The Big Book of Linux Ada Programming

The Big Online Book of Linux Ada
Programming

An online documentation project over 27,000 lines long.
Last Updated: July 20, 2001

Copyright © 1999-2001, Ken O. Burtch. All Rights Reserved. Permission given to copy (including
photocopying) this document for education purposes provided this notice is kept intact.

Do you want to develop Linux applicationstwice as fast asthe C language?
Read on!

Latest version: [North America/Canada]
Download files: [.zipHTML][PDF]
Unofficial mirrors: [Europe/Spain] [Asia/Japan] [OOP Web |

Search the Big Book for a word or phrase Search

Specia Thanks To

Jeff Creem (user stack and errno clarifications)
Wilhelm Spickermann (CVS)

Leonid A. Timochouk (Florist clarifications)

Jurgen Pfeifer (Multithreading information)
Bernhard Gubanka (Debugging Pools clarifications)
Eric L. Schott, Warren W. Gay, Jean-Marc Bourguet (Adjust vs. C++ Copy Constructors)
Jean-Marc Bourguet (C++ exceptions)

Warren W. Gay (Ada Streams)

Rush Kesler (PDF version)

Duncan Sands (Fortran, Elaborate All)

Erik Sigra (Automake)

Talk with the author at ken-nospam@tiamet.vaxxine.com (remove the "-nospam"). Hosted by
PegaSoft Canada. Special thanks to the Ada Linux Team.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (1 of 10) [7/20/2001 11:22:56 AM]

http://www.vaxxine.com/pegasoft/homes/book.html
http://www.vaxxine.com/pegasoft/homes/book.zip
http://www.vaxxine.com/pegasoft/homes/book.pdf
http://sibila.edv.uniovi.es/ada-ken/book.html
http://www.swlab.csce.kyushu-u.ac.jp/~yoshimi/book/
http://www.oopweb.com/Ada/Documents/AdaLinux/Volume/book.html
http://www.vaxxine.com/pegasoft
http://www.gnuada.org/alt.html

The Big Book of Linux Ada Programming

Table of Contents

I. Preface

1 Introduction

1.1 A Brief History of Linux

1.2 1995: The Year of Adaand Gnat
1.3 Why use Ada?

1.4 Why Ada and Linux?

1.5 Linux Ada Resources

2 Installing Gnat on Linux

2.1 Installing the ALT RPMs

2.2 Installing the ACT Binaries

2.3 Compiling Gnat from its Sources

2.4 Case Study: Installing Gnat 3.11 on over an old Linux Distribution

3 TheIntegrated Development Environments

3.1 TIA: The Console IDE

3.1.1 Quick Start

3.1.2 TIA Keyboard Legend
3.1.3 The File Menu

3.1.4 The Edit Menu

3.1.5 The Find Menu

3.1.6 The Misc Menu

3.1.7 The Project Menu

3.1.8 The ? Menu

3.2 GRASP-the X windows IDE

3.2.1 Installation

3.2.2 QuickStart

3.2.3 The Project Window
3.2.4 The Source File Window
3.2.5 The Button Bar

3.3 Other Tools and IDEs
3.3.1VAD

3.3.2 Jessie

3.3.3RAPID

3.3.3VIDE

3.3.5GLIDE

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (2 of 10) [7/20/2001 11:22:56 AM]

The Big Book of Linux Ada Programming

4 From Sour ce Codeto Executable

4.1 Gnat Filename Conventions

4.2 Writing Y our First Ada Program
4.2.1 Writing a Program with an IDE
4.2.2 Writing a Program without an IDE
4.2.3 After Building

4.3 The Three Step Process

4.4 Gnat Compiling Options

4.4.1 Run-time Error Checking

4.4.2 Checking without Compiling
4.4.3 When you have Too Many Errors
4.5 Gnat Binding Options

4.6 Gnat Linking Options

4.7 Gnatmake Options

4.7.1 So you changed the comments ?

5 Building L arge Projects

5.1 Make: the Traditional Project Builder

5.1.1 A Simple AdaMakefile
5.2 Cook: A Parallel Make

5.2.1 Cooking in Parallel
5.2.2 A Simple Ada Cookbook
5.3 Automake and Autoconf: UNIX Portability

6 Development Utilities

6.1 Saving Time with Gnatstub

6.2 Crossreferencing with Gnatxref

6.3 Eliminating Dead Code with Gnatelim

6.4 Execution Stack & Memory Leak Detection
6.5 Conditional Compiling with Gnatprep

6.6 Profiling with gprof

6.7 Shared Libraries Using GnatDL L

6.8 Source as Web Pages Using GnatHTML
6.9 GnatFIND

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (3 of 10) [7/20/2001 11:22:56 AM]

The Big Book of Linux Ada Programming

7 Optimizing Your Project

7.1 Compiler Optimization Options

7.2 Gnat Source Optimization Options

7.3 CPU Optimization Options

7.4 What Differnece Does Optimization Make?
7.5 Working with the Assmebly Source

8 Debugging Your Project

8.1 Limit and the Heap Size
8.2 The Debugging Pragmas
8.3 Identifying Files

8.4 Compiler Info with -gnatG
8.5 Floating Point Numbers
8.6 Gdb: The GNU Debugger
8.7 Code Restrictions

9 Team Development

9.1 Change Logs

9.2 RCS. Revision Control System
9.3 CVS: Concurrent Versions System
9.4 Creating Transcripts with Script
9.5 Timing Execution with Time

10 An Introduction to Ada

10.1 Your Main Program

10.2 Text 10

10.3 Fundamental Data Types
10.4 Type Attributes

10.5 Operatiors and Expressions
10.6 Variable Declarations

10.7 New Types

10.7.1 Modular Types
10.7.2 Text_10 and New Types
10.8 Aqggregate Types

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (4 of 10) [7/20/2001 11:22:56 AM]

The Big Book of Linux Ada Programming
10.9 Enumerated Types

10.10 Procedures and Function
10.11 Flow of Control

11 Advanced Ada Programming

11.1 Packages
11.2 Controlling Elaboration

11.2.1 First line of defense: Pure, Preelaborate and No_Elaboration Code
11.2.2 Second line of defense: Elaborate, Elaborate Body, Elaborate All
11.2.3 Other Elaboration Pragmas

11.3 Objects
11.4 Objects with Automatic Initialization/Finalization

11.5 Multiple Inheritance

11.6 Private Objects

11.7 Generics

11.8 Exceptions

11.9 Dynamic Allocation
11.10 Callbacks

11.10.1 Storage Pools

11.10.2 Access Parameters
11.11 Multithreading

11.11.1 FSU vs. Native Threads
11.11.2 Tasks

11.11.3 Task Types

11.11.4 Protected Items/Types
11.12 Ada Text Streams

11.13 Pragmas

11.14 Low-Level Ada

12 Standard Gnat Packages

12.1 Standard String and Character Packages
12.2 Advanced | nput/Output

12.2.1 GNAT.IO

12.2.2 GNAT.IO _Aux

12.3 Sequential 10

12.4 Direct 10

12.5 Formatted Output

12.6 Calendar Package

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (5 of 10) [7/20/2001 11:22:56 AM]

The Big Book of Linux Ada Programming

12.7 Tags Package

12.8 Tables
12.9 Hash Tables

12.10 Bubble and Heap Sorts

12.11 Reqular Expressions

12.12 Advanced String Processing

12.13 GLADE Distributed Processing [not finished]

12.14 Basic M ath Packages

12.15 Exception Handling and Traceback Packages

13 Linux Introduction

13.1 Introduction to Processes

13.1.1 Parents, Children and Families

13.1.2 Ownership and Permissions

13.2 Using System and OsLib.Spawn

13.3 The Linux Environment

13.4 Standard C Libraries

13.5 The Linux Kernel

13.5.1 Kernel Calls

13.5.2 Devices

13.5.3 Proc File System

13.5.4 AudioCD: An Example Program

13.6 Standard | nput/Output/Error

13.8 Linux Binary Formats

13.9 Linux Libraries

13.10 Libch, Libc6 and Upward Compatibility

13.11 Linux Basics

14 Linux Programming

14.1 Gnat OS Library

14.2 Installing Binding Packages

14.3 Catching Linux Signals

14.4 Working with the Command Line

14.4 Linux Environment Variables

14.6 GNAT .Directory Operations Package

14.7 GNAT.Lock Files Package

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (6 of 10) [7/20/2001 11:22:56 AM]

The Big Book of Linux Ada Programming

15 Free Ada Bindings

15.1 Using Florist, a POSI X binding

15.2 Using Texttools

15.2.1 Installation

15.2.2 Introduction

15.2.3 Package Overview

15.2.4 Window Overview

15.2.5 Other Useful Window Manager Subprograms
15.2.6 Alerts

15.2.7 Other Predefined Windows
15.2.8 Control Overview

15.2.9 OS Package

15.2.10 Userl O Overview

15.2.11 Appearance and Keys
15.3 Using Ncurses [not finished]

15.4 Using GTK+ Widgets [not finished]

15.5 Using Motif Widgets [not finished]

15.6 Using the TASH TCL Binding [not finished

15.7 Using the M esa/OpenGL Binding [not finished]

15.8 Engine 3D [not finished]

16 Advanced L inux Programming

16.1 Writing Y our Own Bindings

16.2 Linux Errors and Errno

16.3 The Linux Clock

16.3.1 Basic time functions

16.3.2 Timeval Calls - Microsecond Accuracy

16.3.3 Functions Using the tm Record

16.3.4 Time as a String

16.3.5 Timer Functions

16.4 Process I nformation

16.4.1 Ownership

16.4.2 Other Functions

16.5 Environment Variables

16.6 Multitasking

16.7 Linux File Operations

16.8 Opening and Closing Files

16.9 Directories

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (7 of 10) [7/20/2001 11:22:56 AM]

The Big Book of Linux Ada Programming

16.10 Stdio Files

16.11 Stdio Pipes

16.12 Memory Management
16.13 The Virtual Consoles
16.14 Making Database Queries

16.14.1 mySQL [not finished]
16.14.2 PostgreSQL [not finished]
16.15 Dynamic Loading [not finished]

16.16 A Word on Device Drivers
16.17 Linux Sound

16.17.1 Detecting a Sound Card

16.17.2 Playing Sound Samples

16.17.3 Using the Mixer

16.17.4 Recording Sound Samples [not finished]
16.18 Audio CDs

16.19 Kernel Pipes[not finished]
16.20 Shared Memory [not finished]
16.21 Message Queues [not finished]
16.22 Semaphores [not finished]
16.23 Sockets

16.24 Memory Management

16.25 Exit Procedures

17 Moving C Programs To Ada

17.1 c2ada: Trandating Y our Programs
17.2 Interfaces.C package

17.3 Interfaces.C.Pointers package
17.4 Interfaces.C Streams package
17.5 Adaand C Files

17.6 A Word on Interfaces.Fortran

18 Data Structures

18.1 Using the Booch Components
18.1.1 Containers

18.1.2 lterators

18.1.3 Single linked Lists

18.1.4 Double linked Lists

18.1.5 Bags

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (8 of 10) [7/20/2001 11:22:56 AM]

The Big Book of Linux Ada Programming

18.1.6 Sets

18.1.7 Collections
18.1.8 Queues

18.1.9 Stacks

18.1.10 Deques

18.1.11 Rings

18.1.12 Maps

18.1.13 Binary Trees
18.1.14 AVL Trees
18.1.15 Multiway Trees
18.1.16 Graphs

18.1.17 Smart Pointers
18.1.18 Booch Multithreading

19 Specialized Topics

19.1 Ada Meets Java

19.1.1 The Java Virtual Machine [unfinished]
19.1.2 JGNAT [unfinished]

19.2 ASIS [unfinished]

20 Developing Your Project

20.1 The Project Proposal

20.2 The Design Phase

20.3 The Development Phase
20.4 The Alpha/Beta Release
20.5 Releasing Y our Software
20.5.1 A Third Party Library
20.6 Distribution Formats
20.6.1 RPM: Red Hat Package Manager [not finished]
20.6.2 TGZ Packages

20.6.3 TAR.BZ2 Packages
20.6.4 Other Formats

20.7 Man Pages

20.8 Linux Software Map Entry
20.9 Licensing Options

Appendices

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (9 of 10) [7/20/2001 11:22:56 AM]

The Big Book of Linux Ada Programming

Appendix A: The Linux Shell

Appendix B: Linux Error Codes

Appendix C: Linux Kernel Calls

Appendix D: Signals

Appendix E: loctl parameters

Appendix F: Overview of Gnat Packages

Glossary

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/book.html (10 of 10) [7/20/2001 11:22:56 AM]

The Big Book of Linux Ada Programming

I. Preface

I've been working with Linux since kernel 0.97 and with Gnat since version 2.00. In the past five years or
S0, I've been frustrated by the lack of documentation on Linux Ada programming. Gnat is one of the most
powerful development environments for Linux, certainly superior to C or C++, and yet most people have
never heard of it. Those that have often ignore it because they can't find enough documentation to install
Gnat, let alone to evaluate it.

After my article "Gnat: C++ and Java under Fire", published in the October 1998 edition of Linux
Journal, | decided to collect my knowledge of Linux Ada programming and set down what |1've learned:
from installing Gnat to interfacing with the Linux kernel. | wanted to create a book that had everything |
needed in one place to write professional Linux applications. After publishers declined to put it in print
because Ada developers are asmall (though growing) niche in the Linux market, | decided to publish it
online so that the facts about Linux Ada programming would be understood.

This document covers basic software development on Linux, areview of the core Ada 95 language, and
an introduction to designing programs that work with the Linux kernel and standard C libraries. It also
covers some of the Ada bindings that exist for packages like Motif, TCL and GTK+.

This book tries to describe Linux specifics whenever possible. Thisis not another UNIX book recycled
with the word "Linux" substituted in.

Although many Ada basics are covered, this document assumes the reader is familiar with ahigh-level
programming language such as BASIC, C, C++, Java. Borland Delphi programmers will notice

similarities between Delphi and Ada.

Because C is the dominant language in the Linux world, the differences between C and Ada are hilighed
throughout the text.

The document is designed to be used as areference after it's been read, with many tables and examples
covering common Linux programming problems.

Although this book coversalot of material, it isnot intended as an exhaustive survey of Linux Ada
programming.Linux isin a constant state of development. Refer to your Linux documentation for the
latest information and newest features. Also, Ada 95 has severa application specific and portability
features which are not covered since they are not related to general Linux Ada programming.

Because of the fast pace of Linux development, information in this document may be obsolete, or (to
paraphrase Douglas Adams) apocryphal or wildly inaccurate. However, most of the facts have been
verified against Gnat 3.11 (or alater version), and most of the examplesin this document have been
compiled under Gnat.

Ken O. Burtch, September 1999

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/0-ii-pref.html [7/20/2001 11:28:01 AM]

http://developer.java.sun.com/developer/infodocs/index.shtml

Big Online Book of Linux Ada Programming - 1 Introduction

1 Introduction

Table of Contents Next Chapter-->

[Rewrite & Expand] Ada 95 is arguably the most powerful development language available for Linux,
with features comparable to Java and execution speeds similar to, and sometimes exceeding, C. gnat, the
main [perhaps only'check at HBAP?--KB] Ada 95 compiler for Linux, is also absolutely free. This makes
acombination that's hard for Linux programmers to ignore.

1.1 A Brief History of Linux

The Linux operating system that was created as a hobby by a young student, Linus Torvalds, at the
University of Helsinki in Finland. Linus, interested in the UNIX clone operating system Minix, wanted to
create an expanded version of Minix with more capabilities. He began his work in 1991 when he released
version 0.02 and invited programmers to participate in his project. Version 1.0 wasreleased in 1994. The
latest version is 2.4 and development continues.

Linux uses GNU General Public License (GPL) and its source code is freely available to everyone. Linux
distributions, CD-ROMs with the Linux kernel and various other software ready for installation, do not
have to be free, but the Linux source code must remain available. Making source code available is known
as 'open source'.

Theword "Linux" is properly pronounced using a Swedish accent, making it difficult to pronounce in
North America. It is most often pronounced with a short "i" and with the first syllable stressed, asin
LIH-nicks, but it is sometimes pronounced LY E-nicks (the anglicized "Linus UNIX") or LEE-nucks.

Strickly speaking, Linux refers to the operating system kernel that starts and manages other programs and
provides access to system resources. The various open source shells, compilers, standard libraries and
commands are a part of another project called GNU. The GNU project was started by the Free Software
Foundation (FSF) as an an attempt to create a free version of UNIX. The main Linux C compiler, gcc, is
apart of the GNU project.

Thereisalso a GNU kernel project, but this has been largely superseded by the Linux kernel.

X Windows is aso not strictly a part of Linux. Xfree86, the free version of X Windows, was adapted to
the Linux operating system.

1.2 1995: The Year of Ada and Gnat

In 1974, the US Department of Defense realized it was spending too much on software.
They wanted a new computer language that could handle al of their needs, from
controlling the hardware in a missile guidance system to doing artificial intelligence. In
1983, they created the language Ada (now known as Ada 83), a heavily modified version
of the Pascal language. "Ada", a proper name, refers to Countess Ada Lovelace

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/1.html (1 of 5) [7/20/2001 11:28:29 AM]

Big Online Book of Linux Ada Programming - 1 Introduction

(1815-1852), considered by some to be the world's first programmer.

The original Ada had several shortcomingsin the areas of software engineering: Ada programs tended to
be big and awkward to maintain over time. In 1990, ANSI began a project to revise Ada, to include
object oriented features, hierarchical program libraries, support for other languages, and add-ons for
specialized applications like systems programming, real-time systems, distributed information
(client/server) systems and scientific programming. The updated language is known as Ada 95.

GNAT isaGPL Adacompiler, available for Linux, Windows NT, and many other platforms. It was
originally created at New Y ork University. GNAT is owned by Ada Core Technologies (ACT,
http://www.gnat.com): although gnat is free, companies who want support can purchase it for afee. The
Linux version of GNAT supports the entire Ada 95 standard, including all optional features. It includes
many extensions, like cross-compiling and support for the C++ language. ACT aso provides GLADE, a
free RPC-based TCPF/IP networking implementation Ada 95's distributed systems annex.

The GNAT manual describes their compiler as"an industrial-quality Ada 95 compiler, integrated into the
GCC retargetable compiler system. GNAT is a complete compiler, validated on several platforms, that
includes support for all the Ada 95 annexes specified in the Ada Reference manual. Because of its
integration into the GCC system, GNAT is available on alarge number of hardware/operating system
platforms, and can be used as a cross-compiler from any of its targets to any other one. Because of the
common code-generator technology of GCC, GNAT has excellent support for multi-language
programming: Ada, C, C++, Fortran, etc.

GNAT also represents a substantial improvement in Ada compilation technology. It's [sic] open-system
philosophy stands in contrast with the opaque approach of older Ada compilers. There are no hidden and
complex central libraries whose use requires atotally new set of commands, and no rigid development
environments that often force needless recompilations. While preserving all of Ada's safety, GNAT's
source-based model provides the flexibility and efficiency typically encountered in C development
environments. Furthermore, GNAT's flexibility greatly facilitates its integration within third-party
development environments and CA SE tools. A number of standard editors, debuggers, profilers, memory
analyzers, test coverage or configuration-management tools, etc. can be used with GNAT, which coexists
comfortably with familiar programming tools (unlike older Ada compilation systems)."

Fun Fact: When Gnat 3.11p was released, Robert Dewar said that Linux would never be abillion
dollar platform and deserved no special consideration by ACT. By the time Gnat 3.12p was released
just over ayear later, the Red Hat company was worth more than 18 billion dollars, or 40% of the
server market. The first platform supported by Gnat 3.12p was Linux.

1.3 Why Use Ada?

C and C++ represent the de facto standard for Linux programming. After all, the kernel itself iswritten in
C. However, C++ isnot suitable for all kinds of projects because different computer languages have
different strengths and weaknesses. Ada was designed for team development and embedded systems,
leading to advantages over C in development time and debugging. An in-depth 1995 study by Stephen F.
Zeigler (http://www.adai c.com/docs/reports/cada/cada_art.html) showed that development in Ada costs
about half that of C++. It also suggests that Ada produces "“amost 90% fewer bugs for the final

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/1.html (2 of 5) [7/20/2001 11:28:29 AM]

Big Online Book of Linux Ada Programming - 1 Introduction

customer".

GNAT was developed closely with gcec, the native C compiler for Linux. Unlike some compilers that
trandlate a program into C and then feed the C program into gcc, gcc has built-in support for the Ada
language. Like g++, the GNU C++ compiler, gnat works with gcc, allowing it to produce fast, quality
executables without any intermediate steps.

Thisintegration gives alot of flexibility to programmers who want or need to support multiple
languages. GNAT has an extensive set of features for trading variables and function calls between Ada
and C/C++. It can import C/C++ itemsinto Ada, export Adaitemsto C/C++. You can also link Ada
functions indirectly into Java, using Java's ability to import C++ functions.

GNAT comes with over 140 standard libraries. These include numeric and string libraries, file
operations, hash tables and sorts. If you would rather work directly with Linux C libraries, a variety of
"binding" libraries exist, available for download from the Public Ada Library or The Home of the Brave
Ada Programmers. These include bindings for POSIX (that is, the Linux kernel), X Windows, Motif,
TCL and WWW CGl applications. The Ada Linux Team prepackage many bindings for use with their
version of the Gnat compiler.

More and more Linux libraries feature Ada bindings, including ncurses (a standard text screen drawing
library) and GTK (the Gimp Toolkit, a graphics package).

Although gnat is distributed under the GPL license, gnat and its libraries may be used in commercial
applications.

The GtkAda mailing list is at http://gtkada.eu.org.
The Gnat mailing list is at http://www.diax.ch/users/gdm/gnatlist.ntm.
The Gnat Glade chat mailing list is at glade-chat@act-europe.fr.

1.4 Why Ada and Linux?

Ada provides a number of important features for Linux programmers:

« Fast Executables- the GNAT compiler produces executables using the same code generator as
gcc.

o User Friendly - Adaiseasy to learn and use, making it a popular choice for introductory
computer science courses. Its source code is much easier to read that C, C++ or Java.

« Standardized - Ada compilers adhere to a strict standard making Ada programs reliable and
portable. Even Java hasn't been standardized.

« Flexibility - Adahas many specialized design features that address issues usually ignored by other
languages, such as real-time applications, safety-critical software, and low-level hardware access.

« Faster, Cheaper Development - Asthe previously mentioned Zeigler study shows, Ada programs
tend to have fewer errorsthat C++ programs. This means you can get your work done faster with
less time and money spent on debugging.

» Scalability - Adaisdesigned for embedded systems and team projects, making it an ideal choice
for large projects. This same scalability, and the object oriented features of the language, make the

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/1.html (3 of 5) [7/20/2001 11:28:29 AM]

Big Online Book of Linux Ada Programming - 1 Introduction
source code prone to alonger lifespan.

« AmpleLibraries- The GNAT compiler comes with many general purpose libraries, and bindings
exist for most of the key Linux libraries.

« Open Source Friendly - Ada's readability and scalability make it an ideal language for open
source development. Child packages, for example, make it easy to extend someone else's work
without affecting the original source code.

1.5 Linux Ada Resources

There are avariety of resouces on the Internet for Linux Ada development.

One important resource is the comp.lang.ada newsgroup, which is frequented by many Ada celebrities,
including Robert Dewar of Ada Core Technologies and Tucker Taft, the principle designer of Ada 95. If
you have questions about the inner workings of Ada 95, thisisthe place to go.

AdaLinux Team (ALT) isagroup of programmers dedicated to Linux programming specifically using
Ada. Thissiteislocated at www.gnuada.org/alt.ntml . They provide the latest versions of software and

libraries for Linux, including bug fixes for Gnat, prepackaged and ready for installation.

The GNU Ada site, www.gnuada.org, is asite for all things related to Gnat, not only Linux Gnat
devel opment.

The Ada Sour ce Code Treasury at www.adapower.com provides examples of both Linux and Windows
Ada applications. Included are examples of sockets, MD5 encryption and packages to work with
Windows servers from a Linux computer.lt also has a free, unsupported binding to Motif by
Itermetric/Avestar.

If you are looking for general algorithms and source code examples, PAL (the Public AdaLibrary), isa
large source code repository located at www.monmouth.edu/faculty/conn/webproj/ppt2/ . It includes

thousdands of source code examples, bindings, compilers and the official Ada 95 documentation.

The Ada Software Engineering Library hasover 1 Gig of files. It'savailable at
http://unicoi.kennesaw.edu/ase/index.htm.

The Home for Brave Ada Programmer s at www.adahome.com provides alot of general reference
material and bindings.

The Ada Information Clearinghouse (Al C) at www.adaic.com contains statistics, studies and other
general information.

http://www.skinner.demon.co.uk/aidan/programming/libra has atool called Libra (Library of Reusable
Ada Code) for many common data structures such as lists, queues, and Internet sockets suchasHTTP
and POP3.

http://www.aindlie-software.com has atool called AdaJNI (Java Native Interface) that lets you call java
methods from Ada 95.

Table of Contents Next Chapter-->

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/1.html (4 of 5) [7/20/2001 11:28:29 AM]

http://www.gnuada.org/alt.html
http://www.gnuada.org/
http://www.adapower.com/
http://www.monmouth.edu/faculty/conn/webproj/ppt2/
http://unicoi.kennesaw.edu/ase/index.htm
http://www.adahome.com/
http://www.adaic.com/

Big Online Book of Linux Ada Programming - 1 Introduction

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/1.html (5 of 5) [7/20/2001 11:28:29 AM]

Big Online Book of Linux Ada Programming - 2 Installing Gnat on Linux

2 Installating Gnat on Linux

<--Last Chapter Table of Contents Next Chapter-->

Gnat is apart of the gcc project. The gcc command itself isn't acompiler: it's a program that determines the kind of
source file you have and runs the appropriate compiler for you. For example, the Ada compiler iscalled gnat 1, and
the C compiler is called cc1. When gcc detects an Ada sourcefile, it runs gnatl to compileit.

Because gcc and Gnat must work as ateam, specific versions of Gnat are created for specific versions of gcc. Gnat
3.10p is compiled against the gcc for kernel 2.0.29 (for example, the version of gcc used in the Slackware 3.2
distribution). Gnat 3.11p, 3.12p and 3.13p are compiled against gcc 2.8.1.

To find out which version of gcc you have, run gcc with the -v switch.

The standard Gnat distribution from ACT comes with its copy of the correct version of gcc and can install Gnat and its
gce in aseparate directory. The binary versions from ACT's web site have C++ support removed, so if you want gcc to
support C++ and Ada simultaneously, you'll have to recompile gcc and Gnat from their sources.

It is possible to install one version of gcc overtop of another and to select one version or the
other using the gcc -V switch, but gcc must again be recompiled from its (newest) sources to make it
aware of the other version.

There are patches available viathe ALT web site for compiling gnat from the sources for the egcs compiler instead of
gcc. eges (pronounced "eggs') isavariation of gcc designed specifically for Pentium computers. Egcsis based on gecc
2.8.0. Slackware 3.6, for example, used egcs. The egcs optimizations are being merged with gcc for the upcoming
release of gcc 3.0. ACT has announced plansto fold Gnat into the Gece project for Gee 3.1 and have moved some of
their discussions to the gcc mailing list.

2.1 Installing the ALT RPMs

The AdaLinux Team version of Gnat is available from their web site. Versions exist for the Red Hat, S.u.S.E. and
Debian distributions. They may also work on the Mandrake and Caldera distributions.

The ALT versionsinclude support for ASIS, GLADE and native Linux threads. The package includes gnatgcc, a
version of gcc with Gnat and C++ support, and gnatgdb, a version of gdb that supports Ada source code, plus gnatprep
and the other Gnat utilities.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/2.html (1 of 4) [7/20/2001 11:30:05 AM]

Big Online Book of Linux Ada Programming - 2 Installing Gnat on Linux

The rpm files are built for Red Hat and S.u.S.E. distributions. If you try installing it on
another distribution, use --nodep to ignore any package dependency warnings.

1. Download and read the readmefile.

2. Download the gnat-3.xxp-runtime* rpm file (where xx is the current version of Gnat and * isthe rest of the
filename). For older RPMs, thisis gnat-3.xxp*.

3. Download the gnat-3.xxp rpm file. For older RPMs, thisis gnat-3.xxp-devel*.
4. rpm -i gnat-3.xxp-runtime*
5. rpm -i gnat-3.xxp*

6. Download and install any of the additional Gnat packages you need

Therpm fileson the ALT site are configured to work with the ALT version of gnat. To install them, simply download
them and run rpm with the -i switch.

The ALT GNAT build system is available for those wanting to know more about how the RPMs are constructed. Using
CV'S, you can check our the source code.

export CVSROOT=": pserver:anoncvs@ornet.rus. uni-stuttgart.de:/var/cvs"
cd $HOVE

cvs login # (use enpty password)

cvs -z9 co -d ALT gnuada/alt-build

2.2 Installing the ACT Binaries

The latest version of the Gnat compiler is available from the ACT FTP site. These binaries do not have the extra
features available with the ALT RPMs, but they include extrainstallation information, including how to install Gnat's
various add-ons. There are also versions for other operating systems besides Linux.

Gnat 3.12 and older have an additional install option to overwrite you're existing copy of
gcc, provided it isright version. Sinceit israre that a distribution has the exact same version of gcc, this
option is no longer provided.

ACT will sometimes release several versions of Gnat for different C libraries. When downloading the binaries, make
sure that you download the version compiled against the appropriate C library. Thisis due to the constantly evolving
nature of Linux.

To find out which libc library your distribution uses, examine the /lib/libc.so link to find out
which fileit pointsto. For example, if /lib/libc.so pointsto alibcs library, then you'll need the libc5
version.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/2.html (2 of 4) [7/20/2001 11:30:05 AM]

Big Online Book of Linux Ada Programming - 2 Installing Gnat on Linux

The latest public version from ACT is 3.13p, which has been compiled for gcc 2.8.1.
By default, Gnat isinstalled in a/usr/gnat subdirectory.

If you don't have gcc 2.8.1, you can specify a separate directory where gnat will install itself and its own persona copy
of gcc 2.8.1. Using this method, you need to perform an additiona step. The installation program (doconfig) creates a
shell script containing environment variables that you can copy to your shell startup script (under bash, thisis usually
the .profile file in your home directory). Gcc uses these variables to locate the gnat files.

Y ou will need to include the gnat directory in the front of your PATH variable to prevent gnat from using the gcc that
came with your Linux distribution. For example, use the shell command:

export PATH="/usr/ gnat/ bi n: $PATH'

Only use this command when you want to use Gnat since it effectively hides the copy of gcc that came with your
distribution.

If you don't want gnat to be enabled by default, you can write a short shell script that assigns the environment variables,
sets the path, and starts a new shell.

2.3 Compiling Gnat from its Sources

Occasionally you may want to compile Gnat yourself from its sources. For example,
« yoOu may want to learn more about computer language design
« yoOu may want to enable support for other languages (e.g. C++)
« you may want to make libgnat a shared library
« Yyou may want to upgrade gnat for the newest C libraries
« you may want to change the multithreading model
In order to recompile Gnat, you'll need the following:

1. A copy of the gcc sourcesin order to build a copy of gcc that's compatible with Gnat. The required version is
listed in the Gnat documentation.

2. A copy of the gnat sources. The sources are available for download from the gnat download site and its mirrors.
[I should compile gnat and make notes and flush out the details more--KB]

First, you need to recompile the gcc compiler. Make sure you follow gec's instructions for activating Ada support.

make CFLAGS="-g -fsigned-char" LANGUAGES="c c++ ada"

make stagel

make CC="stagel/ xgcc -Bstagel/" CC="-g -2 -fsigned-char" STACGE PREFI X="stagel/"
LANGUAGES="c c++ ada"

<build tools and Iib with CC="./xgcc -B./">

There are two problems that can arise:

1. The standard C library may have changed.

2. The souce code for the gcc compiler itself may have changed.
Changesto the C library rare unless the library is several generations out of date. Even so, by consulting the man pages
you can usually find out the new parameters the various C functions expect.

Upgrading gcc to a new version of gcc, however, can be difficult. Gnat's gcc patches are designed for a specific version
of gcc. It isusually agood ideato get a copy of the source code for the version of gcc Gnat was designed for and

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/2.html (3 of 4) [7/20/2001 11:30:05 AM]

Big Online Book of Linux Ada Programming - 2 Installing Gnat on Linux

compile a second gcc compiler just for use with Gnat. For gnat 3.13, you'll need the gecc 2.8.1 source code. Y ou should
be able to compile an older version of gcc to work with newer C libraries, provided the compiler is only afew months
out of date.

Now follow the directions to compile Gnat. Make sure libgnat.a is accessible to the linker. If it isn't, copy it to /usr/lib
and run ldconfig to update Linux's shared library tables.

[More here - KB]

2.4 Case Study: Installing Gnat 3.11 on over an old Linux
Distribution

Weinstaled Gnat 3.11p on a Pentium running a Slackware distribution with egcs and lib6. We wanted to replace egcs
with gcc 2.8.1 and install the Gnat binaries (compiled for 2.8.1) over top.

We first went to the Sunsite mirror which provides Linux compiled binaries of gcc, ready to be unpacked and installed
Unfortunately, the readme file reported they had trouble compiling gcc and supplied egcs instead. egcesis based on gec
2.8.0 which meant that we couldn't use it with gnat 3.11. Instead we downloaded the gcc 2.8.1 source code from a GNU
FTP mirror site and prepared to build the compiler from scratch.

1. Weran Gnat doconf i g program and select option 1. The gcc path that it's expecting is displayed as
I 686- pc- | i nux-gnu. Thiswas going to be our configuration host setting for gcc.

2. Wefollowed the instructionsin the gcc INSTALL file.configure --with-gnu-as --with-gnu-1d
--enabl e-t hr eads=posi x --host i 686-pc-I|inux-gnu

3. We checked the gcc makefile to make surei 686- pc- | i nux- gnu was reasonable. It required lib6 and lib6
was installed. The Makefile also showed that the 1686 setting is compatible with our Pentium (1586).

4. Before running make, we changed the Makefile's OLDCC variablefromcc to/ usr/ bi n/ gcc. Therewasa
cpp syntax error while building | i bgccl. a, probably the error the Slackware people encountered. We tracked
down the line causing the problem in the Makefile and discovered they were calling cc to do the compiling,
which doesn't handle the C preprocessor (cpp) properly. Typing in the line at the shell prompt showed that
/usr/bin/gcc worked fine while /usr/bin/cc would not. The note in the Makefile said we shouldn't use gec to avoid
circular references in some of the functions (that is, that it might inadvertantly call the 2.8.1 compiler instead of
the old 2.7.2.3 compiler), so we made sure we included the full path.

5. make LANGUAGES="c c++"

6. nkdir stagel; nake stagel
make CC="stagel/ xgcc -Bstagel/" CFLAGS="-g -2 -fsigned-char"

7. nkdi r stage2; nmake stage2
make CC="stage2/ xgcc -Bstage2/" CFLAGS="-g -2 -fsigned-char”

8. make conpar e reported no errors.
9. make install CC="stage2/xgcc" -Bstage2/" CFLAGS="-g -2" LANGUACES="c c++"

10. gcc -v and gcc -dunpver si on reported the correct version. We deleted the old
lusr/lib/gcc-1ib/i486-1i nux directory to save some space.

11. Weinstalled gnat by running doinstall

If we were doing C++ programming, we would need to install the standard C++ library, libstdc++, aswell. In this case,
we enabled C++ support to avoid recompiling gec for C++ in the future.

<--Last Chapter Table of Contents Next Chapter-->

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/2.html (4 of 4) [7/20/2001 11:30:05 AM]

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

3 Introduction to the IDE's

<--Last Chapter Table of Contents Next Chapter-->

There aretwo IDE's, or Integrated Development Environments, available for gnat and Linux. PegaSoft's TIA (Tiny IDE for
Ada) is atext-based IDE, while GRASP is an X-Windows IDE. Both have similar basic features.

On the other hand, if you are looking just for text editors with Ada syntax hilighting, many exist for Linux including elvis,
emacs/xemacs and nedit.

3.1 TIA: The Console IDE

TIA, Tiny IDE for Ada, isaconsole IDE for Gnat. Besides being my own program, it was written using Gnat runs using the
GPL texttools packages described later in this document. The screen layout is similar to pico's, with the menu options displayed
along the bottom of the screen. If you are running on the Linux console or a xterm window, you can choose the menu items
with alt key combinations or using your mouse.

zterm Lardis intedynz. nel

n for simple printing 1=+ £

AStdioFilell iz new System,Address: |

L standard [0 id

sturn Hatdiokilelll;

id 3 BStdieFilelD

» return Integer;
d-itez one charctera to a file,
+ H5tdioFilell } retwrn inbeges:
a =btring to a Fils,

pipe

File Meru

ThisIDE is designed for rapid Ada development.To meet this goal, it uses a number of interesting features:
« addd style debugger
« automatic saving - whenever you open a new source file, tia saves your old file
o quiet updates- eachtime afileis saved, TIA will attempt to recompile the file, to reduce the project rebuilding time.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (1 of 10) [7/20/2001 11:30:22 AM]

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

TIA will only update one file at atime to avoid slowing down your machine.

« automatic spelling correction - When you press return/enter while editing your source file, TIA automatically corrects
common spelling mistakes for any of the following words or phrases. procedure, function, package, exception, subtype,
"endif;", "end loop;" , "end record;".

« error hilighting - you can move between compiler errors with asingle keypress, and the cursor is automatically
positioned at the exact location of the error and the message displayed at the bottom of the window.

« quick open - you can open recently opened files with a single keypress

« tight integration with gnat - for example, you can load a package spec and create a body using gnatstub by simply
selecting Stub in the File menu.

« support for keyboard macr os

If you are interested in an X Windows IDE, you should read the next section on GRASP.
3.1.1 Quick Start

Before you compile a program, you have to set up the project parameters under Proj. For simple, single file programs, put the
name of the program in the main line and select your CPU type. TIA will save thisinformation when you quit in a".adp” file
(AdaProject).

Y ou can check the current file with Check. If there are errors, use Err to move to the place where an error occurred and the
error message will appear on the bottom of the screen. Repeatedly use Err to fix al errors. Note that as you edit the program,
such as adding or deleting lines, Err may not take you to the exact line because the lines have moved.

Build your project with Build and you're ready to run your program.

3.1.2 TIA Keyboard Legend:

These are the key functionsin TIA. If you are running TIA under X Windows, the X window manager may use some of these
key combinations for its own purposes.

Control Keys

Control-6 - Mark/Unmark

Control-A - Execute macro (follow with the key for the macro)
Control-B - Copy (single line or to the mark)
Control-E - End

Control-L - Redraw screen

Control-N - Page Down

Control-P - Page Up

Control-T - Backtab, back one item on screen
Control-V - Paste

Control-X - Cut (single line or to the mark)
Control-Y - Home

Navigating The TIA Screen

End - last line of text

Home - first line of text

Page Up - Up One Page

Page Down - Down One Page

Esc/F1 - TextTools Accessories Menu

Tab - Next I[tem On Screen

Backtab - Previous Item On Screen (note: Linux console doesn't support the back tab key--use control-t)
Alt-Char - Jump to the item with hot key Char (Linux Console/xterm)

Scroll Bars Keys

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (2 of 10) [7/20/2001 11:30:22 AM]

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

Down Arrow - 10% Forward in Document End - Bottom of Document
Home - Top of Document

Left Arrow - Back oneline

Right Arrow- Forward one line

Up Arrow - 10% Back in Document

In TIA, the width of the text is limited to size of the edit area. Any lines that are longer that the edit area are denoted with an
ellipsis at the end. The edit area does not scroll left or right as it does in pico.

3.1.3 The File Menu

New Source
Start a new sourcefile.
Open Source

Open a new source code window, or an existing one. Type in the name of the source file and choose open to openit. (.adb is
assumed if you don't specify an ending.) Choose browse to walk through the directories using a open dialog box. Or you can
chose one of the recently opened files that appear at the bottom. On the Linux console, use alt-# to open these files. Chose new
and TIA will create an empty package body for you to fill in--just delete what you don't want.

Save

Savesthefile. TIA automatically saves whenever you check or build.
Save As

Save As. Save the file under a different name.

Revert

Reloads the current file, discarding any changes that haven't been saved by you or TIA. (TIA automatically saves afile when a
new oneisloaded.)

Diff

Displays the differences between the current file and when it was last saved using thedi f f command.
Print

Pipesthefile, with a header, to the Ipr command, printing it on the default line printer.

Sats

Display information about the current file and memory usage.

Stub

Creates an empty package body for the current file. The current file must be a package spec.
Check

Checks the current file for syntax errors.

Xref

Displays a crossreference of all identifiersin the current file.

Quit

Stops the program.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (3 of 10) [7/20/2001 11:30:22 AM]

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

3.1.4 The Edit Menu

Cut

Deletes the selected text and putsit in the clipboard. Same as ctrl-x.

Copy

Copies the selected text to the clipboard without deleting it. Same as ctrl-b.
Paste

Inserts the text on the clipboard. Same as ctrl-v.

Append

Moves the cursor to the right end of the current line. Thisis useful for adding comments at the ends of lines.

3.1.5 The Find Menu

Find/Replace

Find brings up the find dialog to search for text. Fill in the top line and select find to find the next occurrence of the text in your
document. Select backwards to search towards the top of the document instead of towards the bottom. Fill in the replace line
and select replace to replace the text you are searching for with new text. Select cancel to erase the find text.

Next

Next finds (or finds and replaces) the next occurrence of the text in the source code.

If the text isnot found, TIA beeps.

Next Err

Moves the cursor to the location of the next error and displays the error message at the bottom of the screen.
Goto

Moves the cursor to a specific line.

3.1.6 The Misc Menu

Edit Macros

Brings up the macro edit screen. Macros are keyboard short cuts you define. Each macro must fit on aline.The first character
on the lineisthe trigger, and the remaining characters are the keyboard keys the trigger represents. For example, aline

"pprocedure” defines amacro "p" that represents the keystrokes "p","r","0","c","e","d","u","r" and "€".
Touseamacroin TIA, press control-A and then the letter of the macro.
Options

Opens the options window. The first option isto allow background updates. Turn this option off on slow machines. The second
option sets the background colour to blue or black on colour displays.

Debugger

Runs TIA's ddd-style debugger.
[Expand--KB]

GDB

Thisitem runs the gdb debugger.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (4 of 10) [7/20/2001 11:30:22 AM]

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

3.1.7 The Project Menu

Project Params

The project parameters window. Choose the debugging level, CPU type and optimization level and TIA will passthe
information to gnat accordingly. Y ou can specify additional gnatmake options (like -n for no main program in Adawhen you
want to call Ada subprograms from another language), linking options (such as Linux libraries you need to link to), and the
name of the main program. Static binding turns static binding on and off.

CPU Options: 486, Pentium, Pentium 11, Other
Optimize Options: None, Basic, Size, Speed

Debugaing Options:
« Prelease (assert/debug pragma's on, basic and elaboration checks on)
« Alpha/Beta (assert/debug pragma's on, basic checks on, no elaboration checks)
» Release (assert/debug pragma's off, all non-essential checks off)

Project Type:
« Program (compile and link project as an executable program

« Package (compile, but don't link project since there's no main program)
« Static Library ((unfinished) compile and generate a static library file named lib<project>.a)
o Shared Library ((unfinished) compile and link a shared library file named lib<project>.s0.a)

Builder:

Specify the name of the program to build the project with, usually gnatmake:
o Gnatmake (Gnat's project builder)
« Make (Linux's standard project builder)
« Cook (an enhanced project builder based on make).

Static Linking: select thisto link in all the libraries used into a self-contained executable
Eqgcs: select thisto run eges instead of gec [untested)]

ALT: select thisto compile on a system using the AL T version of gnat

Build

TIA attemptsto build the project and create a working executable file.

People

To befinished

3.1.8 The ? Menu

Thisisthe About window. It shows information about the current version of TIA, including the version and copyright notice.
3.2 GRASP: The X Windows IDE

GRASPisafree X-Windows IDE that supports Ada 95. It's based on Motif and provides similar basic featuresto TIA. The

main difference is that GRASP is a multi-language IDE and that it supports source code analysis, annotating your source code
with Control Structure Diagrams (CSD's) and showing code complexity with graphs called CGP's.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (5 of 10) [7/20/2001 11:30:22 AM]

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

whesrm. Lapcdis intetbyio el =

File Edit View Templatezs MWindows Compiler Run CPG ﬂalp|

- Muto Generate CED (Adal5) Font Size =

'h Ada.Text_I0, System, tiacommon, os;
F ise Ada. Text_I0, tiacormon, os;

3 pragma optimize{ space):

4 % package body printer is

iy GRASP CPG [Ada95) Jhome/dan/pegasoft_sowrecesStiafprintes
3 = type AStdioFilelD is

Orientation Settings Data Zets Zcaling

o r—— T : Complexity = 2.0

5 function popen{ Comm
g 7 praama fmport{ C. popen Spacing
[~ = = d
" |
a I__LI rocedure pclose(re I -
9 pragma imporkl €, pclos : ;
10 pragma import_valued_pr e q.24 .
. 1]
o ! H
ar Complexity 1 | o 2% :
Hil 11 @ruﬂ-:'in* rputcl ¢ @ 1IJ 1.5-
' 12 praama import(€, Fputc) Totals g 0.8
e L ®
i Complexity 81.050407 i 0
%] = 7 uep Ly H R

Besides Ada 95, GRASP supports C, C++, Javaand VHML source files. It supports operating systems other than Linux and
can also work with Ada compilers other than gnat.

GRASP is available for download from that GRA SP home page at http://www.eng.auburn.edu/grasp.

3.2.1 Installation

1. Download aversion of GRASP from the GRASP web site. GRA SP uses the Motif widget library. The static version has
acopy of Motif included with it: download this version of you don't have a Motif compatible library (such as LessTif).

If you have a Motif compatible library, download the dynamic version to save disk space. If you are using LessTif, make
sure that the libXm and related files are properly linked in /lib and run Idconfig to ensure Linux sees the changes.
2. Movethetar archive to the location you want to install GRASP in. For example, "/usr/local" would be a good choice.
Unpack the grasp archive with "tar xfvz".

4. GRASP requires an environment variable called "GRASP_HOME" to be set so GRASP knows where it was installed.
To define GRASP_HOME every time for any user, add the following line to the end of your /etc/profilefile:

w

export GRASP_HOME=gr aspdi r/ gr aspada
export PATH="$PATH: $GRASP_HOVE/ bi n"

where graspdir is the directory where you installed grasp (eg./usr/loca").

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (6 of 10) [7/20/2001 11:30:22 AM]

http://developer.java.sun.com/developer/infodocs/index.shtml

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's
Login in again to make the changes take effect and type "grasp& " to start GRASP.

GRASP provides online help. Extensive documentation is provided in HTML format, but it's not lynx browser friendly. You'll
have to use a GUI browser like Netscape.

3.2.2 Quick Start

Open a new source window using "File/ Ada 95...".

Typein your program.

Save the source file as "test1.adb".

Add "testl.adb" to your project by chosing "File/ Add to Project”

If you areusing ALT gnat, change the compiler configuration under "Compiler / Command Setup":

6. 1. Select Compiler / Command Setup. You'll seethelist of commands Grasp uses to invoke gnat.
2. Change the Compile and Check commands from "gcc" to "gnatgec”, the name used by ALT.

7. Compile the program by chosing "Compiler / Compile and Link". If there were no errors, the message window will
appear with the message "Grasp: operation completed” and no error messages above it.

3.2.3 The Project Window

ok~ bR

The first window that appears is the GRASP project window. It contains the word "GRASP", but as you add source filesto
your project, they will be added to this window.

TheFileMenu

Ada 95 et al. - opens a new source file window. Choose alanguage: Ada 95, C, C++, Javaor VHDL.
Save all files - saves al openfiles.

Exit GRASP - quits GRASP, closes all open windows.

TheProject Menu

New - start a new project

Open - open an exisiting project

Close - close current project

Save - save current project

Create/ Save as - save current project under a new name, creating a new project.
Open Selected File- opens hilighted source file in the project window

Remove Selected Files - deletes these files from the project window

Add Filesto Project - add source files to the project window

The Search Menu - search for files to add to the project

The Preferences Menu

Colour/Font - change the appearance of the source code window

Tab Sze - change the number of spaces to indent when the tab key is pressed
Generate .gml files- NQS--KB

The Window Menu

Message Window - opens the GRA SP error message window.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (7 of 10) [7/20/2001 11:30:22 AM]

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

Search Window - opens the file searching window

3.2.4 Source File Window

Thisis the window where you type up your Ada programs and packages.

TheFileMenu

Clear - erase the entire source file

Open - open a new source file

Save - save the sourcefile

Save as - save the source file under a new name

Print - prints the source file to a postscript printer, or to afile to be printed with ghostscript

Language - change the source file language. This doesn't trandate the file to a new language, but tells GRASP how the file
should be hilighted.

Exit- closes the source file window

The Edit Menu

Undo - undoes last edit change

Cut, Copy, Paste - standard cut, copy and pasting text

Paste Primary - NQS--KB

Search / Replace - standard search /replace

Comment - turns hilighted text into a comment

Uncomment - removes comment marks from hilighted text

Convert Keywords to Upper/Lowercase - changes the case of all keywords in the document.
Goto Line - goto a particular line

Insert File - insert a source file into this one.

The View Menu

Show Unit Symbols - toggles module symbolsin CSD diagram

Show Data Symbols - toggles data symbolsin CSD diagram

Show Boxes - toggles boxes around multiline statementsin CSD diagram

Intrastatement Align - If on, for statements longer than one line, the second line and onward will be indented to the position of
the first open paranthesis.

Force Newlines - If on, divides up statements so they will be on separate lines.

Auto Line Numbers - toggles line number display in CSD diagram

Auto Indent - toggles indentation in CSD diagram

Line Numbers - adds line number to CSD diagram corresponding to lines in source code
Generate CSD - creates a Control Structure Diagram for source code

Remove CSD - removes CSD diagram from source code

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (8 of 10) [7/20/2001 11:30:22 AM]

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

Show Controls - toggles button bar at top of edit area
Show message Bar - toggles message bar at bottom of window

The Templates Menu - insert source code for typical Ada multiline statements. The source code must be edited to fit the
current program.

The Window Menu - opens various grasp windows

The Compiler Menu

Make - builds the project using the make command defined in command setup (typically make)
Compile and Link - builds the project using gnatmake

Compile - compiles the source file without building the project
Semantic Check - checks the source code for errors

Flag Setup - configures the switches for compiling, linking, etc.
Command Setup - configures the commands to compile, link, etc.
The Run Menu

Run - runs the program using popen

Run Previous - runs the last file that was run

Run File - runs a particular file

Cleanup Session - kills any hung processes.Doesn't affect daemons.
The CPG Menu

Generate CPG - create a Compilexity Profile Graph

Weights - configure the CPG weights

3.2.5 The Button Bar

Auto - automatically rebuild the CSD whenever amajor change occurs, such as inserting a template or loading anew file.
Generate CSD - same as choosing View/ Generate CSD

Font Sze - changes the font size

3.3 Other Tools and IDEs
3.3.1 VAD-Visual Ada Developer

VAD isan Ada code generator written in the TCL/TK graphics scripting language. Besides gnat, there are about 10 additional
packages you must install before VAD will run. You typein a TCL/TK description of aVAD widget in atext fileand VAD
will produce all the necessary source code to use the widget. Most graphics formats are supported. VAD is available from
http://ada95.freeservers.com/index.html.

3.3.2 Jessie

Jessieisan X Windows IDE for building large projects and designing multiple executables at once. It's an open source project
of Silicon Graphics (http://www.sgi.com) and works with multiple languages. ACT has announced that Gnat will provide Jessie
support in the future. Jessie is downloadable from http://0ss.sgi.com.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (9 of 10) [7/20/2001 11:30:22 AM]

Big Online Book of Linux Ada Programming - 3 Introduction to the IDE's

3.3.3 Rapid

RAPID isan X Windows GUI Builder that works with TASH (the Ada TCL/TK package). Y ou can draw TCL/TK windows
containing Labels, Text Buttons, Radio Buttons, Check Boxes, and other widgets. When you select "Compile", RAPID saves
the Ada source code necessary to display using TASH the window you drew. RAPID is available from ALT.

3.3.4 VIDE

VIDE isa C/C++/JavalIDE, but it will work with Gnat if configured correctly. However, it doesn't support Ada keyword

hilighting.

D

Lﬁﬂ\-"IDE = 1_l],-"1 8Nowvi9
Fils Edit Project Build Tools Options Help ‘indow

=10

BEECE S
Project: C:Wivideltestvideg :

make clean =-f C:axwiwwide®

ki Debug info

I
Ej(.
o

= rm —-f . Smyapp.o . Smycrthis = (myfipp %) Bx4208808 =
———————— win = (wllindow %1 B=A
make -f C:whiwidestestwiname = B:x481332e "My V App"
= g++ -g -Ic:wmingw32sfinw = @
* g+t+ -g -Ic:mingw32s9inh = @
> g++ -o Smy.exe SmyapwinInfe = [(woppWinInfo] Bx8
+ ngw32/14ib -1Y -Tcomct | igdb) dnfo locals
———————— lawinfoe = [(wApplWinInfc] Bx8
apprname = Bx48133e "My ¥ fpp"
I - 2
b Chivideltestvide\myapp.cpp _[O) x}|
UserDebugl(Build, ""myfpp: :Hewdppllin(%=slun' apprnams]; ;l
¢ Create the first window using prowided Cmdllindow
_myCmdlin = (myCmdWinHows] win;

it E!_mHCmdMin

‘

if [lawinfol
awinfa

new wippllinInfolappname];

return uﬁpp::Newﬁppminﬂ_mgﬂmdMin, h, awinfaol;

I

apphname, W,

=

Commands
RUN | cont |
Step | Mext
Until | kil

 Up Do

. Display Yalues
drgs | Stack

_ Pint | Print

Locals | Hep

Breakpaints

~- Delell | Show

'-a.!;!DE_ |.'f}B:.-'2E;". |-E-a_|j-._|‘naﬂd'

3.3.5 GLIDE
3.3.6

<--Last Chapter Table of Contents

Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/3.html (10 of 10) [7/20/2001 11:30:22 AM]

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

4 From Source Code to Executable

<--Last Chapter Table of Contents Next Chapter-->

This section is an overview of creating new programs on Linux.

4.1 Gnat Filename Conventions

Unlike Microsoft Windows, Linux filenames do not require a suffix to indicate the filetype.
Nevertheless, Linux files often have suffixes to make it easier to identify the type of files by their names.
gnat makes extensive use of suffixes. Here are some filename conventions:

« . ads - Adapackage specification

« . adb - Adapackage body or program

« . adc - Gnat configuration file (for dead code elimination)

o . adt - Gnat treefile (for dead code elimination)

o . ad] - Defaultsfor [NQS-KB]

« . adp - TIA project file or Gnat gnatxref/gnatfind project file

e . cfg-GLADE distributed program configuration file

o . ali -debugging and linking information produced by gnat

e . Xr b - cross-reference file generated by gnatf

GRASP _defaul ts. - GRASP defaultsfile, holds your preferences

. gpj] -agrasp prolectflle
e .Qui -aVAD TCL/TK widget description

For example, denp. adb would be an Ada program named deno.

Y ou can change the colour used by | s to display these filenames by changing the
/ et ¢/ DI R_COLORS file. Directions on how to do this are included in the file.

4.2 Writing Your First Ada Program

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (1 of 8) [7/20/2001 11:31:15 AM]

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

4.2.1 Writing a program with an IDE:

Start a new project. For example, with TIA type

tia hello
to create a new project called "hello.adp”. Type in the following Ada program.
wth text io;

use text i o;
procedure hello is

begi n
put line("Hello World!'");
end hell o;

This Ada program will print a short message on the screen. Save the file and build the project.

If there is a problem with your program, TIA will show you the line number, the position on the line, and
an error message describing the problem. If you typed in the program correctly, you should now have an
executable file called hello in your directory. TIA will ask you if you want to run your program.

Y our program should display the message

Hel l o Worl d!
before TIA's window reappears.

4.2.2 Writing a Program without an IDE
With a standard UNIX editor such as pico or vi, create the following file called "hello.adb”. For example,

pi co hel |l o. adb
Type in the following Ada program.
with text_io;

use text i o;
procedure hello is

begi n
put line("Hello World!'");
end hell o;

This Ada program will print a short message on the screen. When the file is saved, the gnatmake
command to build the project:

gnat nake hel |l 0. adb

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (2 of 8) [7/20/2001 11:31:15 AM]

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

If there is a problem with your program, gnatmake will show you the line number, the position on the
line, and an error message describing the problem. If you typed in the program correctly, you should now
have an executable file called hello. Run the file by typing

hel | o

(or./ hel I o onsome distributions) and Linux will respond by displaying the message

Hel | o Worl d!

4.2.3 After Building

After building your project, there should be severa filesin your directory:
« hel | 0. adb - thisisthe Ada program you typed in. Theis called a sourcefile.
« hel | 0. o - thisisthe binary code created by the compiler. Thisis called an object file.
« hell o.ali -thisisadditional information about the program created by gnat.
« hel | o - thisisthe executable program

If you want to clean up your directory, the hello.o and hello.ali are information files and can be safely
erased. However, on large project with multiple files, leaving them will speed up the building process.

4.3 The Three Step Process

When you build a project using gnatmake, or when you use an IDE to run gnatmake for you, gnatmake
performs three operations.

1. Compiling: gnatmake checks your file for errors. If there are no errors, it creates an object file
containing the binary version of your program. If there are any errorsin your file, gnatmake stops.

2. Binding: gnatmake verifiesthat all the filesin the project are up to date. If there are files that need
to be compiled, gnatmake will compile them as well.

3. Linking: gnatmake combines all the object filesto create an executable program.

On simple projects, these steps can all be done automatically. However, on some projects with particular
requirements, you may need to take special actions during one of these steps. Y ou can perform these
separate steps yourself. For example, using the hello.adb program:

1. Compilethe program with: gcc -c¢ hel | 0. adb

2. Bind the program with: gnat bi nd hel | o. al |

3. Link the program with: gnat | i nk hel | 0. al i
Once again, you have an executable program called "hello".

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (3 of 8) [7/20/2001 11:31:15 AM]

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

4.4 Gnat Compiling Options

The version of gcc for gnat has all of the normally document gcc switches, plus some new switches for
gnat. Y ou can run gcc by itself, or have gnatmake run gcc for you. Unless otherwise noted, these
switches can be applied to both gcc and gnatmake.

e -b - For crosscompiling, compile for atarget machine

-Bdir Multiple gnats, load the gnat compiler from directory dir instead of the default one
e -C-gcconly, tellsgcc to compile only and not to try to link with the C linker

« -Q - create an executable that can be used with the gdb debugger

« -ldir - Beside the directory with the first file, check directory dir for more source files
o -I-- Do not look for source filesin the directory where the first file resides

e -On -On Optimize, from 0 (none) to 3 (maximum, automatic internal inlining). See below.
« -S-gcconly, create an assembly language source file instead of an object file

o -Wuninitialized - warnings on uninitialized variables

« -V - show what steps the gcc compiler is performing

« -gnata - turn on debugging pragmas. See below.

« -gnatb - keep messages brief

« -gnatc - check the program, but don't compile it

« -gnatdx - activate ACT internal debugging switch 'x', where x is a character

« -gnatD - with -gnatG, save debugging info to filesending in . dx

« -gnate - display error message immediately instead of waiting until end of compile
e -gnatE - turn on dynamic elaboration checks

« -gnatf - give more information about errors

e -gnatg - turn on gnat style checks

e -gnatG - show pseudo-code of how Gnat interprets your source code

e -gnatic - use character set c

« -gnatkn- constrain file namesto n characters

« -gnatl - include source code with error messages

« -gnatL - C++ exception handling (set j np/l ongj np)

e -gnatmn - show no more than n errors

« -gnatn - allow inline subprograms across source code in different files

« -gnatN - inline as much as possible, even subprograms not marked for inlining

« -gnato - turn on checks normally turned off (such as numeric overflow checking)

e -gnatp - turn all checks off

« -gnatq - don't quit because of errors--compile entire source file

« -gnatr - check for reference manual source code layout

o -gnatR - listing with alignment info

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (4 of 8) [7/20/2001 11:31:15 AM]

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

e -gnats- synatx check only

« -gnatt - create tree output file

e -gnatu - list units being compiled

e -gnatwm - warning mode(s) m. These include

o -gnatwa - show all optional warnings
-gnatwA - show no optional warnings
-gnatwc - warnings for always true/false expressions in statements
-gnatwe - treat warnings as errors
-gnatws - suppress warnings
-gnatwl - warnings on elaboration errors
-gnatwu - warnings on unused variables, uninitialized parameters, unused packages
o -gnatyk - check indentifier case

e -gnatx - suppress cross-reference information
e -gnaty - Impose line length limit, etc. [?- KB]
« -gnatzm - generate distribution stubs for m
e -gnatZ - zero-cost exceptions (default)
« -gnat83 - enforce old Ada 83 conventions
« -gnat95 - enforce Ada 95 conventions (default)
» -MnO0-486 - create an executable that can run on a Intel 386 or newer
» -M486 - create an executable that can run on alntel 486 or newer
« -mcpu=model - compile an executable for the given cpu model
» -fstack-check - check for stack overflows

o o o o o o

The -gnat switches can be combined together, such as -gnatbcs for -gnatb, -gnatc, and -gnats.
Many of the GCC switches listed in 4.5 can be used as well.

4.4.1 Run-time Error Checking

Ada has extensive checking for run-time errors. By default, gnat turns off some of these checksto
improve the speed of the programs. To turn on all error checking, you need to use -gnato -gnatE
switches. To turn off al error checking, you need to use -gnatp.

IDE: TIA setsthese switches for you based on your choicesin the project parameters window.

4.4.2 Checking without Compiling

In gnat 3.10, if you want to check a source file without actually compiling it, use the gnatf utility. In gnat
3.11 or later, you can use gcc with the -gnatc option to check a sourcefile.

IDE: TIA uses -gnatc when you chose File/Check.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (5 of 8) [7/20/2001 11:31:15 AM]

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

4.4.2 When you have Too Many Errors

When you have so many compiling errors that they run off the top of the screen, you can redirect the
errorsto afile and list them with the less command by adding the following to the end of your compiling
command: "2> temp.out; less temp.out".

4.5 Gnat Binding Options

gnatbind checks the integrity of a project before the linking phase. Y ou can run gnatbind by itself, or
have gnatmake run it for you.

o -A - (default) generate binder program in Ada. See-C, -x.

« -aldir - besides the directory of the file, search for source filesin directory dir

« -a0dir - besidesthe directory of thefile, search for .ali filesin directory dir

e -b - brief messages

o -C - generate binder program (in C, not Ada). See -A, -x.

e -C- check only

« -e- list elaboration dependancies

» -E - exception stack traceback (when compiling with -funwind-tables)

o -f-usefull reference manual semanticsin an attempt to find alegal elaboration order

« -h-hep

e -ldir -combination of -al and -aO

e -I--don't look for source and .ali filesin regular places
o -l - list the chosen elaboration order

« -mn - show no more than m binding errors

« -Mn - main program to be called n, not the default name

e -Nn - Nno main program, for when the main program is written in another language

« -nostdinc - (no standard includes) ignore default directory when looking for sources

« -nostdlib - (no standard libraries) ignore default directory when looking for libraries

» -ofile- output to afile namefile

e -O - list objects

e -p - pessimistic - try worst case elaboration order

e -I - renames the main program from main to gnat_main

« -S-requireall sourcefilesto be present

o -shared - link in Gnat run-time library as a shared library (if available--for example, ALT version)
o -static - link in Gnat run-time library statically

o -t -ignoretime stamp errors

« -Tn - tasking time slices are n milliseconds long. n=0 means no time slicing, as per Annex D.
e -We - treat warnings as errors

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (6 of 8) [7/20/2001 11:31:15 AM]

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable
e -WS- suppress all binder warnings
e -V - verbose messages
« -X - check only, ignore sourcefiles. Don't generate a binder program. See-s.
e -Z-sameas-n[?-KB]

4.6 Gnat Linking Options

gnatlink combines object files together to form afinished executable program. Y ou can run it by itself,
or gnatmake can run it for you.

« -ofile- name of executable fileto create

e -V - verbose messages

« -gnatlink n instead of gcc, use linker named n
o -l libin the specified library

When linking in libraries, the order of the libraries isimportant. When libraries depend on
each other, libraries must be listed before the libraries that they use.

4.7 Gnatmake Options

To compile any Ada program, use the gnatmake command. gnatmake checks all the packages a program
relies upon and automatically compiles any packages that need compiling. For example,

gnhat make mai n. adb

will compile the file main.adb, automatically compiling al Adafiles referenced by main.adb, if
necessary. Thisis unlike other building tools like make and cook because the dependancy of source files
islisted in every Adafile by the with statement. make and cook are designed to work with C which has
no equivalent statement and requires the programmer to list the dependencies in a separate file.

When gnatmake is finished compiling, it will automatically bind and link the program, producing an
executable file called main.

There are times when you want gnatmake to compile the project, but not to bind or link it. Y ou can tell
gnatmake not to link by using the -n option:

ghat nake -n main. adb

Hereisasummary of the gnatmake switches:
« -a-consider al files, even read-only source files and standard system files like ada.text_io
e -C-compileonly
« -f - recompile entire project

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (7 of 8) [7/20/2001 11:31:15 AM]

Big Online Book of Linux Ada Programming - 4 From Source Code to Executable

-jn - on multiprocessor machiens, compile using n processes at once
-k - ignore errors, and compile as much as possible
-M - create alist of dependences suitable for make's Makefile

-i - instead of the current directory, keep intermediate files in directories where their sources are
found

-m - update dependancies without compiling

-n - check dependencies, but don't do anything

-0 name - save the executable as name

-q - quiet - no status messages

-s - switch change - recompile if the switches have changed

-v - verbose - explain why files are compiled

-aldir - besides the directory of thefirst file, search directory dir for source files

-a0dir - besidesthe directory of thefirst file, search directory dir for object and .ali files
-Adir - same as-aldir and -aLdir

-Idir - same as -aodir -aldir

-1- - don't look for source filesin the directory of thefirst file

-L dir - besides directory of thefirst file, look for librariesin directory dir

-cargs s - pass switches sto compiler

-bargs s - pass switches sto binder

-largs s - span>pass switches sto linker (e.g. -largs somefile.o to link in the somefile object file)

4.7.1 So you changed the comments...

Use gnatmake with the -m option, which updates gnat's files without producing a new object code file.
Use this to avoid pointless recompilations when all you changed were the commentsin a sourcefile.

<--Last Chapter Table of Contents Next Chapter-->

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/4.html (8 of 8) [7/20/2001 11:31:15 AM]

Big Online Book of Linux Ada Programming - 5 Building Large Projects

5 Building Large Projects

<--Last Chapter Table of Contents Next Chapter-->

5.1 Make: The Traditional Project Builder

|I DE: TIA supports make. To use make, select it in the project parameters window.

Gnatmake is the best tool for building small projects. However, if you have alot of C functions, you may
want to use Linux's traditional project building command, make.

The make command interprets a series of rules saved in afile called "Makefile". These rules describe
which files are dependent on which other files. Each rule is followed by the command needed to update
the files, such as the command to compile them.

For example, if you had a Ada program called dbase and it relied on the source files common.adb,
scanner.adb and parser.adb, a Makefile might include the rule:

dbase: commpn. o scanner.o parser.o
gnatlink —e dbase

Thisrule says that the dbase executable file depends on the object files for the 3 Ada source files, and to
update dbase make has to link the object files with the gnatlink command.

If you are writing an Ada program with C source files, the basic strategy for using make with gnat isto
make rules than ensure the C files are compiled properly, and then to finish the project using Gnatmake.

Makefiles can have comments and variables and rules that refer to parameters to the make command as
opposed to files. The many options can't be covered here.

5.1.1 A Simple Ada Makefile

The following Makefile will compile an Ada program called main.adb, plus any packages used by main.
This should work for most small projects. Edit the OBJS variable to include the object files for every
package used by your program.

To use this make file, type "make" to build your Ada project, or "make clean” to remove any
intermediate files produced by the compiler.

The ALT version of Gnat uses uses the name gnatgcc, not gcc, for the GCC compiler.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (1 of 6) [7/20/2001 11:31:40 AM]

Big Online Book of Linux Ada Programming - 5 Building Large Projects
Sanpl e Ada nakefile
#
Assunes main programis nanmed main. adb
#
by Ken O Burtch

OBJS = mai n. 0 sonepackage. o
How to conpile Ada files

.adb. o:
gcc -c $<
. SUFFI XES: .adb .o
How to link the main program
mai n: $(OBJS)
gnatbind -xf main.ali; gnatlink main.ali

cl ean:
rm*.o *.ali core

5.2 Cook: A Parallel Make

|I DE: TIA supports cook. To use cook, select it in the project parameters window.

cook isaprogram for building projects. Unlike make, cook has additional features such as the ability to
define true variables and functions, and the ability to build a project using multiple machinesin parallel.
This can be a useful tool for large Ada projects.

cook also comes with atool to convert Makefiles to cook Howto.cook files.

If you need to install cook, there are four basic steps are:

« configure # run GNU configure
« nake # build cook
« Make sure # verify cook by running tests

« make install # install cook on your conputer

When you type "cook", cook looks for afile called Howto.cook. Thisfile, called a*cookbook", contains
rules, or "recipes", for building a project.

Each rule has three parts:

 targets- thefilesbuilt with thisrule (e.g. the object file names)

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (2 of 6) [7/20/2001 11:31:40 AM]

Big Online Book of Linux Ada Programming - 5 Building Large Projects
« ingredients- thefiles need to do the building (e.g. source code fields)
« body - the commands to do the work. these can include other rules.
Here is an example Howto.cook file with one rule:

mai n: mai n. adb

{

gnat make nai n. adb;
}

Thetarget is"main”. To create main, cook must examine main.adb. If main.adb is newer than main, cook
creates a new main by running the Gnatmake command.

Cook comes with some predefined rules for compiling certain kinds of files. These predefined cookbooks
can be attached to your Howto.cook file by using "#include". For example,

#i ncl ude "c"

includes basic rules describing the relationships of C files to each other.

5.2.1 Cooking in Parallel

Cook can use the rsh command to build severa parts of a program at once, either on a computer with
multiple CPU's or over a network. If rsh hasn't been configured, you'll need to do this before you can run
cook. For example, all the computers should have the source directory mounted via NFS under the same
mount directory. Also, the clocks on all the computers should be set identically or cook may be confused
by the age of thefiles.

To cook in parallel, run cook with the -par switch. This option indicates the number of computers cook
can use, the default being 4. Y ou can indicate fewer computers. For example, -par=2 will run cook using
2 computers.

To indicate which machines to use, assign the hosts to the parallel _hosts variable.
paral l el _hosts = first _conputer second conputer third conputer

Simple Howto.cook fileswill compilein parallel without any modification.

5.2.2 A Simple Ada Cookbook

The following Howto.cook file will compile an Ada program called main.adb, plus any packages used by
main. This should work for most small projects. Edit the OBJS variable to include all the object files
from the packages you are using.

To use this make file, type "cook" to build your Ada project, or "cook clean" to remove any intermediate
files produced by the compiler.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (3 of 6) [7/20/2001 11:31:40 AM]

Big Online Book of Linux Ada Programming - 5 Building Large Projects

The ALT version of Gnat uses uses the name gnatgcc, not gcc, for the GCC compiler.

/* __ */
/* This is a sinple Ada Howt o. cook cookbook */
[* */
/* 1t assunes the main programis naned */
/* main. adb */
[* */
/* by Ken O Burtch */
/* __ */

OBJS = nmai n. 0 sonepackage. o;
/* How to conpile individual Ada files */

% 0. % adb {
gcc -c % adb;
}

/* How to conpile individual C files */
/* (Just in case we want to mx C and Ada) */

% 0. %c {
gcc -¢c %c;
}

/* How to bind and link the main program */

mai n: [OBJS] {
gnat bi nd -xf main.ali;
gnatlink main.ali;

}

/* How to clean up internediate files */

cl ean: {
rm*.o *.ali core;

}

There are many other features in cook not covered here. More information about cook can be found in
the Cook User Manual and the Cook Reference Manual.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (4 of 6) [7/20/2001 11:31:40 AM]

Big Online Book of Linux Ada Programming - 5 Building Large Projects

5.3 Automake and Autoconf: UNIX Portability

If you want to create projects that run on avariety of UNIX platforms, not just Linux, you'll want to look
at GNU autoconf and automake. The GNU tools use these programs extensively.

Included with Linux, autoconf creates a shell script called "configure". Customized for your project,
when this script is executed, it scans the features of the particular UNIX that it is running on and tailors
all Makefiles accordingly. It optionally produces a C file called "config.h" which contains information
about the features it found.

automake, the other half of autoconf, creates a Makefile.in using templates called "Makefile.am". Once
automake isfinished, all you have to do isrun "configure" to make your final makefile and type "make"
to build the project on any version of UNIX.

It is possible to use autoconf and automake on Ada Makefiles, but thistopic is beyond the scope of this
book. More information on automake and autoconf can be found using "info autoconf" and "info
automake”.

The following is an example of what happens when you run an autoconf configure script, as run for the
FreeAmp program.

checki ng host systemtype... i686-pc-Iinux

checking for a BSD conpatible install... (cached) /usr/bin/install -c
checki ng whether build environnent is sane... yes

checki ng whet her make sets ${MAKE}... (cached) yes

checking for working aclocal... found

checking for working autoconf... found

checking for working autonake... found

checking for working autoheader... found

checking for working nmakei nfo... found

checki ng whet her make sets ${MAKE}... yes

checking for gcc... gcc

checki ng whether the C conpiler (gcc) works... yes

checki ng whether the C conpiler (gcc) is a cross-conpiler... no
checki ng whether we are using GNU C... yes

checki ng whet her gcc accepts -g... yes

checking for c++... c++

checki ng whet her the C++ conpiler (c++) works... yes

checki ng whether the C++ conpiler (c++) is a cross-conpiler... no
checki ng whether we are using GNU C++... yes

checki ng whet her c++ accepts -g... yes

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (5 of 6) [7/20/2001 11:31:40 AM]

Big Online Book of Linux Ada Programming - 5 Building Large Projects
checking for
checking for

checki
checki
checki
checki
checki
checki
creati
creati

creati

ng
ng
ng
ng
ng
ng
ng
ng

ng

for
for
for
for
for
for

POSI Xi zed 1 SC... no
ranlib... ranlib

i bc5... no

dl open in -1dl... yes
M T PThreads... no

Base Li nuxThreads... yes

Li nuxThreads w Error Check Mutex. ..

sys/asoundlib.h... no

./ config.status
Makefil e

config/config.h

yes

<--Last Chapter

Table of Contents

Next Chapter-->

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/5.html (6 of 6) [7/20/2001 11:31:40 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

6 Development Utilities

<--Last Chapter Table of Contents Next Chapter-->

6.1 Saving Time with Gnatstub

Starting with gnat 3.11p, gnat provides a prototyping tool called Gnatstub.Gnatstub takes an Ada package
specification and creates a corresponding body, ready to have the details outlined in the spec filled in. These
empty subprograms are sometimes called "stubs".

Thisis especialy useful on alarge project where programmers write a series of package specsto test their
design. Once the package design is set, Gnatstub can create a basic body and save the programmers the work
of copying and modifying the specification by hand.

]I DE: TIA will run gnatstub on the current file using Stub in the File menu.

For example, suppose you have the following package specification in afilecalled t i ny. ads:

package tiny is

procedure sinple_procedure;
function sinple function return bool ean;

end tiny;

Y ou can create a stub body for this package using

ghat stub tiny. ads
Gnatstub produces the following tiny.adb file:
package body tiny is

function sinple_function return boolean is
begi n

return sinple_function;
end sinple function;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (1 of 14) [7/20/2001 11:31:53 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

-- sinple_procedure --

procedure sinple procedure is
begi n

nul | ;
end si npl e_procedure;

end tiny;

This package body isin proper Adaformat, ready to be compiled. Of course, it doesn't actually do anything
useful. It's up to the programmer fill in the implementation details.

6.2 Cross-referencing with Gnatxref

Gnatxref (or gnatf in gnat 3.10) isa utility that produces an index of every occurrence of an identifier ina
program, including all identifiers used by packages that the program depends upon.

The -v option produces a listing in the format for avi editor tagsfile.

]I DE: TIA will run gnatxref on the current file by chosing Xref in the File menu.

For our hello.adb program, Gnatxref produces the following:

Text 10 U a-textio.ads:51:13 {} {hello.adb:1:10 4:7 }
Put _Line U a-textio.ads:260:14 {} {hello.adb:4:15 }
Ada U ada. ads:18:9 {} {hello.adb:1:6 4:3 }

hello U hello.adb:2:11 {} {}

Each line begins with the identifier being indexed. The "U" means [not sure-KB]. The next segment is the
file that defines the identifier, and the position in the file. The {} means [not sure-KB]. The final bracketed
section lists all occurrences of the identifier in the program.

In this example, identifier text_io appearsin the first line (the with) and the fourth line (the put_line).

6.3 Eliminating Dead Code with Gnatelim

gnatelim isautility that searches for unused parts of your program in the object files and removes them from
the final executable. It works by creating alist of subprograms that the compiler shouldn't compile. If you
savethislist asgnat . adc, gnatmake will automatically read this file and will skip these subprograms when
compiling.

To use gnatelim, you need to generate tree files using the -gnatt switch. The Gnat manua recommends these
steps when using gnatelim (assuming that your main program is mai n. adb):

1. gnat neke -c nain

2. gnat bi nd mai n

3. gnatmake -f -c -gnatc -gnatt nmain

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (2 of 14) [7/20/2001 11:31:53 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties
4. gnatel i mmain > gnat. adc
5. gnatmake -f main

These commands will generate a complete set of tree files for your project, strip out all unused subprograms,
and will then recompile the project as afinished executable.

gnatelim isis based on ASIS.
[gnatelim doesn't work under gnat 3.11.--KB]

6.4 Execution Stack & Memory Leak Detection

Gnat 3.11 does not display the execution stack in the event of of an exception. Gnat 3.12 provides additional
information about the source of an exception. Y ou can get additional information about the execution stack
using thegnat . t r aceback package (12.15).

The gnatmem utility monitors a running programming using the Gnat gdb debugger. When the program is
finished running, gnatmem displays a summary of dynamically allocated memory. Y ou can use this
information to find "memory leaks", places in your program where allocated memory was not deall ocated.
Because gnatmem uses gdb, the program should be compiled with gdb support turned on (the -g switch).

Note: gnatmem doesn't work with Gnat 3.11. ‘

To run gnatmem, type
gnat mem pr ogr am
The gnatmem switches are:

- g - quiet - hides statistics and shows only potential memory leaks

n - anumber between 1 and 10 indicating the depth of the backtrace information

-0 fil e -savethe gdb output to the indicated file. The gdb script is saved as gnatmem.tmp

-i file -processing using thefile previously saved with -0. Use thisto test a program that crashed while
gnatmem was running.

6.5 Conditional Compiling with Gnatprep

Although the Ada 95 design team decided against including preprocessing compiler directives like C does,
gnat provides a preprocessor so you can use conditional compiling directivesin your Ada programs.

Gnatprep, the Gnat PREProcessor, takes a source file with conditional directives, afile with variable
assignments for the conditional directives, and produces a source file with all statements not satisfying the
conditional directives removed.

C: The conditional directives do not allow expressions. There must only be avariable, and that variable
must be true or false.

IDE: No IDE's currently support gnatprep. ‘

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (3 of 14) [7/20/2001 11:31:53 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

Suppose you create afile called "prepvalues” with the following Gnatprep definitions:

ALPHAVERSI ON : = true
BETAVERSI ON : = fal se
RELEASEVERSI ON : = fal se
TRANSLATI ON : = Engli sh

Suppose also that you had a short program with Gnatprep statementsin it:

wth text io;
use text _io;

procedure preptest is

-- only include the relevant parts for this version
#i f ALPHAVERSI ON

s_version : string := "al pha";

#el sif BETAVERSI ON

s_version : string := "beta";

#el si f RELEASEVERSI ON

s_version : string := "rel ease";

#el se

s version : string := "unknown";

#end if;

-- string is the value of the gnatprep variable naned translation

s translation : string := "$TRANSLATI ON';
begi n

Put _Line("This is the " & s_version & " edition");
Put Line("This is the " & s translation & " translation");
end preptest;

Running gnatprep on the above program with the prepvalues file gives you the following program:

wWth text io;
use text io;

procedure preptest is

-- only include the relevant parts for this version

s _version : string := "beta";
-- string is the value of the gnatprep vari able naned transl ation
s_translation : string := "English";

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (4 of 14) [7/20/2001 11:31:53 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

begi n

Put Line("This is the " & s_version & " edition");
Put Line("This is the " & s translation & " translation");

end preptest;
The Gnatprep command switches are:

-Dsymbol=value - define values on the command line instead of a prep valuesfile, sameas-D in C. For
example, - DVaci nt osh=FALSE

-b - replace gnatprep commands with blank lines (instead of -c)

-C - comment out gnatprep commands (instead of -b)

-r - generate a Source_Reference pragma

-s - print a sorted list of symbols and values

-U - treat undefined symbols asif they were FALSE

C: Thereisno gnatprep equivalent of _ FILE __ (name of current sourcefile) or __ LINE__ (number of
current line).

6.6 Profiling with Gprof

Gprof inthe GNU profiler. It shows which subprogramsin a program are being executed the most. Y ou can
use thisinformation to find the parts of a program with the greatest need for CPU efficiency and hand
optimize those parts accordingly.

To use Gprof, you must rebuild your project using the -pg switch at both the compiling and linking stages.
With Gnatmake, you must include -pg with both -cargs and -largs switches.

IDE: TIA will profile your project with gprof if you select Profile in the Project menu. It automatically
rebuilds your project with the necessary gprof switches, starts your main program, and then displays the
gprof results.

For example, we can use Gprof on the following factorial program:

package fact is
function factorial (param: integer) return integer;
end fact;

package body fact is

function factorial(param: integer) return integer is
begi n
I f param < 2 then
return 1;
end if;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (5 of 14) [7/20/2001 11:31:53 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

return param* factorial(param- 1);
end factorial;

end fact;
wth fact;
use fact;
procedure bench2 is

maxFactorials : constant integer := 1000;

type factorial Array is
array(1..nmaxFactorials) of integer;

list : factorial Array;

begi n
for i in 1..maxFactorials |oop
list(i) :=factorial(1);
end | oop;
end bench2;

After compiling and linking the program with the -pg switch, run the program. The program produces a
gmon.out file containing profile information about the program. Now we can use Gprof to get an analysis of
the program.

Running gprof -c bench2 returns the following information. Note that Ada subprograms are |abeled with the
package name, a double underscore, and the subprogram name.

[Need to clean this up--KB]

Fl at profile:
Each sanpl e counts as 0.01 seconds.

%c¢unul ati ve self self total

ti me seconds seconds call sus/call us/call nane

62. 500. 050. 05__ntount i nt er nal

25. 000. 070. 02ntount

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (6 of 14) [7/20/2001 11:31:54 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

12. 500. 080. 01100010. 0010. OOf act __factori al
0. 000. 080. 0010. 00
10000. 00_ada_bench?2

0. 000. 080. 0010. 000. 00f act ___el abb

% he percentage of the total running tine of the
time programused by this function.

cunul ative a running sum of the nunber of seconds accounted
seconds for by this function and those |isted above it.

self the nunber of seconds accounted for by this
seconds function alone. This is the major sort for this listing.

calls the nunber of tines this function was i nvoked, if
this function is profiled, else blank.

self the average nunber of mlliseconds spent in this
ns/call function per call, if this function is profiled,
el se bl ank.

total the average nunber of mlliseconds spent in this
ms/cal | function and its descendents per call, if this
function is profiled, else blank.

name the nane of the function. This is the mnor sort
for this listing. The index shows the | ocation of

the function in the gprof listing. If the index is

In parenthesis it shows where it woul d appear in

the gprof listing if it were to be printed.

Call graph (explanation follows)

granul arity: each sanple hit covers 4 byte(s) for 100.00% of 0.01 seconds
i ndex %tinme self children called nane
499500f act __factorial [1]

0. 010. 001000/ 1000 _ada_bench2

[3]

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (7 of 14) [7/20/2001 11:31:54 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

[1] 100. 00. 010. 001000+499500f act __ factori al
[1]

0. 000. 000/ Ontount (177)

499500f act __factorial [1]

0. 000. 000/ O_start [473]
[2] 100. 00. 000. O1mai n [2]
0. 000. 011/ 1 _ada_bench2 [3]

0. 000.000/0_gnat initialize
[399]

0. 000. 000/ Oadai nit [61]

0. 000. 000/ 0__gnat break _start
[395]

0. 000. 000/ Oadafi nal [60]

0. 000. 000/ 0__gnat _finalize
[397]

0. 000. 000/ Oexi t [95]

0. 000. 011/ 1mai n [2]

[3] 100. 00. 000. 011_ada_bench2
[3]

0. 010. 00 1000/ 1000fact __factori al
[1]

0. 000. 000/ Oncount (177)

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (8 of 14) [7/20/2001 11:31:54 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

0. 000. 001/ ladainit [61]

[6] 0. 00. 000. 0O01fact el abb
[6]

0. 000. 000/ Oncount (177)

This table describes the call tree of the program and was sorted by
the total anobunt of tine spent in each function and its children.

Each entry in this table consists of several lines.The line with the
I ndex nunber at the left hand margin lists the current function.

The |ines above it list the functions that called this function,
and the lines belowit |ist the functions this one call ed.

This line lists:

I ndex A uni que nunber given to each el enent of the table.

| ndex nunbers are sorted nunerically.

The i ndex nunber is printed next to every function nane so
it is easier to | ook up where the function in the table.

%time This is the percentage of the "total' tine that was spent
in this function and its children.Note that due to

different viewpoints, functions excluded by options, etc,

t hese nunbers will NOT add up to 100%

self This is the total anmount of tinme spent in this function.

children This is the total anount of tinme propagated into this
function by its children.

called This is the nunber of tinmes the function was call ed.
If the function called itself recursively, the nunber

only includes non-recursive calls, and is foll owed by

a +' and the nunber of recursive calls.

nane The nane of the current function. The i ndex nunber is

printed after it. If the function is a nenber of a
cycle, the cycle nunber is printed between the

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (9 of 14) [7/20/2001 11:31:54 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

function's nane and the i ndex nunber.
For the function's parents, the fields have the foll ow ng neani ngs:

self This is the amount of time that was propagated directly
fromthe function into this parent.

children This is the anmobunt of tinme that was propagated from
the function's children into this parent.

called This is the nunber of tines this parent called the
function /' the total nunber of times the function

was called. Recursive calls to the function are not

i ncluded in the nunber after the /'.

name This is the name of the parent.The parent's index
nunber is printed after it.If the parent is a

menber of a cycle, the cycle nunber is printed between
the nanme and the index nunber.

If the parents of the function cannot be determ ned, the word
"<spontaneous>'" is printed in the "nanme' field, and all the other
fields are blank.

For the function's children, the fields have the foll ow ng neani ngs:

self This is the anount of tine that was propagated directly
fromthe child into the function.

children This is the anmobunt of tine that was propagated fromthe
child's children to the function.

called This is the nunber of tinmes the function called
this child /' the total number of tines the child

was called. Recursive calls by the child are not
listed in the nunber after the /'.

name This is the nanme of the child. The child s index
nunber is printed after it.If the child is a

nmenber of a cycle, the cycle nunber is printed

bet ween t he nane and the i ndex nunber.

If there are any cycles (circles) in the call graph, there is an
entry for the cycle-as-a-whole. This entry shows who called the
cycle (as parents) and the nenbers of the cycle (as children.)

The "+ recursive calls entry shows the nunber of function calls that

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (10 of 14) [7/20/2001 11:31:54 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

were internal to the cycle, and the calls entry for each nenber shows,
for that nmenber, how many tines it was called from other nenbers of
t he cycle.

| ndex by function nane

(418) _ _ntount _internal [1]
fact factorial[5] <cycle 2>

[3] _ada_bench2(177) ntount

[6] fact__ el abb[4] <cycle
1>

If fact ori al isafunctioninternal to program bench2, the function name won't show up in Gprof. For
example:

procedure bench2 is

function factorial (param: integer) return integer is
begi n
if param > 1 then
return param* factorial(param- 1);
end if;
return 1;
end factorial;

maxFactorials : constant integer := 100;
type factorial Array is
array(1..maxFactorials) of integer;

list : factorial Array;

begi n
for i in 1..maxFactorials |oop
list(1) :=factorial(i);
end | oop;
end bench2;

gpr of -c¢ bench2 returnsthe following information:

Flat profile:

Each sanpl e counts as 0.01 seconds.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (11 of 14) [7/20/2001 11:31:54 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

no time accunul at ed

%cunul ati vesel fsel ftot al

ti me seconds seconds call sTs/call Ts/ cal | nane

0. 000. 000. 00990. 000. 00nai n

0. 000. 000. 0010. 000. 00_ada_bench2

etc.

’Note: gnatmem doesn't work with Gnat 3.11.

6.7 Shared Libraries Using GnatDLL

[To be written--KB]

6.8 Source as Web Pages Using GnatHTML

This utility converts an Ada source file into a series of indexed, coloured HTML web pages. By default, the
web pages are stored under a subdirectory called HTML. By posting your source code on a network or the
Internet, devel opers can examine your work with aweb browser.

The gnathtml switches are:
o -83-look for Ada 83 keywords only
e -CC color - comment colour
« -d - convert files which depend on thisfile as well
e -D - like-d, but also convert standard library files
» -f - crossreference local entries
« -In-display line numbers every nlines
o -ldir - file search path
« -odir - specify the output directory (default html/)
» -pfile- usethis Gnat project file
e -sccolor - symbol colour
« -Tfile- read thefilesto convert from thisfile
Example using gnathtml with the following program:

wth Ada. Text |G
use Ada. Text |1 Q

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (12 of 14) [7/20/2001 11:31:54 AM]

Big Online Book of Linux Ada Programming - 6 Development Utilties

procedure htmtest is
-- a denonstration of gnathtm

function factorial(n : natural) return natural is
-- conpute the factorial of n
begi n
iIf n < 2 then
return 1;
el se
return n * factorial(n-1);
end if;
end factorial;

-- main program

begi n
put |ine("Browse this source!");
new | i ne;

put |ine("The factorial of 5 is" & natural'imge(factorial(5)));
end htnltest;

This creates an index filelike this:

Files
o htmltest.adb
Functions/Procedures
« factoria
o htmltest

Thefirst link would show you your entirefile:

File : htmltest.adb

wth Ada. Text |G
use Ada. Text |1 Q

procedure htmtest is
-- a denonstration of gnathtm

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (13 of 14) [7/20/2001 11:31:54 AM]

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/not_real
file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/not_real
file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/not_real

Big Online Book of Linux Ada Programming - 6 Development Utilties

function factorial(n : natural) return natural is
-- conpute the factorial of n
begi n
if n&t; 2 then
return 1;
el se
return n * factorial(n-1);
end if;
end factorial;

-- main program

begi n
put _line("Browse this source!");
new | i ne;

put _line("The factorial of 5 is" & natural'image(factorial(5)));
end htmltest;

The links use the .htm (not .html) extension for portability.

6.9 GnatFind

[To be written--KB]

<--Last Chapter Table of Contents Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/6.html (14 of 14) [7/20/2001 11:31:54 AM]

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/not_real
file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/not_real

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

7/ Optimizing Your Project

<--Last Chapter Table of Contents Next Chapter-->

Optimization is the customization of a program to run as small and/or as fast as possible on a particular
type of computer.

If you program is running slower than you expected, or is using more memory or disk space than you
expected, you should first examine the approach you used in your Ada source code. Can you use better
data structures, or implement faster algorithms? For example, a bubble sort is an easy way to sort
relatively small amounts of data, but a quick sort is faster on thousands or millions of pieces of data.

In large programs, the subprogram causing the biggest bottlenecks may not be obvious. Experimenting
with different test data and timing the results can often narrow down the problem areas. Y ou could also
try the gprof profiling tool, which will give you statistics on your program performance and will show
that you are on the right track. Why spend hours or days improving a section of your program that isn't
causing the problem? This is especially important in a business environment: focus your time on the
sections that will give the greatest improvements.

Some optimizations can be done automatically by the Gnat compiler. There are both compiler switches
and language pragmas for fine tuning your programs.

7.1 Compiler Optimization Options

There are several compiling switches used to optimize programs.

The -O switch tells the compiler how much time it should spend optimizing the program:
« No-O - fastest compiling, but gives you gnat warnings for optimization pragmas. Use only when
fast compiling is essential.
« -0O/-01 - dower compiling, cleaner executable, and no pragma optimize warnings from gnat. Y ou
should normally include this.
« -O2 - more optimization. Use this for the smallest executable.

o -O3 - full optimization, automatic code inlining for small subprograms and loop unraveling. Use
this for the fastest executable.

When using floating point numbers, you may experience rounding errors if you don't use the -ffloat-store
switch as discussed in 8.5.

Inlining is also affected by two other switches:
« -gnatn - allow inlining between packages where pragmainline is used in a package specifications.
« -gnatN - alow automatic inlining between packages (thisis very memory intensive)
« No-gnatn/N - no inlining between packages, even if apragmainlineisused in a package

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (1 of 10) [7/20/2001 11:32:11 AM]

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

specification.

These switches both require a-O switch for inlining to take effect.

The -gnatp switch turns off all non-essential error checking such as constraint and range checks. Thisis
thesameasusing pr agna Suppress(Al | _Checks) onevery filein the entire program, making
the program smaller and faster.

There are some other gcc optimization switches which can sometimes be used:

-ffast-math - gcc will ignore certain ANSI & |EEE math rules. For example, it will not check for
negative numbers before invoking the sgrt function. This improves math performance but can cause side-
effects for libraries expecting the ANSI/IEEE rules to be honoured.

-fomit-frame-pointer - gcc will free the register usually dedicated to hold the stack frame pointer. This
improves performance, but makes debugging difficult--many debugging utilities require the frame
pointer.

|I DE: TIA setsthe proper switches for you based on your selections in the project parameters window.

7.2 Gnat Source Optimization Options

Ada Package Description C Equivalent
_ Use minimum space for the
pragnma Pack(Aggregate); aggregate. -
pragma Optim ze(Space / Time / Of How you want your statements |
); optimized.
pragma | nline(Subprogram); Inline the subprogram i nline
pragma I nline Al ways(Subprogram); Inline the subprogram -
. _ Don't include ASCII identifiers
pragma Di scard Nanes(type); in executable. -

There are six pragmas available to change the size and execution speed of your program.

Pragma Pack compresses an array, record or tagged record so that it uses the minimum space possible.
For example, a packed boolean array takes up one bit for each boolean. Pack only packs the aggregate,
not any aggregate items that might make up the aggregate: if you have an array of records, you'll need to
both pack the array and the records to use the minimum space possible. Packing aggregates usually slows
down the execution of your program.

type CustonerProfile is record
Preferred : bool ean;
PreordersAl | owed : bool ean;
Sal esToDate : fl oat;

end record,;

pragma Pack(CustonerProfile);

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (2 of 10) [7/20/2001 11:32:11 AM]

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

Gnat can perform close packing, that is, packing right down to individual bits, for array elements or
records of 64 bits or smaller.

Pragma Optimize specifies how you want your statements to be optimized: to run as fast as possible
(time), to be as small as possible (space), or no optimization at al. Optimize does not affect data
structures.

pragma Optim ze (space);

package body AccountsPayable is

Pragma I nline makes Ada inline the subprogram whenever possible. That is, it physically inserts the
subprogram whenever it's named instead of calling it in order the make your program run faster. This
uses up alot of space and isonly practical for small procedures and functions.

procedure Increment(x : integer) is
begi n
X 1= X + 1;

end I ncrenent;
pragma Inline(Increnment);

Compiling switch -O3 must be used or pragma inlineisignored. -O3 will also automatically inline short
subprograms for you.

Pragmalnline_Always forces inlining between packages (like -gnatn) regardless of whether or not
-gnatn or -gnatN has been used.

Pragma Discard_Names frees up space by discarding the ASCII images (names) of identifiers. For
example, if you have a big enumerated type, Ada normally maintains strings for the names of each of the
enumerated items in case you want to use the 'img attribute. Y ou can discard these names if you never
intend to use 'img.

t ype aDogBreed is (Unknown, Boxer, Shepherd, M xedBreed);
pragma Di scard _Nanmes(aDogBreed);

When you discard names, the 'img is still available. Instead of returning the enumerated value's image,
'img returns the position of the enumerated type (for example, 0, 1, 2 and so forth).

Fun Fact: The ASCII images of your variable names are stored as C strings at the end of your
executable file. You can view them using the less (or strings) shell command.

7.3 CPU Optimization Options

There are two main CPU optimization switchesin GCC 2.x, aslisted in the GCC manual:

-mno-486 - optimize for 80386.
-m486 - optimize for 80486. These programs will still run on a 80386.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (3 of 10) [7/20/2001 11:32:11 AM]

http://gcc.gnu.org/onlinedocs/gcc_2.html#SEC32

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

Future versions of Gnat built for GCC 3.x or later will probably support:
e -mpentium - optimize for Pentium / Intel 586

e -Mcpu=i686 - optimize for Pentium I/ Intel 686

o -mcpu=k6 - optimize for AMD K6

There are currently no switches newer CPUs such as Pentiums. Under GCC 2.8.1 (and Gnat), the GCC
FAQ recommends the following switches for reasonable Pentium performance: "-m486 -malign-loops=2
-malign-jumps=2 -malign-functions=2 -fno-strength-reduce".

There are other switches that may or may not be helpful, depending on your program: read the gcc FAQ
for full details.

IDE: TIA setsthe proper switches for you based on your selections in the project parameters window.

Let's put all these flags together. Suppose you are trying to develop a program for the Intel Pentium CPU
with an emphasis on speed. During development, the Gnatmake switches would be *-O1" since this
setting suppresses pragma optimize warnings. For the final release, the Gnatmake switches should be
"-m486 -0O3 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -fno-strength-reduce -gnatp" for
maximum performance on a Pentium processor.

7.4 What Difference Does Optimization Make?

In the previous sections, we saw GCC compiler switches and and Ada pragmas that affect the speed and
size of your finished application. But how much of a difference does optimization make? And are there
any problems caused by optimization?

The optimization switches and pragmas affect different applications differently. Some will give better
results to certain kinds of applications, while others may actually have a negative effect. The following
table summarizes the results of optimizing on the Hartstone Ada benchmark program. Hartstoneisa
multithreading mathematics test available freely on the Internet
http://ftp.sunet.se/pub4/benchmark/hartstone/.

Table: Hartstone 1.1 Benchmark Summary

Gnat switches Ada pragmas CPU Time File Size Task Set Util
-gnatE -gnato -g - 0.13s 294265 0.41%
-gnatE -gnato - 0.13s 147433 0.41%
-gnatE - 0.10s 138679 0.32%
no switches - 0.10s 138679 0.29%
-0 - 0.07s 113076 0.22%

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (4 of 10) [7/20/2001 11:32:11 AM]

http://gcc.gnu.org/cgi-bin/fom
http://gcc.gnu.org/cgi-bin/fom
http://gcc.gnu.org/cgi-bin/fom
http://ftp.sunet.se/pub4/benchmark/hartstone/

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

-02 - 0.07s 113324 0.22%
-O3 - 0.07s 118790 0.20%
-O3 -gnatp - 0.08s 104290 0.37%
-O3 -gnatp Pent - 0.08s 105042 0.15%
Max - 0.05s 105714 0.15%
Max Optimize(Space) 0.05s 105714 0.15%
Max Optimize(Time) 0.05s 105714 0.15%
Max Pack arrays 0.11s 105712 0.15%

Pent - GCC Pentium optimization switches

Max - Pent + -ffast-math + -fomit-frame-pointer

This test was conducted with a Pentium |1 350, 64 Megs RAM and ALT Gnat 3.12p-9. Asthey say, your
milage many vary (and probably will).

By optimizing the application, Hartstone can be reduced to half its size and run about 2/3 faster than
using no optimization. However, if we pack the arrays in Hartstone, we save two bytes but lose al the
improvements in speed. Sometimes smaller programs are not faster.

Let's try optimizing a convoluted program that uses integers, arrays, functions and mathematics and see
what effect the optimization techniques have.

procedure bench is
--Sinpl e benchmark programto test optim zation
pragma optimze(tine);

type bench_integer is new | ong i nteger range |ong_integer'range;
type small _integer is new | ong_integer range 0..9;

function p(param: bench_integer) return bench_integer is

di vi deby : constant bench_integer := 4;
begi n

return param/ divi deby;
end p;

pragma inline(p);
] : bench_integer := bench_integer'last;
-- deliberate error in main programfor j * 2

type atype is array(0..9) of small _integer;
--pragma pack(atype);

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (5 of 10) [7/20/2001 11:32:11 AM]

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

a : atype;
begi n
for i in 1..100_000_000 | oop

] = abs(p(bench_integer(i)) - (j * 2));

a(integer(j nmod 10)) := small _integer(j nod
bench_integer(small _integer'last));
end | oop;
end bench;

Notice that j is assigned the largest bench_integer possible. Thiswill force an overflow error the first
time around the for loop, when j is multiplied by two. The following chart shows the effect of the
different switches and pragmas, and indicates when gnat caught the overflow error. The test was
conducted on a Pentium 11 350 with 64 Megs of RAM using the gnat 3.11 NY U binaries and was timed
with the time command.

Gnatmake Switches Pragmas CPUTime |[Sze Error Caught?
gnatmake -gnato -gnatE - - 118162 |YES
gnatmake -gnato - - 118162 |[YES
gnatmake -gnatE - 40.3 s 118162 |No
gnatmake - 40.3 s 117634 [No
gnatmake -O - 10.8 s 117426 |No
gnatmake -O2 - 10.8 s 117426 [No
gnatmake -O3 - 10.8 s 117426 |No
gnatmake -O3 -gnatp - 9.6s 117410 |[No
gnatmake -O3 -gnatp Pent - 9.6s 117410 |No
gnatmake -O3 -gnatp Pent Optimize(Space) 9.6s 117410 |[No
gnatmake -O3 -gnatp Pent Optimize(Time) 9.6s 117410 |No
gnatmake -O3 -gnatp Pent Pack atype 44s 117326 [No

Although the proper optimization can make this program run faster, but with overflow checking was
turned on with -gnato, the overflow error is caught. The lesson here is that error checking only works
when it's turned on.

We can compare the results to the equivalent C program:

int p(int param) {
return param/ 4,

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (6 of 10) [7/20/2001 11:32:11 AM]

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

}

int i;

int j = 2147483647;
I nt af[10] ;

int main() {
for (i=1; i<=100000000; i++) {
j =abs(p(i)-(j*2));
a[j940] = j9%0;

}
return O;
}
GCC Switches Pragmas CPU Time Size Error Caught?
gcc -Wall - 12.8s 24541 No
gcc -O3 Pent - 8.6s 24541 No

In this case, notice that C never detected the overflow error. Secondly, notice that the Ada program ran
twice asfast asthe C program.

In theory, an Ada compiler can take advantage of the typing information and the optimization hints
provided by the pragmas. The C compiler has less information and this can hinders the optimization
process. (I've never investigated whether or not Gnat does this or how much of an effect it has.)

The optimization techniques will affect different programs differently. Y ou need to chose the best
approach for your particular project.

7.5 Working with the Assembly Source

Assembly language is the low-level programming language for working with the hardware of a
particular computer. Using assembly language, you can access the processor registers, use unusual
features of the processor, and dictate exactly which operations the processor performs. Assembly
language programs are usually several times smaller and faster than programs written in high-level
languages, but they are also several times harder to build, maintain and debug.

The Linux assembler is called gas (the GNU assembler). Like GNAT and C++, gas works through gcc.
To assemble an assembly language source file, ssmply run gcc. The compiler will recognize the assembly
language file and will assemble it using gas.

If you want to view the assembly source code of your Ada program, use the "-c -S -fverbose-asm"
options when compiling. GNAT will create afile with a".s" suffix containing the assembly source. You
can view it, or even edit it and assemble afterwards. Improving the instructions produced by the compiler
and then assembling afterwards is known as hand optimizing. This techniqueistypically used for high
performance applications such as games, where the programmer needs to get the maximum performance
from the hardware.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (7 of 10) [7/20/2001 11:32:11 AM]

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project

The following isthe stderr.sfile for the stderr.adb program described el sewhere in this document.

.file"stderr. adb"
.version"01. 01"

/ GNU Ada version 2.8.1 (i686-pc-linux-gnu) conpiled by GNU C version
2.8. 1.

/| options passed:-I|../texttools/ -ntpu=i486 -march=i 486 -gnatp -gnatf
-3

-md86 -malign-1oops=2 -malign-junps=2 -nalign-functions=2
-fno-strengt h-reduce -fverbose-asm

options enabl ed: -fdefer-pop -fcse-foll owjunps -fcse-skip-bl ocks
-f expensi ve-opti m zations -fthread-junps -fpeephole -fforce-nmem
-ffunction-cse -finline-functions -finline -fkeep-static-consts
-fcal l er-saves -fpcc-struct-return -frerun-cse-after-1oop
-fschedul e-i nsns2 -fcomon -fverbose-asm-fgnu-1inker -nB0387
-mhard-float -mo-soft-float -meee-fp -nfp-ret-in-387

- mschedul e- prol ogue -ntpu=i 486 -march=i 486 -mali gn-| oops=2

-mal i gn-junps=2 -malign-functions=2

gcc2_conpi |l ed. :

.section.rodata

. LCO:

.string"This is an exanple of witing error nessages to stderr"
.align 4

. LC1:

.long 1

.long 54

. LC2:

.string"This nessage is on standard error"

.align 4

. LC3:

.long 1

.long 33

. LC4.

.string"This nmessage is on standard out put”

.align 4

. LC5:

.long 1

.long 34

e e e e e e e

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (8 of 10) [7/20/2001 11:32:11 AM]

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project
. LCG:

.string"This is also on standard error
.align 4

. LC7:

.long 1

.l ong 30

. LC8:

.string"But this is on standard out put
. text

.align 4

.globl _ada_stderr
.type_ada_stderr, @unction
_ada_stderr:

pushl %ebp

nmovl %esp, Yebp

novl $. LCO, %eax

movl $. LCL, %edx

pushl %edx

pushl %eax

call ada_text io_ put line_ 2
pushl $1

call ada_text io_newline_ 2
movl $. LC2, %eax

nmovl $. LC3, Y%edx

pushl %edx

pushl %esax

call ada__text _io__standard_error
pushl %eax

call ada_text _io__put _line

nmovl $. LA, Y%eax

novl $. LC5, %edx

pushl %edx

pushl %eax

call ada_text io_put _line_ 2
addl $32, %esp

pushl $1

call ada_text io_newline_ 2

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (9 of 10) [7/20/2001 11:32:11 AM]

Big Online Book of Linux Ada Programming - 7 Optimizing Your Project
call ada_text io__standard error
pushl %esax
call ada__text _io__set_ output
novl $.LC6, Y%eax
movl $. LC7, %edx
pushl %edx
pushl %eax
call ada_ text io_ put line_ 2
call ada__text io__standard_out put
pushl %eax
call ada_text io__set output
novl $. LC8, %eax
novl $.LC7, %edx
pushl %edx
pushl %eax
call ada_text _io_put _line_ 2
novl %bp, Y%esp
popl %ebp
ret
.Lfel:

.Sl ze_ada_stderr,.Lfel-_ada_stderr
.ident"GCC. (G\U) 2.8.1"

<--Last Chapter Table of Contents

Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/7.html (10 of 10) [7/20/2001 11:32:11 AM]

Big Online Book of Linux Ada Programming - 8 Debugging Your Project

8 Debugging Your Project

<--Last Chapter Table of Contents Next Chapter-->

8.1 Limit and the Heap Size

The default storage pool (or the "heap") is kept on the user's stack. Unusually large variables in subprograms
(including the main program) can cause out of memory errors. Variables in packages are not affected by the
stack size. Y ou can increase the stack space using Linux's limit command (although using dynamic
allocation is usually a better solution).

limt stacksize 1024 kbytes # 1 Megabyte user stack

To constrain the size of your stack, asfar as Gnat is concerned, use the GNAT_STACK_LIMIT environment
variable to indicate the number of kilobytes of stack space. In individual Adatasks, the stack size can be set
by pragma Storage _Size.

Stack size checking is normally disabled by Gnat. Section 4.4 discusses this.

8.2 The Debugging Pragmas

Ada Feature Description C Equivalent

pragma Assert(condition); Assert a condition. assert

pragma Debug(Procedure); Debugging procedurecall |-

pragma Suppress_Debug I nfo; Disable pragma debug #i fdef var...#endif

pragma No_Return(subprogram); Lrg)eﬁi%ﬁggsogramthat)

pragma Normal i ze_Scal ars; Initidlize scalarstoillegal |
values

GNAT provides two useful pragma for debugging programs. To use these pragmas, you need to use the
-gnata option during compiling. Removing -gnata causes GNAT to ignore these pragmas, making it easy to
compile aversion of your program for public release without having to delete the debugging statements from
your source code.Pragma Assert lets you test to make sure a certain condition istrue. If it isn't, then an
exception israised. Use Assert to check for conditions which you assume are true during program
development. Thisis especially useful when severa programmers are working on a project and you don't
know if a condition will change in the future.

pragma Assert(ScreenHeight = 24);

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (1 of 6) [7/20/2001 11:32:24 AM]

Big Online Book of Linux Ada Programming - 8 Debugging Your Project
In this example, if the variable ScreenSize isnot 24, an ASSERT _ERROR exception is raised.

Pragma Debug lets you call a procedure for debugging purposes. For example, you can use this to print
information about the program while it is running. Because thisis a pragma, you can place it almost
anywhere, even in the middle of variable declarations.

X 1= 5;
pragma Debug(PrintToLogFile("X is now' & x'ing));

If PrintToLogFileis aprocedure that saves messages to alog file, this example saves the message "X is now
5" tothelogfile.

Pragma debug can be disabled with pragma Suppress Debug_Info.

Pragma No_Return can be used to indicate subprograms that never complete. This suppresses the related
compiler warnings.

Pragma Normalize Scalarsinitializes anything not an array, record or tagged record to illegal values
wherever possible. This pragma hel ps expose variables used before they are initialized. Use this at the start
of a program or package.

Suppose you have ainteger variable with arange between 1 and 100. Normally, Adawon't assign an initial
value (unless you specify one). With Normalize Scalars, your variable will be initialized to some value out
of range, perhaps -1. If you attempt to use this variable, you'll probably raise a CONSTRAINT_ERROR
exception.

8.3 ldentifying Files

[Rewrite and Expand]From Usenet:

> |f you are using 2.2.x, you can use the /proc to find a process which is> using a directory or file. If isthe
case, try this: Is-lad “find> /proc’ | grep home> The number after the /proc should be the process ID.>> Any
way, it seems alittle bit delicate umount your /home after the> boot... Couldn't you use a rescue disk and
format your /home without> mount it in aboot?>> Are you sure your /home isn't only a part of your / (root
directory)?> When you type "df", does it report a different device for the /home?> Sorry, if I'm asking avery
basic question.>try fuser or |sof.

8.4 Compiler Info with -gnatG

The -gnatG compiler switch shows Gnat's interpretation of your source code after itsinitial analysis. If you
specify -gnatD, Gnat will write thisinformation to afileending in. dg (for "debug").

Thefollowing is alisting of the "pointers’ program used later in this book:

W th Ada. Text IO System Address_To Access_Conver si ons;
use Ada. Text |G

procedure pointers is

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (2 of 6) [7/20/2001 11:32:24 AM]

Big Online Book of Linux Ada Programming - 8 Debugging Your Project

package IntPtrs is new System Address _To Access_Conversions(i nteger);
-- Instantiate a package to convert access types to/from addresses.
-- This creates an integer access type called Object Pointer.

five . aliased integer :=5;
-- Five is aliased because we will be using access types on it
Int_pointer : IntPtrs. OQbject Pointer;

-- This is an Ada access all type

I nt _address : System Address;
-- This is an address in nenory, a C pointer

begi n

I nt_pointer := five'unchecked_access;
-- Unchecked access needed because five is local to main program
-- If it was global, we could use 'access.

I nt_address := five' address;
-- Addresses can be found with the 'address attri bute.
-- This is the equivalent of a C pointer.

int_pointer := IntPtrs. To Pointer(int_address);
I nt_address := IntPtrs. To_Address(int_pointer);
-- Convert between Ada and C pointer types.

end pointers;

The -gnatG shows the compiler's analysis of your program. In this case, it displays the results of the
Instantiation of the generic package:

W th system

W th ada;

wth ada.text io;

W th system address_to_access_conver si ons;
use ada.text io;

W th system

wth system

wi t h unchecked_conver si on;

procedure pointers is
package intptrs is

subt ype object is integer;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (3 of 6) [7/20/2001 11:32:24 AM]

Big Online Book of Linux Ada Programming - 8 Debugging Your Project

package address to_access_conversions renanmes intptrs;
nul | ;
type object _pointer is access all object;
for object pointer'size use 32;
function to_pointer (value : address) return object_pointer;
function to _address (value : object pointer) return address;
pragma convention (intrinsic, to_pointer);
pragma convention (intrinsic, to_address);
freeze object pointer []
freeze to_pointer []
freeze to_address []
end intptrs;

package body intptrs is

function to_address (value : object pointer) return address is
begi n
if value = null then
return null address;
el se
return val ue. al | ' addr ess;
end if;
end to_address;

function to_pointer (value : address) return object _pointer is

package a to pGP3183 is
subtype source is address;
subtype target is object pointer
function a_to pR (s : source) return target;
end a_to pGP3183;
function a_to p is new unchecked conversion (address,
obj ect _pointer);
begi n
return target! (source(val ue));
end to_pointer;
end intptrs;

package intptrs is new system address_t o_access_conversions (integer);
five : aliased integer :=5;

int_pointer : intptrs.object pointer := null;

i nt_address : system address;

freeze intptrs []

begi n
int_pointer := five' unchecked_access;
i nt_address := five' address;
int_pointer :=intptrs.to_pointer (int_address);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (4 of 6) [7/20/2001 11:32:24 AM]

Big Online Book of Linux Ada Programming - 8 Debugging Your Project

int_address := intptrs.to_address (int_pointer);
return;
end pointers;

8.5 Floating Point Numbers

The GCC FAQ reports that floating point rounding problems can occur with -O2 and -O3 unless you use
-ffloat-store (keeps floating-point numbers out of CPU registers). Using this switch will slow your program.

8.6 Gdb: the GNU debugger

gnat 3.11 and later with aversion of Gdb, the GNU command line debugger, that fully supports Ada data
structures.Y ou shouldn't have to use Gdb very often as most problems are solvable with afew well-placed
put_line's. However, if the program produces are core file or is behaving unpredictably because of an

obscure coding mistake or a compiler bug, Gdb is the best way to find out what is going wrong and where.

In order to use Gdb, you must compile your program with debugging support enabled (with the -g option in
gnat, or -ggdb in C).

To start Gdb on a program called dbase, use
gdb dbase

(or gnatgdb with the ALT version) and Gdb responds with its command line prompt, "(gdb)". Typerun to
start the program normally to the point of the crash. Y ou can print out the value of variables using the print
command:

(gdb) print ch

Thiswill print the character in the variable named ch at the time when the program was stopped.
To look at acore file produced by a segmentation fault, use

gdb dbase core

Y ou can examine the variables at the time the program crashed.

Gdb contains many other commands. Y ou can get online help at any time with the help command.

GNAT has a hidden -gnatdg flag. If you compile your program using this flag, you'll get extrainformation
for Gdb, such as making all temporary variables used by gnat visible to the debugger.

8.7 Code Restrictions

There are severa pragmas for disabling certain language features. Theserestriction pragmas can be used to
enforce a certain policy and warn a programmer when the policy is violated. For example, if you are writing
areal-time program, you may want to disable Ada features that do not have a known response time so that
your program will not have random delays.

The restriction pragmas include:

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (5 of 6) [7/20/2001 11:32:24 AM]

http://gcc.gnu.org/cgi-bin/fom

Big Online Book of Linux Ada Programming - 8 Debugging Your Project
« Ada 83 - do not allow Ada 95 language features
o Ada 95 - (default) allow Ada 95 language features

« Controlled - turn off garbage collection for atype. This has no effect with Gnat since it does not
implement garbage collection.

« Ravanscar - enforce Ravanscar run-time restrictions
o Restricted Run_Time - similar to Ravanscar
« Restrictions - disable particular language features

no_run_time also enforces restrictions because the Ada run-time library is not available.

More information on the usage of these pragmasis available in the Gnat documentation.

<--Last Chapter Table of Contents Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/8.html (6 of 6) [7/20/2001 11:32:24 AM]

Big Online Book of Linux Ada Programming - 9 Team Development

9 Team Development

<--Last Chapter Table of Contents Next Chapter-->

9.1 Change Logs

The Change Log

Creating a change log is the easiest method to document changes you've made in aproject. A change log is atext
file (usually called "CHANGES") containing an explaination of al recent changesin a project. For example, if you
are working on an open source project and you add support for encrypted passwords, you might document this by
writing

Nov 1 - added password support to file passwords. adb

If anyone was going to add password support to your project, they can quickly see that you've already doneit. Or if
somebody was adding additional features to the passwords.c file, they will know that they may have to change
their work since you've already changed the samefile.

The change log is popular on open source projects involving few programmers because there's little chance of two
programmers modifying the same source file ssmultaneously.

The Formal Change L og

Most businesses or professional institutions have a much more formal structure for their change logs. In an
environment involving important data, a program problem means someone else will have to retrace your activities
in order to find and correct a problem.

Formal logs are kept in a binder since there's aways the possibility that a major failure will make it impossible to
sign onto the computer. Each change is documented with

« thedate

« person who made the software change
« What programs were affected
 adescription of the change

Some companies have internal audits done to ensure that changes were properly made. The auditors will pick
random pages from the change log and ask the programmer to verify the changes. In these cases, aformal change
log may also include information such as the size, ownership and permissions of files affected. This serves both to
quickly check afile aswell asto force a programmer to verify the security of the files he or sheinstalls. The most
common security loopholesin UNIX are caused by people not checking the ownership and permissions of installed
files.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (1 of 6) [7/20/2001 11:32:37 AM]

Big Online Book of Linux Ada Programming - 9 Team Development

9.2 RCS: Revision Control System

RCS (Revision Control System) isatool that shares a document or program source code between multiple people.
It also automatically numbers the file with aversion number (eg. 1.1, 1.2) with each revision, and maintains a
changelog. CVS, an extension to RCS, is described below.Once you initialize RCS for a project, people in your
project "check out" (with the co command) a copy of afile, and when they're done making changes they "check in"
the file (with the ci command).

RCSisaso agood tool for maintaining documentation.
Read the rcsintr o man page for more information on getting started.

The following is atranscript of a session using RCS. Assume that you have a source file called "f.c". To add the
source fileto RCS, you'd use ci. Y ou are prompted for a general description of the file and RCS assigns version
number 1.1 to thefile. Thefile is deleted from your directory and moved into RCS's care.

arm tage:/hone/ ken/ada/rcs# ci f.c
RCS/f.c,v <--f.c

enter description, termnated with single '.' or end of file:
NOTE: This is NOT the | og nessage!

>>

Curreny Definitions

>>

initial revision: 1.1

done

arm tage:/ honme/ ken/ ada/rcs# | s

RCS

To check out the file, read-only, use co. The file reappears.

arm tage: / hone/ ken/ ada/rcs# co f.c
RCS/f.c,v -->f.c

revision 1.1

done

arm tage: / honme/ ken/ ada/rcs# | s

RCS f.c

To check out afile to changeit, use co -I (lock out others):

arm tage: / hone/ ken/ ada/rcs# co -1 f.c
RCS/f.c,v --> f.c

revision 1.1 (| ocked)

done

Suppose you add the line "--test line" to the file. Resdiff will report any changes you've made to the file since
checking it out:

arm tage: / hone/ ken/ ada/rcs# rcsdiff f.c

RCS file: RCS/f.c,v
retrieving revision 1.1

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (2 of 6) [7/20/2001 11:32:37 AM]

Big Online Book of Linux Ada Programming - 9 Team Development

diff -r1.1 f.c
Oal
> --test |ine

Finally, you can check the file back in. RCS increnents the version nunber
and pronpts you for a nmessage for the change | og.

arm tage: / hone/ ken/ada/rcs# ci f.c
RCS/f.c,v <-- f.c
new revision: 1.2; previous revision: 1.1

enter | og nessage, termnated with single '.' or end of file:
>> Added conments

>>

done

9.3 CVS: Concurrent Versions System

CVS (Concurrent Versions System) is a front end to RCS designed to work with
groups of files in nmultiple directories. CVS can work with individual files,
whol e directories or you can organi ze |large projects into groups of files
(called a nodul es) that you want to work with. Like RCS, it tinestanps
files, maintains version nunbers, and identifies possible problens when two
progranmmers update the sane section of a program sinultaneously.

CVS is very popul ar for open source devel opnent. CVS can be configured to
all ow programers all over the world to work on your project w thout having
to be |l ogged into your conputer

In order to use CVS, the project |eader needs to create a directory for CVS
to work in (called the repository) and a subdirectory called CYSROOT. Then
you define an environnent variable called CYSROOT so CVS knows where to find
the CVS directory. For exanple, to nmake "/hone/our-project-cvs" the
repository for your team set up the CVSROOT under bash as

export CVSROOT=/ hone/ our - pr oj ect - cvs

The repository holds copies of all the files, change |ogs, and other shared
resources for your project.

To add a new project to the CVS repository, use the inport conmand. | nport
will take the files in the current directory and put themin the repository
under the nane you specify. Inport also requires a short string to identify
who is adding the project, and a string to describe the state of the project.
This strings are comments and can be anything: your login and "init-rel"” for
initial release may be good choi ces.

By convention, CVS begins nunbering your project with "1.1"
[root @edbase cvs]# cvs inport project kburtch init-rel
(CVS starts your default editor, typically vi)

O] A R e e R L
CVS: Enter Log. Lines beginning with "CVS: ' are renoved automatically

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (3 of 6) [7/20/2001 11:32:37 AM]

Big Online Book of Linux Ada Programming - 9 Team Development

CVS:

0 e
(make notes and exit vi)

N project/currency. adb

No conflicts created by this inport

The "N project/currency.adb" line indicates that CVS created a new proj ect
called "project" and added the Ada file currency.adb to it. currency.adb is
now stored in the CVS repository, ready to be shared anongst the team
menbers.

To work with a project, you use co (or checkout). This CVS conmand will save
a copy of the project in your directory. It will also create a CVS directory
to save private data files used by CVS. To use co, nove to your hone
directory and type:

[root @edbase cvs]# cvs checkout currency. adb
cvs checkout: Updating .
U project/currency. adb

The subdirectory project will contain your own, personal copies of project
files to work on. CVS maintains the original copy of currency.adb. Another
progranmmer can al so checkout currency.adb while you are working on your copy.

If you do a checkout right after an inport, you nay have to renove the
original files: CVS wll not overwite any existing files.

To add a file to CVS, use the add conmand. To add a file call ed
currency. adb, use

[root @edbase cvs]# cvs add currency. adb

Singlefiles, directories or even CV S modules can aso be added to your project using "add".

As you work on your source code, you can check your work agai nst the project
usi ng the update command.

[root @edbase cvs]# cvs update
cvs update: Updating .

When updating, CVS checks the files in your copy of the project against its
copies. |If another team nenber nmade changes to one of the project Ada files,
CVS will copy the newfile to your directory.

I f anot her team nenber nmade changes to one of the Ada files you' ve been
working on, CVS wll attenpt to update your copy w thout destroying your
wor K.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (4 of 6) [7/20/2001 11:32:37 AM]

Big Online Book of Linux Ada Programming - 9 Team Development

Soneti nes the changes involve the sane part of the Ada file and CVS won't be
able to conbine the changes automatically. CVS calls this a conflict. For
exanpl e, suppose your Ada file contained a function

function ConvertCurrency(anount : integer) return float;

If you changed this function to use a float anobunt, and anot her team nenber
has changed anmount to a string, CVS wll report a conflict. You wll have to
talk to the team nenber who nade t he change and nmake an agreenent what anount
shoul d be.

If there are no other problens after an update, you can continue working on
your source code.

To delete a file, renmove it using "rnf and then "update". CVS will see your
file is no longer in the project.

The CVS command release will permanently remove afile from a project (including the
copy in CVSROOT), but it also prevents you from recovering the file from the CVSROOT directory in
an emergency. Unless storage spaceis limited, consider using the rm/update method of removing files.

Wi | e wor ki ng on your source code, your changes are not distributed to the
rest of your teamuntil you are ready. Wen your source code is tested and
ready to be nmade avail able, use ci (or commt). Before commting your

changes, delete non-essential files (such as .ali, .o or executable files) to
save space in the repository.

The | og conmand gives information about a group of files:

[root @edbase cvs]# cvs log -1 project
cvs | og: Loggi ng project

RCS file: /usr/cvs/project/currency.adb,v
Wrking file: project/currency. adb

head: 1.1

branch: 1.1.1

| ocks: strict

access |ist:

synbol i ¢ nanes:

pl: 1.1.1.1

keyword substitution: kv

total revisions: 2; selected revisions: 2
descri ption:

revision 1.1

date: 1999/01/13 17:27:33; author: kburtch; state: Exp;
branches: 1.1.1;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (5 of 6) [7/20/2001 11:32:37 AM]

Big Online Book of Linux Ada Programming - 9 Team Development

Initial revision
revision 1.1.1.1
date: 1999/01/13 17:27:33; author: kburtch; state: Exp; lines: +0 -0
Project started

Status gives you an overview of a group of files:

[root @edbase cvs]# cvs status project
cvs status: Exam ning project

File: currency.adb Status: Up-to-date

Wrking revision: 1.1.1.1 Wed Jan 13 17:27:33 1999
Repository revision: 1.1.1.1 /usr/cvs/project/currency.adb,v
Sticky Tag: (none)

Sticky Date: (none)

Sticky Options: (none)

9.4 Creating Transcripts with Script

So you did sonething wong. How to you show what you did to your fell ow
progranmers? The script conmmand creates a file called "typescript" in the
current directory. The typescript file is a text file that records a |ist of
everyt hing that appears on the screen. You can stop the recordi ng process
with the exit command.

9.5 Timing Execution with Time

The shell command tinme will tell you how | ong a programtook to run, and
reports general statistics such as how many page faults occurred.

arm t age: / hone/ ken/ ada/ sn# ti me nmyprog
3. 09user 0. 95system 0: 05. 84el apsed 69%CPU(Oavgt ext +Oavgdat a Onmaxr esi dent) k
Oi nput s+0out put s(4786maj or +4235m nor) pagef aul ts Oswaps

<--Last Chapter Table of Contents Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/9.html (6 of 6) [7/20/2001 11:32:37 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

10 An Introduction to Ada

<--Last Chapter Table of Contents Next Chapter-->

Adais afull-featured language with many capabilities, rules, and nuances. Although the fundamentals are easy to
learn (Ada somewhat resembles BASIC), it is severa times larger that C, and to truly master the language requires
considerable practice. To make understanding easier, the discussion is broken up into two chapters. This chapter
outlines the basics of the language, and the next chapter discusses features for team development, large projects, and
other specialized tasks.

Thisin no way covers everything thereisto know about Ada. I've chosen to cover those features that have been the
most use to me over the yearsin my projects. For example, array slicing alone could take up several pages of
discussion, but I've never had a need for it in recent years. Of course, you may be involved in a project in which
array dicing iscrutial. In these cases, | recommend you get a good Ada 95 reference such as Barnes Programming
in Ada 95.

Likewise thisis not a complete introduction to computer programming. Some background knowledge is assumed.

Adaalso has many specialized features for specific tasks such as scientific computing and real-time systems. Where
| deliberately skip a subject, | usually make a note that | have done so. I've also hilighted useful information for C
programmers who are learning Ada.

Now, on to main programs.

10.1 Your Main Program

A main program in Adais a procedure with no parameters that starts your program running. Thisis the set of
instructions that the computer begins to follow when your program isfirst executed.

The following program will print a message on the screen when you runit.

with Ada. Text 1O
procedure firstProgramis
-- ny first Ada program
begi n
Ada. Text 1O Put_Line("This is ny first Ada program");
end firstProgram

C: Adais not case sensitive. "WITH" or "With" is the same as "with".

An Ada program consists of sets of words and punctuation symbols. The words fall into two categories. First, the
wordsin bold in bold are called keywor ds. These are words that have special meaning to Ada. Second, the words
that aren't in bold are identifiers. These are the names of variables, procedures, packages and other items with names
or titlesin the language.

IDE: AdalDE'swill hilight keywordsin bold for you. Some editors such as emacs, elvis and nedit will
also hilight keywords. Thisisagood way to check for spelling mistakes.

In this program, begi n isakeyword because Ada uses the word "begin" to denote where the program isto begin

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (1 of 29) [7/20/2001 11:33:05 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

executing instructions. On the other hand, "firstProgram” is an identifier because it is the name of our program.
All keywords in Ada are aso reserved wor ds: this means that the keywords cannot be used as identifiers.

The main program can have any name, as long as the name matches the filename. In gnat, the source code for amain
program ends in .adb (Ada body). This program should be saved as firstprogram.adb.

]C: The main program doesn't have to be "main" unless you save the program as "main.adb".

If you call aprogram "test.adb", remember that test is a built-in shell command. To run a
program named test, you'll have to type "./test" instead of "test" to avoid running the shell command by
mistake.

Comments are denoted by two minus signs (--). Thisis anote to the reader; Adawill ignoreit. Everything you type
to the right of the symbol istreated as aremark to the reader.

]C: Ada has no equivalent to the block comment /* and */.

10.2 Text_10

]Ada ’Deﬁcription]C Equivalent

put(s); ’Displayastring ’pri ntf("%", s);
]put(n'ing); ’Display anumber]pri ntf("%", n);
]put_l ine(s); Display aline of text and start a new line]pri ntf("%\n", s);
]new_l i ne; Start anew line]pri ntf("\n");

]get(c); ’Read a character from the keyboard]c = getc();

]get line(s, len);]Read aline of text from the keyboard]get s(&s);

]etc.

Like many modern computer languages, Ada doesn't have any built-in methods of reading the keyboard or writing
messages on the screen. It doesn't assume you're writing a program for a PC (you could be doing embedded
programming, for example)--but in general, you need to interpret what people type and display the results to the
screen. Y ou have to add this functionality specifically.

The standard input/output package for Adais Text_|O. This package prints characters and strings to the screen and
reads characters and strings from the keyboard. It can aso read and write simple sequential text files. (Packages will
be discussed in detail starting at 11.1 in the next chapter.)

Text 10 isonly useful for simple programs. It doesn't have the ability to draw buttons, windows or menus. For X
Windows programming, you'll require other packages/libraries to perform input and output.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (2 of 29) [7/20/2001 11:33:05 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

C:InC,printf andconpany can use an arbitrary number of parameters, where the parameters can
be of different types. Text_|1O's puts have one parameter, and the parameter must be a string or a
character. Upcoming sections demonstrate how to print other types.

The most commonly used operations are:
« Put - write to the screen, but don't start anew line
o Put_Line- writeto the screen and start anew line
o New_Line- start anew line
o Get - read a character from the keyboard
o Get _Line- read astring from the keyboard

The following program is an example of Text_|O.

with Ada. Text 1O
use Ada. Text I G

procedure basicio is
-- this program denonstrates basic i nput/output

c : character; -- thisis a letter

begi n
Put _Line("This program di splays information on the screen");
Put _Line("and reads information fromthe keyboard");
New Li ne;
Put _Line("Put_Line displays a line of text and advances to");
Put _Line("the next line.");
Put("Put ");
Put Line("displays text, but it doesn't start a new l|ine");
Put _Line("New_Line displays a blank |ine");
New Li ne;
Put Line("Get waits for a character to be typed.");
Put Line("Type a key and the Enter key to continue.");
Get(¢);
Put Line("The character you typed was '" & c & "'");

end basi ci o;

Thi s program di splays i nformati on on the screen
and reads information fromthe keyboard

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (3 of 29) [7/20/2001 11:33:05 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

Put _Line displays a line of text and advances to
the next |ine.

Put displays text, but it doesn't start a new |ine
New Li ne displays a blank line

Get waits for a character to be typed.
Type a key and the Enter key to conti nue.
o

The character you typed was

C

Besides letters and numbers, there are specia characters called control characters which, instead of displaying a
character, change the Linux display. To print controls characters, you need to use one of Ada's built-in character
sets. For example, ASCII isapredefined list of all the ASCII characters. To send an explicit form feed character, use

Put (ASCI|.FF);

Some common control characters are:
o ASCI | . NUL - C end of string character
o ASCI | . CR- carriage return - move to beginning of line
e ASCI | . HT - horizontal tab
e ASCl | . LF-linefeed - start anew line
o ASCI | . FF - form feed - start a new page on a printer

C: Put doesn't recognize C string escape codes like "\n" or "\r".

Besides ASCII, Ada has a number of other character sets defined in the Ada.Characters packages.

The ASCII set is officially made obsolete in Ada 95 by Ada.Characters.Latin_1, but it's still
often used because it's easier to type.

10.3 Fundamental Data Types

’Ada Type |Description ’C Equivalent

]Char act er |A single character char

]I nt eger |An integer (32-bit) number i nt

]Nat ur al |Zero or positive integer ’ -

]Posi tive |Positiveinteger ’

]Long_l nt eger |A big integer (same as long in Gce) ’I ong (sane as int in Ccc)
]Long_Long_I nt eger |A really big (64-bit) integer ’I ong | ong

]Shor t _Integer |A small (16-bit) integer ’short

[Short _Short _I nt eger |A really small (8-bit) integer ’char

IFl oat |A real number If I oat

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (4 of 29) [7/20/2001 11:33:05 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

]Long_FI oat iA big real number jdoubl e
’Long_Long_FI oat |A really big real number ’I ong doubl e
]Shor t Fl oat |A smaller real number ’?

]Fi xed |A fixed-point real number ’ -

]St ring |An Adafixed-length string ’char array

C: There are no built-in equivalents of unsigned types. Natural and Positive are integer values that
aren't allowed to be negative, effectively requiring the sign bit to be zero.

Characters cannot be used for small integer values--characters variables can only represent character
values.

Generally speaking, programs take data, processit in different ways, and create new information. Datais
categorized into different data types.
Datathat istyped into a program is known as literals. Ada has several kinds of literals:

« 'C'isacharacter. Character literals are enclosed in single quotes.

o -5isaninteger

« 455isafloat or afixed with one decimal place

« "Thisisastring" isafixed string. Strings literals are enclosed in double quotes.

C: Adadoesn't have long numerical literas, like "45L". Numeric literals are a special type called
universal integer and adapt to fit the requirements of an expression.

C: Adastrings do not end with an ASCII O character: they end with the upper bound of the array that
encloses them. To change an Ada string into a C string, concatenate a null character like this:

"This is my string” & ASCII. NUL;

There are three kinds of real numbers. A fixed, or fixed point, number is a number that has a fixed number of
decimal points. For example, U.S. dollars are often represented using fixed numbers because there are two decimal
places. A float, or floating-point, number is a number that doesn't have a fixed number of decimal places. Decimal
numbers are a variation of fixed numbers commonly used for currency.

Some Ada programmers recommend that floats are used whenever possible because float calculations are usually
faster than fixed calculations. Thisis because most computers today have floating point support in their hardware.

Floating point numbers are very important for business and scientific applications. When floating point numbers are
converted to integers, do the numbers round to the nearest integer or is the decimal part simply discarded? In C, this
IS system dependent: System V-based UNIX's usually round to the nearest integer, while some other systems discard
the decimal part. (Others, like HP-UX, the number rounds towards the nearest even integer providing the floating
point number is exactly half way between two integers.)

On Linux, C truncates the decimal part.

In Ada, the way numbers round are strictly defined by the language: you can be sure that, no matter what operating
system you are using, floating point numbers converted to integers will always round to the nearest integer. If the
floating point number is half way between two integers, it will round "up".

The following program demonstrates floating point rounding:

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (5 of 29) [7/20/2001 11:33:05 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

with ada.text io, ada.float text io;
use ada.text io, ada.float _text _io;

procedure rounding is
-- roundi ng exanpl e

procedure ShowRounding(f : float) is
-- show the floating point value, and show the val ue
-- after it's converted to an integer

i nt_value : integer;
begi n
Put(" Float nunber ");
Put(f, fore => 5, aft => 3);
int_value :=integer(f);

Put Line(" rounds to
end ShowRoundi ng;

& int_value'ing);

begi n
Put _Line("This is a denonstration of how Ada 95 rounds");
New Li ne;

ShowRoundi ng(253.0);
ShowRoundi ng(253.2);
ShowRoundi ng(253.5);
ShowRoundi ng(253.8);
ShowRoundi ng(-253.8);

end roundi ng;

This is a denonstrati on of how Ada 95 rounds

Fl oat nunber 2. 530E+02 rounds to 253
Fl oat nunber 2.532E+02 rounds to 253
Fl oat nunber 2. 535E+02 rounds to 254
Fl oat nunber 2. 538E+02 rounds to 254
Fl oat number -2.538E+02 rounds to -254

Y ou can compare the results with the following C program:

#i ncl ude <stdi o. h>

static void show rounding(float f) {

int i;

i = f;

printf(" Float nunber %", f);
printf(" rounds to %@\n", i);

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (6 of 29) [7/20/2001 11:33:05 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

} /* show rounding */
int main () {

show _r oundi ng(253.0);
show _roundi ng(253.2);
show roundi ng(253.5);
show roundi ng(253.8);
return O,

Fl oat number 253 rounds to 253

Fl oat nunmber 253.2 rounds to 253
Fl oat nunber 253.5 rounds to 253
Fl oat nunmber 253.8 rounds to 253

Rounding to integersis acommon way in C business applications to round money to the nearest dollar or cent. This
is accomplished by multiplying the floating point value by 100.0, adding .5, and then taking the integer value and
converting it once more into afloating point value. In Ada, there's a built-in type attribute to round floating point
numbers: this makes conversion to an integer unnecessary.

C: The fundamental integer types don't "wrap around" the way C data types do. Values that grow too
large produce overflow errors. However, gnat turns off integer overflow exceptions by default to
improve performance. Ada provides properly behaved C types and conversion functionsin the
Interfaces.C package. Interfaces.C includes the following types:

type int is new |Integer;
type short is new Short _Integer;
type long is range -(2 ** Ibitsl) .. +(2 ** Ilbitsl) - 1;
type signed_char is range SCHAR M N .. SCHAR MNAX;
for signed char' Size use CHAR BIT;
type unsigned is nod 2 ** int'Size;
type unsigned _short is nod 2 ** short' Si ze;
type unsigned_long is nod 2 ** |ong' Size;
type unsigned char is nod (UCHAR MAX + 1);
for unsigned _char'Size use CHAR BI T,

GNAT has a second package, Interfaces.C.Extensions, that includes additional types, such as
unsigned _long_long.

Asit's name suggests, the Text_10 package only performs 1/0 with text, not numbers or other types of information.
If you want to print, say, and integer value using Text_|O, you must first convert the integer to a string using the
'img attribute (or 'image). (Attributes are discussed in the next section.)

W th Ada. Text 1O
use Ada. Text |G

procedure basicio2 is

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (7 of 29) [7/20/2001 11:33:05 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

-- this program denonstrates nore advanced i nput/out put

I . integer :=5; -- this variable contains an integer nunber
-- 1 initially has the value of 5
s : string(l..20); -- this variable contains a 20 character string

| en : natural;
begi n

Put Line("This programdi splays information on the screen");
Put Line("and reads information fromthe keyboard");

New Li ne;

Put _Line("'ing returns the string representation of a variable's");
Put Line("value. The value i is" & i'ing);

New Li ne;

S = "; -- set s to 20 periods

Put Line("The variable s is " & s);

Put _Line("Get_Line reads a string fromthe keyboard");

Put Line("Type in a nessage up to 20 characters and press Enter:");
Get _Line(s, len);

Put Line("After Get_Line copies your nmessage to s, sis now'" &s & """);
Put Line("The nessage is" & len'ing & " characters long.");

Put _Line("The characters after your nessage renmain unchanged.");

end basi ci 02;

Thi s program di splays i nformati on on the screen
and reads information fromthe keyboard

"inmg returns the string representation of a variable's
value. The value i is 5

The variable s is
Get _Line reads a string fromthe keyboard
Type in a nmessage up to 20 characters and press Enter:

jingle bells

After Get _Line copies your nessage to s, s is now 'jingle bells........
The nessage is 12 characters |ong.

The characters after your nessage renmai n unchanged.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (8 of 29) [7/20/2001 11:33:06 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

wth Ada. Text 1O
use Ada. Text |G

procedure basicio3 is
-- this program denonstrates nore even advanced i nput/ out put

i . integer :=5; -- this variable contains an integer nunber

-- 1 initially has the value of 5
S : string(1..5); -- this variable contains a 5 character string
l en : natural; -- length of string

begi n

Put Line("This programdi splays information on the screen");
Put Line("and reads information fromthe keyboard");
New Li ne;

Put _Line("The value i is" & i'ing);
New Li ne;

Put _Line("integer'value changes a string into an integer val ue");
Put _Line("Type in a 4 character integer characters with a |eading");
Put _Li ne("space or negative sign and press Enter:");

Get _Line(s, len);

I = integer'value(s);
Put Line("The value of i is
New Li ne;

& i'ing);

end basi ci 03;

Thi s program di splays i nformati on on the screen
and reads information fromthe keyboard

The value i is 5

I nt eger' val ue changes a string into an integer val ue
Type in a 4 character integer characters with a | eading
space or negative sign and press Enter:

2345

The value of i is 2345

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (9 of 29) [7/20/2001 11:33:06 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

Besides Text_|1O, Ada provides additional "Text 10" packages for the basic Ada data types. Using these packages,
you don't need to use 'img to convert the variable to a string. For example, the package Ada.Integer Text 1O can
put and get integers, and Ada.Float_Text_ 1O can put and get floating point numbers. Y ou can use these packages
simultaneously with Text_10O.

These additional packages do not have Put_Line or Get_Line because these are specifically for strings. The Put
command has two additional capabilities: to space information to fit into specified field widths, and to display
numbers in formats other than base 10.

wth Ada. Text 10O Ada.lInteger Text IO
use Ada. Text 1O Ada.Integer_Text 1Q
procedure basiciod is
-- this program denonstrates integer input/output
I : integer :=5; -- this variable contains an integer nunber
-- i initially has the value of 5
begi n
Put _Line("This program di splays information on the screen");
Put _Line("and reads information fromthe keyboard");
New Li ne;
Put("The value i is"); Put(i); New_Line;
New Li ne;
Put _Line("Type in an integer nunber.");
Get(i);
New Li ne;
Put("The value i is"); Put(i); New_Line;
New Li ne;
Put Line(""wdth =>" specifies the anount of roomto display the nunber
in.");
Put Line("This can be used to display columms of nunbers.");
Put("Using a width of 5, the value i is '");
Put(i, width => 5);

Put _Line("'");

New Li ne;

Put Line("'base =>'" specifies a nunber system besides the normal base 10"
);

Put ("Using binary notation, the value i is "); Put(i, base => 2);
New Li ne;

New Li ne;

Put Line("Set the variable Default Wdth or Default Base to avoid using");

Put Line(""width =>' and 'base =>'.");

Put("The Default Wdth was "); Put(Default Wdth); New Line;
Default Wdth := 20;
Put("The Default Wdth is now "); Put(Default Wdth); New Line;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (10 of 29) [7/20/2001 11:33:06 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada
Put("The value i is ""); Put(i); Put _Line(""");
New Li ne;

end basi ci 04;

Thi s program di splays informati on on the screen
and reads information fromthe keyboard

The value i is 5

Type in an integer nunber.
432

The value i is 432

"wdth =>" specifies the anount of roomto display the nunber in.
This can be used to display colums of nunbers.

Using a wdth of 5, the value i is ' 32'

"base =>' specifies a nunber system besides the nornmal base 10
Usi ng binary notation, the value i is 2#110110000#

Set the variable Default Wdth or Default Base to avoid using
"wdth =>" and 'base =>".

The Default Wdth was 11

The Default Wdth is now 20

The value i is ' 432'

Table: Predefined Text_|O packages for Numeric Types

Type [Text 10 Package

]Short_Short_I nteger]Ada Short_Short_Integer Text |O
]Short_Short Integer (wide)]Ada_ Short_Short_Integer Wide Text_|O
]Short_Fl oat ’AdaShort_FI oat_Text_ IO
]Short_Fl oat (wide text)]Ada Short_Float. Wide Text IO
]Short_l nteger]Ada, Short_Integer Text 1O
]Short_l nteger (wide text) ’Ada Short_Integer Wide Text_ 1O
]I nteger]Adal nteger Text 1O

]I nteger (wide text)]Adal nteger Wide Text 1O

’Fl oat]Ada Float_ Text_ IO

]Fl oat (wide text)]Ada Float Wide Text_ 10
’Long_FI oat ’AdaLong_FI oat_Text 10
’Long_FI oat (wide text)]Ada Long Float Wide Text 10
Long_Integer /Ada.Long_Integer_Text_1O

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (11 of 29) [7/20/2001 11:33:06 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

] Long_Integer (wide text)]Ada Long_Integer Wide Text 1O
’Long_Long_FI oat ’AdaLong_L ong_Float_ Text 10

] Long_Long_Float (wide)]Ada Long_Long_Float_ Wide Text 10

’ Long_Long_Integer ’Ada Long_Long_Integer Text 10

’ Long_Long_Integer (wide) ’Ada_ Long_Long_Integer Wide Text 10
]Unbounded (String)]AdaUnbounded_I o)

]Wi de_Unbounded (String)]AdaWi de_Unbounded 10

]Cal ender.Time ’Gnat.Time_IO

10.4 Type Attributes

Adahas aselection of attributes, or built-in functions, that can be applied to types and variables. Attributes are
attached to the end of atype or variable name using a single quote.

The most useful attribute, the 'img attribute, returns the ASCII image of what it's attached to, which is handy for
printing values on the screen using only Adas Text_|O package. (5) ' i ng, for example, isthe string "5".

fal se' i mage, theimage of the boolean value false, isthe string "FALSE" in capital letters. One quirk of 'imgis
that if the valueis a positive number, 'img adds a leading blank.

'img isa GNAT shorthand for the Ada attribute 'image. ‘image requires you to specify the type of the parameter.
integer'image(5) isthe string "5". This attribute is useful on complicated expressions where 'img won't work
because of the lack of parentheses.

Heresalist of Ada 95 attributes: [To Be Completed]

Access - access value for an identifier

Address - address value for an identifier

Adjacent - the floating point value adjacent to the given value
Aft - for fixed types, number of decimal digits after decimal to accommodate a subtype
Alignment - storage value of an identifier

Base - unconstrained subtype of atype

Bit_Order - whether or not bits are high order first

Body Version [NQS]

Callable - true if task can be called

Celiling - round up afloating point value

Class - classwide type of an identifier

Component_Size - size of array componentsin bits

Compose

Constrained

Copy_Sign

Count

Definite

Delta

Denorm

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (12 of 29) [7/20/2001 11:33:06 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada
Digits
Exponent
External_Tag
First - first index in an array
First_Bit
Floor - round down a floating-point value
Fore
Fraction
| dentity
Image
Input - convert value to astring
Last - last index in an array
Last Bit
Leading_Part
Length - number of elementsin an array
Machine
Machine_Emax - maximum real type exponent on your hardware
Machine_Emin - minimum real type exponent on your hardware
Machine_Mantissa - size of mantissa on your hardware in bits
Machine_Overflows - true of your machine overflows real types [NQS]
Machine Radix
Machine_Rounds
Max - maximum value
Max_Size In_Storage Elements
Min - minimum value
Model
Modulus
Output
Partition_ID - for distributed processing
Pos - position in adiscrete type (such as an enumerated) — opposite of val
Position
Pred - previous value in a discrete type
Range - range of valuesfor atype
Read
Remainder
Round
Rounding
Safe First
Safe Last
Scale

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (13 of 29) [7/20/2001 11:33:06 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada
Scaling
Signed Zeros
Size - size of storage in bytes
Small
Stoarge Pool - used to set the storage pool for a pointer
Storage Size
Succ - next value in a discrete type
Tag - tag for atagged record
Terminated - true if task has terminated
Truncation
Unbiased_Rounding
Unchecked Access - return access type, but ignore scope checks
Val - value of adiscrete type at a certain position — opposite of pos
Valid - determineif the expression evaluates to alegal result
Value - convert string to a value — opposite of image
Version
Wide Image - same as image, but for a 16-bit string
Wide Vaue - same as value, but for a 16-bit string
Wide_Width
Write
Here'salist of additional gnat-specific attributes:
[should fold these in above]
Abort_Signal - task abort exception
Address _Size - number of bitsin an address
Bit - offset to first bit in object
Default_Bit_Order - whether or not CPU uses high order first
Elab _Body - the procedure that elaborates a package body
Elab_Spec - the procedure that elaborates a package spec
Enum_Rep - the numerical value of an enumerated identifier
Fixed Value - unchecked conversion of integer to afixed type
Img - shorthand for ‘image
Integer Vaue - the reverse of Fixed Value
Machine_Bits - for compatibility with other Ada compilers
Max_Interrupt_Priority - the maximum interrupt priority
Max_Priority - the maximum task priority
Maximum_Alignment - determine the bit alignment of an external object
Mechanism_Code - how a parameter is passed to a subprogram
Null_Parameter - for passing null pointer for a composite object
Object_Size - for fixed and discrete types, default allocation size
Passed By Reference - trueif typeis normally passed by reference

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (14 of 29) [7/20/2001 11:33:06 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada
Range_L ength - number of valuesin a discrete type
Storage Unit - same as System.Storage_Unit
Tick - same as System.Tick
Type_Class - return type basic class of an identifier (such an enumerated or array)
Universal_Literal_String - return a string literal for a number
Unrestricted Access - like access, but has no accessibility or aliased view checks
Vaue Size - number of bitsto represent avalue of a given subtype
Word_Size - same as System.Word_Size
The following program demonstrates some of the basic Ada attributes.
Wth text io;
procedure attrib is
type enumis (dog, mca, negabyte);
begi n
Text 1O Put_Line("Sone Basic Ada Attributes:");
Text _|1 O New_Li ne;
Text 1O Put_Line("Boolean bits is " & boolean'size'ing);
Text 1O Put_Line("Short short integer bits is" &
short _short _integer'size'ing);
Text 1O Put_Line("Short integer bits is " & short_integer'size'ing);
Text 1O Put_Line("lInteger bits is " & integer'size'ing);
Text 1O Put_Line("Long integer bits is " & long_integer'size'ing);
Text 1O Put_Line("Long long integer bits is " &
| ong_l ong_integer'size'ing);
Text 1O Put_Line("Natural bits is " & natural'size'ing);
Text 10O Put_Line("Positive bits is " & positive'size'ing);
Text 1O Put_Line("Short float bits is " & short float'size'ing);
Text 1O Put _Line("Float bits is " & float'size'ing);
Text 1O Put _Line("Long float bits is " & long float'size'ing);
Text 1O Put _Line("Long long float bits is " &
l ong_long_float'size'ing);
Text 1O Put_Line("Qur 3 itemenunerated bits is " &
enum si ze'ing);
Text | O New_Li ne;
Text 1O Put_Line("First integer is " & integer'first'ing);
Text 1O Put_Line("Last integer is " & integer'last'ing);
Text _|1 O New_Li ne;
Text 1O Put_Line("First enunerated is & enum first'ing);
Text 1O Put_Line("Last enunerated is " & enumlast'ing);
Text 1O Put_Line("Mca is in position" & enum pos(mca)'ing);
Text 10 Put_Line("The third enunerated is " & enumval (2)'ing);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (15 of 29) [7/20/2001 11:33:06 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada
Text | O New_Li ne;
Text 1O Put_Line("The smallest float is" & float'small'ing);
Text 1O Put_Line("The largest float is" & float'large'ing);
Text 1O Put_Line("The nunber of digits in float is" &
i nteger'inmage(float'digits));
Text _1 O Put_Line("The size of the mantissa in bits is" &
float' mantissa'ing);
Text 1O Put_Line("However, the CPU s mantissa is" &
fl oat' machi ne_mantissa'ing);
end attrib;

Here are the results of the program on a Pentium |1 with gnat 3.11:
Sonme Basic Ada Attri butes:

Bool ean bits is 1

Short short integer bits is 8

Short integer bits is 16

I nteger bits is 32

Long integer bits is 32

Long long integer bits is 64

Natural bits is 31

Positive bits is 31

Short float bits is 32

Float bits is 32

Long float bits is 64

Long long float bits is 9

Qur 3 itemenunerated bits is 2

First integer is -2147483648

Last integer is 2147483647

First enunerated is DOG

Last enunerated is MEGABYTE

Mca is in position 1

The third enunerated is MEGABYTE

The smal lest float is 1.17549435082228751E- 38
The |l argest float is 1.93428038904620299E+25
The nunber of digits in float is 6

The size of the mantissa in bits is 21
However, the CPU s mantissa is 24

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (16 of 29) [7/20/2001 11:33:06 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

10.5 Operations and Expressions

|Ada Operator]Descri ption |C Equivalent
and Boolean and &&
Ior ;Boolean or I||
|xor ’Boolean Xor |?
|not ’Boolean not ~
|:]Equals ==
|/:]Not equals |!:
|abs ’Absol ute Value |?
|mod]I nteger modulus |%
|rem]Fl oat remainder | -
|and then ’Short circuited and | -
|or else]Short circuited else | -
|in]Valuein range |
|not in ’Short for not(...in...) | -

Boolean operations: and, or, not, xor
Comparisons. >, >=, <, <=, =, /=

Unary operations: +, -, abs

Binary Operations: +, -, *, /, mod, rem, &, **

C: C boolean operators always short circuit. In Ada, there are both short circuiting operations and
operations that do not short circuit.

Short circuiting operations are not considered true operators, and as such, can't be
overloaded (see below).

Membership Tests (in and not in) are not considered true operators and can't be overloaded.

if dog in aDogBreed then

Put _Line("The dog is a breed in the enunerated aDogBreed");

end if;

if 1 in 1..10 then

Put _Line("I

Is between 1 and 10");

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (17 of 29) [7/20/2001 11:33:07 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada
end if;
1..10 iscalled arange. The range attribute returns the range of values for atype.
if salary not in M ddl eManagenent Sal ary' range t hen
Put Line("The salary is not in the m ddl e nmanagenent type's range");
end if;

]C: Assignment is considered a statement, not an operator. ‘

10.6 Variable Declarations

Y ou define avariable as the variable name, colon, the type of information the variable will hold, and a semicolon.
total Sales : float;
This creates anew variable called total Sales that contains areal number. Some variations:

runni ngTotal : integer := O;
-- this variable starts out at O
conmpanyNanme : constant string := "Bob's Wdgets Inc.";

--conpanyNane is set to Bob's Wdgets Inc. and it can't be changed while
--the programis running
charl, char2 : character;

Complex variables references can be assigned a shorthand with a rename declaration.

sb : float renanes Enpl oyeeli st(Current Enpl oyee). Sal aryl nf o. Bonus;

sb :=5.0; -- sanme as Enpl oyeelLi st(Current Enpl oyee). Sal aryl nfo. Bonus : =

]C: There are no self-referential operators, such as C's +=.

10.7 New Types

]Ada Statement]Descri ption |C Equivalent
]type]Create anew type. |typedef
]subtype]Create avariation of an existing type | -

New types are defined with the type statement.

type aSal ary isnew fl oat;
type aSmal | Sal ary isnew Sal ary range 0.0 .. 35_000. O;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (18 of 29) [7/20/2001 11:33:07 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

When you create a new type, the typeis considered to be incompatible with the type it is derived from. If you want
to add asmall salary to asalary, you'll have to use type casting, even though they are both floats.

total Sal ary, BigSalary : aSal ary;
aSmal | Sal ary : aSmal | Sal ary;
total Salary := bigSalary + aSalary(small Sal ary);
To type cast one type into another, use the type name and the value to convert in parantheses after it.

]C: "(type) value" style of type casting doesn't work in Ada.

C: "Ada has stronger restrictions on typecasting. In C, for example, you can cast a character pointer as
an integer pointer. Although thisis considered a bad programming practice, it is alowed. Adawill not
allow this kind of type casting.

Use subtype to create atype aSmallSalary that is compatible with aSalary.
subtype aSnmal |l Sal ary is aSalary range 0..35_000. 0;
Subtype can a'so be used to rename types.
subtype sb i s aSal ar yBonusFor Enpl oyeesNanedBobSt evens;

In this example, sb isashort form for aSalaryBonusForEmployeesNamedBobStevens. "sb" istechncially called a
"subtype mark", aterm which sometimes appears in Gnat error messages. One common error, "subtype mark
required in this context", indicates that there are severa different types that could be used and you have to indicate
to the compiler which should used.

10.7.1 Modular Types

Normally, if acalculation produces an answer too large for the variable type being assigned to, it creates an error.
Thisis called a numeric overflow. For example, if int is an integer,

int :=integer' max +1; -- check (KB)
will result in aconstraint error because the answer is bigger than the biggest number an integer variable can contain.

Ada provides another type of integer called a modular type. The word "modular" comes from the mathematical
modulus operation. Modular types never overflow. Instead, if a number becomes bigger than the largest possible
number the variable can contain, the value of the modular type "wraps around” to the lowest value and continues to
grow from there. If the int variable in the above example was a modular called int modular, then

int := intnodul ar' max + 1;

would result in int being assigned intmodular'min.

]C: C integer types are all modular because C doesn't catch overflow errors.

There are no built-in modular types. All modular types are new types created by atype statement.
type nodl1l0 is nod 10; -- value ranges fromO to 9

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (19 of 29) [7/20/2001 11:33:07 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

10.7.2 Text_IO and New Types

To perform Text_10 input and output on new types, you have to create your own version of Text_ 1O for the new
type. Thisprocessis called "instantiation", and is covered later in the section on generics. The format is

package MyNewText | OPackage i snew Predefi nedGeneri cl OPackage(mytype);
For example, to create a Text_|O package for the aSalary type,

package aSal ary Text 10 is new Ada. Text IO Float 1 aSalary);

Ada creates a new package called aSalaray Text 10 customized for the aSalary type. Y ou can use your package just
like one of the standard Ada numeric Text_|O packages.

Salary := 50_000. 00
aSal ary _Text IO Put(Salary);
The following table lists al the Text 10 packages that can be instantiated for a particular type.

Table: Predefined generic Text_ |0 packages for performing Input/Output

]Base Type]Packgge

]Compl ex Numbers ’Ada.Text_IO.CompIex_IO
]Compl ex Numbers (wide text) ’A daWide Text_10.Complex_IO
]Deci mals (NQS) ’Ada.Text_I O.Decimal_IO

]Deci mal Numbers (wide text) ’Ada.Wi de Text 10.Decimal_10
]Enumerateds]Ada.Text_I O.Enumeration_IO
]Enumerateds (wide text) ’A daWide Text 10.Enumeration 1O
]Fixed Points ’Ada.Text_IO.Fixed_IO

]Fixed Points (wide text) ’Ada.Wi de Text 10.Fixed 10

’Fl oating Points ’Ada_Text_IO.Fl oat IO

]Fl oating Points (wide text)]Ada.Wi de Text 10.Float_|IO

] I ntegers ’Ada.Text_I O.Integer 10

]I ntegers (wide text) ’A daWide Text 10.Integer 10
]M odulars]Ada.Text_I O.Modular_10

]M odulars (wide text) ’Ada.Wi de Text 10.Modular_10

10.8 Aggregate Types

Arrays are tables of values with specific bounds. For example, to declare atable of 10 people
type peopl eHeightList is array(1..10) of integer;
The bounds can be specified as atype.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (20 of 29) [7/20/2001 11:33:07 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

type peopl eHei ght is new integer range 1..10;

type peopl eHei ghtList is array(peopl eHeight) of integer;
This creates an array from 1 to 10, the range of possible values for the type peopleHeight. Thisis the same as using
array(peopleHeight'range).
Y ou can create a multidimensional array by using more than one index to the table.

type peopleStats is array(peopl eHei ght, peopl eAge) of integer;

Y ou can assign default values to an array using :=, the assignment operator. Thelist of valuesis enclosed in
brackets. Y ou can specify a specific value using =>, or specify a default with others=>.

Peopl eHei ghts1 : peopl eHei ghtList := (others => 0);

-- | ooks strange, but assigns O to all the heights in the entire |ist
peopl eHei ghts2 : peopl eheightList := (10, others => 0);

-- first height is 10, others are O

peopl eHei ght s3 : peopl eHeightList := (5 => 15, others => 0);

-- fifth height is 15, others are O

Arrays are accessed by specifying values for the indices. To get the height for the fifth element in the
PeopleHeightsl array, you'd type:

Put _Line(Peopl eHeightsl(5)'ing);
Records are collections of related information. Each subsection isreferred to as afield.

type enpl oyeeProfile is record
name : string(1..80);
salary : aSal ary;
age : anAge;
end record,;
Y ou can assign default valuesto the fields in arecord using :=, the assignment operator.
type enpl oyeeProfile isrecord
nane: string(1..80) := (others =>" ");
salary : aSalary := 30_000. 0;
age: anAge : = 30;
end record,;
Default values for whole records can be specified when record variables are declared.

Bob : enpl oyeeProfile := ("Bob Smth", 35 000.0, 37);
Deni se : enployeeProfile := (nane => "Deni se Jones", salary => 39 _000.0,
age => 42);
In the above examples, we are creating a temporary record and then assigning that record to the variable. Y ou can

use thisin the executable part of your program, not just in declarations. Adawill require a"subtype mark", an
indication of what type of record you are making.

NewRec : = enpl oyeeProfile' ("Bob Smth", 35 000.0, 37);

employeeProfile' indicates that the record we've built should be treated as an employeeProfile record.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (21 of 29) [7/20/2001 11:33:07 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada
Although this looks almost exactly the same as type casting, it isn't type casting. Consider the following:

J :=1long_integer'(5);
J :=1long_integer(5);
The first statement clarifiesthat 5 isalong_integer: thisis ahint to the compiler that 5 should be treated as an
long_integer. The second converts 5 from an integer to along_integer.
Record fields are accessed using a period and the field name.
Bob. age : = 37;
A variant record isarecord that contains different sets of mutually exclusive information.

type enpl oyeeProfile(sex : aSex) is record
name : string(1..80);
salary : aSal ary;
age : anAge;
case sex is
when mal e =>
BeardLength : integer;
when femal e => nul |

end record,;

(check syntax)

In this example, a male employee has an additional field called BeardL ength.
(when you create a variant record, you must specify the descriminant).

10.9 Enumerated Types
Enumerated types (lists of identifiers) are created using atype statement.
type aDogBreed is (Unknown, Boxer, Retriever, Shepherd, M xedBreed);

Different enumerated types may have the same values, but they are considered different from each other. For
example,

type aCatBreed is (Unknown, Sianese, M xedBreed);

shares two values with aDogBreed, but an unknown cat breed is considered different from an unknown dog breed. If
Adais confused by the ambiguity, you can clarify values with a subtype mark, e.g. aCatBreed'(MixedBreed).

Many of the common attributes work with enumerated types, including ‘first, 'last, and 'range. Especially useful are
'pred (get a previous enumerated identifier) and 'succ (get the next enumerated identifer). Specific values can be
assigned (using afor clause) so the enumerated type can reflect an external integer value (such as error codes).

w th ada.text io, unchecked conversi on;
use ada.text _io;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (22 of 29) [7/20/2001 11:33:07 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

procedure enuneration_fun is
-- a denonstration of Ada 95 enunerated types
type vowels is ('a', ‘e, 'i', "o, "u, none);
-- characters may be used as well as identifiers. The standard
-- character sets are inplenented this way.

type aDogBreed is (Jack_Russel, Labrador, German_Shepherd, Oher);
t ype aCanadi anRegion is (West Coast, Arctic, Labrador, OQher);
subt ype col dPl aces i s aCanadi anRegi on range Arctic..Q her;

-- nanes nmay overl ap between enunerated types

type anErrorCode is (None, |CQCerror);
for anErrorCode use (None => 0, [QCerror => 7);
-- specific values may be assigned to enunerated identifiers

function tolnteger is new unchecked_conversi on(anError Code, integer);
begi n
-- Basic enunerated type operations

put("The vowel 'u' has a position of");
put (integer'imge(vowels' pos('u")));
put line(" in the list.");

put("The vowel after "a'" is");

put (vowel s'image(vowel s'succ('a'")));
put _line(".");

-- Using a regular enunerated. Were an identifer belongs to
-- two enunerated types, we have to apply a type qualifier when
-- anbiguity conmes up

put ("The item before Gernman_Shepherd is ");

put (aDogBreed' i mage(aDogBreed' pred(German_Shepherd)));

put line(".");

put("The itemafter Labrador (the region) is ");

put (aCanadi anRegi on' i mage(aCanadi anRegi on' succ(Labrador)));

put line(".");

put line("Listing of cold regions between 'Labrador’ and 'Qher':");

for cr in coldPl aces' (Labrador)..other | oop
put |ine(aCanadi anRegi on' i mage(cr));
end | oop;

-- Using an enunerated with assigned nunbers. To get the nunber
-- we assigned, we need unchecked_conversi on.

put("Error code " & anErrorCode'inmage(|Cerror));
put(" is in position" & integer'inage(ankrrorCode' pos(ICerror)));

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (23 of 29) [7/20/2001 11:33:07 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

put_line(R I
put("I QCerror has a value of" & integer'inage(tolnteger(1Qerror)));
put I|ne(LT

put ("The code before 1Cerror is ");
put (anErroerde i mage(anErrorCode' pred(ICerror)));
put Ilne();
put ("The code after NONE is ");
put (anErroerde i mge(anError Code' succ(None)));
put _line(');
end enuneratlon_fun;

The vowel 'u' has a position of 4 in the |ist.
The vowel after '"a' is'e'.

The item before German_Shepherd i s LABRADOR
The item after Labrador (the region) is OTHER
Li sting of cold regions between 'Labrador' and 'Q her'
LABRADCR

OTHER

Error code 1OERROR is in position 1.

| Gerror has a value of 7.

The code before I Qerror is NONE.

The code after NONE is | OERROR

The boolean type is implemented as an enumerated with two values, true and false. False is always the predecessor
of true.

C: Ada enumerated types have more features than C's. Y ou can use 'pred and 'succ to move through the
list without casting the enumerated as an integer and using arithmetic. The position of an enumerated
identifer isindependent of its assigned value.

10.10 Procedures and Functions

]Ada Statement |D@cri ption |C Equivalent
]procedure |A subprogram that returns no value for expressions. |void f(...);
]functi on |A subprogram that returns a value for expressions.. |sometype f(...);
| declare/begin |A nested block |{ .}

There are several ways to break up an Ada program. First, a procedur e, such as the main program, is a subprogram
which returns no value.
procedure print _test is
begi n
Text 1O Put_Line("This is a test");
end print_test;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (24 of 29) [7/20/2001 11:33:07 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

]C: aprocedureisavoid function.

The second isafunction. A function is a procedure that can be used in a expressions because it returns avalue. The
value is returned with areturn statement.

function AddOne(X : integer) return integer is
begi n
return X+1;
end AddOne;
AddOne adds one to whatever isin the brackets. To add oneto a variable called subtotal, you'd useit like this:

Total := AddOne(SubTotal);

The value in the brackets is the parameter to the function. Parameters have modes: in, out or in out. In, which isthe
default if you specify a mode, means that the variable is treated as a constant. Out means the value is returned when
the subprogram is finished. In out means the value goes into the subprogram, is changed, and is returned again when
the subprogram is finished.

In Ada, functions can only have in parameters, but procedures can have all three.

procedure AddOne(x : in out integer) is
begi n

X:=x +1
end AddOne;

AddOne(Subtotal);

C: Thereis no equivalent of pass-by-copy or pass-by-reference. See the section on interfacing C and ‘
Ada.

Thereis also a special access mode, which means that the parameter must be an access variable. Thisis especially
useful with tagged records. Y ou can also get around the in out restriction on functions with the access mode. It is
discussed in 11.10.2.

C: An access variable is basically a pointer. These are described later.

An example of multiple parameters:
procedure DisplayCurrency(c : aCurrency;

fieldWdth : integer; useDollarSign : boolean :=true) is
useDollarSign, the third parameter, has a default value of true. Here's now you can call this procedure:

Di spl ayCurrency(1.97, 8);

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (25 of 29) [7/20/2001 11:33:07 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada
Di spl ayCurrency(1.97, 8, false);
Di spl ayCurrency(1.97, 8, useDollarSign => false);
Di splayCurrency(¢ => 1.97, fieldWdth => 8, useDollarSign => fal se);
If you really wanted to, you can also change the order of the parameters using the => convention.

Di spl ayCurrency(fieldWdth => 8, useDollarSign => false, ¢ => 1.97);

Y ou can also declare arbitrary blocksin Ada. These let you declare variables in the middle of a procedure or
function or set apart the designated source code in it's own block. The form of ablock is an optional declar e section,
and the block denoted by abegin and end.

procedure nested is
Date : integer;
begi n
Date := O;
decl are
Daysl nYear : constant integer := 365;
begi n
Date := Date + Daysl nYear
end;
end nest ed;
Here, DaysInY ear only exists for the assignment statement that followsit.

The main reason for blocksisto add an exception hander to a particular line without having to write aone line
procedure.

begi n
Total := Total / Average;
excepti on when nuneric_error =>
Text 1O Put_Line("Division by zero!");
Total := O;
end;
Here, if there's anumeric error during the division statement, it's caught and handled.

Operators are in-fix functions, ones that take parameters on their left and right. For example, "+" is an operator. Ada
lets you redefine most of the standard operators so they work with types of your choosing. Y ou enclose the
operators symbol in double quotes.

function "+"(e : enployeeRecord, s : aSalary) returns aSalary is
begi n
return e.salary + s;
end function;
The above function will let you add a salary to an employee record, which assumes you are referring to the salary
field in the employee record.

Ada subprograms can have the same name as long as their parameters or return values are different. Thisis called
overloading. If Ada can't determine which subprogram you are referring to, you'll receive an error when compiling.
In the above example, "+" is overloaded since there's integer addition, floating addition, and the other built-in

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (26 of 29) [7/20/2001 11:33:07 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

meanings for "+", and our special salary addition we just defined.

C: Assignment is not an operator in Ada. Assignment overloading can be simulated with controlled
tagged records and the Adjust procedure.

10.11 Control of Flow

]Ada Statement] Description |C Equivalent
]if]Conditional execution if

]for ’I nterative loop for

’While ’Pretest loop |While

]Ioop ’Indefiniteloop -

]exit ’Loop exit break

]case]M ultiple case conditional execution |SNitCh

]goto ’Unconditi onal jump |goto

Theif statement is, well, a standard if statement which you can find in many languages. Here's an example:

if x>0 then
Text 1O Put_Line("X is positive");
elsif x < 0 then
Text 10 Put Line(X is negative);
el se
Text 1O Put Line("X is zero");
end if;
Ada provides two expression short-circuiting operators: "or else”" and "and then". Short-circuiting means that the
expression will not be evaluated if the left side doesn't satisfy the condition.
If x >0 or elsey > 0 then
In thiscase, y > 0 isonly checked if x isnot greater than zero.

Thereisagenera purpose loop statement, loop. Loops are exited with an exit statement. Ada provides a shorthand,
exit when, to exit on a condition.

| oop
X:= X/ 2.5;
exit when X < 4.0;
X := X+ 1.0;

end | oop;

C: Thereisno genera purpose loop in C.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (27 of 29) [7/20/2001 11:33:08 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

]C: There's no equivalent of the C continue statement.

There is a pretest loop, while, which determines whether or not the loop should be entered or reentered based on an
expression at the top of the loop;

while X >= 4.0 | oop
x :=(x/ 2.5) + 1.0;
end | oop;

]C: Thisisthe equivalent of a C while loop. There is no post-test loop, like C's do loop.

There isthe standard for 1oop as well, to loop through a range of numbers. For loopsin Ada may only loop by
discrete numbers one unit at atime: no real numbers and no arbitrary stepping values. To go backwards through a
range, use the word rever se.

for I in 1..10 | oop
Total := Total + 1;
end | oop;
To loop through an entire range of atype, use the 'range attribute. To loop through all the dogs in an enumerated
type called aDogBreed,
for dog in aDogBreed'range | oop

Also note that dog isimplicitly defined. Y ou don't have to declare it. Ada understands the type from the loop and the
loop variable exists for the duration of the loop.

]C: For is much more structured than C'sfor.

Any loop can be exited with exit (or exit when). Ada allows you to label loopsin order to exit out of several loops at
once. In the following example, exit will exit the current loop and all loops up to and including OuterLoop. In this
case, that's both loops.

QuterLoop: whiley > 0 | oop
while x > 0 | oop

X =X -Y;

if x = 37 then

exit QuterLoop;

end if;
end | oop;
y =y * 2
end | oop;

Thereis a case statement as well, for testing alot of different individual values. Adarequires a when others case to

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (28 of 29) [7/20/2001 11:33:08 AM]

Big Online Book of Linux Ada Programming - 10 An Introduction to Ada

make sure that all possible cases are handed.

case DogBreed is
when Unknown =>
Text 1O Put_Line("I don't know the breed");
when Shepherd =>
Text 1O Put_Line("It's a shepherd");
when ot hers =>
Text 1O Put_Line("It's sonmething else");
end case;
Adaalso as anull statement, which is a placeholder to use when a statement is expected but none is needed. For

example, you can't have an empty if statement--there must be at least a"null;". Multiple cases can be included with
the vertical bar, or arange can be specified with an ellipsis.

case TaxType is

when | ocal tax => Tax := Tax + Local Tax;

when federal tax | govt taxable => Tax := Tax + Federal Tax;

when others => null; -- perhaps a warning would be better here instead
end case;

C: caseislike switch, but the cases don't fall through.

Cases can aso use ranges, such as 1..10 or TaxSubtype'range.

| really like goto's, and through a stroke of good luck, Adaincludes a goto.
Goto labels are denoted with double angle brackets (unlike loop labels that use a colon).

for I in 0..10 | oop

-- sonme conputations here

I f enmergency then

got o Hel p;

end if;
end | oop;
-- stuff that nust not be executed in an energency
<<Hel p>> Text |1 O Put_Line("W are now down here");

<--Last Chapter Table of Contents Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/10.html (29 of 29) [7/20/2001 11:33:08 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

11 Advanced Ada Programming

<--Last Chapter Table of Contents Next Chapter-->

11.1 Packages

|Ada Description |C Equivalent
lpackage Define a package |-

C:In C++, classes serve two purposes. First, they hide declarations. Second, they implement objects. In
Ada, declaration hiding is done separately with packages: you do not need to use tagged records to use
packages.

Large Ada programs are divided up into packages. These are collections of procedures, functions, variables and other
declarations that serve a similar purpose. Y ou can have packages to draw text on the screen, or packages to do accounts
payable, or package to work with complex numbers.

To make it easier for different people to work on different packages, and to make packages self-documenting, Ada packages
are divided into two parts. The package specification (or package spec) contains everything that other programs need to use
your package. It contains all variables they can access, al the subprograms they can call, etc. For subprograms, you only use
the subprogram header, the procedure or function line, to let the programmers know the name of the subprogram and what the
parameters are.

C: Subprograms declared in package specs are similar to C (non-static) function prototypes in header
files. Unlike prototypes, which are optional, declarations in the package specs are required for
subprograms to be exported outside of the package.

package Currency is

-- This package defines US and Canadi an dollars, and converts noney between
-- these two countries.

subtype aMoney is fl oat;

type USDol | ars is new aMbney;

type Canadi anDol | ars i s new aMbney;

-- aMbney is separate so we can change the base type, if necessary, for
-- US and Canadi an doll ars. USDol | ars and Canadi an dol | ars deliberately
-- inconpatible because it could be nessy if we m x them up

procedure Set ExchangeRat es(USToCanadi an, Canadi anToUS : float);

functi on ToCanada(noney : USDollars) return Canadi anDol | ars;

function ToUS(noney : Canadi anDollars) return USDol | ars;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (1 of 39) [7/20/2001 11:33:44 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

-- Set the exchange rate between US and Canada, and two functions to
-- convert between currencies.

end Currency;

In GNAT, you must save this package under the filename "currency.ads" (.ads for Ada Spec). Here we create different money
values two functions to convert between the different rates and a procedure to set the exchange rates to use in the functions.
Notice there is no main program.

With the spec complete, you can compile it to check for errors.

To complete the package, we create a package body with the rest of the details, including the completed subprograms. With the
implementation details hidden in the package body, other programmers don't have to worry about how currency is actually
handled.

package body Currency is

-- This package defines US and Canadi an dol | ars, and converts noney between
-- these two countries.

USToCanadaExchangeRate : fl oat;
CanadaToUSExchangeRate : fl oat;

procedure Set ExchangeRat es(USToCanadi an, Canadi anToUS : float) is
begi n
USTOCanadaExchangeRat e :
CanadaToUSExchangeRat e :
end Set ExchangeRat es;

USToCanadi an;
Canadi anToUS;

functi on ToCanada(noney : USDollars) return Canadi anDollars is
begi n

return Canadi anDol | ars(noney * USToCanadaExchangeRate);
end ToCanada;

function ToUS(noney : Canadi anDollars) return USDollars is
begi n

return USDol | ars(noney * CanadaToUSExchangeRate);
end ToUS;

-- Set the exchange rate between US and Canada, and two functions to
-- convert between currencies.

end Currency;
Notice we have access to everything we defined in the package spec--we don't need to repeat anything in the body.
Because the two exchange rate variables are defined inside the package body, they are invisible to other programmers.

Save this package body as "currency.adb” (.adb for AdaBody). Make sure all pragma Stubbed's are removed for the finished
subprograms. Compile both and you have aworking package.

To use your package in a program, use the with statement.
with text_io, currency,
procedure currencyTest is

begi n
Currency. Set ExchangeRate(1.5, 0.7);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (2 of 39) [7/20/2001 11:33:44 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

Text 1O Put _Line("1 Canadian dollar is " & Currency. ToUS(1.0)'ing);
end currencyTest;

To have Ada check which package a subprogram belongs to, and avoid typing the package name constantly, use the use
statement.

wi th currency;
use currency;

Set ExchangeRate(1.5, 0.7);
If the use statement creates an ambiguity, Adawill warn you that it can't determine which package SetExchangeRate isin.

Package bodies may have main programs, a block at the end of all declarations marked with begin. This allows you to setup
your package before it's actually used. In this case, we don't need one.

Package specs may have private sections at the end of the spec. There will be times when you will have to provide
information so that Ada can compile your spec, but you don't want the application programmer to be able use this information.
For example, you might create a package to maintain a customer list, but you don't want the programmer to access the internal
fields of a customer list since you might change them at some point.

Just about anything in a package spec can be marked private, and the compiler expects the details to be specified in the private
section. Declarations can also be limited private, meaning that besides having the details inaccessible to the programmer, the
programmer can't assign between variables of the type. For example, use limited private if you think you may include pointers
in the type at some time in the future.

package CustonerList is

t ype aCustoner Nunber is new positive range 1..1000;
type aCustonerlList is limted private;

private
type aCustonerArray is array(aCustomerNunber) of string(l..120);

type aCustonerList is record
Current Cust oner : aCust oner Nunber ;
Custoners : aCustonerArray;

end record;

-- no pointers yet, but we may sonme day, so it's limted private
end CustonerlList;

In this example, a programmer can declare customer lists, but he cannot access the fields CurrentCustomer or Customers
(because it's private), nor can he copy lists with assignment statements (because it's limited private).

|C: In C++, privacy islimited to classes. In Ada, virtually anything can be private.

Packages can have children. A child package is a package that extends the capabilities of the parent package. Y ou can use
child packages to add features to existing packages, such as the standard Adalibraries, or to break up large packages into
groups of related functions.

Suppose you had a package called accounting that contains tools to handle accounting in general. Y ou can create a child
package for accounts payable beginslike this:

package Accouting. Accounts Payable is

In GNAT, save this package spec as "accounting-accounts_payable.ads", with aminus sign instead of a period.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (3 of 39) [7/20/2001 11:33:44 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

A child package inherits the package spec from it's parent package. Y ou can access anything in the accounting package,
including anything private to which access is normally denied.

When a program uses the statement

wi th Accouting. Accounts_ Payabl e;

the parent package, accounting, is automatically with'ed as well (although you still have to use separate use's).

11.2 Controlling Elaboration

|Ada Pragma |Description |C Equivalent
pragma Pure; The simplest kind of package. |

pragma Pure_ Function(function_nane); \F/)\lljrrlgnanentlrepackagelsnt

pragna Preel abor at e; ga%%c:;ta%iwnhsmple -

pragnma No_El abor ati on_Code,; |Simi|arto Preelaborate. -

Force "package” to be elaborated

pragma El abor at e(package); firgt ifgossiflje. -

pragna El aborat e Body(package); sEg:cbic;irita?ig]r? body before the -

pragma El aborate All; ?23&2;2 SEOREIE) CF CEEn

Elaboration isthe initialization of a package that's done before the main program of the package is executed. Assigning values
to constants, for example, is elaboration.

C: Since C isahas no packages, the order of elaboration between filesis determined strictly by the
compilation order.

For most projects, gnat will work out a good elaboration order on its own. However, large projects with packages referring to
each other in complicated ways may require complex elaboration orders. gnat searches every possible elaboration order until it
finds one that solves any ambiguities. To speed up projects with slow elaboration times, Ada and gnat provide a number of
pragmas to give the compiler hints on the best compilation order and to solve any potential ambiguities.

11.2.1 First line of defense: Pure, Preelaborate and No_Elaboration_Code
Pragma Pure and Preelabor ate are elaboration restrictions. They are hints to the Ada compiler to cut down the compiler's

work when trying to solve elaboration order. Pragma Pure tells Adathat the package requires no elaboration and contains no
executables. For example, a package of nothing but type declarations (with no default values) is pure.

package noney types is
pragnma pure;

-- a sinple package, nothing to el aborate

subtype aCurrency is float;
type aSalary is new aCurrency;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (4 of 39) [7/20/2001 11:33:44 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

end noney_types;

Pragma Preel aborate tells Ada that the package requires minimal elaboration. Y ou should try pragma pure, and if it fails, try
pragma preel aborate.

gnat 3.11 introduced the gnat specific pragma No_Elaboration_Code. Sometimes this will work when Preelaborate will not.

Sometimes you can declare a function as pure using pragma Pure_Funciton. A pure function is one with no side effects and
one that's value doesn't change when executed with the same parameters each time. If the only thing standing in your way to
using pure or preelaborate are some functions used to assign initia values, try declaring them as pure functions.

If your package or program fails to meet the elaboration restriction requirements, the compiler will issue an error.

11.2.2 Second line of defense: Elaborate, Elaborate Body, Elaborate All

Sometimes the hints are not enough. For example, a package that assigns a value to constant using afunction like

Sin4g5 : float := Ada.Nunerics. El ementary_Functions. Sin(45, 360);

is neither pure nor preelaborate because a function must be called when the package is initialized. In these cases, you can tell
Ada specifically which package should be elaborated first.

Pragma Elaborate(package) tells Ada the specified package should be elaborated first. For example, all generics must be
elaborated before they are used, so it's agood ideato use pragma elaborate on every generic package.

Wi th generic_linked |ist;

pragna El aborate(generic_linked_ list);

Pragma Elaborate All indicates that a particular package and all the packages used by that package must be elaborate before
the current package. For example, if package userio uses package common,

with userio;

pragma El aborate Al (userio);

will elaborate both userio and common prior to this package

Because Elaborate_All will affect multiple packages, it can cause unnecessary binding errors when used indiscriminately. This
pragma, when used everywhere, effectively requires all packages to be arranged in a strict hierarchy. Make sure thisis the
effect you want.

11.2.3 Other Elaboration Pragmas

Another pragma, pragma Elaborate Body, forces the package body to be elaborated before the package specification. Thisis
especially useful in generic packages.

Pragma Elabor ate and Elaborate All can also be used to resolve ambiguous elaborations.

11.3 Objects

|Ada |Deﬂ:ription |C Equivalent

|type. .. tagged record |Definean object |c| ass

ESTPC: o o WY PEC CUEEYHE Tt Extend an object class ...: parenttype
record

|type. ..access all sonetype Defineapointer toaclass |sonet ype *

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (5 of 39) [7/20/2001 11:33:44 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

'cl ass Class-wide type vi rtual
abst ract Abstract types/subprograms|f uncti on. . . =0

C: Adadeveloped its own object oriented terminology because C's terminology can be ambiguous and
confusing. Ada differentiates between a class and the structure that defines that class.

An object in Adais known asatagged record. That is, it isanormal Adarecord that has an invisible tag attached to it. The
record

type anEnpl oyeeProfile is record
name : string(l..80);
age : anAge,;

end record,

can be changed to atagged record by adding the keyword tagged:
type anEnpl oyeeProfile is tagged record
nanme : string(l..80);

age : anAge;
end record;

Although these two records look the same, if we use the 'size attribute to see how much memory the records take up, we'll see
that the tagged record is bigger. The extra space is used to store the invisible tag.

Unlike normal records, fields can be added tagged record and a new tagged record can be created. Thisis called extending the
record. To create arelated record with additional fields, we use the keyword new:

type anHourl yEnpl oyee i s new ankEnpl oyeeProfile with record
hourlyRate : fl oat;
end record,

A tagged record extended in thisway has al the fields of anEmployeeProfile, but has the additional field of hourlyRate.
anEmployeeProfile and anHourlyEmployee are said to be in the anEmployeeProfile class: the classis the collection of
anEmployeeProfile and all record extended from it.

Now we can create a access type (commonly called a pointer, though technically it isn't a pointer) to any record in the class:

type anEnpl oyeeProfil ePtr is access all anEnpl oyeeProfile'class;

This pointer can be assigned either anEmployeeProfile record or anHourlyEmployee record. Thisis the purpose of the tagged
record's invisible tag. The tag indicates the type of tagged record a pointer points to since these kinds of pointers can refer to
more than one type of tagged record. Thisis sometimes called |late binding.

ptrl : anEnpl oyeeProfilePtr := new anEnpl oyeeProfile("Bob Smth", 45);

ptr2 : anEnpl oyeeProfilePtr := new anHourl yEnpl oyee("Deni se Jones", 37, 17.50);
Access variables are null until assigned a different value. They are the only variablesin Adato have a default value.

There may be cases where you want to extend a type without adding new fields. Ada provides a shorthand phrase for this. For
example, if you want to distinguish hourly employees that work at night as being separate from other hourly employees, use
type aN ght Hour | yEnpl oyee i s new anHour | yEnpl oyee with null record;

In complex classes, there will be times when you'll want to define arecord that you never intend to assign variables to. For
example, anEmployeeProfile doesn't contain enough fields to completely describe any employee: only the tagged records

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (6 of 39) [7/20/2001 11:33:44 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

derived from anEmployeeProfile are usable. When particular record exists only to be extended it called an abstract record. Y ou
declare abstract records with the keyword abstract:

type ankEnpl oyeeProfile is abstract tagged record
name : string(1l..80);
age : anAge;

end record;

If you try to create anEmployeeProfile record, Adawill report an error since you said that this record can only be extended into
other records.

Adarequires that subprograms that work with tagged records be declared immediately after the type declaration. Each
procedure or function can only take one tagged record as a parameter.

C: Methods are normal subprograms with an object being referred to as a parameter. myobj.method(x)
would be method (myobj, X) or method(x, myobj) in Ada.

type aSal aryEnpl oyee i s new anEnpl oyeeProfile with record
sal aryRate : float;
end record,

procedure SetSalaryRate(s : in out aSal aryEnpl oyee' class; rate : float) is
begi n
s.salaryRate := rate;

end Set Sal ar yRat e;

function Get SalaryRate(s : aSal aryEnpl oyee' class) return float is
begi n

return s.sal aryRate;
end GCet Sal ar yRat e;

We've declared two one line subprograms that will work on any tagged record derived from aSalaryEmployee.

C: Adadoes not require constructors or destructors. Creating objects with these are discussed below.

Subprograms can be marked as unusable in the same way as abstract tagged records. An abstract procedure or functionisa
placeholder. Declaring one requires that all types extended from this type must have this subprogram defined. If any do not
have this subprogram, Ada will report an error. For example, if anEmployeeProfile had a procedure like

procedure WiteEnpl oyeeNane(e : anEnpl oyeeProfile) is abstract;

all employee profile records would be required to have a procedure called WriteEmployeeName. ASalaryEmployee will have a
compilation error unless we add such a function:

procedure WiteEnpl oyeeNane(e : aSal aryEnpl oyee)i s
begi n

Text 1O Put _Line("Enpl oyee Nane: " & e.Nane);
end Wi teEnpl oyeenane;

WriteEmployeeName could also use aSal ar yEnpl oyee' cl ass to refer aSalaryEmployee or any records we extend from
it.

To avoid ambiguity, only one tagged record subprogram can refer to any onetype. Thisis different from some other object
oriented languages where you can override a classwide subprogram with one that refers to a specific type. The advantage of no

overriding is that someone reading your class knows exactly which subprogram will be used for a particular tagged record
type--they don't need to read the entire class to make sure the subprogram isn't overridden later on. The disadvantageisthat if

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (7 of 39) [7/20/2001 11:33:45 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

you can't use a classwide type, you'll have to write subprograms for each and every type in that class. In these cases,
typecasting is useful.

Tagged record types can be typecast as other tagged record types (in the same class) using typecasting. Y ou need to do thisif
you want a dispatching call inside of adispatching call. For example, if anEmployeeProfile has a GetSalaryRate function, we
could call it by:

procedure WiteEnpl oyeeSal ary(e : aSal aryEnpl oyee' class) is
begi n

Text 1O Put_Line("The salary is" & CetSal aryRat e(anEnpl oyeeProfile(e)));
end WiteEnpl oyeeSal ary;

11.4 Objects with Automatic Initialization/Finalizaton

Ada Controlled Object Call |Descripti on |C Equivalent
Initialize |Initia|izean object |constructor

Adj ust |Fix object after assignment |copy constructor
Finalize |Clean up an object |destructor

Basic Adatagged records don't do anything special when they are created or destroyed. If you want special actions to be
executed automatically when atagged record is created or destroyed, you can use the Ada.Finalization package. In this
package is defined a special tagged record called Controlled. When you extend this tagged record, you can overload special
procedures that Adawill automatically execute when necessary. This saves you from having to explicitly call such procedures
yourself.

type busi nessDepartnent is new Finalization.Controlled with record
department Head : aEnpl oyeeProfilePtr := new
aSal aryEnpl oyee ("Bob Smith", age => 45, rate => 42 _000.0);
end record;

In this example, every time you allocate a businessDepartment variable, DepartmentHead is initialized with a dynamic
allocation. We could write a procedure to free up this memory, but then we would have to remember to call it every time a
variable is about to be discarded. A better way to handle thisisto let Ada do the discarding for us. Finalize is the name of the
procedure Ada calls when cleaning up a controlled tagged record. We create our own Finalize for our businessDepartment
tagged record:

procedure Finalize(bd : in out businessDepartnent) is
begin -- Finalize

Free(bd. departnent Head);
end Finalize;

Now Adawill automatically run this procedure before any businessDepartment variable is destroyed and we never have to
worry about forgetting to free up the memory used by departmentHead.

C: Finalize is the destructor.

There are two other such automatic procedure we can use with controlled tagged records. Procedure I nitialize is used when an
object isfirst created, and procedure Adjust is used after an object is assigned in an assignment statement.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (8 of 39) [7/20/2001 11:33:45 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

Adjust is very smart. Temporary storage is used for self-assignment. If Adjust fails because
of an exception, Finalize is not executed.

C:Adjust islike a C++ copy constructor, except that Adawill copy the object before calling Adjust.
With a copy constructor, you must copy the object yourself in the body of the constructor. Unlike a
copy constructor, Adjust only executes during assignment.

with text _io, sanple;
use text_io, sanple;

procedure controll edtest is
srpl, srp2 : Sanpl eRecPtr;
sr3 : Sanpl eRec;

begi n
Put Line("(This is the first line of the program");
New Li ne;
Put _Line("This is an exanple of controlled tagged records:");
New Li ne;
Put _Line("Executing 'srpl :
srpl : = new Sanpl eRec;
New_Li ne;
Put _Li ne("Executing 'srp2 :
Srp2 := srpil,

new Sanpl eRec' ") ;

srpl' (copying a pointer)");

New_Li ne;

Put _Line("Executing 'sr3 := srpl.all' (copying a record pointed to)");
sr3 :=srpl.all;

New Li ne;

Put _Line("(This is the last line of the program");
end control | edtest;

with ada.finalization;
use ada.finalization;

package sanple is
type Sanpl eRec is new Controlled with null record;

type Sanpl eRecPtr is access all Sanpl eRec;
-- sanple controll ed tagged record (and a pointer to sane)

procedure Initialize(sr : in out Sanpl eRec);
procedure Finalize(sr : in out SanpleRec);
procedure Adjust(sr : in out SanpleRec);

-- these are required for controlled tagged records

end sanpl e;

with Ada.text io;
use Ada.text io;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (9 of 39) [7/20/2001 11:33:45 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

package body sanple is
-- just print nessages to show that these are working

procedure Initialize(sr : in out SanpleRec) is
begin
Put Line("Initialize: Initialized tagged record");
end Initialize;

procedure Finalize(sr : in out SanpleRec) is
begi n
Put _Line("Finalize: Finalized tagged record ");

end Finalize;

procedure Adjust(sr : in out SanpleRec) is
begi n

Put _Line("Adjust: Adjusted tagged record ");
end Adj ust;

end sanpl e;

Here isthe output. The records being affected are noted in bold.

Initialize: Initialized tagged record [sr 3]
(This is the first Iine of the progranm

This is an exanple of controlled tagged records:

Executing 'srpl : = new Sanpl eRec'
Initialize: Initialized tagged record [srpl.all]

Executing 'srp2 := srpl' (copying a pointer)

Executing 'sr3 := srpl.all' (copying a record pointed to)
Finalize: Finalized tagged record [sr3 (before record is copied)]
Adj ust: Adjusted tagged record [sr3 (after record is copied)]

(This is the last |line of the program
Finalize: Finalized tagged record [srpl.all]
Finalize: Finalized tagged record [sr3]

Adaalso provides a second tagged record, Limited_Controlled, which is a controlled record that can't be assigned.
Consequently, it has no adjust procedure.

11.5 Multiple Inheritance

Like atree, tagged records can only be extended from a single parent. Extending from multiple parentsis called multiple
inheritance, and Ada doesn't allow multiple inheritance. The Ada designers considered multiple inheritance a feature that adds
ambiguity to alanguage: for example, if an employee tagged record has two different parents, each with a salary field, do you
merge the salary fields into one or do you have two copies of the field in your record? Because there is no consistent solution
to this kind of problem, the Ada designers decided to not to support multiple inheritance.

However, you can add tagged records as nested fields, just like you would a normal record. This workaround guarantees that
each object will only have one parent it can extend from.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (10 of 39) [7/20/2001 11:33:45 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

type aC ass is tagged record
F1 : integer;
end record,

type anUnrel atedC ass i s tagged record
Ul : integer;
end record;

type anM Exanple is new aCl ass with
UC : anUnrel atedd ass; -- a field, not an extension
end record;

anMIExample is atagged record belonging to aClass, not to anUnrelatedClass. If you extend anMIExample, it will inhert F1
from its parent class. Since anUnrelatedClass UC is nested, you can still accessit asafield using the prefix "UC.".

[BETTER EXAMPLE -- KB]

11.6 Private Objects

Unless atagged record classis very small, it's kept in it's own package. When you put a class in a package, you can use the
package to hide the details of the class and to make parts of the class inaccessible to the outside world.

package customers is

type AbstractCustoner is abstract tagged private;

type Basi cCustoner is new Abstract Custonmer with private;
private

type Abstract Custonmer is new abstract tagged record
name : string(1..80);
end record,

type Basi cCustoner is new Abstract Customer with
Sal esCategory : integer;
end record;

end custoners;

By declaring atagged record as private, we eliminate all access to the fields in the record. Anybody who wants to change the
value of the fields must do it through any subprograms we provide. In object oriented programming, it's agood idea to make as
many tagged records private as possible, the same as other private types. That way, if you want to change the contents of the
tagged record, programs that use your class will not have to be changed.

C: Adadoes not have protected objects, but protected objects can be simulated using Ada packages.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (11 of 39) [7/20/2001 11:33:45 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming
11.7 Generics
Adaallows you to create source code templates, called generics. With generics, you can specify aroutine with only general

information about the kinds of types the routine can work on. Later a programmer instantiates the generic by giving a type.
Generics are useful for things like sort routines, which work basically the same way on different data types.

C: Generics are similar to C++ templates.

Ada contains several standard generic procedures. The most important one is unchecked _deallocation. Thislong winded
procedure deallocates memory allocated with new. In order to free up memory, you must instantiate an
unchecked_deallocation for each access type you are going to use new on. Y ou have to specify both the access type and type
of datathat is being pointed to.

wi t h unchecked deal | ocati on;
type bool eanPtr is access all bool ean;

procedure Free is new unchecked_deal | ocati on(bool ean, bool eanPtr);

Freeisanew version of unchecked deallocation compiled for booleanPtr's to a boolean type.

Adawas designed for the possibility automatic storage recovery, that everything that was allocated in a subprogram would be
deallocated automatically when the subprogram is left. Unfortunately, gnat was implemented without this feature and all
memory has to be explicitly deallocated.

Another standard generic you'll run into is unchecked _conversion. This converts avariable of one type to another by
physically copying to data from one to the other, such as an array of 8 bitsto a short_short_integer.

Although you can write generic subprograms, most of the time you use generics will be for creating generic packages. Generic
packages have a spec and body like normal Ada packages, but they begin with alist of parameters to the package that must be
filled in when the generic is instantiated.

generic

-- these are the paraneters for the generic

type ListElement is <>, -- unspecified list el enment

procedure ">="(left, right : ListElenent); -- a procedure to sort by
package SinplelList is

type List is array(1..100) of ListElenent;

procedure Add(| : list; e : ListEl enent);
procedure Sort(| : list);
procedure Display(| : list);

end Si npl eLi st;
(check--KB)

In this example, SimpleList takes some kind of data type called a ListElement, the items that compose the lists. Besides <>,
Adaoffers a number of other non-specific type descriptors to give the compiler an idea of what kind of types are acceptable.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (12 of 39) [7/20/2001 11:33:45 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

Since the ListElement could be an aggregate and we can't assume we can do simple comparisons, the programmer must also
specify a procedure to sort the elements by.

Once you write the package body (no generic section in the package body, just aregular package body), you can instantiate the
generic package in a program. After instantiation, use the package like any other package.

wi th SinplelList;

procedure ListTest is

package Bool eanLi st is new SinpleList(boolean, ">=")
-- in this case, the normal ">=" will sort bool eans

begi n

Bool eanLi st. Add(nylist, true);
Bool eanLi st. Add(nylist. False);

end ListTest;

Now you'll notice that generics and tagged records share alot of capabilities. Y ou can use both to write subprograms that work
on avariety of types. Tagged records are referred to as dynamic polymor phism, because which subprogram to call gets
determined while the program is running. Generics are referred to as static polymor phism, because the subprograms are
generated when the generic is instantiated by the compiler and which subprogram to call is known when the program is
compiled. The better approach depends on what you are doing. In general, generics run faster but take up more space because
the compiler generates separate subprograms for each type. Tagged records take up less space but tend to run slower.

Variant records and tagged records, likewise, share much in common. Although variant records can be simulated with tagged
records, you'll need to decide which is the best choice depending on what you are trying to accomplish. Variant records tend to
be smaller and faster, but are harder to extend than tagged records.

Since tagged records are naturally used to create variables that are similar to one another, you might wonder if you'd ever
create asingle variable of atagged record type. These are called singletons, and are used in frequently in languages like C++.
They are popular because they have a specific elaboration order and provide access to features only available in objects (such
as private members). Programmers doing this have no need to create a class of severa objects. However, Ada has an easily
controlled elaboration process and features such as privacy are not specific to tagged records. As aresult, thereisrarely a need
for singletons in Ada programs.

11.8 Exceptions

|Ada |De@cription |C Equivalent

|e : exception |Dec|areanexception |

|r aise e |Raise/throwanexception |t hrow t ype
|excepti on clause |Hand|e/catchanexception |t ry...catch

C:In C++, exceptions are performed by throwing types (typically objects). In Ada, an exceptionisa
separate type. Only exceptions can be thrown--you can't throw types. Exceptions aren't related to
objectsin any way.

When you throw in C++, you do so in atry block. In Ada, you can throw an exception in any block.
The exception clause (equivaent to cat ch) at the end of the block is optional.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (13 of 39) [7/20/2001 11:33:45 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

What do you do when something unexpected error occurs? Unexpected errors are called exceptionsin Ada. For example,
running out of memory is an exception.

Adahas a number of predefined exceptions, and examples of when they occur:
o CONSTRAINT_ERROR - number out of range, like assigning -1 to a positive variable
« NUMERIC_ERROR - dividing by zero
o SELECT_ERROR - caused by task select statement with no else part
« STORAGE_ERROR - running out of memory
« TASKING_ERROR - failure of atask to handle an entry call
« PROGRAM_ERROR - hitting the end of a function without returning anything
o ASSERT_ERROR - apragmaassert failed

Y ou can turn off checking for most of these errors using pragmas, but they are usually a sign that something if fundamentally
wrong with your program. Gnat provides a compiler option to turn these checks off for the release version of a program.

The standard libraries have additional exceptions defined.

To handle an exception, you need an exception part at the end of a subprogram. When the exception is raised (occurs),
execution immediately jumps down to the exception part. The exception part contains alist of exceptionsto check for, plus an
others part, similar to a case statement.

procedure exceptional (Total : out integer) is
begi n

-- do some stuff
exception

when constraint_error => Total := 0;

when storage_error => Total := -1;

when ot hers => rai se;
end exceptional ;

Raise causes the exception to be reraised to the calling subprogram.

If one subprogram doesn't handle the exception, it's raised in the subprogram that called it. This continues until the exception is
handled by an exception part, or the main program isit. In the worst case, if the main program has no exception part, the
program terminates and the exception name is printed on the screen.

One use for exception parts to deall ocate access types so the memory isn't lost when unexpected errors occur.
Y ou can define and raise your own exceptions.

procedure exceptional 2 is
Accounting Error : exception;

C: Ada exceptions do not carry any additional information when raised. Y ou can simulate error
messages and other information with global variables.

Pragma Assert provides an exception for debugging programs. Assert is described in 8.2.

For more advanced manipulation of exceptions, you'll need to use Ada.Exceptions and its related packages. These are
described in 12.15.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (14 of 39) [7/20/2001 11:33:45 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

11.9 Dynamic Allocation

|Ada |Description C Equivalent
|new |AIIocate new memory mal | oc/ mal | opt
|unchecked_dea| | ocation |Dea||ocate memory free

Dynamic allocation is reserving memory for variables while the program is running. The memory is allocated from aregion
called the default storage pool. GNAT sometimes refers to this as the unbounded no reclaim pool because the only limit on
the amount of memