d - convert files which depend on this file as well●

-D - like -d, but also convert standard library files●

-f - crossreference local entries●

-ln - display line numbers every n lines●

-Idir - file search path●

-odir - specify the output directory (default html/)●

-pfile - use this Gnat project file●

-sc color - symbol colour●

-Tfile - read the files to convert from this file●

Example using gnathtml with the following program:

with Ada.Text_IO;
use Ada.Text_IO;

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (12 of 14) [7/20/2001 11:31:54 AM]

procedure htmltest is
 -- a demonstration of gnathtml

 function factorial(n : natural) return natural is
 -- compute the factorial of n
 begin
 if n < 2 then
 return 1;
 else
 return n * factorial(n-1);
 end if;
 end factorial;

-- main program

begin
 put_line("Browse this source!");
 new_line;
 put_line("The factorial of 5 is" & natural'image(factorial(5)));
end htmltest;

This creates an index file like this:

Files
htmltest.adb●

Functions/Procedures
factorial●

htmltest●

The first link would show you your entire file:

File : htmltest.adb

with Ada.Text_IO;
use Ada.Text_IO;

procedure htmltest is
 -- a demonstration of gnathtml

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (13 of 14) [7/20/2001 11:31:54 AM]

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/not_real
file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/not_real
file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/not_real

 function factorial(n : natural) return natural is
 -- compute the factorial of n
 begin
 if n < 2 then
 return 1;
 else
 return n * factorial(n-1);
 end if;
 end factorial;

-- main program

begin
 put_line("Browse this source!");
 new_line;
 put_line("The factorial of 5 is" & natural'image(factorial(5)));
end htmltest;

The links use the .htm (not .html) extension for portability.

6.9 GnatFind

[To be written--KB]

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 6 Development Utilties

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (14 of 14) [7/20/2001 11:31:54 AM]

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/not_real
file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/not_real

7 Optimizing Your Project

 <--Last Chapter Table of Contents Next Chapter-->

Optimization is the customization of a program to run as small and/or as fast as possible on a particular
type of computer.

If you program is running slower than you expected, or is using more memory or disk space than you
expected, you should first examine the approach you used in your Ada source code. Can you use better
data structures, or implement faster algorithms? For example, a bubble sort is an easy way to sort
relatively small amounts of data, but a quick sort is faster on thousands or millions of pieces of data.

In large programs, the subprogram causing the biggest bottlenecks may not be obvious. Experimenting
with different test data and timing the results can often narrow down the problem areas. You could also
try the gprof profiling tool, which will give you statistics on your program performance and will show
that you are on the right track. Why spend hours or days improving a section of your program that isn't
causing the problem? This is especially important in a business environment: focus your time on the
sections that will give the greatest improvements.

Some optimizations can be done automatically by the Gnat compiler. There are both compiler switches
and language pragmas for fine tuning your programs.

7.1 Compiler Optimization Options

There are several compiling switches used to optimize programs.

The -O switch tells the compiler how much time it should spend optimizing the program:

No -O - fastest compiling, but gives you gnat warnings for optimization pragmas. Use only when
fast compiling is essential.

●

-O/-O1 - slower compiling, cleaner executable, and no pragma optimize warnings from gnat. You
should normally include this.

●

-O2 - more optimization. Use this for the smallest executable.●

-O3 - full optimization, automatic code inlining for small subprograms and loop unraveling. Use
this for the fastest executable.

●

When using floating point numbers, you may experience rounding errors if you don't use the -ffloat-store
switch as discussed in 8.5.

Inlining is also affected by two other switches:

-gnatn - allow inlining between packages where pragma inline is used in a package specifications.●

-gnatN - allow automatic inlining between packages (this is very memory intensive)●

No -gnatn/N - no inlining between packages, even if a pragma inline is used in a package●

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (1 of 10) [7/20/2001 11:32:11 AM]

specification.

These switches both require a -O switch for inlining to take effect.

The -gnatp switch turns off all non-essential error checking such as constraint and range checks. This is
the same as using pragma Suppress(All_Checks) on every file in the entire program, making
the program smaller and faster.

There are some other gcc optimization switches which can sometimes be used:

-ffast-math - gcc will ignore certain ANSI & IEEE math rules. For example, it will not check for
negative numbers before invoking the sqrt function. This improves math performance but can cause side-
effects for libraries expecting the ANSI/IEEE rules to be honoured.

-fomit-frame-pointer - gcc will free the register usually dedicated to hold the stack frame pointer. This
improves performance, but makes debugging difficult--many debugging utilities require the frame
pointer.

IDE: TIA sets the proper switches for you based on your selections in the project parameters window.

7.2 Gnat Source Optimization Options

Ada Package Description C Equivalent

pragma Pack(Aggregate);
Use minimum space for the
aggregate.

-

pragma Optimize(Space / Time / Off
);

How you want your statements
optimized.

-

pragma Inline(Subprogram); Inline the subprogram inline

pragma Inline_Always(Subprogram); Inline the subprogram -

pragma Discard_Names(type);
Don't include ASCII identifiers
in executable.

-

There are six pragmas available to change the size and execution speed of your program.

Pragma Pack compresses an array, record or tagged record so that it uses the minimum space possible.
For example, a packed boolean array takes up one bit for each boolean. Pack only packs the aggregate,
not any aggregate items that might make up the aggregate: if you have an array of records, you'll need to
both pack the array and the records to use the minimum space possible. Packing aggregates usually slows
down the execution of your program.

type CustomerProfile is record
 Preferred : boolean;
 PreordersAllowed : boolean;
 SalesToDate : float;
end record;
pragma Pack(CustomerProfile);

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (2 of 10) [7/20/2001 11:32:11 AM]

Gnat can perform close packing, that is, packing right down to individual bits, for array elements or
records of 64 bits or smaller.

Pragma Optimize specifies how you want your statements to be optimized: to run as fast as possible
(time), to be as small as possible (space), or no optimization at all. Optimize does not affect data
structures.

pragma Optimize (space);
package body AccountsPayable is

Pragma Inline makes Ada inline the subprogram whenever possible. That is, it physically inserts the
subprogram whenever it's named instead of calling it in order the make your program run faster. This
uses up a lot of space and is only practical for small procedures and functions.

procedure Increment(x : integer) is
begin
 x := x + 1;
end Increment;
pragma Inline(Increment);

Compiling switch -O3 must be used or pragma inline is ignored. -O3 will also automatically inline short
subprograms for you.

Pragma Inline_Always forces inlining between packages (like -gnatn) regardless of whether or not
-gnatn or -gnatN has been used.

Pragma Discard_Names frees up space by discarding the ASCII images (names) of identifiers. For
example, if you have a big enumerated type, Ada normally maintains strings for the names of each of the
enumerated items in case you want to use the 'img attribute. You can discard these names if you never
intend to use 'img.

type aDogBreed is (Unknown, Boxer, Shepherd, MixedBreed);
pragma Discard_Names(aDogBreed);

When you discard names, the 'img is still available. Instead of returning the enumerated value's image,
'img returns the position of the enumerated type (for example, 0, 1, 2 and so forth).

Fun Fact: The ASCII images of your variable names are stored as C strings at the end of your
executable file. You can view them using the less (or strings) shell command.

7.3 CPU Optimization Options

There are two main CPU optimization switches in GCC 2.x, as listed in the GCC manual:

-mno-486 - optimize for 80386.
-m486 - optimize for 80486. These programs will still run on a 80386.

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (3 of 10) [7/20/2001 11:32:11 AM]

http://gcc.gnu.org/onlinedocs/gcc_2.html#SEC32

Future versions of Gnat built for GCC 3.x or later will probably support:

-mpentium - optimize for Pentium / Intel 586●

-mcpu=i686 - optimize for Pentium II/ Intel 686●

-mcpu=k6 - optimize for AMD K6●

There are currently no switches newer CPUs such as Pentiums. Under GCC 2.8.1 (and Gnat), the GCC
FAQ recommends the following switches for reasonable Pentium performance: "-m486 -malign-loops=2
-malign-jumps=2 -malign-functions=2 -fno-strength-reduce".

There are other switches that may or may not be helpful, depending on your program: read the gcc FAQ
for full details.

IDE: TIA sets the proper switches for you based on your selections in the project parameters window.

Let's put all these flags together. Suppose you are trying to develop a program for the Intel Pentium CPU
with an emphasis on speed. During development, the Gnatmake switches would be "-O1" since this
setting suppresses pragma optimize warnings. For the final release, the Gnatmake switches should be
"-m486 -O3 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -fno-strength-reduce -gnatp" for
maximum performance on a Pentium processor.

7.4 What Difference Does Optimization Make?

In the previous sections, we saw GCC compiler switches and and Ada pragmas that affect the speed and
size of your finished application. But how much of a difference does optimization make? And are there
any problems caused by optimization?

The optimization switches and pragmas affect different applications differently. Some will give better
results to certain kinds of applications, while others may actually have a negative effect. The following
table summarizes the results of optimizing on the Hartstone Ada benchmark program. Hartstone is a
multithreading mathematics test available freely on the Internet
http://ftp.sunet.se/pub4/benchmark/hartstone/.

Table: Hartstone 1.1 Benchmark Summary

Gnat switches Ada pragmas CPU Time File Size Task Set Util

-gnatE -gnato -g - 0.13s 294265 0.41%

-gnatE -gnato - 0.13s 147433 0.41%

-gnatE - 0.10s 138679 0.32%

no switches - 0.10s 138679 0.29%

-O - 0.07s 113076 0.22%

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (4 of 10) [7/20/2001 11:32:11 AM]

http://gcc.gnu.org/cgi-bin/fom
http://gcc.gnu.org/cgi-bin/fom
http://gcc.gnu.org/cgi-bin/fom
http://ftp.sunet.se/pub4/benchmark/hartstone/

-O2 - 0.07s 113324 0.22%

-O3 - 0.07s 118790 0.20%

-O3 -gnatp - 0.08s 104290 0.37%

-O3 -gnatp Pent - 0.08s 105042 0.15%

Max - 0.05s 105714 0.15%

Max Optimize(Space) 0.05s 105714 0.15%

Max Optimize(Time) 0.05s 105714 0.15%

Max Pack arrays 0.11s 105712 0.15%

Pent - GCC Pentium optimization switches
Max - Pent + -ffast-math + -fomit-frame-pointer
This test was conducted with a Pentium II 350, 64 Megs RAM and ALT Gnat 3.12p-9. As they say, your
milage many vary (and probably will).

By optimizing the application, Hartstone can be reduced to half its size and run about 2/3 faster than
using no optimization. However, if we pack the arrays in Hartstone, we save two bytes but lose all the
improvements in speed. Sometimes smaller programs are not faster.

Let's try optimizing a convoluted program that uses integers, arrays, functions and mathematics and see
what effect the optimization techniques have.

procedure bench is

 --Simple benchmark program to test optimization

 pragma optimize(time);

 type bench_integer is new long_integer range long_integer'range;
 type small_integer is new long_integer range 0..9;

 function p(param : bench_integer) return bench_integer is
 divideby : constant bench_integer := 4;
 begin
 return param / divideby;
 end p;
 pragma inline(p);

 j : bench_integer := bench_integer'last;

 -- deliberate error in main program for j * 2

 type atype is array(0..9) of small_integer;
 --pragma pack(atype);

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (5 of 10) [7/20/2001 11:32:11 AM]

 a : atype;

begin

 for i in 1..100_000_000 loop

 j := abs(p(bench_integer(i)) - (j * 2));
 a(integer(j mod 10)) := small_integer(j mod
 bench_integer(small_integer'last));

 end loop;

end bench;

Notice that j is assigned the largest bench_integer possible. This will force an overflow error the first
time around the for loop, when j is multiplied by two. The following chart shows the effect of the
different switches and pragmas, and indicates when gnat caught the overflow error. The test was
conducted on a Pentium II 350 with 64 Megs of RAM using the gnat 3.11 NYU binaries and was timed
with the time command.

Gnatmake Switches Pragmas CPU Time Size Error Caught?

gnatmake -gnato -gnatE - - 118162 YES

gnatmake -gnato - - 118162 YES

gnatmake -gnatE - 40.3 s 118162 No

gnatmake - 40.3 s 117634 No

gnatmake -O - 10.8 s 117426 No

gnatmake -O2 - 10.8 s 117426 No

gnatmake -O3 - 10.8 s 117426 No

gnatmake -O3 -gnatp - 9.6 s 117410 No

gnatmake -O3 -gnatp Pent - 9.6 s 117410 No

gnatmake -O3 -gnatp Pent Optimize(Space) 9.6 s 117410 No

gnatmake -O3 -gnatp Pent Optimize(Time) 9.6 s 117410 No

gnatmake -O3 -gnatp Pent Pack atype 4.4 s 117326 No

Although the proper optimization can make this program run faster, but with overflow checking was
turned on with -gnato, the overflow error is caught. The lesson here is that error checking only works
when it's turned on.

We can compare the results to the equivalent C program:

int p(int param) {
 return param / 4;

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (6 of 10) [7/20/2001 11:32:11 AM]

}

int i;
int j = 2147483647;
int a[10];
int main() {
 for (i=1; i<=100000000; i++) {
 j = abs(p(i)-(j*2));
 a[j%10] = j%10;
 }

 return 0;
}

GCC Switches Pragmas CPU Time Size Error Caught?

gcc -Wall - 12.8 s 24541 No

gcc -O3 Pent - 8.6 s 24541 No

In this case, notice that C never detected the overflow error. Secondly, notice that the Ada program ran
twice as fast as the C program.

In theory, an Ada compiler can take advantage of the typing information and the optimization hints
provided by the pragmas. The C compiler has less information and this can hinders the optimization
process. (I've never investigated whether or not Gnat does this or how much of an effect it has.)

The optimization techniques will affect different programs differently. You need to chose the best
approach for your particular project.

7.5 Working with the Assembly Source

Assembly language is the low-level programming language for working with the hardware of a
particular computer. Using assembly language, you can access the processor registers, use unusual
features of the processor, and dictate exactly which operations the processor performs. Assembly
language programs are usually several times smaller and faster than programs written in high-level
languages, but they are also several times harder to build, maintain and debug.

The Linux assembler is called gas (the GNU assembler). Like GNAT and C++, gas works through gcc.
To assemble an assembly language source file, simply run gcc. The compiler will recognize the assembly
language file and will assemble it using gas.

If you want to view the assembly source code of your Ada program, use the "-c -S -fverbose-asm"
options when compiling. GNAT will create a file with a ".s" suffix containing the assembly source. You
can view it, or even edit it and assemble afterwards. Improving the instructions produced by the compiler
and then assembling afterwards is known as hand optimizing. This technique is typically used for high
performance applications such as games, where the programmer needs to get the maximum performance
from the hardware.

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (7 of 10) [7/20/2001 11:32:11 AM]

The following is the stderr.s file for the stderr.adb program described elsewhere in this document.

.file"stderr.adb"

.version"01.01"

/ GNU Ada version 2.8.1 (i686-pc-linux-gnu) compiled by GNU C version
2.8.1.

/ options passed:-I../texttools/ -mcpu=i486 -march=i486 -gnatp -gnatf
-O3

/ -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2

/ -fno-strength-reduce -fverbose-asm

/ options enabled:-fdefer-pop -fcse-follow-jumps -fcse-skip-blocks

/ -fexpensive-optimizations -fthread-jumps -fpeephole -fforce-mem

/ -ffunction-cse -finline-functions -finline -fkeep-static-consts

/ -fcaller-saves -fpcc-struct-return -frerun-cse-after-loop

/ -fschedule-insns2 -fcommon -fverbose-asm -fgnu-linker -m80387

/ -mhard-float -mno-soft-float -mieee-fp -mfp-ret-in-387

/ -mschedule-prologue -mcpu=i486 -march=i486 -malign-loops=2

/ -malign-jumps=2 -malign-functions=2

gcc2_compiled.:

.section.rodata

.LC0:

.string"This is an example of writing error messages to stderr"

.align 4

.LC1:

.long 1

.long 54

.LC2:

.string"This message is on standard error"

.align 4

.LC3:

.long 1

.long 33

.LC4:

.string"This message is on standard output"

.align 4

.LC5:

.long 1

.long 34

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (8 of 10) [7/20/2001 11:32:11 AM]

.LC6:

.string"This is also on standard error"

.align 4

.LC7:

.long 1

.long 30

.LC8:

.string"But this is on standard output"

.text

.align 4

.globl _ada_stderr

.type_ada_stderr,@function

_ada_stderr:

pushl %ebp

movl %esp,%ebp

movl $.LC0,%eax

movl $.LC1,%edx

pushl %edx

pushl %eax

call ada__text_io__put_line__2

pushl $1

call ada__text_io__new_line__2

movl $.LC2,%eax

movl $.LC3,%edx

pushl %edx

pushl %eax

call ada__text_io__standard_error

pushl %eax

call ada__text_io__put_line

movl $.LC4,%eax

movl $.LC5,%edx

pushl %edx

pushl %eax

call ada__text_io__put_line__2

addl $32,%esp

pushl $1

call ada__text_io__new_line__2

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (9 of 10) [7/20/2001 11:32:11 AM]

call ada__text_io__standard_error

pushl %eax

call ada__text_io__set_output

movl $.LC6,%eax

movl $.LC7,%edx

pushl %edx

pushl %eax

call ada__text_io__put_line__2

call ada__text_io__standard_output

pushl %eax

call ada__text_io__set_output

movl $.LC8,%eax

movl $.LC7,%edx

pushl %edx

pushl %eax

call ada__text_io__put_line__2

movl %ebp,%esp

popl %ebp

ret

.Lfe1:

.size_ada_stderr,.Lfe1-_ada_stderr

.ident"GCC: (GNU) 2.8.1"

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (10 of 10) [7/20/2001 11:32:11 AM]

8 Debugging Your Project

 <--Last Chapter Table of Contents Next Chapter-->

8.1 Limit and the Heap Size

The default storage pool (or the "heap") is kept on the user's stack. Unusually large variables in subprograms
(including the main program) can cause out of memory errors. Variables in packages are not affected by the
stack size. You can increase the stack space using Linux's limit command (although using dynamic
allocation is usually a better solution).
 limit stacksize 1024 kbytes # 1 Megabyte user stack

To constrain the size of your stack, as far as Gnat is concerned, use the GNAT_STACK_LIMIT environment
variable to indicate the number of kilobytes of stack space. In individual Ada tasks, the stack size can be set
by pragma Storage_Size.

Stack size checking is normally disabled by Gnat. Section 4.4 discusses this.

8.2 The Debugging Pragmas

Ada Feature Description C Equivalent

pragma Assert(condition); Assert a condition. assert

pragma Debug(Procedure); Debugging procedure call -

pragma Suppress_Debug_Info; Disable pragma debug #ifdef var...#endif

pragma No_Return(subprogram);
Indicate a subprogram that
never completes

 -

pragma Normalize_Scalars;
Initialize scalars to illegal
values

 -

GNAT provides two useful pragma for debugging programs. To use these pragmas, you need to use the
-gnata option during compiling. Removing -gnata causes GNAT to ignore these pragmas, making it easy to
compile a version of your program for public release without having to delete the debugging statements from
your source code.Pragma Assert lets you test to make sure a certain condition is true. If it isn't, then an
exception is raised. Use Assert to check for conditions which you assume are true during program
development. This is especially useful when several programmers are working on a project and you don't
know if a condition will change in the future.

 pragma Assert(ScreenHeight = 24);

Big Online Book of Linux Ada Programming - 8 Debugging Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (1 of 6) [7/20/2001 11:32:24 AM]

In this example, if the variable ScreenSize is not 24, an ASSERT_ERROR exception is raised.

Pragma Debug lets you call a procedure for debugging purposes. For example, you can use this to print
information about the program while it is running. Because this is a pragma, you can place it almost
anywhere, even in the middle of variable declarations.

 x := 5;
 pragma Debug(PrintToLogFile("X is now" & x'img));

If PrintToLogFile is a procedure that saves messages to a log file, this example saves the message "X is now
5" to the log file.

Pragma debug can be disabled with pragma Suppress_Debug_Info.

Pragma No_Return can be used to indicate subprograms that never complete. This suppresses the related
compiler warnings.

Pragma Normalize_Scalars initializes anything not an array, record or tagged record to illegal values
wherever possible. This pragma helps expose variables used before they are initialized. Use this at the start
of a program or package.

Suppose you have a integer variable with a range between 1 and 100. Normally, Ada won't assign an initial
value (unless you specify one). With Normalize_Scalars, your variable will be initialized to some value out
of range, perhaps -1. If you attempt to use this variable, you'll probably raise a CONSTRAINT_ERROR
exception.

8.3 Identifying Files

[Rewrite and Expand]From Usenet:

> If you are using 2.2.x, you can use the /proc to find a process which is> using a directory or file. If is the
case, try this: ls -lad `find> /proc` | grep home> The number after the /proc should be the process ID.>> Any
way, it seems a little bit delicate umount your /home after the> boot... Couldn't you use a rescue disk and
format your /home without> mount it in a boot?>> Are you sure your /home isn't only a part of your / (root
directory)?> When you type "df", does it report a different device for the /home?> Sorry, if I'm asking a very
basic question.>try fuser or lsof.

8.4 Compiler Info with -gnatG

The -gnatG compiler switch shows Gnat's interpretation of your source code after its initial analysis. If you
specify -gnatD, Gnat will write this information to a file ending in .dg (for "debug").

The following is a listing of the "pointers" program used later in this book:

with Ada.Text_IO, System.Address_To_Access_Conversions;
use Ada.Text_IO;

procedure pointers is

Big Online Book of Linux Ada Programming - 8 Debugging Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (2 of 6) [7/20/2001 11:32:24 AM]

 package IntPtrs is new System.Address_To_Access_Conversions(integer);
 -- Instantiate a package to convert access types to/from addresses.
 -- This creates an integer access type called Object_Pointer.

 five : aliased integer := 5;
 -- Five is aliased because we will be using access types on it

 int_pointer : IntPtrs.Object_Pointer;
 -- This is an Ada access all type

 int_address : System.Address;
 -- This is an address in memory, a C pointer

begin

 int_pointer := five'unchecked_access;
 -- Unchecked_access needed because five is local to main program.
 -- If it was global, we could use 'access.

 int_address := five'address;
 -- Addresses can be found with the 'address attribute.
 -- This is the equivalent of a C pointer.

 int_pointer := IntPtrs.To_Pointer(int_address);
 int_address := IntPtrs.To_Address(int_pointer);
 -- Convert between Ada and C pointer types.

end pointers;

The -gnatG shows the compiler's analysis of your program. In this case, it displays the results of the
instantiation of the generic package:

with system;
with ada;
with ada.text_io;
with system.address_to_access_conversions;
use ada.text_io;
with system;
with system;
with unchecked_conversion;

procedure pointers is

 package intptrs is
 subtype object is integer;

Big Online Book of Linux Ada Programming - 8 Debugging Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (3 of 6) [7/20/2001 11:32:24 AM]

 package address_to_access_conversions renames intptrs;
 null;
 type object_pointer is access all object;
 for object_pointer'size use 32;
 function to_pointer (value : address) return object_pointer;
 function to_address (value : object_pointer) return address;
 pragma convention (intrinsic, to_pointer);
 pragma convention (intrinsic, to_address);
 freeze object_pointer []
 freeze to_pointer []
 freeze to_address []
 end intptrs;

 package body intptrs is

 function to_address (value : object_pointer) return address is
 begin
 if value = null then
 return null_address;
 else
 return value.all'address;
 end if;
 end to_address;

 function to_pointer (value : address) return object_pointer is

 package a_to_pGP3183 is
 subtype source is address;
 subtype target is object_pointer;
 function a_to_pR (s : source) return target;
 end a_to_pGP3183;
 function a_to_p is new unchecked_conversion (address,
 object_pointer);
 begin
 return target!(source(value));
 end to_pointer;
 end intptrs;

 package intptrs is new system.address_to_access_conversions (integer);
 five : aliased integer := 5;
 int_pointer : intptrs.object_pointer := null;
 int_address : system.address;
 freeze intptrs []
begin
 int_pointer := five'unchecked_access;
 int_address := five'address;
 int_pointer := intptrs.to_pointer (int_address);

Big Online Book of Linux Ada Programming - 8 Debugging Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (4 of 6) [7/20/2001 11:32:24 AM]

 int_address := intptrs.to_address (int_pointer);
 return;
end pointers;

8.5 Floating Point Numbers

The GCC FAQ reports that floating point rounding problems can occur with -O2 and -O3 unless you use
-ffloat-store (keeps floating-point numbers out of CPU registers). Using this switch will slow your program.

8.6 Gdb: the GNU debugger

gnat 3.11 and later with a version of Gdb, the GNU command line debugger, that fully supports Ada data
structures.You shouldn't have to use Gdb very often as most problems are solvable with a few well-placed
put_line's. However, if the program produces are core file or is behaving unpredictably because of an
obscure coding mistake or a compiler bug, Gdb is the best way to find out what is going wrong and where.

In order to use Gdb, you must compile your program with debugging support enabled (with the -g option in
gnat, or -ggdb in C).

To start Gdb on a program called dbase, use

gdb dbase

(or gnatgdb with the ALT version) and Gdb responds with its command line prompt, "(gdb)". Type run to
start the program normally to the point of the crash. You can print out the value of variables using the print
command:

(gdb) print ch

This will print the character in the variable named ch at the time when the program was stopped.

To look at a core file produced by a segmentation fault, use

gdb dbase core

You can examine the variables at the time the program crashed.

Gdb contains many other commands. You can get online help at any time with the help command.

GNAT has a hidden -gnatdg flag. If you compile your program using this flag, you'll get extra information
for Gdb, such as making all temporary variables used by gnat visible to the debugger.

8.7 Code Restrictions

There are several pragmas for disabling certain language features. These restriction pragmas can be used to
enforce a certain policy and warn a programmer when the policy is violated. For example, if you are writing
a real-time program, you may want to disable Ada features that do not have a known response time so that
your program will not have random delays.

The restriction pragmas include:

Big Online Book of Linux Ada Programming - 8 Debugging Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (5 of 6) [7/20/2001 11:32:24 AM]

http://gcc.gnu.org/cgi-bin/fom

Ada_83 - do not allow Ada 95 language features●

Ada_95 - (default) allow Ada 95 language features●

Controlled - turn off garbage collection for a type. This has no effect with Gnat since it does not
implement garbage collection.

●

Ravanscar - enforce Ravanscar run-time restrictions●

Restricted_Run_Time - similar to Ravanscar●

Restrictions - disable particular language features●

no_run_time also enforces restrictions because the Ada run-time library is not available.

More information on the usage of these pragmas is available in the Gnat documentation.

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 8 Debugging Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (6 of 6) [7/20/2001 11:32:24 AM]

9 Team Development

 <--Last Chapter Table of Contents Next Chapter-->

9.1 Change Logs

The Change Log

Creating a change log is the easiest method to document changes you've made in a project. A change log is a text
file (usually called "CHANGES") containing an explaination of all recent changes in a project. For example, if you
are working on an open source project and you add support for encrypted passwords, you might document this by
writing

 Nov 1 - added password support to file passwords.adb

If anyone was going to add password support to your project, they can quickly see that you've already done it. Or if
somebody was adding additional features to the passwords.c file, they will know that they may have to change
their work since you've already changed the same file.

The change log is popular on open source projects involving few programmers because there's little chance of two
programmers modifying the same source file simultaneously.

The Formal Change Log

Most businesses or professional institutions have a much more formal structure for their change logs. In an
environment involving important data, a program problem means someone else will have to retrace your activities
in order to find and correct a problem.

Formal logs are kept in a binder since there's always the possibility that a major failure will make it impossible to
sign onto the computer. Each change is documented with

the date●

person who made the software change●

what programs were affected●

a description of the change●

Some companies have internal audits done to ensure that changes were properly made. The auditors will pick
random pages from the change log and ask the programmer to verify the changes. In these cases, a formal change
log may also include information such as the size, ownership and permissions of files affected. This serves both to
quickly check a file as well as to force a programmer to verify the security of the files he or she installs. The most
common security loopholes in UNIX are caused by people not checking the ownership and permissions of installed
files.

Big Online Book of Linux Ada Programming - 9 Team Development

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (1 of 6) [7/20/2001 11:32:37 AM]

9.2 RCS: Revision Control System

RCS (Revision Control System) is a tool that shares a document or program source code between multiple people.
It also automatically numbers the file with a version number (eg. 1.1, 1.2) with each revision, and maintains a
change log. CVS, an extension to RCS, is described below.Once you initialize RCS for a project, people in your
project "check out" (with the co command) a copy of a file, and when they're done making changes they "check in"
the file (with the ci command).

RCS is also a good tool for maintaining documentation.

Read the rcsintro man page for more information on getting started.

The following is a transcript of a session using RCS. Assume that you have a source file called "f.c". To add the
source file to RCS, you'd use ci. You are prompted for a general description of the file and RCS assigns version
number 1.1 to the file. The file is deleted from your directory and moved into RCS's care.

armitage:/home/ken/ada/rcs# ci f.c
RCS/f.c,v <--f.c
enter description, terminated with single '.' or end of file:
NOTE: This is NOT the log message!
>>
Curreny Definitions
>> .
initial revision: 1.1
done
armitage:/home/ken/ada/rcs# ls
RCS

To check out the file, read-only, use co. The file reappears.

armitage:/home/ken/ada/rcs# co f.c
RCS/f.c,v -->f.c
revision 1.1
done
armitage:/home/ken/ada/rcs# ls
RCS f.c

To check out a file to change it, use co -l (lock out others):

armitage:/home/ken/ada/rcs# co -l f.c
RCS/f.c,v --> f.c
revision 1.1 (locked)
done

Suppose you add the line "--test line" to the file. Rcsdiff will report any changes you've made to the file since
checking it out:

armitage:/home/ken/ada/rcs# rcsdiff f.c
===
RCS file: RCS/f.c,v
retrieving revision 1.1

Big Online Book of Linux Ada Programming - 9 Team Development

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (2 of 6) [7/20/2001 11:32:37 AM]

diff -r1.1 f.c
0a1
> --test line

Finally, you can check the file back in. RCS increments the version number
and prompts you for a message for the change log.

armitage:/home/ken/ada/rcs# ci f.c
RCS/f.c,v <-- f.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single '.' or end of file:
>> Added comments
>> .
done

9.3 CVS: Concurrent Versions System

CVS (Concurrent Versions System) is a front end to RCS designed to work with
groups of files in multiple directories. CVS can work with individual files,
whole directories or you can organize large projects into groups of files
(called a modules) that you want to work with. Like RCS, it timestamps
files, maintains version numbers, and identifies possible problems when two
programmers update the same section of a program simultaneously.

CVS is very popular for open source development. CVS can be configured to
allow programmers all over the world to work on your project without having
to be logged into your computer.

In order to use CVS, the project leader needs to create a directory for CVS
to work in (called the repository) and a subdirectory called CVSROOT. Then
you define an environment variable called CVSROOT so CVS knows where to find
the CVS directory. For example, to make "/home/our-project-cvs" the
repository for your team, set up the CVSROOT under bash as

export CVSROOT=/home/our-project-cvs

The repository holds copies of all the files, change logs, and other shared
resources for your project.

To add a new project to the CVS repository, use the import command. Import
will take the files in the current directory and put them in the repository
under the name you specify. Import also requires a short string to identify
who is adding the project, and a string to describe the state of the project.
This strings are comments and can be anything: your login and "init-rel" for
initial release may be good choices.

By convention, CVS begins numbering your project with "1.1"

[root@redbase cvs]# cvs import project kburtch init-rel
(CVS starts your default editor, typically vi)
CVS: --
CVS: Enter Log. Lines beginning with `CVS: ' are removed automatically

Big Online Book of Linux Ada Programming - 9 Team Development

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (3 of 6) [7/20/2001 11:32:37 AM]

CVS:
CVS: --
(make notes and exit vi)
N project/currency.adb
No conflicts created by this import

The "N project/currency.adb" line indicates that CVS created a new project
called "project" and added the Ada file currency.adb to it. currency.adb is
now stored in the CVS repository, ready to be shared amongst the team
members.

To work with a project, you use co (or checkout). This CVS command will save
a copy of the project in your directory. It will also create a CVS directory
to save private data files used by CVS. To use co, move to your home
directory and type:

[root@redbase cvs]# cvs checkout currency.adb
cvs checkout: Updating .
U project/currency.adb

The subdirectory project will contain your own, personal copies of project
files to work on. CVS maintains the original copy of currency.adb. Another
programmer can also checkout currency.adb while you are working on your copy.

If you do a checkout right after an import, you may have to remove the
original files: CVS will not overwrite any existing files.

To add a file to CVS, use the add command. To add a file called
currency.adb, use

[root@redbase cvs]# cvs add currency.adb

Single files, directories or even CVS modules can also be added to your project using "add".

As you work on your source code, you can check your work against the project
using the update command.

[root@redbase cvs]# cvs update
cvs update: Updating .

When updating, CVS checks the files in your copy of the project against its
copies. If another team member made changes to one of the project Ada files,
CVS will copy the new file to your directory.

If another team member made changes to one of the Ada files you've been
working on, CVS will attempt to update your copy without destroying your
work.

Big Online Book of Linux Ada Programming - 9 Team Development

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (4 of 6) [7/20/2001 11:32:37 AM]

Sometimes the changes involve the same part of the Ada file and CVS won't be
able to combine the changes automatically. CVS calls this a conflict. For
example, suppose your Ada file contained a function

function ConvertCurrency(amount : integer) return float;

If you changed this function to use a float amount, and another team member
has changed amount to a string, CVS will report a conflict. You will have to
talk to the team member who made the change and make an agreement what amount
should be.

If there are no other problems after an update, you can continue working on
your source code.

To delete a file, remove it using "rm" and then "update". CVS will see your
file is no longer in the project.

The CVS command release will permanently remove a file from a project (including the
copy in CVSROOT), but it also prevents you from recovering the file from the CVSROOT directory in
an emergency. Unless storage space is limited, consider using the rm/update method of removing files.

While working on your source code, your changes are not distributed to the
rest of your team until you are ready. When your source code is tested and
ready to be made available, use ci (or commit). Before commiting your
changes, delete non-essential files (such as .ali, .o or executable files) to
save space in the repository.

The log command gives information about a group of files:

[root@redbase cvs]# cvs log -l project
cvs log: Logging project
RCS file: /usr/cvs/project/currency.adb,v
Working file: project/currency.adb
head: 1.1
branch: 1.1.1
locks: strict
access list:
symbolic names:
p1: 1.1.1.1
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:

revision 1.1
date: 1999/01/13 17:27:33; author: kburtch; state: Exp;
branches: 1.1.1;

Big Online Book of Linux Ada Programming - 9 Team Development

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (5 of 6) [7/20/2001 11:32:37 AM]

Initial revision

revision 1.1.1.1
date: 1999/01/13 17:27:33; author: kburtch; state: Exp; lines: +0 -0
Project started
===

Status gives you an overview of a group of files:

[root@redbase cvs]# cvs status project
cvs status: Examining project
===
File: currency.adb Status: Up-to-date
Working revision: 1.1.1.1 Wed Jan 13 17:27:33 1999
Repository revision: 1.1.1.1 /usr/cvs/project/currency.adb,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

9.4 Creating Transcripts with Script

So you did something wrong. How to you show what you did to your fellow
programmers? The script command creates a file called "typescript" in the
current directory. The typescript file is a text file that records a list of
everything that appears on the screen. You can stop the recording process
with the exit command.

9.5 Timing Execution with Time

The shell command time will tell you how long a program took to run, and
reports general statistics such as how many page faults occurred.

armitage:/home/ken/ada/sm# time myprog
3.09user 0.95system 0:05.84elapsed 69%CPU(0avgtext+0avgdata 0maxresident)k
0inputs+0outputs(4786major+4235minor)pagefaults 0swaps

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 9 Team Development

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (6 of 6) [7/20/2001 11:32:37 AM]

10 An Introduction to Ada

 <--Last Chapter Table of Contents Next Chapter-->

Ada is a full-featured language with many capabilities, rules, and nuances. Although the fundamentals are easy to
learn (Ada somewhat resembles BASIC), it is several times larger that C, and to truly master the language requires
considerable practice. To make understanding easier, the discussion is broken up into two chapters. This chapter
outlines the basics of the language, and the next chapter discusses features for team development, large projects, and
other specialized tasks.

This in no way covers everything there is to know about Ada. I've chosen to cover those features that have been the
most use to me over the years in my projects. For example, array slicing alone could take up several pages of
discussion, but I've never had a need for it in recent years. Of course, you may be involved in a project in which
array slicing is crutial. In these cases, I recommend you get a good Ada 95 reference such as Barnes' Programming
in Ada 95.

Likewise this is not a complete introduction to computer programming. Some background knowledge is assumed.

Ada also has many specialized features for specific tasks such as scientific computing and real-time systems. Where
I deliberately skip a subject, I usually make a note that I have done so. I've also hilighted useful information for C
programmers who are learning Ada.

Now, on to main programs.

10.1 Your Main Program

A main program in Ada is a procedure with no parameters that starts your program running. This is the set of
instructions that the computer begins to follow when your program is first executed.

The following program will print a message on the screen when you run it.

with Ada.Text_IO;
procedure firstProgram is
-- my first Ada program
begin
 Ada.Text_IO.Put_Line("This is my first Ada program.");
end firstProgram;

C: Ada is not case sensitive. "WITH" or "With" is the same as "with".

An Ada program consists of sets of words and punctuation symbols. The words fall into two categories. First, the
words in bold in bold are called keywords. These are words that have special meaning to Ada. Second, the words
that aren't in bold are identifiers. These are the names of variables, procedures, packages and other items with names
or titles in the language.

IDE: Ada IDE's will hilight keywords in bold for you. Some editors such as emacs, elvis and nedit will
also hilight keywords. This is a good way to check for spelling mistakes.

In this program, begin is a keyword because Ada uses the word "begin" to denote where the program is to begin

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (1 of 29) [7/20/2001 11:33:05 AM]

executing instructions. On the other hand, "firstProgram" is an identifier because it is the name of our program.

All keywords in Ada are also reserved words: this means that the keywords cannot be used as identifiers.

The main program can have any name, as long as the name matches the filename. In gnat, the source code for a main
program ends in .adb (Ada body). This program should be saved as firstprogram.adb.

C: The main program doesn't have to be "main" unless you save the program as "main.adb".

If you call a program "test.adb", remember that test is a built-in shell command. To run a
program named test, you'll have to type "./test" instead of "test" to avoid running the shell command by
mistake.

Comments are denoted by two minus signs (--). This is a note to the reader; Ada will ignore it. Everything you type
to the right of the symbol is treated as a remark to the reader.

C: Ada has no equivalent to the block comment /* and */.

10.2 Text_IO

Ada Description C Equivalent

put(s); Display a string printf("%s", s);

put(n'img); Display a number printf("%d", n);

put_line(s); Display a line of text and start a new line printf("%s\n", s);

new_line; Start a new line printf("\n");

get(c); Read a character from the keyboard c = getc();

get_line(s, len); Read a line of text from the keyboard gets(&s);

etc.

Like many modern computer languages, Ada doesn't have any built-in methods of reading the keyboard or writing
messages on the screen. It doesn't assume you're writing a program for a PC (you could be doing embedded
programming, for example)--but in general, you need to interpret what people type and display the results to the
screen. You have to add this functionality specifically.

The standard input/output package for Ada is Text_IO. This package prints characters and strings to the screen and
reads characters and strings from the keyboard. It can also read and write simple sequential text files. (Packages will
be discussed in detail starting at 11.1 in the next chapter.)

Text_IO is only useful for simple programs. It doesn't have the ability to draw buttons, windows or menus. For X
Windows programming, you'll require other packages/libraries to perform input and output.

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (2 of 29) [7/20/2001 11:33:05 AM]

C: In C, printf and company can use an arbitrary number of parameters, where the parameters can
be of different types. Text_IO's puts have one parameter, and the parameter must be a string or a
character. Upcoming sections demonstrate how to print other types.

The most commonly used operations are:

Put - write to the screen, but don't start a new line●

Put_Line - write to the screen and start a new line●

New_Line - start a new line●

Get - read a character from the keyboard●

Get_Line - read a string from the keyboard●

The following program is an example of Text_IO.

with Ada.Text_IO;
use Ada.Text_IO;

procedure basicio is
-- this program demonstrates basic input/output

 c : character; -- this is a letter

begin

 Put_Line("This program displays information on the screen");
 Put_Line("and reads information from the keyboard");
 New_Line;

 Put_Line("Put_Line displays a line of text and advances to");
 Put_Line("the next line.");

 Put("Put ");
 Put_Line("displays text, but it doesn't start a new line");

 Put_Line("New_Line displays a blank line");
 New_Line;

 Put_Line("Get waits for a character to be typed.");

 Put_Line("Type a key and the Enter key to continue.");
 Get(c);
 Put_Line("The character you typed was '" & c & "'");

end basicio;

This program displays information on the screen
and reads information from the keyboard

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (3 of 29) [7/20/2001 11:33:05 AM]

Put_Line displays a line of text and advances to
the next line.
Put displays text, but it doesn't start a new line
New_Line displays a blank line

Get waits for a character to be typed.
Type a key and the Enter key to continue.
c
The character you typed was 'c'

Besides letters and numbers, there are special characters called control characters which, instead of displaying a
character, change the Linux display. To print controls characters, you need to use one of Ada's built-in character
sets. For example, ASCII is a predefined list of all the ASCII characters. To send an explicit form feed character, use

 Put(ASCII.FF);

Some common control characters are:

ASCII.NUL - C end of string character●

ASCII.CR - carriage return - move to beginning of line●

ASCII.HT - horizontal tab●

ASCII.LF - line feed - start a new line●

ASCII.FF - form feed - start a new page on a printer●

C: Put doesn't recognize C string escape codes like "\n" or "\r".

Besides ASCII, Ada has a number of other character sets defined in the Ada.Characters packages.

The ASCII set is officially made obsolete in Ada 95 by Ada.Characters.Latin_1, but it's still
often used because it's easier to type.

10.3 Fundamental Data Types

Ada Type Description C Equivalent

Character A single character char

Integer An integer (32-bit) number int

Natural Zero or positive integer -

Positive Positive integer -

Long_Integer A big integer (same as long in Gcc) long (same as int in Gcc)

Long_Long_Integer A really big (64-bit) integer long long

Short_Integer A small (16-bit) integer short

Short_Short_Integer A really small (8-bit) integer char

Float A real number float

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (4 of 29) [7/20/2001 11:33:05 AM]

Long_Float A big real number double

Long_Long_Float A really big real number long double

Short_Float A smaller real number ?

Fixed A fixed-point real number -

String An Ada fixed-length string char array

C: There are no built-in equivalents of unsigned types. Natural and Positive are integer values that
aren't allowed to be negative, effectively requiring the sign bit to be zero.

Characters cannot be used for small integer values--characters variables can only represent character
values.

Generally speaking, programs take data, process it in different ways, and create new information. Data is
categorized into different data types.

Data that is typed into a program is known as literals. Ada has several kinds of literals:

'c' is a character. Character literals are enclosed in single quotes.●

-5 is an integer●

45.5 is a float or a fixed with one decimal place●

"This is a string" is a fixed string. Strings literals are enclosed in double quotes.●

C: Ada doesn't have long numerical literals, like "45L". Numeric literals are a special type called
universal integer and adapt to fit the requirements of an expression.

C: Ada strings do not end with an ASCII 0 character: they end with the upper bound of the array that
encloses them. To change an Ada string into a C string, concatenate a null character like this:

 "This is my string" & ASCII.NUL;

There are three kinds of real numbers. A fixed, or fixed point, number is a number that has a fixed number of
decimal points. For example, U.S. dollars are often represented using fixed numbers because there are two decimal
places. A float, or floating-point, number is a number that doesn't have a fixed number of decimal places. Decimal
numbers are a variation of fixed numbers commonly used for currency.

Some Ada programmers recommend that floats are used whenever possible because float calculations are usually
faster than fixed calculations. This is because most computers today have floating point support in their hardware.

Floating point numbers are very important for business and scientific applications. When floating point numbers are
converted to integers, do the numbers round to the nearest integer or is the decimal part simply discarded? In C, this
is system dependent: System V-based UNIX's usually round to the nearest integer, while some other systems discard
the decimal part. (Others, like HP-UX, the number rounds towards the nearest even integer providing the floating
point number is exactly half way between two integers.)

On Linux, C truncates the decimal part.

In Ada, the way numbers round are strictly defined by the language: you can be sure that, no matter what operating
system you are using, floating point numbers converted to integers will always round to the nearest integer. If the
floating point number is half way between two integers, it will round "up".

The following program demonstrates floating point rounding:

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (5 of 29) [7/20/2001 11:33:05 AM]

with ada.text_io, ada.float_text_io;
use ada.text_io, ada.float_text_io;

procedure rounding is
 -- rounding example

 procedure ShowRounding(f : float) is
 -- show the floating point value, and show the value
 -- after it's converted to an integer
 int_value : integer;
 begin
 Put(" Float number ");
 Put(f, fore => 5, aft => 3);
 int_value := integer(f);
 Put_Line(" rounds to " & int_value'img);
 end ShowRounding;

begin
 Put_Line("This is a demonstration of how Ada 95 rounds");
 New_Line;

 ShowRounding(253.0);
 ShowRounding(253.2);
 ShowRounding(253.5);
 ShowRounding(253.8);
 ShowRounding(-253.8);

end rounding;

This is a demonstration of how Ada 95 rounds

 Float number 2.530E+02 rounds to 253
 Float number 2.532E+02 rounds to 253
 Float number 2.535E+02 rounds to 254
 Float number 2.538E+02 rounds to 254
 Float number -2.538E+02 rounds to -254

You can compare the results with the following C program:

#include <stdio.h>

static void show_rounding(float f) {
 int i;

 i = f;
 printf(" Float number %g", f);
 printf(" rounds to %d\n", i);

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (6 of 29) [7/20/2001 11:33:05 AM]

} /* show rounding */

int main () {

 show_rounding(253.0);
 show_rounding(253.2);
 show_rounding(253.5);
 show_rounding(253.8);
 return 0;

}

 Float number 253 rounds to 253
 Float number 253.2 rounds to 253
 Float number 253.5 rounds to 253
 Float number 253.8 rounds to 253

Rounding to integers is a common way in C business applications to round money to the nearest dollar or cent. This
is accomplished by multiplying the floating point value by 100.0, adding .5, and then taking the integer value and
converting it once more into a floating point value. In Ada, there's a built-in type attribute to round floating point
numbers: this makes conversion to an integer unnecessary.

C: The fundamental integer types don't "wrap around" the way C data types do. Values that grow too
large produce overflow errors. However, gnat turns off integer overflow exceptions by default to
improve performance. Ada provides properly behaved C types and conversion functions in the
Interfaces.C package. Interfaces.C includes the following types:

type int is new Integer;
type short is new Short_Integer;
type long is range -(2 ** lbits1) .. +(2 ** lbits1) - 1;
type signed_char is range SCHAR_MIN .. SCHAR_MAX;
 for signed_char'Size use CHAR_BIT;
type unsigned is mod 2 ** int'Size;
type unsigned_short is mod 2 ** short'Size;
type unsigned_long is mod 2 ** long'Size;
type unsigned_char is mod (UCHAR_MAX + 1);
for unsigned_char'Size use CHAR_BIT;

GNAT has a second package, Interfaces.C.Extensions, that includes additional types, such as
unsigned_long_long.

As it's name suggests, the Text_IO package only performs I/O with text, not numbers or other types of information.
If you want to print, say, and integer value using Text_IO, you must first convert the integer to a string using the
'img attribute (or 'image). (Attributes are discussed in the next section.)

with Ada.Text_IO;
use Ada.Text_IO;

procedure basicio2 is

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (7 of 29) [7/20/2001 11:33:05 AM]

-- this program demonstrates more advanced input/output

 i : integer := 5; -- this variable contains an integer number
 -- i initially has the value of 5
 s : string(1..20); -- this variable contains a 20 character string
 len : natural;

begin

 Put_Line("This program displays information on the screen");
 Put_Line("and reads information from the keyboard");
 New_Line;

 Put_Line("'img returns the string representation of a variable's");
 Put_Line("value. The value i is" & i'img);
 New_Line;

 s := "...................."; -- set s to 20 periods

 Put_Line("The variable s is " & s);
 Put_Line("Get_Line reads a string from the keyboard");
 Put_Line("Type in a message up to 20 characters and press Enter:");
 Get_Line(s, len);

 Put_Line("After Get_Line copies your message to s, s is now '" & s & "'");
 Put_Line("The message is" & len'img & " characters long.");

 Put_Line("The characters after your message remain unchanged.");

end basicio2;

This program displays information on the screen
and reads information from the keyboard

'img returns the string representation of a variable's
value. The value i is 5

The variable s is

Get_Line reads a string from the keyboard
Type in a message up to 20 characters and press Enter:
jingle bells

After Get_Line copies your message to s, s is now 'jingle bells........'
The message is 12 characters long.

The characters after your message remain unchanged.

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (8 of 29) [7/20/2001 11:33:06 AM]

with Ada.Text_IO;
use Ada.Text_IO;

procedure basicio3 is
 -- this program demonstrates more even advanced input/output

 i : integer := 5; -- this variable contains an integer number
 -- i initially has the value of 5
 s : string(1..5); -- this variable contains a 5 character string

 len : natural; -- length of string

begin

 Put_Line("This program displays information on the screen");
 Put_Line("and reads information from the keyboard");
 New_Line;

 Put_Line("The value i is" & i'img);
 New_Line;

 Put_Line("integer'value changes a string into an integer value");
 Put_Line("Type in a 4 character integer characters with a leading");
 Put_Line("space or negative sign and press Enter:");
 Get_Line(s, len);

 i := integer'value(s);
 Put_Line("The value of i is " & i'img);
 New_Line;

end basicio3;

This program displays information on the screen
and reads information from the keyboard

The value i is 5

integer'value changes a string into an integer value

Type in a 4 character integer characters with a leading
space or negative sign and press Enter:
2345

The value of i is 2345

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (9 of 29) [7/20/2001 11:33:06 AM]

Besides Text_IO, Ada provides additional "Text_IO" packages for the basic Ada data types. Using these packages,
you don't need to use 'img to convert the variable to a string. For example, the package Ada.Integer_Text_IO can
put and get integers, and Ada.Float_Text_IO can put and get floating point numbers. You can use these packages
simultaneously with Text_IO.

These additional packages do not have Put_Line or Get_Line because these are specifically for strings. The Put
command has two additional capabilities: to space information to fit into specified field widths, and to display
numbers in formats other than base 10.

with Ada.Text_IO, Ada.Integer_Text_IO;

use Ada.Text_IO, Ada.Integer_Text_IO;

procedure basicio4 is

-- this program demonstrates integer input/output

 i : integer := 5; -- this variable contains an integer number

 -- i initially has the value of 5

begin

 Put_Line("This program displays information on the screen");

 Put_Line("and reads information from the keyboard");

 New_Line;

 Put("The value i is"); Put(i); New_Line;

 New_Line;

 Put_Line("Type in an integer number.");

 Get(i);

 New_Line;

 Put("The value i is"); Put(i); New_Line;

 New_Line;

 Put_Line("'width =>' specifies the amount of room to display the number
in.");

 Put_Line("This can be used to display columns of numbers.");

 Put("Using a width of 5, the value i is '");

 Put(i, width => 5);

 Put_Line("'");

 New_Line;

 Put_Line("'base =>' specifies a number system besides the normal base 10"
);

 Put("Using binary notation, the value i is "); Put(i, base => 2);
New_Line;

 New_Line;

 Put_Line("Set the variable Default_Width or Default_Base to avoid using");

 Put_Line("'width =>' and 'base =>'.");

 Put("The Default_Width was "); Put(Default_Width); New_Line;

 Default_Width := 20;

 Put("The Default_Width is now "); Put(Default_Width); New_Line;

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (10 of 29) [7/20/2001 11:33:06 AM]

 Put("The value i is '"); Put(i); Put_Line("'");

 New_Line;

end basicio4;

This program displays information on the screen

and reads information from the keyboard

The value i is 5

Type in an integer number.

432

The value i is 432

'width =>' specifies the amount of room to display the number in.

This can be used to display columns of numbers.

Using a width of 5, the value i is ' 32'

'base =>' specifies a number system besides the normal base 10

Using binary notation, the value i is 2#110110000#

Set the variable Default_Width or Default_Base to avoid using

'width =>' and 'base =>'.

The Default_Width was 11

The Default_Width is now 20

The value i is ' 432'

Table: Predefined Text_IO packages for Numeric Types

Type Text_IO Package

Short_Short_Integer Ada.Short_Short_Integer_Text_IO

Short_Short Integer (wide) Ada.Short_Short_Integer_Wide_Text_IO

Short_Float Ada.Short_Float_Text_IO

Short_Float (wide text) Ada.Short_Float_Wide_Text_IO

Short_Integer Ada.Short_Integer_Text_IO

Short_Integer (wide text) Ada.Short_Integer_Wide_Text_IO

Integer Ada.Integer_Text_IO

Integer (wide text) Ada.Integer_Wide_Text_IO

Float Ada.Float_Text_IO

Float (wide text) Ada.Float_Wide_Text_IO

Long_Float Ada.Long_Float_Text_IO

Long_Float (wide text) Ada.Long_Float_Wide_Text_IO

Long_Integer Ada.Long_Integer_Text_IO

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (11 of 29) [7/20/2001 11:33:06 AM]

Long_Integer (wide text) Ada.Long_Integer_Wide_Text_IO

Long_Long_Float Ada.Long_Long_Float_Text_IO

Long_Long_Float (wide) Ada.Long_Long_Float_Wide_Text_IO

Long_Long_Integer Ada.Long_Long_Integer_Text_IO

Long_Long_Integer (wide) Ada.Long_Long_Integer_Wide_Text_IO

Unbounded (String) Ada.Unbounded_IO

Wide_Unbounded (String) Ada.Wide_Unbounded_IO

Calender.Time Gnat.Time_IO

10.4 Type Attributes

Ada has a selection of attributes, or built-in functions, that can be applied to types and variables. Attributes are
attached to the end of a type or variable name using a single quote.

The most useful attribute, the 'img attribute, returns the ASCII image of what it's attached to, which is handy for
printing values on the screen using only Ada's Text_IO package. (5)'img, for example, is the string "5".
false'image, the image of the boolean value false, is the string "FALSE" in capital letters. One quirk of 'img is
that if the value is a positive number, 'img adds a leading blank.

'img is a GNAT shorthand for the Ada attribute 'image. 'image requires you to specify the type of the parameter.
integer'image(5) is the string "5". This attribute is useful on complicated expressions where 'img won't work
because of the lack of parentheses.

Here's a list of Ada 95 attributes: [To Be Completed]

Access - access value for an identifier

Address - address value for an identifier

Adjacent - the floating point value adjacent to the given value

Aft - for fixed types, number of decimal digits after decimal to accommodate a subtype

Alignment - storage value of an identifier

Base - unconstrained subtype of a type

Bit_Order - whether or not bits are high order first

Body_Version [NQS]

Callable - true if task can be called

Ceiling - round up a floating point value

Class - classwide type of an identifier

Component_Size - size of array components in bits

Compose

Constrained

Copy_Sign

Count

Definite

Delta

Denorm

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (12 of 29) [7/20/2001 11:33:06 AM]

Digits

Exponent

External_Tag

First - first index in an array

First_Bit

Floor - round down a floating-point value

Fore

Fraction

Identity

Image

Input - convert value to a string

Last - last index in an array

Last_Bit

Leading_Part

Length - number of elements in an array

Machine

Machine_Emax - maximum real type exponent on your hardware

Machine_Emin - minimum real type exponent on your hardware

Machine_Mantissa - size of mantissa on your hardware in bits

Machine_Overflows - true of your machine overflows real types [NQS]

Machine_Radix

Machine_Rounds

Max - maximum value

Max_Size_In_Storage_Elements

Min - minimum value

Model

Modulus

Output

Partition_ID - for distributed processing

Pos - position in a discrete type (such as an enumerated) — opposite of val

Position

Pred - previous value in a discrete type

Range - range of values for a type

Read

Remainder

Round

Rounding

Safe_First

Safe_Last

Scale

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (13 of 29) [7/20/2001 11:33:06 AM]

Scaling

Signed_Zeros

Size - size of storage in bytes

Small

Stoarge_Pool - used to set the storage pool for a pointer

Storage_Size

Succ - next value in a discrete type

Tag - tag for a tagged record

Terminated - true if task has terminated

Truncation

Unbiased_Rounding

Unchecked_Access - return access type, but ignore scope checks

Val - value of a discrete type at a certain position — opposite of pos

Valid - determine if the expression evaluates to a legal result

Value - convert string to a value — opposite of image

Version

Wide_Image - same as image, but for a 16-bit string

Wide_Value - same as value, but for a 16-bit string

Wide_Width

Write

Here's a list of additional gnat-specific attributes:

[should fold these in above]

Abort_Signal - task abort exception

Address_Size - number of bits in an address

Bit - offset to first bit in object

Default_Bit_Order - whether or not CPU uses high order first

Elab_Body - the procedure that elaborates a package body

Elab_Spec - the procedure that elaborates a package spec

Enum_Rep - the numerical value of an enumerated identifier

Fixed_Value - unchecked conversion of integer to a fixed type

Img - shorthand for ‘image

Integer_Value - the reverse of Fixed_Value

Machine_Bits - for compatibility with other Ada compilers

Max_Interrupt_Priority - the maximum interrupt priority

Max_Priority - the maximum task priority

Maximum_Alignment - determine the bit alignment of an external object

Mechanism_Code - how a parameter is passed to a subprogram

Null_Parameter - for passing null pointer for a composite object

Object_Size - for fixed and discrete types, default allocation size

Passed_By_Reference - true if type is normally passed by reference

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (14 of 29) [7/20/2001 11:33:06 AM]

Range_Length - number of values in a discrete type

Storage_Unit - same as System.Storage_Unit

Tick - same as System.Tick

Type_Class - return type basic class of an identifier (such an enumerated or array)

Universal_Literal_String - return a string literal for a number

Unrestricted_Access - like access, but has no accessibility or aliased view checks

Value_Size - number of bits to represent a value of a given subtype

Word_Size - same as System.Word_Size

The following program demonstrates some of the basic Ada attributes.

with text_io;

procedure attrib is

 type enum is (dog, mica, megabyte);

begin

 Text_IO.Put_Line("Some Basic Ada Attributes:");

 Text_IO.New_Line;

 Text_IO.Put_Line("Boolean bits is " & boolean'size'img);

 Text_IO.Put_Line("Short short integer bits is" &

 short_short_integer'size'img);

 Text_IO.Put_Line("Short integer bits is " & short_integer'size'img);

 Text_IO.Put_Line("Integer bits is " & integer'size'img);

 Text_IO.Put_Line("Long integer bits is " & long_integer'size'img);

 Text_IO.Put_Line("Long long integer bits is " &

 long_long_integer'size'img);

 Text_IO.Put_Line("Natural bits is " & natural'size'img);

 Text_IO.Put_Line("Positive bits is " & positive'size'img);

 Text_IO.Put_Line("Short float bits is " & short_float'size'img);

 Text_IO.Put_Line("Float bits is " & float'size'img);

 Text_IO.Put_Line("Long float bits is " & long_float'size'img);

 Text_IO.Put_Line("Long long float bits is " &

 long_long_float'size'img);

 Text_IO.Put_Line("Our 3 item enumerated bits is " &

 enum'size'img);

 Text_IO.New_Line;

 Text_IO.Put_Line("First integer is " & integer'first'img);

 Text_IO.Put_Line("Last integer is " & integer'last'img);

 Text_IO.New_Line;

 Text_IO.Put_Line("First enumerated is " & enum'first'img);

 Text_IO.Put_Line("Last enumerated is " & enum'last'img);

 Text_IO.Put_Line("Mica is in position" & enum'pos(mica)'img);

 Text_IO.Put_Line("The third enumerated is " & enum'val(2)'img);

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (15 of 29) [7/20/2001 11:33:06 AM]

 Text_IO.New_Line;

 Text_IO.Put_Line("The smallest float is" & float'small'img);

 Text_IO.Put_Line("The largest float is" & float'large'img);

 Text_IO.Put_Line("The number of digits in float is" &

 integer'image(float'digits));

 Text_IO.Put_Line("The size of the mantissa in bits is" &

 float'mantissa'img);

 Text_IO.Put_Line("However, the CPU's mantissa is" &

 float'machine_mantissa'img);

end attrib;

Here are the results of the program on a Pentium II with gnat 3.11:

Some Basic Ada Attributes:

Boolean bits is 1

Short short integer bits is 8

Short integer bits is 16

Integer bits is 32

Long integer bits is 32

Long long integer bits is 64

Natural bits is 31

Positive bits is 31

Short float bits is 32

Float bits is 32

Long float bits is 64

Long long float bits is 9

Our 3 item enumerated bits is 2

First integer is -2147483648

Last integer is 2147483647

First enumerated is DOG

Last enumerated is MEGABYTE

Mica is in position 1

The third enumerated is MEGABYTE

The smallest float is 1.17549435082228751E-38

The largest float is 1.93428038904620299E+25

The number of digits in float is 6

The size of the mantissa in bits is 21

However, the CPU's mantissa is 24

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (16 of 29) [7/20/2001 11:33:06 AM]

10.5 Operations and Expressions

Ada Operator Description C Equivalent

and Boolean and &&

or Boolean or ||

xor Boolean xor ?

not Boolean not ~

= Equals ==

/= Not equals !=

abs Absolute Value ?

mod Integer modulus %

rem Float remainder -

and then Short circuited and -

or else Short circuited else -

in Value in range -

not in Short for not(...in...) -

Boolean operations: and, or, not, xor
Comparisons: >, >=, <, <=, =, /=

Unary operations: +, -, abs
Binary Operations: +, -, *, /, mod, rem, &, **

C: C boolean operators always short circuit. In Ada, there are both short circuiting operations and
operations that do not short circuit.

Short circuiting operations are not considered true operators, and as such, can't be
overloaded (see below).

Membership Tests (in and not in) are not considered true operators and can't be overloaded.

if dog in aDogBreed then

 Put_Line("The dog is a breed in the enumerated aDogBreed");

end if;

if i in 1..10 then

 Put_Line("I is between 1 and 10");

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (17 of 29) [7/20/2001 11:33:07 AM]

end if;

1..10 is called a range. The range attribute returns the range of values for a type.

if salary not in MiddleManagementSalary'range then

 Put_Line("The salary is not in the middle management type's range");

end if;

C: Assignment is considered a statement, not an operator.

10.6 Variable Declarations

You define a variable as the variable name, colon, the type of information the variable will hold, and a semicolon.

 totalSales : float;

This creates a new variable called totalSales that contains a real number. Some variations:

 runningTotal : integer := 0;

 -- this variable starts out at 0

 companyName : constant string := "Bob's Widgets Inc.";

 --companyName is set to Bob's Widgets Inc. and it can't be changed while

 --the program is running

 char1, char2 : character;

Complex variables references can be assigned a shorthand with a rename declaration.

 sb : float renames EmployeeList(CurrentEmployee).SalaryInfo.Bonus;

 ...

 sb := 5.0; -- same as EmployeeList(CurrentEmployee).SalaryInfo.Bonus :=
5.0

C: There are no self-referential operators, such as C's +=.

10.7 New Types

Ada Statement Description C Equivalent

type Create a new type. typedef

subtype Create a variation of an existing type -

New types are defined with the type statement.

type aSalary isnew float;

type aSmallSalary isnew Salary range 0.0 .. 35_000.0;

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (18 of 29) [7/20/2001 11:33:07 AM]

When you create a new type, the type is considered to be incompatible with the type it is derived from. If you want
to add a small salary to a salary, you'll have to use type casting, even though they are both floats.

 totalSalary, BigSalary : aSalary;

 aSmallSalary : aSmallSalary;

 totalSalary := bigSalary + aSalary(smallSalary);

 To type cast one type into another, use the type name and the value to convert in parantheses after it.

C: "(type) value" style of type casting doesn't work in Ada.

C: "Ada has stronger restrictions on typecasting. In C, for example, you can cast a character pointer as
an integer pointer. Although this is considered a bad programming practice, it is allowed. Ada will not
allow this kind of type casting.

Use subtype to create a type aSmallSalary that is compatible with aSalary.

 subtype aSmallSalary is aSalary range 0..35_000.0;

Subtype can also be used to rename types.

 subtype sb is aSalaryBonusForEmployeesNamedBobStevens;

In this example, sb is a short form for aSalaryBonusForEmployeesNamedBobStevens. "sb" is techncially called a
"subtype mark", a term which sometimes appears in Gnat error messages. One common error, "subtype mark
required in this context", indicates that there are several different types that could be used and you have to indicate
to the compiler which should used.

10.7.1 Modular Types

Normally, if a calculation produces an answer too large for the variable type being assigned to, it creates an error.
This is called a numeric overflow. For example, if int is an integer,

 int := integer'max +1; -- check (KB)

will result in a constraint error because the answer is bigger than the biggest number an integer variable can contain.

Ada provides another type of integer called a modular type. The word "modular" comes from the mathematical
modulus operation. Modular types never overflow. Instead, if a number becomes bigger than the largest possible
number the variable can contain, the value of the modular type "wraps around" to the lowest value and continues to
grow from there. If the int variable in the above example was a modular called int modular, then

 int := intmodular'max + 1;

would result in int being assigned intmodular'min.

C: C integer types are all modular because C doesn't catch overflow errors.

There are no built-in modular types. All modular types are new types created by a type statement.

 type mod10 is mod 10; -- value ranges from 0 to 9

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (19 of 29) [7/20/2001 11:33:07 AM]

10.7.2 Text_IO and New Types

To perform Text_IO input and output on new types, you have to create your own version of Text_IO for the new
type. This process is called "instantiation", and is covered later in the section on generics. The format is

 package MyNewTextIOPackage isnew PredefinedGenericIOPackage(mytype);

For example, to create a Text_IO package for the aSalary type,

 package aSalary_Text_IO is new Ada.Text_IO.Float_IO(aSalary);

Ada creates a new package called aSalaray_Text_IO customized for the aSalary type. You can use your package just
like one of the standard Ada numeric Text_IO packages.

 Salary := 50_000.00

 aSalary_Text_IO.Put(Salary);

The following table lists all the Text_IO packages that can be instantiated for a particular type.

Table : Predefined generic Text_IO packages for performing Input/Output

Base Type Package

Complex Numbers Ada.Text_IO.Complex_IO

Complex Numbers (wide text) Ada.Wide_Text_IO.Complex_IO

Decimals (NQS) Ada.Text_IO.Decimal_IO

Decimal Numbers (wide text) Ada.Wide_Text_IO.Decimal_IO

Enumerateds Ada.Text_IO.Enumeration_IO

Enumerateds (wide text) Ada.Wide_Text_IO.Enumeration_IO

Fixed Points Ada.Text_IO.Fixed_IO

Fixed Points (wide text) Ada.Wide_Text_IO.Fixed_IO

Floating Points Ada.Text_IO.Float_IO

Floating Points (wide text) Ada.Wide_Text_IO.Float_IO

Integers Ada.Text_IO.Integer_IO

Integers (wide text) Ada.Wide_Text_IO.Integer_IO

Modulars Ada.Text_IO.Modular_IO

Modulars (wide text) Ada.Wide_Text_IO.Modular_IO

10.8 Aggregate Types

Arrays are tables of values with specific bounds. For example, to declare a table of 10 people

 type peopleHeightList is array(1..10) of integer;

The bounds can be specified as a type.

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (20 of 29) [7/20/2001 11:33:07 AM]

 type peopleHeight is new integer range 1..10;

 type peopleHeightList is array(peopleHeight) of integer;

This creates an array from 1 to 10, the range of possible values for the type peopleHeight. This is the same as using
array(peopleHeight'range).

You can create a multidimensional array by using more than one index to the table.

 type peopleStats is array(peopleHeight, peopleAge) of integer;

You can assign default values to an array using :=, the assignment operator. The list of values is enclosed in
brackets. You can specify a specific value using =>, or specify a default with others =>.

 PeopleHeights1 : peopleHeightList := (others => 0);

 -- looks strange, but assigns 0 to all the heights in the entire list

 peopleHeights2 : peopleheightList := (10, others => 0);

 -- first height is 10, others are 0

 peopleHeights3 : peopleHeightList := (5 => 15, others => 0);

 -- fifth height is 15, others are 0

Arrays are accessed by specifying values for the indices. To get the height for the fifth element in the
PeopleHeights1 array, you'd type:

 Put_Line(PeopleHeights1(5)'img);

Records are collections of related information. Each subsection is referred to as a field.

 type employeeProfile is record

 name : string(1..80);

 salary : aSalary;

 age : anAge;

 end record;

You can assign default values to the fields in a record using :=, the assignment operator.

 type employeeProfile isrecord

 name: string(1..80) := (others => ' ');

 salary : aSalary := 30_000.0;

 age: anAge := 30;

 end record;

Default values for whole records can be specified when record variables are declared.

 Bob : employeeProfile := ("Bob Smith", 35_000.0, 37);

 Denise : employeeProfile := (name => "Denise Jones", salary => 39_000.0,

 age => 42);

In the above examples, we are creating a temporary record and then assigning that record to the variable. You can
use this in the executable part of your program, not just in declarations. Ada will require a "subtype mark", an
indication of what type of record you are making.

 NewRec := employeeProfile'("Bob Smith", 35_000.0, 37);

employeeProfile' indicates that the record we've built should be treated as an employeeProfile record.

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (21 of 29) [7/20/2001 11:33:07 AM]

Although this looks almost exactly the same as type casting, it isn't type casting. Consider the following:

 J := long_integer'(5);

 J := long_integer(5);

The first statement clarifies that 5 is a long_integer: this is a hint to the compiler that 5 should be treated as an
long_integer. The second converts 5 from an integer to a long_integer.

Record fields are accessed using a period and the field name.

 Bob.age := 37;

A variant record is a record that contains different sets of mutually exclusive information.

 type employeeProfile(sex : aSex) is record

 name : string(1..80);

 salary : aSalary;

 age : anAge;

 case sex is

 when male =>

 BeardLength : integer;

 when female => null;

 end record;

(check syntax)

In this example, a male employee has an additional field called BeardLength.

(when you create a variant record, you must specify the descriminant).

10.9 Enumerated Types

Enumerated types (lists of identifiers) are created using a type statement.

 type aDogBreed is (Unknown, Boxer, Retriever, Shepherd, MixedBreed);

Different enumerated types may have the same values, but they are considered different from each other. For
example,

 type aCatBreed is (Unknown, Siamese, MixedBreed);

shares two values with aDogBreed, but an unknown cat breed is considered different from an unknown dog breed. If
Ada is confused by the ambiguity, you can clarify values with a subtype mark, e.g. aCatBreed'(MixedBreed).

Many of the common attributes work with enumerated types, including 'first, 'last, and 'range. Especially useful are
'pred (get a previous enumerated identifier) and 'succ (get the next enumerated identifer). Specific values can be
assigned (using a for clause) so the enumerated type can reflect an external integer value (such as error codes).

with ada.text_io, unchecked_conversion;
use ada.text_io;

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (22 of 29) [7/20/2001 11:33:07 AM]

procedure enumeration_fun is
 -- a demonstration of Ada 95 enumerated types

 type vowels is ('a', 'e', 'i', 'o', 'u', none);
 -- characters may be used as well as identifiers. The standard
 -- character sets are implemented this way.

 type aDogBreed is (Jack_Russel, Labrador, German_Shepherd, Other);
 type aCanadianRegion is (West_Coast, Arctic, Labrador, Other);
 subtype coldPlaces is aCanadianRegion range Arctic..Other;
 -- names may overlap between enumerated types

 type anErrorCode is (None, IOerror);
 for anErrorCode use (None => 0, IOerror => 7);
 -- specific values may be assigned to enumerated identifiers

 function toInteger is new unchecked_conversion(anErrorCode, integer);

begin

 -- Basic enumerated type operations

 put("The vowel 'u' has a position of");
 put(integer'image(vowels'pos('u')));
 put_line(" in the list.");
 put("The vowel after 'a' is");
 put(vowels'image(vowels'succ('a')));
 put_line(".");

 -- Using a regular enumerated. Where an identifer belongs to
 -- two enumerated types, we have to apply a type qualifier when
 -- ambiguity comes up.

 put("The item before German_Shepherd is ");
 put(aDogBreed'image(aDogBreed'pred(German_Shepherd)));
 put_line(".");
 put("The item after Labrador (the region) is ");
 put(aCanadianRegion'image(aCanadianRegion'succ(Labrador)));
 put_line(".");
 put_line("Listing of cold regions between 'Labrador' and 'Other':");

 for cr in coldPlaces'(Labrador)..other loop
 put_line(aCanadianRegion'image(cr));
 end loop;

 -- Using an enumerated with assigned numbers. To get the number
 -- we assigned, we need unchecked_conversion.

 put("Error code " & anErrorCode'image(IOerror));
 put(" is in position" & integer'image(anErrorCode'pos(IOerror)));

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (23 of 29) [7/20/2001 11:33:07 AM]

 put_line(".");
 put("IOerror has a value of" & integer'image(toInteger(IOerror)));
 put_line(".");
 put("The code before IOerror is ");
 put(anErrorCode'image(anErrorCode'pred(IOerror)));
 put_line(".");
 put("The code after NONE is ");
 put(anErrorCode'image(anErrorCode'succ(None)));
 put_line(".");
end enumeration_fun;

The vowel 'u' has a position of 4 in the list.
The vowel after 'a' is'e'.
The item before German_Shepherd is LABRADOR.
The item after Labrador (the region) is OTHER.
Listing of cold regions between 'Labrador' and 'Other':
LABRADOR
OTHER
Error code IOERROR is in position 1.
IOerror has a value of 7.
The code before IOerror is NONE.
The code after NONE is IOERROR.

The boolean type is implemented as an enumerated with two values, true and false. False is always the predecessor
of true.

C: Ada enumerated types have more features than C's. You can use 'pred and 'succ to move through the
list without casting the enumerated as an integer and using arithmetic. The position of an enumerated
identifer is independent of its assigned value.

10.10 Procedures and Functions

Ada Statement Description C Equivalent

procedure A subprogram that returns no value for expressions. void f(...);

function A subprogram that returns a value for expressions.. sometype f(...);

declare/begin A nested block {...}

There are several ways to break up an Ada program. First, a procedure, such as the main program, is a subprogram
which returns no value.

procedure print_test is

begin

 Text_IO.Put_Line("This is a test");

end print_test;

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (24 of 29) [7/20/2001 11:33:07 AM]

C: a procedure is a void function.

The second is a function. A function is a procedure that can be used in a expressions because it returns a value. The
value is returned with a return statement.

function AddOne(X : integer) return integer is

begin

 return X+1;

end AddOne;

AddOne adds one to whatever is in the brackets. To add one to a variable called subtotal, you'd use it like this:

 Total := AddOne(SubTotal);

The value in the brackets is the parameter to the function. Parameters have modes: in, out or in out. In, which is the
default if you specify a mode, means that the variable is treated as a constant. Out means the value is returned when
the subprogram is finished. In out means the value goes into the subprogram, is changed, and is returned again when
the subprogram is finished.

In Ada, functions can only have in parameters, but procedures can have all three.

procedure AddOne(x : in out integer) is

begin

 X := x + 1

end AddOne;

...

AddOne(Subtotal);

C: There is no equivalent of pass-by-copy or pass-by-reference. See the section on interfacing C and
Ada.

There is also a special access mode, which means that the parameter must be an access variable. This is especially
useful with tagged records. You can also get around the in out restriction on functions with the access mode. It is
discussed in 11.10.2.

C: An access variable is basically a pointer. These are described later.

An example of multiple parameters:

procedure DisplayCurrency(c : aCurrency;

 fieldWidth : integer; useDollarSign : boolean := true) is

useDollarSign, the third parameter, has a default value of true. Here's now you can call this procedure:

DisplayCurrency(1.97, 8);

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (25 of 29) [7/20/2001 11:33:07 AM]

DisplayCurrency(1.97, 8, false);

DisplayCurrency(1.97, 8, useDollarSign => false);

DisplayCurrency(c => 1.97, fieldWidth => 8, useDollarSign => false);

If you really wanted to, you can also change the order of the parameters using the => convention.

 DisplayCurrency(fieldWidth => 8, useDollarSign => false, c => 1.97);

You can also declare arbitrary blocks in Ada. These let you declare variables in the middle of a procedure or
function or set apart the designated source code in it's own block. The form of a block is an optional declare section,
and the block denoted by a begin and end.

procedure nested is

 Date : integer;

begin

 Date := 0;

 declare

 DaysInYear : constant integer := 365;

 begin

 Date := Date + DaysInYear;

 end;

end nested;

Here, DaysInYear only exists for the assignment statement that follows it.

The main reason for blocks is to add an exception hander to a particular line without having to write a one line
procedure.

 begin

 Total := Total / Average;

 exception when numeric_error =>

 Text_IO.Put_Line("Division by zero!");

 Total := 0;

 end;

Here, if there's a numeric error during the division statement, it's caught and handled.

Operators are in-fix functions, ones that take parameters on their left and right. For example, "+" is an operator. Ada
lets you redefine most of the standard operators so they work with types of your choosing. You enclose the
operators' symbol in double quotes.

function "+"(e : employeeRecord, s : aSalary) returns aSalary is

begin

 return e.salary + s;

end function;

The above function will let you add a salary to an employee record, which assumes you are referring to the salary
field in the employee record.

Ada subprograms can have the same name as long as their parameters or return values are different. This is called
overloading. If Ada can't determine which subprogram you are referring to, you'll receive an error when compiling.
In the above example, "+" is overloaded since there's integer addition, floating addition, and the other built-in

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (26 of 29) [7/20/2001 11:33:07 AM]

meanings for "+", and our special salary addition we just defined.

C: Assignment is not an operator in Ada. Assignment overloading can be simulated with controlled
tagged records and the Adjust procedure.

10.11 Control of Flow

Ada Statement Description C Equivalent

if Conditional execution if

for Interative loop for

while Pretest loop while

loop Indefinite loop -

exit Loop exit break

case Multiple case conditional execution switch

goto Unconditional jump goto

The if statement is, well, a standard if statement which you can find in many languages. Here's an example:

if x > 0 then

 Text_IO.Put_Line("X is positive");

elsif x < 0 then

 Text_IO_Put_Line(X is negative);

else

 Text_IO.Put_Line("X is zero");

end if;

Ada provides two expression short-circuiting operators: "or else" and "and then". Short-circuiting means that the
expression will not be evaluated if the left side doesn't satisfy the condition.

 if x > 0 or else y > 0 then

In this case, y > 0 is only checked if x is not greater than zero.

There is a general purpose loop statement, loop. Loops are exited with an exit statement. Ada provides a shorthand,
exit when, to exit on a condition.

loop

 X := X / 2.5;

 exit when X < 4.0;

 X := X + 1.0;

end loop;

C: There is no general purpose loop in C.

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (27 of 29) [7/20/2001 11:33:08 AM]

C: There's no equivalent of the C continue statement.

There is a pretest loop, while, which determines whether or not the loop should be entered or reentered based on an
expression at the top of the loop;

 while X >= 4.0 loop

 x := (x / 2.5) + 1.0;

 end loop;

C: This is the equivalent of a C while loop. There is no post-test loop, like C's do loop.

There is the standard for loop as well, to loop through a range of numbers. For loops in Ada may only loop by
discrete numbers one unit at a time: no real numbers and no arbitrary stepping values. To go backwards through a
range, use the word reverse.

 for I in 1..10 loop

 Total := Total + 1;

 end loop;

To loop through an entire range of a type, use the 'range attribute. To loop through all the dogs in an enumerated
type called aDogBreed,

 for dog in aDogBreed'range loop

Also note that dog is implicitly defined. You don't have to declare it. Ada understands the type from the loop and the
loop variable exists for the duration of the loop.

C: For is much more structured than C's for.

Any loop can be exited with exit (or exit when). Ada allows you to label loops in order to exit out of several loops at
once. In the following example, exit will exit the current loop and all loops up to and including OuterLoop. In this
case, that's both loops.

OuterLoop: while y > 0 loop

 while x > 0 loop

 x := x - y;

 if x = 37 then

 exit OuterLoop;

 end if;

 end loop;

 y := y * 2;

 end loop;

There is a case statement as well, for testing a lot of different individual values. Ada requires a when others case to

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (28 of 29) [7/20/2001 11:33:08 AM]

make sure that all possible cases are handed.

case DogBreed is

when Unknown =>

 Text_IO.Put_Line("I don't know the breed");

when Shepherd =>

 Text_IO.Put_Line("It's a shepherd");

when others =>

 Text_IO.Put_Line("It's something else");

end case;

Ada also as a null statement, which is a placeholder to use when a statement is expected but none is needed. For
example, you can't have an empty if statement--there must be at least a "null;". Multiple cases can be included with
the vertical bar, or a range can be specified with an ellipsis.

case TaxType is

when local_tax => Tax := Tax + LocalTax;

when federal_tax | govt_taxable => Tax := Tax + FederalTax;

when others => null; -- perhaps a warning would be better here instead

end case;

C: case is like switch, but the cases don't fall through.

Cases can also use ranges, such as 1..10 or TaxSubtype'range.

I really like goto's, and through a stroke of good luck, Ada includes a goto.

Goto labels are denoted with double angle brackets (unlike loop labels that use a colon).

for I in 0..10 loop

 -- some computations here

 if emergency then

 goto Help;

 end if;

end loop;

-- stuff that must not be executed in an emergency

<<Help>> Text_IO.Put_Line("We are now down here");

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (29 of 29) [7/20/2001 11:33:08 AM]

11 Advanced Ada Programming

 <--Last Chapter Table of Contents Next Chapter-->

11.1 Packages

Ada Description C Equivalent

package Define a package -

C:In C++, classes serve two purposes. First, they hide declarations. Second, they implement objects. In
Ada, declaration hiding is done separately with packages: you do not need to use tagged records to use
packages.

Large Ada programs are divided up into packages. These are collections of procedures, functions, variables and other
declarations that serve a similar purpose. You can have packages to draw text on the screen, or packages to do accounts
payable, or package to work with complex numbers.

To make it easier for different people to work on different packages, and to make packages self-documenting, Ada packages
are divided into two parts. The package specification (or package spec) contains everything that other programs need to use
your package. It contains all variables they can access, all the subprograms they can call, etc. For subprograms, you only use
the subprogram header, the procedure or function line, to let the programmers know the name of the subprogram and what the
parameters are.

C: Subprograms declared in package specs are similar to C (non-static) function prototypes in header
files. Unlike prototypes, which are optional, declarations in the package specs are required for
subprograms to be exported outside of the package.

package Currency is

-- This package defines US and Canadian dollars, and converts money between
-- these two countries.

subtype aMoney is float;

type USDollars is new aMoney;

type CanadianDollars is new aMoney;

-- aMoney is separate so we can change the base type, if necessary, for
-- US and Canadian dollars. USDollars and Canadian dollars deliberately
-- incompatible because it could be messy if we mix them up

procedure SetExchangeRates(USToCanadian, CanadianToUS : float);

function ToCanada(money : USDollars) return CanadianDollars;

function ToUS(money : CanadianDollars) return USDollars;

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (1 of 39) [7/20/2001 11:33:44 AM]

-- Set the exchange rate between US and Canada, and two functions to
-- convert between currencies.

end Currency;

In GNAT, you must save this package under the filename "currency.ads" (.ads for Ada Spec). Here we create different money
values two functions to convert between the different rates and a procedure to set the exchange rates to use in the functions.
Notice there is no main program.

With the spec complete, you can compile it to check for errors.

To complete the package, we create a package body with the rest of the details, including the completed subprograms. With the
implementation details hidden in the package body, other programmers don't have to worry about how currency is actually
handled.

package body Currency is

-- This package defines US and Canadian dollars, and converts money between
-- these two countries.

USToCanadaExchangeRate : float;
CanadaToUSExchangeRate : float;

procedure SetExchangeRates(USToCanadian, CanadianToUS : float) is
begin
 USTOCanadaExchangeRate := USToCanadian;
 CanadaToUSExchangeRate := CanadianToUS;
end SetExchangeRates;

function ToCanada(money : USDollars) return CanadianDollars is
begin
 return CanadianDollars(money * USToCanadaExchangeRate);
end ToCanada;

function ToUS(money : CanadianDollars) return USDollars is
begin
 return USDollars(money * CanadaToUSExchangeRate);
end ToUS;

-- Set the exchange rate between US and Canada, and two functions to
-- convert between currencies.

end Currency;

Notice we have access to everything we defined in the package spec--we don't need to repeat anything in the body.

Because the two exchange rate variables are defined inside the package body, they are invisible to other programmers.

Save this package body as "currency.adb" (.adb for AdaBody). Make sure all pragma Stubbed's are removed for the finished
subprograms. Compile both and you have a working package.

To use your package in a program, use the with statement.

with text_io, currency;
procedure currencyTest is
begin
 Currency.SetExchangeRate(1.5, 0.7);

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (2 of 39) [7/20/2001 11:33:44 AM]

 Text_IO.Put_Line("1 Canadian dollar is " & Currency.ToUS(1.0)'img);
end currencyTest;

To have Ada check which package a subprogram belongs to, and avoid typing the package name constantly, use the use
statement.

with currency;
use currency;
...
SetExchangeRate(1.5, 0.7);

If the use statement creates an ambiguity, Ada will warn you that it can't determine which package SetExchangeRate is in.

Package bodies may have main programs, a block at the end of all declarations marked with begin. This allows you to setup
your package before it's actually used. In this case, we don't need one.

Package specs may have private sections at the end of the spec. There will be times when you will have to provide
information so that Ada can compile your spec, but you don't want the application programmer to be able use this information.
For example, you might create a package to maintain a customer list, but you don't want the programmer to access the internal
fields of a customer list since you might change them at some point.

Just about anything in a package spec can be marked private, and the compiler expects the details to be specified in the private
section. Declarations can also be limited private, meaning that besides having the details inaccessible to the programmer, the
programmer can't assign between variables of the type. For example, use limited private if you think you may include pointers
in the type at some time in the future.

package CustomerList is

 type aCustomerNumber is new positive range 1..1000;
 type aCustomerList is limited private;

private

 type aCustomerArray is array(aCustomerNumber) of string(1..120);

 type aCustomerList is record
 CurrentCustomer : aCustomerNumber;
 Customers : aCustomerArray;
 end record;

 -- no pointers yet, but we may some day, so it's limited private
 end CustomerList;

In this example, a programmer can declare customer lists, but he cannot access the fields CurrentCustomer or Customers
(because it's private), nor can he copy lists with assignment statements (because it's limited private).

C: In C++, privacy is limited to classes. In Ada, virtually anything can be private.

Packages can have children. A child package is a package that extends the capabilities of the parent package. You can use
child packages to add features to existing packages, such as the standard Ada libraries, or to break up large packages into
groups of related functions.

Suppose you had a package called accounting that contains tools to handle accounting in general. You can create a child
package for accounts payable begins like this:

 package Accouting.Accounts_Payable is

In GNAT, save this package spec as "accounting-accounts_payable.ads", with a minus sign instead of a period.

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (3 of 39) [7/20/2001 11:33:44 AM]

A child package inherits the package spec from it's parent package. You can access anything in the accounting package,
including anything private to which access is normally denied.

When a program uses the statement

 with Accouting.Accounts_Payable;

the parent package, accounting, is automatically with'ed as well (although you still have to use separate use's).

11.2 Controlling Elaboration

Ada Pragma Description C Equivalent

pragma Pure; The simplest kind of package. -

pragma Pure_Function(function_name);
When an entire package isn't
pure...

-

pragma Preelaborate;
A package with simple
elaboration.

-

pragma No_Elaboration_Code; Similar to Preelaborate. -

pragma Elaborate(package);
Force "package" to be elaborated
first, if possible.

-

pragma Elaborate_Body(package);
Elaborate the body before the
specification.

-

pragma Elaborate_All;
Short for Elaborate() for each
package.

-

Elaboration is the initialization of a package that's done before the main program of the package is executed. Assigning values
to constants, for example, is elaboration.

C: Since C is a has no packages, the order of elaboration between files is determined strictly by the
compilation order.

For most projects, gnat will work out a good elaboration order on its own. However, large projects with packages referring to
each other in complicated ways may require complex elaboration orders. gnat searches every possible elaboration order until it
finds one that solves any ambiguities. To speed up projects with slow elaboration times, Ada and gnat provide a number of
pragmas to give the compiler hints on the best compilation order and to solve any potential ambiguities.

11.2.1 First line of defense: Pure, Preelaborate and No_Elaboration_Code

Pragma Pure and Preelaborate are elaboration restrictions. They are hints to the Ada compiler to cut down the compiler's
work when trying to solve elaboration order. Pragma Pure tells Ada that the package requires no elaboration and contains no
executables. For example, a package of nothing but type declarations (with no default values) is pure.

package money_types is
 pragma pure;

 -- a simple package, nothing to elaborate

 subtype aCurrency is float;
 type aSalary is new aCurrency;

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (4 of 39) [7/20/2001 11:33:44 AM]

end money_types;

Pragma Preelaborate tells Ada that the package requires minimal elaboration. You should try pragma pure, and if it fails, try
pragma preelaborate.

gnat 3.11 introduced the gnat specific pragma No_Elaboration_Code. Sometimes this will work when Preelaborate will not.

Sometimes you can declare a function as pure using pragma Pure_Funciton. A pure function is one with no side effects and
one that's value doesn't change when executed with the same parameters each time. If the only thing standing in your way to
using pure or preelaborate are some functions used to assign initial values, try declaring them as pure functions.

If your package or program fails to meet the elaboration restriction requirements, the compiler will issue an error.

11.2.2 Second line of defense: Elaborate, Elaborate_Body, Elaborate_All

Sometimes the hints are not enough. For example, a package that assigns a value to constant using a function like

 Sin45 : float := Ada.Numerics.Elementary_Functions.Sin(45, 360);

is neither pure nor preelaborate because a function must be called when the package is initialized. In these cases, you can tell
Ada specifically which package should be elaborated first.

Pragma Elaborate(package) tells Ada the specified package should be elaborated first. For example, all generics must be
elaborated before they are used, so it's a good idea to use pragma elaborate on every generic package.

with generic_linked_list;
pragma Elaborate(generic_linked_list);

Pragma Elaborate_All indicates that a particular package and all the packages used by that package must be elaborate before
the current package. For example, if package userio uses package common,

with userio;
pragma Elaborate_All(userio);

will elaborate both userio and common prior to this package

Because Elaborate_All will affect multiple packages, it can cause unnecessary binding errors when used indiscriminately. This
pragma, when used everywhere, effectively requires all packages to be arranged in a strict hierarchy. Make sure this is the
effect you want.

11.2.3 Other Elaboration Pragmas

Another pragma, pragma Elaborate_Body, forces the package body to be elaborated before the package specification. This is
especially useful in generic packages.

Pragma Elaborate and Elaborate_All can also be used to resolve ambiguous elaborations.

11.3 Objects

Ada Description C Equivalent

type...tagged record Define an object class

type...new parenttype with
record

Extend an object class ...: parenttype

type...access all sometype Define a pointer to a class sometype *

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (5 of 39) [7/20/2001 11:33:44 AM]

'class Class-wide type virtual

abstract Abstract types/subprograms function...=0

C: Ada developed its own object oriented terminology because C's terminology can be ambiguous and
confusing. Ada differentiates between a class and the structure that defines that class.

An object in Ada is known as a tagged record. That is, it is a normal Ada record that has an invisible tag attached to it. The
record

type anEmployeeProfile is record
 name : string(1..80);
 age : anAge;
end record;

can be changed to a tagged record by adding the keyword tagged:

type anEmployeeProfile is tagged record
 name : string(1..80);
 age : anAge;
end record;

Although these two records look the same, if we use the 'size attribute to see how much memory the records take up, we'll see
that the tagged record is bigger. The extra space is used to store the invisible tag.

Unlike normal records, fields can be added tagged record and a new tagged record can be created. This is called extending the
record. To create a related record with additional fields, we use the keyword new:

type anHourlyEmployee is new anEmployeeProfile with record
 hourlyRate : float;
end record;

A tagged record extended in this way has all the fields of anEmployeeProfile, but has the additional field of hourlyRate.
anEmployeeProfile and anHourlyEmployee are said to be in the anEmployeeProfile class: the class is the collection of
anEmployeeProfile and all record extended from it.

Now we can create a access type (commonly called a pointer, though technically it isn't a pointer) to any record in the class:

type anEmployeeProfilePtr is access all anEmployeeProfile'class;

This pointer can be assigned either anEmployeeProfile record or anHourlyEmployee record. This is the purpose of the tagged
record's invisible tag. The tag indicates the type of tagged record a pointer points to since these kinds of pointers can refer to
more than one type of tagged record. This is sometimes called late binding.

ptr1 : anEmployeeProfilePtr := new anEmployeeProfile("Bob Smith", 45);
ptr2 : anEmployeeProfilePtr := new anHourlyEmployee("Denise Jones", 37, 17.50);

Access variables are null until assigned a different value. They are the only variables in Ada to have a default value.

There may be cases where you want to extend a type without adding new fields. Ada provides a shorthand phrase for this. For
example, if you want to distinguish hourly employees that work at night as being separate from other hourly employees, use

type aNightHourlyEmployee is new anHourlyEmployee with null record;

In complex classes, there will be times when you'll want to define a record that you never intend to assign variables to. For
example, anEmployeeProfile doesn't contain enough fields to completely describe any employee: only the tagged records

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (6 of 39) [7/20/2001 11:33:44 AM]

derived from anEmployeeProfile are usable. When particular record exists only to be extended it called an abstract record. You
declare abstract records with the keyword abstract:

type anEmployeeProfile is abstract tagged record
 name : string(1..80);
 age : anAge;
end record;

If you try to create anEmployeeProfile record, Ada will report an error since you said that this record can only be extended into
other records.

Ada requires that subprograms that work with tagged records be declared immediately after the type declaration. Each
procedure or function can only take one tagged record as a parameter.

C: Methods are normal subprograms with an object being referred to as a parameter. myobj.method(x)
would be method (myobj, x) or method(x, myobj) in Ada.

type aSalaryEmployee is new anEmployeeProfile with record
 salaryRate : float;
end record;

procedure SetSalaryRate(s : in out aSalaryEmployee'class; rate : float) is
begin
 s.salaryRate := rate;
end SetSalaryRate;

function GetSalaryRate(s : aSalaryEmployee'class) return float is
begin
 return s.salaryRate;
end GetSalaryRate;

We've declared two one line subprograms that will work on any tagged record derived from aSalaryEmployee.

C: Ada does not require constructors or destructors. Creating objects with these are discussed below.

Subprograms can be marked as unusable in the same way as abstract tagged records. An abstract procedure or function is a
placeholder. Declaring one requires that all types extended from this type must have this subprogram defined. If any do not
have this subprogram, Ada will report an error. For example, if anEmployeeProfile had a procedure like

procedure WriteEmployeeName(e : anEmployeeProfile) is abstract;

all employee profile records would be required to have a procedure called WriteEmployeeName. ASalaryEmployee will have a
compilation error unless we add such a function:

procedure WriteEmployeeName(e : aSalaryEmployee)is
begin
 Text_IO.Put_Line("Employee Name: " & e.Name);
end WriteEmployeename;

WriteEmployeeName could also use aSalaryEmployee'class to refer aSalaryEmployee or any records we extend from
it.

To avoid ambiguity, only one tagged record subprogram can refer to any one type. This is different from some other object
oriented languages where you can override a classwide subprogram with one that refers to a specific type. The advantage of no
overriding is that someone reading your class knows exactly which subprogram will be used for a particular tagged record
type--they don't need to read the entire class to make sure the subprogram isn't overridden later on. The disadvantage is that if

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (7 of 39) [7/20/2001 11:33:45 AM]

you can't use a classwide type, you'll have to write subprograms for each and every type in that class. In these cases,
typecasting is useful.

Tagged record types can be typecast as other tagged record types (in the same class) using typecasting. You need to do this if
you want a dispatching call inside of a dispatching call. For example, if anEmployeeProfile has a GetSalaryRate function, we
could call it by:

procedure WriteEmployeeSalary(e : aSalaryEmployee'class) is
begin
 Text_IO.Put_Line("The salary is" & GetSalaryRate(anEmployeeProfile(e)));
end WriteEmployeeSalary;

11.4 Objects with Automatic Initialization/Finalizaton

Ada Controlled Object Call Description C Equivalent

Initialize Initialize an object constructor

Adjust Fix object after assignment copy constructor

Finalize Clean up an object destructor

Basic Ada tagged records don't do anything special when they are created or destroyed. If you want special actions to be
executed automatically when a tagged record is created or destroyed, you can use the Ada.Finalization package. In this
package is defined a special tagged record called Controlled. When you extend this tagged record, you can overload special
procedures that Ada will automatically execute when necessary. This saves you from having to explicitly call such procedures
yourself.

 type businessDepartment is new Finalization.Controlled with record
 departmentHead : aEmployeeProfilePtr := new
 aSalaryEmployee ("Bob Smith", age => 45, rate => 42_000.0);
 end record;

In this example, every time you allocate a businessDepartment variable, DepartmentHead is initialized with a dynamic
allocation. We could write a procedure to free up this memory, but then we would have to remember to call it every time a
variable is about to be discarded. A better way to handle this is to let Ada do the discarding for us. Finalize is the name of the
procedure Ada calls when cleaning up a controlled tagged record. We create our own Finalize for our businessDepartment
tagged record:

procedure Finalize(bd : in out businessDepartment) is
begin -- Finalize
 Free(bd.departmentHead);
end Finalize;

Now Ada will automatically run this procedure before any businessDepartment variable is destroyed and we never have to
worry about forgetting to free up the memory used by departmentHead.

C: Finalize is the destructor.

There are two other such automatic procedure we can use with controlled tagged records. Procedure Initialize is used when an
object is first created, and procedure Adjust is used after an object is assigned in an assignment statement.

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (8 of 39) [7/20/2001 11:33:45 AM]

Adjust is very smart. Temporary storage is used for self-assignment. If Adjust fails because
of an exception, Finalize is not executed.

C:Adjust is like a C++ copy constructor, except that Ada will copy the object before calling Adjust.
With a copy constructor, you must copy the object yourself in the body of the constructor. Unlike a
copy constructor, Adjust only executes during assignment.

with text_io, sample;
use text_io, sample;

procedure controlledtest is
 srp1, srp2 : SampleRecPtr;
 sr3 : SampleRec;
begin
 Put_Line("(This is the first line of the program)");
 New_Line;
 Put_Line("This is an example of controlled tagged records:");
 New_Line;
 Put_Line("Executing 'srp1 := new SampleRec'");
 srp1 := new SampleRec;
 New_Line;
 Put_Line("Executing 'srp2 := srp1' (copying a pointer)");
 srp2 := srp1;
 New_Line;
 Put_Line("Executing 'sr3 := srp1.all' (copying a record pointed to)");
 sr3 := srp1.all;
 New_Line;
 Put_Line("(This is the last line of the program)");
end controlledtest;

with ada.finalization;
use ada.finalization;

package sample is

 type SampleRec is new Controlled with null record;
 type SampleRecPtr is access all SampleRec;
 -- sample controlled tagged record (and a pointer to same)

 procedure Initialize(sr : in out SampleRec);
 procedure Finalize(sr : in out SampleRec);
 procedure Adjust(sr : in out SampleRec);
 -- these are required for controlled tagged records

end sample;

with Ada.text_io;
use Ada.text_io;

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (9 of 39) [7/20/2001 11:33:45 AM]

package body sample is
 -- just print messages to show that these are working

procedure Initialize(sr : in out SampleRec) is
 begin
 Put_Line("Initialize: Initialized tagged record");
end Initialize;

procedure Finalize(sr : in out SampleRec) is
begin
 Put_Line("Finalize: Finalized tagged record ");

end Finalize;

procedure Adjust(sr : in out SampleRec) is
begin
 Put_Line("Adjust: Adjusted tagged record ");
end Adjust;

end sample;

Here is the output. The records being affected are noted in bold.

Initialize: Initialized tagged record [sr3]
(This is the first line of the program)

This is an example of controlled tagged records:

Executing 'srp1 := new SampleRec'
Initialize: Initialized tagged record [srp1.all]

Executing 'srp2 := srp1' (copying a pointer)

Executing 'sr3 := srp1.all' (copying a record pointed to)
Finalize: Finalized tagged record [sr3 (before record is copied)]
Adjust: Adjusted tagged record [sr3 (after record is copied)]

(This is the last line of the program)
Finalize: Finalized tagged record [srp1.all]
Finalize: Finalized tagged record [sr3]

Ada also provides a second tagged record, Limited_Controlled, which is a controlled record that can't be assigned.
Consequently, it has no adjust procedure.

11.5 Multiple Inheritance

Like a tree, tagged records can only be extended from a single parent. Extending from multiple parents is called multiple
inheritance, and Ada doesn't allow multiple inheritance. The Ada designers considered multiple inheritance a feature that adds
ambiguity to a language: for example, if an employee tagged record has two different parents, each with a salary field, do you
merge the salary fields into one or do you have two copies of the field in your record? Because there is no consistent solution
to this kind of problem, the Ada designers decided to not to support multiple inheritance.

However, you can add tagged records as nested fields, just like you would a normal record. This workaround guarantees that
each object will only have one parent it can extend from.

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (10 of 39) [7/20/2001 11:33:45 AM]

type aClass is tagged record
 F1 : integer;
end record;

type anUnrelatedClass is tagged record
 U1 : integer;
 end record;

type anMIExample is new aClass with
 UC : anUnrelatedClass; -- a field, not an extension
end record;

anMIExample is a tagged record belonging to aClass, not to anUnrelatedClass. If you extend anMIExample, it will inhert F1
from its parent class. Since anUnrelatedClass UC is nested, you can still access it as a field using the prefix "UC.".

[BETTER EXAMPLE -- KB]

11.6 Private Objects

Unless a tagged record class is very small, it's kept in it's own package. When you put a class in a package, you can use the
package to hide the details of the class and to make parts of the class inaccessible to the outside world.

package customers is

 type AbstractCustomer is abstract tagged private;

 type BasicCustomer is new AbstractCustomer with private;

private

 type AbstractCustomer is new abstract tagged record
 name : string(1..80);
 end record;

 type BasicCustomer is new AbstractCustomer with
 SalesCategory : integer;
 end record;

end customers;

By declaring a tagged record as private, we eliminate all access to the fields in the record. Anybody who wants to change the
value of the fields must do it through any subprograms we provide. In object oriented programming, it's a good idea to make as
many tagged records private as possible, the same as other private types. That way, if you want to change the contents of the
tagged record, programs that use your class will not have to be changed.

C: Ada does not have protected objects, but protected objects can be simulated using Ada packages.

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (11 of 39) [7/20/2001 11:33:45 AM]

11.7 Generics

Ada allows you to create source code templates, called generics. With generics, you can specify a routine with only general
information about the kinds of types the routine can work on. Later a programmer instantiates the generic by giving a type.
Generics are useful for things like sort routines, which work basically the same way on different data types.

C: Generics are similar to C++ templates.

Ada contains several standard generic procedures. The most important one is unchecked_deallocation. This long winded
procedure deallocates memory allocated with new. In order to free up memory, you must instantiate an
unchecked_deallocation for each access type you are going to use new on. You have to specify both the access type and type
of data that is being pointed to.

with unchecked_deallocation;

type booleanPtr is access all boolean;

procedure Free is new unchecked_deallocation(boolean, booleanPtr);

Free is a new version of unchecked_deallocation compiled for booleanPtr's to a boolean type.

Ada was designed for the possibility automatic storage recovery, that everything that was allocated in a subprogram would be
deallocated automatically when the subprogram is left. Unfortunately, gnat was implemented without this feature and all
memory has to be explicitly deallocated.

Another standard generic you'll run into is unchecked_conversion. This converts a variable of one type to another by
physically copying to data from one to the other, such as an array of 8 bits to a short_short_integer.

Although you can write generic subprograms, most of the time you use generics will be for creating generic packages. Generic
packages have a spec and body like normal Ada packages, but they begin with a list of parameters to the package that must be
filled in when the generic is instantiated.

generic

 -- these are the parameters for the generic

 type ListElement is <>; -- unspecified list element

 procedure ">="(left, right : ListElement); -- a procedure to sort by

package SimpleList is

 type List is array(1..100) of ListElement;
 procedure Add(l : list; e : ListElement);
 procedure Sort(l : list);
 procedure Display(l : list);

end SimpleList;

(check--KB)

In this example, SimpleList takes some kind of data type called a ListElement, the items that compose the lists. Besides <>,
Ada offers a number of other non-specific type descriptors to give the compiler an idea of what kind of types are acceptable.

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (12 of 39) [7/20/2001 11:33:45 AM]

Since the ListElement could be an aggregate and we can't assume we can do simple comparisons, the programmer must also
specify a procedure to sort the elements by.

Once you write the package body (no generic section in the package body, just a regular package body), you can instantiate the
generic package in a program. After instantiation, use the package like any other package.

with SimpleList;

procedure ListTest is

package BooleanList is new SimpleList(boolean, ">=")

 -- in this case, the normal ">=" will sort booleans

begin

 BooleanList.Add(mylist, true);
 BooleanList.Add(mylist. False);

end ListTest;

Now you'll notice that generics and tagged records share a lot of capabilities. You can use both to write subprograms that work
on a variety of types. Tagged records are referred to as dynamic polymorphism, because which subprogram to call gets
determined while the program is running. Generics are referred to as static polymorphism, because the subprograms are
generated when the generic is instantiated by the compiler and which subprogram to call is known when the program is
compiled. The better approach depends on what you are doing. In general, generics run faster but take up more space because
the compiler generates separate subprograms for each type. Tagged records take up less space but tend to run slower.

Variant records and tagged records, likewise, share much in common. Although variant records can be simulated with tagged
records, you'll need to decide which is the best choice depending on what you are trying to accomplish. Variant records tend to
be smaller and faster, but are harder to extend than tagged records.

Since tagged records are naturally used to create variables that are similar to one another, you might wonder if you'd ever
create a single variable of a tagged record type. These are called singletons, and are used in frequently in languages like C++.
They are popular because they have a specific elaboration order and provide access to features only available in objects (such
as private members). Programmers doing this have no need to create a class of several objects. However, Ada has an easily
controlled elaboration process and features such as privacy are not specific to tagged records. As a result, there is rarely a need
for singletons in Ada programs.

11.8 Exceptions

Ada Description C Equivalent

e : exception Declare an exception -

raise e Raise/throw an exception throw type

exception clause Handle/catch an exception try...catch

C:In C++, exceptions are performed by throwing types (typically objects). In Ada, an exception is a
separate type. Only exceptions can be thrown--you can't throw types. Exceptions aren't related to
objects in any way.

When you throw in C++, you do so in a try block. In Ada, you can throw an exception in any block.
The exception clause (equivalent to catch) at the end of the block is optional.

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (13 of 39) [7/20/2001 11:33:45 AM]

What do you do when something unexpected error occurs? Unexpected errors are called exceptions in Ada. For example,
running out of memory is an exception.

Ada has a number of predefined exceptions, and examples of when they occur:

CONSTRAINT_ERROR - number out of range, like assigning -1 to a positive variable●

NUMERIC_ERROR - dividing by zero●

SELECT_ERROR - caused by task select statement with no else part●

STORAGE_ERROR - running out of memory●

TASKING_ERROR - failure of a task to handle an entry call●

PROGRAM_ERROR - hitting the end of a function without returning anything●

ASSERT_ERROR - a pragma assert failed●

You can turn off checking for most of these errors using pragmas, but they are usually a sign that something if fundamentally
wrong with your program. Gnat provides a compiler option to turn these checks off for the release version of a program.

The standard libraries have additional exceptions defined.

To handle an exception, you need an exception part at the end of a subprogram. When the exception is raised (occurs),
execution immediately jumps down to the exception part. The exception part contains a list of exceptions to check for, plus an
others part, similar to a case statement.

procedure exceptional(Total : out integer) is
begin
 -- do some stuff
exception
 when constraint_error => Total := 0;
 when storage_error => Total := -1;
 when others => raise;
end exceptional;

Raise causes the exception to be reraised to the calling subprogram.

If one subprogram doesn't handle the exception, it's raised in the subprogram that called it. This continues until the exception is
handled by an exception part, or the main program is it. In the worst case, if the main program has no exception part, the
program terminates and the exception name is printed on the screen.

One use for exception parts to deallocate access types so the memory isn't lost when unexpected errors occur.

You can define and raise your own exceptions.

procedure exceptional2 is
 Accounting_Error : exception;

C: Ada exceptions do not carry any additional information when raised. You can simulate error
messages and other information with global variables.

Pragma Assert provides an exception for debugging programs. Assert is described in 8.2.

For more advanced manipulation of exceptions, you'll need to use Ada.Exceptions and its related packages. These are
described in 12.15.

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (14 of 39) [7/20/2001 11:33:45 AM]

11.9 Dynamic Allocation

Ada Description C Equivalent

new Allocate new memory malloc/mallopt

unchecked_deallocation Deallocate memory free

Dynamic allocation is reserving memory for variables while the program is running. The memory is allocated from a region
called the default storage pool. GNAT sometimes refers to this as the unbounded no reclaim pool because the only limit on
the amount of memory you can allocate is the physical limit of the machine, and memory is not reclaimed through garbage
collection.

C: The default storage pool is effectively the "heap".

Ada uses access types to create a handle to dynamically declared variables.

type IntegerPtr is access all Integer;
ip : integerPtr := new Integer;

In this example, IP access a dynamically declared integer. IP is only large enough to hold the address of where the integer is
located. To access the integer, we have to add the suffix .all to IP. This is called dereferencing.

ip.all := 5;

If you are dereferencing multiple pointers, the all is only required at the end to indicate that the final pointer is to be
dereferenced (for example,. ptr1.ptr2.ptr3.all).

The word all in access all is not strictly required. If all is included, the IntegerPtr type will be compatible on any other integer
pointer. Without all, Ada imposes certain restrictions on what the access type can point to, but in general always use access all.

Memory allocated with new is freed with unchecked_allocation (see the section on generics).

You can assign initial values when you create a new dynamic variable. In the following example, we declare, allocate memory
and assign an initial value all at once.

ip : integerPtr := new Integer(5);

To create a record with a pointer to itself, have an empty type statement with the record first:

 type LinkedListRecord;

 type LinkedListPtr is access LinkedListRecord;
 type LinkedListRecord is record
 info : string(1..80);
 next : LinkedListPtr;
 end record;

To point to variables you've declared, you must declare those variables as aliased to indicate they can be pointed to. To get the
address of something, use the 'access attribute.

 type CustomerArray is array(1..100) of CustomerRecord;
 type CustomerArrayPtr is access all CustomerArray;

 ca : aliased CustomerArray;
 cp : CustomerArrayPtr := ca'access;

cp now points to ca. Individual array elements can also be aliased.

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (15 of 39) [7/20/2001 11:33:46 AM]

 type CustomerArray is array(1..100) of aliased CustomerRecord;

 type CustomerArrayPtr is access all CustomerArray;

 ca : CustomerArray;
 c15p : CustomerArrayPtr := ca(15)'access;

Ada will give you an error when you try to use 'access when the object pointing to may disappear after the pointer does. If
you're absolutely certain that this won't happen, you can circumvent the error by using 'unchecked_access.

An access type is necessarily just the address of a dynamic object. To get the address of an access type, it's best to use gnat's
generic package System.Address_To_Access_Conversions.

 type intacc is access all integer;
 package strConvert is new System.Address_To_Access_Conversions(intacc);
...
 string_address := strConvert.To_Address(SomeIntAccVar);

Ada 83: The original use of .all created too many ambiguities. Ada 95 requires greater use of .all.

11.10 Callbacks

A callback is a pointer to a subprogram. They are called callbacks because you usually give the pointer to another subprogram
that calls the procedure pointed to whenever it needs to. You can declare callbacks using type.

 type UpdateWindow is access procedure;
 type DisplayNewValue is access procedure(newval : integer);

One important restriction is that Ada requires that callbacks to refer to global subprograms. This is done to ensure that the
access variable always points to an existing subprogram. You cannot create a callback to a local procedure or function, even if
it's perfectly safe to do so. If you try, you'll get an obscure error message about one level being deeper than another.

The gnat equivalent for 'unchecked_access for callbacks is 'unrestricted_access, which you can use if you're absolutely sure
the subprogram you're using will not save the access when it's finished running.

You can get the address of a procedure using 'access. Suppose MyUpdateProcedure is a procedure fitting the description of
UpdateWindow, a procedure with no parameters.

 updatePtr : UpdateWindow := MyUpdateProcedure'access;
 procedure DoComplexSlowComputation(updatePtr);

To call a callback, use the dereference operator .all.

 UpdatePtr.all;

11.10.1 Storage Pools

Unlike languages like C that have only one storage pool, Ada allows you to define your own storage pools. Authors of
real-time applications, for example, can create a pool with a maximum size limit or a fixed access time.

Use a for clause to make an access type use a pool other than the default storage pool.

 type AccountingRecPtr is access all AccountingRec;

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (16 of 39) [7/20/2001 11:33:46 AM]

 for AccountingRecPtr'storage_pool use my_pool;

Gnat defines several storage pools besides the default storage pool. Perhaps the most useful is the debug pool. This storage
pool, available in version of Gnat before 3.12, works the same as the default storage pool except that it performs run-time
checks for several different pointer related problems. If a check fails, an exception is raised.

The following program illustrates the errors caught by debug pool access types.

 with Ada.Text_IO, System.Pool_Local, System.Debug_Pools;
 use Ada.Text_IO;

 with unchecked_deallocation;

 -- This is an example of using the GNAT-specific debug_pool
 -- storage pool.

 procedure debpools is

 type sales_record is record

 salesman_code : integer;
 sales_amount : float;

 end record;

 -- just a typical record

 type salesptr_normal is access all sales_record;

 --
 -- This is a normal access type. It is allocated
 -- in the default storage pool (aka "the heap").
 -- The default storage pool is called
 -- Unbounded_No_Reclaimed_Pool. That is, there's
 -- no size limit, and memory is not reclaimed by
 -- garbage collection.
 -- A debug pool

 sales_debug_pool : System.Debug_Pools.Debug_Pool;

 -- declare a new debug pool
 --
 -- Debug_Pool is a GNAT-specific pool.

 type salesptr_debug is access all Sales_Record;

 for salesptr_debug'storage_pool

 use Sales_Debug_Pool;

 -- This access type has no garbage collection
 -- but raises exceptions on allocation or
 -- deallocation errors, useful for tracking down
 -- storage leaks. All 4 possible exceptions are

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (17 of 39) [7/20/2001 11:33:46 AM]

 -- shown in this program.

 procedure Free is new Unchecked_Deallocation(sales_record,
 salesptr_debug);
 -- procedure to deallocate salesptr_debug access types

 sr : aliased Sales_Record;
 spd, spd2, spd3 : salesptr_debug;

 begin

 Put_Line("Fun with debug storage pools!");
 New_Line;

 -- Debug Pool Exception #1

 begin

 Put_Line("Accessing a non-allocated access type is an exception:");
 Put_Line("spd.salesman_code := 1");

 spd.salesman_code := 1; -- error: not allocated
 exception when System.Debug_Pools.Accessing_Not_Allocated_Storage =>
 Put_Line("***Accessing_Not_Allocated_Storage raised");
 when others =>
 Put_Line("***Unexpected exception"); raise;
 end;

 New_Line;
 -- Debug Pool Exception #2

 begin
 Put_Line("Freeing a non-allocated access type is an exception:");
 Put_Line("spd2 := sr'access --not allocated in pool");
 Put_Line("Free(spd2)");
 spd2 := sr'access;
 Free(spd2);
 exception when
 System.Debug_Pools.Freeing_Not_Allocated_Storage =>
 Put_Line("***Freeing_Not_Allocated_Storage raised");
 when others =>
 Put_Line("***Unexpected exception"); raise;
 end;
 New_Line;

 spd := new Sales_Record'(salesman_code => 1, sales_amount => 55.50);
 -- Debug Pool Exception #3

 begin
 Put_Line("Accessing deallocated access type is an exception:");
 Put_Line("spd := new Sales_Record...");
 Put_Line("Free(spd)");
 Put_Line("spd.salesman_code := 1");
 Free(spd);
 spd.salesman_code := 1; -- error: not allocated

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (18 of 39) [7/20/2001 11:33:46 AM]

 exception when System.Debug_Pools.Accessing_Not_Allocated_Storage =>
 Put_Line("***Accessing_Deallocated_Storage raised");
 when others =>
 Put_Line("***Unexpected exception"); raise;
 end;
 New_Line;

 spd := new Sales_Record'(salesman_code => 1, sales_amount => 55.50);
 -- Debug Pool Exception #4

 begin
 Put_Line("Freeing deallocated access type is an exception:");
 Put_Line("spd := new Sales_Record...");
 Put_Line("spd2 := spd");
 Put_Line("Free(spd)");
 Put_Line("Free(spd2)");
 spd2 := spd;
 Free(spd);
 Free(spd2);
 exception when System.Debug_Pools.Freeing_Deallocated_Storage =>

 Put_Line("***Freeing_Deallocated_Storage raised");
 when others =>
 Put_Line("***Unexpected exception"); raise;
 end;
 New_Line;

end debpools;

Program Result:

Fun with debug storage pools!

Accessing a non-allocated access type is an exception:
spd.salesman_code := 1
***Accessing_Not_Allocated_Storage raised

Freeing a non-allocated access type is an exception:
spd2 := sr'access --not allocated in pool
Free(spd2)
***Freeing_Not_Allocated_Storage raised

Accessing deallocated access type is an exception:
spd := new Sales_Record...
Free(spd)
spd.salesman_code := 1
***Accessing_Deallocated_Storage raised

Freeing deallocated access type is an exception:
spd := new Sales_Record...
spd2 := spd
Free(spd)
Free(spd2)
***Freeing_Deallocated_Storage raised

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (19 of 39) [7/20/2001 11:33:46 AM]

To create your own storage pools, you need to extend the Root_Storage_Pool tagged record found in the
System.Storage_Pools package.

[give example--KB]

11.10.2 Access Parameters

Because pointers are offen passed as parameters, Ada provides a special parameter type just for access types. access
parameters are access types behave the same as an in parameter: you cannot assign a new value to the parameter. However,
because it is an access type, you can change what the access parameter points to.

Access parameters offer some advantages over in parameters with an access type:

Ada will verify that the parameter isn't null●

Access parameters can be used in functions where in out parameters are not allowed●

They avoid access type accessibility errors (without resorting to 'unchecked_access)●

Access parameters can't be compared or assigned, but you can typecast an access parameter into a normal access type and then
compare values or assign it.

with Ada.Text_IO;
use Ada.Text_IO;

procedure accparm is
 -- An example of access parameters

 -- Create a customer account record

 type money is new float;
 type aPercent is new float;

 type aCustomerAccount is record
 moneyOwing : money := 0.0; -- money on the account
 interest : aPercent := 0.15; -- 15% interest
 end record;
 type aCustomerPtr is access all aCustomerAccount;

 procedure chargeInterest(cp : access aCustomerAccount) is
 -- update the customer record by charging the interest
 begin
 cp.moneyOwing := cp.moneyOwing * money(1.0 + cp.interest);
 end chargeInterest;

 procedure chargeInterest2(c : in out aCustomerAccount) is
 -- update the customer record by charging the interest
 begin
 c.moneyOwing := c.moneyOwing * money(1.0 + c.interest);
 end chargeInterest2;

 function chargeInterest3(cp : access aCustomerAccount) return boolean is
 -- update the customer record by charging the interest
 -- if under 1000, don't charge interest and return false
 begin
 if cp.moneyOwing < 1000.0 then

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (20 of 39) [7/20/2001 11:33:46 AM]

 return false;
 end if;
 cp.moneyOwing := cp.moneyOwing * money(1.0 + cp.interest);
 return true;
 end chargeInterest3;

 cp : aCustomerPtr;

begin

 Put_Line("An Example of Access Parameters");
 New_Line;

 cp := new aCustomerAccount;

 Put_Line("chargeInterest uses an access parameter");
 cp.moneyOwing := 1500.0;
 Put_Line("Charging interest on" & cp.moneyOwing'img);
 chargeInterest(cp);
 Put_Line("After interest, money owing is" & cp.moneyOwing'img);
 New_Line;

 Put_Line("chargeInterest2 uses an in out parameter");
 cp.moneyOwing := 1700.0;
 Put_Line("Charging interest on" & cp.moneyOwing'img);
 chargeInterest2(cp.all);
 Put_Line("After interest, money owing is" & cp.moneyOwing'img);
 New_Line;

 Put_Line("chargeInterest3 is a function with an access parameter");
 cp.moneyOwing := 1900.0;
 Put_Line("Charging interest on" & cp.moneyOwing'img);
 if chargeInterest3(cp) then
 Put_Line("After interest, money owing is" & cp.moneyOwing'img);
 else
 Put_Line("No interest was charged");
 end if;
 New_Line;

 Put_Line("A null pointer for an access parameter causes an exception");
 cp := null;
 Put_Line("Charging interest on a null pointer");
 if chargeInterest3(cp) then
 Put_Line("After interest, money owing is" & cp.moneyOwing'img);
 else
 Put_Line("No interest was charged");
 end if;
 New_Line;

exception
 when constraint_error =>
 Put_Line(Standard_Error, "Constraint error exception raised");
 when others =>
 Put_Line(Standard_Error, "Unexpected exception raised");

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (21 of 39) [7/20/2001 11:33:46 AM]

end accparm;

An Example of Access Parameters

chargeInterest uses an access parameter
Charging interest on 1.50000E+03
After interest, money owing is 1.72500E+03

chargeInterest2 uses an in out parameter
Charging interest on 1.70000E+03
After interest, money owing is 1.95500E+03

chargeInterest3 is a function with an access parameter
Charging interest on 1.90000E+03
After interest, money owing is 2.18500E+03

A null pointer for an access parameter causes an exception
Charging interest on a null pointer
Constraint error exception raised

11.11 Multithreading

Gnat comes with two alternative libraries for multithreading support. It can either use the native Linux pthreads (built into
libc6), or it can use FSU (Florida State University) threads that are included with gnat. By default, the Linux version of gnat is
compiled for Linux native threads.

11.11.1 FSU verses Native Threads

The FSU threads provide better concurrency at very small time slices, but are incompatible with Linux's pthreads library. This
means you can't use the FSU version of gnat with the standard Linux libraries unless you recompile the libraries for FSU
threads as well. FSU threads also force blocking on system calls and can cause blocking problems multiprocessors, and as a
result most people don't use them. One exception is Florist, a POSIX (that is, Linux O/S calls) binding using FSU threads. The
main benefit of FSU threads is that they are Ada Annex C & D compliant.

To use FSU threads, you need to compile gnat from its sources.

11.11.2 Tasks

In Ada, a thread is referred to ask a task. It has nothing to do with multitasking, as its name might imply. A task runs
independently of the main program, either by true parallelism on a multiprocessor computer, or as a separate job on a single
processor computer. There is no way to specify which processor will receive a task: Linux takes care of this automatically.

 Multithreaded programs have limits on the stack size for each thread--this is true for all
Linux computer languages. Gnat 3.13 has an 8 Meg stack size limit per thread. Older versions had
limits as low as 1 Meg per thread because of limits imposed by the Linuxthreads library.

A task can take on several forms. In its simplest form, a task is structured like a package, with a specification and a body. The
following is an example of a simple thread that waits 5 seconds after a program is started and displays a message.

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (22 of 39) [7/20/2001 11:33:46 AM]

 task SimpleTask;
 task body SimpleTask is
 begin
 delay 5.0;
 Put_Line("The simple task is finished");
 end SimpleTask;

The specification, like a package, indicates what identifiers are available to the outside world. The SimpleTask thread doesn't
communicate with the main program: it's specification is only one line long.

Communicating with the rest of the program can be difficult. For example, with the tasks and main program running in
parallel, sharing variables can be difficult. How does one task know when another task or the main program is finished
changing the value of a variable? If a task works with a variable that's only partially been udpated, the data will be corrupt.

Ada provides two ways for a thread to communicate with the rest of the program.

The first communication method is called a rendezvous. One task communicates with another by sending a request. A task
may send a request to another task to update a certain variable, or to perform a certain action, that would otherwise risk data
corruption.

Because this communication happens "on the fly", it's declared in two parts. First, in the task specification, a list of all requests
the task is prepared to accept. These are called entry statements and look much like procedure declarations.

Suppose we write a task to keep a running total, to be shared between several other tasks. We use a separate task to keep the
total from being corrupted.

 task CountingTask is
 entry add(amount : integer);
 end CountingTask;

In the task body, a task indicates when it's ready to accept messages using the accept statement. This statement checks for
outstanding requests from the rest of the program.

 task body CountingTask is
 runningTotal : integer := 0;
 begin
 loop
 accept add(amount : integer) do
 runningTotal := runningTotal + amount;
 end add;
 end loop;
 end CountingTask;

When this thread runs, accept statement will check for an add request. If there are no outstanding add requests, the thread
suspends itself until a request is sent, waiting indefinitely for a new request. Suspending for a request is known as blocking.

An accept statement with do part will cause your task to wait for that request and then do nothing. You can do this to
synchronize two tasks.

 accept WaitUntilITellYouToGo;

Suppose we add another entry statement to read the current value of the running total.

 task CountingTask is
 entry add(amount : integer);
 entry currentTotal(total : out integer);

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (23 of 39) [7/20/2001 11:33:46 AM]

 end CountingTask;

In this case, we want the task to check for two different requests. The Ada select statement keeps a task from blocking and
instead checks for multiple messages.

 task body CountingTask is
 runningTotal : integer := 0;
 begin
 loop
 select
 accept add(amount : integer) do
 runningTotal := runningTotal + amount;
 end add;
 or
 accept currentTotal(total : out integer) do
 total := runningTotal;
 end currentTotal;
 end select;
 end loop;
 end CountingTask;

In this example, the task will repeatedly check for an add request or a currentTotal request.

To communicate with the task, we make calls to the task as if it were a package. For example, to send a message to add 5 to the
running total, we'd use

 CountingTask.Add(5);

Because accept is a statement that executes at run-time, you can create any kind of message policy you want. Some messages
can block. Some messages can be checked. You can force certain message to be handled before others.

The final "or" part of a select can contain instructions to execute when none of the accepts statements are executed. For
example, a task can end itself with the terminate command. If you want a task to terminate when there are no more requests,
add a

 or
 terminate

at the end of your select statement.

If select statement doesn't give you enough control over blocking, select can include when clauses. The clauses work like an if
statement, executing the accept statement only if a condition is true. If time2accept is a boolean variable, you could write

 select
 when time2accept =>
 accept add(amount : integer) do

A when clause is referred to as a "guard" because, like a crossing guard, the accept will not execute unless the guard gives
permission.

Ada also has a delay statement. Delay forces a task (or a program) to suspend itself for a number of seconds. To wait for
three-and-a-half seconds, use

 delay 3.5;

You can place a delay statement in the last "or" part of a select statement to force the task to suspend itself for a few seconds if
no requests were found.

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (24 of 39) [7/20/2001 11:33:46 AM]

Delay can also wait for a particular time. The time is expressed using the Ada.Calendar time format. If Tomorrow is a variable
with the time of midnight tomorrow in the Ada.Calendar time format, you can delay the start of a task with

 delay until Tomorrow;

In an emergency, one task can terminate another with the abort statement.

 abort CounterTask;

Ada provides a variation of the select statement for tasks that timeout when they cannot complete their work in time. This
version has two parts: the first part consists of what to do if the task isn't completed in time, and the second consists of the task
to complete. For example, if BigCalculation is a slow process that we wish to timeout after 30 seconds,

 select delay 30.0;
 Put_Line("Timeout!");
 then abort
 BigCalculation;
 end select;

In this example, BigCalculation will continue for up to 30 seconds. If it doesn't finish, "Timeout!" is displayed and
BigCalculation is aborted.

11.11.3 Task Types

Often multithreaded programs will need a set of identical tasks. For example, you many want to sort a customer's records for
several different customers using different threads. You can't do this with the simple tasking examples shown so far.

To create a set of identical tasks, you must create a template of the tasks to run. Ada calls these templates a task type: they
look just like a regular task except the specification begins with "task type" instead of "task" by itself. The following is a task
template using the CountingTask example.

 task type CountingTask is
 entry add(amount : integer);
 entry currentTotal(total : out integer);
 end CountingTask;

This template will not run by itself. If we want to create a CountingTask task, we create one by declaring it.

 Task1, Task2 : CountingTask;

Task1 and Task2 are two copies of CountingTask. This is equivalent to creating two separate tasks:

 task Task1 is
 entry add(amount : integer);
 entry currentTotal(total : out integer);
 end Task2;

 task Task2 is
 entry add(amount : integer);
 entry currentTotal(total : out integer);
 end Task2;

Because task types can be declared, we can create 20 tasks at once by declaring an array of 20 CountingTask's.

 CountingTasks : array(1..20) of CountingTask;

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (25 of 39) [7/20/2001 11:33:47 AM]

Tasks can also be declared in records as well, or allocated dynamically using the new operator.

 type aTaskPtr is access CountingTask;
 tp : aTaskPtr;
 ...
 tp := new CountingTask;

Using new, you can create as many copies of a particular task as you need.

11.11.4 Protected Items/Types

Ada tasks are useful for many kinds of multithreading. However, Ada provides a second method of multithreading called
protected objects. These are similar to the "monitors" used by Java.

In an Ada task, you specify when and how different tasks communicate. When items are declared protected, Ada controls the
interaction for you.

Protected objects are declared the same was as a package, using a specification and a body. They act like a package that allows
only one task access to its contents at a time. While one task is using the contents, any other task wanting access is blocked
until the first task is finished.

Here is our CountingTask rewritten as a protected item.

 protected CountingType is
 procedure add(amount : integer);
 procedure currentTotal(total : out integer);
 private
 runningTotal : integer := 0;
 end CountingType;

 protected body CountingType is
 procedure add(amount : integer) is
 begin
 runningTotal := runningTotal + amount;
 end add;

 procedure currentTotal(total : out integer) is
 begin
 total := runningTotal;
 end currentTotal;

 end CountingType;

In this case, any task may execute the add or currentTotal procedures, but only one task may execute them at a time. This
ensures that runningTotal will not be corrupted.

Unlike a package, you can't declare variables in the spec or body unless you put them in a "private" part in the spec.

Protected items can include entry declarations. Since there is no "main program" to the protected body, the protected body
contains no accept statements. Instead, the entry declarations are filled in as if they were a subprogram. Any guarding
conditions are attached to the end of the entry header.

For example, to create an a version of our add procedure that blocks if the total is higher than 100, we could write

 protected CountingType is

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (26 of 39) [7/20/2001 11:33:47 AM]

 entry add(amount : integer);
...
 protected body CountingType is
 entry add(amount : integer) when runningTotal<100 is
 begin
 runningTotal := runningTotal + amount;
 end add;
...

Like tasks, you can create protected types by declaring the specification with "protected type" instead of "protected". You can
then create arrays of protected items, or declare protected items dynamically.

This covers the basics of Ada's multithreading capabilities. There's much more that Ada can do. If you are writing complicated
multithreading programs, you're encouraged to investigate the Ada Reference Manual for more information.

11.12 Ada Text Streams

A stream is a sequential transmission of different types of data. When data is written to a stream, the stream converts the data
to a form suitable for transmission. When the data is read, it's converted from the stream's format back to its original form.

A practical example is saving tagged records belonging to the same class to a file.

Ada's syntax for using streams is a bit cumbersome. Like tagged records, some of the features are implemented using
attributes, and others are found in standard packages.

The Ada.Streams.Stream_IO can write heterogeneous data to a text file, and then read it back again. This package contains a
number of subprograms similar to Ada.Text_IO, including, Open, Close, Reset, Delete, Is_Open and End_Of_File.

However, there are no Get or Put procedures. Instead, there are stream subprograms for working with the data in the file.

Stream - returns a stream to the file●

Read - read data from the stream●

Write - write data to the stream●

Read and Write are not used directly. Instead, the attributes 'read and 'write will read and write an item to the stream. That is,
Gnat does the necessary conversion to stream data for you.

For classes of tagged records, 'input and 'output read and write any child of the class. These attributes are implicitly defined for
all class-wide types (that are not also limited). As a result, you usually combine 'class with the stream attributes for 'class'input
and 'class'output. If you don't supply 'class, nothing will be written and no exception will be raised.

with ada.text_io, ada.streams.stream_io;
use ada.text_io, ada.streams.stream_io;
with ada.unchecked_deallocation;

procedure class_stream is

 -- Contact_Info: A simple class
 -- the base class must not be abstract when using 'input and 'output

 type contact_info is tagged null record;
 type contact_ptr is access all contact_info'class;

 type phone_number is new contact_info with record
 phone : string(1..14);
 end record;

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (27 of 39) [7/20/2001 11:33:47 AM]

 type office_number is new contact_info with record
 office : integer;
 end record;

 procedure free is new ada.unchecked_deallocation(
 contact_info'class, contact_ptr);

 -- A Stream File and Its Stream

 stream_file : Ada.Streams.Stream_IO.File_Type;
 the_stream : Ada.Streams.Stream_IO.Stream_Access;

 contact : contact_ptr;

begin

 Put_Line("An example of Ada.Streams.Stream_IO and a Class");
 Put_Line("---");
 New_Line;

 Create(stream_file, out_file, "contact_list.stream");
 Put_Line("Created a stream file");
 -- open the stream file

 the_stream := stream(stream_file);
 -- get a stream representing the file's contents

 contact := new phone_number'(phone => "1-905-555-1023");
 contact_info'class'output(the_stream, contact.all);
 free(contact);
 Put_Line("Wrote a phone number");
 -- write a record

 contact := new office_number'(office => 8023);
 contact_info'class'output(the_stream, contact.all);
 free(contact);
 Put_Line("Wrote an office number");
 -- write a record

 Close(stream_file);
 New_Line;
 -- close the stream file

 -- Read Them

 Open(stream_file, in_file, "contact_list.stream");
 Put_Line("Opened a stream file");
 -- open the stream file

 the_stream := stream(stream_file);
 -- get a stream representing the file's contents

 while not End_of_File(stream_file) loop
 declare
 contact : contact_info'class := contact_info'class'input(the_stream);

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (28 of 39) [7/20/2001 11:33:47 AM]

 begin
 -- if this were more sophisticated, we could write a Put procedure
 -- for each tagged record and use dynamic dispatching
 if contact in phone_number then
 Put_Line("read a phone number");
 elsif contact in office_number then
 Put_Line("read an office number");
 else
 Put_Line("read something else");
 end if;
 end;
 end loop;

 Close(stream_file);
 -- close the stream file

end class_stream;

An example of Ada.Streams.Stream_IO and a Class

Created a stream file
Wrote a phone number
Wrote an office number

Opened a stream file
read a phone number
read an office number

Files of items of the same time are more easily created with Ada.Sequential_IO or Ada.Direct_IO.

Custom streams can be created to save or trasmit data in other ways such as in memory or through a network connection.
Custom streams are created as tagged records extended from a root class, Ada.Streams.Root_Stream_Type'class.

 type My_Stream is new Root_Stream_Type with record
 ...

Your stream type must override the abstract Red and Write subprograms to add and remove data from the stream.

The following is an in-memory stream creating by Warren Gay. This stream can share data between programs, buffering the
data as text in memory. If a buffer overflow occurs, an END_ERROR is raised.

-- $Id: memory_stream.ads,v 1.1 2000/11/26 05:00:18 wwg Exp $
-- (c) Warren W. Gay VE3WWG ve3wwg@home.com, ve3wwg@yahoo.com
--
-- Protected under the GNU GPL License

with Ada.Finalization, Ada.Streams;
use Ada.Finalization, Ada.Streams;

package Memory_Stream is

 type Stream_Access is access all Ada.Streams.Root_Stream_Type'Class;
 type Memory_Buffer(Max_Elem: Stream_Element_Offset) is new Controlled with
private;

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (29 of 39) [7/20/2001 11:33:47 AM]

 --
 -- The new Stream Type, which must be derived from
 -- Root_Stream_Type. Note that Root_Stream_Type is
 -- NOT derived from Controlled, so if
 -- controlled attributes are necessary, they must
 -- be defined separately, and embedded into this
 -- object, as is done with Memory_Buffer here.
 --
 type Memory_Buffer_Stream(Max_Elem: Stream_Element_Offset) is new
Root_Stream_Type with record
 Mem_Buf: Memory_Buffer(Max_Elem); -- Object with Finalization
 end record;

 type Memory_Buffer_Stream_Ptr is access all Memory_Buffer_Stream;

 -- The overloaded abstract for Read
 procedure Read(Stream: in out Memory_Buffer_Stream;
 Item: out Stream_Element_Array; Last: out Stream_Element_Offset);

 -- The overloaded abstract for Write
 procedure Write(Stream: in out Memory_Buffer_Stream;
 Item: in Stream_Element_Array);

 -- Rewind the Read Memory Buffer Index
 procedure Rewind_Read(Stream: Stream_Access);

 -- Rewind the Write Memory Buffer Index
 procedure Rewind_Write(Stream: Stream_Access);

 -- To permit easy destruction of this stream
 procedure Free(Stream: Stream_Access);

private

 --
 -- To create a Memory_Buffer stream with an
 -- Initialize procedure, it must be derived from
 -- a Controlled type. Unfortunately, the type
 -- Root_Stream_Type is not derived from the
 -- Controlled type, so it is done privately here.
 --
 type Memory_Buffer(Max_Elem: Stream_Element_Offset) is new Controlled with record
 Read_Offset: Stream_Element_Offset;
 Write_Offset: Stream_Element_Offset;
 Buffer: Stream_Element_Array(1..Max_Elem);
 end record;

 procedure Initialize(Buf: in out Memory_Buffer);
 procedure Write(Buf: in out Memory_Buffer; Item: in Stream_Element_Array);
 procedure Read(Buf: in out Memory_Buffer;
 Item: out Stream_Element_Array;
 Last: out Stream_Element_Offset);
 procedure Rewind_Read(Buf: in out Memory_Buffer);
 procedure Rewind_Write(Buf: in out Memory_Buffer);

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (30 of 39) [7/20/2001 11:33:47 AM]

end Memory_Stream;

-- $Id: memory_stream.adb,v 1.1 2000/11/26 05:00:18 wwg Exp $
-- (c) Warren W. Gay VE3WWG ve3wwg@home.com, ve3wwg@yahoo.com
--
-- Protected under the GNU GPL License

with Ada.Text_IO; use Ada.Text_IO;

with Ada.Finalization; use Ada.Finalization;
with Ada.IO_Exceptions; use Ada.IO_Exceptions;
with Ada.Unchecked_Deallocation;

package body Memory_Stream is

 --
 -- Read from a Memory Buffer Stream :
 --
 procedure Read(Stream: in out Memory_Buffer_Stream; Item: out
Stream_Element_Array; Last: out Stream_Element_Offset) is
 begin
 Read(Stream.Mem_Buf,Item,Last);
 end Read;

 --
 -- Write to a Memory Buffer Stream :
 --
 procedure Write(Stream: in out Memory_Buffer_Stream; Item: in
Stream_Element_Array) is
 begin
 Write(Stream.Mem_Buf,Item);
 end Write;

 --
 -- Rewind the Read Memory Buffer Index
 --
 procedure Rewind_Read(Stream: Stream_Access) is
 Mem_Str: Memory_Buffer_Stream_Ptr := Memory_Buffer_Stream_Ptr(Stream);
 begin
 Rewind_Read(Mem_Str.Mem_Buf);
 end Rewind_Read;

 --
 -- Rewind the Write Memory Buffer Index
 --
 procedure Rewind_Write(Stream: Stream_Access) is
 Mem_Str: Memory_Buffer_Stream_Ptr := Memory_Buffer_Stream_Ptr(Stream);
 begin
 Rewind_Write(Mem_Str.Mem_Buf);
 end Rewind_Write;

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (31 of 39) [7/20/2001 11:33:47 AM]

 --
 -- Free a Memory Buffer Stream :
 --
 procedure Free(Stream: Stream_Access) is
 type Memory_Buffer_Stream_Ptr is access all Memory_Buffer_Stream;
 procedure Free_Stream is new
Ada.Unchecked_Deallocation(Memory_Buffer_Stream,Memory_Buffer_Stream_Ptr);
 Str_Ptr: Memory_Buffer_Stream_Ptr := Memory_Buffer_Stream_Ptr(Stream);
 begin
 Free_Stream(Str_Ptr);
 end Free;

 --
 -- Private Implementation :
 --

 --
 -- Initialize a Memory_Buffer Object :
 --
 procedure Initialize(Buf: in out Memory_Buffer) is
 begin
 Buf.Read_Offset := Buf.Buffer'First;
 Buf.Write_Offset := Buf.Buffer'First;
 end Initialize;

 --
 -- Write to a Memory Buffer Object :
 --
 procedure Write(Buf: in out Memory_Buffer; Item: Stream_Element_Array) is
 Count: Stream_Element_Offset := Item'Last + 1 - Item'First;
 Last: Stream_Element_Offset := Buf.Write_Offset + Count - 1;
 begin

 if Last > Buf.Buffer'Last then
 raise Ada.IO_Exceptions.End_Error;
 end if;

 Buf.Buffer(Buf.Write_Offset..Last) := Item;
 Buf.Write_Offset := Buf.Write_Offset + Count;
 end Write;

 --
 -- Read from a Memory Buffer Object :
 --
 procedure Read(Buf: in out Memory_Buffer; Item: out Stream_Element_Array; Last:
out Stream_Element_Offset) is
 Xfer_Count: Stream_Element_Offset := Item'Last + 1 - Item'First;
 Data_Count: Stream_Element_Offset := Buf.Write_Offset - Buf.Read_Offset;
 begin

 if Xfer_Count > Data_Count then
 Xfer_Count := Data_Count;
 end if;

 Item(1..Xfer_Count) :=

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (32 of 39) [7/20/2001 11:33:47 AM]

Buf.Buffer(Buf.Read_Offset..Buf.Read_Offset+Xfer_Count-1);
 Buf.Read_Offset := Buf.Read_Offset + Xfer_Count;
 Last := Item'First + Xfer_Count - 1;
 end Read;

 --
 -- Rewind the Read offset in the Memory Buffer
 --
 procedure Rewind_Read(Buf: in out Memory_Buffer) is
 begin
 Buf.Read_Offset := Buf.Buffer'First;
 end Rewind_Read;

 --
 -- Rewind the Write offset in the Memory Buffer
 --
 procedure Rewind_Write(Buf: in out Memory_Buffer) is
 begin
 Buf.Read_Offset := Buf.Buffer'First; -- Implies a Read offset rewind
 Buf.Write_Offset := Buf.Buffer'First; -- Rewind the write offset
 end Rewind_Write;
end Memory_Stream;

-- $Id: main.adb,v 1.1 2000/11/26 05:00:18 wwg Exp $
-- (c) Warren W. Gay VE3WWG ve3wwg@home.com, ve3wwg@yahoo.com
--
-- Protected under the GNU GPL License

with Ada.Text_IO;
use Ada.Text_IO;

with Memory_Stream;
use Memory_Stream;

--
-- This is a demo main program, that makes use of
-- our home-brewed Memory_Buffer_Stream.
--
-- To demonstrate, a record of type my_rec is
-- written to the stream with known values, and
-- then is read back twice, into records T and U.
--
-- Then the write offset is rewound, and a new
-- float variable F is written, and then read
-- back into float variable G.
--
procedure Main is
 type my_rec is record -- A demonstration record
 A: natural;
 B: integer;
 S: string(1..8);
 Z: float;

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (33 of 39) [7/20/2001 11:33:47 AM]

 end record;

 Str: Stream_Access := null; -- A Stream
 R: my_rec := (23, -95, "oink ", 1.414); -- An initialized record

 T: my_rec := (0, 0, " ", 0.0); -- For 1st read
 U: my_rec := T; -- For 2nd read

 F: float := 29.99; -- An initialized float
 G: float := 0.0; -- For 3rd read

begin

 put_line("Demonstration has begun:");

 Str := new Memory_Buffer_Stream(4096); -- Create in-memory buffer stream (4096
bytes)

 my_rec'write(Str,R); -- Write record R to stream

 my_rec'read(Str,T); -- Read stream back to record T

 put_line("T.A :=" & natural'image(T.A)); -- Dump out T
 put_line("T.B :=" & integer'image(T.B));
 put_line("T.S := '" & T.S & "'");
 put_line("T.Z := " & float'image(T.Z));

 Rewind_Read(Str); -- Rewind the read pointer

 my_rec'read(Str,U); -- Now read into record U

 put_line("U.A :=" & natural'image(U.A)); -- Dump out U
 put_line("U.B :=" & integer'image(U.B));
 put_line("U.S := '" & U.S & "'");
 put_line("U.Z := " & float'image(U.Z));

 Rewind_Write(Str); -- Implies a read rewind also

 float'write(Str,F); -- Write F to stream

 float'read(Str,G); -- Read stream into G

 put_line("G :=" & float'image(G)); -- Report G for verification

 Free(Str); -- Delete stream

 put_line("Demonstration complete.");
end Main;

Demonstration has begun:
T.A := 23
T.B :=-95
T.S := 'oink '

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (34 of 39) [7/20/2001 11:33:47 AM]

T.Z := 1.41400E+00
U.A := 23
U.B :=-95
U.S := 'oink '
U.Z := 1.41400E+00
G := 2.99900E+01
Demonstration complete.

11.13 Pragmas

Pragmas, sometimes called compiler directives, are statements that provide additional information to the compiler build a
better executable. Pragmas never change the meaning of a program.

The following are the predefined Ada 95 pragmas:

Abort_Defer defer abouts over a block of statements*

Ada_83 enforce Ada 83 conventions, even if compiler switches say otherwise*

Ada_95 enforce Ada 95 conventions, even if compiler switches say otherwise*

All_Calls_Remote All subprograms in a RPC package spec are RPC callable

Annotate add information for external tools*

Assert create an assertion*

Asynchronous call to remote subprogram can complete before subprogram is done

Atomic identifier must be read/written without interruption

Attach_Handler install a signal handler procedure

C_Pass_By_Copy when calling C functions, use pass by copy (not by reference) when able*

Comment same as Ident *

Common_Object for Fortran, create variables that share storage space*

Complex_Representation use gcc's complex number format (for speed)*

Component_Alignment indicate how record components should be stored*

Controlled turn off garbage collection for a type (no effect in gnat)

Convention apply a convention to an identifier

CPP_Class treat a record or tagged record as a C++ class*

CPP_Constructor treat imported function as a C++ class constructor*

CPP_Destructor treat imported function as a C++ class destructor*

CPP_Virtual import a C++ virtual function*

CPP_Vtable specify a virtual function table*

Debug specify a debugging procedure call*

Discard_Names discard ASCII representation of identifiers, as used by 'img

Elaborate elaborate a certain package before this one

Elaborate_All elaborate all with'ed packages before this one

Elaborate_Body elaborate a package's body immediate after it's spec

Eliminate indicate an identifier that is not used in a program, created by gnatelim *

Error_Monitoring treat errors as warnings during a compile*

Export export an identifier from your program so it can be used by other languages

Export_Function export an Ada function with additional information over pragma Export*

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (35 of 39) [7/20/2001 11:33:48 AM]

Export_Object
export an Ada tagged record with additional information over pragma
Export*

Export_Procedure export an Ada procedure with additional information over pragma Export*

Export_Valued_Procedure
export an Ada side effect function with additional information over pragma
Export*

Extend_System obsolete*

Finalize_Storage_Only no finalize on library-level objects, primarily for gnat's internal use *

Ident object file identification string (no effect with Linux) *

Import import an identifer from another language so it can be used in your program

Import_Function import a non-Ada function with additional information over pragma Import*

Import_Object import a non-Ada object with additional information over pragma Import*

Import_Procedure
import a non-Ada procedure with additional information over pragma
Import*

Import_Valued_Procedure
import a non-Ada side effect function with additional information over
pragma Import*

Inline the indicated subprogram may be inlined.

Inline_Always forces inter-unit inlining, regardless of compiler switches*

Inline_Generic for compatibility with other Ada compilers*

Inspection_Point
specify that an identifier's value must readable at the given point in the
program (for code validation)

Interface_Name for compatibility with other Ada compilers*

Interrupt_Handler declare a signal handler procedure

Interrupt_Priority Specify the task/protected object's priority where blocking occurs

Linker_Alias select an alternative linker[?] for a package (or other llinkable unit)*

Linker_Options pass a string of options to the linker

Linker_Section the gcc linker section to use *

List list source code while being compiled

Locking_Policy Spcify how protected objects are locked and when blocking occurs

Machine_Attribute specify GCC machine attributes*

No_Return
specify a procedure that is deliberately never returned from, to avoid
compiler warnings*

No_Runtime ensures no gnat run-time routines are use (e.g. for creating device drivers)*

Normalize_Scalars set scalars variables to illegal values whenever possible

Optimize indicates how statements should be optimzed

Pack indicates that the type should be compressed as much as possible

Page start a new page in a program listing

Passive for compatibility with other Ada compilers*

Polling if on, enables exception polling*

Priority Specify the priority of a task

Preelaborate preelaborate the specified package

Propagate_Exceptions
specify imported subprogram that can handle Ada exceptions; used with
zero cost handling *

Psect_Object Same as common_object*

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (36 of 39) [7/20/2001 11:33:48 AM]

Pure specifies the package is pure

Pure_Function specify a function without side-effects*

Queuing_Policy How task/protected objects are sorted when queued

Ravenscar enforce the Ravenscar real-time policies*

Remote_Call_Interface Ensure a package can be callable by remote procedure calls

Remote_Types used for communication between RPC partitions

Restricted_Run_Time
like Ravenscar, turns on a number of restrictions for real-time programming
*

Restrictions Disable certain language features

Reviewable Provide a run-time profiling (like gprof)

Share_Generic for compatibility with other Ada compilers*

Shared_Passive used for sharing global data with separate RPC partitions

Source_File_Name overrides normal Gnat file naming conventions*

Source_Reference for use with gnatchop*

Storage_Size amount of storage space for a task

Stream_Convert simplified way of creating streams I/O subprograms for a given type*

Subtitle for compatibility with other Ada compilers*

Suppress turn off specific checks for common exceptions

Suppress_All for compatibility with other Ada compilers*

Suppress_Initialization disable initialization of variables of a given type*

Task_Dispatching specify how tasks sort dispatches (e.g. FIFO_Within_Priorities)

Task_Info specify information about a task*

Task_Storage specify the guard area for a task*

Time_Slice specify tasking time slice for main program [in Linux?]*

Title for compatibility with other Ada compilers*

Unchecked_Union treat a record as a C union type*

Unimplemented_Unit for unfinished units, produces a compiler error if they are compiled*

Unreserve_All_Interrupts allow reassigning of signals normally handled by gnat, eg. SIGINT*

Unsuppress opposite of suppress*

Use_VADS_Size for older Ada code, 'size is equivalent to 'vads_size *

Volatile value of variable may change unexpectedly

Volatile_Components array components may change unexpectedly

Warnings turn compiler warnings on or off*

Weak_External specify an identifier that doesn't have to be resolved by the linker *

* - GNAT specific

The use of these pragmas are covered in detail in the GNAT and Ada 95 reference manuals.

11.14 Low-Level Ada

Ada Description C Equivalent

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (37 of 39) [7/20/2001 11:33:48 AM]

pragma volatile
Variable is influnced outside of
program

volatile declaration

for x'address use a
Specify an absolute address for a
pointer

p = (typecast) integer;

for x'alignment use b
Position the identifier x on b byte
boundaries

?

for x'bit_order use o; Store record using bit order o ?

8#value# Specify a octal numeric literal 0Value

16#value#
Specify a hexadecimal numeric
literal

0xValue

asm(inst, in, out) Assemble an instruction asm(inst : in : out)

Ada contains a number of low-level features and libraries, such as the ability to add machine code to a program or to access a
hardware register in memory. I'll mention a few of these features here.

If you need to specify a specific number of bits, say to access a hardware register, use the for statement.

 type Reg is new integer;
 for Reg'size use 4; -- register is 4 bits
 type RegPtr is access all Reg;

You can refer an access type to a particular address using for var'address clause. Together with 'size , you can theoretically
refer to an bit in the computer's memory. However, on Linux the address refers to a location in your address space and doesn't
refer to a real physical location.

var'alignment will align storage to a particular byte boundary. var'bit_order can specify a different bit order for a record than
the default for your machine. The bit orders are defined in the System package. (Gnat 3.12 doesn't fully support bit orders.)

 for Reg'address use 16#2EF#; -- hex address 2EF in your memory space
 for Reg'alignment use 2; -- align to 16-bit boundaries
 for myRecord'bit_order use system.low_order_first; -- low bits to high machine

If the register value can change independently of the Ada program (usually true), we need to mark the pointer with pragma
volatile to make sure the compiler will make no assumptions while optimizing.

 pragma volatile(RegPtr);

Ada will do bit-wise logic operations, but it will only do them on packed arrays of booleans or modular types. You can't do
bit-wise operations on integers, for example. The bit-wise operators are and, or, xor and not.

 type byte is array(1..8) of boolean;
 pragma pack(byte);

 b1, b2, b3 : byte;
 ...
 b3 := b1 and b2;

If you need octal or hexadecimal numbers, Ada denotes these by using a leading base designation between 2 and 16, with the
value delimited by number signs.

 Hex := 16#0FE9#;
 Bin := 2#01101010#;

The System.Machine_Code package can embed assembly language instructions in an Ada program. Since Gnat is based on

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (38 of 39) [7/20/2001 11:33:48 AM]

Gcc, it uses Gcc's inlining features. If you've inlined assembly code in a C program, you'll find Gnat's capabilities virtually
identical.

Assembly code is embedded using the Asm.

 Asm("nop"); -- do nothing

A tutorial by Jerry van Dijk is available from AdaPower.com.

Large sections of assembly code should be linked in separately.

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (39 of 39) [7/20/2001 11:33:48 AM]

http://www.adapower.com/articles/gnatasm/inline_asm_2.html

12 Standard Gnat Packages

 <--Last Chapter Table of Contents Next Chapter-->

This section summarizes some of the more than 100 packages that come with the Gnat compiler. These include string
handling, operating system binding, and sorts.

12.1 Standard String and Character Packages

Ada Package Description C Equivalent

Ada.Character.Handling Character operations Strings.h?

Ada.Strings.Fixed Ada string operations Strings.h

Ada.Strings.Bounded Bounded strings and operations -

Ada.Strings.Unbounded Unbounded strings and operations -

Gnat.Case_Util Just case conversions -

Ada.Strings.Unbounded.Text_IO Text_IO for Unbounded Strings -

Ada's built-in strings, or "fixed" strings, are made of array of characters. The length of the array determines the bounds of the
string. A string that's too short for an array is padded with blanks. Although these strings are fast, they are cumbersome to use
and not practical for string-intensive applications. One problems is, although the string type is an array with an undefined
upper bound, sooner or later you have to specify an upper bound and run the risk of constraint errors working with arrays of
different sizes.

Ada operator "&" concatenates fixed strings: this is the only built-in operator for fixed strings.

There are two alternative strings in Ada. Bounded strings are arrays of strings with a definite maximum size, separate from
the length, which eliminates to constraint errors. These strings are still relatively fast, but waste a lot of storage on small
strings and you run the risk of overflowing the string. I use 255 character bounded strings as general purpose strings in my
programs.

The standard Ada library Ada.Strings.Bounded contains the definition of bounded strings and similar operations to
Ada.Strings.Fixed. Because bounded strings have a definite upper bound, the package is generic and has to be instantiated for
the maximum length. The library also includes a function to convert a bounded string to a fixed string.

Unbounded strings are strings that can be of any size. They are typically implemented by dynamic allocation, which makes
them slow, but they don't waste memory the way bounded strings do and there's no risk over a string overflow. The standard
Ada library Ada.Strings.Unbounded contains the definition of unbounded strings and operations on them, including a
function to convert an unbounded string to a fixed string.

C: Unbounded strings are not exactly the same as C strings. For one thing, unbounded strings don't end
in null characters. C String support is in the packages Interfaces.C.

with Ada.Text_IO, Ada.Strings.Unbounded.Text_IO;

use Ada.Text_IO, Ada.Strings.Unbounded, Ada.Strings.Unbounded.Text_IO;

procedure unbio is

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (1 of 35) [7/20/2001 11:34:25 AM]

-- this program demonstrates basic input/output with

-- unbounded strings. These routines are more efficient

-- because they avoid conversion into standard Ada

-- strings

us : Unbounded_String;

begin

 Put_Line("This program displays information on the screen");

 Put_Line("and reads information from the keyboard");

 New_Line;

 Put_Line("Type in a string");

 us := Get_Line;

 New_Line;

 Put_Line("Put_Line displays a line of text and advances to");

 Put_Line("the next line.");

 Put("The string you typed was ");

 Put_Line(us);

 New_Line;

end unbio;

This program displays information on the screen

and reads information from the keyboard

Type in a string

Uptown Girl, she been looking for a downtown man...

Put_Line displays a line of text and advances to

the next line.

The string you typed was Uptown Girl, she been looking for a downtown man...

For characters, the standard Ada library Ada.Character.Handling provides basic operations such as conversions between
case, tests for types of characters, and conversions two and from 16-bit wide characters.

 Text_IO.Put_Line(Ada.Character.Handling.To_Upper('r'));

This example prints 'R' on the screen.

For string handling capabilities, you need to use a package. The standard Ada library Ada.Strings.Fixed contains operations
for fixed strings, including extracting substrings, mapping characters from one set to another (for example, upper to lower
case), and string searching. There is also an Ada.Strings.Unbounded package containing the same subprograms for
unbounded strings, and likewise an Ada.Strings.Bounded for bounded strings.

Figure: Standard String Subprograms

Append / & — concatenate one string to another

Element — return the character at a particular index

Replace_Element — replace a character at a particular index

Slice — return a substring

Replace_Slice / Overwrite — replace a substring

Insert — add a string in the midst of the original string

Delete — remove a string in the midst of the original string

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (2 of 35) [7/20/2001 11:34:25 AM]

Count — return the number of occurrences of a substring

Index — locate a string in the original string

Index_Non_Blank — locate the first non-blank character

Head — return the first character(s) of a string

Tail — return the last character(s) of a string

Trim — remove leading or trailing spaces

* - duplicate the string a specific number of times

Tokenize —

Translate — convert a string to a new set of characters using a mapping function

The following program demonstrates many of the standard Ada string subprograms using unbounded strings.

with Ada.Text_IO, Ada.Strings.Unbounded.Text_IO;

use Ada.Text_IO, Ada.Strings.Unbounded,

 Ada.Strings.Unbounded.Text_IO;

procedure strdemo is

-- demonstrate some of the Ada strings subprograms

 teststr : string := "The rich get richer";

 us : Unbounded_String;

begin

 Put_Line("This program shows some Ada string capabilities");

 New_Line;

 Put("Our test string is ");

 Put_Line(teststr);

 New_Line;

 Put_Line("To_Unbounded_String converts a string to an unbounded string");

 us := To_Unbounded_String(teststr);

 Put_Line(us);

 New_Line;

 Put_Line("The length of the string is " & length(us)'img);

 Put_Line("If we append, ' but not happier', the string is");

 Append(us, " but not happier");

 Put_Line(us);

 New_Line;

 Put_Line("The ampersand will work as well: " & us);

 New_Line;

 Put_Line("The fifth character is " & Element(us, 5));

 New_Line;

 Put_Line("Replacing the 20th character, we get");

 Replace_Element(us, 20, ',');

 Put_Line(us);

 New_Line;

 Put_Line("The 5th to 8th charcaters is " & Slice(us, 5, 8));

 New_Line;

 Put_Line("The first occurence of 'ch' is at " &

 Index(us, "ch")'img);

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (3 of 35) [7/20/2001 11:34:25 AM]

 New_Line;

 Put_Line("The first non-blank character is at " &

 Index_Non_Blank(us)'img);

 New_Line;

 Put_Line("Replacing the first 'rich' with 'RICH' we get");

 Replace_Slice(us, 5, 8, "RICH");

 Put_Line(us);

 New_Line;

 Put_Line("Inserting 'really ' at the 5th character, we get");

 Insert(us, 5, "really ");

 Put_Line(us);

 New_Line;

 Put_Line("Overwriting characters 5 to 8, we get");

 Overwrite(us, 5, "most");

 Put_Line(us);

 New_Line;

 Put_Line("Deleting characters 5 through 11, we get");

 Delete(us, 5, 11);

 Put_Line(us);

 New_Line;

 Put_Line("The first 8 characters at the head of the string are");

 Put_Line(Head(us, 8));

 New_Line;

 Put_Line("The last 8 characters at the tail of the string are");

 Put_Line(Tail(us, 8));

 New_Line;

 -- Count is ambiguous because of the use clauses

 Put_Line("The count of 'er' is " &

 Ada.Strings.Unbounded.Count(us, "er")'img);

 New_Line;

end strdemo;

This program shows some Ada string capabilities

Our test string is The rich get richer

To_Unbounded_String converts a string to an unbounded string

The rich get richer

The length of the string is 19

If we append, ' but not happier', the string is

The rich get richer but not happier

The ampersand will work as well: The rich get richer but not happier

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (4 of 35) [7/20/2001 11:34:25 AM]

The fifth character is r

Replacing the 20th character, we get

The rich get richer,but not happier

The 5th to 8th charcaters is rich

The first occurence of 'ch' is at 7

The first non-blank character is at 1

Replacing the first 'rich' with 'RICH' we get

The RICH get richer,but not happier

Inserting 'really ' at the 5th character, we get

The really RICH get richer,but not happier

Overwriting characters 5 to 8, we get

The mostly RICH get richer,but not happier

Deleting characters 5 through 11, we get

The RICH get richer,but not happier

The first 8 characters at the head of the string are

The RICH

The last 8 characters at the tail of the string are

happier

The count of 'er' is 2

There are also a number of libraries dealing with wide strings, strings with 16-bit characters.

If you are only interested in doing case conversions, gnat provides a small package called case_util that does case
conversions (and only case conversions) on characters and strings. Use case_util to avoid loading the entire
Ada.Character.Handling library.

The following sample program demonstrates the uses of case_util:

with text_io, gnat.case_util;

use text_io;

procedure casetest is

 teststr : constant string := "This is a TEST_string";

 tempstr : string := ".....................";

begin

 Put_Line("This is an example of the Gnat string case conversion tools:");

 New_Line;

 Put_Line("The original string is '" & teststr & "'");

 New_Line;

 TempStr := TestStr;

 Gnat.Case_Util.To_Upper(TempStr);

 Put_Line("Upper case is '" & TempStr & "'");

 tempstr := teststr;

 Gnat.Case_Util.To_Lower(TempStr);

 Put_Line("Lower case is '" & TempStr & "'");

 tempstr := teststr;

 Gnat.Case_Util.To_Mixed(TempStr);

 Put_Line("Mixed case is '" & TempStr & "'");

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (5 of 35) [7/20/2001 11:34:26 AM]

end casetest;

This is an example of the Gnat string case conversion tools:

The original string is 'This is a TEST_string'

Upper case is 'THIS IS A TEST_STRING'

Lower case is 'this is a test_string'

Mixed case is 'This is a test_String'

Ada defines a number of character sets. ASCII is the standard ASCII character set.

To put an "æ" character on displays that support the Latin character set, use

 Put(Ada.Characters.Latin_1.LC_AE_Dipthong);

12.2 Advanced Input/Output

12.2.1 GNAT.IO

For small programs that don't need the full capabilities of Text_IO, GNAT provides a package called GNAT.IO. This
package can get and put integers, characters and strings. Unlike Text_IO, it's also preelaborated.

with GNAT.IO;

use GNAT.IO;

procedure giodemo is

-- this program demonstrates basic input/output using the

-- GNAT.IO package, a stripped down version of Text_IO

 c : character; -- this is a letter

begin

 Put_Line("This program displays information on the screen");

 Put_Line("and reads information from the keyboard");

 New_Line;

 Put_Line("Put_Line displays a line of text and advances to");

 Put_Line("the next line.");

 Put("Put ");

 Put_Line("displays text, but it doesn't start a new line");

 Put_Line("New_Line displays a blank line");

 New_Line;

 Put_Line("Get waits for a character to be typed.");

 Put_Line("Type a key and the Enter key to continue.");

 Get(c);

 Put_Line("The character you typed was '" & c & "'");

end giodemo;

This program displays information on the screen

and reads information from the keyboard

Put_Line displays a line of text and advances to

the next line.

Put displays text, but it doesn't start a new line

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (6 of 35) [7/20/2001 11:34:26 AM]

New_Line displays a blank line

Get waits for a character to be typed.

Type a key and the Enter key to continue.

g

The character you typed was 'g'

[Not complete]

These packages are only useful for simple programs. Usually you will rely on packages/libraries provided for your project.

Text_IO file operations are very limited and are only intended for quick and dirty programs. There are other libraries for
more extensive file operations, such as Ada.Sequential_IO and Ada.Direct_IO.

There is also a subpackage for displaying formatted text, such as columns of numbers.

12.2.2 IO_Aux

GNAT's IO_Aux package provides three commonly used functions to Text_IO programs: testing for a file's existence, and
reading an unlimited length strings from a text file or a console.

with Ada.Text_IO, GNAT.IO_Aux;

use Ada.Text_IO, GNAT.IO_Aux;

procedure ioaux is

-- this program demonstrates the features of the IO_Aux

-- package

 TestFile : string := "/etc/passwd";

 procedure ScanString(s : string) is

 begin

 Put_Line("The string you typed was " & s);

 Put_Line("It is" & s'length'img & " characters long");

 end ScanString;

begin

 Put_Line("This program demonstrates the features of the");

 Put_Line("IO_Aux package. This package adds three functions");

 Put_Line("to simple Text_IO programs.");

 New_Line;

 Put_Line("File_Exists tests for a file's existence.");

 if File_Exists(TestFile) then

 Put_Line(TestFile & " exists");

 else

 Put_Line(TestFile & " doesn't exist");

 end if;

 New_Line;

 Put_Line("Get_Line is the same as Ada.Text_IO's Get_Line");

 Put_Line("except that reads a string of unlimited length");

 Put_Line("and doesn't return an explicit length value.");

 New_Line;

 Put_Line("Please type in a string of any length");

 ScanString(GNAT.IO_Aux.Get_Line);

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (7 of 35) [7/20/2001 11:34:26 AM]

 New_Line;

 Put_Line("The third function is a version of Get_Line");

 Put_Line("that reads any string from a Text_IO files.");

 New_Line;

end ioaux;

This program demonstrates the features of the

IO_Aux package. This package adds three functions

to simple Text_IO programs.

File_Exists tests for a file's existence.

/etc/passwd exists

Get_Line is the same as Ada.Text_IO's Get_Line

except that reads a string of unlimited length

and doesn't return an explicit length value.

Please type in a string of any length

Mary had a little lamb

The string you typed was Mary had a little lamb

It is 22 characters long

The third function is a version of Get_Line

that reads any string from a Text_IO files.

12.3 Sequential_IO

A sequential file is a list of similar items saved on a disk (or other long-term storage media). They are similar to a one
dimensional array except there is no upper bound, and each item must be processed in sequence (hence the name
"sequential"). You can create sequential files of same-length strings, or integer, but most commonly records are used.

You can open an existing sequential IO file, or you can create a new one. When you open or create a file, you have to
indicate what file mode you'll be using. "In" mode files can only be read. "Out" mode files can only be written to. "Append"
is like out mode except that records are added to the end of an existing file.

The reset procedure changes to a new mode and repositions your program accordingly to the end or beginning of the file.

When you are finished with a sequential file, you can either close it or delete it if you don't need it again.

Because there is no way of knowing how many records are remaining in the file, there is a function called End_of_File that
you can check after each read to see if the last item has been read. You can only use End_of_File in In mode--it makes no
sense to use it in Out or Append modes since you always write at the end of the file.

The following program writes a couple of customer records to a sequential file and reads them back again:

with Ada.Text_IO, Ada.Sequential_IO, Ada.IO_Exceptions;
use Ada.Text_IO;

procedure sequentio is
 -- Ada.Sequential_IO example

 type aCustomer is record

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (8 of 35) [7/20/2001 11:34:26 AM]

 name : string(1..40);
 amountOwing : float := 0.0;
 end record;
 -- a customer record with two fields

 package aCustomerFile is new Ada.Sequential_IO(aCustomer);
 use aCustomerFile;
 -- instantiate a new package for sequential IO on a file of
 -- customer records

 CustomerFile : aCustomerFile.File_Type;
 -- our customer file
 -- use "aCustomerFile" because Text_IO and Sequential_IO have File_Type

 cr : aCustomer;

begin

 Put_Line("This is a Ada.Sequential_IO example");
 New_Line;

 -- create the file

 Create(CustomerFile,
 Mode => Out_File,
 Name => "customer.seq");

 -- display some statistics

 Put_Line("We created the file " & Name(CustomerFile));
 Put_Line("We're currently using " & Mode(CustomerFile)'img & " mode");
 if Is_Open(CustomerFile) then
 Put_Line("The file is open");
 else
 Put_Line("The file isn't open");
 end if;
 New_Line;

 -- write the first record

 cr.name := "Tokyo Book Distributors ";
 Write(CustomerFile, cr);
 Put_Line("Writing " & cr.name);

 -- write another record

 cr.name := "General Pizza Inc. ";
 Write(CustomerFile, cr);
 Put_Line("Writing " & cr.name);
 Put_Line("End_of_File not allowed on Out files");
 begin
 if End_Of_File(CustomerFile) then
 Put_Line("We are at the end of the file");
 else

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (9 of 35) [7/20/2001 11:34:26 AM]

 Put_Line("We aren't at the end of the file");
 end if;
 exception when Ada.IO_Exceptions.Mode_Error =>
 Put_Line(Standard_Error, "End_of_File caused Ada.IO.Exceptions.Mode_Error");
 when others =>
 Put_Line(Standard_Error, "Unexpected exception occurred");
 end;
 New_Line;

 -- change modes using Reset

 Put_Line("Reset can change the file mode");
 Put_Line("Changing to In_File mode");
 Reset(CustomerFile, In_File);

 -- read first record

 Put_Line("Reading the next customer");
 Read(CustomerFile, cr);
 Put_Line("Read " & cr.name);
 New_Line;

 -- read second record

 Put_Line("Reading the next customer");
 Read(CustomerFile, cr);
 Put_Line("Read " & cr.name);
 New_Line;

 -- check the end of the file

 Put_Line("End_of_File works on In files");
 if End_Of_File(CustomerFile) then
 Put_Line("We are at the end of the file");
 else
 Put_Line("We aren't at the end of the file");
 end if;
 New_Line;

 Put_Line("Closing file");
 Close(CustomerFile);

end sequentio;

This is a Ada.Sequential_IO example

We created the file /home/ken/ada/trials/customer.seq
We're currently using OUT_FILE mode
The file is open

Writing Tokyo Book Distributors
Writing General Pizza Inc.
End_of_File not allowed on Out files

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (10 of 35) [7/20/2001 11:34:26 AM]

End_of_File caused Ada.IO.Exceptions.Mode_Error

Reset can change the file mode
Changing to In_File mode
Reading the next customer
Read Tokyo Book Distributors

Reading the next customer
Read General Pizza Inc.

End_of_File works on In files
We are at the end of the file

Closing file

[Form not covered--KB]

12.4 Direct_IO

In relational database programming, you create tables of information. The tables act like arrays that are limited in length by
the amount of disk space you have. Each table consists of a series of rows, and each row is divided up into subcategories
called columns.

A telephone book, for example, can be considered one large table. Each row contains information about a different person.
Each row is subdivided into columns of names, addresses and phone numbers.

Although you could represent a database table using a sequential IO file, it would be very difficult to use. To look up the
1000th entry in the file, you would have to read through the first 999 entries.

The Ada equivalent to a database table is called a direct IO file. Some languages refer to this kind of file as a "random
access" file. A direct IO file is called "direct" because you can move directly to any row in the file without having to read any
other rows.

The rows in a direct IO file are typically represented by records (athough they can be any data of a known length) and the
columns are the fields in the records. Direct IO files can also use variant records--Ada will ensure there is enough space in
each entry for the largest variation.

You can open an existing direct IO file, or you can create a new one. When you open or create a file, you have to indicate
what file mode you'll be using. "In" mode files can only be read. "Out" mode files can only be rewritten. Unlike sequential IO
files, there is also an "In Out" mode which allows you to both read and write records. This is the most common mode for
accessing direct IO files.

If you move to a position beyond the end of the file, such as trying to write to row 100 when there are only 50 rows, the other
unused rows will be created and filled with zero bytes--ASCII.NUL in characters or strings, 0 in integers and long_integers,
and so forth. The only way to shorten a direct IO file is to create a new one, delete the original and copy the new one in place
of the original.

There are several useful functions for direct IO files:

Is_Open is true if the file has been opened●

End_Of_File is true if you have read the last record in the file. (This is unavailable in out mode.)●

Name is the path of the file●

Mode is the current file mode●

Size is the number of rows in the file●

Index is the number of the current row●

The following example program reads and writes customer information using the Ada.Direct_IO package.

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (11 of 35) [7/20/2001 11:34:26 AM]

with Ada.Text_IO, Ada.Direct_IO, Ada.IO_Exceptions;
use Ada.Text_IO;

procedure dirio is
 -- Ada.Direct_IO example

 type aCustomer is record
 name : string(1..40);
 amountOwing : float;
 end record;
 -- a customer record with two fields

 package aCustomerFile is new Ada.Direct_IO(aCustomer);
 use aCustomerFile;
 -- instantiate a new package for direct IO on a file of
 -- customer records

 CustomerFile : aCustomerFile.File_Type;
 -- our customer file
 -- use "aCustomerFile" because Text_IO and Direct_IO have File_Type

 cr : aCustomer;

begin

 Put_Line("This is a Ada.Direct_IO example");
 New_Line;

 -- create the file

 Create(CustomerFile,
 Mode => Out_File,
 Name => "customer.dir");

 -- display some statistics

 Put_Line("We created the file " & Name(CustomerFile));
 Put_Line("We're currently using " & Mode(CustomerFile)'img & " mode");
 Put_Line("There are" & Size(CustomerFile)'img & " records");
 Put_Line("We are on row " & Index(CustomerFile)'img);
 if Is_Open(CustomerFile) then
 Put_Line("The file is open");
 else
 Put_Line("The file isn't open");
 end if;
 New_Line;

 -- write the first record

 cr.name := "Midville Electric ";
 Write(CustomerFile, cr);
 Put_Line("Writing " & cr.name);
 Put_Line("There are" & Size(CustomerFile)'img & " records");

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (12 of 35) [7/20/2001 11:34:26 AM]

 Put_Line("We are on row " & Index(CustomerFile)'img);
 New_Line;

 -- write the next record on row 7

 cr.name := "New York Distributors ";
 Write(CustomerFile, cr, To => 7);
 Put_Line("Writing " & cr.name & " to row 7");
 Put_Line("There are" & Size(CustomerFile)'img & " records");
 Put_Line("We are on row " & Index(CustomerFile)'img);
 Put_Line("End_of_File not allowed on In files");
 begin
 if End_Of_File(CustomerFile) then
 Put_Line("We are at the end of the file");
 else
 Put_Line("We aren't at the end of the file");
 end if;
 exception when Ada.IO_Exceptions.Mode_Error =>
 Put_Line(Standard_Error, "End_of_File caused Ada.IO_Exceptions.Mode_Error");
 when others =>
 Put_Line(Standard_Error, "Unexpected exception occurred");
 end;
 New_Line;

 -- change modes using Reset

 Put_Line("Reset can change the file mode");
 Put_Line("Changing to InOut_File mode");
 Reset(CustomerFile, InOut_File);

 -- read first record

 Put_Line("Reading the next customer");
 Read(CustomerFile, cr);
 Put_Line("Read " & cr.name);
 New_Line;

 -- read second (undefined record)

 Put_Line("Reading from row 2");
 Read(CustomerFile, cr);
 Put_Line("Read " & cr.name);
 New_Line;

 -- read 7th row

 Put_Line("Reading from row 7");
 Read(CustomerFile, cr, From => 7);
 Put_Line("Read " & cr.name);
 New_Line;

 -- check the end of the file

 Put_Line("End_of_File works on InOut files");

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (13 of 35) [7/20/2001 11:34:26 AM]

 if End_Of_File(CustomerFile) then
 Put_Line("We are at the end of the file");
 else
 Put_Line("We aren't at the end of the file");
 end if;
 New_Line;

 Put_Line("Closing file");
 Close(CustomerFile);

end dirio;

This is a Ada.Direct_IO example

We created the file /home/ada/customer.dir
We're currently using OUT_FILE mode
There are 0 records
We are on row 1
The file is open

Writing Midville Electric
There are 1 records
We are on row 2

Writing New York Distributors to row 7
There are 7 records
We are on row 8
End_of_File not allowed on In files
End_of_File caused Ada.IO_Exceptions.Mode_Error

Reset can change the file mode
Changing to InOut_File mode
Reading the next customer
Read Midville Electric

Reading from row 2
Read

Reading from row 7
Read New York Distributors

End_of_File works on InOut files
We are at the end of the file

Closing file

Note: In this example, reading from the unassigned second record put a row of 40 ASCII.NUL
characters on the screen. Because these are non-printable characters, nothing is visible in the results.

[What about objects? How are tags treated? --KB]

Direct_IO files are suitable for small database tables. If you need to work with large amounts of data, you should consider
installing one of the free Linux databases (such as PostgreSQL or mySQL) and using them to store and retrieve your data.
This is discussed in upcoming chapters.

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (14 of 35) [7/20/2001 11:34:26 AM]

Alternately, you can write your own database package using a the Linux kernel. seqio, a sequential IO package, is developed
in chapter 16.

12.5 Formatted Output

Formatted output refers to displaying a value based on a template showing, in general, how the output should look. Because
the template is a string, it's easy to visualize the results. This idea is used in languages like COBOL and BASIC (with its
PRINT USING command).

The Ada.Text_IO.Editing provides formatted output. The string template is called a picture. The picture can contain the
following symbols.

'+' - the number will be printed with a leading + or -●

'-' - a negative numbers will be printed with a leading -●

'<' and '>' - a negative number will be printed with (..)●

"CR" - a negative number will be printed with a leading "CR" (credit)●

"DB" - a negative number will be printed with a leading "DB" (debit)●

'$' - the currency symbol will be printed, or a floating dollar sign if multiple instances●

'.' - marks the actual position for a decimal point●

'V' - marks the assumed position for a decimal point●

'9' - space for a number with leading zeros●

'#' - same as '$', except only the leading character is shown●

'Z' - space for a numbers with leading blanks●

'_', 'B', '0', '/' - inserted. 'B' is a blank●

'*' - space for a number with leading asterisks●

A PICTURE_ERROR is raised if there is a mistake in the layout. A LAYOUT_ERROR is raised if the layout can't be used
with a particular value. Using a negative number without specifying a format symbol that allows negative numbers causes a
LAYOUT_ERROR.

Before using Text_IO.Editing, the internal generaic package Decimal_Output must be instantiated for a particular numeric
type. Only decimal types are allowed.

 type money is delta 0.01 digits 18;
 package formatted_io is new ada.text_io.editing.decimal_output(money);

To_Picture converts a string to a picture type. Pic_String returns the string of the picture type.

 p : picture := To_Picture("###9.99");
 s : string := Pic_String(p);

Valid returns true if a string is a valid picture. When Blank_When_Zero parameter is true, a zero represented as an empty
string is allowed. By default, the picture string must show something for a zero. Blank_When_Zero can also be used with
To_Picture.

 if not Valid("####9.99") then
 Put_Line(Standard_Error, "This is a bad picture string");
 end if;

Put displays the formatted decimal value. There is also an Image function that returns the results as a string instead of
displaying it on the screen. Length returns the length of the formatted output. There is no Put_Line.

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (15 of 35) [7/20/2001 11:34:26 AM]

 Put(455.32, pic);
 str := Image(455.32, pic);
 Put(str, 455.32, pic);

Here is an larger example:

with ada.text_io.editing;
use ada.text_io;
use ada.text_io.editing;

procedure formatted is
 type money is delta 0.001 digits 18;
 package formatted_io is new ada.text_io.editing.decimal_output(money);
 use formatted_io;

 procedure ShowValues(s : string) is
 begin
 put(" 0.0 and " &s & " => ");
 put(0.0, To_Picture(s));
 new_line;
 put(" 75.12 and " &s & " => ");
 put(75.12, To_Picture(s));
 new_line;
 put("-75.12 and " &s & " => ");
 begin
 put(-75.12, To_Picture(s));
 exception when others =>
 put("LAYOUT_ERROR");
 end;
 new_line;
 end ShowValues;

begin
 put_line("This is an example of Formatted Output");
 put_line("--------------------------------------");
 new_line;

 put_line("Default currency symbol is " & Default_Currency);
 put_line("Default fill character is '" & Default_Fill & "'");
 put_line("Default separator character is '" & Default_Separator & "'");
 put_line("Default radix mark is '" & Default_Radix_Mark & "'");
 new_line;

 ShowValues("99999.99");
 New_Line;

 ShowValues("ZZZZ9.99");
 New_Line;

 ShowValues("****9.99");
 New_Line;

 ShowValues("-$$$9.99");

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (16 of 35) [7/20/2001 11:34:27 AM]

 New_Line;

 ShowValues("+###9.99");
 New_Line;

 ShowValues("<###9.99>");
 New_Line;
end formatted;

This is an example of Formatted Output

Default currency symbol is $
Default fill character is ' '
Default separator character is ','
Default radix mark is '.'

 0.0 and ZZZZ9.99 => 0.00
 75.12 and ZZZZ9.99 => 75.12
-75.12 and ZZZZ9.99 => LAYOUT_ERROR

 0.0 and -9999.99 => 0000.00
 75.12 and -9999.99 => 0075.12
-75.12 and -9999.99 => -0075.12

 0.0 and ****9.99 => ****0.00
 75.12 and ****9.99 => ***75.12
-75.12 and ****9.99 => LAYOUT_ERROR

 0.0 and -$$$9.99 => $0.00
 75.12 and -$$$9.99 => $75.12
-75.12 and -$$$9.99 => - $75.12

 0.0 and +###9.99 => + $0.00
 75.12 and +###9.99 => + $75.12
-75.12 and +###9.99 => - $75.12

 0.0 and <###9.99> => $0.00
 75.12 and <###9.99> => $75.12
-75.12 and <###9.99> => ($75.12)

Put has many parameters used to override default values.

Currency - the currency string to use●

Fill - the fill character to use●

Separator - the separator character to use●

Radix_Mark - the radix mark to use●

There is also a Wide_Text_IO.Editing for wide string.

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (17 of 35) [7/20/2001 11:34:27 AM]

12.6 Calendar Package

Calendar is the standard Ada package for telling time. You can get the current time, compare time values, do time arithmetic
and comparisons. There is also a GNAT.Calendar package which extends the Ada.Caledar package with days of the week,
second duration, and other features.

Table: North American Federal Holidays and Celebrations

Work schedules (not including small retail stores) often affected by these holidays.

New Year's Day, January 1st.●

Birthday of Martin Luther King (U.S.), third Monday in January.●

Inauguration Day (U.S.), January 20th every four years, starting in 1937.●

Washington's Birthday (U.S.), third Monday in Febrauary.●

Inauguration Day (U.S.), March 4th every four years, pre-1937.●

Good Friday and Easter Sunday (see below).●

Armed Forces Day (U.S.), third Saturday in May.●

Memorial Day (U.S.), last Monday in May.●

Flag Day (U.S.), June 14th.●

Canada Day (Canada), July 1.●

United States of America's Independence Day (U.S.), July 4.●

Labor Day, first Monday in September.●

Columbus Day, second Monday in October.●

Thanksgiving Day (Canada), second Monday in October.●

Election Day (U.S.), Tuesday on or after November 2.●

Veterans Day (U.S.), November 11th.●

Remembrance Day (Canada), November 11th.●

Thanksgiving Day (U.S.), fourth Thursday in November.●

Christmas Day, December 25th.●

North American Banking (and postal) Holidays include Easter Monday and Victoria Day (Canada).

Daylight Savings Time

Daylight Savings time begins, first Sunday in April (but not in Arizona, Hawaii, and parts of southern Indiana).

Daylight Savings Time ends, last Sunday in October (but not in Arizona, Hawaii, and parts of southern Indiana).

Table:Other Widely Celebrated North American Observances

Groundhog Day, February 2.●

Lincoln's Birthday (U.S.), February 12.●

Valentine's Day, February 14.●

Washington's Birthday (U.S.), February 22.●

St. Patrick's Day, March 17.●

April Fools's Day, April 1.●

Mothers' Day, second Sunday in May (36 USC Sec. 142).●

Victoria Day (Canada), second last Monday in May [KB?]●

Fathers' Day, third Sunday in June (36 USC Sec. 142a).●

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (18 of 35) [7/20/2001 11:34:27 AM]

St. Jean Baptiste Day (Quebec/Canada), last Saturday in June [KB?].●

Parents' Day, fourth Sunday in July (36 USC Sec. 142c).●

Grandparents' Day, Sunday after Labor Day (36 USC Sec. 142b).●

Columbus Day (U.S., traditional), October 12.●

United Nations Day (U.S.), October 24.●

Halloween, October 31.●

Boxing Day, December 26.●

The following program demonstrates the basic operations of the calender package.

with text_io, calender;
use calender;

procedure caldemo is
 Year : Year_Number;
 Month : Month_Number;
 Day : Day_Number;
 Seconds : Day_Duration;
 Christmas94 : time;
begin
 Text_IO.Put_Line("A simple calendar example");
 Text_IO.New_Line;

 Split(Clock, Year, Month, Day, Seconds);
 Text_IO.Put_Line("The current date is" &
 Year'img & "/" &
 Month'img & "/" &
 Day'img);
 Text_IO.Put_Line("It's" & seconds'img &
 " seconds into the day");
 Text_IO.New_Line;

 Christmas94 := Time_Of(1994, 12, 25);
 if Christmas94 < Clock then
 Text_IO.Put_Line("It's after Christmas 1994");
 else
 Text_IO.Put_Line("It's before Christmas 1994");
 end if;
 Text_IO.New_Line;

 Split(Clock+12.5, Year, Month, Day, Seconds);
 Text_IO.Put_Line("In 12.5 seconds it will be " &
 Year'img & "/" &
 Month'img & "/" &
 Day'img);
 Text_IO.Put_Line("And" & seconds'img &
 " seconds into the day");
end caldemo;

A simple calendar example

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (19 of 35) [7/20/2001 11:34:27 AM]

The current date is 1998/ 12/ 17
It's 59775.185023000 seconds into the day

It's after Christmas 1994

In 12.5 seconds it will be 1998/ 12/ 17
And 59787.686581000 seconds into the day

The GNAT.Calendar.Time_IO package will write a time value according to a format string, similar to the Linux strftime
function.

Easter is one of the hardest holidays to calculate. The following is a program to calculate the date of Easter Sunday:

[This should be rewritten for Ada.Calender -- KB]

with Ada.Text_IO;
use Ada.Text_IO;

procedure easter is

procedure findEaster(year : integer; easter_month, easter_day : out integer) is
 -- based on the public domain algorithm
 -- by Ed Bernal

 a,b,c,e,g,h,i,k,u,x,z : integer;

begin
 --
 -- "Gauss' famous algorithm (I don't know how or why it works,
 -- so there's no commenting)" -- Ed Bernal
 --

 a := year mod 19;
 b := year / 100;
 c := year rem 100;
 z := b / 4;
 e := b rem 4;
 g := (8*b + 13) / 25;
 h := (19*a + b - z - g + 15) rem 30;
 u := (a + 11*h) / 319;
 i := c / 4;
 k := c rem 4;
 x := (2*e + 2*i - k - h + u + 32) rem 7;
 easter_month := (h-u+x+90) / 25;
 easter_day := (h-u+x + easter_month +19) rem 32;
end findEaster;

 month, day : integer;

begin

 findEaster(2000, month, day);
 Put("Easter Sunday 2000 is month " & month'img);

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (20 of 35) [7/20/2001 11:34:27 AM]

 Put_Line(" and day " & day'img);

end easter;

Easter Sunday 2000 is month 4 and day 23

12.7 Tags Package

Ada.Tags contains some utility procedures to for the invisible tags that accompany tagged records, including converting tags
to and from strings. The following program shows what the tags package can do and shows tag comparison with the in
operator.

with text_io, ada.tags;

procedure t is

 type ParentRec is tagged record

 i : integer;

 end record;

 type ChildRec is new ParentRec with record

 j : integer;

 end record;

 child : ChildRec;

begin

 Text_IO.Put_Line("Working with Tagged Record Tags:");

 Text_IO.New_Line;

 Text_IO.Put_Line("ParentRec has an expanded name of " &

 Ada.Tags.Expanded_Name(ParentRec'Tag));

 Text_IO.Put_Line("ChildRec has an expanded name of " &

 Ada.Tags.Expanded_Name(ChildRec'Tag));

 Text_IO.New_Line;

 Text_IO.Put_Line("ParentRec has an external tag of " &

 Ada.Tags.External_Tag(ParentRec'Tag));

 Text_IO.Put_Line("ChildRec has an external tag of " &

 Ada.Tags.External_Tag(ChildRec'Tag));

 Text_IO.New_Line;

 if child in ParentRec'class then

 Text_IO.Put_Line("child (a child rec) is in ParentRec'class");

 else

 Text_IO.Put_Line("This should not happen");

 end if;

 if child in ChildRec'class then

 Text_IO.Put_Line("child (a child rec) is in ChildRec'class");

 else

 Text_IO.Put_Line("This should not happen");

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (21 of 35) [7/20/2001 11:34:27 AM]

 end if;

end t;

Working with Tagged Record Tags:

ParentRec has an expanded name of T.PARENTREC

ChildRec has an expanded name of T.CHILDREC

ParentRec has an external tag of T.PARENTREC

ChildRec has an external tag of T.CHILDREC

child (a child rec) is in ParentRec'class

child (a child rec) is in ChildRec'class

12.8 Tables

Gnat 3.11 introduces gnat.table, a gnat package for creating an aribrary length array (or, for that matter, a link list).

[expand and give example program]

12.9 Hash Tables

Gnat provides a generic package for hash tables called gnat.htable. You provide gnat's package with information on the size
of the tables, the elements it contains, and a hash function and the instantiation provides Get and Set procedures to put values
in and take values out of your hash table.

Gnat 3.11: This version of gnat adds remove and iterator subprograms for hash tables.

The following is an example using a hash table of integers.

with text_io, gnat.htable;

use text_io;

procedure hashtest is

-- First, define the items required by gnat.htable

 type HashTableIndex is newinteger range 1..200;

 subtype HashElement is integer;

 EmptyPosition : constant HashElement := 9999;

 function HashOf(he : HashElement) return HashTableIndex is

 begin

 return HashTableIndex(((he * 91) mod integer(HashTableIndex'last)) + 1);

 end HashOf;

 -- OK, instantiate the package

 --

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (22 of 35) [7/20/2001 11:34:27 AM]

 -- IntTable is a simple HashTable of integer.

 --

 -- Since we're using simple integers, the hash key is the integer

 -- itself and we can compare integers with equals without having

 -- to write a function to compare the values.

 package IntTable is new gnat.htable.simple_htable(

 Header_Num => HashTableIndex, -- how big the table is

 Element => HashElement,-- what's in the table

 No_Element => EmptyPosition,-- what's in empty positions

 Key => HashElement, -- what the key is

 Hash => HashOf,-- function to generate the hash

 Equal => "="); -- how to compare things in table

begin

 Put_Line("This is an example of a hash table of integers");

 New_Line;

 IntTable.Set(1, 1);

 IntTable.Set(27, 27);

 Put_Line("Added 1 and 27 to the hash table");

 Put_Line("Empty positions are" & EmptyPosition'img);

 New_Line;

 Put_Line("Pulling 1 from the hash table =" & IntTable.Get(1)'img);

 Put_Line("Pulling 27 from the hash table =" & IntTable.Get(27)'img);

 Put_Line("Pulling 99 from the hash table =" & IntTable.Get(99)'img);

end HashTest;

This is an example of a hash table of integers

Added 1 and 27 to the hash table

Empty positions are 9999

Pulling 1 from the hash table = 1

Pulling 27 from the hash table = 27

Pulling 99 from the hash table = 9999

[Could use more realistic example--KB]

12.10 Bubble and Heap Sorts

Gnat provides two packages for bubble sorting. Both assume that your information is in an array with a lower bound of zero.
The zero element is used as temporary space for the sort.

The first, gnat.bubble_sort_g, is a generic. You provide the package with a procedure to move data in the array and a
function to check for one value being less than another. The instantiation provides a sort procedure.

with text_io, gnat.bubble_sort_g;

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (23 of 35) [7/20/2001 11:34:27 AM]

use text_io;

procedure bubble1 is

-- Our table to sort

 type IntegerTable is array(0..5) of integer;

 it : IntegerTable := (0, 13, 4, 5, 16, 8);

 -- Define the items required by a generic gnat bubble sort

 procedure MoveIntegers(From, To : natural) is

 begin

 it(To) := it(From);

 end MoveIntegers;

 function CompareIntegers(left, right : natural) return boolean is

 begin

 return it(left) < it(right);

 end CompareIntegers;

 -- OK, instantiate the package

 --

 package IntSort is new gnat.bubble_sort_g(

 Move => MoveIntegers, -- how to move two things

 Lt => CompareIntegers); -- how to compare to things

 procedure ShowTable is

 begin

 for i in IntegerTable'range loop

 Put_Line(i'img & " = " & it(i)'img);

 end loop;

 end ShowTable;

begin

 Put_Line("This is an example of bubble sorting an integer table");

 New_Line;

 Put_Line("The table begins as:");

 ShowTable;

 IntSort.Sort(it'last); -- sort elements 1 to top of it array

 New_Line;

 Put_Line("The sorted table is:");

 ShowTable;

end bubble1;

This is an example of bubble sorting an integer table

The table begins as:

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (24 of 35) [7/20/2001 11:34:27 AM]

0 = 0

1 = 13

2 = 4

3 = 5

4 = 16

5 = 8

The sorted table is:

0 = 13

1 = 4

2 = 5

3 = 8

4 = 13

5 = 16

The second, gnat.bubble_sort_a uses callbacks instead of a generic package. Use this package if you want to conserve
memory by avoiding a lot of instantiations of the generic bubble_sort_g. Remember that callbacks must be global, so we can't
simple pass the local subprograms we created in bubble1. This time we must store the array and subprograms in a separate
package.

with text_io, gnat.bubble_sort_a, inttable;

use text_io, inttable;

procedure bubble2 is

begin

 Put_Line("This is an example of bubble sorting an integer table");

 New_Line;

 Put_Line("The table begins as:");

 ShowTable;

 gnat.bubble_sort_a.Sort(n => it'last,

 Move => MoveIntegers'access,

 Lt => CompareIntegers'access);

 -- sort elements 1 to top of it array

 New_Line;

 Put_Line("The sorted table is:");

 ShowTable;

end bubble2;

package inttable is

-- Our table to sort

 type IntegerTable is array(0..5) of integer;

 it : IntegerTable := (0, 13, 4, 5, 16, 8);

 -- Define the items required by a callback gnat bubble sort

 -- these must be global to work

 procedure MoveIntegers(From, To : natural);

 -- move one item in the table from From position to To position

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (25 of 35) [7/20/2001 11:34:27 AM]

 function CompareIntegers(left, right : natural) return boolean;

 -- compare two items in the table and determine if left is less than

 -- than right

procedure ShowTable;

end inttable;

with text_io;

use text_io;

package body inttable is

 procedure MoveIntegers(From, To : natural) is

 begin

 it(To) := it(From);

 end MoveIntegers;

 function CompareIntegers(left, right : natural) return boolean is

 begin

 return it(left) < it(right);

 end CompareIntegers;

 procedure ShowTable is

 begin

 for i in IntegerTable'range loop

 Put_Line(i'img & " = " & it(i)'img);

 end loop;

 end ShowTable;

end inttable;

This is an example of bubble sorting an integer table

The table begins as:

0 = 0

1 = 13

2 = 4

3 = 5

4 = 16

5 = 8

The sorted table is:

0 = 13

1 = 4

2 = 5

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (26 of 35) [7/20/2001 11:34:27 AM]

3 = 8

4 = 13

5 = 16

The heap sort package works identically, with both generic (heap_sort_g) and callback (heap_sort_a) versions as well.
Heap sorts are better suited to large amounts of data. Here's the callback version using the same inttable package we used
above.

with text_io, gnat.heap_sort_a, p;

use text_io, p;

procedure heaptest is
begin

 Put_Line("This is an example of heap sorting an integer table");

 New_Line;

 Put_Line("The table begins as:");

 ShowTable;

 gnat.heap_sort_a.Sort(n => it'last,

 Move => MoveIntegers'access,

 Lt => CompareIntegers'access);

 -- sort elements 1 to top of it array

 New_Line;

 Put_Line("The sorted table is:");

 ShowTable;

end heaptest;

This is an example of heap sorting an integer table

The table begins as:

[this wasn't corrupted before—MS Word bug?]

12.11 Regular Expressions

"Regular Expressions" refers to pattern matching for strings: identifying all strings that adhere to a certain pattern. For
example, listing all files that end with .ads using the shell command "ls *.ads" is an example of a regular expression.

GNAT has two built-in packages for dealing with regular expressions. The first, called "Regexp", performs pattern matching
using two different standards. First, it supports standard UNIX shell "file globbing" expressions as described by "man bash".
Second, it supports BNF patterns as described in the Ada Reference Manual.

Using the package is a two step process. First, you must compile the expression using the Compile function. Then, you check
for a string that matches the expression using the Match function.

The following program demonstrates the Regexp package.

with Ada.Text_IO, GNAT.Regexp;

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (27 of 35) [7/20/2001 11:34:28 AM]

use Ada.Text_IO, GNAT.Regexp;

procedure regex is

procedure TestMatch(re : Regexp; s : string) is

begin

 if Match(s, re) then

 Put_Line(s & " matches the expression");

 else

 Put_Line(s & " doesn't match the expression");

 end if;

end TestMatch;

Criteria : Regexp;

begin

 Put_Line("This program demonstrates GNAT's regular expression");

 Put_Line("capabilities. These are used to find text that match");

 Put_Line("a certain pattern.");

 New_Line;

 -- UNIX Regular Expressions

 Put_Line("A 'globbing pattern' is a UNIX shell-style pattern matching");

 Put_Line("The pattern 'a*' matches anything starting with the letter 'a'");

 Criteria := Compile("a*", Glob => true, Case_Sensitive => true);

 New_Line;

 TestMatch(Criteria, "accounting");

 TestMatch(Criteria, "President");

 TestMatch(Criteria, "sundries");

 New_Line;

 -- BNF Expressions

 Put_Line("A non-globbing pattern is a BNF pattern, as used in the Ada");

 Put_Line("Reference Manual. For example, 'a[a-z]*' means characters");

 Put_Line("beginning with 'a' and with any number of letters following.");

 Criteria := Compile("a[a-z]*", false, true);

 New_Line;

 TestMatch(Criteria, "accounting");

 TestMatch(Criteria, "sales");

 New_Line;

end regex;

This program demonstrates GNAT's regular expression

capabilities. These are used to find text that match

a certain pattern.

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (28 of 35) [7/20/2001 11:34:28 AM]

A 'globbing pattern' is a UNIX shell-style pattern matching

The pattern 'a*' matches anything starting with the letter 'a'

accounting matches the expression

President doesn't match the expression

sundries doesn't match the expression

A non-globbing pattern is a BNF pattern, as used in the Ada

Reference Manual. For example, 'a[a-z]*' means characters

beginning with 'a' and with any number of letters following.

accounting matches the expression

sales doesn't match the expression

The second Gnat pattern matching package is "Regpat" which interprets full UNIX V7 regular expressions as defined in the
"man regexp" Linux man page. Don't be confused by the naming conventions: the Regexp package does not do Linux regular
expressions.

12.12 Advanced String Processing

[spitbol-style string processing not finished]

12.13 GLADE Distributed Processing

GLADE is the free distributed processing package for TCP/IP and gnat. It is distributed separately from the gnat compiler.
This should not be confused with the GTK's Glade, the GUI builder for the Gimp Toolkit widgets, which has bindings for
Ada (http://glade.pn.org/).

GLADE is built into the ALT version of GNAT.

To install GLADE, unpack it and type "configure" and "make install".

GLADE works on partitions, programs designed to run on other computers. Each partition has a channel between itself and
another partition. Of course, the partitions can also run concurrently on one computer. You describe the partitions and
channels using an Ada-like language called Garlic.

GLADE uses rsh to start partitions, so make sure you don't run the programs under the root login since root is not allowed to
run programs via rsh.

[KB: I could install and compile programs with glade, but the communication wasn't working…error in my networking setup
or did I not install it properly?]

12.14 Basic Math Packages

Type Ada Package Description

Generic Ada.Numerics.Generic_Elementary_Functions
basic math for
floating point
numbers

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (29 of 35) [7/20/2001 11:34:28 AM]

http://glade.pn.org/

Short_Float Ada.Numerics.Short_Elementary_Functions
basic math for
short_float type

Float Ada.Numerics.Elementary_Functions
basic math for
float type

Long_Float Ada.Numerics.Long_Elementary_Functions
basic math for
long_float type

Long_Long_Float Ada.Numerics.Long_Log_Elementary_Functions
basic math for
long_long_float
type

Sooner or later, you will ask the question, "So, how do I compute the cosine of a number?" The answer found is the
Ada.Numerics.Generic_Elementary_Functions package. This package with the unusually long name is the basic floating
point math package. This is a generic package that you instantiate for a particular floating point type. For example, to set up
the package for a custom floating point type called "percent",

 with Ada.Numerics.Generic_Elementary_Functions;
 type percent is new float range 0.0..1.0;
 package percentMath is new Ada.Numerics.Generic_Elementary_Functions(percent);
 use percentMath;

The "use percentMath" statement saves us from typing "percentMath." before every function we use.

With percentMath instantiated, we can now perform basic floating point math functions such as

 Put_Line("20% to the power of 3 is" & percent'image(0.2**3.0));

As shown in the table at the start of this section, elementary function packages for the basic floating point types are included
with Gnat.

The elementary package includes:

Function Description

Sqrt(x) Square Root

Log(x) Natural Logarithm (ln in some other languages)

Log(x, b) Logarithm to base b

Exp(x) Raise e by power x

** Power operator

Sin(x) Sine for x radians

Sin(x, c) Sine for x where cycle range is c (eg. 360 for degrees)

Cos(x) Cosine for x radians

Cos(x, c) Cosine for x where cycle range is c

Tan(x) Tangent for x radians

Tan(x, c) Tangent for x where cycle range is c

There are corresponding functions for arctan, arccot, sinh, cosh, tanh, coth, arccosh, arctanh, artcoth.

Here's an example using the built-in functions for the float type, and creating our own functions for our own percent type:

with Ada.Text_IO, Ada.Numerics.Elementary_Functions,
 Ada.Numerics.Generic_Elementary_Functions;
use Ada.Text_IO, Ada.Numerics.Elementary_Functions;

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (30 of 35) [7/20/2001 11:34:28 AM]

procedure floatmath is
 type percent is new float range 0.0..1.0;
 package percentMath is new
 Ada.Numerics.Generic_Elementary_Functions(percent);
 use percentMath;

 half : percent := 0.5;

begin
 Put_Line("Here's some floating point math!");
 New_Line;

 Put_Line("4.0 to the power 3.0 is" &
 float'image(4.0 ** 3.0));

 Put_Line("The sine of 0.4 radians is" &
 float'image(sin(0.4)));

 Put_Line("The cosine of 180 degrees is" &
 float'image(sin(180.0, 360.0)));

 Put_Line("The square root of 81 is" &
 float'image(sqrt(81.0)));

 Put_Line("50% squared is" &
 percent'image(half ** 2.0));

end floatmath;

Here's some floating point math!

4.0 to the power 3.0 is 6.40000E+01
The sine of 0.4 radians is 3.89418E-01
The cosine of 180 degrees is 0.00000E+00
The square root of 81 is 9.00000E+00
50% squared is 2.50000E-01

When you work with floating point subprograms in libraries outside of Ada, there's a chance that the library will change the
floating point arithmetic settings for your CPU. When this happens, use the GNAT.Float_Control package to change your
CPU back to GNAT's preferred defaults. There is only one subprogram in this package: reset.

If you are interested in integer operations not covered by the built-in Ada features, the Interfaces package (the package used
to interface Ada to other languages) defines several bit-shifting functions. In order to use these functions, you'll need to
convert (or derrive) your integer values to one of Interfaces' integer types:

Function Description

Rotate_Left Rotate bits in integer types leftward

Rotate_Right Rotate bits in integer types rightward

Shift_Left Shift bits in integer types leftward

Shift_Right Shift bits in integer types rightward

Shift_Right_Arithmetic Arithmetic shift bits in integer types rightward

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (31 of 35) [7/20/2001 11:34:28 AM]

C: Shift_Left is the equivalent of the C << operator. Shift_Right is the equivalent of the >> operator.

In Gnat, bit-shifting operations are intrinsic. That is, they act as built-in functions and execute quickly.

Here is an example of shifting integer values.

with Ada.Text_IO, Interfaces;
use Ada.Text_IO, Interfaces;

procedure shiftMath is
 six : unsigned_64 := 6;
begin

 Put_Line("Time to do a little bit shifting");
 New_Line;

 Put_Line("Our integer is" & six'img);
 Put_Line("In binary, this is" & six'img);

 Put_Line("Shifted left once is" &
 Shift_Left(six, 1)'img);
 Put_Line("Shifted left twice is" &
 Shift_Left(six, 2)'img);
 Put_Line("Shifted right once is" &
 Shift_Right(six, 1)'img);
 Put_Line("Arithmetic Shifted right once is" &
 Shift_Right_Arithmetic(six, 1)'img);

end shiftMath;

Time to do a little bit shifting

Our integer is 6
In binary, this is 6
Shifted left once is 12
Shifted left twice is 24
Shifted right once is 3
Arithmetic Shifted right once is 3

12.15 Exception Handling and Traceback Packages

Gnat includes packages for working with exceptions. Using these packages, you can add a message to your exceptions, save
exceptions, and examine an exception occurences when they are raised.

Traceback is a technique to examine the run-time stack and identify where an exception occurred. Gnat can identify the
specific source file and line where an exception occurred. To use tracebacks in Linux, you must compile your program with
the -funwind-tables switch and bind with the -E switch.

[Zero-cost exceptions not covered yet--KB]

with Ada.Text_IO,Ada.Exceptions,Gnat.Current_Exception,Gnat.Traceback.Symbolic;
use Ada.Text_IO,Ada.Exceptions,Gnat.Current_Exception,Gnat.Traceback.Symbolic;

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (32 of 35) [7/20/2001 11:34:28 AM]

procedure exc is
 e : exception;
 saved_exception : Exception_Occurrence;

 procedure CrashMe is
 begin
 Raise_Exception(e'identity, "call exec development team");
 end CrashMe;

begin
 Put_Line("This is an example of the Ada.Exceptions package");
 New_Line;

 -- Information about an exception that is not in progress

 Put_Line("Exception_Name returns a unique name for an exception");
 Put_Line("The unique name our exception is " & Exception_Name(e'identity));
 New_Line;

 -- Raising an exception with a message

 Put_Line("raise will raise an exception with no message");
 New_Line;

 Put_Line("Raise_Exception will raise an exception with a message");
 Put_Line("Raising " & Exception_Name(e'identity) &
 " with the message 'call exc development team'");
 Put_Line("in the subprogram 'CrashMe'.");
 New_Line;
 CrashMe;

exception when occurrence: others =>

 -- Information about an exception that is is in progress

 Put_Line("---");
 Put_Line("An exception has been raised! Now in exception handler");
 Put_Line("The name of the exception is " & Exception_Name(occurrence));
 New_Line;
 Put_Line("Exception_Message returns the message for this exception");
 Put_Line("The message for this exception is '" & Exception_Message(occurrence)
& "'");
 New_Line;
 Put_Line("Exception_Information provides the name, message and any traceback
information:");
 Put_Line(Exception_Information(occurrence));
 New_Line;
 Put_Line("The Gnat.Current_Exception package contains short-hand");
 Put_Line("versions of Exception_Name, Exception_Message, Exception_Information."
);
 Put_Line("These functions assume you're referring to the current exception");
 Put_Line("Gnat.Current_Exception.Exception_Name is " & Exception_Name);
 Put_Line("Gnat.Current_Exception.Exception_Message is '" & Exception_Message &

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (33 of 35) [7/20/2001 11:34:28 AM]

"'");
 New_Line;
 Put_Line("The Gnat.Traceback.Symbolic package returns the contents of the");
 Put_Line("runtime stack. That is, it shows which subprograms were being");
 Put_Line("executed when the exception occurred.");
 Put_Line("The symbolic traceback is");
 Put_Line(Symbolic_Traceback(occurrence));
 New_Line;
 Put_Line("Ada.Exceptions can also save and re-raise in-progress exceptions");
 New_Line;
 Put_Line("Save_Occurence can save the in-progress exception");
 Save_Occurrence(saved_exception, occurrence);
 Put_Line("Exception now saved.");
 New_Line;
 Put_Line("Reraise_Occurrence will raise an in-progress exception");
 Put_Line("Reraising the one we just saved...");
 Reraise_Occurrence(saved_exception);

 --Allocate/DeallocateMachineState not covered--for zero-cost exceptions

end exc;

This is an example of the Ada.Exceptions package

Exception_Name returns a unique name for an exception
The unique name our exception is EXC.E

raise will raise an exception with no message

Raise_Exception will raise an exception with a message
Raising EXC.E with the message 'call exc development team'
in the subprogram 'CrashMe'.

An exception has been raised! Now in exception handler
The name of the exception is EXC.E

Exception_Message returns the message for this exception
The message for this exception is 'call exec development team'

Exception_Information provides the name, message and any traceback information:
Exception name: EXC.E
Message: call exec development team

The Gnat.Current_Exception package contains short-hand
versions of Exception_Name, Exception_Message, Exception_Information.
These functions assume you're referring to the current exception
Gnat.Current_Exception.Exception_Name is E
Gnat.Current_Exception.Exception_Message is 'call exec development team'

The Gnat.Traceback.Symbolic package returns the contents of the

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (34 of 35) [7/20/2001 11:34:28 AM]

runtime stack. That is, it shows which subprograms were being
executed when the exception occurred.
The symbolic traceback is
0x8049cb3 in exc at exc.adb:10

Ada.Exceptions can also save and re-raise in-progress exceptions

Save_Occurence can save the in-progress exception
Exception now saved.

Reraise_Occurrence will raise an in-progress exception
Reraising the one we just saved...
raised EXC.E : call exec development team
Call stack traceback locations:
0x80497eb

Because the reraised exception propogated all the way to the main program and caused it to fail, the final line was actually
written to Standard_Error.

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (35 of 35) [7/20/2001 11:34:28 AM]

13 Linux Introduction

 <--Last Chapter Table of Contents Next Chapter-->

This section is an introduction to Linux programming.

13.1 Introduction to Processes

Linux is an operating system. It controls the execution of programs and access to system resources.

Linux can run multiple programs at one. Each running program is referred to as a process. The operating system switches to a
new process every 100 milliseconds by default--like everything else in Linux, this value can be customized by changing the
kernel source code.

Even on a Linux computer with only one user, there are usually several programs running in the background. The one process
that is always running is "init": this is the root process, the first process Linux starts when the system is started.

13.1.1 Parents, Children and Families

Processes are grouped together into families. Each time a program starts another process, the new process is called a child and
the original process is called a parent. When the parent unexpectedly stops running, Linux knows enough to stop all the
related processes as well.

A multitasking program is a program that starts other processes to run simultaneously and assist it with its work. When a child
process starts, Linux makes a copy of the parent's resources for the child. For example, all the files that where open to the
parent are also open to the child process.

A multithreading program refers to independent streams of execution within a single process. Linux refers to each stream as a
thread. Ada tasks and protected types, for example, are threads--they do not create entirely new programs they way
multitasking works. Instead, they are miniature programs that run inside the parent task, sharing that parent's resources instead
of getting their own copy.

Don't confuse Ada tasks with multitasking--the term "task" was chosen before the term "multithreading" became popular.

PID's

The ps command shows a list of all processes that are running. Each process has its own identifying number, called the PID
(for Process Identification). Here's a typical output from the ps command:

$ ps
 PID TTY TIME CMD
 579 tty1 00:00:00 login
 589 tty1 00:00:00 bash
 617 tty1 00:00:00 ps

PPID's

Processes also have a PPID (Parent Process ID) for identifying its parent process. The ps command l option (for "long") shows
additional information about a process, including its PPID:

$ ps l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
100 S 0 579 1 0 60 0 - 549 wait4 tty1 00:00:00 login

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (1 of 15) [7/20/2001 11:35:51 AM]

100 S 0 589 579 0 69 0 - 457 wait4 tty1 00:00:00 bash
100 R 0 624 589 0 70 0 - 634 - tty1 00:00:00 ps

In this case, there are three processes in one family. The ps process (PPID 589) has a bash shell as its parent (PID 589).
Likewise, the parent of the bash shell is the login command.

Process Groups

For complex programs with many processes, Linux can organize processes into process groups.

The ps lfw options (long, full, wide) will show the PID, the PPID and a simulated graph of groups of related processes.

$ ps lfw
 F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
100 0 579 1 0 0 2196 1148 wait4 S tty1 0:00 login -- root
100 0 589 579 15 0 1828 1060 wait4 S tty1 0:00 -bash
100 0 689 589 17 0 2484 824 - R tty1 0:00 _ ps lfw

Here, it shows that "ps lfw" is a related to the bash shell process, but the bash shell is not related to the login command. The
PPID number shows you which process started another, but not which group it belongs to. Because the bash shell process and
the ps command are both members of the same group, if you were to kill the bash process, Linux would automatically kill the
ps command as well because they are in the same group. With this arrangment, if the bash shell crashed, Linux can return
control to the login program and allow you to log in again.

In the same way, if you have many processes in your program, you can group your processes so if they crash unexpectedly, the
main program can continue running and take emergency actions. Process groups also provides an easy way to stop several
processes at once. For example, a web server could put all the child processes into one group to make it easy to stop them
when the server is being shut down.

Stopping Processes

Normally, a process stops when it reaches the end of the instructions it needs to execute.

You can stop a runaway program (or process) with the kill command, giving the command the PID number returned by the ps
command.

 kill 624 #killing ps

Below we'll discuss stopping processes from inside a program.

A process that runs continually, performing some kind of regular system functions, is called a daemon (pronounced
"day-mon", a variation on the word "demon"). It's referred to as a daemon as if a little evil creature was running around doing
work on its own. If you have a web server running, for example, you could refer to it's process as the web daemon.

13.1.2 Ownership and Permissions

For the sake of security, all programs belong to an owner and one or more groups. In the same way that all users have a login
name (the "owner") and a list of groups they belong to, every program acts as if it's running on behalf of a particular user and
their groups. If you're login is "bob", for example, any program you run will be owned by the "bob" login and whatever groups
the "bob" login belongs to--your program can only access files that the "bob" login can access. If a program is owned by the
superuser login, it doesn't automatically run with the full authority of the superuser.

This can be circumnavigated by the setuid and setgid permissions. When a program is marked with the setuid or setgid active,
the program is owned by whatever owner and group owns the file. This is used for system programs that have to schedule
events between multiple people, like the printer daemon.

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (2 of 15) [7/20/2001 11:35:51 AM]

13.2 Using System and OsLib.Spawn

Often, the first question new Linux programmers ask is, "How to do you run a shell command like ls from a program?"

The easiest, though not necessarily most practical, way to do Linux programming is to use the standard C library's system call.
System starts a new process, starts a shell running and gives the shell whatever command to execute that you specify. The
command executes just as if you typed it in at the command prompt.

For example, to list the files in the current directory on the screen, you'd type:

 function system(cmd : string) returns integer;
 pragma Import(C, system);
 ...
 Result := system("ls" & ASCII.NUL);

The result is the exit status returned by the command, usually zero if it executed successfully or non-zero if there was an error.

To capture the output of the system command, you can redirect the results to a file using the shell's output redirect, ">". This
creates a text file for you to open with Ada.Text_IO.Open.

 Result := system("ls > /tmp/ls.out" & ASCII.NUL);
 Ada.Text_IO.Open(fd, in_file, "/tmp/ls.out");
 ...

The following is a simple program to print to the printer with the Text_IO library. It creates a text file and then uses system to
run lpr to print it.

 with Ada.Text_IO; use Ada.Text_IO;
 procedure printer is
 -- a program for simple printing

 function System(s : string) return integer;
 pragma import(C, System, "system");
 -- starts a shell and runs a Linux command

 procedure PrintFile(s : string) is
 -- run the lpr command
 Result : integer;
 begin
 Result := System("lpr " & s & ASCII.NUL);
 Put_Line("Queuing " & s & "...");
 if Result /= 0 then
 Put_Line("system() call for lpr failed");
 else
 Put_Line("Printing is queued");
 end if;
 end PrintFile;

 procedure CreateFile(s : string) is
 -- run the touch command
 Result : integer;
 begin
 Put_Line("Creatinig " & s & "...");
 Result := System("touch " & s & ASCII.NUL);
 if Result /= 0 then
 Put_Line("system() call for touch failed");
 else

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (3 of 15) [7/20/2001 11:35:51 AM]

 Put_Line("Spool file initialized");
 end if;
 end CreateFile;

 -- the text file to print

 SpoolPath : constant string := "/tmp/spool.txt";
 SpoolFile : File_Type;

begin

 -- To open an out_file in text_io, it must exist.
 -- Create file will create a new spool file.

 -- Set_Output will redirect all output to the
 -- spool file.

 CreateFile(SpoolPath);
 Open(SpoolFile, out_file, SpoolPath);

 Set_Output(SpoolFile);
 -- write the report to printer

 -- Linux normally will not eject a page when
 -- printing is done, so we'll use New_Page.

 Put_Line("Sales Report");
 Put_Line("------------");
 New_Line;

 Put_Line("Sales were good");
 New_Page;
 -- Now, restore output to the screen, close
 -- the file and queue the file for printing
 -- using lpr.

 Set_Output(Standard_Output);
 Close(SpoolFile);

 PrintFile(SpoolPath);

 Put_Line("Program done...check the printer");

end printer;

Although this program will work for simple applications, another improved program to print using pipes is discussed below.

The system function is convenient but it has a couple of important drawback:

It's slow: it always opens a shell even if you're only using the shell execute some other program●

It's a security risk: the shell could have aliases defined and what you thought you were running may not be what actually
runs.

●

GNAT's OsLib provides a subprogram like system called spawn. It executes a Linux program without starting a shell first.
Spawn requires a bit of setup to use. You have to define an array of access type arguments for the command. Once you invoke
spawn, it returns a boolean value indicating whether the spawn succeeded or failed. The following excerpt is from an example
program in the OSLib section covered below.

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (4 of 15) [7/20/2001 11:35:51 AM]

 Arguments : Argument_List(1..1);
 -- an argument list for 1 argument

 Ls : constant string := "/bin/ls";
 -- the program we want to run

 WasSpawned: boolean;
 RootDir : aliased string := "/";

begin

 Arguments(1) := RootDir'unchecked_access;
 -- unchecked to avoid useless (in this case) accessibility warning

 Spawn(Ls, Arguments, WasSpawned);

 if WasSpawned then
 New_Line;
 Put_Line("End of ls output -- Spawned worked");
 else
 Put_Line("Spawn failed");
 end if;

This fragment runs the ls command, prints the results on the screen, and then displays the success of the command on the
screen. Notice there are differences between spawn and system:

spawn only gives you a boolean result●

spawn does not start a shell, so it is more secure●

because there is no shell, you can't run built-in shell commands nor can you redirect output using ">"●

If spawn is too limited, many UNIX and Linux programming books tell you how to create your own spawn style subprograms
using fork, wait and the exec family of standard C commands. Here is an example of a short C function that executes a
program and puts the results (standard output and standard error) to a text file of your choosing, allowing up to three
parameters for the command.

 int CRunIt(char * path, char * outfile,
 char * param1, char * param2, char * param3) {

 pid_t child;
 int fd0, fd1, fd2;
 int status;
 int i;
 if (!(child = fork())) {
 /* Redirect stdin, out, err */
 for (i=0; i< FOPEN_MAX; ++i) close(i);
 fd0 = open("/dev/null", O_RDONLY);
 if (fd0 < 0) exit(110);
 fd1 = open(outfile, O_WRONLY | O_CREAT | O_TRUNC);
 if (fd1 < 0) exit(111);
 fd2 = dup(1);
 if (param1[0]=='\0') {
 execlp(path, path, NULL);
 } else if (param2[0]=='\0') {
 execlp(path, path, param1, NULL);
 } else if (param3[0]=='\0') {

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (5 of 15) [7/20/2001 11:35:51 AM]

 execlp(path, path, param1, param2, NULL);
 } else {
 execlp(path, path, param1, param2, param3, NULL);
 }

 /* if we got here, file probably wasn't found */

 exit(errno);
 }
 wait(&status);
 if (WIFEXITED(status) != 0)
 status = WEXITSTATUS(status);
 return status;
}

It is possible to rewrite this subprogram into Ada, but it's easier in C because of the
constants, macros and execlp takes a variable number of parameters.

This function returns some special exit status values: 110 if /dev/null couldn't be opened for standard input, and 111 if the
output file you specified couldn't be opened.

 function CRunIt(cmd, outfile, parm1, parm2, parm3 : string) return integer;
 pragma Import(C, CrunIt, "CRunIt");
 ..
 Result := CrunIt("/bin/ls" & ASCII.NUL, -- executable to run
 "/tmp/ls.out" & ASCII.NUL, -- where output should go
 "" & ASCII.NUL, -- parameter 1 (none)
 "" & ASCII.NUL, -- parameter 2 (none)
 "" & ASCII.NUL); -- parameter 3 (none)

An important part of running commands like this is deciding on temp file names that won't be used if two copies of the
program are run at the same time. There's two ways to do this:

Use the standard C function tmpfile (discussed below)●

Find the process number of your program with the standard C function getpid and add it to your filename●

If you are interested in accessing Linux more directly, read the next section.

13.3 The Linux Environment

Because Linux is based on decades old UNIX, the Linux development environment is like an onion. Originally, all UNIX
programs accessed the operating system through kernel calls. As time went on, new ways of accessing the kernel were added,
and new libraries were made to encapsulate common problems. Finally, Ada itself comes with many standard packages and
features to work with the operating system.

For the Ada programmer, it's not difficult to work with the operating system. Gnat comes with many standard libraries. These
are built using the standard C libraries. The C libraries, in turn, work by accessing the kernel. The problem is to decide which
of the many ways to access Linux is the best suited for your program.

For simple tasks, using the standard Ada packages is the most straightforward way of working with Linux. However, the
standard Ada packages were designed for portability: they only allow access to the most basic Linux features, and they aren't
particularly fast when doing it. Working with the standard C libraries is a compromise between speed and convenience: the C
libraries give you more features, but require you to import C function calls and convert between Ada and C data types. For
maximum speed and flexibility, you can only work with kernel, but then you risk extra work by rewriting subprograms that
already exist in the standard libraries.

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (6 of 15) [7/20/2001 11:35:52 AM]

To understand the differences between these layers, consider the problem of allocating dynamic memory. Usually you allocate
memory with the Ada new statement. Where does new get its memory? It uses the standard C library's malloc function. But
where does malloc get its memory? It gets it from the Linux kernel call mmap (memory map). The most direct way to get
memory, and the method that gives you the most control, is mmap. On the other hand, the easiest way would be to use new and
to let Ada allocate the memory and manage the details for you.

It's the same with multithreading and sequential files. Multitasking is based on LinuxThreads, a part of the standard C library,
which in turn is based on the kernel's clone function. Sequential files are based on the standard C library's stream functions,
which in turn are implemented using the kernel's file handling functions.

Figure: Ways of Doing the Same Thing

Memory Allocation Multithreading Sequential Files

Standard Ada: new task / protected Ada.Sequential_IO package

Standard C libraries: malloc LinuxThreads functions C stream functions

Linux Kernel: mmap clone function kernel file functions

As you move down the list from the standard Ada libraries to the Linux kernel, your program becomes more platform specific.
A program that uses new will run on any operating system that can run Ada 95. If you use malloc, your program will run on
any operating system that uses has the standard UNIX C libraries available. If you use mmap, your program will run on any
Linux computer—not just Intel-based Linux, but any flavour of Linux, include Sun UltraLinux or Apple Mklinux. Remember
that Linux is a portable operating system: all versions of Linux will have mmap available.

13.4 Standard C Libraries

We've already covered many of the standard Ada libraries and language features in the above sections.

The standard C libraries define standardized subprograms that exist across most version of UNIX. They are "wrappers": that
is, they do not work directly with the kernel. For example, the standard C libraries are not a part of the kernel, but they use the
kernel to implement standard C functions that you'd find across many UNIX'sThe main C library, called libc, is automatically
loaded by Gnat and you can import subprograms from it directly. Other standard C libraries, such as C's math library, libm, or
the password encryption library, libcrypt, need to be linked in at the linking stage. The standard C library calls are defined in
the online manual pages.

13.5 The Linux Kernel

There are three basic ways to work with the Linux kernel: kernel calls, devices and the proc file system. Because Linux is
organized around files, the last two ways let you operate devices and get system information simply by opening and working
with files using standard Linux file operations. This is makes it easier to work with Linux, but it also can make some tasks hard
to visualize because you have to do them through a sequence of abstract file operations.

In a few cases, standard libraries and kernel calls have names that overlap, which can be confusing.

In addition, Linux sometimes provides alternative versions of system calls based on different flavours of UNIX. For example,
there are two different system calls to assign an environment variable, one based on BSD UNIX (setenv) and another based on
the POSIX standard (putenv). Both do exactly the same thing, but their parameters are slightly different. Linux provides both
to make it easier to move programs written for other versions of UNIX to Linux. But for the Ada programmer, you have to
choose the one that's easiest to use in your program.

13.5.1 Kernel Calls

Kernel calls (sometimes called system calls or syscalls) are basic operations that are implemented directly in the kernel. There
are C libraries which supply some thin wrappers on the calls which do some of the setup and cleanup for your. Most kernel
calls are in described in the C header file unistd.h. The appendices contain a list of the Linux kernel calls.

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (7 of 15) [7/20/2001 11:35:52 AM]

The kernel calls are documented in the online manual pages, but these are sometimes out of date due to the ever-changing
nature of Linux.

13.5.2 Devices

The /dev directory defines device files. These files let you work with devices connected to your computer by using standard
file operations. Devices can include hard drives, sound cards and the system console (the text display).

Devices are recognized by their names:

/dev/hd devices: IDE hard drives, CD-ROMs, etc.●

/dev/sd devices: SCSI hard drives, CD-ROMs, etc.●

/dev/fd devices: floppy drives●

/dev/console device: the text display●

/dev/tty devices: the pseudo terminals. /dev/tty is an alias for the current tty terminal or ttyS serial port●

/dev/ttyS devices: the serial ports●

/dev/lp devices: the parallel ports (lp stands for line printer)●

In addition, most distributions define the following links:

dev/cdrom: an alias for the main CD-ROM device●

/dev/modem: an alias for the the port/device the modem is connected to●

dev/mouse: an alias for the port/device the mouse is connected to●

/dev/fd0: an alias for the first floppy drive●

There are more device files than there are devices on a computer. For example, there may be 32 serial port device files defined,
but that doesn't mean that there are actually 32 serial port on the computer. You will have to open the device and check for an
error if it does not exist.

For example, opening /dev/lp1 and writing a file to it writes the file as raw data to the first parallel port printer. Information on
how these devices work is usually found in the How-To's and other system documentation.

Special functions specific to a device are programmed with the ioctl() function. For example, you'd use ioctl() on /dev/dsp to
set the sound volume on your sound card.

The documentation for device files are often difficult to find. Sometimes documentation is contained in the kernel
documentation (the /usr/doc/kernel.. directory) or in the kernel C header files (the /usr/src/linux/include/... directories). A list of
some of the ioctl operations are listed in an appendix.

13.5.3 Proc File System

The /proc directory isn't really a directory at all. That is, it's a fake directory that's not physically on the hard disk, but you can
still look into it and open the files it contains. The proc file system contains system information that you can access by
opening the files and reading them. Some proc files may be written to in order to change system settings. For example, there
are files that give you the information on how busy the CPU is, how much free memory you have, and the environment
variables for the current process.

The contents of these files are described in the proc man page.

13.5.4 AudioCD: An Example Program

The following CD-ROM audio CD player illustrates kernel calls, a standard C library function, and using a device file.

with Ada.Text_IO, System;
use Ada.Text_IO;
procedure audiocd is
 -- Sample program for playing audio CD's

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (8 of 15) [7/20/2001 11:35:52 AM]

 -- DEVICES
 --
 -- This section deals with device files, in particular,
 -- the cdrom device

 DevCDROM : constant string := "/dev/cdrom";
 -- path to the CDROM device, usually /dev/cdrom

 type ioctlID is new integer;
 type aFileID is new integer;
 -- Define these as separate types for error checking.
 -- A ioctlID is never the same as a FileID.

 type byte is new integer range 0..255;
 for byte'size use 8;

 CDROMPLAYTRKIND : constant ioctlID := 16#5304#;
 CDROMSTOP : constant ioctlID := 16#5307#;
 CDROMSTART : constant ioctlID := 16#5308#;
 -- various CDROM ioctl functions as mentioned in the
 -- CDROM documentation in /usr/doc/kernel...

 type aDummyParam is new integer;
 -- define this as a separate type to make sure nothing
 -- important is used as a third parameter to ioctl_noparam

 -- a version of ioctl for functions that don't
 -- use a third parameter

 procedure ioctl_noparam(result : out integer;
 fid : aFileID;
 id : ioctlID;
 ignored : in out aDummyParam);
 pragma import(C, ioctl_noparam, "ioctl");
 pragma import_valued_procedure(ioctl_noparam);
 type cdrom_ti is record
 start_track, start_index : byte;
 end_track, end_index : byte;
 end record;

 -- from /usr/src/linux/include/linux/cdrom.h
 -- PLAYTRKIND ioctl function uses cdrom_ti record

 procedure ioctl_playtrkind(result : out integer;
 fid : aFileID;
 id : ioctlID;
 info : in out cdrom_ti);
 pragma import(C, ioctl_playtrkind, "ioctl");

 pragma import_valued_procedure(ioctl_playtrkind);
 -- KERNEL CALLS
 --
 -- Calls to the Linux kernel (besides ioctl).

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (9 of 15) [7/20/2001 11:35:52 AM]

 procedure open(id : out aFileID;
 path : string;
 flags : integer);
 pragma import(C, open, "open");
 pragma import_valued_procedure(open);
 -- open is a kernel call to open a file

 procedure close(result : out integer; id : aFileID);
 pragma import(C, close, "close");
 pragma import_valued_procedure(close);
 -- close is a kernel call to close a file

 -- C LIBRARY CALLS
 --
 -- Calls to the standard Linux C libraries

 procedure perror(prefixstr : string);
 pragma import(C, perror, "perror");
 -- perror is a standard C library call to print
 -- the last error message from a kernel call or the
 -- standard C libraries on the screen

 cd : aFileID;
 playinfo : cdrom_ti;
 dummy : ADummyParam;
 ioctl_result : integer;
 close_result : integer;
 ch : character;

begin

 Put_Line("This program plays an audio CD in your CDROM drive");
 New_Line;

 -- open the /dev/cdrom file so we can control the CDROM drive
 -- using ioctl

 Put_Line("Openning " & DevCDROM & "...");
 Open(cd, DevCDROM, 0);
 if cd < 0 then
 perror("Error openning CDROM drive");
 end if;
 -- start the CDROM drive

 Put_Line("Spinning up cdrom...");
 ioctl_noparam(ioctl_result, cd, CDROMSTART, dummy);
 if ioctl_result < 0 then
 perror("Error spinning up the CDROM drive");
 end if;

 -- display menu

 New_Line;
 Put_Line("1 = Play, 2 = Quit");
 New_Line;

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (10 of 15) [7/20/2001 11:35:52 AM]

 -- Main loop. Repeat until 2 is selected.

 loop
 Put("Select a function (1-2): ");
 Get(ch);
 case ch is
 when '1' => playinfo.start_track := 1; -- first track
 playinfo.start_index := 0; -- no effect
 playinfo.end_track := 9; -- final track (inclusive)
 playinfo.end_index := 0; -- no effect
 ioctl_playtrkind(ioctl_result, cd, CDROMPLAYTRKIND, playinfo);
 when '2' => ioctl_noparam(ioctl_result, cd, CDROMSTOP, dummy);
 exit;
 when others => Put_Line("Pardon?");
 end case;

 if ioctl_result < 0 then
 perror("Error controlling CDROM drive");
 end if;

 end loop;

 -- Close the CDROM device

 Close(close_result, cd);
 if close_result < 0 then
 perror("Error controlling CDROM drive");
 end if;

end audiocd;

13.6 Standard Input/Output/Error

Linux defines three default I/O streams. Standard input (Linux file id 0) is the file form which all keyboard input normally
comes to your program. Standard output (Linux file id 1) is the default where the output of your program is written. Standard
error (Linux file id 2) is the file to which error messages are written. Usually, standard input is from the keyboard, and
standard output and error are directed to the screen. There are two output streams so that if you redirect the results of a
command to a file, such as "ls > temp.out", any errors that occur will still appear on the screen.

The following program writes messages to standard output and standard error using Text_IO:

with ada.text_io;
use ada.text_io;

procedure stderr is
-- an example of writing messages to standard error

begin

 Put_Line("This is an example of writing error messages to stderr");
 New_Line;

 -- Text_IO defines a file called Standard_Error, always open,
 -- that you can write error messages to.

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (11 of 15) [7/20/2001 11:35:52 AM]

 Put_Line(Standard_Error, "This message is on standard error");
 Put_Line("This message is on standard output");
 New_Line;

 -- you can use Set_Output to send all Put_Line's to Standard_Error

 Set_Output(Standard_Error);
 Put_Line("This is also on standard error");

 Set_Output(Standard_Output);

 Put_Line("But this is on standard output");
end stderr;

This is an example of writing error messages to stderr

This message is on standard error
This message is on standard output

This is also on standard error

But this is on standard output

Everything looks normal until you redirect the output of the program. This is the result when the standard output is redirected
to a file called "out.txt". The error messages aren't redirected.

[root@armitage trials]# stderr > out.txt
This message is on standard error
This is also on standard error

13.7 Linux Binary Formats

Many people do not think of binary files as having a format because they contain machine code instructions. However, binary
files are more than just raw microprocessor instructions. They contain information such as the type of the binary file and a list
of all DLL's needed by the program to run.

Linux binary files come in two formats: ELF (Executable and Linking Format) and "a.out". They both have different
characteristics and neither is better than the other. Most distributions let you install ELF or a.out compilers. The version of gnat
for Linux is compiled for ELF. ELF is current Linux standard primarily because it provides better support for shared libraries.

Fun Fact: "a.out" is an abbreviation for "assember output".

Since the kernel has to do the loading and execution of programs, support for ELF, a.out or both must be selected when the
kernel is compiled. Otherwise, the kernel will not recognize the format and will be unable to run the binary file.

13.9 Linux Libraries

A library is a set of object files that have been combined into a single file. You create a Linux library using the ar (archive),
which takes ".o" object files can compiles them into or out of .a archive file. A Linux library files all start with "lib" and end
with ".a". The command parameters for ar are a bit odd: check the man page for more details.

The ar comamand has many options. Two useful variations are ar cr (create a new archive and add object files to it) and ar t
(show a list of all object files in the archive file). See the example below for how these work.

A library which is directly linked into a program, so that it is added to the executable, is called a static library. To link in a

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (12 of 15) [7/20/2001 11:35:52 AM]

static library, just include it's name with the gnatlink command (or gnatmake on simple projects). By default, gnat's own
libgnat library is always static, because of concerns over multithreading.

For example, if you install and compile the official JPEG library sources, a static library file is created named libjpeg.a. To link
this library into your program, you'd include -ljpeg when linking. Note that you don't use the entire name of the file: gnat
assumes there is a beginning "lib" and ending ".a".

One use for static libraries is to create a library for others to use.

As a small example, suppose you have a package p and you want to create a static library to link into a program t. You have to
put the library's object file (p.o) into a static library (eg. libp.a) and change p.ali to read-only so gnat knows there is no object
file included with p. Then include -lp when making or linking.

armitage:/home/ken/ada/test# ls

p.ads p.adb p.ali p.o t.adb

armitage:/home/ken/ada/test# ar cr libp.a p.o

armitage:/home/ken/ada/test# rm p.o

armitage:/home/ken/ada/test# chmod -w p.ali

armitage:/home/ken/ada/test# ls

libp.a p.ads p.adb p.ali t.adb

armitage:/home/ken/ada/test# ar t libp.a

p.o

armitage:/home/ken/ada/test# gnatmake t -lp

(Strickly speaking, -lp should use gnatmake's linker options option, but this works.)

If the library is in a place other than your current directory, you'll need to use the -L option to indicate the directory to check.

A shared library (or DLL, dynamic link library) is a library that is loaded into memory and shared between programs. It's not
actually saved as part of the executable. All Linux shared libraries end in .so.a ("shared object archive??"). They are loaded
when a program is executed.

[UNTESTED!] To create a shared library, compile the source code with the -fPIC (position independent code) option and link
using -shared. You also need to include -W1,-soname,nameofobject -- is this necessary under gnat if you use gnatlink? I
think it probably is. [see Linux Application programming, pg 72]

if you forget the —fPIC switch, your shared library will still load, but you won't be able to
share the code between applications that use the library.

-fpic will also work on Intel processors because there is no maximum imposed for the global
offset table, but it may not work on other processors: the —fPIC switch is the preferred method.

The shared libraries are usually stored in standard Linux directories, like /lib or /usr/lib. Once you copy a shared library into
one of these directories, you have to run ldconfig to register the new shared library, otherwise Linux will not load it.

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (13 of 15) [7/20/2001 11:35:52 AM]

To load a shared library from the current directory instead of the standard Linux directories, use -L. (where period is the
current directory).

Shared libraries have the advantage of making executable's smaller, but they are slower to load and execute and use up more
memory than static libraries. The also have the advantage of being able to be ugraded separately from your program, provided
you don't change the format of any of the subprograms.

Too many shared libraries mean that you have small files scattered throughout the lib directories, making your program harder
to maintain.

Generally speaking, only subprograms that will be shared between programs should be shared libraries, and you should
combine small, related libraries into one shared library. For example, all the standard C libraries are compiled into one shared
library on Linux: libc.so.a.

[from usenet]

makedll.bat

gcc -c beep.adb

gnatbind -n beep.ali

gnatlink beep.ali -o beep.jnk -mdll -Wl,--base-file,beep.base

dlltool --dllname beep.dll --def beep.def --base-file beep.base --output-exp

beep.exp --output-lib libbeep.a

gnatbind -n beep.ali

gnatlink beep.ali -o beep.jnk beep.exp -mdll -Wl,--base-file,beep.base

dlltool --dllname beep.dll --def beep.def --base-file beep.base --output-exp

beep.exp --output-lib libbeep.a

gnatbind -n beep.ali

gnatlink beep.ali beep.exp -o beep.dll -mdll

This is a def file I am using.

beep.def

EXPORTS

DllGetClassObject=DllGetClassObject@12 @2

DllCanUnloadNow=DllCanUnloadNow@0@3

DllRegisterServer=DllRegisterServer@0@4

DllUnregisterServer=DllUnregisterServer@0@5

NOTE: Since the exported functions or STDCALL, I need to provide the number of bytes used for parameters. If you were
using standard pragma C stuff it would be:

MYFunction@XXXX

where XXXX is what ordinal in the DLL - BTW you can leave this out all together if you don't need it and just put the name of
the function on the line.

[end]

Gnat has an option called -static which will link all shared libraries into your executable as if they were static libraries. This
makes your executable completely self-contained, but may violate GPL licensing restrictions on certain libraries.

Gnat comes with one shared library, libgnat.a. If you link a gnat program without the -static option, you have to copy this file
into a standard library directory (e.g. /lib) and run ldconfig so that Linux will be able to find the gnat library when executing
your programs. Gnat always automatically links in the library: you never have to type "-lgnat" explicitly when linking.

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (14 of 15) [7/20/2001 11:35:52 AM]

13.10 Libc5, Libc6 and Upward Compatibility

One of the difficulties with Linux programming is that the standard libraries are seldom upwardly compatible. For example,
the ncurses 3 console drawing package is completely incompatible with ncurses 4. Likewise, ncurses 4 is completely
incompatible with ncurses 5. In an open source enviroment, subprogram parameters can appear and disappear with each new
release.

The Gnat compiler always links the standard C library into your programs. As a result, you have to be aware of the problems
with Linux's standard C library, even if your Gnat program doesn't call its subprograms explicitly. Your Gnat executable
always connected to the C library it was compiled against.

Like most open source libraries, the standard C library isn't upwardly compatible. Inspite of the fact libc version 5 and libc
version 6 (now called glibc 2.0) share the same name, many functions and names have been changed between the two versions.
Multithreading under libc5 is done with the linuxthreads library, an implementation of "pthreads". LinuxThreads is based the
Posix 1003.1c thread model, with a few extensions. Linuxthreads is a built in part of libc6.

In the Linux world, even minor changes between libraries will create problems. There is very little upward compatibility. For
example, a program may run on libc 6.0.x but won't run on libc 6.0.y because some symbol names have changed. Because of
this dependency, your programs should be compiled against a specific Linux distribution. Don't assume that if a Red Hat disk
and a Slackware disk are published in the same month that they are using exactly the same versions of the C library. By the
same token, don't assume you can simply include libc 6.0.y with your program and update the user's version of libc by
installing yours overtop. This can cause many programs to crash if they can't find the particular version of libc that they need.

The same is true of the gnat library, libgnat.a. ACT does not guarantee that a program compiled for gnat 3.11's gnat library will
run with gnat 3.12's gnat library. In fact, it probably won't.

13.11 Linux Basics
[To be filled in -- KB]

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 13 Linux Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (15 of 15) [7/20/2001 11:35:52 AM]

14 Linux Programming

 <--Last Chapter Table of Contents Next Chapter-->

Fun Fact:The original Apple Macintosh operating system was written in Pascal, the ancestor language
of Ada.

14.1 Gnat OS Library

Ada Description C Equivalent

create_file Create a Linux file creat

delete_file Delete a Linux file unlink

etc.

The gnat OS library, gnat.os_lib, provides common UNIX operations independent of what flavour of UNIX
gnat is running on. It provides an extensive set of file utilities as well as the ability to run blocked and
non-blocked child processes.The price for this low-level OS support is the need to use a lot of addresses, 'access
and C strings.

there is also a thin binding available for basic C stream functions, described below.

with text_io, gnat.os_lib;

use text_io, gnat.os_lib;

procedure ostest is

 fd : File_Descriptor;

 FilePath : constant string := "testfile.xxx" & ASCII.NUL;

 -- for write test

 FirstLine : constant string := "This is the first line in the file";

 AmountWritten : integer;

 -- for time stamp test

 ts : OS_Time;

 Year : Year_Type;

 Month : Month_Type;

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (1 of 15) [7/20/2001 11:36:18 AM]

 Day : Day_Type;

 Hour : Hour_Type;

 Minute : Minute_Type;

 Second : Second_Type;

 -- for location test

 sp : String_Access;

 -- for delete test

 WasDeleted : boolean;

 -- for spawn test

 Arguments : Argument_List(1..1);

 Ls : constant string := "/bin/ls";

 WasSpawned: boolean;

 RootDir : aliased string := "/";

begin

 Put_Line("This is an example of the Gnat's OS library:");

 New_Line;

 Put_Line("Creating a new file...");

 fd := create_file(FilePath'address, Binary);

 if fd = invalid_fd then

 Put_Line("Unable to create " & FilePath);

 else

 Put_Line("Created " & FilePath);

 end if;

 New_Line;

 Put_Line("Getting the timestamp on the file...");

 ts := File_Time_Stamp(fd);

 GM_Split(ts, Year, Month, Day, Hour, Minute, Second);

 Put_Line("The time stamp is" &

 Year'img & "/" & Month'img & "/" & Day'img &

 Hour'img & ":" & Minute'img & ":" & Second'img);

 New_Line;

 Put_Line("Writing to the file...");

 Put_Line(FirstLine);

 AmountWritten := Write(fd, FirstLine'Address, FirstLine'Length);

 Put_Line("Wrote" & AmountWritten'img & " bytes");

 Put_Line("The file length is" & File_Length(fd)'img);

 New_Line;

 Close(fd);

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (2 of 15) [7/20/2001 11:36:18 AM]

 Put_Line("Closed the file");

 New_Line;

 Put_Line("Locating the file we just made...");

 sp := Locate_Regular_File(File_Name => FilePath,

 Path => GetEnv("PATH").all);

 Put_Line("The file is '" & sp.all & "'");

 New_Line;

 Put_Line("Deleting the file...");

 Delete_File(FilePath'address, WasDeleted);

 if WasDeleted then

 Put_Line("File was deleted");

 else

 Put_Line("File was not deleted");

 end if;

 New_Line;

 Put_Line("Running ls / ...");

 New_Line;

 Arguments(1) := RootDir'unchecked_access;

 -- unchecked to avoid unless accessibility warning

 Spawn(Ls, Arguments, WasSpawned);

 if WasSpawned then

 New_Line;

 Put_Line("End of ls output - Spawned worked");

 else

 Put_Line("Spawn failed");

 end if;

 New_Line;

end ostest;

This is an example of the Gnat's OS library:

Creating a new file...

Created testfile.xxx

Getting the timestamp on the file...

The time stamp is 1998/ 12/ 18 23: 42: 24

Writing to the file...

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (3 of 15) [7/20/2001 11:36:19 AM]

This is the first line in the file

Wrote 34 bytes

The file length is 34

Closed the file

Locating the file we just made...

The file is './testfile.xxx'

Deleting the file...

File was deleted

Running ls / ...

STARTUP

System.map

System.old

bin

boot

cdrom

dev

dosc

etc

fd

home

lib

lost+found

mnt

opt

proc

root

sbin

tmp

usr

var

vmlinuz

vmlinuz.old

End of ls output - Spawned worked

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (4 of 15) [7/20/2001 11:36:19 AM]

14.2 Installing Binding Packages

A variety of Ada packages exist to allow you to call C libraries from Ada. These packages are called bindings.
For example, there are Ada bindings to Motif, TCL, WWW CGI and Posix (that is, the kernel).

A thin binding gives you direct access to library calls. A thick binding provides indirect access, where the
package does some setup before invoking the library calls. The gnat.os_lib library is an example of a thick
binding to basic Linux file operations.

When installing binding libraries:

Make sure that the filename endings are the right ones for gnat. Different compilers use different
conventions.

●

Compile the binding package(s).●

Install the library the binding is for (if necessary)●

Include -lname on the link line, where name is the library. Remember that the order of the -l's is
important.

●

14.3 Catching Linux Signals

A programs has to be able to respond to unexpected events. What do you do when somebody types control-C?
How do you gracefully stop the program when somebody kills it with the kill command? These unexpected
events are referred to a signals in Linux, and Gnat provides libraries for you to "catch" these signals and
respond to them gracefully.

The standard Ada 95 package Ada.Interrupts and its children handle unexpected operating system events.
Under Linux, these packages provide support for signal handling.

A complete list of Linux signals is listed in an appendix. The package Ada.Interrupt.Names defines the names
of these signals for you.

Signal Handlers are protected type procedures with no parameters. The body of the procedure performs
whatever actions you want to do when you receive a signal.

For example, to catch the SIGTERM signal, the signal that indicates that the program has been killed with the
"kill" shell command, you can write a handler like this:

protectedbodySignalHandler is

 procedure HandleSIGTERM is

 -- normal kill signal handler

 begin

 Put_Line("Ouch! I've been killed!");

 -- perform any other cleanup here

 end HandleSIGTERM;

end SignalHandler;

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (5 of 15) [7/20/2001 11:36:19 AM]

To put the handler in place permanently, use pragma Attach_Handler.

 pragma Attach_Handler(HandleSIGTERM, SIGTERM);

Now whenever your program receives a SIGTERM signal, your handler will automatically run.

If you don't want to install a permanent handler, a handler can be installed or changed while the program is
running. To indicate that a procedure is an interrupt handler that can be installed at a later time, use pragma
Interrupt_Handler.

 pragma Interrupt_Handler(HandleSIGTERM);

Gnat automatically handles one signal for you: SIGINT, the interrupt signal. This is the signal that is sent to
your program when control-c is pressed. If you want to handle control-c presses yourself, you have to use
pragma Unreserve_All_Interrupts. Despite it's long name, this pragma simply tells Gnat to ignore SIGINT's.

Certain signals can never be caught. SIGUNUSED, the unused signal, can't be caught for obvious reasons.
Some signals are used by the multithreading software and are not available for use in applications. In particular,
if you are running native Linux threads, you can't catch SIGFPE, SIGILL, SIGSEGV, SIGBUS, SIGTRAP,
SIGABRT, SIGINT, SIGVTALRM, SIGUNUSED, SIGSTOP, or SIGKILL. On 2.0 kernels or older, native
Linux threads use SIGUSR1 and SIGSUR2 and are not available. If you're running FSU threads, then
SIGALRM is also not available.

Ada.Interrupts also contains several subprograms for signal handling.

Is_Reserved is true if a particular signal is uncatchable.●

Is_Attached is true if a particular signal has a handler attached.●

Current_Handler returns a pointer to the handler for a particular interrupt.●

Exchange_Handler will put a new handler in place and return a pointer to the previous handler.●

Detach_Handler will uninstall a handler●

The following package sets up three signal handlers, which display a message at set the
EMERGENCY_SHUTDOWN variable to true. The demo program demonstrates some of the Ada.Interrupts
subprograms and enters into a slow loop. The main program was killed with the "kill —SIGPWR" shell
command, simulating a power failure signal.

with Ada.Interrupts.Names;

use Ada.Interrupts, Ada.Interrupts.Names;

package SigHand is

 -- Package to handle basic Linux signals

 pragma Unreserve_All_Interrupts;

 -- Gnat will no longer handle SIGINT for us

 EMERGENCY_SHUTDOWN : boolean := false;

 -- set in the event of a signal to shut down the program

 -- SignalHandler will handle the signals independently

 -- from the main program using multithreading

 protected SignalHandler is

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (6 of 15) [7/20/2001 11:36:19 AM]

 procedure HandleControlC;

 pragma Attach_Handler(HandleControlC, SIGINT);

 -- SIGINT (Control-C) signals will be intercepted by

 -- HandleControlC

 procedure HandleKill;

 pragma Attach_Handler(HandleKill, SIGTERM);

 -- SIGTERM (kill command) signals will be intercepted by

 -- HandleKill

 procedure HandlePowerFailure;

 pragma Attach_Handler(HandlePowerFailure, SIGPWR);

 -- SIGPWR (power failure signal) intercepted by

 -- HandlePowerFailure

 end SignalHandler;

end SigHand;

with Ada.Text_IO;

use Ada.Text_IO;

package body SigHand is

 -- Package to handle basic Linux signals

protected body SignalHandler is

 -- This protected type contains all our signal handlers

 procedure HandleControlC is

 -- Control-C signal handler

 begin

 if EMERGENCY_SHUTDOWN then

 Put_Line("HandleControlC: The program is already shutting down");

 else

 Put_Line("HandleControlC: Control-C was pressed, shutting down");

 end if;

 EMERGENCY_SHUTDOWN := true;

 end HandleControlC;

 procedure HandleKill is

 -- normal kill signal handler

 begin

 if EMERGENCY_SHUTDOWN then

 Put_Line("HandleKill: The program is already shutting down");

 else

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (7 of 15) [7/20/2001 11:36:19 AM]

 Put_Line("HandleKill: Program is shutting down");

 end if;

 EMERGENCY_SHUTDOWN := TRUE;

 end HandleKill;

 procedure HandlePowerFailure is

 -- power failure handler

 begin

 if EMERGENCY_SHUTDOWN then

 Put_Line("HandlePowerFailure: The program is already shutting down"
);

 else

 Put_Line("HandlePowerFailure: Program is shutting down");

 end if;

 EMERGENCY_SHUTDOWN := TRUE;

 end HandlePowerFailure;

 end SignalHandler;

end SigHand;

with Ada.Text_IO, SigHand, Ada.Interrupts.Names;

use Ada.Text_IO, SigHand, Ada.Interrupts, Ada.Interrupts.Names;

procedure SigDemo is

 Handler : Parameterless_Handler;

 Counter : integer := 2;

begin

 Put_Line("This program demonstrates signal handling.");

 Put_Line("To stop this program, type Control-C or ");

 Put_Line("kill it with the shell kill command.");

 New_Line;

 -- Is_Reserved example

 if Is_Reserved(SIGTERM) then

 Put_Line("The SIGTERM handler is reserved");

 else

 Put_Line("The SIGTERM handler isn't reserved");

 end if;

 -- Is_Reserved example

 if Is_Attached(SIGINT) then

 Put_Line("There is a SIGINT handler installed");

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (8 of 15) [7/20/2001 11:36:19 AM]

 else

 Put_Line("There is no SIGINT handler installed");

 end if;

 -- Current_Handler example

 Put_Line("Testing SIGTERM handler...");

 Handler := Current_Handler(SIGTERM);

 -- Current_Handler gives a callback to the handler

 Handler.all;

 -- run the handler callback

 if EMERGENCY_SHUTDOWN then

 Put_Line("Handler works");

 else

 Put_Line("Handler doesn't work");

 end if;

 -- test complete: reset emergency shutdown flag

 EMERGENCY_SHUTDOWN := false;

 -- a long loop

 New_Line;

 Put_Line("The number is " & Counter'img);

 loop

 exit when EMERGENCY_SHUTDOWN;

 Counter := Counter * 2;

 Put_Line("Doubling, the number is " & Counter'img);

 delay 1.0;

 end loop;

 Put_Line("The program has shut down");

end SigDemo;

This program demonstrates signal handling.

To stop this program, type Control-C or

kill it with the shell kill command.

The SIGTERM handler isn't reserved

There is a SIGINT handler installed

Testing SIGTERM handler...

HandleKill: Program is shutting down

Handler works

The number is 2

Doubling, the number is 4

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (9 of 15) [7/20/2001 11:36:19 AM]

Doubling, the number is 8

Doubling, the number is 16

Doubling, the number is 32

Doubling, the number is 64

Doubling, the number is 128

Doubling, the number is 256

Doubling, the number is 512

HandlePowerFailure: Program is shutting down

The program has shut down

14.4 Working with the Command Line

Ada Description C Equivalent

Function Command_Name return string; The name of this command (path?). argv[0]

Function ArgumentCount return natural; The number of arguments. argn

Function Argument(n : natural) return string; The n'th argument. argv[n]

Procedure Set_Exit_Status(e : Exit_Status); The exit status to return. exit(e)

Ada interacts with the outside world through the standard Ada package Ada.Command_Line.
Suppose you have an Ada program called "myprog" and a user types in the following command: "myprog -v
sally.com".

"myprog" is the name of the command.●

"-v" and "sally.com" are arguments to the command.●

Command_Name returns the name of the command. If the program was run from a shell, it returns the name as
typed in by the user. In the above example, Command_Name returns "myprog".

ArgumentCount returns the number of arguments, not including the name of the program. The shell
determines how arguments are grouped together, but typically each argument is separated by a space. In the
above example, there are two arguments, "-v" and "sally".

Argument returns an argument. In the above example, argument(1) returns "-v".

Set_Exit_Status gives Ada the error code you want to return when the program is finished running. Ada
defines two Exit_Status values, Success and Failure . Since Exit_Status is just an integer, you can return
other values. Zero indicates that the program ran without error, non-zero values indicate an error. The
predefined values of Success and Failure are 0 and 1.

Properly flagging errors is important for shell programming. For example, you have to return the proper exit
status for "myprog && echo 'all is well'" to work properly. You can retrieve the exit status of the last command
using "$?". For example:

#!/bin/bash

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (10 of 15) [7/20/2001 11:36:19 AM]

myprog -v sally

if [$? -eq 0] ; then

 echo "There were no errors"

else

 echo "The program returned error code = $?"

fi

See the example program in the next section for an example using this package.

14.5 Linux Environment Variables

Ada.Command_Line.Environment is a gnat package for accessing Linux environment variables.

Ada Description C Equivalent

Function Environment_Count return natural; The number of environment variables ?

Function Environment_Value(n) return string; The name value of the nth variable getenv(n)

The Environment_Count function returns the number of environment variables.

The Environment_Value function returns the name and value of a variable, separated by an equals sign. For
example, Environment_Value(5) returns the name and value of the fifth environment variable.

The following program is an example of Ada.Command_Line and Ada.Command_Line.Environment. The
results assume that you started the program by typing "cmdtest -v".

with text_io, Ada.Command_Line.Environment;

use text_io, Ada.Command_Line, Ada.Command_Line.Environment;

procedure cmdtest is

begin

 Put_Line("This is an example of Ada.Command_Line");

 New_Line;

 Put_Line("The command to invoke this example was '" & Command_Name & "'"
);

 Put_Line("There is/are" & Argument_Count'img & " command line arguments"
);

 if Argument_Count > 0 then

 Put_Line("The first argument is '" & Argument(1) & "'");

 end if;

 New_Line;

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (11 of 15) [7/20/2001 11:36:19 AM]

 Put_Line("There is/are" & Environment_Count'img & " environment
variables.");

 Put_Line("The first environment variable is '" &

 Environment_Value(1) & "'");

 Set_Exit_Status(Success);

end cmdtest;

This is an example of Ada.Command_Line

The command to invoke this example was 'cmdtest'

There is/are 1 command line arguments

The first argument is '-v'

There is/are 24 environment variables.

The first environment variable is 'LESSOPEN=|lesspipe.sh %s'

Environment variables can be removed using the Gnat Ada.Command_Line.Remove package.

14.6 GNAT.Directory_Operations Package

This Gnat package allows you to create and explore directories. Although the package is portable to all
operating systems, the format of the directory depends on the particular operating system.

For this package, a directory name string (Dir_Name_Str) is a pathname in the standard Linux format. The
trailing '/' character is optional when using this package, but directory names returned will always have a
trailing '/'. "." is the current directory. ".." is the parent directory of the current directory.

Get_Current_Dir returns the name of the current directory. Change_Dir changes the current directory to a
new location.

with ada.text_io, gnat.directory_operations;
use ada.text_io, gnat.directory_operations;

procedure gdir is
 dir : string(1..80);
 len : natural;
begin
 Put("The current working directory is ");
 Put_Line(Get_Current_Dir);

 Change_Dir("..");
 Put("Moving up, the current working directory is ");
 Put_Line(Get_Current_Dir);

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (12 of 15) [7/20/2001 11:36:19 AM]

 Change_Dir("work");
 Get_Current_Dir(dir, len);
 Put("Moving down to 'work', the current working directory is ");
 Put_Line(dir(1..len));
end dir;

The current working directory is /home/kburtch/work/
Moving up, the current working directory is /home/kburtch/
Moving down to 'work', the current working directory is /home/kburtch/work/

For viewing directories, the package opens directories like a Text_IO file. Dir_Type is a limited private
directory type corresponds to a file_type in Text_IO. Directories can only be read.

Open - Open a directory for reading●

Close - Close a directory●

Read - Read a directory entry. When a null string is returned, there are no more entries●

Is_Open - True if the directory is open●

Read_Is_Thread_Safe - True if the directory can be read by separate tasks (threads). That is, if there is a
readdir_r kernel call

●

Any error will raise a DIRECTORY_ERROR exception

with ada.text_io, gnat.directory_operations;
use ada.text_io, gnat.directory_operations;

procedure gdir2 is
 dir : Dir_Type;
 dirname : string(1..80);
 len : natural;
begin
 if Read_Is_Thread_Safe then
 put_line("Tasks may read the same directory");
 else
 put_line("Tasks may not read the same directory");
 end if;
 New_Line;

 Open(dir, ".");
 if Is_Open(dir) then
 put_Line("The directory was opened");
 else
 put_Line("The directory was not opened");
 end if;
 loop
 Read(dir, dirname, len);
 exit when len = 0;
 Put_Line(dirname(1..len));
 end loop;

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (13 of 15) [7/20/2001 11:36:19 AM]

 Put_Line("End of directory");

 Close(dir);

end gdir2;

Tasks may not read the same directory

The directory was opened
.
..
gdir.ads
gdir.ali
gdir.adb
gdir.o
gdir
gdir2.adb
gdir2.ali
gdir2.o
gdir2
End of directory

The directories "." and ".." are always returned.

New directories can be made with Make_Dir.

Make_Dir("logs"); -- make a new "logs" directory

If you need more features that these, the Linux kernel calls for directories are described in 16.9. The section
includes a command to remove directories which cannot be done with Gnat.Directory_Operations.

14.7 GNAT.Lock_Files Package

This Gnat package contains subprograms for obtaining exclusive access to a particular file or directory. When a
file is locked, only your program may use the file until the file is unlocked.

Locks are implemented using lock files. When a file is locked, Gnat checks for the presence of a separate file. If
the file exists, the file has been locked by another application. If a file cannot be locked, a LOCK_ERROR is
raised.

The programmer supplies the lock file name. Linux programs usually place lock files in the /var/lock/ directory.

The Lock_File procedure locks a particular file. By default, if the procedure will continue trying to relock the
file every second forever (actually, for Natural'Last seconds, a very long time). The delay and the number of
retries can be changed.

Lock_File("/var/lock/", "customers.txt");
Lock_File("/var/lock/customers.txt");

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (14 of 15) [7/20/2001 11:36:20 AM]

Lock_File("/var/lock/customers.txt", Wait => 5.0, Retries => 10);

Files are unlocked using Unlock_File. This procedure deletes the lock file.

Unlock_File(LockDir, "customers.txt");
Unlock_File("/var/lock/customers.txt");

The lock file approach is a voluntary convention. Programs that honour the convention can share the file in an
orderly way. A program that doesn't use the package will not be denied access. For true file locking, use the
Linux kernel calls described in 16.7.

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 14 Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (15 of 15) [7/20/2001 11:36:20 AM]

15 Free Ada Bindings

 <--Last Chapter Table of Contents Next Chapter-->

15.1 Using Florist, the POSIX binding

Florist (Florida Statue University/Forest) is a GPL binding of the POSIX (IEEE Standard 1003.5b-1996)
standard operating system functions. These include file operations, date and time functions, and
multitasking—the same kinds of function provided by the standard C libraries and the Linux kernel.

If you are writing an application that will run on several different operating systems, Florist provides a
level of operating system independence. Once you install gnat and Florist on your new platform, you
should be able to recompile a Florist application without having to worry about variations in system
calls.

Florist is designed for gnat and runs on Linux as well as Solaris, OFS1, AIX, IRIX and HP-UNIX. Florist
works closely with the gnat run-time system: you must compile Florist against a particular gnat
installation. If you change your gnat installation, you will need to recompile Florist.

Older versions of Florist for Gnat 3.11 work best with a version of Gnat compiled for FSU
threads. Native threads require some patching to work, and not all Florist features are supported--see
the Florist documentation for details. For more information on FSU threads, read the multitasking
section above.

Newer versions of Florist, such as the ALT RPM, works with the normal (native threads) version of
Gnat.

Commercial support for Florist is available form ACT.

Because the Linux kernel largely adheres to the POSIX standard, many of Florist functions have the
same parameters as their Linux counterparts.

Florist divides the POSIX functions into a set of 73 Ada packages, all prefixed with the name "posix".
The main package is called "posix.ads" and contains the definition of data types and many of the basic
POSIX functions.

To write Florist applications, you'll need to link in the Florist library with "-lposix" (check?) and, if
necessary, use "-I" to indicate where you've installed the package specifications.

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (1 of 13) [7/20/2001 11:36:37 AM]

15.2 Using Texttools

The Texttools packages are a GPL, ncurses-based library for the Linux console. Texttools contain more
than 600 procedures and functions to create windows, draw scroll bars, handle the mouse and keyboard
events, play sounds, and much more. The Texttools package also provides a thick binding to Linux
kernel calls. You can create a wide variety of application programs using Texttools alone.

This is the same package used to implement TIA.

[to be rewritten—KB]

15.2.1 Installation

1. In the C_code directory, type "gcc -O -c *.c" to compile the C files.

2. The Ada files should compile when you build your project with Gnatmake. If TextTools are installed
in a different directory than your project, you will need to use the gnatmake -I switch.

When linking, you'll need to include the "-lm" and "-lcurses" switches as well as the object files from
C_code. TextTools uses the C math library and ncurses 4.0. For example,

 gnatlink -lm -lncurses C_code/*.o ...

15.2.2 Introduction

Although there are over 600 procedures and functions in TextTools, to open window is fairly
uncomplicated.

Everything in TextTools is drawn in a window. Everything in a window is a control (sometimes called a
"widget"). To display a window, you must create a window, fill in the window with controls to display,
and run the window manager's DoDialog command.

The following program opens a simple window.

with common, os, userio, controls, windows;

use common, os, userio, controls, windows;

procedure ttdemo is

-- Define Window Controls

 OKButton : aliased ASimpleButton;

 MessageLine : aliased AStaticLine;

-- The Dialog Record

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (2 of 13) [7/20/2001 11:36:37 AM]

 DT : ADialogTaskRecord;

begin

 -- Start TextTools

 StartupCommon("demo", "demo");

 StartupOS;

 StartupUserIO;

 StartupControls;

 StartupWindows;

 -- Create a new window. The window will not appear until the

 -- DoDialog procedure is used.

 OpenWindow(To255("Demo Window"), -- title at top of window

 0, 0, 78, 23, -- the coordinates of the window

 Style => normal, -- type of window, usually "normal"

 HasInfoBar => true); -- true if control information is

 -- displayed at the bottom of the

 -- window

 -- Setup the controls in the window

 -- OK Button located near bottom of window

 Init(OKButton,

 36, 20, 44, 20, -- coordinates in window

 'o'); -- hot key for OK button

 SetText(OKButton, "OK"); -- button will have "OK"

 SetInfo(OKButton, To255("Select me to quit"));

 AddControl(SimpleButton, OKButton'unchecked_access, IsGlobal =>
false);

 -- Message at top of window in bright red

 Init(MessageLine,

 1, 1, 78, 1);

 SetText(MessageLine, "Welcome to TextTools");

 SetStyle(MessageLine, Bold);

 SetColour(MessageLine, Red);

 AddControl(SimpleButton, MessageLine'unchecked_access, IsGlobal =>
false);

 -- Display the window and handle any input events. When dialog

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (3 of 13) [7/20/2001 11:36:37 AM]

 -- is finished, return control which completed the dialog.

 loop

 DoDialog(DT);

 exit when DT.Control = 1; -- first control is the OK button

 end loop;

 -- close the window

 CloseWindow;

 -- Shutdown TextTools

 ShutdownWindows;

 ShutdownControls;

 ShutdownUserIO;

 ShutdownOS;

 ShutdownCommon;

end ttdemo;

Package Overview

TextTools is broken into 5 main packages, based on what they do.

Common - this package contains all the basic data types used by TextTools, plus subprograms that work
with those types. In particular, two important types are defined:

 Str255 - most TextTools subprograms use this bounded, 255 character string type instead of the
standard Ada fixed strings. The function To255 converts an Ada string to a Str255. ToString
converts in the other direction.

●

 Str255List - some list controls display a block of text. These controls use the Str255List.List
type, a linked list of Str255 strings. The subprograms for this type are defined the generic package
gen_list.

●

Most TextTools calls do not return errors. There are some exceptions, such in the OS package. Error
numbers are returned in the LastError variable. LastError is 0 if there is no error.

OS - this package contains subprograms for working with the Linux operating system: that is, for reading
the current time, deleting files, and the like. Texttools pathnames are defined in this package. A path is a
Str255 string. The OS package can define path prefixes, beginning with a "$". For example, "$HOME" is
predefined as the user's home directory. To delete a file called "temp.txt" from the user's home directory,
you can use the OS erase command:

 Erase(To255("$HOME/temp.txt"));

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (4 of 13) [7/20/2001 11:36:37 AM]

$SYS is another predefined prefix. This refers to a directory in the user's home directory named with the
"short name" you specify in the StartupCommon procedure. Sounds, keyboard macros and the
session_log file are located here.

UserIO - this package contains all the input/output routines for TextTools: it handles mouse clicks, draws
text, and so forth. Normally, only people writing controls will need access to this package. However, the
pen colours, beep sounds and text styles, are also defined here.

Controls - this package contains all the window controls and related subprograms. Currently defined
controls are:

Thermometer●

ScrollBar●

StaticLine●

EditLine (and family)●

CheckBox●

RadioButton●

WindowButton●

Rectangle●

Line●

HorizontalSep●

VerticalSep●

StaticList●

CheckList●

RadioList●

EditList●

SourceCodeList (used by TIA)●

Windows - this is the window manager. It creates and draws windows, and DoDialog procedure lets a
user interact with the window. It also handles the "Accessories" window that appears when ESC is
pressed.

Each package is started with a "Startup" procedure, and shutdown with a "Shutdown" procedure. The
only procedure to take parameters is StartupCommon: you need to specify a program name and a short
name to use for temporary files.

15.2.4 Window Overview

The Window Manager draws all the windows on the screen. For simple programs, you will need to use
only four Window Manager procedures.

OpenWindow - this procedure creates a new window. Each window has a title, coordinates on the screen,
a "style", and an optional info bar.

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (5 of 13) [7/20/2001 11:36:37 AM]

AddControl - adds a control to the current window. If IsGlobal is false, the coordinates you specified in
the control's Init call will be treated as relative to the top-left corner of the window, as opposed to the top
left corner of the screen.

CloseWindow - closes the last window you created

DoDialog - this procedure displays the window and handles all interaction between the user and the
window. It has one parameter, ADialogTaskRecord, which lets you set up callbacks (if necessary) and
returns the number of the control which terminated the dialog.

5.2.5 Other Useful Window Manager Subprograms

Windows can be saved using the SaveWindow command, and loaded again using LoadWindow. When a
window is loaded with LoadWindow, you don't need to open the window or set up the controls--the
Window Manager does this automatically for you.

ShellOut will close the windows, run a shell command, and reopen the windows.

RefreshDesktop will redraw all the windows on the screen.

SetWindowTimeout will set a default control to be selected if there is no response after a certain amount
of time.

15.2.6 Alerts

Alerts are small windows that show a short message.

NoteAlert - displays a message with an "OK" button. The status sound is played, if installed.

CautionAlert - displays a message with an "OK" button. The text is drawn to emphasize the message.
The warning sound is played, if installed.

StopAlert - displays a message with an "OK" button. The text is drawn to emphasize the message. The
warning sound is played, if installed.

YesAlert - display a message with "yes" (default) and "no" buttons. Plays an optional sound.

NoAlert - display a message with "yes" and "no" (default) buttons. Plays an optional sound.

CancelAlert - display a message with cancel button and a customized button (default). Plays an optional
sound.

YesCancelAlert - display a message with "yes", "no", and "cancel" buttons and returns the number of the
button selected. Plays an optional sound.

Example:

 NoteAlert("The database has been updated");

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (6 of 13) [7/20/2001 11:36:37 AM]

15.2.7 Other Predefined Windows

SelectOpenFile - displays a dialog for opening files. It has parameter, ASelectOpenFileRec. You have to
fill in certain before displaying this window.

SelectSaveFile - displays a dialog for saving files. It has one parameter, ASelectSaveFileRec. You have
to fill in certain details before displaying this window.

ShowListInfo - displays a Str255List list in a window

EditListInfo - displays a Str255List list in a window and let's the user edit the list.

Example:

 sof : ASelectOpenFileRec;

 ...

 sof.prompt := To255("Select a file to open");

 sof.direct := false; -- can't select directories

 SelectOpenFile(sof);

 if sof.replied then

 FilePath := sof.path & "/" & sof.fname;

 else

 -- user cancelled

 end if;

Control Overview

Every control must be initialized with the Init procedure. Init positions the control in the window and
assigns a "hot key", a short cut key for moving to the control.

You can turn a control off (make it unselectable) using SetStatus. Setting the control's status to Standby
will make it selectable. Some controls are automatically turned off, such as the static line control.

The following controls can be used in a TextTools window:

Thermometer

This is a thermometer bar graph. It shows the percentage between the maximum value and the current
value, and is filled based on the percentage

ScrollBar

This is a scroll bar. A thumb is drawn at the relative location of the thumb value to the maximum value
of the bar. The bar will be horizontal or vertical depending on the shape specified in the Init procedure.

StaticLine

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (7 of 13) [7/20/2001 11:36:37 AM]

This is an unchanging line of text.

EditLine (and family)

This is an editable line of text.

AdvanceMode - if set, the cursor will move to the next control when the edit field is full. This is useful
in business applications where fixed-length product numbers are typed in.

BlindMode - if set, hides the characters typed. This is useful for typing in passwords.

SimpleButton

This is a button that, when selected, terminates the dialog.

Instant - if set, the button acts like a menu item. Pressing the hot key will immediately select the button
and terminate the dialog. Otherwise, pressing the hot key only moves the cursor to the button.

CheckBox

A check box is an option which may be turned on or off.

RadioButton

A radio button is one of a set of options which may be turned on or off. Every radio button has a family
number defined in the Init procedure. When a radio button is turned on, all other buttons in the family are
turned off.

WindowButton

Loads a window from disk and displays it. The window must have been saved with the Window
Manager's SaveWindow procedure.

Rectangle

A box which can be drawn around controls.

Line

A line--what else would it be--drawn between two corners of the enclosing rectangle defined by the Init
procedure.

HorizontalSep

A horizontal line, often used to separate controls into groups.

VerticalSep

A vertical line, often used to separate controls into groups.

StaticList

A scrollable box of unchanging text.

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (8 of 13) [7/20/2001 11:36:38 AM]

CheckList

A scrollable box of check boxes.

RadioList

A scrollable box of radio buttons.

EditList

A scrollable box of editable text.

SourceCodeList (used by PegaSoft's TIA)

A scrollable box containing source code.

OS Package

This package contains various calls for working with the operating system. All calls support path prefixes
as described above. Here are some of the subprograms:

UNIX - run a UNIX shell command. The function variations return the result of the command.●

RunIt - runs a UNIX program.●

ValidateFilename - check for a syntactically correct filename.●

NotEmpty - true if a file is not empty●

IsDirectory - true if file is a directory●

IsFile - true if file is a "regular" file●

MakeTempFileName - creates a random file name for a temporary file●

Erase - deletes a file●

LoadList - load a Str255List list from a file●

SaveList - save a Str255List list to a file●

MyID - return the PID for your program●

SessionLog - write to the session log. If a $SYS directory exists, SessionLog creates a file called
"session_log" in that directory. All SessionLog calls write to this file.

●

15.2.10 UserIO Overview

The UserIO package handles all the input and output for TextTools. Unless you are writing a game or
new controls, you'll probably won't need to use UserIO at all. However, there are a few useful
subprograms to be aware of:

Beep - play a .wav file. Requires Warren Gay's wavplay program. These files must be saved in the
$SYS directory, with the name of the beep sound in upper case.

●

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (9 of 13) [7/20/2001 11:36:38 AM]

Keypress - get a keypress●

DrawErr - draw an error message. DrawErr draws the text on the left-side screen in white. Use
only for emergencies.

●

GetDisplayInfo - retrieve information about the current screen, such as whether it supports colour,
and it's dimensions. Use this information to resize your windows for different screens.

●

Example:

 Beep(Startup); -- play startup sound

Keyboard Macros

UserIO will load a set of keyboard macros at startup. These must be saved in the $SYS directory, in a file
called macro_file. The first letter of each line is the key for the macro, and the rest of the line is the
expanded macro. For example, if a line in macro_file contained

pPegaSoft

then typing control-A followed by "p" would put the word "PegaSoft" in the input queue as if the person
had typed "PegaSoft".

15.2.11 Appearance and Keys

Most of the objects on the screen should be easily understood, the majority designed after their GUI
counterparts. Here is a list:

< > Text - A button. Press Return to activate. Type the hilighted letter to go immediately to this
button.

●

| > Text - An menu button. Enter Return to activate. Type the hilighted letter to immediately
activate.

●

() Text - A radio button. Press Return to select this item and deselect the previous item in the
group.

●

[] Text - A check box. Press Return to switch on or off.●

-----#------- - A scroll bar.●

-----50%----- - A thermometer graph.●

Buttons with hyphens in them are not selectable.

Basic Keyboard Shortcuts:

Movement Keys

Up/Down Arrow - move up or down to the next menu item

* in lists - move up or down one line in the list

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (10 of 13) [7/20/2001 11:36:38 AM]

* in scroll bars - adjust up or down by 10%

Left/Right Arrows - move left or right to the next menu item

* in lists - move up or down one line in the list

* in scroll bars - adjust up or down by 1

Page Up (or Control-P) - move up one page in a list

* in scroll bars - same as up and down arrows

Page Down (or Control-N) - move down one page in a list

* in scroll bars - same as up and down arrows

Home Key (or Control-Y) - move to the top of a list

* in scroll bars - go to the top

End Key (or Control-E) - move to the bottom of a list

* in scroll bars - go to the bottom

Tab Key - move to the next item in the window

Control-T - move to the previous item in the window

Return Key (or Spacebar) - activate a button

When inside of a list box, the movement keys move you around the list. If you are on the Linux console,
pressing alt and the hilighted letter will always jump to the appropriate object, even if you're inside a list
box or the notepad.

Editing Keys

Control-6 - mark text

* only works in edit lists

Control-X - clear text

* in lists, clear the current line (or lines, if control-6 used)

Control-B - copy text

* in lists, copy the current line (or lines, if control-6 used)

Control-V - paste text

* in notepad, paste the last line copied

Misc. Keys

ESC Key (or F1) - bring up the accessories menu

Control-L - redraw the screen

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (11 of 13) [7/20/2001 11:36:38 AM]

Control-A (or F2) - execute a keyboard macro

15.3 Using NCurses

Ncurses is a free toolset for drawing on text screens, such as the Linux console.

[not finished]

15.4 Using GTK+ Widgets

GTK+, the Gimp ToolKit, is a widget set (or sometimes called a control set). These are the same widgets
used by the Gimp drawing program. Unlike Motif and QT widgets, GTK+ uses an LGPL license, making
it very popular for new Linux software, include the GNOME desktop project.

GTK+ also contains 2D drawing operations.

GTK+ is available for download from the GTK web site at http://www.gtk.org.

GtkAda can be downloaded from the ALT web site, or from its home page at http://ada.eu.org/gtkada/.

GtkAda is an Ada95 binding of Gtk+ version 1.2.0. It allows you to develop graphical applications in
Ada95 using Gtk+. General GTK+ documentation and a tutorial written with examples in C are available
from the GTK web site.

[not finished]

15.5 Using Motif Widgets

Motif (pronounced "Moe-Teef") is an X Windows widget standard created by the Open Software
Foundation (OSF), a group of several UNIX companies. Motif is built for the stanadard X Windows
library Xt. With Motif, you can create windows and dialog boxes menus, buttons, scrolling lists and the
like. Motif is a registered trademark of OSF.

LessTif (pronounced "Less-Teef") is an open source compatible version of Motif 1.2 with some
extensions, licenced under LGPL. It is available for download from the LessTif web site at
http://www.lesstif.org. This site also includes documentation on compiling and installing LessTif.

There are no Ada bindings for LessTif, but there are Ada bindings for Motif which should work equally
well for Lesstif. The bindings are available from the Home for Brave Ada Programmers,
http://www.adahome.com.

Motif (and LessTif) have not proven to be very popular. Motif programs tend to be very large, with
widgets layouts that are difficult to design, and have a heavy reliance on Motif's cumbersome resource
files. Even small Motif programs typically require contain several hundred lines of source code to set up

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (12 of 13) [7/20/2001 11:36:38 AM]

their initial window. Toolsets such as Qt (used in KDE) and GTK+ (used in GNOME) have larger
followings, and Motif support is primarily for older applications being ported to Linux.

However, Motif, as a standard, is continuing to evolve.

15.6 Using the TCL Binding

TASH (Tcl Ada SHell) is a binding to TCL/TK. It includes both a thin binding to the basic TCL/TK
functions (as found in the C header file tcl.h), as well as versions of the functions made for easier calling
from Ada. The binding supports TCL 8.0

http://tash.calspan.com/

TASH also comes with its own TCL shell interpreter which functions like tclsh but is written in Ada.

15.7 Using the OpenGL/Mesa Binding

Mesa is an OpenGL library for 3D graphics. It can create 3D objects, transform them, and supports
accelerated drivers.

You can use Mesa under GTK+ by using a GTK+ "GL Area" widget and draw graphics inside using
Mesa.

15.8 Engine_3D

Engine_3D is a real-time 3D drawing package written entirely in Ada. The Linux port is by Duncan
Sands. The Engine_3D package is at http://members.nbci.com/gdemont/e3d.htm.

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (13 of 13) [7/20/2001 11:36:38 AM]

http://members.nbci.com/gdemont/e3d.htm

16 Advanced Linux Programming

 <--Last Chapter Table of Contents Next Chapter-->

16.1 Writing Your Own Bindings

Ada Package Description C Equivalent

pragma import Import identifier from another language extern?

pragma export Export identifier to another language extern?

pragma import_function Like import, but extra options

pragma import_procedure Like import, but extra options

pragma import_valued_procedure
Import a function that returns values as
parameters

 extern?

pragma export_function Like export, but extra options

pragma export_procedure Like export, but extra options

Because gnat is tightly integrated with gcc, we can make certain assumptions that would otherwise be impossible.

the basic Ada data types are equivalent to their C counterparts: an Ada integer array is a C integer array●

in parameters are the same as pass by copy parameters in C●

in out parameters are the same as passing a pointer as a parameter in C●

Ada string parameters ending in ASCII.NUL are the same as a C string●

Ada procedures are the same as C void functions●

There are rare cases when these assumptions don't hold (e.g. certain cases when null pointer parameters are not allowed by
Ada), but, generally speaking, these assumptions are valid under Linux. Gnat has general purpose interfacing pragmas and
support for C types in the Interfaces.C package. Use these if you want maximum portability.

Because of these assumptions, most C library calls are easily represented in Ada. For example, we check the man page for
gettime and discover it returns the current time as a long integer. To call this from Ada, we use

 function gettime return long_integer;
 pragma Import(C, gettime);

Since there is no Ada body for the gettime function, we use pragma import to let gnat know gettime is a C function. When we
link, we need to specify the C library that function is in. In the case for the GNU C library, this is unnecessary since it's
automatically linked. We can now call the C function gettime as if we wrote it ourselves.In C, it's possible to call a function
and discard the result by not assigning it to anything. You can call C functions from Ada this way by declaring them a
procedure. For example:

 procedure gettime;
 pragma Import(C, gettime);

In this case, it's not particularly useful to call gettime and throw away the time it gives you. In general, you should avoid
discarding the result because you may find it useful at some time in the future. However, there are certain C function where the
result is provided only for flexibility, such as functions that return a pointer in a parameter and return the same pointer as the
function result as well. These can safely be discarded by treating the function as a procedure.If we wanted to export an integer
variable called TotalTimeEstimate to C, we'd use

 TotalTimeEstimate : integer;
 pragma Export(C, TotalTimeEstimate);

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (1 of 47) [7/20/2001 11:37:13 AM]

A C function that returns void corresponds to an Ada procedure.

When importing or exporting to C, gnat converts the variable to lower case because C is a case-sensitive language.
TotalTimeEstimate would be called totaltimeestimate in a C program. You can override this by providing a specific C name to
link to. For example,

 pragma Export(C, TotalTimeEstimate, "TotalTimeEstimate");

Import and Export don't require the name be the same at all. However, using entirely different names in C and Ada will make
your program hard to understand.

If you want to import functions from libraries other than the standard C library, you will have to explicitly link them in. For
example, to use the C math library, libm.a, would have to be explicitly linked using -lm. In C, functions can have parameters
that change value, while in Ada this kind of function is not allowed because functions can only have "in" parameters. To get
around this problem, gnat defines an import_valued_procedure pragma. Suppose you have a C function like this:

 int SomeCFunction(char * param)

Normally, there is no way to represent this kind of function in an Ada program. However, we can import it by treating it as a
procedure using the import_valued_procedure pragma:

procedure SomeCFunction (result : out integer; param : in out integer);
pragma import(C, SomeCFunction);
pragma import_valued_procedure(SomeCFunction);

The import_valued_procedure pragma tells gnat that this procedure corresponds to a C function: the first parameter is the
result of the C function, and the remaining parameters correspond to the parameters of the C function. The first import pragma
is not strictly required, but ACT recommends using it.

You can't import identifiers created by the #define statement since they only exist before a C program is compiled. You also
can't import types (except for C++ classes) since types have no address in memory. [KB-true?]

There is one case where these tricks fail: when the C function returns a pointer to a C variable that it declared. In this case, the
function is returning a new C pointer. Luckily, Ada provides a package called Address_To_Access_Conversions to convert
between C pointers and Ada access types. You instantiate the package with the type you want to convert between, and the
package creates an access type that can be converted to and from an address (which is a C pointer).The following program
demonstrates conversions to and from C pointer types.

with Ada.Text_IO, System.Address_To_Access_Conversions;
use Ada.Text_IO;
procedure pointers is

package IntPtrs is
 new System.Address_To_Access_Conversions(integer);
 -- Instantiate a package to convert access types to/from addresses.
 -- This creates an integer access type called Object_Pointer.

 five : aliased integer := 5;
 -- Five is aliased because we will be using access types on it

 int_pointer : IntPtrs.Object_Pointer;
 -- This is an Ada access all type

 int_address : System.Address;
 -- This is an address in memory, a C pointer

begin
 int_pointer := five'unchecked_access;
 -- Unchecked_access needed because five is local to main program.

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (2 of 47) [7/20/2001 11:37:13 AM]

 -- If it was global, we could use 'access.

 int_address := five'address;
 -- Addresses can be found with the 'address attribute.
 -- This is the equivalent of a C pointer.

 int_pointer := IntPtrs.To_Pointer(int_address);
 int_address := IntPtrs.To_Address(int_pointer);
 -- Convert between Ada and C pointer types.

end pointers;

For example, the standard C library function get_current_dir_name returns a pointer to a C string which it declares. To use
get_current_dir_name, we have to instantiate Address_To_Access_Conversions for an array of characters (a C string), and
convert the address to an access type using something like

 CharArray_pointer := CharArrayPtrs.To_Pointer(get_current_dir_name);

There is no other way in Ada to access the array that get_current_dir_name points to.

KB-If your main program is a C program, you need to call adainit before any Ada code.

16.2 Linux Errors and Errno

Most standard C library errors are returned in an integer variable called "errno". You can examine errno in your Ada programs
by importing it.

 errno : integer;
 pragma import(C, errno);

Errno contains a number for the error returned by the last library function.

In Multithreading programs, be aware errno may not be not "thread safe" because it can be
shared between threads. [KB: document how to do it with threads]

Linux provides two functions for working with errno error numbers.

type string255is new string(1..255);
type strptr is access string255;
-- error messages are no longer than 255 characters

procedure perror(message : string);
pragma import(C, perror);
Perror prints a standard error description with a leading message to standard error.

function strerror(error_number : integer) return strptr;
pragma import(C, strerror);
Retuns a C string standard error description.

The following example program makes a deliberate error with the link function and prints the error message using perror and
stderror.

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (3 of 47) [7/20/2001 11:37:13 AM]

with ada.text_io, ada.strings.fixed;
use ada.text_io, ada.strings.fixed;
procedure perr is
-- an example of perror and strerror error messages

 procedure perror(message : string);
 pragma import(C, perror);
 -- print a standard error description with a leading message

 type string255 is new string(1..255);
 type strptr is access string255;
 -- error messages are no longer than 255 characters

 function strerror(error_number : integer) return strptr;
 pragma import(C, strerror);
 -- get a standard error description

 errno : integer;
 pragma import(C, errno);
 -- last error number

 function link(path1, path2 : string) return integer;
 pragma import(C, link);
 -- we'll use the link function to create an error

 LinkResult : integer; -- value returned by link
 ErrorMessagePtr : strptr; -- pointer to stderror message
 NullLocation : integer; -- location of NUL in stderror message

begin

 Put_Line("This is an example of perror and strerror");
 New_Line;

 -- make a deliberate error and print it with perror

 Put_Line("Trying to link a non-existent file to itself..");
 LinkResult := Link("blahblah", "blahblah");
 if LinkResult = -1 then
 perror("Link failed");
 end if;
 New_Line;

 -- Retrieve the last error message with strerror.
 -- Because strerror returns a C string, only print the
 -- string up to the first NUL character.

 ErrorMessagePtr := StrError(Errno);
 NullLocation := Index(string(ErrorMessagePtr.all), "" & ASCII.NUL);
 Put("The last error message was '");
 Put(Head(string(ErrorMessagePtr.all), NullLocation-1));
 Put_Line("'.");

end perr;

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (4 of 47) [7/20/2001 11:37:13 AM]

This is an example of perror and strerror
Trying to link a non-existent file to itself.
Link failed: No such file or directory
The last error message was 'No such file or directory'.

A table of error numbers is in the appendix.

16.3 The Linux Clock

The Ada.Calendar package is the standard method of working with time in Ada programs. If you need to interface with C
programs, you may need to use Linux's time features.

The Linux clock functions are either kernel calls or are a part of the standard C library, and they don't need to be linked in with
the -lc option.

16.3.1 Basic time functions

The basic Linux time functions work with the number of seconds since January 1, 1970. This is referred to as the epoch in the
Linux man pages. Because of the limits of a long integer value, the Linux clock will stop working properly around the year
2038.

The basic functions use a long_integer for the time:

type time_t is new long_integer;

procedure time (time : in out time_t);
pragma import(C, time);
Returns the current time.

function difftime(time1, time2 : time_t) return long_float;
pragma import(C, difftime);
Returns the number of seconds between two times (as a long_float).

16.3.2 Timeval Calls - Microsecond Accuracy

The timeval kernel calls return (or set) the current time with microsecond accuracy using a timeval record.

type timeval is record
 tv_sec : time_t; -- number of seconds (since epoch)
 tv_usec : long_integer; -- number of microseconds
end record;

type timezone is record
 tz_minuteswest : integer; -- minutes west of Greenwich
 tz_dsttime : integer -- unsupported in Linux
end record;

procedure gettimeofday(result : out integer; tv : in out timeval, tz : in out
timezone);
pragma import(C, gettimeofday);
pragma import_valued_procedure(gettimeofday);
Get the current time as the number of microseconds since January 1, 1970. Returns 0 for success. ftime() is an obsolete
version of this function

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (5 of 47) [7/20/2001 11:37:13 AM]

procedure settimeofday(result : out integer; tv : in out timeval; tz : in out
timezone);
pragma import(C, settimeofday);
pragma import_valued_procedure(settimeofday);
Set the current time as the number of microseconds since January 1, 1970. Returns 0 for success.

procedure tzset;
pragma import(C, tzset);
Create the TZ environment variable, if it doesn't exist, and sets it to the current timezone as specified in /etc/localtime or
/usr/lib/zoneinfo/localtime. This is automatically invoked by the standard C library time functions whenever necessary.

procedure adjtimex(result : out integer; buf : inout timex);
pragma import(C, adjtimex);
Tunes the kernel's clock for specific time parameters

16.3.3 Functions using the tm record

Besides the number of seconds elapsed since 1970, Linux can also work with records containing the time broken down into
common measurements. These functions use a tm record. These functions are all a part of the standard C library.

type tm is record
 sec : integer; -- seconds on the clock (0-59)
 min : integer; -- minutes on the clock (0-59)
 hour : integer; -- hour on the clock (0-23)
 mday : integer; -- day of the month (1-31)
 mon : integer; -- month (0-11)
 year : integer; -- year
 wday : integer; -- day of the week (0-6)
 yday : integer; -- day of the year (0-365)
 isdst : integer; -- >0 is daylight savings time, 0=not, <0 unknown
end record;

You will also need the Address_To_Access_Conversions package to convert C pointers to tm record into Ada access type
pointers.

package TmPtrs is
 new System.Address_To_Access_Conversions(tm);

function localtime(time : in out time_t) return system.address;
pragma import(C, localtime);
Change the time into a tm record, making changes for the current time zone. time is the C pointer to the seconds since 1970.

function gmtime(time : in out time_t) return system.address;
pragma import(C, gmtime);
Change the time into a tm record for UTC (Coordinated Universal Time). time is the C pointer to the seconds since 1970.

function mktime(tm : system.address) return time_t;
pragma import(C, mktime);
Convert a tm record into the seconds since 1970.

To get the current time in tm format,

 seconds_since_1970 : long_integer;

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (6 of 47) [7/20/2001 11:37:13 AM]

 tm_rec : tm;
 ...
 time(seconds_since_1970);
 tm = TmPtrs.To_Pointer(localtime(seconds_since_1970'address)).all;

16.3.4 Time as a String

function asctime(tm : system.address) return string;
pragma import(C, asctime);
Convert the tm into a standard UNIX time C string, such as you see with the ls -l shell command.

function ctime(time : in out time_t) return long_integer;
pragma import(C, ctime);
Get the current time as a standard UNIX time C string. It's equivalent to using asctime() on the localtime() of the current
time().

procedure strftime(result: size_t; datestr : in out stringtype; max : size_t; format
: string; tm : in out tmrec);
pragma import(C, strftime);
Like asctime(), converts a tm time into text. strftime() uses formatting codes to determine the appearance of the text, similar to
the shell date command. Returns the length of the date string (including the ending ASCII.NUL). See the man page for
complete details.

Example:
datestring : string(1..80);
...
statftime(datestringsize, datestring, datestring'size/8, "%I:%M" & ASCII.NUL, tm);
Ada.Text_IO.Put_Line("The time is " & datestring(1..datestringsize-1));

16.3.5 Timer Functions

Timer functions use the timeval structure

function timerclear(tv : timeval);
function timerisset(tv : timeval);
function timercmp(t0, t1 : timeval; operator : ?);

16.4 Process Information

The Linux process functions are part of the standard C library, and do not need to be linked in with -lc.

function getpid return integer;
Returns the Process Identification Number (PID) for your program.

16.4.1 Ownership

The owner of a program is referred to as the UID (user identification number). Under Linux, there are actually three owners to
any given program: the effective UID, the real UID and the saved UID. Normally, these three are all the same login. The real
and saved uids are provided for programs that must temporarily pretend to be somebody else, like a daemon that needs special
login for a short period of time, or setuid/setgid programs that must temporarily switch between owners. These special

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (7 of 47) [7/20/2001 11:37:13 AM]

functions are not covered here.

function getuid return integer;
pragma import(C, getuid);
Get the (real) UID of a process.
Example: Put_Line("My UID is " & getuid'img);

function setuid (uid : integer) return integer;
pragma import(C, setuid);
Change the effective (and saved and real) UID of a process to a new owner.

The GID (group identification number) is the group the program belongs to. In Linux, there's a main, effective group number,
and any number of secondary groups that a program can belong to. There is also real and saved GIDs, just like UIDs.

procedure getgroups(result : out integer; num : integer; gidlist);
pragma import(C, getgroups);
pragma import_valued_procedure(getgroups);
Return a list of group numbers that a process belongs to. Gidlist is the address of a list of C strings.

function getgid return integer;
pragma import(C, getgid);
Get the (real) UID of the process.
Example: Put_Line("My GID is " & getgid'img);

function setguid(gid : integer) return integer;
pragma import(C, setgid);
Change the effective GID (and saved and real) of a process to a new group.

Linux also allows you to arrange processes into groups for easier management of multiple processes at once. Each process
group as a, no surprise, a process group identification number (PGID).

function setpgid(pid, pgid : integer) return integer;
pragma import(C, setpgid);
Place a process into a new process group. PID 0 is the current process. PGID 0 creates a new process group.

function getpgid(pid : intger) return integer;
pragma import(C, getpgid);
Example: Put_Line("My PGID is " & getpgid'img);
Returns the process group number for a process. PID 0 is the current process.

Every program and process group also belongs to a session (as in a login session). When you log off the computer, Linux
automatically stops all programs that were running in your session. The session leader is the top process in a session, such as
your login shell. However, if you want to create a new session for some reason, you can use the following function:

function setsid return integer;
pragma import(C, setsid);
Start a new session and return a new session identification number (SID).
Example: NewSID := etsid;

16.4.2 Other Functions

function kill(uid, signal : integer) return integer;
pragma import(C, kill);
Stop a child process that your process has started, the same as using the kill command at the shell prompt. (More accuately,
send a signal to a child process—some signals won't stop the child process.)
Example: Result := kill(MyRunawayChildUID, 15); -- send SIGTERM (terminate) signal

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (8 of 47) [7/20/2001 11:37:13 AM]

Signal handling, in general, is easier through Ada.Interrupts than through Linux kernel calls because of their heavy reliance on
C macros.--KB

function alarm(seconds : Interfaces.C.unsigned) return Interfaces.C.unsigned;
pragma import(C, alarm);
After the specified number of seconds, cause a SIGALRM interrupt in the current process.

16.5 Environment Variables

Environment variables can easily be set and read with Ada.Command_Line.Environment package. You can also set them
directly through the standard C library.

function putenv(str : string) return integer;
pragma import(C, putenv);
Define a Linux environment variable. putenv literally saves a pointer to the string; therefore the string must be global (or a
literal).
Example: Result := putenv("TERM=vt102" & ASCII.NUL);

function getenv(str : string) return string;
pragma import(C, putenv);
Read the value of an environment value. Remember the string returned is a C string with an ending ASCII.NUL.

16.6 Multitasking

Multitasking creates child processes to do tasks for your main program. On multiprocessor machines, different processes can
be assigned to different processors allowing work to be done simultaneously. On single processor machines, the processor
switches several times a second between processes and does a little work on each.

The function to create a new child process is called fork. When Linux creates a new process, it doesn't start by creating a blank
process. Instead, it makes a copy of the original process so there are effectively two copies of your program running. The fork
function returns a value to tells your program if it is the original program or the new copy.

If you want to run a different program, you'll have to use one of the exec family of functions to load and run the new program.
The exec functions destroy the old program and run a new program in its place. The above section, Using System and
OSLib.Spawn, has an example C function called CrunIt that uses fork to start a new process and run a new program.

type pid_t is new integer;
function fork return pid_t;
pragma import(C, fork);
Create a new child process identical to the original process and return 0 if the program is running as the child process or the
PID of the parent if the program is running as the original parent process.
Example: myPID := fork;

procedure wait(pid : out pid_t; status : in out integer);
pragma import(C, wait);
pragma import_valued_procedure(wait);
Wait until a child process have finished running. Pid is the PID of the child. status is an integer code indicating whether the
child finished normally, and if it was stopped by a signal, which signal terminated the program. Status can be a null pointer if
you don't want status information.
Example: wait(wait_pid, wait_status);

procedure waitpid(pid : out pid_t, pid_or_gid : in out pid_t; status : in out
integer; options : integer);
pragma import(C, waitpid);
pragma import_valued_procedure(waitpid);
Wait for a specific child. If pid_or_gid is less than -1, waitpid waits for any child in the specified group id. If pid_or_gid is -1,

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (9 of 47) [7/20/2001 11:37:14 AM]

it waits for any child (the same as wait). If pid_or_gid is 0, it waits for any child in the same group id as the parent. If
pid_or_gid is greater than zero, waits for the child with the specified pid. Status can be a null pointer if you don't want status
information. Options can determine whether waitpid returns immediately or blocks indefintely.
Example: waitpid(child_pid, -children_gid, wait_status, 0);

Wait3 and Wait4 are BSD UNIX variations which perform the same functions as wait and waitpid but with slightly different
parameters.

When multitasking, if a child process stops, it's retained in memory so that the parent can use wait to find out the reason it
stopped running. These children are called "zombies". If the parent process doesn't use wait, the zombies will remain
indefinitely, using up system resources. For any large multitasking program, make sure you handle SIGCHLD signals: these
are created when a child stops running. The SIGCHLD handler only needs to call wait and Linux will then remove the child
process from memory.

The following is a simple multitasking example that multitasks two Put_Line statements.

-- a simple example of multitasking that multitasks
-- two put_line statements

with ada.text_io;
use ada.text_io;
procedure multitask is
type pid_t is new integer;

 function fork return pid_t;
 pragma import(C, fork);
 -- create a new process

 errno : integer;
 pragma import(C, errno);
 -- the last error code

 procedure wait(pid : out pid_t; status : in out integer);
 pragma import(C, wait);
 pragma import_valued_procedure(wait);
 -- wait until all child processes are finished

 myPID : pid_t;
 wait_pid : pid_t;
 wait_status : integer;

begin

 Put_Line("Welcome to this multitasking example");
 Put_Line("This is the original process.");
 New_Line;

 -- the fork function duplicates this program into
 -- two identical processes.

 Put_Line("Splitting into two identical processes...");
 Put_Line("---");
 myPID := fork; -- split in two!

 -- This program is now the original process or the

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (10 of 47) [7/20/2001 11:37:14 AM]

 -- new child process. myPID tells you which process
 -- you are.

 if myPID < 0 then
 Put_Line(Standard_Error, "Fork has failed. Error code " & errno'img);
 elsif myPID = 0 then
 Put_Line("This is the child process");
 else
 Put_Line("This is the original process.");
 -- wait until child is finished
 wait(wait_pid, wait_status);
 if wait_pid < 0 then
 Put_Line(Standard_Error, "Wait error: wait returned PID " & wait_pid'img
 & " and error number " & errno'img);
 end if;
 end if;

end multitask;

Welcome to this multitasking example
This is the original process.
Splitting into two identical processes...

This is the original process.
This is the child process

16.7 Linux File Operations

The Linux file operations are part of the standard C library, and don't need to be linked in with the -lc option. The C calls are
defined in the "fcntl.h" header file.

[Explain Linux files here]

Linux never shortens files. If your file gets smaller, you must shorten it yourself using
truncate.

The following bindings assume these types have been defined.

type file_id is new integer;
-- file ID number are discussed below

type mode_t is new integer;
type gid_t is new integer;
type uid_t is new integer;
type size_t is new long_integer;

function unlink(pathname : string) return integer;
pragma import(C, unlink);

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (11 of 47) [7/20/2001 11:37:14 AM]

Delete a file.
Example: Result := unlink("/tmp/temp.txt" & ASCII.NUL);

function link(oldpath, newpath : string) return integer;
pragma import(C, link);
Make a shortcut (hard link) to a file.
Example: Result := link("/tmp/temp.txt" & ASCII.NUL, "/tmp/newtemp.txt" & ASCII.NUL);

procedure getcwd(buf1 : out StringPtr; buf2 : in out stringptr; size : integer);
pragma import(C, getcwd);
pragma import_valued_procedure(getcwd)
Return the current working directory.

function mkdir(pathname : stringPtr; mode : mode_t) return integer;
pragma import(C, mkdir);
Create a new directory and set default permissions.

function rmdir(pathname : string) return integer;
pragma import(C, rmdir);
Delete a directory.
Example: Result := rmdir("/tmp/tempdir" & ASCII.NUL);

function umask(mask : integer) return integer;
pragma import(c, umask);
Sets the default file permissions.

function stat(filename : stringPtr; buf : stat_struct) return integer;
pragma import(C, stat);
Get information about a file, such as size and when it was last opened.

function lstat(filename : stringPtr; buf : stat_struct) return integer
pragma import(C, lstat);
Same as stat function, but doesn't follow symbolic links.

function tmpnam(s : stringPtr) return stringPtr;
pragma import(C, tmpnam);
Create a random name for a temporary file.

function chown(path : string; owner : uid_t; group : gid_t) return integer;
pragma import(C, chown);
function fchown(file : file_id; owner : uid_t; group : gid_t return integer;
pragma import(C, fchown);
Change the ownership of a file to the specified owner and group.
Example: Result := chown("root.txt" & ASCII.NUL, 0, 0);

function chmod(path : string; mode : mode_t) return integer;
pragma import(C, chmod);
function fchmod(file : file_id; mode : mode_t) return integer;
pragma import(C, fchmod);
Change the read/write/execute permissions on a file.
Example: Result := chmod("secure.txt" & ASCII.NUL, #8#640);

Other low-level file operations are all done with the fcntl (file control) function. There are three variations to fcntl: it may have
an operation code, an operation code and a long integer argument, or an operation code and a locking record argument.

The operation numbers are defined in /usr/src/linux/asm-i386/fnctl.h:

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (12 of 47) [7/20/2001 11:37:14 AM]

F_DUPFD : constant integer := 0;
F_GETFD : constant integer := 1;
F_SETFD : constant integer := 2;
F_GETFL : constant integer := 3;
F_SETFL : constant integer := 4;
F_GETLK : constant integer := 5;
F_SETLK : constant integer := 6;
F_SETLKW : constant integer := 7;
F_SETOWN : constant integer := 8;
F_GETOWN : constant integer := 9;
F_SETSIG : constant integer := 10;
F_GETSIG : constant integer := 11;

function fcntl(fd : file_id; operation => F_DUPFD)
pragma import(C, fcntl);
Duplicates a file descriptor (same as dup2, but different errors returned). New descriptor shares everything except
close-on-exec. New descriptor is returned.

function fcntl(fd : file_id; operation => F_GETFD)
pragma import(C, fcntl);
Get close-on-exec flag; low bit is zero, file will close on exec kernel call.

function fcntl(fd : file_id; operation => F_SETFD; arg : long_integer)
pragma import(C, fcntl);
Set the close-on-exec flag; low bit is 1 to make file close on exec kernel call.

function fcntl(fd : file_id; operation => F_GETFL)
pragma import(C, fcntl);
Get flags used on open kernel call used to open the file

function fcntl(fd : file_id; operation => F_SETFL; arg : long_integer)
pragma import(C, fcntl);
Set flags for open kernel call. Only async, nonblock and appending can be changed.

procedure fcntl(result : out integer; fd : file_id; operation => F_GETLK; lock : in
out lockstruct)
return integer
pragma import(C, fcntl);
pragma import_valued_procedure(fcntl);
Return a copy of the lock that prevents the program from accessing the file, or else if there is nothing blocking, the type of lock

procedure fcntl(result : out integer; fd : file_id; operation => F_SETLK; lock : in
out lockstruct)
return integer
pragma import(C, fcntl);
pragma import_valued_procedure(fcntl);
Place a lock on the file. If someone else has locked the file already, -1 is returned and errno contains the locking error.

procedure fcntl(result : out integer; fd : file_id; operation => F_SETLKW; lock : in
out lockstruct)
return integer
pragma import(C, fcntl);
pragma import_valued_procedure(fcntl);
Place a read or write lock on the file, or to unlock it. If someone else has locked the file already, wait until the lock can be

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (13 of 47) [7/20/2001 11:37:14 AM]

placed.

Additional information about locks are found in /usr/src/linux/Documentation/locks.txt

type aLock is new short_integer;
F_RDLCK : constant aLock := 0; -- read lock
F_WRLCK : constant aLock := 1; -- write lock
F_UNLCK : constant aLock := 2; -- unlock (remove a lock)
F_EXLCK : constant aLock := 3; -- exclusive lock
F_SHLCK : constant aLock := 4; -- shared lock

type aWhenceMode is new short_integer;
SEEK_SET : constant aWhenceMode := 0; -- absolute position
SEEK_CUR : constant aWhenceMode := 1; -- offset from current position
SEEK_END : constant aWhenceMode := 2; -- offset from end of file

type lockstruct is record
 l_type : aLock; -- type of lock
 l_whence : short_integer; -- how to interpret l_start
 l_start : integer; -- offset or position
 l_len : integer; -- number of bytes to lock (0 for all)
 l_pid : integer; -- with GETLK, process ID owning lock
end record;

To lock a file, create a lockstruct record and fill in the details about the kind of lock you want.

A read lock (F_RDLCK) makes the part of the file you specify read-only. No one can write to that part of the file.

A write lock prevents any other program from reading or writing to the part of the file you specify. Your program may change
that part of the file without being concerned that another process will try to read it before you're finished.

If your program stops prematurely, the locks will be released.

Example: Get exclusive right to write to the file, waiting until it's possible:

 -- lock file
 myLockStruct : lockStruct;
 result : integer;
 ...
 myLockStruct.l_type := F_WRLCK;
 myLockStruct.l_whence := 0;
 myLockStruct.l_start := 0;
 myLockStruct.l_end := 0;
 fcntl(result, fd, F_SETLKW, myLockStruct);
 if result = -1 then
 put_line(standard_error, "fcntl failed");
 end if;
 -- file is now locked
 ...
 -- unlock file
 myLockStruct.l_type := F_UNLCK;
 myLockStruct.l_whence := 0;
 fcntl(result, fd, F_SETLKW, myLockStruct);
 if result = -1 then
 put_line(standard_error, "fcntl failed");
 end if;

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (14 of 47) [7/20/2001 11:37:14 AM]

[Double check off_t size for l_start, l_len--KB]

function fcntl(fd : file_id; operation => F_GETOWN)
pragma import(C, fcntl);
Get the process (or process group) id of owner of file. The owner is the process that handles SIGIO and SIGURG signals for
that file.

function fcntl(fd : file_id; operation => F_SETOWN, arg : long_integer)
pragma import(C, fcntl);
Set the process (or process group) id of owner of file. The owner is the process that handles SIGIO and SIGURG signals for
that file. This affects async files and sockets.

function fcntl(fd : file_id; operation => F_GETSIG)
pragma import(C, fcntl);
Get the signal number of the signal sent when input or output becomes possible on a file (usually SIGIO or zero). (This is a
Linux-specific function.)

function fcntl(fd : file_id; operation => F_SETSIG, arg : long_integer)
pragma import(C, fcntl);
Set the signal number of the signal sent when input or output becomes possible on a file (zero being the default SIGIO). Use
this to set up a signal handler alternative to the kernel calls select and poll. See the man page for more information. (This is a
Linux-specifc function.)

16.8 Opening and Closing Files

The standard Ada packages Text_IO, Sequential_IO and Direct_IO are suitable for simple projects, but they were never
intended as a complete solution for large-scale applications. If you want to do efficient file manipulation, you'll have to write
your own routines based on kernel calls or the standard C library.

gnat's OSLIB package contains low-level commands to work with UNIX files. However, you can always create your own.

The following bindings assume these types have been defined.

type file_id is new integer;
type mode_t is new integer;
type off_t is new long_integer;
type size_t is new long_integer;
subype ssize_t is size_t;

function open(path : string; flags : integer; mode : mode_t) return file_id;
pragma import(c, open);
Open a file and return and file identification number. flags indicates how the file should be opened and what kind of access the
file should allow (defined in /usr/include/fcntlbits.h). Mode defines the access permissions you want on the file.

The flags are a set of bits with different meanings:

O_RDONLY : constant integer := 8#00#; -- open for reading only
O_WRONLY : constant integer := 8#01#; -- open for writing only
O_RDWR : constant integer := 8#02#; -- open for reading and writing
O_CREAT : constant integer := 8#0100#; -- no file? create it
O_EXCL : constant integer := 8#0200#; -- lock file (see below)
O_NOCTTY : constant integer := 8#0400#; -- if tty, don't acquire it

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (15 of 47) [7/20/2001 11:37:14 AM]

O_TRUNC : constant integer := 8#01000#; -- file exists? truncate it
O_APPEND : constant integer := 8#02000#; -- file exists? move to end
O_NONBLOCK : constant integer := 8#04000#; -- if pipe, don't wait for data
O_SYNC : constant integer := 8#010000#; -- don't cache writes
O_ASYNC : constant integer := 8#020000#; -- async. IO via SIGIO
O_DIRECT : constant integer := 8#040000#; -- direct disk access
O_LARGEFILE: constant integer := 8#0100000#; -- not implemented in Linux (yet)
O_DIRECTORY: constant integer := 8#0200000#; -- error if file isn't a dir
O_NOFOLLOW : constant integer := 8#0400000#; -- if sym link, open link itself

Flags may be added together.
O_EXCL is somewhat obsolete and has limitations on certain file systems. Use fcntl to lock files instead.
O_SYNC only works on the ext2 file system or on block devices.

function creat(path : string, mode : mode_t) return file_id;
pragma import(c, creat);
Creat is a short form for open(path, create + writeonly + truncate, mode)

function close(file : file_id) return integer;
pragma import(C, close);
Closes a file.

function truncate(path : string; length : size_t) return integer;
pragma import(C, truncate);
function ftruncate(file : file_id; length : size_t) return integer;
pragma import(C, ftruncate);
Shorten a file to a specific length. Despite its name, ftruncate is a kernel call, not a standard C library call like fopen.

function read(file : file_id; b : in out buffer; length : size_t) return ssize_t;
pragma import(C, read);
Read bytes from the specified file into a buffer. Buffer is any type of destination for the bytes read, with length being the size
of the buffer in bytes. The number of bytes read is returned, or -1 on an error.

function write(file : file_id; b : in out buffer; length : size_t) return ssize_t;
pragma import(C, write);
Write bytes from a buffer into the specified file. Buffer is any type of destination for the bytes read, with length being the size
of the buffer in bytes. The number of bytes written is returned, or -1 on an error.

function lseek(file : file_id; offset : off_t; whence : integer) return integer;
pragma import(C, lseek);
Move to a particular position in the specified file. Whence is a code representing where your starting position is. Offset is how
many bytes to move.

There are three possible "whence" values:

SEEK_SET : constant integer := 0; -- from start of file
SEEK_CUR : constant integer := 1; -- offset from current position
SEEK_END : constant integer := 2; -- from end of file

File input/output is naturally suited to generic packages. You can use the generic package to hide the low-level details of the
standard C library. In following example, SeqIO is a generic package for reading and writing a sequential file of some type,
using the kernel calls mentioned above.

-- SeqIO
--
-- A simple sequential IO package using standard C functions

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (16 of 47) [7/20/2001 11:37:14 AM]

generic
 type AFileElement is private;

package SeqIO is

 type AFileID is new short_integer;
 seqio_error : exception;

 function Open(path : string; read : boolean := true) return AFileID;
 -- open a new file for read or write

 procedure Close(fid : AFileID);
 -- close a file

 procedure Read(fid : AFileID; data : in out AFileElement);
 -- read one data item from the file. seqio_error is raised
 -- if the data couldn't be read

 procedure Write(fid : AFileID; data : AFileElement);
 -- write one data item to the file. seqio_error is raised
 -- if the data couldn't be written

end SeqIO;

package body SeqIO is
pragma optimize(space);

 -- Import C file handling functions
 type mode_t is new integer; -- C mode_t type
 type size_t is new integer; -- C size_t type
 subtype ssize_t is size_t; -- C ssize_t type

 -- The C file functions we'll be using
 -- (denoted with a C_ prefix for clarity)

 function C_Open(path : string; flags : integer; mode : mode_t)
 return AFileID;
 pragma import(C, C_Open, "open");

 function C_Close(file : AFileID) return integer;
 pragma import(C, C_Close, "close");

 procedure C_Read(size : out ssize_t;
 file : AFileID;
 data : in out AFileElement;
 count: size_t);
 pragma import(C, C_Read, "read");
 pragma import_valued_procedure(C_Read);
 -- Using an "in out" parameter is the easiest way to pass
 -- the address of the data element. Because Ada doesn't
 -- allow in out parameters in functions, we'll use gnat's
 -- valued procedure pragma to pretend read is a procedure

 procedure C_Write(size : out ssize_t;

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (17 of 47) [7/20/2001 11:37:14 AM]

 file : AFileID;
 data : in out AFileElement;
 count: size_t);
 pragma import(C, C_Write, "write");
 pragma import_valued_procedure(C_Write);
 -- Using an "in out" parameter is the easiest way to pass
 -- the address of the data element. Because Ada doesn't
 -- allow in out parameters in functions, we'll use gnat's
 -- valued procedure pragma to pretend write is a procedure
 -- Our Ada subprograms

function Open(path : string; read : boolean := true) return AFileID is
 -- open a new file for read or write
 flags : integer;
begin

 -- the flag values are listed in fcntlbits.h and man 2 open
 if read then
 flags := 0; -- read only, existing file
 else
 flags := 1000 + 100 + 1; -- write only, create or truncate
 end if;
 -- octal 640 => usr=read/write, group=read, others=no access

 return C_Open(path & ASCII.NUL, flags, 8#640#);
end Open;

procedure Close(fid : AFileID) is
 -- close a file
 Result : integer; -- we'll ignore it
begin
 Result := C_Close(fid);
end Close;

procedure Read(fid : AFileID; data : in out AFileElement) is
 -- read one data item from the file
 BytesRead : ssize_t;
begin
 -- 'size returns the size of the type in bits, so we
 -- divide by 8 for number of bytes to read
 C_Read(BytesRead, fid, data, AFileElement'size / 8);
 if BytesRead /= AFileElement'size / 8 then
 raise seqio_error;
 end if;
end Read;

procedure Write(fid : AFileID; data : AFileElement) is
 -- write one data item to the file
 BytesWritten : ssize_t;
 data2write : AFileElement;
begin
 -- can't use data directly because it's an "in" parameter
 data2write := data;
 -- 'size returns the size of the type in bits, so we
 -- divide by 8 for number of bytes to write

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (18 of 47) [7/20/2001 11:37:14 AM]

 C_Write(BytesWritten, fid, data2write, AFileElement'size / 8);
 if BytesWritten /= AFileElement'size / 8 then
 raise seqio_error;
 end if;
end Write;

end SeqIO;

You can test SeqIO with the following program:

with SeqIO;
with Ada.Text_IO;
use Ada.Text_IO;

procedure SeqIOtest is
-- program to test SeqIO

package IntIO is new SeqIO(integer);
-- IntIO is a SeqIO for integer numbers

 id : IntIO.AFileID;
 int2read : integer;

begin

 Put_Line("Testing SeqIO package...");
 New_Line;

 -- Part #1: Write numbers to a file

 Put_Line("Writing numbers 1 to 10 to a file...");
 id := IntIO.Open("int_list.txt", read => false);
 for i in 1..10 loop
 IntIO.Write(id, i)
 end loop;
 IntIO.Close(id);

 -- Part #2: Read the numbers back from the same file

 Put_Line("Reading numbers back...");
 id := IntIO.Open("int_list.txt", read => true);
 for i in 1..10 loop
 IntIO.Read(id, int2read);
 Put_Line("Number" & i'img & " =" & int2read'img);
 end loop;
 IntIO.Close(id);

exception when IntIO.seqio_error =>
 Put_Line("Oh, oh! seqio_error!");
end SeqIOtest;

Note: This should be rewritten because a failure to write all the bytes is not necessarily an error--Linux has a buffer limit on
how much it writes at one time--KB

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (19 of 47) [7/20/2001 11:37:15 AM]

Writing numbers 1 to 10 to a file...
Reading numbers back...
Number 1 = 1
Number 2 = 2
Number 3 = 3
Number 4 = 4
Number 5 = 5
Number 6 = 6
Number 7 = 7
Number 8 = 8
Number 9 = 9
Number 10 = 10

File Multiplexing Operations

These kernel calls help programs that have to monitor several file descriptors at once for activity.

procedure select(result : out integer; topplusone : integer; readset : in out fdset;
writeset : in out fd_set; errorset : in out fd_set; timeout : in out timeval);
pragma import(C, select);
pragma import_valued_procedure(select);
Select checks one or more file descriptors to see if they are ready for reading, writing, or if there is an error. It will wait up to
timeout microseconds before timing out (0 wll return immediately). topplusone is the numerically highest file descriptor to
wait on, plue one. The result is 0 for a timeout, -1 for failure, or the number of file discriptors that are ready and the file
discriptor sets indicate which ones.
Unlike most UNIX's, Linux leaves the time remaining in the timeout record so that you can use select in a timing loop--to
repeatedly select file descriptors until the timeout counts down to zero. Other UNIX's leave the timeout unchanged.

type pollfd is record
 fd : integer;
 events : short_integer;
 revents : short_integer;
end record;

Poll Events
POLLIN := 16#1#;
POLLPRI := 16#2#;
POLLOUT := 16#4#;
POLLERR := 16#8#;
POLLHUP := 16#10#;
POLLNVAL := 16#20#;

These are defined in asm/poll.h.

procedure poll(result : out integer; ufds : in out pollfd; nfds : integer;
timeout_milliseconds : integer);
pragma import(C, poll);
pragma import_valued_procedure(poll);
The name of this kernel call is misleading: poll is a form of select(). timeout_milliseconds is a timeout in milliseconds, -1 for
no timeout. ufds is an array of pollfd records for files that poll() should monitor. Poll returns the number of pollfd array
elements that have something to report, 0 in a timeout, or -1 for an error. Each bit in events, when set, indicates a particular
event that the program is waiting for. Revents represents the events which occurred.

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (20 of 47) [7/20/2001 11:37:15 AM]

16.9 Directories

Directories are "folders" containing collections of files and other directories. In Linux, a directory is a special kind of file.
Some of the standard file operations work on directories and some other file operations are specific to directories.

The top-most directory is /, or the root directory. All files on a system are located under the root directory. Disk drives do not
have separate designations as in MS-DOS.

A period (.) represents the current directory, and a double period (..) represents the parent directory of the current directory. All
directories have . and .. defined. The root directory, of course, doesn't have a parent: it's .. entry points to itself.

Many of the kernel calls and standard C library functions dealing with directories use functions that return C pointers. As
mentioned in the bindings section, the only way to convert these kind of functions to Ada is by declaring the C pointers as a
System.Address type and changing the C pointers to Ada access types using the Address_To_Access_Conversions package.

procedure getcwd(buffer : out string; maxsize : size_t);
pragma import(C, getcwd);
Returns the name of the current working directory as a C string in buffer. Maxsize is the size of the buffer. All symbolic links
are dereferenced.

function get_current_dir_name return System.Address;
pragma import(C, get_current_dir_name);
Like getcwd, returns the current working directory name as a pointer to a C string. Unlike getcwd, symbolic links aren't
dereferenced. Use this function to show the current directory to a user.

procedure chdir(path : string);
pragma import(C, chdir);
Change the current working directory to the specified path.
Example: chdir("/home/bob/stuff" & ASCII.NUL);

function mkdir(path : string; mode : size_t) return integer;
pragma import(C, mkdir);
Create a new directory with permission bits as specified by mode.

function rmdir(path : string) return integer;
pragma import(C, rmdir);
Remove a directory.

function opendir(path : string) return System.Address; pragma import(C, opendir);
Open a directory in order to read its contents with readdir.

function closedir(info : System.Address) return integer;
pragma import(C, closedir);
Close a directory openned with opendir. Info is the C pointer returned by opendir.

function readdir(info : System.Address) return DirEntCPtr;
pragma import(C, readdir);
Read the next entry in the directory. A null C pointer is returned if there is no more entries. Info is the C pointer returned by
opendir.

function rewinddir(info : System.Address) return integer;
pragma import(C, rewinddir);
Begin reading from the top of the directory. Info is the C pointer returned by opendir.

function telldir(info : System.Address) return integer;
pragma import(C, telldir);
Mark the current position in the directory, to return to it later using the seekdir function. Info is the C pointer returned by

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (21 of 47) [7/20/2001 11:37:15 AM]

opendir.

function seekdir(info : System.Address; position : integer) return integer;
pragma import(C, seekdir);
Return to a position in the directory marked by telldir. Info is the C pointer returned by opendir.

function chroot(newroot : string) return int;
pragma import(C, chroot);
Make Linux think that a different directory is the root directory (for your program). This is used by programs such as FTP
servers to prevent uses from trying to access files outside of a designated FTP directory.
Example: Result := chroot("/home/server/stay-in-this-directory" & ASCII.NUL);

There is also a scandir function that reads a directory and sorts the entries, but this is difficult to use directly from Ada.

The following program demonstrates some of the directory subprograms in Linux.

with Ada.Text_IO, Interfaces.C, Ada.Strings.Fixed;
use Ada.Text_IO, Interfaces.C, Ada.Strings.Fixed;
with System.Address_To_Access_Conversions;

procedure direct is

 -- Working with directories

 subtype size_t is Interfaces.C.size_t;
 -- renaming size_t to save some typing

 package CStringPtrs is new
 System.Address_To_Access_Conversions(string);
 use CStringPtrs;
-- Convert between C and Ada pointers to a string

 subtype DirInfoCPtr is System.Address;
 subtype DirEntCPtr is System.Address;
 -- two C pointers (System.Address types), renamed for
 -- clarity below

 type DirEnt is record
 inode : long_integer; -- inode number
 offset : integer; -- system dependent
 offset2: unsigned_char; -- system dependent
 reclen : unsigned_short; -- system dependent
 name : string(1..257); -- name of file
 end record;
 pragma pack(dirent);
 -- dirent is defined in /usr/src/linux../linux/dirent.h

 package DirEntPtrs is new
 System.Address_To_Access_Conversions(DirEnt);
 use DirEntPtrs;
 -- Convert between C and Ada pointers to a directory entry

 procedure getcwd(buffer : out string; maxsize : size_t);
 pragma import(C, getcwd);

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (22 of 47) [7/20/2001 11:37:15 AM]

 function get_current_dir_name return System.Address;
 pragma import(C, get_current_dir_name);

 function mkdir(path : string; mode : size_t) return integer;
 pragma import(C, mkdir);

 function rmdir(path : string) return integer;
 pragma import(C, rmdir);

 function opendir(path : string) return DirInfoCPtr;
 pragma import(C, opendir);

 function closedir(info : DirInfoCPtr) return integer;
 pragma import(C, closedir);

 function readdir(info : DirInfoCPtr) return DirEntCPtr;
 pragma import(C, readdir);

 function rewinddir(info : DirInfoCPtr) return integer;
 pragma import(C, rewinddir);

 function telldir(info : DirInfoCPtr) return integer;
 pragma import(C, telldir);

 function seekdir(info : DirInfoCPtr; position : integer) return integer;
 pragma import(C, seekdir);

 -- scandir hard to use from Ada

 s: string(1..80);
 csop: CStringPtrs.Object_Pointer;
 Result: integer;
 DirInfo: DirInfoCPtr;
 direntop : DirEntPtrs.Object_Pointer;
 Position : integer;
 LastPosition : integer;

begin

 Put_Line("This program demonstrates Linux's directory functions");
 New_Line;

 -- getcwd example

 getcwd(s, s'length);
 Put("The current path (simplified) is ");
 Put_Line(Head(s, Index(s, ASCII.NUL & "")-1));

 -- Index for fixed strings takes a string as the second parameter
 -- We'll make a string containing an ASCII.NUL with &

 -- get_current_dir_name example

 csop := To_Pointer(get_current_dir_name);

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (23 of 47) [7/20/2001 11:37:15 AM]

 Put("The current path is ");
 Put_Line(Head(csop.all, Index(csop.all, ASCII.NUL & "")-1));

 -- mkdir example: create a directory named "temp"

 Result := mkdir("temp" & ASCII.NUL, 755);
 if Result /= 0 then
 Put_Line("mkdir error");
 else
 Put_Line("temp directory created");
 end if;

 -- rmdir example: remove the directory we just made

 Result := rmdir("temp" & ASCII.NUL);
 if Result /= 0 then
 Put_Line("rmdir error");
 else
 Put_Line("temp directory removed");
 end if;
 New_Line;

 -- directory reading

 DirInfo := OpenDir("/home/ken/ada" & ASCII.NUL);
 Put_Line("Directory /home/ken/ada contains these files:");
 loop
 direntop := To_Pointer(ReadDir(DirInfo));
 exit when direntop = null;

 -- TellDir returns the position in the directory
 -- LastPosition will hold the position of the last entry read

 LastPosition := Position;
 Position := TellDir(DirInfo);
 Put_Line(Head(Direntop.name, Index(Direntop.name, ASCII.NUL & "")-1));
 end loop;
 New_Line;

 -- SeekDir: move to last position in directory
 Result := SeekDir(DirInfo, LastPosition);
 Put("The last position is ");
 direntop := To_Pointer(ReadDir(DirInfo));
 Put_Line(Head(Direntop.name, Index(Direntop.name, ASCII.NUL & "")-1));
 New_Line;

 -- RewindDir: Start reading again

 Result := RewindDir(DirInfo);
 Put("The first position is ");
 direntop := To_Pointer(ReadDir(DirInfo));
 Put_Line(Head(Direntop.name, Index(Direntop.name, ASCII.NUL & "")-1));
 New_Line;

 -- close the directory

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (24 of 47) [7/20/2001 11:37:15 AM]

 Result := CloseDir(DirInfo);
end direct;

This program demonstrates Linux's directory functions
The current path (simplified) is /home/ken/ada/trials
The current path is /home/ken/ada/trial
temp directory created
temp directory removed
Directory /home/ken/ada contains these files:
.
..
temp
all.zip
README
posix.zip
sm
posix
cgi
tia
x
rcsinfo.txt
text_only
original
lintel
texttools
smbeta2.zip
trials
plugins
texttools.zip

The last position is texttools.zip

The first position is .

16.10 Stdio Files

C has a library called stdio, or STanDard IO, which contains standard operations for text files. Loosely, stdio is the C
equivalent of Ada's Text_IO package.The standard gnat package cstreams(?) provides a thin binding to many of the stdio
functions. In this section, we'll looking at using stdio directly.

Some of the stdio functions can't be used from Ada because of differences in the languages. For example, printf, the standard
command for writing to the screen, has a variable number of parameters. Because there's no way to express a variable number
of parameters in Ada, printf can't be imported into Ada.

with System;
type AStdioFileID is new System.Address;

function fputc(c : integer; fid : AStdioFileID) return integer;
pragma import(C, fputc, "fputc");
Part of standard C library. Writes one charcter to a file.

function fputs(s : string; fid : AStdioFileID) return integer;

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (25 of 47) [7/20/2001 11:37:15 AM]

pragma import(C, fputs, "fputs");
Writes a C string to a file.

function ferror(fid : AStdioFileID) return integer;
pragma import(C, ferror);
Return error from last file operation, if any.

procedure clearerr(fid : AStdioFileID);
pragma import(C, clearerr);
Clear the error and end of file information.

function feof(fid : AStdioFileID) return integer;
pragma import(C, feof);
Return non-zero if you are at the end of the file.

function fileno(fid : AStdioFileID) return integer;
pragma import(C, fileno);
Return the file number for use with Linux file kernel calls.

function flock(fd, operation : integer) return integer;
pragma import(C, flock);
Locks or unlocks a file (or a portion of a file).
This is for compatibility with other UNIXes--use fcntl instead.

Operation: LOCK_SH (1) - shared lock
 LOCK_EX (2) - exclusive lock
 LOCK_NB (4) - no block flag (may be added to others)
 LOCK_UN (8) - unlock

16.11 Stdio Pipes

Pipes are the equivalent of shell command pipes formed by the '|' character. You can open a pipe to or from a shell command,
depending if the pipe is for writing or reading respectively.

These single direction pipe commands are a part of the standard C library.

function popen(command, mode : string) return AStdioFileID;
pragma import(C, popen, "popen");
Opens a pipe to a Linux shell command.Mode can be "w" for write or "r" for read.

procedure pclose(result : out integer; fid : AStdioFileID);
pragma import(C, pclose, "pclose");
pragma import_valued_procedure(pclose);
Closes a pipe.

The following program prints to a printer by opening a pipe to the lpr command.

with Ada.Text_IO, System, SeqIO;
use Ada.Text_IO;

procedure printer2 is
 -- a program for simple printing

 ---> Pipe Stuff -------------------------------------

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (26 of 47) [7/20/2001 11:37:15 AM]

 type AStdioFileID is new System.Address;
 -- a pointer to a C standard IO (stdio) file id

 function popen(command, mode : string) return AStdioFileID;
 pragma import(C, popen, "popen");
 -- opens a pipe to command

 procedure pclose(result : out integer; fid : AStdioFileID);
 pragma import(C, pclose, "pclose");
 pragma import_valued_procedure(pclose);
 -- closes a pipe

 function fputc(c : integer; fid : AStdioFileID) return integer;
 pragma import(C, fputc, "fputc");
 -- part of standard C library.Writes one charctera to a file.

 function fputs(s : string; fid : AStdioFileID) return integer;
 pragma import(C, fputs, "fputs");
 -- part of standard C library.Writes a string to a file.

 PipeID : AStdioFileID; -- File ID for lpr pipe

 procedure BeginPrinting is
 -- open a pipe to lpr
 begin
 Put_Line("Opening pipe to lpr ...");
 PipeID := popen("lpr" & ASCII.NUL, "w"& ASCII.NUL);
 end BeginPrinting;

 procedure EndPrinting is
 -- close the pipe.Result doesn't matter.
 -- Linux normally will not eject a page when
 -- printing is done, so we'll use a form feed.
 Result : integer;
 begin
 Result := fputc(character'pos(ASCII.FF), PipeID);
 pclose(Result, PipeID);
 end EndPrinting;

 --> Input/Output Stuff --------------------------------

 procedure Print(s : string) is
 -- print a string to the pipe, with a carriage
 -- return and line feed.
 Result : integer;
 begin
 Result := fputs(s & ASCII.CR & ASCII.LF & ASCII.NUL, PipeID);
 end Print;

begin

 -- Open the pipe to the lpr command

Put_Line("Starting to print..."); BeginPrinting; Print("Sales Report"); Print("------------"); Print(""); Print("Sales were
good"); -- Now, close the pipe. EndPrinting; Put_Line("Program done...check the printer"); end printer2;

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (27 of 47) [7/20/2001 11:37:15 AM]

16.12 Memory Management

The amount of virtual memory for a process depends on the processor. For Intel x86 processors, your program and data must
be 3 Gigabytes or less. (An additional 1 Gigabyte per process is reserved for the kernel, accounting for the full 32-bits of
addressing space.)

[not finished--KB]

16.13 The Virtual Consoles

The virtual consoles are controlled by the ioctl() function.

[not finished--KB]

The following example catches SIGWINCH signals and reports the new window size.

with Ada.Interrupts.Names;
useAda.Interrupts;

package sigwinch is

protected SignalHandler is

 procedure SizeChangeHandler;
 pragma Attach_Handler(SizeChangeHandler, Names.SIGWINCH);
 -- this handler will catch SIGWINCH signals, a window size
 -- change

end SignalHandler;

end sigwinch;

with Ada.Text_IO;
useAda.Text_IO;

package body sigwinch is

 -- imported C functions

 TIOGWINSIZ : constant integer := 16#5413#;
 -- get window size ioctl request

 type WindowSizeInfo is record
 row, column, unused1, unused2 : short_integer;
 end record;
 pragma pack(WindowSizeInfo);

 -- the window size information returned by ioctl

 type AFileID is new integer;
 -- a file descriptor, a new integer for safety

 procedure ioctl_winsz(Result : out integer; fid : AFileID; request : integer;
 info : in out WindowSizeInfo);
 pragma import(C, ioctl_winsz, "ioctl");

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (28 of 47) [7/20/2001 11:37:15 AM]

 pragma import_valued_procedure(ioctl_winsz, "ioctl");
 -- get the size of the window

 function open(path : string; flags : integer) return AFileID;
 pragma import(C, open, "open");
 -- open a file (in this case, the tty)

 procedure close(fid : AFileID);
 pragma import(C, close, "close");
 -- close a file

 -- The Signal Handler

 protected body SignalHandler is

 procedure SizeChangeHandler is
 -- handle a window size change, SIGWINCH

 fid: AFileID;-- open's file ID

 Result : integer; -- function result of ioctl

 Info: WindowSizeInfo; -- window size returned by ioctl

 begin

 fid := Open("/dev/tty" & ASCII.NUL, 0);

 ioctl_winsz(Result, fid, TIOGWINSIZ, Info);

 if Result = 0 then
 Put_Line("Window is now " & info.column'img & " x " & info.row'img);
 else
 Put_Line("ioctl reports an error");
 end if;

 Close(fid);

 end SizeChangeHandler;

 end SignalHandler;

end sigwinch;

with Ada.Text_IO, sigwinch;

useAda.Text_IO, sigwinch;

procedure winch is
begin
 Put_Line("This program catches SIGWINCH signals");
 New_Line;

 Put_Line("It will stop running is 60 seconds. If you are using");

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (29 of 47) [7/20/2001 11:37:15 AM]

 Put_Line("X Windows, move the window to send signals.");
 New_Line;

 delay 60.0; -- run for 60 seconds

end winch;

16.14. Making Database Queries

16.14.1 mySQL

mySQL (pronounced "my ess que ell") is a free, high-performance database from T.c.X. It's available for a number of
platform, including Linux. The mySQL home page is http://www.mysql.org.

mySQL comes with a C library called "mysqlclient". If an Ada program links in this library with "-lmysqlclient", it can access
mySQL databases. You issue commands to the database called queries using the database language SQL (pronounced
"sequel").

Connecting to a mySQL database is a six step process:

Open a new connect using mysql_init.1.

Login using mysql_real_connect.2.

Perform database queries with mysql_query or mysql_real_query. real_query allows binary data in the query.3.

Retrieve the results using mysql_store_result or mysql_use_result.4.

Free any memory using mysql_free_result.5.

Close your connection with mysql_close.6.

Usually, a null point or non-zero integer result indicates an error. mysql_errono returns the error.

Complete documentation is available from the mySQL web site.

16.14.2 PostgreSQL

Not finished--KB

16.15 Dynamic Loading

Not finished--KB

16.16 A Word on Device Drivers

The details of writing kernel device drivers in Ada is beyond the scope of this book. However, you'll have to use "GNORT"
(pragma no_run_time).

with Ada.Text_IO;
use Ada.Text_IO;

procedure nrt2 is
 -- Simple Program
begin

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (30 of 47) [7/20/2001 11:37:16 AM]

 put_line("Hello World");
end nrt2;

pragma no_run_time;

procedure nrt is
 -- Same as nrt2 but using no run time

 type file_id is new integer;

 -- No Ada.Text_IO possible, so we'll write our own
 -- that talks directly to the Linux kernel

 procedure write_char(amount_written : out long_integer;
 id : file_id;
 buffer : in out character;
 amount2write : long_integer);
 pragma import(C, write_char, "write");
 pragma import_valued_procedure(write_char, "write");

 procedure put(c : character) is
 result : long_integer;
 buf : character := c;
 begin
 write_char(result, 1, buf, 1);
 end put;

 procedure new_line is
 begin
 put(character'val(10));
 end new_line;

 procedure put_line(s : string) is
 pragma suppress(index_check, s);
 -- s(i) won't throw a range error, but Gnat checks for it
 -- by default. Exceptions are a part of the run time.
 begin
 for i in s'range loop
 put(s(i));
 end loop;
 new_line;
 end put_line;

begin
 put_line("Hello World");
end nrt;

16.17 Linux Sound

The Linux sound capabilities, called OSS, were developed by 4front technologies.You can find more advanced documentation
at their website http://www.opensound.com. This section describes only the basic functions.

The newest Linux sound standard is ALSA.

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (31 of 47) [7/20/2001 11:37:16 AM]

http://www.opensound.com/

Most distributions have OSS in the kernel by default, but there's no reason that OSS must be present--it can always be turned
off for computers without a sound card.

16.17.1 Detecting a Sound Card

Open the file /dev/sndstatus. If there is no error, the computer has a sound card.

16.17.2 Playing Sound Samples

There are no C libraries or kernel calls to play sound samples. Instead, there is a device file called /dev/dsp which plays sound
samples in the .au sound format.

The .au sound format consists of a header describing the sound followed by the actual sound data. The header looks like this:

type AAUHeader is record
 Magic : integer; -- a unique number denoting a .au file,
 -- as used with the magic file, SND_MAGIC
 -- Hex 646E732E (bytes 2E, 73, 6E, 64)
 dataLocation : integer; -- offset or pointer to the sound data
 dataSize: integer; -- number of bytes of sound data
 dataFormat: integer; -- the data format code
 samplingRate : integer; -- the sampling rate
 channelCount : integer; -- the number of channels
 info1, info2, info3, info4 : character;-- name of sound
end record;

dataLocation is an offset to the first byte of the sound data. If there's no sound name, it's 28, the size of the header. It can a
pointer to the data, depending on the dataFormat code, but that doesn't apply if you're playing a .au file.

dataSize is the size of the sound data in bytes, not including the header.

dataFormat describes how the sound data is to be interpreted. Here is a table of some common values.

Value Code Format

0 SND_FORMAT_UNSPECIFIED unspecified format

1 SND_FORMAT_MULAW_8 8-bit mu-law samples

2 SND_FORMAT_LINEAR_8 8-bit linear samples

3 SND_FORMAT_LINEAR_16 16-bit linear samples

4 SND_FORMAT_LINEAR_24 24-bit linear samples

5 SND_FORMAT_LINEAR_32 32-bit linear samples

6 SND_FORMAT_FLOAT floating-point samples

7 SND_FORMAT_DOUBLE double-precision float samples

8 SND_FORMAT_INDIRECT fragmented sampled data

10 SND_FORMAT_DSP_CORE DSP program

11 SND_FORMAT_DSP_DATA_8 8-bit fixed-point samples

12 SND_FORMAT_DSP_DATA_16 16-bit fixed-point samples

13 SND_FORMAT_DSP_DATA_24 24-bit fixed-point samples

14 SND_FORMAT_DSP_DATA_32 32-bit fixed-point samples

16 SND_FORMAT_DISPLAY non-audio display data

18 SND_FORMAT_EMPHASIZED 16-bit linear with emphasis

19 SND_FORMAT_COMPRESSED 16-bit linear with compression

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (32 of 47) [7/20/2001 11:37:16 AM]

20 SND_FORMAT_COMPRESSED_EMPHASIZED Combo of the two above

21 SND_FORMAT_DSP_COMMANDS Music Kit DSP commands

SamplingRate is the playback rate in hertz.CD quality samples are 44100.

channelCount is 1 for mono, 2 for stereo.

The info characters are a C null-terminated string giving a name for the sound. It's always at least 4 characters long, even if
unused.

In order to play a sound, treat /dev/dsp as if it were a device attached to your computer for playing .au sounds.Write a program
to open /dev/dsp for writing and write the .au sound to it.

Playing sounds is a natural candidate for multithreading because you don't want your entire program to stop while a sound is
being played.

The following program uses the seqio generic package we developed above to play an .au sound through /dev/dsp.

with seqio;
with Ada.Text_IO;
use Ada.Text_IO;

procedure playsnd is

 -- simple program to play an .au sound file

 package byteio is new seqio(short_short_integer);
 -- sequential files of bytes

 au_filename : constant string := "beep.au";
 -- sound file to play. supply the name of the .au file to play

 au_file: byteio.AFileID; -- the sound file
 dev_dsp: byteio.AFileID; -- /dev/dsp device

 soundbyte : short_short_integer;

begin

 Put_Line("Playing " & au_filename & "...");

 -- open the files

 au_file := byteio.Open(au_filename, read => true);
 dev_dsp := byteio.Open("/dev/dsp", read => false);

 -- read until we run out of bytes, send all bytes to
 -- /dev/dsp.The end of file will cause a seqio_error

 begin
 -- nested block to catch the exception

 loop
 byteio.Read(au_file, soundbyte);
 byteio.Write(dev_dsp, soundbyte);
 end loop;

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (33 of 47) [7/20/2001 11:37:16 AM]

 exception when byteio.seqio_error =>
 null; -- just leave block
 end;

 -- close files

 byteio.Close(au_file);
 byteio.Close(dev_dsp);

 Put_Line("All done");

exception when others =>
 Put_Line("Oh, oh!An exception occurred!");
 byteio.Close(au_file);
 byteio.Close(dev_dsp);
 raise;

end playsnd;

16.17.3 Using the Mixer

You control the mixer chip, if your sound card has one, by using the ioctl() kernel call. If there is no mixer, the ioctl() function
returns -1. Mixer Functions Table

SOUND_MIXER_NRDEVICES 17 Number of mixer functions on this computer

SOUND_MIXER_VOLUME 0 The master volume setting

SOUND_MIXER_BASS 1 Bass setting

SOUND_MIXER_TREBLE 2 Treble setting

SOUND_MIXER_SYNTH 3 FM synthesizer volume

SOUND_MIXER_PCM 4 /dev/dsp volume

SOUND_MIXER_SPEAKER 5 internal speaker volume, if attached to sound card

SOUND_MIXER_LINE 6 "line in" jack volume

SOUND_MIXER_MIC 7 microphone jack volume

SOUND_MIXER_CD 8 CD input volume

SOUND_MIXER_IMIX 9 Recording monitor volume

SOUND_MIXER_ALTPCM 10 volume of alternate codec, on some cards

SOUND_MIXER_RECLEV 11 Recording level volume

SOUND_MIXER_IGAIN 12 Input gain

SOUND_MIXER_OGAIN 13 Output gain

SOUND_MIXER_LINE1 14 Input source 1 (aux1)

SOUND_MIXER_LINE2 15 Input source 2 (aux2)

SOUND_MIXER_LINE3 16 Input source 3 (line)

Reading or writing values have a special bit set [Ken check using soundcard.h].

Ioctl calls return an integer value. Volume levels can be 0 to 100, but many sound cards do not offer 100 levels of volume.
/dev/mixer will set the volume to setting nearest to your requested volume.

[Not complete--KB]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (34 of 47) [7/20/2001 11:37:16 AM]

Sound_mixer_volume : constant integer := 0;
Sound_Mixer_Read : constant integer := ?;
Sound_Mixer_Write : constant integer := ?;

oldVolume : integer;

ioctlResult := Ioctl(mixer_file_id, sound_mixer_read + sound_mixer_volume, oldVolume
);

-- master volume now in oldVolume

if ioctlResult = -1 then
 Put_Line("No mixer installed ");
end if;

newVolume := 75;

ioctlResult := ioctl(mixer_file_id, sound_mixer_write + sound_mixer_volume,
newVolume);

-- master volume is 75%

16.17.4 Recording Sound Samples

Recording sounds works is the reverse process of playing sounds. Open /dev/dsp for reading, and it returns sound data.
However, before you can begin recording from /dev/dsp, you need to describe how you want the recording done. You need to
select the input source, sample format (sometimes called as number of bits), number of channels (mono/stereo) , and the
sampling rate (speed). These are set by using the ioctl function on the /dev/dsp file.

To select the input source, you'll need to use /dev/mixer.

[Not finished--KB

Sound_Mixer_Recsrc : constant integer := ?;
Sound_Mixer_Read : constant integer := ?;
Sound_Mixer_Write : constant integer := ?;

newInputSource := Sound_Mixer_Mic;

ioctlResult := ioctl(mixer_file_id, sound_mixer_write + sound_mixer_recsrc,
newInputSource
);

Common formats

/* Audio data formats (Note! U8=8 and S16_LE=16 for compatibility) */

AFMT_QUERY 16#00000000# Returns current format

AFMT_IMA_ADPCM 16#00000004# ADPCM compressed data

AFMT_U8 16#00000008# Unsigned bytes

AFMT_S16_LE 16#00000010# Little endian signed 16 bits

AFMT_S16_BE 16#00000020# Big endian signed 16 bits

AFMT_S8 16#00000040# Signed bytes

AFMT_U16_LE 16#00000080# Little endian U16 bits

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (35 of 47) [7/20/2001 11:37:16 AM]

AFMT_U16_BE 16#00000100# Big endian U16 bits

AFMT_MPEG 16#00000200# MPEG (2) audio

sndctl_dsp_setfmt : constant integer := ?;

newFormat : integer;

newFormat := 16#0000010#;

ioctlResult := ioctl(dsp_id, sndctl_dsp_setfmt, newFormat);
-- recording format now 16 bit signed little endian

if newFormat /= 16#00000010 then
 Put_Line("Sound card doesn't support recording format");
end if;

Selecting mono or stereo recording is a matter of 0 or 1 respectively.

sndctl_dsp_stereo : constant integer := ?;

stereo : integer;

stereo := 1;

...

ioctlResult := ioctl(dsp_id, sndctl_dsp_stereo, stereo);
-- recording format now stereo

if stereo /= 1 then
 Put_Line("Sound card doesn't support stereo");
end if;

Finally, select a sampling rate.

sndctl_dsp_speed : constant integer := ?;

newSpeed : integer;

newSpeed:= 44100;

ioctlResult := ioctl(dsp_id, sndctl_dsp_speed, newFormat);
-- recording now CD quality sampling speed

if newSpeed /= 44100 then
 Put_Line("Sound card doesn't support sampling speed");
end if;

Now read /dev/dsp for the raw sound data. If you want to save the sound as an .au file, you'll have to create the .au header
information to attach to the sound data.

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (36 of 47) [7/20/2001 11:37:16 AM]

16.18 Audio CDs

16.19 Kernel Pipes

16.20 Shared Memory

Shared Memory Flags

IPC_CREAT Create new shared memory block

IPC_EXCL plus read, write and execute bits.

IPC_PRIVATE indicates no key is supplied.

function shmget(key : key_t; bytes : integer; shmflag : integer) return integer;
pragma import(C, shmget);
Key is an id you supply to identify the memory (or IPC_PRIVATE for no key). bytes is the minimum amount of memory that
you need. shmflag indicates options for this call. Returns -1 on error, or an id for the memory.
Example: shmid := shmget(mykey, 4096, IPC_CREAT+IPC_EXCL+8#0660#);

function shmat(result : out system.address; shmid : integer; shmaddr :
system.address; shmflag : integer) return system.address;
pragma import(C, shmat);
Shared memory attach. Makes shared memory accessible by returning a pointer to it. shmid is the id returned by shmget. if
shmaddr isn't zero, the kernel will the address you give instead of chosing one itself. shmflags are additional options. Returns
the address of the shared memory, or an address of -1 for an error.
Example: shmat(ShmCPtr, myID, To_Address(null), 0);
ShmPtr := To_Address(ShmCPtr);

SHM_RDONLY - this memory is read-only (that is, as if it was constant).
SHM_RND - allows your shmaddr to be truncated to a virtual memory page boundary.

function shmdt(shmaddr : system.address) return integer;
pragma import(C, shmdt);
Shared memory detach. Removes the association of the shared memory to the pointer. Returns 0 if the memory was detached,
-1 for failure.
Example: Result := shmdt(To_Address(ShmPtr));

function shmctl(shmid : integer; cmd : integer; info : system.address) return
integer;
pragma import(C, shmctl);
Performs miscellaneous shared memory functions, including deallocating shared memory allocated with shmget. Returns 0 if
the function was successful, or -1 for a failure.
Example: Result := shmctl(myID, IPC_RMID, To_Address(null));

IPC_RMID - deallocate shared memory

16.21 Message Queues

16.22 Semaphores

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (37 of 47) [7/20/2001 11:37:16 AM]

16.23 Sockets

Send (sentto and sendmsg) are supersets of write. When you use write on a socket, it's actually implemented using the send
family.

Write will not work on UDP because it's connectionless. Use send to specify an address everytime.

Protocol Families
PF_INET Internet (IPv4)
PF_INET6 Internet (IPv6)
PF_IPX Novell
PF_NETLINK Kernel user interface device
PF_X25 ITU-T X.25 / ISO-8208
PF_AX25 Amateur radio AX.25
PF_ATMPVC Access to raw ATM PVCs
PF_APPLETALK Appletalk
PF_PACKET Low-level packet interface

Socket Types
SOCK_STREAM Two-way reliable connection, with possible out-of-band transmission (eg. TCP/IP)
SOCK_DGRAM (Datagram) Connectionless, unreliable messages (eg. UDP/IP)
SOCK_SEQPACKET Sequenced, reliable datagram connection.
SOCK_RAQ Raw network protocol access.
SOCK_RDM Reliable, unordered datagrams.

function socket(domain, soctype, protocol : integer) return integer;
pragma import(C, socket);
Creates a network socket for protocol family domain, connection type soctype, and a protocol (0 uses the default protocol).
Returns -1 on an error, or else a kernel file descriptor for the socket.
Example: mySocket := socket(PF_INET, SOCK_STREAM, 0); -- open a standard Internet
socket

procedure connect(result : out integer; socket : integer; addr : in out socketaddr;
addrlen : integer);
pragma import(C, connect);
pragma import_valued_procedure(connect);
Connects to a server on the network. socket is the socket to use; addr is the machine and service to connect to; addrlen is the
length of the addr record. Returns -1 on an error, 0 for success.
Example: connect(result, webserver, webserver'size/8); -- connect to the web server
described by the webserver record

function shutdown(socket, how : integer) return integer;
pragma import(C, shutdown);
Shuts down one or both directions of a socket. This is used, for example, by web browsers to let the server know there are no
more HTTP requests being sent. Returns 0 on sucess, -1 on failure.
Example: result := shutdown(mysocket, 1);

procedure bind(result : out integer; myaddr : in out sockaddr, addrlen : integer);
pragma import(C, bind);
pragma import_valued_procedure(bind);
Registers your server on a particular port number with the Linux kernel. addrlen is the length of myaddr. Returns 0 on success,
-1 on failure.
Example: bind(result, myservice, myservice'size/8);

function listen(socket : integer; backlog : integer) return integer;
pragma import(C, listen); pragma import_valued_procedure(listen);
Prepares a socket for your server to listen for incoming connections. Backlog is the maximum number of established

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (38 of 47) [7/20/2001 11:37:17 AM]

connections that can be queued. Returns 0 on success, -1 on failure.
Example: result := listen(mysocket, 10);

procedure accept(result : out integer; socket : integer; clientaddr : in out
sockaddr; addrlen : in out addrlen);
pragma import(C, accept);
pragma import_valued_procuedre(accept);
Returns the next connection to your server. If there are no connections, it waits for a new connection (unless you disabled
blocking on the socket.) myaddr is the address of the incoming connection, and addrlen is the size of the address is bytes.
addrlen should be initialized to the size of your sockaddr record. You must use listen before accept. Returns -1 on failure, or a
new socket with the connection on success. You have to close the new socket when you are finished handling the connection.
Example: len := clientaddr'size/8;
 accept(newsocket, listensocket, clientaddr, len);

This section ends with a demonstration of how to get a web page off the Internet.

with Ada.Text_IO, Interfaces.C, System.Address_To_Access_Conversions;
use Ada.Text_IO, Interfaces.C;

procedure websocket is

 -- A program to fetch a web page from a server

 -- Socket related definitions
 --
 -- These are the kernel calls and types we need to create
 -- and use a basic Internet socket.

 type aSocketFD is new int;

 -- a socket file descriptor is an integer -- man socket
 -- make this a new integer for strong typing purposes

 type aProtocolFamily is new unsigned_short;
 AF_INET : constant aProtocolFamily := 2;

 -- Internet protocol PF_Net defined as 2 in
 -- /usr/src/linux/include/linux/socket.h
 -- Make this a new integer for strong typing purposes

 type aSocketType is new int;
 SOCK_STREAM : constant aSocketType := 1;

 -- this is for a steady connection. Defined as 1 in
 -- /usr/src/linux/include/linux/socket.h
 -- Make this a new integer for strong typing purposes

 type aNetProtocol is new int;
 IPPROTO_TCP : constant aNetProtocol := 6;

 -- The number of the TCP/IP protocol
 -- TCP protocol defined as 6 in /etc/protocols
 -- See man 5 protocols
 -- Make this a new integer for strong typing purposes

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (39 of 47) [7/20/2001 11:37:17 AM]

 type aNetDomain is new integer;
 PF_INET : constant aNetDomain := 2;

 -- The number of the Internet domain
 -- Make this a new integer for strong typing purposes

 type aInAddr is record
 addr : unsigned := 0;
 end record;
 for aInAddr'size use 96;
 -- A sockaddr_in record is defined as 16 bytes long (or 96 bits)
 -- Request Ada to use 16 bytes to represent this record

 type aSocketAddr is record
 family : aProtocolFamily := AF_INET; -- protocol (AF_INET for TCP/IP)
 port : unsigned_short := 0; -- the port number (eg 80 for web)
 ip : aInAddr; -- IP number
 end record;
 -- an Internet socket address
 -- defined in /usr/src/linux/include/linux/socket.h
 -- and /usr/src/linux/include/linux/in.h

 function socket(domain : aNetDomain;
 stype : aSocketType;
 protocol : aNetProtocol)
 return aSocketFD;
 pragma import(C, socket);
 -- initialize a communication socket. -1 if error

 procedure bind(result : out int; sockfd : aSocketFD;
 sa : in out aSocketAddr; addrlen : int);
 pragma import(C, bind);
 pragma import_valued_procedure(bind);
 -- give socket a name. 0 if successful

 procedure Connect(result : out int; socket : aSocketFD;
 sa : in out aSocketAddr; addrlen : int);
 pragma import(C, connect);
 pragma import_valued_procedure(connect);
 -- connect to a (Internet) server. 0 if successful

 procedure Close(fd : aSocketFD);
 pragma import(C, close);
 -- close the socket, discard the integer result

 procedure Read(result : out integer; from : aSocketFD; buffer : in out string;
 buffersize : integer);
 pragma import(C, read);
 pragma import_valued_procedure(read);
 -- read from a socket

 procedure Write(result : out integer; from : aSocketFD;
 buffer : system.address; buffersize : integer);
 pragma import(C, write);

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (40 of 47) [7/20/2001 11:37:17 AM]

 pragma import_valued_procedure(write);
 -- write to a socket

 package addrListPtrs is new System.Address_To_Access_Conversions(System.Address);
 -- We need to use C pointers with the address list because this is
 -- a pointer to a pointer in C. This will allow us to dereference
 -- the C pointers in Ada.

 subtype addrListPtr is System.Address;
 -- easier to read than System.Address

 type aHostEnt is record
 h_name : System.Address; -- pointer to offical name of host
 h_aliases : System.Address; -- pointer to alias list
 h_addrtype : int := 0; -- host address type (PF_INET)
 h_length : int := 0; -- length of address
 h_addr_list : addrListPtr; -- pointer to list IP addresses
 -- we only want first one
 end record;
 -- defined in man gethostbyname

 package HEptrs is new System.Address_To_Access_Conversions(aHostEnt);
 -- Again, we need to work with C pointers here
 subtype aHEptr is System.Address;
 -- and this is easier to read
 use HEptrs;
 -- use makes = (equals) visible

 function getHostByName(cname : string) return aHEptr;
 pragma import(C, getHostByName);
 -- look up a host by it's name, returning the IP number

 function htons(s : unsigned_short) return unsigned_short;
 pragma import(C, htons);
 -- acronym: host to network short -- on Intel x86 platforms,
 -- switches the byte order on a short integer to the network
 -- Most Significant Byte first standard of the Internet

 procedure memcpy(dest, src : System.Address; numbytes : int);
 pragma import(C, memcpy);
 -- Copies bytes from one C pointer to another. We could probably
 -- use unchecked_conversion, but the C examples use this.

 errno : int;
 pragma import(C, errno);
 -- last error number

 procedure perror(s : string);
 pragma import(C, perror);
 -- print the last kernel error and a leading C string

 procedure PutIPNum(ia : aInAddr) is
 -- divide an IP number into bytes and display it
 IP : unsigned := ia.addr;
 Byte1, Byte2, Byte3, Byte4 : unsigned;

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (41 of 47) [7/20/2001 11:37:17 AM]

 begin
 Byte4 := IP mod 256;
 IP := IP / 256;
 Byte3 := IP mod 256;
 IP := IP / 256;
 Byte2 := IP mod 256;
 Byte1 := IP / 256;
 Put(Byte4'img);
 Put(".");
 Put(Byte3'img);
 Put(".");
 Put(Byte2'img);
 Put(".");
 Put(Byte1'img);
 end PutIPNum;

 procedure SendHTTPCommand(soc : aSocketFD; cmd : string) is
 -- Write a HTTP command string to the socket
 amountWritten : integer := 0;
 totalWritten : integer := 0;
 position : integer := cmd'first;
 begin
 loop
 Write(amountWritten, soc, cmd(position)'address,
 cmd'length - integer(totalWritten));
 if amountWritten < 0 then
 Put_Line(Standard_Error, "Write to socket failed");
 return;
 end if;
 Put_Line("Sent" & amountWritten'img & " bytes");
 totalWritten := totalWritten + amountWritten;
 position := position + amountWritten;
 exit when totalWritten = cmd'length;
 end loop;
 end SendHTTPCommand;

 procedure ShowWebPage(soc : aSocketFD) is
 -- Read the web server's response and display it to the screen
 amountRead : integer := 1;
 buffer : string(1..80);
 begin
 -- continue reading until an error or no more data read
 -- up to 80 bytes at a time
 while amountRead > 0 loop
 Read(amountRead, soc, buffer, buffer'length);
 if amountRead > 0 then
 Put(buffer(1..amountRead));
 end if;
 end loop;
 end ShowWebPage;

 ServerName: string := "www.adapower.com";

 mySocket : aSocketFD; -- the socket
 myAddress : aSocketAddr; -- where it goes

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (42 of 47) [7/20/2001 11:37:17 AM]

 myServer : aHEptr; -- IP number of server
 myServerPtr : HEptrs.Object_Pointer;
 addrList : addrListPtrs.Object_Pointer;
 Result : int;

begin

 Put_Line("Socket Demonstration");
 New_Line;
 Put_Line("This program opens a socket to a web server");
 Put_Line("and retrieves the server's home page");
 New_Line;

 -- initialize a new TCP/IP socket
 -- 0 for the third param lets the kernel decide

 Put_Line("Initializing a TCP/IP socket");
 Put_Line("Socket(" & PF_INET'img & ',' & SOCK_STREAM'img &
 ", 0);");

 mySocket := Socket(PF_INET, SOCK_STREAM, 0);
 if mySocket = -1 then
 perror("Error making socket" & ASCII.NUL);
 return;
 end if;
 New_Line;

 -- Lookup the IP number for the server

 Put_Line("Looking for information on " & ServerName);
 Put_Line("GetHostByName(" & ServerName & ");");

 myServer := GetHostByName(ServerName & ASCII.NUL);
 myServerPtr := HEptrs.To_Pointer(myServer);
 if myServerPtr = null then
 Put_Line(Standard_Error, "Error looking up server");
 return;
 end if;

 Put_Line("IP number is" & myServerPtr.h_length'img & " bytes long");
 addrList := addrlistPtrs.To_Pointer(myServerPtr.h_addr_list);
 New_Line;

 -- Create the IP, port and protocol information

 Put_Line("Preparing connection destination information");
 myAddress.family := AF_INET;
 myAddress.port := htons(80);
 memcpy(myAddress.ip'address, addrlist.all, myServerPtr.h_length);
 New_Line;

 -- Open a connection to the server

 Put_Line("Connect(Result, Socket, Family/Address rec, F/A rec size)");

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (43 of 47) [7/20/2001 11:37:17 AM]

 Connect(Result, mySocket, myAddress, myAddress'size/8);

 Put("Connect(" & Result'img & ",");
 Put(myAddress.family'img & "/");
 PutIPNum(myAddress.ip);
 Put("," & integer'image(myAddress'size / 8) & ")");
 if Result /= 0 then
 perror("Error connecting to server" & ASCII.NUL);
 return;
 end if;
 New_Line;

 -- Write the request
 --
 -- "GET" returns a web page from a web server
 -- Also send minimal HTTP header using User-Agent
 -- Followed with a blank line to indicate end of command

 Put_Line("Transmitting HTTP command...");
 SendHTTPCommand(mySocket,
 "GET /index.html HTTP/1.0" & ASCII.CR & ASCII.LF &
 "User-Agent: WebSocket/1.0 (BigBookLinuxAda Example)" & ASCII.CR & ASCII.LF
 & ASCII.CR & ASCII.LF);
 New_Line;

 -- read web page back

 Put_Line("---Web Page / Server Results-------------------------");
 ShowWebPage(mySocket);
 Put_Line("---");

 -- close the connection

 Put_Line("Closing the connection");
 close(mySocket);

 Put_Line("Demonstration finished - have a nice day");

end websocket;

Socket Demonstration

This program opens a socket to a web server
and retrieves the server's home page

Initializing a TCP/IP socket
Socket(2, 1, 0);

Looking for information on www.adapower.com
GetHostByName(www.adapower.com);
IP number is 4 bytes long

Preparing connection destination information

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (44 of 47) [7/20/2001 11:37:17 AM]

Connect(Result, Socket, Family/Address rec, F/A rec size)
Connect(0, 2/ 216. 92. 66. 46, 16)
Transmitting HTTP command...
Sent 81 bytes

---Web Page / Server Results-------------------------
HTTP/1.0 200 OK
Date: Wed, 29 Mar 2000 02:32:56 GMT
Server: Apache/1.3.3
Last-Modified: Thu, 11 Nov 1999 02:03:14 GMT
Etag: "1f31-406-382a23e2"
Accept-Ranges: Bytes
Content-Length: 1030
Content-Type: text/html
Age: 39
Via: HTTP/1.0 csmc2 (Traffic-Server/3.0.3 [uScHs f p eN:t cCHi p s])

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<HTML>
<HEAD>
 <META NAME="author" CONTENT="David Botton">>
 <META NAME="keywords" CONTENT="Ada AdaPower power source code free treasury
repository">
 <META NAME="description" CONTENT="The Ada Source Code Treasurey contains
components, procedures, algorithms and articles for Ada developers.">
 <META http-equiv="Page-Enter" CONTENT="revealtrans(duration=2.0, transition=3)">
 <TITLE>AdaPower.com</TITLE>
 <LINK href="mailto:David@Botton.com" rev="made">
</HEAD>
<FRAMESET COLS="120,*" FRAMEBORDER=0 FRAMESPACING=0 BORDER=0>
 <FRAME SRC="buttons.html" name="menu" frameborder=0 marginheight=0
marginwidth=0 noresize scrolling=auto border=0>
 <FRAME SRC="http://www.adapower.com/body.html" name="body" frameborder=0
marginheight=5 marginwidth=0 noresize scrolling=auto border=0>
<NOFRAMES>
<meta HTTP-EQUIV="REFRESH" CONTENT="0; URL="body.html">
<body bgcolor="#ffffff" text="#000000">
Click here
</BODY>
</BODY>
</NOFRAMES>
</FRAMESET>

</HTML>

Closing the connection
Demonstration finished - have a nice day

16.24 Memory Management

type aProtection is new integer;
type aMapFlag is new integer;

function getpagesize return long_integer;
pragma import(C, getpagesize);

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (45 of 47) [7/20/2001 11:37:17 AM]

Return the size of a Linux memory page (that is, the size of the memory blocks that your program and data are broken up into
when loaded into memory).

function mmap(start : system.address; size : long_integer; prot : aProtection; flags
: aMapFlag; fd : integer; offset : long_integer) return system.address;
pragma import(C, mmap);
Allocates size bytes of memory and returns a C pointer. If it failed, -1 is returned. If MAP_FIXED and start are used, the
memory will be at the specified address. The protection flags indicate how the memory will be accessed: a signal will be raised
on an illegal access. If MAP_ANON is used, fd should be -1 and no file will be associated with the memory, otherwise fd is a
file that will be copied into the block of memory and offset indicates how many bytes into the file the copying should take
place.

function munmap(start : system.address; size : long_integer) return integer;
pramga import(C, munmap);
Deallocate memory allocated by mmap. Returns -1 on an error.

function mremap(old_start : system.address; old_size : long_integer;
new_size : long_integer; flags : aMapFlag) return system.address;
pragma import(C, mremap);
Changes the size of a block of memory allocated by mmap, possibly moving it.

function mprotect(start : system.address; size : long_integer; new_prot :
aProtection) return integer;
pragma import(C, mprotect);
Change the protection settings on a block of memory allocated by mmap. Returns -1 on an error.

Other mmap flags:

 PROT_NONE : constant aProtection := 0; -- shorthand for no access
 PROT_READ : constant aProtection := 1; -- read access allowed
 PROT_WRITE : constant aProtection := 2; -- write access allowed
 PROT_EXEC : constant aProtection := 4; -- execute access allowed

 MAP_SHARED : constant aMapFlag := 16#01#; -- share changes with child
processes
 -- (write changes to the file, if
any)
 MAP_PRIVATE : constant aMapFlag := 16#02#; -- separate copy for child processes
 -- (changes kept in memory, if any)
 MAP_FIXED : constant aMapFlag := 16#10#; -- use specified address
 MAP_ANON : constant aMapFlag := 16#20#; -- just alloc memory, no related
file
 MAP_ANONYMOUS : constant aMapFlag := MAP_ANON; -- another name for MAP_ANON
 MAP_GROWSDOWN : constant aMapFlag := 16#0100#; -- stack-line usage
 MAP_DENYWRITE : constant aMapFlag := 16#0800#; -- write lock the file
 MAP_EXECUTABLE: constant aMapFlag := 16#1000#; -- mark as executable
 MAP_LOCKED : constant aMapFlag := 16#2000#; -- don't swap out memory
 MAP_NORESERVE : constant aMapFlag := 16#4000#; -- don't check for reservations

function msync(start : system.address; size : length;
flags : aMSyncFlag) return integer;
pragma import(C, msync);
Updates the file associated with the memory allocated by mmap. Returns -1 on an error.

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (46 of 47) [7/20/2001 11:37:18 AM]

 MS_ASYNC : constant aSyncFlag := 1; -- request memory to be saved soon
 MS_INVALIDATE: constant aSyncFlag := 2; -- mark cache as needing updating
 MS_SYNC : constant aSyncFlag := 4; -- save memory to file immediately

function mlock(start : system.address; size : long_integer) return integer;
pragma import(C, mlock);
Deny page swapping on this block of memory allocated by mmap. Only a superuser process may lock pages. Returns -1 on an
error.

function munlock(start : system.address; size : long_integer) return integer;
pragma import(C, munlock);
Allow page swapping on this block of memory allocated by mmap. Returns -1 on an error.

function mlockall(flags : aLockFlag) return integer;
pragma import(C, mlockall);
Deny swapping on all memory for this process. Only a superuser process can lock memory. Returns -1 on an error.

function munlockall return integer;
pragma import(C, mlockall);
Allow swapping on all memory for this process. Returns -1 on an error.

 MCL_CURRENT : constant aLockFlag := 1; -- lock current blocks
 MCL_FUTURE : constant aLockFlag := 2; -- lock subsequent blocks

function brk(end_data_segment : system.address) return integer;
pragma import(C, brk);
Resize the (Intel) data segment to the specified ending address. Returns -1 on an
error.

procedure sbrk(increment : long_integer);
pragma import(C, sbrk);
Increase the (Intel) data segment by the specified number of bytes.

16.25 Exit Procedures

procedure C_exit;
pragma import(C, C_exit, "exit");
pragma import_valued_procedure(C_exit);
exit is a C a standard C library function that closes all your standard C library
files and stops your program. This procedure is meant to be used by C. It is not
recommended in an Ada program.

procedure K_exit;
pragma import(C, K_exit, "_exit");
pragma import_valued_procedure(K_exit);
_exit is a kernel call to stop your program. It leaves any open file open. Not
recommended in an Ada program: there are more effective ways to stop your program.

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (47 of 47) [7/20/2001 11:37:18 AM]

17 Moving C Programs To Ada

 <--Last Chapter Table of Contents Next Chapter-->

17.1 c2ada: Translating Your Programs

c2ada is available from http://www.skinner.demon.co.uk/aidan/programming/

17.2 Interfaces.C package

Ada Package Description C Equivalent

int C integer int

unsigned C unsigned integer unsigned

char_array(n) C character array char [n]

long_long C long long long long

etc

The Interfaces.C and Interfaces.C.Extensions packages provide basic type definitions and conversions functions for C
programs.

Gnat 3.12 introduces a new boolean type, C_bool, which behaves as a proper C boolean value: 0 is false and any other value is
true.

One thing to remember about this package is that C strings are defined as an array of characters, and Ada will raise a
CONSTRANT_ERROR exception if two arrays of characters are not exactly equal length, even if a smaller array is being
assigned to a larger one. For example,

s : char_array(1..80) := To_C("Fred Smith"); -- bad

This example will raise the exception because the string is 11 characters long (10 characters plus a null character), but the array
being assigned to is 80 characters. You can get around these kind of errors with dynamic allocation.

The following program demonstrates some of the types and functions in the Interfaces.C packages.

with text_io, unchecked_deallocation,
Interfaces.C.Extensions;

use text_io, Interfaces.C, interfaces.C.Extensions;

procedure ctest is

-- my types
--
-- pointer to C string and deallocation procedure for same

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (1 of 11) [7/20/2001 11:37:38 AM]

http://www.skinner.demon.co.uk/aidan/programming/

type stringptr is access all char_array;

procedure free is new
unchecked_deallocation(char_array, stringptr);

-- types from standard Ada package Interfaces.C

i : int; -- integer
u : unsigned; -- unsigned integer
l : long; -- long
ul : unsigned_long; -- unsigned long
c : char; -- a character
sp : stringptr; -- ptr to a string (array of characters)
f : C_float; -- a float
d : double; -- a double
wc : wchar_t; -- 16-bit wide character

-- additional types from Gnat package Interfaces.C.Extensions

ll : long_long; -- long long
ull: unsigned_long_long; -- unsigned long long
vp : void_ptr; -- void pointer

begin

 Put_Line("This is an example of Interfaces.C");
 New_Line;

 sp := new char_array'(To_C("This is a string"));
 Put_Line("The C string s is '" & To_Ada(sp.all) &
 "'.");
 Free(sp);

end ctest;

This is an example of Interfaces.C

The C string s is 'This is a string'.

17.3 Interfaces.C.Pointers Package

One C feature that Ada programs lack is pointer arithmetic. In C, you can move pointers forward and backwards through an
array by using simple arithmetic operations. For example, adding two to an character pointer move the pointer two characters
forward in a string. Decrementing an integer pointer moves the pointer back one index position in an integer array.

Since pointer arithmetic is important in many C programs, especially sorts, Ada 95 provides a standard generic package called
Interfaces.C.Pointers which implements access types that can use pointer arithmetic.

To instantiate the package, you need to specify the elements that will be in your arrays, an unbounded array that will contain
the elements, the range of index values, and a default terminator value used by some of the package's subprograms.

For example, to create C-style pointers for the unbounded Char_Array (C string) type in Interfaces.C, you could instantiate the
package with

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (2 of 11) [7/20/2001 11:37:38 AM]

package StringPtrs is new Interfaces.C.Pointers(
 Index => size_t, -- the index range is size_t
 Element => char, -- the array contains chars
 Element_Array => char_array, -- the unbounded type
 Default_Terminator => char'val(0) -- the terminator value, ASCII.NUL
);
use StringPtrs; -- need this to make + and - visible

strptr : StringPtrs.Pointer;

The use clause is very important. Without it, the arithmetic operators would not be directly available because they would be
hidden inside the StringPtrs package.

Pointers created using Interfaces.C.Pointers are access types, and can be used like any other access type.

 Put_Line("strptr is pointing to the character " & strptr.all);

However, unlike other access types, they have new pointer arithmetic features. Addition and subtraction is performed the same
way as in C by specifying how many positions in the array to move. To move strptr ahead 2 index positions in a string, add 2
to it:

 strptr := strptr + 2;

Since Ada has no increment or decrement operators, two procedures are provided to move a pointer forward or backward by
one array position:

 Increment(strptr); -- forward one position
 Decrement(strptr); -- back one position

The package also makes four additional subprograms available: The Virtual_Length function returns the length of an array,
up to end of the array or until a terminator is found. [If no terminator, do you get a storage error?--KB] The Value function
returns a slice from the array, from the position of the pointer to the end of the array or until a terminator is found. It can also
slice a specific number of elements from an array.

Copy_Array copies a slice of a specific number of elements from one pointer to another. Copy_Terminated Array copies a
slice from the pointer position until a terminator is found.

The following program demonstrates C pointers to integer arrays.

with Ada.Text_IO, Interfaces.C.Pointers;

use Ada.Text_IO;

procedure point is

-- To use Interfaces.C.Pointers, you need to define an unbounded
-- array type. In this case, we'll create an unbounded array
-- called IntegerArrays with a maximum index range of 1 to 9.
-- BiggestArray is the largest IntegerArrays array possible,
-- with an index range of 1 to 9. IntegerArrays must have
-- aliased elements because we will be accessing them with an
-- access type.

subtype PointerRange is integer range 1..9;

type IntegerArrays is array PointerRange range <>)
 of aliased integer;

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (3 of 11) [7/20/2001 11:37:38 AM]

type BiggestArray is new IntegerArrays(PointerRange);

package IntPtrs is new Interfaces.C.Pointers(
 Index => PointerRange, -- the index range
 Element => Integer, -- what the array contains
 Element_Array => IntegerArrays, -- the unbounded type
 Default_Terminator => 0); -- the terminator value

use IntPtrs; -- need this to make + and - visible

procedure ShowArray(ia : IntegerArrays) is

-- show the contents of any IntegerArrays array

begin

 for i in ia'first..ia'last-1 loop
 Put(i'img);
 Put(" =>");
 Put(ia(i)'img);
 Put(",");

 end loop;

 Put(ia'last'img);
 Put(" => ");
 Put_Line(ia(ia'last)'img);
end ShowArray;

ia, ia2 : BiggestArray; -- two integer arrays
ip, ip2 : IntPtrs.Pointer; -- two pointers to integer arrays

begin

 Put_Line("This program demonstrates C-style pointers provided");
 Put_Line("by Interfaces.C.Pointers");
 New_Line;

 -- initialize and display the contents of the array

 for i in PointerRange'first..PointerRange'last-1 loop
 ia(i) := i*2;
 end loop;

 ia(PointerRange'last) := 0;
 Put_Line("The array is: ");
 ShowArray(IntegerArrays(ia));
 -- must typecast ia because ShowArray is expecting an IntegerArrays

 Put_Line("Zero is our terminator in this example");
 New_Line;

 -- set the pointers to the first elements in the arrays

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (4 of 11) [7/20/2001 11:37:38 AM]

 ip := ia(ia'first)'access;
 ip2 := ia2(ia'first)'access;

 -- ip works like a normal access type

 Put_Line("Our pointer is set to first position in the array");
 Put_Line("The element is " & ip.all'img);
 New_Line;

 -- increment example

 Increment(ip);
 Put_Line("Incrementing the pointer, it now points at " &
 ip.all'img);
 New_Line;

 -- decrement example

 Decrement(ip);
 Put_Line("Decrementing the pointer, it now points at" &
 ip.all'img);
 New_Line;

 -- addition example

 ip := ip + 3;
 Put_Line("Addition moves the pointer forward.");
 Put_Line("Moving forward three elements, it now points at"
 & ip.all'img);
 New_Line;

 -- subtraction example

 ip := ip - 2;
 Put_Line("Subtraction moves the pointer backwards.");
 Put_Line("Moving backwards two elements, it now points at"
 & ip.all'img);
 New_Line;

 -- Virtual_Length examples

 Put_Line("Virtual_Length gives the length from the pointer to the");

 Put_Line("default terminator. The length from this position is" &
 Virtual_Length(ip)'img & " positions");
 Put_Line("Virtual_Length can also use an arbitrary terminator.");
 Put_Line("The length from the pointer to the first 14 is" &
 Virtual_Length(ip, 14)'img & " positions");
 New_Line;

 -- Value examples

 Put_Line("Value returns the array slice from the pointer position to");
 Put_Line("the terminator. The array value from this position is");
 ShowArray(Value(ip));

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (5 of 11) [7/20/2001 11:37:39 AM]

 Put_Line("Value can also return a slice of a specific length.");
 Put_Line("The next four elements are");
 ShowArray(Value(ip, Length => 4));
 New_Line;

 -- Copy_Terminated_Array example

 Put_Line("Our second array contains");
 ShowArray(IntegerArrays(ia2)); -- must typecast here
 New_Line;

 Put_Line("Copy_Terminated_Array copies elements from one pointer to");
 Put_Line("another, up to and including the terminator. Copying to");
 Put_Line("the second array ");
 Copy_Terminated_Array(ip, ip2);
 ShowArray(IntegerArrays (ia2)); -- must typecast here
 New_Line;

 -- Copy_Array example

 Put_Line("Copy_Array copies a specific number of elements.");
 Put_Line("Copying 4 elements from 3 positions ahead, the new");
 Put_Line("array contains");
 Copy_Array(ip+3, ip2, 4);
 ShowArray(IntegerArrays(ia2)); -- must typecast here
 New_Line;

end point;

This program demonstrates C-style pointers provided
by Interfaces.C.Pointers

The array is:

1 => 2, 2 => 4, 3 => 6, 4 => 8, 5 => 10, 6 => 12, 7 => 14, 8 => 16, 9 => 0

Zero is our terminator in this example

Our pointer is set to first position in the array

The element is 2

Incrementing the pointer, it now points at 4

Decrementing the pointer, it now points at 2

Addition moves the pointer forward.
Moving forward three elements, it now points at 8

Subtraction moves the pointer backwards.
Moving backwards two elements, it now points at 4

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (6 of 11) [7/20/2001 11:37:39 AM]

Virtual_Length gives the length from the pointer to the
default terminator. The length from this position is 7 positions

Virtual_Length can also use an arbitrary terminator.
The length from the pointer to the first 14 is 5 positions

Value returns the array slice from the pointer position to
the terminator. The array value from this position is

1 => 4, 2 => 6, 3 => 8, 4 => 10, 5 => 12, 6 => 14, 7 => 16, 8 => 0

Value can also return a slice of a specific length.

The next four elements are
1 => 4, 2 => 6, 3 => 8, 4 => 10

Our second array contains

1 => 12, 2 => 134531961, 3 => 12, 4 => 1, 5 => 134560412, 6 => 134891560, 7 =>
134575980, 8 => 0, 9 => 134560432

Copy_Terminated_Array copies elements from one pointer to another, up to
and including the terminator.
Copying to the second array
1 => 4, 2 => 6, 3 => 8, 4 => 10, 5 => 12, 6 => 14, 7 => 16, 8 => 0, 9 => 134560432

Copy_Array copies a specific number of elements.

Copying 4 elements from 3 positions ahead, the new array contains
1 => 10, 2 => 12, 3 => 14, 4 => 16, 5 => 12, 6 => 14, 7 => 16, 8 => 0, 9 => 134560432

17.4 Interfaces.C_Streams package

Ada Package Description C Equivalent

fopen Open a text file (C stream) fopen

fclose Close a text file (C stream) fclose

fread Read bytes from a text file (C stream) fread

etc.

Although the basic Ada types are identical to their C counterparts, the IO libraries are not guaranteed to write data in a format
that is readable from other languages. Text files are fine, but to write binary files that can be accessed by C, you'll need to read
and write the files using C file handing libraries.

The Interfaces.C_Streams package provides a thin binding to the C stdio library. This is comparable to the gnat.os_lib
library, but the binding is "thinner" and covers all C stream operations. Some stdio library functions aren't covered because
they can't be represented by Ada. Gnat guarantees these functions will be available, no matter what platform gnat is running
under, even if it isn't UNIX-based.

It is also possible to call stdio directly. See the discussion above.

c_streams uses "stream" to refer to a Linux text file.

procedure clearerr(stream : FILEs);
Clear any error associated with the stream.

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (7 of 11) [7/20/2001 11:37:39 AM]

function fclose(stream : FILEs) return int;
Close a stream.

function fdopen(handle : int; mode : chars) return FILEs;
Open a stream by a handle (UNIX file descriptor).

function feof(stream : FILEs) return int;
Check for the end of stream.

function ferror(stream : FILEs) return int;
Return any error associated with the last stream operation.

functionfflush(stream : FILEs) return int;
Finish writing any outstanding data to the stream.

function fgetc(stream : FILEs) return int;
Read one character from the stream. Characters will be ASCII values between 0 and 255, and can be converted to a character
with character'val.

function fgets(strng : chars; n : int; stream : FILEs) return chars;
Read a string from the stream. Note this is not an Ada string.

function fileno(stream : FILEs) return int;
Return the fine number associated with a stream for use with standard Linux file operations.

function fopen(filename : chars; Mode : chars) return FILEs;
Open a stream.

function fputc(C : int; stream : FILEs) return int;
Write one character to a stream. Convert the character to an integer using character'val.

function fputs(Strng : chars; Stream : FILEs) return int;
Write a string of characters to the stream.

function fread(buffer : voids; size : size_t; count : size_t; stream : FILEs) return
size_t;
Read count bytes into a buffer of length size and return number of bytes actually read.

function freopen(filename : chars; mode : chars; stream : FILEs) return FILEs;
Reopen the stream with a new mode.

function fseek(stream : FILEs; offset : long; origin : int) return int;
Move offset bytes from the specified origin point.

function ftell(stream : FILEs) return long;
Get stream offset for fseek.

function fwrite(buffer : voids; size : size_t; count : size_t; stream : FILEs)
return size_t;
Write count bytes from a buffer of count length and return the number of bytes actually written.

function isatty(handle : int) return int;
[NQS--determine if stream is a TTY device?--KB]

procedure mktemp(template : chars);
Create a random name for a temporary file.

procedure rewind(stream : FILEs);
Move to the start of the stream.

function setvbuf(stream : FILEs; buffer : chars; mode : int; size : size_t) return
int;

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (8 of 11) [7/20/2001 11:37:39 AM]

[NQS--used to know what this did--KB]

procedure tmpnam(string : chars);
[Difference with tmpnam?--KB]
The parameter must be a pointer to a string buffer of at least L_tmpnam bytes (the call with a null parameter is not supported).

function tmpfile return FILEs;
[NQS--KB]

function ungetc(c : int; stream : FILEs) return int;
Back up one character in the stream.

function unlink(filename : chars) return int;
Delete a stream file.

The following are related utility functions added by ACT. They are not standard UNIX functions like the above.

function file_exists(name : chars) return int;
Returns 0 if a file doesn't exist, 1 if it does.

function is_regular_file(handle : int) return int;
Return 1 if given handle is for a regular file, or 0 for some other kind of file.

procedure set_binary_mode(handle : int);
Read text without translation. Only works if compiled with text_translation_required.

procedure set_text_mode(handle : int);
Translate text. Only works if compiled with text_translation_required.

procedure full_name(nam : chars; buffer : chars);
Return the full path of a file as a C string.

The following program demonstrates some of the c_stream functions.

with text_io, unchecked_deallocation, Interfaces.C_Streams;
use text_io, Interfaces.C_Streams;

procedure cstreamtest is

 fd : FILEs;
 line2write : constant string := "This is a test";
 cline2write: constant string := "This is a test" &
 ASCII.NUL;
 path : constant string := "testfile.xxx";
 cpath : constant string := path & ASCII.NUL;
 fileMode : constant string := "w";

 amountWritten : size_t;
 result : int;

begin

 Put_Line("This is an example of Interfaces.C_Streams");
 New_Line;

 fd := fopen(cpath'address, fileMode'address);
 if ferror(fd) = 0 then
 Put_Line("Opened " & path & " with fopen");
 Put_Line("Writing '" & line2write & "' with fwrite");

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (9 of 11) [7/20/2001 11:37:39 AM]

 amountWritten := fwrite(line2write'address, -- what to write
 1, -- size of elements
 line2write'length, -- how many to write
 fd); -- to which file

 Put_Line("Wrote" & amountWritten'img & " characters");
 New_Line;
 Put_Line("Writing with fputs");
 result := fputs(cline2write'address, fd);
 Put_Line("Result was" & result'img);
 New_Line;

 result := fclose(fd);
 Put_Line("Closed " & path & " with fclose");
 Put_Line("Result was" & result'img);
 New_Line;

 result := unlink(cpath'address);
 Put_Line("Deleted " & path & " with unlink");
 Put_Line("Result was" & result'img);
 end if;

end cstreamtest;

This is an example of Interfaces.C_Streams

Opened testfile.xxx with fopen
Writing 'This is a test' with fwrite
Wrote 14 characters

Writing with fputs
Result was 1

Closed testfile.xxx with fclose
Result was 0

Deleted testfile.xxx with unlink
Result was 0

17.5 Ada and C Files

Gnat provides several interfacing packages to allow Ada to read and write C files. These are a "thicker binding" than
Interfaces.C_Streams.

Ada.Direct_IO.C_Streams - a variation of Ada.Direct_IO of reading and writing C direct files.●

Ada.Sequential_IO.C_Streams - a variation of Ada.Sequential_IO for reading and writing C sequential files●

Ada.Streams_Stream_IO.C_Streams - a package for reading and writing C streams●

Ada.Text_IO.C_Streams - a package for reading and writing C text files●

Ada.Wide_Text_IO.C_Streams - a package for reading and writing 16-bit character
C text files

●

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (10 of 11) [7/20/2001 11:37:39 AM]

17.6 A Word on Interfaces.Fortran

Gnat provides interfacing packages for languages besides C. Interfaces.Fortran
contains types and subprograms to link Fortran language programs to your Ada
programs. The GCC Fortran 77 compiler is g77.

As with gcc, most of the Fortran data types correspond identically with an Ada type.
A Fortran real variable, for example, is the same as an Ada float, and a double
precision variable is an Ada long_float. Other Ada compilers may not do this: if
portability is an issue, always use the types of Interfaces.Fortran.

Gnat 3.12 introduces a proper Fortran logical type that behaves according to Fortran
semantics.

Fortran subprograms may be imported into Ada using pragma import:

procedure MyFortranSubroutine;
pragma import(Fortran, MyFortranSubroutine);

Variables may be likewise imported.

RealVar : float;
pragma import(Fortran, RealVar);

g77 adds an undescore to subroutine names, so ifyou are importing from g77 you'll
need to include the name of the subroutine with a trailing underscore in pragma
import.

pragma import (Fortran, MyFortranSubroutine, "MyFortranSubroutine_");

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (11 of 11) [7/20/2001 11:37:39 AM]

18 Data Structures

 <--Last Chapter Table of Contents Next Chapter-->

Good programmers write good programs. Great programmers write good programs and good data structures. Organizing your
data is as important as the program that crunches the data and produces a result.

Unfortunately, my experiences in the corporate world have taught me that that the only data structure used is the single
dimensional array. When results are the only goal and more processing power is the cure for bad software design, arrays are
easy to implement (they are built into Ada). Even the worst programmer knows how to use an array. And arrays are easy to
understand. Try to use a linked list, and a programmer can get into trouble with his boss for using risky, "advanced"
technology.

Alternatively, programmers will sometimes rely on the complexity and overhead of databases when a simplier solution using
the correct data structure would be faster and easier to implement.

If you are lucky enough to work for a company that uses more than arrays, this chapter will discuss how to use other kinds of
data structures in Ada.

18.1 Using the Booch Components

Like Ada, C++ has no advanced data structures built into the language. To provide a standard set of data structures, what is
now called the Standard Template Library was developed to provide the tools necessary to organize most types of data.

Perhaps because of an oversight, Ada 95 with all its annexes has no equivalent to the C++ Standard Template Library. There
are no standard packages providing common data structures. The Gnat compiler fills part of this void with packages for
creating simple tables and hash tables.

The Booch components are a set of C++ objects created by Grady Booch. These were later ported to Ada 95. The components
contain sets of general purpose data structures. The Booch components are available from AdaPower.Net or in RPM format
from the Ada Linux Team. This is one popular choice for Ada's unofficial "Standard Template Library".

The components are organized into three main categories: tools, support and structs. The tools cover many items already
implemented in the standard Ada or Gnat packages, such as searching, sorting and pattern recognition. Support refers to
components that implement the tools and structs.

The structs (data structures) are the primary interest of Ada programmers. These are further subcategorized by the user's
requirements: bounded (where the size is known at compile-time or there's no heap allocation), unbounded (using dynamic
allocation and item caching), or the dynamic (a compromize between bounded and unbounded). The default if no others are
available is unbounded.

Dynamic and unbounded types can specify a storage manager to use. The storage manager is a program that allocates memory.
Use Global_Heap package if you have no preference.

Unbounded structures allocate memory whenever a new item is added to the structure.

Dynamic structures allocate memory in fixed-sized chunks. Each chunk is large enough for several items. The chunk size is set
when the dynamic data structure is first created, but it can be altered at any time. When a chunk is full, the structure is grows
by the size of another chunk. This reduces the number of memory allocations to improve performance.

Each dynamic structure includes these subprograms:

Create - Change the chunk size for the collection●

Set_Chunk_Size - Change the chunk size for the collection●

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (1 of 26) [7/20/2001 11:38:16 AM]

http://www.adapower.net/booch/
http://www.gnuada.org/alt.html

Preallocate - Increase the size of the collection immediately●

Chunk_Size - Returns the current chunk size●

The Booch components are organzied in a hierarchy of packages. The BC package is the top-most package. BC defines the
basic execptions that can be raised by the various components:

 Container_Error : exception;
 Duplicate : exception;
 Illegal_Pattern : exception;
 Is_Null : exception;
 Lexical_Error : exception;
 Math_Error : exception;
 Not_Found : exception;
 Not_Null : exception;
 Not_Root : exception;
 Overflow : exception;
 Range_Error : exception;
 Storage_Error : exception;
 Synchronization_Error : exception;
 Underflow : exception;
 Should_Have_Been_Overridden : exception;
 Not_Yet_Implemented : exception;

The data structure components are:

Data
Structure

Booch Packages Description

Bags
bc-containers-bags-bounded
bc-containers-bags-dynamic
bc-containers-bags-unbounded

Unordered
collection of
items.
Duplicates are
counted but not
actually stored.

Collections
bc-containers-collections-bounded
bc-containers-collections-dynamic
bc-containers-collections-unbounded

Ordered
collection of
items.
Duplicates are
allowed and
stored.

Deques
bc-containers-deques-bounded
bc-containers-deques-dynamic
bc-containers-deques-unbounded

Double-ended
queues

Single linked
Lists

bc-containers-lists-single

A sequence of 0
or more items
with a head and
a pointer to each
successive item.

Double
linked Lists

bc-containers-lists-double

A sequence of 0
or more items
with a head and
a pointer to both
successive and
previous items.

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (2 of 26) [7/20/2001 11:38:16 AM]

Maps
bc-containers-maps-bounded
bc-containers-maps-dynamic
bc-containers-maps-unbounded

A set with
relationships
between pairs of
items.

Queues
bc-containers-queues-bounded
bc-containers-queues-dynamic
bc-containers-queues-unbounded

First in, first out
list.

Ordered
(Priority)
Queues

bc-containers-queues-ordered-bounded
bc-containers-queues-ordered-dynamic
bc-containers-queues-ordered-unbounded

A sorted list,
items removed
from the front.

Rings
bc-containers-rings-bounded
bc-containers-rings-dynamic
bc-containers-rings-unbounded

A deque with
only one
endpoint.

Sets
bc-containers-sets-bounded
bc-containers-sets-dynamic
bc-containers-sets-unbounded

Unordered
collection of
items.
Duplicates are
not allowed.

Stacks
bc-containers-stacks-bounded
bc-containers-stacks-dynamic
bc-containers-stacks-unbounded

Last in, first out
list.

AVL Trees bc-containers-trees-avl
Balanced binary
trees

Binary Trees
bc-containers-trees-binary-in_order
bc-containers-trees-binary-post_order
bc-containers-trees-binary-pre_order

A list with two
successors per
item.

Multiway
Trees

bc-containers-trees-multiway-post_order
bc-containers-trees-multiway-pre_order

Tree with an
arbitrary number
of children.

Directed
Graphs

bc-graphs-directed
Groups of items
with one-way
relationships

Undirected
Graphs

bc-graphs-undirected
Groups of items
with two-way
relationships

Smart
Pointers

bc-smart

Access types
that
automatically
deallocate
themselves

A definition of common data structures can be found at the National Institute of Standards and Technology.

The components are generic packages and must be instantiated for a particular type. They are arranged in hierarchies of
generic packages. Each parent package must be instantiated before its child. For example, to use single linked lists
(bc.containers.lists.single), bc.containers, bc.containers.lists, and bc.containers.lists.single must all be be created for the item
type.

As with many component libraries, the Booch components represent all structures in memory, not in long-term storage. They
cannot be used to create disk files, although the data could be saved to disk and reloaded later.

18.1.1 Containers

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (3 of 26) [7/20/2001 11:38:16 AM]

http://hissa.nist.gov/dads/terms.html

Containers form the cornerstone of the Booch components.

Containers are a controlled tagged record that encloses an item. The Booch components are composed of items stored in
containers that are arranged in different ways.

To use any of the Booch components, a container must be instantiated to hold your item. For example, to create a new package
to manage character in containers, use

 package charContainers is new BC.Containers (Item => Character);

18.1.2 Iterators

The Container package also manages the iterators used by the Booch components. An iterator is a variable that keeps track of
the position in a data structure during a traversal.

Iterators are created by New_Iterator in a data structure's package, but the subprograms that work with the iterator are defined
in the Container package.

Reset - start a new traversal at the first item●

Next - continue to another item in the component●

Is_Done - True if there are no more items●

Current_Item - return the current item●

The Is_Done function indicates when all items have been traversed. When Is_Done is true, Current_Item is undefined. In other
words, the program must loop through all items in the list, plus 1, before Is_Done is true.

Because an Iterator is a class-wide type, it must be assigned a new value when it is declared to avoid a compiler error.

 i : charContainers.Iterator'class := charList.New_Iterator(customers);

18.1.3 Single linked Lists

Creating a single linked list requires the instantiation of 3 separate generic packages: BC.Containers, BC.Containers.Lists, and
BC.Containers.Lists.Single. To avoid problems with access types, these should be declared globally (that is, in a package
spec).

First, a container must be defined to hold the item you want to store in your linked list.

 package Containers is new BC.Containers (Item => Character);

Second, basic operations on lists must be instantiated.

 package Lists is new Containers.Lists;

Finally, the single linked list package must be instantiated. For an unbounded package, you chose a storage pool to use. Single
linked lists are always unbounded. Use Global_Heap if you have no preference.

 package LS is new Lists.Single (Storage_Manager => Global_Heap.Pool,
 Storage => Global_Heap.Storage);

The single linked list package provides the following subprograms:

Clear - destroy the list●

Insert - add an item to the list●

Append - add an item to the end of the list●

Remove - remove an item from the list●

Purge - remove consecutive items●

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (4 of 26) [7/20/2001 11:38:16 AM]

Preserve - inverse of Purge, keep consecutive items, removing the rest●

Share/_Head/_Foot - make the list an alias for a sublist in another list●

Tail - discard everything but the last item in the list●

Length - return the number of items in the list●

Is_Null - true if the list has no items●

Is_Shared - true if there an alias to a sublist in the list●

Head - return the top-most item●

Foot - return the last item in the list●

Item_at - return an item at a given position●

New_Iterator - return an iterator for traversing the list●

Process_Head/Tail - generic procedure to return an item with processing●

Swap_Tail - NQS-KB●

Notice that the term "Foot" refers to the last item in the list. The Ada string packages uses the term "Tail".

Here's an example:

with BC.Containers.Lists.Single;
with Global_Heap;

package customers is

 type aCustomer is record
 customerID : integer;
 accountBalance : float;
 end record;
 -- this is the item to put in the list

 package customerContainers is new BC.Containers (Item => aCustomer);
 -- create a new controlled tagged record container for customers

 package customerLists is new customerContainers.Lists;
 -- create a new list support package for our using container type

 package customerList is new customerLists.Single (Storage_Manager =>
Global_Heap.Pool, Storage => Global_Heap.Storage);
 -- create a single linked list package using the lists support
 -- customized for our container type

end customers;

with ada.text_io, BC, customers;
use ada.text_io, BC, customers;

procedure list_demo is
 customers : customerList.Single_List;
 c : aCustomer;
 i : customerContainers.Iterator'class := customerList.New_Iterator(
customers);
begin
 Put_Line("This is a demo of the Booch components: single-linked lists");

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (5 of 26) [7/20/2001 11:38:17 AM]

 New_Line;

 -- The Newly Declared List

 Put_Line("The list is newly declared.");
 Put_Line("The list is empty? " & customerList.Is_Null(customers)'img);
 Put_Line("The list is shared? " & customerList.Is_Shared(customers)'img);
 Put_Line("The list length is" & customerList.Length(customers)'img);
 New_Line;

 -- Inserting a customer

 c.customerID := 7456;
 c.accountBalance := 56.74;
 customerList.Insert(customers, c);

 Put_Line("Added customer" & c.customerID'img);
 Put_Line("The list is empty? " & customerList.Is_Null(customers)'img);
 Put_Line("The list is shared? " & customerList.Is_Shared(customers)'img);
 Put_Line("The list length is" & customerList.Length(customers)'img);

 c := customerList.Head(customers);
 Put_Line("The head item is customer id" & c.customerID'img);
 c := customerList.Foot(customers);
 Put_Line("The foot item is customer id" & c.customerID'img);
 New_Line;

 -- Apending a customer

 c.customerID := 9362;
 c.accountBalance := 88.92;
 customerList.Append(customers, c);

 Put_Line("Appended customer" & c.customerID'img);
 Put_Line("The list length is" & customerList.Length(customers)'img);
 c := customerList.Head(customers);
 Put_Line("The head item is customer id" & c.customerID'img);
 c := customerList.Foot(customers);
 Put_Line("The foot item is customer id" & c.customerID'img);
 New_Line;

 -- Iterator example

 Put_Line("Resetting the iterator..");
 customerContainers.Reset(i);
 c := customerContainers.Current_item (i);
 Put_Line("The current item is customer id" & c.customerID'img);
 Put_Line("Are we done? " & customerContainers.Is_Done(i)'img);

 Put_Line("Advancing to the next item...");
 customerContainers.Next(i);
 c := customerContainers.Current_item (i);
 Put_Line("The current item is customer id" & c.customerID'img);
 Put_Line("Are we done? " & customerContainers.Is_Done(i)'img);

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (6 of 26) [7/20/2001 11:38:17 AM]

 Put_Line("Advancing to the next item...");
 customerContainers.Next(i);
 Put_Line("Are we done? " & customerContainers.Is_Done(i)'img);
 begin
 c := customerContainers.Current_item (i);
 exception when BC.NOT_FOUND =>
 put_line("BC.NOT_FOUND exception: no item at this position in the list");
 end;

end list_demo;

This is a demo of the Booch components: single-linked lists

The list is newly declared.
The list is empty? TRUE
The list is shared? FALSE
The list length is 0

Added customer 7456
The list is empty? FALSE
The list is shared? FALSE
The list length is 1
The head item is customer id 7456
The foot item is customer id 7456

Appended customer 9362
The list length is 2
The head item is customer id 7456
The foot item is customer id 9362

Resetting the iterator..
The current item is customer id 7456
Are we done? FALSE
Advancing to the next item...
The current item is customer id 9362
Are we done? FALSE
Advancing to the next item...
Are we done? TRUE
BC.NOT_FOUND exception: no item at this position in the list

Single linked lists should not be Guarded.

18.1.4 Double linked Lists

Double linked lists are implemented exactly the same as single-linked lists except that the word "Double" is substituted for the
word "Single".

Double linked lists are useful for lists that must be browsed backwards and forwards continuously.

Double linked lists should not be Guarded.

18.1.5 Bags

Bags, like linked lists, are collections of items. However, there is no attempt to order the items. Duplicate items can be stored,
but the bag keeps a count of duplications to save memory instead of storing copies of the duplicates.

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (7 of 26) [7/20/2001 11:38:17 AM]

The bags package provides the following subprograms:

Are_Equal - True if two bags have the same contents●

Clear - Removes all items from the bag●

Add - Adds an item to the bag●

Remove - Removes an item from the bag●

Union - Add one bag to another●

Intersection - Remove all items not common between two bags. Where there are duplicates, keep the lower duplicate
count

●

Difference - Remove all items not common between two bags. Where there are duplicates, subtract from the original
and discard the item if the total is >= 0

●

Extent - Return the number of distinct items●

Total_Size - Return the total number of items (including duplicates)●

Count - Return the number of occurences of an item in the bag●

Is_Empty - True if the bag is empty●

Is_Member - True if one or more copies of an item is in the bag●

Is_Subset - True if the contents of one bag is completely contained in another●

Is_Proper_Subset - Same as Is_Subset, but the bags must not be equal●

Bags can be bounded, dynamic or unbounded.

Bags are implemented using a hash table. To declare a bag, a program must provide a hash function for storing items in the
bag, and must indicate the size of the hash table.

Here's an example. Notice that some of the subprograms are in the Bags instantiation, and some in the Bags.Unbounded
instantiation. Also notice the iterator moves over the items, but not the duplications:

with BC.Containers.Bags.Unbounded;
with Global_Heap;

package customers is

 type aCustomerID is new integer range 1_000..9_999;

 function IDHash(id : aCustomerID) return Positive;
 -- our hash function

 package customerContainers is new BC.Containers (Item => aCustomerID);
 -- create a new controlled tagged record container for customers

 package customerBags is new customerContainers.Bags;
 -- create a new bag support for our using container type

 package customerBag is new customerBags.Unbounded(
 Hash => IDHash,
 Buckets => 99,
 Storage_Manager => Global_Heap.Pool,
 Storage => Global_Heap.Storage);
 -- create an unbounded bag package holding customer numbers

end customers;

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (8 of 26) [7/20/2001 11:38:17 AM]

package body customers is

 function IDHash(id : aCustomerID) return Positive is
 -- our hash function
 begin
 return Positive(id); -- in this case, using the id is good enough
 end IDHash;

end customers;

with ada.text_io, BC, customers;
use ada.text_io, BC, customers;

procedure bag_demo is
 customers : customerBag.Unbounded_Bag;
 c : aCustomerID;
 i : customerContainers.Iterator'class := customerBag.New_Iterator(
customers);
begin
 Put_Line("This is a demo of the Booch components: bags");
 New_Line;

 -- The Newly Declared Bag

 Put_Line("The bag is newly declared.");
 Put_Line("The bag is empty? " & customerBag.Is_Empty(customers)'img);
 Put_Line("The bag extent is" & customerBag.Extent(customers)'img);
 Put_Line("The bag total size is" & customerBags.Total_Size(customers)'img);
 New_Line;

 -- Inserting a customer

 c := 7456;
 customerBags.Add(customers, c);

 Put_Line("Added customer" & c'img);
 Put_Line("The bag is empty? " & customerBag.Is_Empty(customers)'img);
 Put_Line("The bag extent is" & customerBag.Extent(customers)'img);
 New_Line;

 -- Inserting another customer

 c := 9362;
 customerBags.Add(customers, c);

 Put_Line("Added customer" & c'img);
 Put_Line("The bag is empty? " & customerBag.Is_Empty(customers)'img);
 Put_Line("The bag extent is" & customerBag.Extent(customers)'img);
 Put_Line("The bag total size is" & customerBags.Total_Size(customers)'img);
 New_Line;

 -- Inserting duplicate customer

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (9 of 26) [7/20/2001 11:38:17 AM]

 c := 9362;
 customerBags.Add(customers, c);

 Put_Line("Added customer" & c'img);
 Put_Line("The bag is empty? " & customerBag.Is_Empty(customers)'img);
 Put_Line("The bag extent is" & customerBag.Extent(customers)'img);
 Put_Line("The bag total size is" & customerBags.Total_Size(customers)'img);
 New_Line;

 -- Iterator example

 Put_Line("Resetting the iterator..");
 customerContainers.Reset(i);
 c := customerContainers.Current_item (i);
 Put_Line("The current item is customer id" & c'img);
 Put_Line("Are we done? " & customerContainers.Is_Done(i)'img);

 Put_Line("Advancing to the next item...");
 customerContainers.Next(i);
 c := customerContainers.Current_item (i);
 Put_Line("The current item is customer id" & c'img);
 Put_Line("Are we done? " & customerContainers.Is_Done(i)'img);

 Put_Line("Advancing to the next item...");
 customerContainers.Next(i);
 Put_Line("Are we done? " & customerContainers.Is_Done(i)'img);
 begin
 c := customerContainers.Current_item (i);
 exception when BC.NOT_FOUND =>
 put_line("BC.NOT_FOUND exception: no item at this position in the bag");
 end;

end bag_demo;

This is a demo of the Booch components: bags

The bag is newly declared.
The bag is empty? TRUE
The bag extent is 0
The bag total size is 0

Added customer 7456
The bag is empty? FALSE
The bag extent is 1

Added customer 9362
The bag is empty? FALSE
The bag extent is 2
The bag total size is 2

Added customer 9362
The bag is empty? FALSE
The bag extent is 2

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (10 of 26) [7/20/2001 11:38:17 AM]

The bag total size is 3

Resetting the iterator..
The current item is customer id 7456
Are we done? FALSE
Advancing to the next item...
The current item is customer id 9362
Are we done? FALSE
Advancing to the next item...
Are we done? TRUE
BC.NOT_FOUND exception: no item at this position in the bag

Bags are useful for counting the occurrences of an item in a large amount of data.

18.1.6 Sets

Sets are essentially the same as bags but may not contain duplicates. The are useful for detecting the presence/absence of an
item, or representing flags or conditions.

with BC.Containers.Sets.Bounded;
with Global_Heap;

package fruit_sets is

 -- my grandfather owned one of the largest fruit companies in the world

 type aFruit is (Apples, Grapes, Peaches, Cherries, Pears, Plums, Other);

 function FruitHash(f : aFruit) return Positive;
 -- our hash function for the set

 package fruitContainers is new BC.Containers(item=> aFruit);
 -- basic fruit container

 package fruitSets is new fruitContainers.Sets;
 -- basic set support

 package fruitBoundedSets is new fruitSets.Bounded(fruitHash,
 Buckets => 10,
 Size => 20);
 -- our actual set is an unbounded set

end fruit_sets;

package body fruit_sets is

 function FruitHash(f : aFruit) return Positive is
 begin
 return aFruit'pos(f)+1; -- good enough for this example
 end FruitHash;

end fruit_sets;

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (11 of 26) [7/20/2001 11:38:17 AM]

with ada.text_io, kb_sets;
use ada.text_io, kb_sets;

procedure set_demo is
 use fruitSets;
 use fruitBoundedSets;
 s1 : Bounded_Set;
 s2 : Bounded_Set;
 s3 : Bounded_Set;
begin
 Put_Line("This is a demo of the Booch components: sets");
 New_Line;

 Add(s1, apples);
 Add(s1, peaches);
 Add(s2, apples);
 Add(s2, peaches);
 Add(s2, pears);

 Put_Line("Set 1 has apples and peaches.");
 Put_Line("Set 2 has apples, peaches and pears.");
 New_Line;
 Put_Line("Extent of set 1? " & Extent(s1)'img);
 Put_Line("Extent of set 2? " & Extent(s2)'img);
 Put_Line("Peaches in set 1? " & Is_Member(s1, peaches)'img);
 Put_Line("Pears in set 1? " & Is_Member(s1, pears)'img);
 Put_Line("Set 1 a subset of set 2? " & Is_Subset(s1, s2)'img);
 Put_Line("Set 2 a subset of set 1? " & Is_Subset(s2, s1)'img);
 Put_Line("Set 1 a subset of set 1? " & Is_Subset(s1, s1)'img);
 Put_Line("Set 1 a proper subset of set 1? " & Is_Proper_Subset(s1, s1)'img);
 New_Line;

 s3 := s1;
 Union(s3, s2);
 Put_Line("Set 3 is the union of set 1 and set 2");
 Put_Line("Extent of set 3? " & Extent(s3)'img);
end set_demo;

This is a demo of the Booch components: sets

Set 1 has apples and peaches.
Set 2 has apples, peaches and pears.

Extent of set 1? 2
Extent of set 2? 3
Peaches in set 1? TRUE
Pears in set 1? FALSE
Set 1 a subset of set 2? TRUE
Set 2 a subset of set 1? FALSE
Set 1 a subset of set 1? TRUE
Set 1 a proper subset of set 1? FALSE

Set 3 is the union of set 1 and set 2
Extent of set 3? 3

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (12 of 26) [7/20/2001 11:38:17 AM]

18.1.7 Collections

Collections are a (conceptually) combination of lists and bags. Duplicates actually exist as copies in the collection, not simply
counted. Collections are also indexed, like a list, so that items can be referenced in the collection.

The Collections package provides the following subprograms:

Create - Create a new collection and its initial chunk●

Clear - Remove all items from a collection●

Insert - Add an item in front of another●

Append - Add an item to the end of the collection●

Remove - Remove an item at an index●

Replace - Replace an item at an index●

Length - Return the number of items in the collection●

Is_Empty - True if there are no items in the collection●

First - Return the item at the front of the collection●

Last - Return the item at the end of the collection●

Item_At - Return the item at a particular index●

Location - Return the first index where an item is found (0 if●

Collections are implemented as dynamically allocated arrays.

with BC.Containers.Collections.Dynamic;
with Global_Heap;

package products is

 type aProduct is record
 id : integer;
 weight : float;
 end record;

 package productContainers is new BC.Containers (Item => aProduct);
 -- this is the basic container

 package productCollections is new productContainers.Collections;
 -- create a new collection support for our using container type

 package productCollection is new productCollections.dynamic(
 Storage_Manager => Global_Heap.Pool,
 Storage => Global_Heap.Storage);
 -- create a dynamic collection holding products

end products;

with ada.text_io, BC, products;
use ada.text_io, BC, products;

procedure collection_demo is
 products : productCollection.Dynamic_Collection;
 p : aProduct;
 i : productContainers.Iterator'class := productCollection.New_Iterator(

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (13 of 26) [7/20/2001 11:38:17 AM]

products);
begin
 Put_Line("This is a demo of the Booch components: collections");
 New_Line;

 products := productCollection.Create(100);

 -- The Newly Declared Collection

 Put_Line("The collection is newly declared with a chunk size of 100...");
 Put_Line("The collection is empty? " & productCollection.Is_Empty(products)'img
);
 Put_Line("The collection length is" & productCollection.Length(products)'img);
 Put_Line("The collection chunk size is" & productCollection.Chunk_Size(products
)'img);
 New_Line;

 -- Adding an Item

 p.id := 8301;
 p.weight := 17.0;
 productCollection.Append(products, p);

 Put_Line("Product id" & p.id'img & " was added...");
 Put_Line("The collection is empty? " & productCollection.Is_Empty(products)'img
);
 Put_Line("The collection length is" & productCollection.Length(products)'img);
 Put_Line("The collection chunk size is" & productCollection.Chunk_Size(products
)'img);
 p := productCollection.First(products);
 Put_Line("The first item is" & p.id'img);
 p := productCollection.Last(products);
 Put_Line("The last item is" & p.id'img);
 New_Line;

 -- Adding another Item
 p.id := 1732;
 p.weight := 27.0;
 productCollection.Append(products, p);

 Put_Line("Product id" & p.id'img & " was added...");
 Put_Line("The collection is empty? " & productCollection.Is_Empty(products)'img
);
 Put_Line("The collection length is" & productCollection.Length(products)'img);
 Put_Line("The collection chunk size is" & productCollection.Chunk_Size(products
)'img);
 p := productCollection.First(products);
 Put_Line("The first item is" & p.id'img);
 p := productCollection.Last(products);
 Put_Line("The last item is" & p.id'img);
 New_Line;

 -- Changing the Chunk Size

 productCollection.Set_Chunk_Size(products, Size => 1);

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (14 of 26) [7/20/2001 11:38:17 AM]

 Put_Line("The chunk size was reduced to only 1...");
 Put_Line("The collection is empty? " & productCollection.Is_Empty(products)'img
);
 Put_Line("The collection length is" & productCollection.Length(products)'img);
 Put_Line("The collection chunk size is" & productCollection.Chunk_Size(products
)'img);
 p := productCollection.First(products);
 Put_Line("The first item is" & p.id'img);
 p := productCollection.Last(products);
 Put_Line("The last item is" & p.id'img);
 New_Line;

 -- Iterator example

 Put_Line("Resetting the iterator..");
 productContainers.Reset(i);
 p := productContainers.Current_item (i);
 Put_Line("The current item is customer id" & p.id'img);
 Put_Line("Are we done? " & productContainers.Is_Done(i)'img);

 Put_Line("Advancing to the next item...");
 productContainers.Next(i);
 p := productContainers.Current_item (i);
 Put_Line("The current item is customer id" & p.id'img);
 Put_Line("Are we done? " & productContainers.Is_Done(i)'img);

 Put_Line("Advancing to the next item...");
 productContainers.Next(i);
 Put_Line("Are we done? " & productContainers.Is_Done(i)'img);
 begin
 p := productContainers.Current_item (i);
 exception when BC.NOT_FOUND =>
 put_line("BC.NOT_FOUND exception: no item at this position in the collection");
 end;

Collections are suitable for small lists or lists where the upper bound is known or rarely exceeded.

This is a demo of the Booch components: collections

The collection is newly declared with a chunk size of 100...
The collection is empty? TRUE
The collection length is 0
The collection chunk size is 100

Product id 8301 was added...
The collection is empty? FALSE
The collection length is 1
The collection chunk size is 100
The first item is 8301
The last item is 8301

Product id 1732 was added...
The collection is empty? FALSE

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (15 of 26) [7/20/2001 11:38:17 AM]

The collection length is 2
The collection chunk size is 100
The first item is 8301
The last item is 1732

The chunk size was reduced to only 1...
The collection is empty? FALSE
The collection length is 2
The collection chunk size is 1
The first item is 8301
The last item is 1732

Resetting the iterator..
The current item is customer id 8301
Are we done? FALSE
Advancing to the next item...
The current item is customer id 1732
Are we done? FALSE
Advancing to the next item...
Are we done? TRUE
BC.NOT_FOUND exception: no item at this position in the collection

18.1.8 Queues

Queues are a list in which items are removed in the same order they are added. Items are added at the end of the queue and
removed at the front.

An ordered (or "priority") queue is a queue in which added items are sorted.

The queues package provides the following subprograms:

Clear - Remove all items from the queue●

Append - Add an item to the back of the queue●

Pop - Remove an item from the front of the queue and return it●

Remove - Remove an item at a particular index●

Length - Return the number of items in the queue●

Is_Empty - True if there are no items in the queue●

Front - Return the item at the front of the queue without removing it●

Process - generic procedure to return an item with processing●

Location - Return the first index where an item appears else 0●

Are_Equal - True if two queues have the same items and length●

Copy - Copy one queue to another●

An ordered queue is identical except that append adds an item in sorted order.

Queues can be bounded, dynamic or unbounded.

Queues provide "fair" processing and reduce starvation.

18.1.9 Stacks

Stacks are lists in which the last item placed in the list is the first item removed.

The Stacks package provides the following subprograms:

Clear - Remove all items from the stack●

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (16 of 26) [7/20/2001 11:38:18 AM]

Push - Add an item to the top of the queue●

Pop - Remove an item from the top of the stack and return it●

Depth - Return the number of items in the stack●

Is_Empty - True if there are no items in the stack●

Top - Return the item at the top of the stack without removing it●

Process_Top - generic procedure to return an item with processing●

Are_Equal - True if two stacks have the same items and length●

Copy - Copy one stack to another●

Stacks can be bounded, dynamic or unbounded.

Stacks are used for temporary storage, compact representation and fast data access.

18.1.10 Deques

Deques (double-ended queues, pronounced "deck") are a combination of a stack and queue where items can be placed at the
front or the back and removed from either the front or the back.

The Deques package provides the following subprograms:

Clear - Remove all items from the deque●

Append - Add an item to the deque●

Pop - Remove an item from the deque and return it●

Remove - Remove an item at a particular index●

Length - Return the number of items in the deque●

Is_Empty - True if there are no items in the deque●

Front - Return the item at the front of the deque without removing●

Back - Return the item at the back of the deque without removing it●

Process_Front/_Back - generic procedure to return an item with processing●

Location - Return the first index where an item appears else 0●

Are_Equal - True if two deques have the same items and length●

Copy - Copy one deque to another●

Deques can be bounded, dynamic or unbounded.

18.1.11 Rings

Rings are similar to deques, but rings have no "front" or "back", only a moving point of reference called "top".

In addition to the deque subprograms, rings include "Mark" to mark a point in the ring, "Rotate_To_Mark" to move the ring to
the marked position, and "At_Mark" to test to see if the top of the ring is at the mark.

Rings can be bounded or dynamic.

18.1.12 Maps

Maps are ordered pairs of related items. Each item is related to a "value" which may or may not be the same type. Maps relate
items to values by "binding" them.

The Maps package provides the following subprograms:

Clear - destroy a map●

Bind - relate an item to a value●

Rebind - relate an item to a different value●

Unbind - remove the relationship between an item and its value●

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (17 of 26) [7/20/2001 11:38:18 AM]

Extent - return the number of relationships●

Is_Empty - true if there are no relationships●

Is_Bound - true if the item is related to a value●

Value_Of - the value an item is related to●

Visit - a "read-only" procedure to traverse the map●

Modify - a procedure that traverses the map making changes●

Maps are implemented with a hash table and caching.

Maps can be bounded, dynamic, unbounded or synchronized.

Maps are useful as translation tables.

18.1.13 Binary Trees

Binary trees are lists with two successors instead of 1, named "left" and "right". The items in the tree are not sorted by the
Booch component. The program has full control on how items are added to the tree.

Programs "walk" the tree by moving the root of the tree up and down the links to the items. Left_Child follows the left child
link. Right_Child follows the right child link. Parent follows the parent link. Each of these subprograms can be used as a
procedure (to move the root of the tree) or as a function (to examine the item the link connects to).

 item := Item_At(tree);
 Put("Left child of " & item) ;
 item := Item_At(Left_Child(tree));
 Put_Line(" is " & item) ;

When the root of the tree is moved, any items above the new root that aren't referenced anymore are destroyed. To move
around the tree without destroying nodes (which is typically what you want to do), create an "alias" to the root of the tree with
Create prior to moving.

 root := Create(tree); -- create a reference to the root
 Left_Child(tree); -- safe: old root is not destroyed

Moving into an empty (null) position in the tree is allowed, but any attempt to look at the item there will raise an exception.
The leaves and the parent of the root are empty.

The Trees.Binary package provides the following subprograms:

Clear - Destroy the tree●

Insert - Insert an item at the tree's root●

Append - Add an item in the place of a particular item, moving the old item to a new position●

Remove - Remove an item from the tree●

Share - Create an alias to a subtree of the tree●

Child/Left_Child/Right_Child - Move to a child item●

Parent - Move towards the root●

Set_Item - Make an item the root of the tree●

Has_Children - True if the tree has any children items●

Is_Null - True if the tree has no items●

Is_Shared - True if any subtree has an alias to it●

Is_Root - True if the tree is at the root of tree●

Item_At - Return the item at the root of the tree●

In addition, the tree may have an in_order, pre_order or post_order generic procedure. This procedure traverses the tree and

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (18 of 26) [7/20/2001 11:38:18 AM]

executes processes each item. Pre_order processes an item before its children. Post_order processes an item after its children.
In_order processes a node in the sort order of the tree--after all the left children but before all the right.

with BC.Containers.Trees.Binary.In_Order;
with BC.Containers.Trees.Binary.Pre_Order;
with BC.Containers.Trees.Binary.Post_Order;
with Global_Heap;

package shipment_binary is

 -- grandfather would be proud

 type aQuantity is (Unknown, Basket_6Quart, Basket_11Quart, Bushel, Skid, Boxcar);
 type aFruit is (Apples, Grapes, Peaches, Cherries, Pears, Plums, Other);

 type aShipment is record
 number : Positive; -- number of containers
 quantity : aQuantity; -- the containers
 contents : aFruit; -- type of fruit
 end record;

 procedure visitShipment(s : aShipment; OK : out boolean);
 -- our tree traversal function

 package shipmentContainers is new BC.Containers(item=> aShipment);
 -- basic fruit container

 package shipmentTrees is new shipmentContainers.Trees;
 -- basic tree support

 package shipmentBinaryTrees is new shipmentTrees.Binary(
 Storage_Manager => Global_Heap.Pool,
 Storage => Global_Heap.Storage);
 -- our binary tree support

 procedure inOrdershipmentTraversal is new shipmentBinaryTrees.In_Order(
visitShipment);
 -- an in-order traversal

 procedure preOrdershipmentTraversal is new shipmentBinaryTrees.Pre_Order(
visitShipment);
 -- a pre-order traversal

 procedure postOrdershipmentTraversal is new shipmentBinaryTrees.Post_Order(
visitShipment);
 -- a post-order traversal

end shipment_binary;

with ada.text_io;
use ada.text_io;

package body shipment_binary is

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (19 of 26) [7/20/2001 11:38:18 AM]

 procedure visitShipment(s : aShipment; OK : out boolean) is
 -- our tree traversal function
 begin
 Put("Shipment of");
 Put(s.number'img);
 Put(" ");
 Put(s.quantity'img);
 Put("(S) of ");
 Put_Line(s.contents'img);
 OK := true;
 end visitShipment;

end shipment_binary;

with ada.text_io, shipment_binary;
use ada.text_io, shipment_binary;

procedure bintree_demo is
 use shipmentBinaryTrees;
 root : Binary_Tree;
 t : Binary_Tree;
 s : aShipment;
 OK : boolean;
begin
 Put_Line("This is a demo of the Booch components: binary trees");
 New_Line;

 -- this is the root item

 s.number := 5;
 s.quantity := basket_6quart;
 s.contents := cherries;
 Insert(t, s, Child => Left);
 -- child doesn't really matter because there's no prior item at the root

 root := Create(t); -- remember where the root is

 -- add to left of root

 s.number := 7;
 s.quantity := basket_11quart;
 s.contents := pears;
 Append(t, s, Child => Left, After => Left);
 -- child doesn't really matter here

 -- add to right of root

 s.number := 12;
 s.quantity := bushel;
 s.contents := apples;
 Append(t, s, Child => Left, After => Right);
 -- child doesn't really matter here

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (20 of 26) [7/20/2001 11:38:18 AM]

 Left_Child(t); -- move "t" down left branch

 s.number := 3;
 s.quantity := skid;
 s.contents := peaches;
 Append(t, s, Child => Left, After => Right);
 -- child doesn't really matter here

 Put_Line("Our tree is: ");
 Put_Line(" 5 6 qt baskets of cherries");
 Put_Line(" |");
 Put_Line(" +--+");
 Put_Line(" | |");
 Put_Line("7 11 qt baskets of pears 12 bushels of apples"
);
 Put_Line(" |");
 Put_Line(" +-------------------------------|");
 Put_Line(" 3 skids of peaches");
 New_Line;

 Put_Line("In-order traversal:");
 inOrderShipmentTraversal(root, OK);
 if not OK then
 Put_Line("The traversal was interrupted");
 end if;
 New_Line;

 Put_Line("Pre-order traversal:");
 preOrderShipmentTraversal(root, OK);
 if not OK then
 Put_Line("The traversal was interrupted");
 end if;
 New_Line;

 Put_Line("Post-order traversal:");
 postOrderShipmentTraversal(root, OK);
 if not OK then
 Put_Line("The traversal was interrupted");
 end if;

end bintree_demo;

This is a demo of the Booch components: binary trees

Our tree is:
 5 6 qt baskets of cherries
 |
 +--+
 | |
7 11 qt baskets of pears 12 bushels of apples
 |
 +-------------------------------|
 3 skids of peaches

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (21 of 26) [7/20/2001 11:38:18 AM]

In-order traversal:
Shipment of 7 BASKET_11QUART(S) of PEARS
Shipment of 3 SKID(S) of PEACHES
Shipment of 5 BASKET_6QUART(S) of CHERRIES
Shipment of 12 BUSHEL(S) of APPLES

Pre-order traversal:
Shipment of 5 BASKET_6QUART(S) of CHERRIES
Shipment of 7 BASKET_11QUART(S) of PEARS
Shipment of 3 SKID(S) of PEACHES
Shipment of 12 BUSHEL(S) of APPLES

Post-order traversal:
Shipment of 3 SKID(S) of PEACHES
Shipment of 7 BASKET_11QUART(S) of PEARS
Shipment of 12 BUSHEL(S) of APPLES
Shipment of 5 BASKET_6QUART(S) of CHERRIES

Binary trees should not be Guarded.

18.1.14 AVL Trees

AVL trees are binary trees that are balanced. On every insert or delete, the tree is restructured to keep its symmetry. As a
result, the trees must be sorted by the Booch component and the program using the AVL tree must provide a "<" function to
sort the tree by.

The AVL package provides fewer subprograms than the binary tree package:

Clear - destory the AVL tree●

Insert - add an item into the AVL tree●

Delete - remove an item form the AVL tree●

Extent - return the number of items in the AVL tree●

Is_Null - true if there are no items in the AVL tree●

Is_Member - true if an item is in the AVL tree●

Visit - traverse the tree in-order executing a "read only" procedure●

Modify - traverse the tree in-order executing a procedure that can alter the items.●

There are no subprograms for walking the tree.

Here is a sample declaration:

with BC.Containers.Trees.AVL;
with Global_Heap;

package fruit_avl is

 -- more fun with fruit

 type aQuantity is (Unknown, Basket_6Quart, Basket_11Quart, Bushel, Skid, Boxcar);
 type aFruit is (Apples, Grapes, Peaches, Cherries, Pears, Plums, Other);

 type aShipment is record
 number : Positive; -- number of containers
 quantity : aQuantity; -- the containers
 contents : aFruit; -- type of fruit

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (22 of 26) [7/20/2001 11:38:18 AM]

 end record;

 function sortCriteria(left, right : aShipment) return boolean;
 -- for sorting the AVL tree

 package shipmentContainers is new BC.Containers(item=> aShipment);
 -- basic fruit container

 package shipmentTrees is new shipmentContainers.Trees;
 -- basic tree support

 package shipmentAVLTrees is new shipmentTrees.AVL(
 sortCriteria,
 Storage_Manager => Global_Heap.Pool,
 Storage => Global_Heap.Storage);
 -- our AVL tree support

end fruit_avl;

package body fruit_avl is

 function sortCriteria(left, right : aShipment) return boolean is
 begin
 return left.number < right.number;
 end sortCriteria;

end fruit_avl;

AVL trees have slower inserts and deletes than binary trees but are faster than a normal binary tree for searching.

18.1.15 Multiway Trees

A multiway tree is a tree with any number of unsorted children (as opposed to a binary tree which always has no more than
two chidren).

The subprograms are similar to a binary tree. The append procedures add child items to an item. A new function called "Arity"
returns the number children an item has.

Multiway trees should not be Guarded.

18.1.16 Graphs

Essentially, graphs are a generalization of maps where any number of items can be related to each other (as opposed to only
two).

A directed graph is a set of items (vertices) that are connected by relationships (edges or "arcs"). Like a single linked list, a
program can only move forward along an arc.

Items can also be linked to themselves.

The graphs-directed package provides the following subprograms:

Create_Arc - add a relationship between two items●

Number_Of_Incoming_Arcs - return the number of incoming arcs to an item●

Number_Of_Outgoing_Arcs - return the number of outgoing arcs to an item●

Set_From_Vertex - move an arch's source to a new item●

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (23 of 26) [7/20/2001 11:38:18 AM]

Set_To_Vertex - move an arc's destination to a new item●

From_Vertex - return the source item for an arc●

To_Vertex - return the destination item for an arc●

There are four iterators: a graph iterator, and three iterators for visiting items (incoming, outgoing and both).

An undirected graph is a directed graph with pointers to both the previous and next item along an arc. Like a double linked list,
a program can move forwards or backwards along an arc.

The graphs-undirected package provides the following subprograms:

Create_Arc - add a relationship between two items●

Arity - return the number of arcs. Self-arcs are counted only once●

Set_First_Vertex - move an arch's first item to a new item●

Set_Second_Vertex - move an arc's second item to a new item●

First_Vertex - return the first item for an arc●

Second_Vertex - return the second item for an arc●

There are two iterators: a graph iterator and an item iterator.

Graphs should not be Guarded.

18.1.17 Smart Pointers

Smart pointers are an access type that counts the number of references to the item being pointed to. Your program allocates the
item. The item is deallocated when no more pointers point to it. Smart pointers are a simplified form of garbage collection.

The smart package provides the following subprograms:

Create - create a new smart pointer from an access variable●

Value - return the item pointed to by the smart pointer●

with BC.smart;

package depts is

 type departments is (accounting, information_technology, shipping, human_resources
);
 type deptAccess is access all departments;
 package deptPtrs is new BC.smart(departments, deptAccess);

end depts;

with ada.text_io, depts;
use ada.text_io, depts;

procedure sp_demo is
 accountingPtr : deptPtrs.Pointer;
 accounting2Ptr : deptPtrs.Pointer;
 department : deptAccess;
begin
 Put_Line("This is a demo of the Booch components: smart pointers");
 New_Line;

 department := new departments'(accounting);

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (24 of 26) [7/20/2001 11:38:18 AM]

 Put_Line("Assigning dynamically allocate value to a smart pointer");
 accountingPtr := deptPtrs.Create(department);
 Put_Line("The accounting pointer points at " & deptPtrs.Value(accountingPtr
).all'img);
 New_Line;

 Put_Line("Assigning a smart pointer to a smart pointer");
 accounting2Ptr := accountingPtr;
 Put_Line("The accounting pointer 2 points at " & deptPtrs.Value(accounting2Ptr
).all'img);
 New_Line;

 Put_Line("The memory is released when the program ends or no more pointers");
 Put_Line("access the memory.");
end sp_demo;

This is a demo of the Booch components: smart pointers

Assigning dynamically allocate value to a smart pointer
The accounting pointer points at ACCOUNTING

Assigning a smart pointer to a smart pointer
The accounting pointer 2 points at ACCOUNTING

The memory is released when the program ends or no more pointers
access the memory.

18.1.18 Booch Multithreading

Booch components can be guarded (manually "locking" the structure for exclusive access) or synchronized (implicit blocking)
for multithreading purposes.

Guarding is implemented by creating extending a container type to a Guarded_Container using the GC.Containers.Guarded
package. Guarded containers contain two new subprograms, "Seize" and "Release", to lock and unlock a container. (This is
implemented using a semaphore.) Any Booch data structure can be made guarded using guarded containers, but in some cases
guarding will not work as expected and should not be used (for example, with lists).

The basic semaphore locks individual objects (although it many not work as expected on certain structures such as lists,
according to AdaPower.Net). The basic semaphore can be extended and customized by a programmer.

Rewriting the Bags example with guards:

with BC.Containers.Bags.Unbounded;
with BC.Containers.Guarded;
with BC.Support.Synchronization;
with Global_Heap;

package guarded_customers is

 type aCustomerID is new integer range 1_000..9_999;

 function IDHash(id : aCustomerID) return Positive;
 -- our hash function

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (25 of 26) [7/20/2001 11:38:19 AM]

 package customerContainers is new BC.Containers (Item => aCustomerID);
 -- this is the basic container

 package customerBags is new customerContainers.Bags;
 -- create a new bag support for our using container type

 package customerBag is new customerBags.Unbounded(
 Hash => IDHash,
 Buckets => 99,
 Storage_Manager => Global_Heap.Pool,
 Storage => Global_Heap.Storage);
 -- create an unbounded bag holding customer numbers

 package customerGuardedBag is new customerContainers.Guarded (
 Base_Container => customerBag.Unbounded_Bag,
 Semaphore => BC.Support.Synchronization.Semaphore);
 -- create a new controlled tagged record container for customers

end guarded_customers;

A new guarded bag can now be declared:

 customers : customerGuardedBag.Guarded_Container;

and the bag can be locked using

 customerGuardedBag.Seize(customers);

Synchronized access by threads is implemented in special versions of the data structure packages (for example,
maps.synchronized). With synchronized packages, the implementation details are hidden from the user.

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 18 Data Structures

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (26 of 26) [7/20/2001 11:38:19 AM]

19 Specialized Topics

 <--Last Chapter Table of Contents Next Chapter-->

19.1 Ada Meets Java

19.1.1 The Java Virtual Machine

19.1.2 JGnat Most of the Gnat tools have a corresponding JGnat version, including gnatmake. To
compile an Ada program into a Java byte-code program, use jgnatmake:

 jgnatmake hello

Table: jgnatmake switches

JGnatmake Switch Description

-a Consider all files, even readonly ali files

-c Compile only, do not bind and link

-f Force recompilations of non predefined units

-i In place. Replace existing ali file, or put it with source

-jnum Use nnn processes to compile

-k Keep going after compilation errors

-m Minimal recompilation

-M List object file dependences for Makefile

-n Check objects up to date, output next file to compile if not

-o name Choose an alternate executable name

-q Be quiet/terse

-s Recompile if compiler switches have changed

-v Display reasons for all (re)compilations

-z No main subprogram (zero main)

--GCC=command Use this jgnat command

--GNATBIND=command Use this gnatbind command

--GNATLINK=command Use this gnatlink command

-aLdir Skip missing library sources if ali in dir

-Adir like -aLdir -aIdir

Big Online Book of Linux Ada Programming - 19 Specialized Topics

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/19.html (1 of 4) [7/20/2001 11:38:32 AM]

-aOdir Specify library/object files search path

-aIdir Specify source files search path

-Idir Like -aIdir -aOdir

-I- Don't look for sources & library files in the default directory

-Ldir Look for program libraries also in dir

-nostdinc Don't look for sources in the system default directory

-nostdlib Don't look for library files in the system default directory

-cargs opts opts are passed to the compiler

-bargs opts opts are passed to the binder

-largs opts opts are passed to the linker

-g Generate debugging information

-Idir Specify source files search path

-I- Do not look for sources in current directory

-O[0123] Control the optimization level

-gnata Assertions enabled. Pragma Assert/Debug to be activated

-gnatA Avoid processing gnat.adc, if present file will be ignored

-gnatb Generate brief messages to stderr even if verbose mode set

-gnatc Check syntax and semantics only (no code generation)

-gnatd? Compiler debug option ? (a-z,A-Z,0-9), see debug.adb

-gnatD Debug expanded generated code rather than source code

-gnate Error messages generated immediately, not saved up till end

-gnatE Dynamic elaboration checking mode enabled

-gnatf Full errors. Verbose details, all undefined references

-gnatF Force all import/export external names to all uppercase

-gnatg GNAT implementation mode (used for compiling GNAT units)

-gnatG Output generated expanded code in source form

-gnath Output this usage (help) information

-gnati? Identifier char set (?=1/2/3/4/8/p/f/n/w)

-gnatk Limit file names to nnn characters (k = krunch)

-gnatl Output full source listing with embedded error messages

-gnatL Use longjmp/setjmp for exception handling

-gnatmnnn Limit number of detected errors to nnn (1-999)

-gnatn Inlining of subprograms (apply pragma Inline across units)

-gnato Enable overflow checking (off by default)

-gnatO nm Set name of output ali file (internal switch)

Big Online Book of Linux Ada Programming - 19 Specialized Topics

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/19.html (2 of 4) [7/20/2001 11:38:32 AM]

-gnatp Suppress all checks

-gnatP Generate periodic calls to System.Polling.Poll

-gnatq Don't quit, try semantics, even if parse errors

-gnatR List representation information

-gnats Syntax check only

-gnatt Tree output file to be generated

-gnatTnnn All compiler tables start at nnn times usual starting size

-gnatu List units for this compilation

-gnatU Enable unique tag for error messages

-gnatv Verbose mode. Full error output with source lines to stdout

-gnatw? Warning mode. (?=s/e/l/u for suppress/error/elab/undefined)

-gnatW Wide character encoding method (h/u/s/e/8/b)

-gnatx Suppress output of cross-reference information

-gnatX Language extensions permitted

-gnaty Enable all style checks

-gnatyxxx

Enable selected style checks xxx = list of parameters:

1-9 check indentation●

b check no blanks at end of lines●

c check comment format●

e check end labels present●

f check no form feeds/vertical tabs in source●

h check no horizontal tabs in source●

i check if-then layout●

k check casing rules for keywords, identifiers●

m check line length <= 79 characters●

Mnnn check line length <= nnn characters●

r check RM column layout●

s check separate subprogram specs present●

t check token separation rules●

-gnatz Distribution stub generation (r/s for receiver/sender stubs)

-gnatZ Use zero cost exception handling

-gnat83 Enforce Ada 83 restrictions

jgnatmake will create two files: hello.class and ada_hello.class. To run the program under the Java
interpreter, type

Big Online Book of Linux Ada Programming - 19 Specialized Topics

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/19.html (3 of 4) [7/20/2001 11:38:32 AM]

 java hello

Table: java switches

Java Interpreter Switch Description

-help Print usage info

-version Print version number

-ss size Maximum native stack size

-mx size Maximum heap size

-ms size Initial heap size

-as size Heap increment

-classpath path Set classpath

-verify Verify all bytecode

-verifyremote Verify bytecode loaded from network

-noverify Do not verify any bytecode

-Dproperty=value Set a property

-verbosegc Print message during garbage collection

-noclassgc Disable class garbage collection

-v, -verbose Be verbose

-verbosejit Print message during JIT code generation

-verbosemem Print detailed memory allocation statistics

-debug Trace method calls

-noasyncgc Do not garbage collect asynchronously

-cs, -checksource Check source against class files

-oss size Maximum java stack size

-jar Executable is a JAR

Limitations: Ada streams don't work with Jgnat.

19.2 ASIS Information on ASIS is available at http://info.acm.org/sigada/WG/asiswg/asiswg.html.

 <--Last Chapter Table of Contents Next Chapter-->

Big Online Book of Linux Ada Programming - 19 Specialized Topics

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/19.html (4 of 4) [7/20/2001 11:38:32 AM]

http://info.acm.org/sigada/WG/asiswg/asiswg.html

20 Developing Your Project

 <--Last Chapter Table of Contents Appendices-->

20.1 The Project Proposal

Before you begin any project that will be released to the public, it's a good idea to draw up a proposal.
The proposal should be about one page document describing the purpose of the project, who it's being
made for, and how long it will take and what kind of investments (time, money or otherwise) you
expect. This is especially important if there is anybody working with you. Don't assume your teammates
see the project in exactly the same was as you do: write a proposal to avoid misunderstandings.

For example, calling a project "a database" doesn't say much. Calling it a "fast, distributed database for
businesses" tells your teammates where the database will be used, gives them an idea about the features
required, and tells that the design emphasis is on execution speed.

Once your proposal is finished, bounce the ideas of a few people you respect and trust, especially if they
are potential users of your program. If none of them think the project is practical, you may want to
change the target audience or features of your project, or chose another project altogether.

You can later use your proposal as the basic text for an announcement of the release of your program.

20.2 The Design Phase

When it comes time to begin designing the basic layout of a project, remember that Ada has features
designed just for this task.

Break up your project into a series of packages, and include basic type definitions and subprograms
(using pragma stubbed). Remember that the design doesn't have to be perfect, but you need a starting
place for you and your teammates to discuss the work. Use lots of comments to avoid continually
explaining the purpose of each package and it's contents.

When you have a basic layout, compile each of the specs to make sure the design is sound.

20.3 The Development Phase

Check list:

Did you use pragma pure, preelaborate or no_elaboration_code whenever possible?

Did you use pragma Normalize_Scalars whenever possible?

20.4 The Alpha/Beta Release

Check list for first alpha or beta release:

Check your integers: did you use integer when short_integer or long_integer would have been better?

Big Online Book of Linux Ada Programming - 20 Developing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (1 of 7) [7/20/2001 11:38:49 AM]

Do you have pragma Optimize set in all of your packages?

Did you use pragma Pack all arrays and records that need packing? Do some need packing turned off?

Did you assign your access types to a debug pool in order to check for run-time errors?

20.5 Releasing Your Software

Check list:

Did you remove all pragma Normalize_Scalars?

Did you remove all access type references to debug pools?

20.5.1 A Third Party Library

If you want to release a package as a third party library:

Change your .ads files to read-only with chmod -w.

Collect your executables into an archive with the ar command (see the section on libraries above).

Include instructions for installing the archive and make sure you mention that those who use your library
must use the -f option for gnatmake. This option treats all read-only files as third party libraries that
cannot be recompiled because the package bodies were not included.

20.6 Distribution Formats

20.6.1 RPM: Red Hat Package Manager

RPM (Red Hat Package Manager) is the most popular installation tool. It installs, uninstalls, and
checksums packages. S.u.S.E.'s YaST (Yet Another Setup Tool) works using RPM. RPM files end in
".rpm". Full details on the RPM format are available from Red Hat's RPM site at http://www.rpm.org.

The -q command checks for a package. -a shows all installed packages.

[root@redbase /root]# rpm -q uucp

uucp-1.06.1-14

[root@redbase /root]# rpm -q kernel

kernel-2.0.32-2

[root@redbase /root]# rpm -q -a

setup-1.9.1-1

filesystem-1.3.1-2

basesystem-4.9-1

AnotherLevel-0.5-2

ldconfig-1.9.5-2

Big Online Book of Linux Ada Programming - 20 Developing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (2 of 7) [7/20/2001 11:38:49 AM]

…

XFree86-Mach64-3.3.1-14

Creating a new RPM archive is a cumbersome, multistep process.

20.6.2 TGZ Packages

TGZ (tar-ed gzip packages) are created by collecting all the files into one file using tar (tape archiver)
and compressing the file gzip (GNU zip) or tar's z (compress) option. The files are usually named with
".tgz" ending but sometimes have the ".tar.gz" longform ending.

To create a new .tar archive, use the "cfv" options.

 tar cfv archivename file

To add additional files to the archive, use "rfv".

 tar rfv archivename file

When the tar file is finished, compress it with gzip

 gzip —9 archivename.tar

And rename it to .tgz

 mv archivename.tar.gz archivename.tar.gz

20.6.3 TAR.BZ2 Packages

TAR.BZ2 (tar-ed bzip packages) are another option. Like TGZ, these are tar files that are compressed,
but instead use the new bzip2 command that compresses better than gzip.

Other Formats

TZ is an older format, these are tar files that are compressed with the old compression command,
compress.

ZIP packages are collected and compressed in the popular PC zip format using zip.

ZOO packages use an older compression program, zoo.

CPIO (Copy In-Out) is another archiving program similar to tar. It collects files but doesn't compress
them.

DEB is a package for the Debian distribution.

There are a host of other tools and formats, including ones to create archives for other platforms.

20.7 Man Pages

Linux man pages are special text files formatted for the groff program (GNU run off) is based on the
older UNIX programs troff (for printers) and nroff (for terminals). Troff was originally created in 1973
by Joseph F. Ossanna.

Big Online Book of Linux Ada Programming - 20 Developing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (3 of 7) [7/20/2001 11:38:49 AM]

man pages are text files containing groff markup codes embedded in the text. These codes, much like
HTML tags in a web page, control the fonts, layout and graphics used in the pages. You can also define
your own groff codes (using groff macros).

Here's an example of a man page with groff markup codes:

.\"This is a comment

.TH MAN 7 "25 July 1993" "Linux" "Linux Programmer's Manual"

.SH NAME
man \- macros to format man pages
.SH SYNOPSIS
.B groff \-Tascii \-man
.I file

Here, the ".B" groff code indicates that the text that follows should be bold (similar to), and the
".SH" groff code incidcates the text that follows is a subheading (similar to <hn>).

The groff predefined macros pretaining to manual pages are documented in the section 7 manual page on
man ("man 7 man").

All the man pages are stored in subdirectories in /usr/man. The subdirectories are numbered, each
number representing a different section number of the Linux manual. The manuals sections include:

Linux introduction1.

System Calls2.

C Library Calls3.

Summaries and Data Structures4.

For example, the C library call manual pages are located in /usr/man/man3.

The easiest way to create a simple man page for your program is to find a similar man page and make a
copy. Use this copy as a basis for your new man page. You can perform a simple test on your new man
page by

 groff mypage | less

To convert your page to another format, use

 groff mypage > mypage.ps

to create a PostScript version of your man page (or use the -Tdvi switch to create a TeX .dvi file). Use
one of the free conversion programs available on the Internet to translate the PostScript file to another
format.

Big Online Book of Linux Ada Programming - 20 Developing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (4 of 7) [7/20/2001 11:38:49 AM]

20.8 Linux Software Map Entry

The Linux Software Map (http://www.ExecPC.com/lsm/) is a web site devoted to tracking Linux
software. Software registered with the map uses a LSM (Linux Software Map) file to describe
programs. One important Linux site, Metalab (http://metalab.unc.edu), requires a LSM file for every
program in its archive.

A Linux Software Map entry is a text file ending with a ".lsm" suffix. It's formatted like an email
message header. There are named fields that begin with a keyword and a colon, followed by the data for
that field. Continue lines by pacing over beneath the previous line.

Here is an example LSM entry:

Begin3

Title: YAK - Bulletin Board System for Linux

Version: 1.08b

Entered-date: 09JUN97

Description: BBS software with sources for DOS, OS/2 and Linux. Includes also

 tosser and tick program without sources.

Keywords: yak bbs tosser conference bulletin board

Author: skyreader@fw.nullnet.fi (Timo Sirainen)

Primary-site: Skyliner BBS +358-15-176242

Alternative-site: sunsite.unc.edu

Platform: DOS, OS/2, Linux, ...

Copying-policy: GPL

End

Here is the LSM entry for System Manager in a Box 0.9.1 (beta):

Begin3

Title: System Manager in a Box

Version: 0.9.1 (beta)

Entered-date: Wednesday, May 26, 1999

Description: Linux configuration and administration utility using AI techniques.

 PegaSoft home page is http://www.vaxxine.com/pegasoft

Keywords: system administration box ai pegasoft

Big Online Book of Linux Ada Programming - 20 Developing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (5 of 7) [7/20/2001 11:38:49 AM]

Author: pegasoft@tiamet.vaxxine.com (PegaSoft Canada)

Maintained-by: pegasoft@tiamet.vaxxine.com (PegaSoft Canada)

Primary-site: metalab.unc.edu /pub/Linux/system/admin

 700kB smiab-0.9.1.tgz

Alternate-site:

Original-site:

Platforms:

Copying-policy: freeware

End

[KB-platform or platforms?]

Details about the format are available from the LSM web site.

To register a program with the Linux Software Map, email your LSM entry to 'lsm@execpc.com' with
the subject 'add'.

20.9 Software Licensing Options

The following is a very simplistic overview of the basic licensing options for Linux:

Commercial — sold for money, with warranty. Windows 95 is commercial, as are most programs that
run on it.

Free/Freeware — free for all use, usually has no warranty.

GPL (GNU Public License) — free for use and no warranty. If it's a programming tool, you can only
incorporate it into your programs to create more GPL software. In other words, GPL is free public
software that can only be used to make more free public software. Imagine a free engine for cars. If any
car is built to take that free engine, it must be sold for free as well.

LGPL (Library GPL) — same as GPL. Commercial programs may only use it if it's shared, not
statically linked. A car can be sold with no engine in it, and the engine can be added separately by the
dealer, but you can't sell the car with the free engine factory-installed.

Shareware — commercial software that's sold on the honor system: people who like the software and
who use it are expected to send in a cheque to the author. There's a lot of shareware for Windows.

Xfree86 uses a different licence that's compatible with GPL/LGPL.

Virtually all the standard C libraries are LGPL, including libc, but you should check to documentation or
C header files to make sure.

Details on these and other licensing options, and how they interact, are described in the book Linux
Application Development from Addision-Wesley-Longman.

Big Online Book of Linux Ada Programming - 20 Developing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (6 of 7) [7/20/2001 11:38:49 AM]

 <--Last Chapter Table of Contents Appendices-->

Big Online Book of Linux Ada Programming - 20 Developing Your Project

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (7 of 7) [7/20/2001 11:38:49 AM]

 <--Chapter 20 Table of Contents Appendix B-->

Appendix A: The Linux Shell
The default Linux shell is bash. Here's a summary of common bash shell commands.

ls— lists the files in the current directory

[root@armitage temp]# ls
typescript

touch — create a new, blank file. If the file exists, changes the time it was last modified but otherwise
leaves the file unchanged.

[root@armitage temp]# touch temp.txt
[root@armitage temp]# ls
temp.txt typescript

rm — permanently remove a file

[root@armitage temp]# rm temp.txt
rm: remove `temp.txt'? y

Note: Red Hat defines aliases for rm, mv and cp that prompt before they overwrite or erase a file. Most
other distributions use the default behaviour, which is to take action without warning. You can disable
Red Hat's aliases with the unalias command.

mv — change the name of a file, or move it to a new location

[root@armitage temp]# touch temp.txt
[root@armitage temp]# mv temp.txt temp2.txt
[root@armitage temp]# ls
temp2.txt typescript

cp — copy a file

[root@armitage temp]# cp temp2.txt temp3.txt
[root@armitage temp]# ls
temp2.txt temp3.txt typescript

grep — search a file for a word or phrase

Big Online Book of Linux Ada Programming - Appendix A

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99.html (1 of 3) [7/20/2001 11:39:10 AM]

[root@armitage temp]# grep "procedure" /home/ken/ada/basicio2.adb
procedure basicio2 is

find — search for a file

[root@armitage temp]# find /home/ken -type f -name basicio3.adb
/home/ken/ada/basicio3.adb

lpr — print a file

[root@armitage temp]# lpr basicio3.adb

lprm — stop printing a file, if the file hasn't started printing yet

[root@armitage temp]# lprm
dfA017Aa01370 dequeued
cfA017Aa01370 dequeued

lpq — list your files waiting to be printed

[root@armitage temp]# lpq
no entries

cat — display a file

[root@armitage temp]# cat hello.adb
with Ada.Text_IO;
use Ada.Text_IO;

procedure hello is
begin
 Put_Line("Hello world!");
end hello;

less — display a file one screen at a time,
allowing you to move around

[root@armitage temp]# less basicio.adb

tr — translate characters. To translate a DOS
text file to a Linux text file, use

Big Online Book of Linux Ada Programming - Appendix A

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99.html (2 of 3) [7/20/2001 11:39:10 AM]

tr —d ‘\r' < dos.txt > linux.txt

 <--Chapter 20 Table of Contents Appendix B-->

Big Online Book of Linux Ada Programming - Appendix A

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99.html (3 of 3) [7/20/2001 11:39:10 AM]

 <--Appendix A Table of Contents Appendix C-->

Appendix B: Linux Error Codes
Linux numeric error codes as defined by the Linux kernel.

C Name Value Description

EPERM 1 Operation not permitted

ENOENT 2 No such file or directory

ESRCH 3 No such process

EINTR 4 Interrupted system call

EIO 5 I/O error

ENXIO 6 No such device or address

E2BIG 7 Arg list too long

ENOEXEC 8 Exec format error

EBADF 9 Bad file number

ECHILD 10 No child processes

EAGAIN 11 Try again

ENOMEM 12 Out of memory

EACCES 13 Permission denied

EFAULT 14 Bad address

ENOTBLK 15 Block device required

EBUSY 16 Device or resource busy

EEXIST 17 File exists

EXDEV 18 Cross-device link

ENODEV 19 No such device

ENOTDIR 20 Not a directory

EISDIR 21 Is a directory

EINVAL 22 Invalid argument

ENFILE 23 File table overflow

EMFILE 24 Too many open files

ENOTTY 25 Not a tty device

ETXTBSY 26 Text file busy

Big Online Book of Linux Ada Programming - Appendix B

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_b.html (1 of 4) [7/20/2001 11:39:27 AM]

EFBIG 27 File too large

ENOSPC 28 No space left on device

ESPIPE 29 Illegal seek

EROFS 30 Read-only file system

EMLINK 31 Too many links

EPIPE 32 Broken pipe

EDOM 33 Math argument out of domain of func

ERANGE 34 Math result not representable

EDEADLK 35 Resource deadlock would occur

ENAMETOOLONG 36 File name too long

ENOLCK 37 No record locks available

ENOSYS 38 Function not implemented

ENOTEMPTY 39 Directory not empty

ELOOP 40 Too many symbolic links encountered

EWOULDBLOCK same as EAGAIN Operation would block

ENOMSG 42 No message of desired type

EIDRM 43 Identifier removed

ECHRNG 44 Channel number out of range

EL2NSYNC 45 Level 2 not synchronized

EL3HLT 46 Level 3 halted

EL3RST 47 Level 3 reset

ELNRNG 48 Link number out of range

EUNATCH 49 Protocol driver not attached

ENOCSI 50 No CSI structure available

EL2HLT 51 Level 2 halted

EBADE 52 Invalid exchange

EBADR 53 Invalid request descriptor

EXFULL 54 Exchange full

ENOANO 55 No anode

EBADRQC 56 Invalid request code

EBADSLT 57 Invalid slot

EDEADLOCK same as EDEADLK -

EBFONT 59 Bad font file format

ENOSTR 60 Device not a stream

ENODATA 61 No data available

Big Online Book of Linux Ada Programming - Appendix B

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_b.html (2 of 4) [7/20/2001 11:39:27 AM]

ETIME 62 Timer expired

ENOSR 63 Out of streams resources

ENONET 64 Machine is not on the network

ENOPKG 65 Package not installed

EREMOTE 66 Object is remote

ENOLINK 67 Link has been severed

EADV 68 Advertise error

ESRMNT 69 Srmount error

ECOMM 70 Communication error on send

EPROTO 71 Protocol error

EMULTIHOP 72 Multihop attempted

EDOTDOT 73 RFS specific error

EBADMSG 74 Not a data message

EOVERFLOW 75 Value too large for defined data type

ENOTUNIQ 76 Name not unique on network

EBADFD 77 File descriptor in bad state

EREMCHG 78 Remote address changed

ELIBACC 79 Can not access a needed shared library

ELIBBAD 80 Accessing a corrupted shared library

ELIBSCN 81 .lib section in a.out corrupted

ELIBMAX 82 Linking in too many shared libraries

ELIBEXEC 83 Cannot exec a shared library directly

EILSEQ 84 Illegal byte sequence

ERESTART 85 Interrupted system call should be restarted

ESTRPIPE 86 Streams pipe error

EUSERS 87 Too many users

ENOTSOCK 88 Socket operation on non-socket

EDESTADDRREQ 89 Destination address required

EMSGSIZE 90 Message too long

EPROTOTYPE 91 Protocol wrong type for socket

ENOPROTOOPT 92 Protocol not available

EPROTONOSUPPORT 93 Protocol not supported

ESOCKTNOSUPPORT 94 Socket type not supported

EOPNOTSUPP 95 Operation not supported on transport endpoint

EPFNOSUPPORT 96 Protocol family not supported

Big Online Book of Linux Ada Programming - Appendix B

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_b.html (3 of 4) [7/20/2001 11:39:27 AM]

EAFNOSUPPORT 97 Address family not supported by protocol

EADDRINUSE 98 Address already in use

EADDRNOTAVAIL 99 Cannot assign requested address

ENETDOWN 100 Network is down

ENETUNREACH 101 Network is unreachable

ENETRESET 102 Network dropped connection because of reset

ECONNABORTED 103 Software caused connection abort

ECONNRESET 104 Connection reset by peer

ENOBUFS 105 No buffer space available

EISCONN 106 Transport endpoint is already connected

ENOTCONN 107 Transport endpoint is not connected

ESHUTDOWN 108 Cannot send after transport endpoint shutdown

ETOOMANYREFS 109 Too many references: cannot splice

ETIMEDOUT 110 Connection timed out

ECONNREFUSED 111 Connection refused

EHOSTDOWN 112 Host is down

EHOSTUNREACH 113 No route to host

EALREADY 114 Operation already in progress

EINPROGRESS 115 Operation now in progress

ESTALE 116 Stale NFS file handle

EUCLEAN 117 Structure needs cleaning

ENOTNAM 118 Not a XENIX named type file

ENAVAIL 119 No XENIX semaphores available

EISNAM 120 Is a named type file

EREMOTEIO 121 Remote I/O error

EDQUOT 122 Quota exceeded

ENOMEDIUM 123 No medium found

EMEDIUMTYPE 124 Wrong medium type

 <--Appendix A Table of Contents Appendix C-->

Big Online Book of Linux Ada Programming - Appendix B

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_b.html (4 of 4) [7/20/2001 11:39:27 AM]

 <--Appendix B Table of Contents Appendix D-->

Appendix C: Linux Kernel Calls
This is a list of Linux kernel calls from section 2 of the manual.

 _exit - terminate the current process
 _llseek - reposition read/write file offset
 _newselect - NQS
 sysctl - read/write system parameters
 accept - accept a connection on a socket
 access - check user's permissions for a file
 acct - switch process accounting on or off
 adjtimex - tune kernel clock
 afs_syscall - unimplemented
 alarm - set an alarm clock for delivery of a signal
 bdflush - start, flush, or tune buffer-dirty-flush daemon
 bind - bind a name to a socket
 break - unimplemented
 brk - change data segment size
 cacheflush - (MIPS) flush contents of instruction and/or data cache
 chdir - change working directory
 chmod - change permissions of a file
 chown - change ownership of a file
 chroot - change root directory
 __clone - create a child process for multithreading
 close - close a file descriptor
 connect - initiate a connection on a socket
 creat - open and possibly create a file or device
 create_module - create a loadable module entry
 delete_module - delete a loadable module entry
 dup - duplicate a file descriptor
 dup2 - duplicate a file descriptor
 execve - execute program
 exit - cause normal program termination
 fchdir - change working directory
 fchmod - change permissions of a file
 fchown - change ownership of a file
 fcntl - manipulate file descriptor
 fdatasync - synchronize a file's in-core data with that on disk
 flock - apply or remove an advisory lock on an open file
 fork - create a child process
 fstat - get file status
 fstatfs - get file system statistics

Big Online Book of Linux Ada Programming - Appendix C

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_c.html (1 of 5) [7/20/2001 11:39:50 AM]

 fsync - synchronize a file's complete in-core state with that on disk
 ftruncate - truncate a file to a specified length
 get_kernel_syms - retrieve exported kernel and module symbols
 getdents - get directory entries
 getdomainname - get domain name
 getdtablesize - get descriptor table size
 getgid - get group identity
 geteuid - get user identity
 getgid - get group identity
 getgroups - get/set list of supplementary group
 gethostid - get the unique identifier of the current host
 gethostnamee - get host name
 getitimer - get value of an interval timer
 getpagesize - get system page size
 getpeername - get name of connected peer
 getpgid - get process group
 getpgrp - get process group
 getpid - get process identification
 getppid - get process identification
 getpriority - get/set program scheduling priority
 getresgid - get real, effective and saved group ID
 getresuid - get real, effective and saved user ID
 getrlimit - get resource limits
 getrusage - get resource limits
 getsid - get session ID
 getsockname - get socket name
 getsockopt - get options on sockets
 gettimeofday - get time
 getuid - get user identity
 gtty - unimplemented
 idle - make process 0 idle
 init_module - initialize a loadable module entry
 ioctl - control device
 ioperm - set port input/output permissions
 iopl - change I/O privilege level
 ipc - System V IPC system calls
 kill - send signal to a process
 killpg - send signal to a process group
 lchown - change ownership of a file
 link - make a new name for a file
 listen - listen for connections on a socket
 llseek - reposition read/write file offset
 lock - unimplemented
 lseek - reposition read/write file offset
 lstat - get file status
 mkdir - create a directory
 mknod - create a directory or special or ordinary file
 mlock - disable paging for some parts of memory
 mlockall - disable paging for calling process
 mmap - map files or devices into memory

Big Online Book of Linux Ada Programming - Appendix C

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_c.html (2 of 5) [7/20/2001 11:39:50 AM]

 modify_ldt - get or set ldt
 mount - mount and unmount filesystems.
 mprotect - control allowable accesses to a region of memory
 mpx - unimplemented
 mremap - re-map a virtual memory address
 msgctl - message control operations
 msgget - get a message queue identifier
 msgrcv - receive a messsage
 msgsnd - send a message
 msync - synchronize a file with a memory map
 munlock - reenable paging for some parts of memory
 munlockall - reenable paging for calling process
 munmap - unmap files or devices into memory
 nanosleep - pause execution for a specified time
 nfsservctl - syscall interface to kernel nfs daemon
 nice - change process priority
 oldfstat - obsolete
 oldlstat - obsolete
 oldolduname - obsolete
 oldstat - obsolete
 olduname - obsolete
 open - open a file or device
 outb, outw, outl - port output macros
 pause - wait for signal
 personality - set the process execution domain
 pipe - create pipe
 poll - wait for some event on a file descriptor
 prctl - operations on a process
 prof - unimplemented
 ptrace - process trace
 query_module - query the kernel for various bits pertaining to modules
 quotactl - manipulate disk quotas
 read - read from a file descriptor
 readdir - read directory entry
 readlink - read value of a symbolic link
 readv - read a vector
 reboot - reboot or enable/disable Ctrl-Alt-Del
 recv - receive a message from a socket
 recvfrom - receive a message from a socket
 recvmsg - receive a message from a socket
 rename - change the name or location of a file
 rmdir - delete a directory
 sbrk - change data segment size
 sched_get_priority_max - get static priority range
 sched_get_priority_min - get static priority range
 sched_getparam - get scheduling parameters
 sched_setscheduler - get schedule algorithm/parameters
 sched_rr_get_interval - get the SCHED_RR interval for the named process
 sched_setparam - set scheduling parameters
 sched_setscheduler - set schedule algorithm/parameters

Big Online Book of Linux Ada Programming - Appendix C

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_c.html (3 of 5) [7/20/2001 11:39:50 AM]

 sched_yield - yield the processor
 select - synchronous I/O multiplexing
 semctl - semaphore control operations
 semget - get a semaphore set identifier
 semop - semaphore operations
 send - send a message from a socket
 sendfile - transfer data between file descriptors
 sendmsg - send a message from a socket
 sendto - send a message from a socket
 setdomainname - set domain name
 setegid - set effective group ID
 seteuid - set effective user ID
 setfsgid - set group identity used for file system checks
 setfsuid - set user identity used for file system checks
 setgid - set group identity
 setgroups - set list of supplementary group
 sethostid - set the unique identifier of the current host
 sethostname - set host name
 setitimer - get or set value of an interval timer
 setpgid - set process group ID
 setpgrp - set process group
 setpriority - set program scheduling priority
 setregid - set real group ID
 setresgid - set real, effective and saved user
 setresuid - set real, effective and saved user
 setreuid - set real and / or effective user ID
 setrlimit - set resource limits
 setsid - creates a session and sets the process group ID
 setsockopt - set options on sockets
 settimeofday - get / set time
 setuid - set user identity
 setup - setup devices and file systems, mount root file (not available)
 sgetmask - ANSI C signal handling
 shmat - shared memory operations
 shmctl - shared memory control
 shmdt - shared memory operations
 shmget - allocates a shared memory segment
 shutdown - shut down part of a full-duplex connection
 sigaction - change signal action
 sigblock - change blocked signals
 siggetmask - get blocked signals
 sigmask - C macro to create signal masks
 signal - install signal handler
 sigpause - atomically release blocked signals and wait for interrupt
 sigpending - examine pending signals
 sigprocmask - change blocked signals
 sigreturn - return from signal handler and cleanup stack
 sigsetmask - set net group of blocked signals
 sigsuspend - replace signal mask and suspend process
 sigvec - obsolete

Big Online Book of Linux Ada Programming - Appendix C

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_c.html (4 of 5) [7/20/2001 11:39:50 AM]

 socket - create an endpoint for communication
 socketcall - socket system calls entry point
 socketpair - create a pair of connected sockets
 ssetmask - NQS
 stat - get file status
 statfs - get file system statistics
 stime - set time
 stty - unimplemented
 swapoff - stop swapping to file/device
 swapon - start swapping to file/device
 symlink - make a new name for a file
 sync - commit buffer cache to disk
 sysctl - read/write system parameters
 sysfs - get file system type information
 sysinfo - returns information on overall system statistics
 syslog - read and/or clear kernel message ring buffer; set console_loglevel
 time - get time in seconds
 times - get process times
 truncate - truncate a file to a specified length
 umask - set file creation mask
 umount - unmount filesystems
 uname - get name and information about current kernel
 unlink - delete a name and possibly the file it refers to
 uselib - select shared library
 ustat - get file system statistics
 utime - change access and/or modification times of an inode
 utimes - change access and/or modification times of an inode
 vfork - alias for fork
 vhangup - virtually hangup the current tty
 vm86 - (Intel) enter virtual 8086 mode
 vm86old - obsolete
 wait - wait for process termination
 wait3 - wait for process termination, BSD style
 wait4 - wait for process termination, BSD style
 waitpid - wait for process termination
 write - write to a file descriptor
 writev - read or write a vector

 <--Appendix B Table of Contents Appendix D-->

Big Online Book of Linux Ada Programming - Appendix C

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_c.html (5 of 5) [7/20/2001 11:39:50 AM]

 <--Appendix C Table of Contents Appendix E-->

Appendix D: Signals
Be aware that the mapping of names to signals may be -to-one. There may be aliases. Also, for allsignal
names that are not supported on the current systemthe value of the corresponding constant will be zero.

 SIGHUP -- hangup
 SIGINT -- interrupt (rubout)
 SIGQUIT -- quit (ASCD FS)
 SIGILL -- illegal instruction (not reset)
 SIGTRAP -- trace trap (not reset)
 SIGIOT -- IOT instruction
 SIGABRT used by abort, SIGIOT in the future
 SIGFPE -- floating point exception
 SIGKILL -- kill (cannot be caught or ignored)
 SIGBUS -- bus error
 SIGSEGV -- segmentation violation
 SIGPIPE -- write on a pipe with no one to read it
 SIGALRM -- alarm clock
 SIGTERM -- software termination signal from kill
 SIGUSR1 -- user defined signal 1
 SIGUSR2 -- user defined signal 2
 SIGCLD -- child status change
 SIGCHLD -- 4.3BSD's/POSIX name for SIGCLD
 SIGWINCH -- window size change
 SIGURG -- urgent condition on IO channel
 SIGPOLL -- pollable event occurred
 SIGIO -- input/output possible, SIGPOLL alias (Solaris)
 SIGSTOP -- stop (cannot be caught or ignored)
 SIGTSTP -- user stop requested from tty
 SIGCONT -- stopped process has been continued
 SIGTTIN -- background tty read attempted
 SIGTTOU -- background tty write attempted
 SIGVTALRM -- virtual timer expired
 SIGPROF -- profiling timer expired
 SIGXCPU -- CPU time limit exceeded
 SIGXFSZ -- filesize limit exceeded
 SIGUNUSED -- unused signal
 SIGSTKFLT -- stack fault on coprocessor
 SIGLOST -- Linux alias for SIGIO

Big Online Book of Linux Ada Programming - Appendix D

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_d.html (1 of 2) [7/20/2001 11:40:07 AM]

 SIGPWR -- Power failure

 <--Appendix C Table of Contents Appendix E-->

Big Online Book of Linux Ada Programming - Appendix D

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_d.html (2 of 2) [7/20/2001 11:40:07 AM]

 <--Appendix D Table of Contents Appendix F-->

Appendix E: Ioctl parameters
man ioctl_list gives a list of operations and parameters for ioctl. This is a copy of that man page.

// Introduction

This is Ioctl List 1.3.27, a list of ioctl calls in Linux/i386
kernel 1.3.27. It contains 421 ioctls from
/usr/include/{asm,linux}/*.h.

For each ioctl, I list its numerical value, its name, and its
argument type.

An argument type of 'const struct foo *' means the argument is
input to the kernel. 'struct foo *' means the kernel outputs the
argument.

If the kernel uses the argument for both input and output, this
is marked with // I-O.

Some ioctls take more arguments or return more values than a
single structure. These are marked // MORE and documented further
in a separate section.

This list is incomplete. It does not include:

 -- Ioctls defined internal to the kernel ('scsi_ioctl.h').
 -- Ioctls defined in modules distributed separately from the kernel.

And, of course, it may have errors and omissions.

// Main table.
// <include/asm-i386/socket.h>

0x00008901 FIOSETOWN const int *
0x00008902 SIOCSPGRP const int *
0x00008903 FIOGETOWN int *
0x00008904 SIOCGPGRP int *
0x00008905 SIOCATMARK int *
0x00008906 SIOCGSTAMP timeval *

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (1 of 15) [7/20/2001 11:40:32 AM]

// <include/asm-i386/termios.h>

0x00005401 TCGETS struct termios *
0x00005402 TCSETS const struct termios *
0x00005403 TCSETSW const struct termios *
0x00005404 TCSETSF const struct termios *
0x00005405 TCGETA struct termio *
0x00005406 TCSETA const struct termio *
0x00005407 TCSETAW const struct termio *
0x00005408 TCSETAF const struct termio *
0x00005409 TCSBRK int
0x0000540A TCXONC int
0x0000540B TCFLSH int
0x0000540C TIOCEXCL void
0x0000540D TIOCNXCL void
0x0000540E TIOCSCTTY int
0x0000540F TIOCGPGRP pid_t *
0x00005410 TIOCSPGRP const pid_t *
0x00005411 TIOCOUTQ int *
0x00005412 TIOCSTI const char *
0x00005413 TIOCGWINSZ const struct winsize *
0x00005414 TIOCSWINSZ struct winsize *
0x00005415 TIOCMGET int *
0x00005416 TIOCMBIS const int *
0x00005417 TIOCMBIC const int *
0x00005418 TIOCMSET const int *
0x00005419 TIOCGSOFTCAR int *
0x0000541A TIOCSSOFTCAR const int *
0x0000541B FIONREAD int *
0x0000541B TIOCINQ int *
0x0000541C TIOCLINUX const char *

// MORE

0x0000541D TIOCCONS void
0x0000541E TIOCGSERIAL struct serial_struct *
0x0000541F TIOCSSERIAL const struct serial_struct *
0x00005420 TIOCPKT const int *
0x00005421 FIONBIO const int *
0x00005422 TIOCNOTTY void
0x00005423 TIOCSETD const int *
0x00005424 TIOCGETD int *
0x00005425 TCSBRKP int
0x00005426 TIOCTTYGSTRUCT struct tty_struct *
0x00005450 FIONCLEX void

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (2 of 15) [7/20/2001 11:40:32 AM]

0x00005451 FIOCLEX void
0x00005452 FIOASYNC const int *
0x00005453 TIOCSERCONFIG void
0x00005454 TIOCSERGWILD int *
0x00005455 TIOCSERSWILD const int *
0x00005456 TIOCGLCKTRMIOS struct termios *
0x00005457 TIOCSLCKTRMIOS const struct temios *
0x00005458 TIOCSERGSTRUCT struct async_struct *
0x00005459 TIOCSERGETLSR int *
0x0000545A TIOCSERGETMULTI struct serial_multiport_struct *
0x0000545B TIOCSERSETMULTI const struct serial_multiport_struct *

// <include/linux/ax25.h>

0x000089E0 SIOCAX25GETUID const struct sockaddr_ax25 *
0x000089E1 SIOCAX25ADDUID const struct sockaddr_ax25 *
0x000089E2 SIOCAX25DELUID const struct sockaddr_ax25 *
0x000089E3 SIOCAX25NOUID const int *
0x000089E4 SIOCAX25DIGCTL const int *
0x000089E5 SIOCAX25GETPARMS struct ax25_parms_struct * // I-O
0x000089E6 SIOCAX25SETPARMS const struct ax25_parms-struct *

// <include/linux/cdk.h>

0x00007314
STL_BINTR
void

0x00007315
STL_BSTART
void

0x00007316 STL_BSTOP void
0x00007317 STL_BRESET void

// <include/linux/cdrom.h>

0x00005301 CDROMPAUSE void
0x00005302 CDROMRESUME void
0x00005303 CDROMPLAYMSF const struct cdrom_msf *
0x00005304 CDROMPLAYTRKIND const struct cdrom_ti *
0x00005305 CDROMREADTOCHDR struct cdrom_tochdr *
0x00005306 CDROMREADTOCENTRY struct cdrom_tocentry * // I-O

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (3 of 15) [7/20/2001 11:40:32 AM]

0x00005307 CDROMSTOP void
0x00005308 CDROMSTART void
0x00005309 CDROMEJECT void
0x0000530A CDROMVOLCTRL const struct cdrom_volctrl *
0x0000530B CDROMSUBCHNL struct cdrom_subchnl * // I-O
0x0000530C CDROMREADMODE2 const struct cdrom_msf * // MORE
0x0000530D CDROMREADMODE1 const struct cdrom_msf * // MORE
0x0000530E CDROMREADAUDIO const struct cdrom_read_audio * // MORE
0x0000530F CDROMEJECT_SW int
0x00005310 CDROMMULTISESSION struct cdrom_multisession * // I-O
0x00005311 CDROM_GET_UPC struct { char [8]; } *
0x00005312 CDROMRESET void
0x00005313 CDROMVOLREAD struct cdrom_volctrl *
0x00005314 CDROMREADRAW const struct cdrom_msf * // MORE
0x00005315 CDROMREADCOOKED const struct cdrom_msf * // MORE
0x00005316 CDROMSEEK const struct cdrom_msf *

// <include/linux/cm206.h>

0x00002000 CM206CTL_GET_STAT int
0x00002001 CM206CTL_GET_LAST_STAT int

// <include/linux/cyclades.h>

0x00435901 CYGETMON struct cyclades_monitor *
0x00435902 CYGETTHRESH int *
0x00435903 CYSETTHRESH int
0x00435904 CYGETDEFTHRESH int *
0x00435905 CYSETDEFTHRESH int
0x00435906 CYGETTIMEOUT int *
0x00435907 CYSETTIMEOUT int
0x00435908 CYGETDEFTIMEOUT int *
0x00435909 CYSETDEFTIMEOUT int

// <include/linux/ext2_fs.h>

0x80046601 EXT2_IOC_GETFLAGS int *
0x40046602 EXT2_IOC_SETFLAGS const int *
0x80047601 EXT2_IOC_GETVERSION int *
0x40047602 EXT2_IOC_SETVERSION const int *

// <include/linux/fd.h>

0x00000000 FDCLRPRM void
0x00000001 FDSETPRM const struct floppy_struct *
0x00000002 FDDEFPRM const struct floppy_struct *

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (4 of 15) [7/20/2001 11:40:32 AM]

0x00000003 FDGETPRM struct floppy_struct *
0x00000004 FDMSGON void
0x00000005 FDMSGOFF void
0x00000006 FDFMTBEG void
0x00000007 FDFMTTRK const struct format_descr *
0x00000008 FDFMTEND void
0x0000000A FDSETEMSGTRESH int
0x0000000B FDFLUSH void
0x0000000C FDSETMAXERRS const struct floppy_max_errors *
0x0000000E FDGETMAXERRS struct floppy_max_errors *
0x00000010 FDGETDRVTYP struct { char [16]; } *
0x00000014 FDSETDRVPRM const struct floppy_drive_params *
0x00000015 FDGETDRVPRM struct floppy_drive_params *
0x00000016 FDGETDRVSTAT struct floppy_drive_struct *
0x00000017 FDPOLLDRVSTAT struct floppy_drive_struct *
0x00000018 FDRESET int
0x00000019 FDGETFDCSTAT struct floppy_fdc_state *
0x0000001B FDWERRORCLR void
0x0000001C FDWERRORGET struct floppy_write_errors *
0x0000001E FDRAWCMD struct floppy_raw_cmd * // MORE I-O
0x00000028 FDTWADDLE void

// <include/linux/fs.h>

0x0000125D BLKROSET const int *
0x0000125E BLKROGET int *
0x0000125F BLKRRPART void
0x00001260 BLKGETSIZE int *
0x00001261 BLKFLSBUF void
0x00001262 BLKRASET int
0x00001263 BLKRAGET int *
0x00000001 FIBMAP int * // I-O
0x00000002 FIGETBSZ int *

// <include/linux/hdreg.h>

0x00000301 HDIO_GETGEO struct hd_geometry *
0x00000302 HDIO_GET_UNMASKINTR int *
0x00000304 HDIO_GET_MULTCOUNT int *
0x00000307 HDIO_GET_IDENTITY struct hd_driveid *
0x00000308 HDIO_GET_KEEPSETTINGS int *
0x00000309 HDIO_GET_CHIPSET int *
0x0000030A HDIO_GET_NOWERR int *
0x0000030B HDIO_GET_DMA int *
0x0000031F HDIO_DRIVE_CMD int * // I-O
0x00000321 HDIO_SET_MULTCOUNT int

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (5 of 15) [7/20/2001 11:40:32 AM]

0x00000322 HDIO_SET_UNMASKINTR int
0x00000323 HDIO_SET_KEEPSETTINGS int
0x00000324 HDIO_SET_CHIPSET int
0x00000325 HDIO_SET_NOWERR int
0x00000326 HDIO_SET_DMA int

// <include/linux/if_eql.h>

0x000089F0 EQL_ENSLAVE struct ifreq * // MORE I-O
0x000089F1 EQL_EMANCIPATE struct ifreq * // MORE I-O
0x000089F2 EQL_GETSLAVECFG struct ifreq * // MORE I-O
0x000089F3 EQL_SETSLAVECFG struct ifreq * // MORE I-O
0x000089F4 EQL_GETMASTRCFG struct ifreq * // MORE I-O
0x000089F5 EQL_SETMASTRCFG struct ifreq * // MORE I-O

// <include/linux/if_plip.h>

0x000089F0 SIOCDEVPLIP struct ifreq * // I-O

// <include/linux/if_ppp.h>

0x00005490 PPPIOCGFLAGS int *
0x00005491 PPPIOCSFLAGS const int *
0x00005492 PPPIOCGASYNCMAP int *
0x00005493 PPPIOCSASYNCMAP const int *
0x00005494 PPPIOCGUNIT int *
0x00005495 PPPIOCSINPSIG const int *
0x00005497 PPPIOCSDEBUG const int *
0x00005498 PPPIOCGDEBUG int *
0x00005499 PPPIOCGSTAT struct ppp_stats *
0x0000549A PPPIOCGTIME struct ppp_ddinfo *
0x0000549B PPPIOCGXASYNCMAP struct { int [8]; } *
0x0000549C PPPIOCSXASYNCMAP const struct { int [8]; } *
0x0000549D PPPIOCSMRU const int *
0x0000549E PPPIOCRASYNCMAP const int *
0x0000549F PPPIOCSMAXCID const int *

// <include/linux/ipx.h>

0x000089E0 SIOCAIPXITFCRT const char *
0x000089E1 SIOCAIPXPRISLT const char *
0x000089E2 SIOCIPXCFGDATA struct ipx_config_data *

// <include/linux/kd.h>

0x00004B60 GIO_FONT struct { char [8192]; } *

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (6 of 15) [7/20/2001 11:40:32 AM]

0x00004B61 PIO_FONT const struct { char [8192]; } *
0x00004B6B GIO_FONTX struct console_font_desc * // MORE I-O
0x00004B6C PIO_FONTX const struct console_font_desc * //MORE
0x00004B70 GIO_CMAP struct { char [48]; } *
0x00004B71 PIO_CMAP const struct { char [48]; }
0x00004B2F KIOCSOUND int
0x00004B30 KDMKTONE int
0x00004B31 KDGETLED char *
0x00004B32 KDSETLED int
0x00004B33 KDGKBTYPE char *
0x00004B34 KDADDIO int // MORE
0x00004B35 KDDELIO int // MORE
0x00004B36 KDENABIO void // MORE
0x00004B37 KDDISABIO void // MORE
0x00004B3A KDSETMODE int
0x00004B3B KDGETMODE int *
0x00004B3C KDMAPDISP void // MORE
0x00004B3D KDUNMAPDISP void // MORE
0x00004B40 GIO_SCRNMAP struct { char [E_TABSZ]; } *
0x00004B41 PIO_SCRNMAP const struct { char [E_TABSZ]; } *
0x00004B69 GIO_UNISCRNMAP struct { short [E_TABSZ]; } *
0x00004B6A PIO_UNISCRNMAP const struct { short [E_TABSZ]; } *
0x00004B66 GIO_UNIMAP struct unimapdesc * // MORE I-O
0x00004B67 PIO_UNIMAP const struct unimapdesc * // MORE
0x00004B68 PIO_UNIMAPCLR const struct unimapinit *
0x00004B44 KDGKBMODE int *
0x00004B45 KDSKBMODE int
0x00004B62 KDGKBMETA int *
0x00004B63 KDSKBMETA int
0x00004B64 KDGKBLED int *
0x00004B65 KDSKBLED int
0x00004B46 KDGKBENT struct kbentry * // I-O
0x00004B47 KDSKBENT const struct kbentry *
0x00004B48 KDGKBSENT struct kbsentry * // I-O
0x00004B49 KDSKBSENT const struct kbsentry *
0x00004B4A KDGKBDIACR struct kbdiacrs *
0x00004B4B KDSKBDIACR const struct kbdiacrs *
0x00004B4C KDGETKEYCODE struct kbkeycode * // I-O
0x00004B4D KDSETKEYCODE const struct kbkeycode *
0x00004B4E KDSIGACCEPT int

// <include/linux/lp.h>

0x00000601 LPCHAR int
0x00000602 LPTIME int
0x00000604 LPABORT int

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (7 of 15) [7/20/2001 11:40:32 AM]

0x00000605 LPSETIRQ int
0x00000606 LPGETIRQ int *
0x00000608 LPWAIT int
0x00000609 LPCAREFUL int
0x0000060A LPABORTOPEN int
0x0000060B LPGETSTATUS int *
0x0000060C LPRESET void
0x0000060D LPGETSTATS struct lp_stats *

// <include/linux/mroute.h>

0x000089E0 SIOCGETVIFCNT struct sioc_vif_req * // I-O
0x000089E1 SIOCGETSGCNT struct sioc_sg_req * // I-O

// <include/linux/mtio.h>

0x40086D01 MTIOCTOP const struct mtop *
0x801C6D02 MTIOCGET struct mtget *
0x80046D03 MTIOCPOS struct mtpos *
0x80206D04 MTIOCGETCONFIG struct mtconfiginfo *
0x40206D05 MTIOCSETCONFIG const struct mtconfiginfo *

// <include/linux/netrom.h>

0x000089E0 SIOCNRGETPARMS struct nr_parms_struct * // I-O
0x000089E1 SIOCNRSETPARMS const struct nr_parms_struct *
0x000089E2 SIOCNRDECOBS void
0x000089E3 SIOCNRRTCTL const int *

// <include/linux/sbpcd.h>

0x00009000 DDIOCSDBG const int *
0x00005382 CDROMAUDIOBUFSIZ int

// <include/linux/scc.h>

0x00005470 TIOCSCCINI void
0x00005471 TIOCCHANINI const struct scc_modem *
0x00005472 TIOCGKISS struct ioctl_command * // I-O
0x00005473 TIOCSKISS const struct ioctl_command *
0x00005474 TIOCSCCSTAT struct scc_stat *

// <include/linux/scsi.h>

0x00005382 SCSI_IOCTL_GET_IDLU struct { int [2]; } *
0x00005383 SCSI_IOCTL_TAGGED_ENABLE void

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (8 of 15) [7/20/2001 11:40:32 AM]

0x00005384 SCSI_IOCTL_TAGGED_DISABLE void
0x00005385 SCSI_IOCTL_PROBE_HOST const int // MORE

// <include/linux/smb_fs.h>

0x80027501 SMB_IOC_GETMOUNTUID uid_t *

// <include/linux/sockios.h>

0x0000890B SIOCADDRT const struct rtentry * // MORE
0x0000890C SIOCDELRT const struct rtentry * // MORE
0x00008910 SIOCGIFNAME char []
0x00008911 SIOCSIFLINK void
0x00008912 SIOCGIFCONF struct ifconf * // MORE I-O
0x00008913 SIOCGIFFLAGS struct ifreq * // I-O
0x00008914 SIOCSIFFLAGS const struct ifreq *
0x00008915 SIOCGIFADDR struct ifreq * // I-O
0x00008916 SIOCSIFADDR const struct ifreq *
0x00008917 SIOCGIFDSTADDR struct ifreq * // I-O
0x00008918 SIOCSIFDSTADDR const struct ifreq *
0x00008919 SIOCGIFBRDADDR struct ifreq * // I-O
0x0000891A SIOCSIFBRDADDR const struct ifreq *
0x0000891B SIOCGIFNETMASK struct ifreq * // I-O
0x0000891C SIOCSIFNETMASK const struct ifreq *
0x0000891D SIOCGIFMETRIC struct ifreq * // I-O
0x0000891E SIOCSIFMETRIC const struct ifreq *
0x0000891F SIOCGIFMEM struct ifreq * // I-O
0x00008920 SIOCSIFMEM const struct ifreq *
0x00008921 SIOCGIFMTU struct ifreq * // I-O
0x00008922 SIOCSIFMTU const struct ifreq *
0x00008923 OLD_SIOCGIFHWADDR struct ifreq * // I-O
0x00008924 SIOCSIFHWADDR const struct ifreq * // MORE
0x00008925 SIOCGIFENCAP int *
0x00008926 SIOCSIFENCAP const int *
0x00008927 SIOCGIFHWADDR struct ifreq * // I-O
0x00008929 SIOCGIFSLAVE void
0x00008930 SIOCSIFSLAVE void
0x00008931 SIOCADDMULTI const struct ifreq *
0x00008932 SIOCDELMULTI const struct ifreq *
0x00008940 SIOCADDRTOLD void
0x00008941 SIOCDELRTOLD void
0x00008950 SIOCDARP const struct arpreq *
0x00008951 SIOCGARP struct arpreq * // I-O
0x00008952 SIOCSARP const struct arpreq *
0x00008960 SIOCDRARP const struct arpreq *
0x00008961 SIOCGRARP struct arpreq * // I-O

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (9 of 15) [7/20/2001 11:40:32 AM]

0x00008962 SIOCSRARP const struct arpreq *
0x00008970 SIOCGIFMAP struct ifreq * // I-O
0x00008971 SIOCSIFMAP const struct ifreq *

// <include/linux/soundcard.h>

0x00005100 SNDCTL_SEQ_RESET void
0x00005101 SNDCTL_SEQ_SYNC void
0xC08C5102 SNDCTL_SYNTH_INFO struct synth_info * // I-O
0xC0045103 SNDCTL_SEQ_CTRLRATE int * // I-O
0x80045104 SNDCTL_SEQ_GETOUTCOUNT int *
0x80045105 SNDCTL_SEQ_GETINCOUNT int *
0x40045106 SNDCTL_SEQ_PERCMODE void
0x40285107 SNDCTL_FM_LOAD_INSTR const struct sbi_instrument *
0x40045108 SNDCTL_SEQ_TESTMIDI const int *
0x40045109 SNDCTL_SEQ_RESETSAMPLES const int *
0x8004510A SNDCTL_SEQ_NRSYNTHS int *
0x8004510B SNDCTL_SEQ_NRMIDIS int *
0xC074510C SNDCTL_MIDI_INFO midi_info * // I-O
0x4004510D SNDCTL_SEQ_THRESHOLD const int *
0xC004510E SNDCTL_SYNTH_MEMAVL int * // I-O
0x4004510F SNDCTL_FM_4OP_ENABLE const int *
0xCFB85110 SNDCTL_PMGR_ACCESS struct patmgr_info * // I-O
0x00005111 SNDCTL_SEQ_PANIC void
0x40085112 SNDCTL_SEQ_OUTOFBAND const struct seq_event_rec *
0xC0045401 SNDCTL_TMR_TIMEBASE int * // I-O
0x00005402 SNDCTL_TMR_START void
0x00005403 SNDCTL_TMR_STOP void
0x00005404 SNDCTL_TMR_CONTINUE void
0xC0045405 SNDCTL_TMR_TEMPO int * // I-O
0xC0045406 SNDCTL_TMR_SOURCE int * // I-O
0x40045407 SNDCTL_TMR_METRONOME const int *
0x40045408 SNDCTL_TMR_SELECT int * // I-O
0xCFB85001 SNDCTL_PMGR_IFACE struct patmgr_info * // I-O
0xC0046D00 SNDCTL_MIDI_PRETIME int * // I-O
0xC0046D01 SNDCTL_MIDI_MPUMODE const int *
0xC0216D02 SNDCTL_MIDI_MPUCMD struct mpu_command_rec * // I-O
0x00005000 SNDCTL_DSP_RESET void
0x00005001 SNDCTL_DSP_SYNC void
0xC0045002 SNDCTL_DSP_SPEED int * // I-O
0xC0045003 SNDCTL_DSP_STEREO int * // I-O
0xC0045004 SNDCTL_DSP_GETBLKSIZ int * // I-O
0xC0045006 SOUND_PCM_WRITE_CHANNELS int * // I-O
0xC0045007 SOUND_PCM_WRITE_FILTER int * // I-O
0x00005008 SNDCTL_DSP_POST void
0xC0045009 SNDCTL_DSP_SUBDIVIDE int * // I-O

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (10 of 15) [7/20/2001 11:40:32 AM]

0xC004500A SNDCTL_DSP_SETFRAGMENT int * // I-O
0x8004500B SNDCTL_DSP_GETFMTS int *
0xC0045005 SNDCTL_DSP_SETFMT int * // I-O
0x800C500C SNDCTL_DSP_GETOSPACE struct audio_buf_info *
0x800C500D SNDCTL_DSP_GETISPACE struct audio_buf_info *
0x0000500E SNDCTL_DSP_NONBLOCK void
0x80045002 SOUND_PCM_READ_RATE int *
0x80045006 SOUND_PCM_READ_CHANNELS int *
0x80045005 SOUND_PCM_READ_BITS int *
0x80045007 SOUND_PCM_READ_FILTER int *
0x00004300 SNDCTL_COPR_RESET void
0xCFB04301 SNDCTL_COPR_LOAD const struct copr_buffer *
0xC0144302 SNDCTL_COPR_RDATA struct copr_debug_buf * // I-O
0xC0144303 SNDCTL_COPR_RCODE struct copr_debug_buf * // I-O
0x40144304 SNDCTL_COPR_WDATA const struct copr_debug_buf *
0x40144305 SNDCTL_COPR_WCODE const struct copr_debug_buf *
0xC0144306 SNDCTL_COPR_RUN struct copr_debug_buf * // I-O
0xC0144307 SNDCTL_COPR_HALT struct copr_debug_buf * // I-O
0x4FA44308 SNDCTL_COPR_SENDMSG const struct copr_msg *
0x8FA44309 SNDCTL_COPR_RCVMSG struct copr_msg *

0x80044D00 SOUND_MIXER_READ_VOLUME int *
0x80044D01 SOUND_MIXER_READ_BASS int *
0x80044D02 SOUND_MIXER_READ_TREBLE int *
0x80044D03 SOUND_MIXER_READ_SYNTH int *
0x80044D04 SOUND_MIXER_READ_PCM int *
0x80044D05 SOUND_MIXER_READ_SPEAKER int *
0x80044D06 SOUND_MIXER_READ_LINE int *
0x80044D07 SOUND_MIXER_READ_MIC int *
0x80044D08 SOUND_MIXER_READ_CD int *
0x80044D09 SOUND_MIXER_READ_IMIX int *
0x80044D0A SOUND_MIXER_READ_ALTPCM int *
0x80044D0B SOUND_MIXER_READ_RECLEV int *
0x80044D0C SOUND_MIXER_READ_IGAIN int *
0x80044D0D SOUND_MIXER_READ_OGAIN int *
0x80044D0E SOUND_MIXER_READ_LINE1 int *
0x80044D0F SOUND_MIXER_READ_LINE2 int *
0x80044D10 SOUND_MIXER_READ_LINE3 int *
0x80044D1C SOUND_MIXER_READ_MUTE int *
0x80044D1D SOUND_MIXER_READ_ENHANCE int *
0x80044D1E SOUND_MIXER_READ_LOUD int *
0x80044DFF SOUND_MIXER_READ_RECSRC int *
0x80044DFE SOUND_MIXER_READ_DEVMASK int *
0x80044DFD SOUND_MIXER_READ_RECMASK int *
0x80044DFB SOUND_MIXER_READ_STEREODEVS int *
0x80044DFC SOUND_MIXER_READ_CAPS int *

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (11 of 15) [7/20/2001 11:40:32 AM]

0xC0044D00 SOUND_MIXER_WRITE_VOLUME int * // I-O
0xC0044D01 SOUND_MIXER_WRITE_BASS int * // I-O
0xC0044D02 SOUND_MIXER_WRITE_TREBLE int * // I-O
0xC0044D03 SOUND_MIXER_WRITE_SYNTH int * // I-O
0xC0044D04 SOUND_MIXER_WRITE_PCM int * // I-O
0xC0044D05 SOUND_MIXER_WRITE_SPEAKER int * // I-O
0xC0044D06 SOUND_MIXER_WRITE_LINE int * // I-O
0xC0044D07 SOUND_MIXER_WRITE_MIC int * // I-O
0xC0044D08 SOUND_MIXER_WRITE_CD int * // I-O
0xC0044D09 SOUND_MIXER_WRITE_IMIX int * // I-O
0xC0044D0A SOUND_MIXER_WRITE_ALTPCM int * // I-O
0xC0044D0B SOUND_MIXER_WRITE_RECLEV int * // I-O
0xC0044D0C SOUND_MIXER_WRITE_IGAIN int * // I-O
0xC0044D0D SOUND_MIXER_WRITE_OGAIN int * // I-O
0xC0044D0E SOUND_MIXER_WRITE_LINE1 int * // I-O
0xC0044D0F SOUND_MIXER_WRITE_LINE2 int * // I-O
0xC0044D10 SOUND_MIXER_WRITE_LINE3 int * // I-O
0xC0044D1C SOUND_MIXER_WRITE_MUTE int * // I-O
0xC0044D1D SOUND_MIXER_WRITE_ENHANCE int * // I-O
0xC0044D1E SOUND_MIXER_WRITE_LOUD int * // I-O
0xC0044DFF SOUND_MIXER_WRITE_RECSRC int * // I-O

// <include/linux/umsdos_fs.h>

0x000004D2 UMSDOS_READDIR_DOS struct umsdos_ioctl * // I-O
0x000004D3 UMSDOS_UNLINK_DOS const struct umsdos_ioctl *
0x000004D4 UMSDOS_RMDIR_DOS const struct umsdos_ioctl *
0x000004D5 UMSDOS_STAT_DOS struct umsdos_ioctl * // I-O
0x000004D6 UMSDOS_CREAT_EMD const struct umsdos_ioctl *

0x000004D7 UMSDOS_UNLINK_EMD const struct umsdos_ioctl *
0x000004D8 UMSDOS_READDIR_EMD struct umsdos_ioctl * // I-O
0x000004D9 UMSDOS_GETVERSION struct umsdos_ioctl *
0x000004DA UMSDOS_INIT_EMD void
0x000004DB UMSDOS_DOS_SETUP const struct umsdos_ioctl *
0x000004DC UMSDOS_RENAME_DOS const struct umsdos_ioctl *

// <include/linux/vt.h>

0x00005600 VT_OPENQRY int *
0x00005601 VT_GETMODE struct vt_mode *
0x00005602 VT_SETMODE const struct vt_mode *
0x00005603 VT_GETSTATE struct vt_stat *
0x00005604 VT_SENDSIG void
0x00005605 VT_RELDISP int
0x00005606 VT_ACTIVATE int

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (12 of 15) [7/20/2001 11:40:32 AM]

0x00005607 VT_WAITACTIVE int
0x00005608 VT_DISALLOCATE int
0x00005609 VT_RESIZE const struct vt_sizes *
0x0000560A VT_RESIZEX const struct vt_consize *

// More arguments.

Some ioctl's take a pointer to a structure which contains
additional pointers. These are documented here in alphabetical
order. CDROMREADAUDIO takes an input pointer 'const struct
cdrom_read_audio *'. The 'buf' field points to an output buffer of
length CDROMREADCOOKED, CDROMREADMODE1, CDROMREADMODE2, and
CDROMREADRAW take an input pointer 'const struct cdrom_msf *'.
They use the same pointer as an output pointer to 'char []'. The length
varies by request. For CDROMREADMODE1, most drivers use
'CD_FRAMESIZE', but the Optics Storage driver uses 'OPT_BLOCKSIZE'
instead (both have the numerical value 2048).

CDROMREADCOOKED char [CD_FRAMESIZE]
CDROMREADMODE1 char [CD_FRAMESIZE or OPT_BLOCKSIZE]
CDROMREADMODE2 char [CD_FRAMESIZE_RAW0]
CDROMREADRAW char [CD_FRAMESIZE_RAW]

EQL_ENSLAVE, EQL_EMANCIPATE, EQL_GETSLAVECFG, EQL_SETSLAVECFG,
EQL_GETMASTERCFG, and EQL_SETMASTERCFG take a 'struct ifreq
*'. The 'ifr_data' field is a pointer to another structure as
follows:

EQL_ENSLAVE const struct slaving_request *
EQL_EMANCIPATE const struct slaving_request *
EQL_GETSLAVECFG struct slave_config * // I-O
EQL_SETSLAVECFG const struct slave_config *
EQL_GETMASTERCFG struct master_config *
EQL_SETMASTERCFG const struct master_config *

FDRAWCMD takes a 'struct floppy raw_cmd *'. If 'flags & FD_RAW_WRITE'
is non-zero, then 'data' points to an input buffer of length 'length'.
If 'flags & FD_RAW_READ' is non-zero, then 'data' points to an output
buffer of length 'length'.
GIO_FONTX and PIO_FONTX take a 'struct console_font_desc *' or a
a buffer of 'char [charcount]'. This is an output buffer for GIO_FONTX
and an input buffer for PIO_FONTX.

GIO_UNIMAP and PIO_UNIMAP take a 'struct unimapdesc *' or a
of 'struct unipair [entry_ct]'. This is an output buffer for GIO_UNIMAP
and an input buffer for PIO_UNIMAP.

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (13 of 15) [7/20/2001 11:40:32 AM]

KDADDIO, KDDELIO, KDDISABIO, and KDENABIO enable or disable access to
I/O ports. They are essentially alternate interfaces to 'ioperm'.
KDMAPDISP and KDUNMAPDISP enable or disable memory mappings or I/O port
access. They are not implemented in the kernel.

SCSI_IOCTL_PROBE_HOST takes an input pointer 'const int *', which is a
length. It uses the same pointer as an output pointer to a 'char []'
buffer of this length.

SIOCADDRT and SIOCDELRT take an input pointer whose type depends on
the protocol:

protocols const struct rtentry *
AX.25 const struct ax25_route *
NET/ROM const struct nr_route_struct *

SIOCGIFCONF takes a 'struct ifconf *'. The 'ifc_buf' field points to a
buffer of length 'ifc_len' bytes, into which the kernel writes a list of
type 'struct ifreq []'.

SIOCSIFHWADDR takes an input pointer whose type depends on the protocol:

Most protocols; const struct ifreq *
AX.25 const char [AX25_ADDR_LEN]

TIOCLINUX takes a 'const char *'. It uses this to distinguish several
independent sub-cases. In the table below, 'N + foo' means 'foo' after
an N-byte pad. 'struct selection' is implicitly defined in

TIOCLINUX-2 1 + const struct selection *
TIOCLINUX-3 void
TIOCLINUX-4 void
TIOCLINUX-5 4 + const struct { long [8]; } *
TIOCLINUX-6 char *
TIOCLINUX-7 char *
TIOCLINUX-10 1 + const char *

// Duplicate ioctls

This list does not include ioctls in the range SIOCDEVPRIVATE and
SIOCPROTOPRIVATE.

0x00000001 FDSETPRM FIBMAP
0x00000002 FDDEFPRM FIGETBSZ
0x00005382 CDROMAUDIOBUFSIZ SCSI_IOCTL_GET_IDLUN

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (14 of 15) [7/20/2001 11:40:32 AM]

0x00005402 SNDCTL_TMR_START TCSETS
0x00005403 SNDCTL_TMR_STOP TCSETSW
0x00005404 SNDCTL_TMR_CONTINUE
TCSETSF

 <--Appendix D Table of Contents Appendix F-->

Big Online Book of Linux Ada Programming - Appendix E

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (15 of 15) [7/20/2001 11:40:32 AM]

 <--Appendix E Table of Contents Glossary-->

Appendix F: Overview of GNAT Packages
This is an overview of some of the more useful packages included with Gnat 3.13p's more than 300
standard packages:

File Package Description

a-astaco Ada.Asynchronous_Task_Control Unimplemented

a-caldel Ada.Calendar.Delays Sleeping using Calendar types

a-acalend Ada.Calendar Standard Ada Caledar package

a-chahan Ada.Characters.Handling
Standard Ada character
handling package

a-chlat1 Ada.Characters.Latin_1
Standard Latin 1 Character set
definition

a-coliea Ada.Command_Line.Environment
Standard Ada environment
package

a-colire Ada.Command_Line.Remove Unset environment variables

a-comlin Ada.Command_Line
Standard Ada command
arguments package

a-cwila1 Ada.Characters.Wide_Latin_1
Standard Ada Latin 1 Wide
character set

a-decima Ada.Decimal
Limits and def'ns for Decimal
types

a-adiocs Ada.Direct_IO.C_Streams
Generic package for
reading/writing C direct files

a-adireio Ada.Direct_IO
Standard Ada generic direct
I/O package

a-dynpri Ada.Dynamic_Priorities
Changing task priorities
on-the-fly

a-except Ada.Exceptions
Standard Ada exception
handling package

a-exctr Ada.Exceptions.Traceback
Support for exception
tracebacks

a-filico Ada.Finalization.List_Controller
Support for controlled tagged
records

Big Online Book of Linux Ada Programming - Appendix F

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (1 of 9) [7/20/2001 11:40:56 AM]

a-finali Ada.Finalization
Standard Ada controlled
tagged record package

a-flteio Ada.Float_Text_IO Instantiated Text_IO for floats

a-fwteio Ada.Float_WideText_IO
Instantiated Wide_Text_IO for
floats

a-inteio Ada.Integer_Text_IO
Instantiated Text_IO for
integers

a-interr Ada.Interrupts
Standard Ada signal handling
package

a-intnam Ada.Interrupts.Names Linux signal names

a-ioexce Ada.IO_Exceptions
I/O exceptions used in std
packages

a-iwteio Ada.Integer_Wide_Text_IO
Instantiated Wide_Text_IO for
integers

a-lfteio Ada.Long_Float_Text_IO
Instantiated Text_IO for long
floats

a-lfwtio Ada.Long_Float_Wide_Text_IO
Instantiated Wide_Text_IO for
long floats

a-liteio Ada.Long_Integer_Text_IO
Instantiated Text_IO for long
integers

a-liwtio Ada.Long_Integer_Wide_Text_IO
Instantiated Wide_Text_IO for
long integers

a-llftio Ada.Long_Long_Float_Text_IO
Instantiated Text_IO for long
long floats

a-llfwti Ada.Long_Long_Float_Wide_Text_IO
Inst. Wide_Text_IO for long
long floats

a-llitio Ada.Long_Long_Integer_Text_IO
Inst. Text_IO for long long
integers

a-lliwti Ada.Long_Long_Integer_Wide_Text_IO
Inst. Wide_Text_IO for long
long integers

a-ncelfu Ada.Numerics.Complex_Elementary_Function
Inst. of std ops for complex
nbrs

a-ngcefu Ada.Numerics.Generic_Complex_Elementary_Functions
Generic package of std ops for
complex nbrs

a-ngcoty Ada.Numerics.Generic_Complex_Types
Generic complex numbers
package

a-ngelfu Ada.Numerics.Generic_Elementary_Functions
Generic std ops for complex
numbers

Big Online Book of Linux Ada Programming - Appendix F

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (2 of 9) [7/20/2001 11:40:56 AM]

a-nlcefu Ada.Numerics.Long_Complex_Elementary_Functions
Inst. of std ops for long
complex nbrs

a-nlcoty Ada.Numerics.Long_Complex_Types
Instantiation of long float
complex nbrs

a-nlelfu Ada.Numerics.Long_Elementary_Functions
Instantiation of std ops for
long floats

a-nllcef
Ada.Numerics.Long_Long_
Complex_Elementary_Functions

Inst. of std ops for long long
complex nbrs

a-nllcty
Ada.Numerics.Long_Long_
Complex_Types

Instantiation of long long float
complex nbrs

a-nllefu
Ada.Numerics.Long_Long_
Elementary_Functions

Inst. of std ops for long long
floats

a-nscefu
Ada.Numerics.Short_Complex_
Elementary_Functions

Inst. of std ops for short float
complex nbrs

a-nscoty Ada.Numerics.Generic_Complex_Types
Instantiation of short float
complex nbrs

a-nselfu Ada.Numerics.Short_Elementary_Functions Inst. of std ops for short floats

a-nucoty Ada.Numerics.Complex_Types
Instantiation of float complex
numbers

a-nudira Ada.Numerics.Discrete_Random
Generic integer random
number package

a-nuelfu Ada.Numerics.Elementary_Function
Inst. of std ops for float
complex nbrs

a-nuflra Ada.Numerics.Float_Random
Floating point random number
package

a-numaux Ada.Numerics.Aux Internal use

a-numeri Ada.Numerics Defn's of Pi and epsilon

a-reatim Ada.Real_Time Real-time timing declarations

a-retide Ada.Real_Time.Delays Sleeping using real-time types

a-sequio Ada.Sequential_IO
Standard Ada generic
sequential I/O package

a-sfteio Ada.Short_Float_Text_IO
Instantiated Text_IO package
for short floats

a-sfwtio Ada.Short_Float_Wide_Text_IO
Instantiated Wide_Text_IO
package for short floats

a-siocst Ada.Sequential_IO.C_Streams
Generic package for
reading/writing sequential C
files

Big Online Book of Linux Ada Programming - Appendix F

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (3 of 9) [7/20/2001 11:40:56 AM]

a-siteio Ada.Short_Integer_Text_IO
Instantiated Text_IO package
for short integers

a-siwtio Ada.Short_Integer_Wide_Text_IO
Inst. Wide_Text_IO package
for short integers

a-ssicst Ada.Streams.Stream_IO.C_Streams
Package for reading/writing C
streams

a-ssitio Ada.Short_Short_Integer_Text_IO
Inst. Text_IO package for
short short integers

a-ssiwti
Ada.Short_Short_Integer_
Wide_Text_IO

Inst. Wide_Text_IO package
for short short integers

a-stmaco Ada.Strings.Maps.Constants
Upper_Set, Lower_Set and
other char mappings

a-storio Ada.Storage_IO -

a-strbou Ada.Strings.Bounded
Standard Ada bounded strings
package

a-stream Ada.Streams Standard Ada streams package

a-strfix Ada.Strings.Fixed
Standard Ada fixed strings
package

a-string Ada.Strings Standard Ada string defn's

a-strmap Ada.Strings.Maps
Standard Ada string mapping
package

a-strsea Ada.Strings.Search Internal Use

a-strunb Ada.Strings.Unbounded
Standard Ada unbounded
strings package

a-ststio Ada.Streams.Stream_IO
Standard Ada streams I/O
package

a-stunau Ada.Streams.Unbounded.Aux
Additional unbounded string
subprograms

a-stwibo Ada.Strings.Wide_Bounded Wide bounded strings package

a-stwifi Ada.Strings.Wide_Fixed Wide fixed strings package

a-stwima Ada.Strings.Wide_Maps Wide version of strings.maps

a-stwise Ada.Strings.Wide_Search Internal Use

a-stwiun Ada.Strings.Wide_Unbounded
Wide unbounded strings
package

a-suteio Ada.Strings.Unbounded.Text_IO Unbounded strings package

a-swmwco Ada.Strings.Wide_Maps.Wide_Constant
Upper_Set, Lower_Set and
other wide char mappings

Big Online Book of Linux Ada Programming - Appendix F

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (4 of 9) [7/20/2001 11:40:56 AM]

a-swuwti Ada.Strings.Wide_Unbounded.Wide_Text_IO
Wide unbounded strings
package

a-sytaco Ada.Synchronous_Task_Control
Subprograms to synchronize
tasks

a-tags Ada.Tags Standard Ada tag package

a-tasatt Ada.Task_Attributes Set/get task attributes

a-taside Ada.Task_Identification Task ID package

a-teioed Ada.Text_IO.Editing
Package for formatted
Text_IO

a-textio Ada.Text_IO
Standard generic Text_IO
package

a-ticoau Ada.Text_IO.Complex_Aux
Basic long long complex I/O
package

a-ticoio Ada.Text_IO.Complex_IO
Generic Text_IO package for
complex numbers

a-tideau Ada.Text_IO.Decimal_Aux Internal Use

a-tideio Ada.Text_IO.Decimal_IO Internal Use

a-tienau Ada.Text_IO.Enumeration_Aux Internal Use

a-tienio Ada.Text_IO.Enumeration_IO Internal Use

a-tifiio Ada.Text_IO.Fixed_IO Internal Use

a-tiflau Ada.Text_IO.Float_Aux Internal Use

a-tiflio Ada.Text_IO.Float_IO Internal Use

a-tigeau Ada.Text_IO.Generic_Aux Internal Use

a-tiinau Ada.Text_IO.Integer_Aux Internal Use

a-tiinio Ada.Text_IO.Integer_IO Internal Use

a-timoau Ada.Text_IO.Modular_Aux Internal Use

a-timoio Ada.Text_IO.Modular_IO Internal Use

a-tiocst Ada.Text_IO.C_Streams
Text_IO for reading/writing C
text files

a-titest Ada.Text_IO.Text_Streams Text_IO stream definition

a-unccon Ada.Unchecked_Conversion
Standard Ada unchecked
conversions subprogram

a-uncdea Ada.Unchecked_Deallocation
Standard Ada unchecked
deallocation subprogram

a-witeio Ada.Wide_Text_IO
Text_IO package for wide
characters

Big Online Book of Linux Ada Programming - Appendix F

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (5 of 9) [7/20/2001 11:40:56 AM]

a-wtcoau Ada.Wide_Text_IO.Complex_Aux
Basic Text_IO package for
long long float complex
numbers

a-wtcoio Ada.Wide_Text_IO.Complex_IO
Generic Wide_Text_IO
package for complex numbers

a-wtcstr Ada.Wide_Text_IO.C_Streams
Wide_Text_IO package for
reading/writing wide C text
files

a-wtdeau Ada.Wide_Text_IO.Decimal_Aux Internal Use

a-wtdeio Ada.Wide_Text_IO.Decimal_IO Internal Use

a-wtedit Ada.Wide_Text_IO.Editing
Package for formatted
Wide_Text_IO

a-wtenau Ada.Wide_Text_IO.Enumeration_Aux Internal Use

a-wtenio Ada.Wide_Text_IO.Enumeration_IO Internal Use

a-wtfiio Ada.Wide_Text_IO.Fixed_IO Internal Use

a-wtflau Ada.Wide_Text_IO.Float_Aux Internal Use

a-wtflio Ada.Wide_Text_IO.Float_IO Internal Use

a-wtgeau Ada.Wide_Text_IO.Generic_Aux
Used by wide character IO
generic packages

a-wtinau Ada.Wide_Text_IO.Integer_Aux Internal Use

a-wtinio Ada.Wide_Text_IO.Integer_IO Internal Use

a-wtmoau Ada.Wide_Text_IO.Modular_Aux Internal Use

a-wtmoio Ada.Wide_Text_IO.Modular_IO Internal Use

a-wttest Ada.Wide_Text_IO.Text_Streams
Definition of wide text I/O
streams

g-busora GNAT.Bubble_Sort_A Bubblesort using access types

g-busorg GNAT.Bubble_Sort_G Generic bubblesort package

g-calend GNAT.Calendar
Ada.Calendar plus day of
week, second duration, etc.

g-casuti GNAT.Case_Util
Character case conversion
without Characters.Handling

g-catiio GNAT.Calendar.Time_IO
Formatted I/O for time values,
like Linux strftime()

g-comlin GNAT.Command_Line
More powerful than
Ada.Command_Line, like
Linux getopts()

g-curexc GNAT.Current_Exception
DEC Ada 83 / VADS Ada
style exception handling

Big Online Book of Linux Ada Programming - Appendix F

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (6 of 9) [7/20/2001 11:40:56 AM]

g-debpoo GNAT.Debug_Pools
Storage pool with allocation
and dereference error checking

g-debuti GNAT.Debug_Utilities
Program debugging utilities:
eg. system address output

g-dirope GNAT.Directory_Operations
Linux directory changing,
creating, walking

g-except GNAT.Exceptions
Ada predefined exceptions for
pure packages

g-flocon GNAT.Float_Control
Set the floating point
processor back to the Gnat
defaults

g-hesora GNAT.Heap_Sort_A
Heapsort package using access
types

g-hesorg GNAT.Heap_Sort_G Generic heapsort package

g-htable GNAT.HTable Generic hash table package

g-io GNAT.IO
Text I/O for preelaborated
packages

g-io_aux GNAT.IO_Aux
Get_Line functions and file
existence test for Text_IO

g-locfil GNAT.Lock_Files
Package for locking
files/directories with retry
capability

g-os_lib GNAT.OS_Lib
Package for common Linux
O/S operations

g-regexp GNAT.Regexp
Simple package for Linux
globbing pattern matching and
Ada BNF

g-regpat GNAT.Regpat
Package providing full UNIX
regular expression pattern
matching

g-speche GNAT.Spell_Checker
Check for a typo, similar to
my Typo_Of in TextTools

g-spipat GNAT.Spitbol.Pattern
Package providing SPITBOL
pattern matching

g-spitbo GNAT.Spitbol
SPITBOL string processing
data structures

g-sptabo GNAT.Spitbol.Table_Boolean Boolean type SPITBOL table

g-sptain GNAT.Spitbol.Table_Intege Integer type SPITBOL table

Big Online Book of Linux Ada Programming - Appendix F

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (7 of 9) [7/20/2001 11:40:56 AM]

g-sptavs GNAT.Spitbol.Table_VString
Unbounded string type
SPITBOL table

g-table GNAT.Table
Dynamic one-dimensional
arrays package

g-tasloc GNAT.Task_Lock
Package for protecting critical
regions in tasks

g-thread GNAT.Threads Import C threads as Ada tasks

g-traceb GNAT.Traceback
Non-symbolic traceback
support

g-trasym GNAT.Traceback.Symbolic Symbolic tracebacks

i-c Interfaces.C
Standard Ada C interfacing
package

i-cexten Interfaces.C.Extensions
Additional C types not
covered by Interfaces.C

i-cobol Interfaces.COBOL
Standard Ada COBOL
interfacing package

i-cpoin Interfaces.C.Pointers C style pointer arithmetic

i-cpp Interfaces.CPP
GNAT C++ class interfacing
package

i-csthre Interfaces.C.Sthreads Dummy package

i-cstrea Interfaces.C_Streams
Thin binding to C sequential
files

i-cstrin Interfaces.C.Strings GNAT C string operations

i-fortra Interfaces.Fortran
Standard Ada Fortran
interfacing package

i-os2err Interfaces.OS2Lib.Errors OS/2 error codes

i-os2lib Interfaces.OS2Lib OS/2 support

i-os2syn Interfaces.OS2Lib.Synchronization OS/2 support

i-os2th Interfaces.OS2Lib.Threads OS/2 support

i-pacdec Interfaces.Packed_Decimal
Packed decimal fixed types
support for Machine_Radix 10
computers

i-vxwork Interfaces.VxWorks VxWords API support

i-addimg System.Address_Image
Function returning a
system.address image

s-arit64 System.Arith_64
64 bit arithmetic with support
for intermediate results > 64
bits

Big Online Book of Linux Ada Programming - Appendix F

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (8 of 9) [7/20/2001 11:40:56 AM]

s-atacco System.Address_To_Access_Conversions
Converting between simple
pointers and access types

s-bitops.ads System.Bit_Ops
Low-level bitwise operations
for 1, 2 or 4 bytes

s-chepoo System.Checked_Pools
Storage pool with a function
called for any dereference

i-exngen Exn_Float_Type
Generic function for signed
integer exponentiation

s-pooglo System.Pool_Global
normal heap for GNAT global
access types

s-pooloc System.Pool_Local
normal heap for GNAT local
access types

s-powtab System.Powten_Table table of powers of 10

s-stoele System.Storage_Elements Standard Ada package

 <--Appendix E Table of Contents Glossary-->

Big Online Book of Linux Ada Programming - Appendix F

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (9 of 9) [7/20/2001 11:40:56 AM]

 <--Appendix F Table of Contents End of Book

Glossary
AARM The Annotated Ada Reference Manual contains the entire text of the Ada 95 standard (ISO/IEC
8652:1995(E)), plus various annotations. It is intended primarily for compiler writers, validation test
writers, and other language lawyers. The annotations include detailed rationale for individual rules and
explanations of some of the more arcane interactions among the rules.

Ada 9X the working title of Ada 95 before the language was completed.

ASIS The Ada Semantic Interface Specification is a layered vendor-independent open architecture.
ASIS queries and services provide a consistent interface to information within the Ada compilation
environment.

Dynamic Polymorphism Polymorphism implemented at run-time using a "tag" to determine the type of
item; tagged records, objects.

Inheritance Creating new items containing an original item's features without changing the original
item.

LRM is the abbreviated name of the Language Reference Manual, sometimes called Ada Reference
Manual. "LRM" was often used in the days of Ada 83; "RM" or "rm95"

Multiple Inheritance Creating new items from two or more original item's features without changing
the original item.

Polymorphism A means of factoring out differences amongst a collection of items so that programs
may be written in terms of the common features.

RM see LRM.

RM95 see LRM.

Static Polymorphism Polymorphism implemented at compile-time; generics.

 <--Appendix F Table of Contents End of Book

Big Online Book of Linux Ada Programming - Glossary

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_z.html [7/20/2001 11:41:10 AM]

	Local Disk
	The Big Book of Linux Ada Programming
	 i Preface
	1 Introduction
	2 Installing Gnat on Linux
	3 Introduction to the IDE's
	4 From Source Code to Executable
	5 Building Large Projects
	6 Development Utilties
	7 Optimizing Your Project
	8 Debugging Your Project
	9 Team Development
	10 An Introduction to Ada
	11 Advanced Ada Programming
	12 Standard Gnat Packages
	13 Linux Introduction
	14 Linux Programming
	15 Free Ada Bindings
	16 Advanced Linux Programming
	17 Moving C Programs To Ada
	18 Data Structures
	19 Specialized Topics
	20 Developing Your Project
	Appendix A: The Linux Shell
	Appendix B: Linux Error Codes
	Appendix C: Linux Kernel Calls
	Appendix D: Signals
	Appendix E: Ioctl parameters
	Appendix F: Overview of Gnat Packages
	Glossary

	PNMPIHMMCBHJALMGCDAMBPKLLDAPGOGH:
	form1:
	x:
	f1:
	f2: Search

	f3:

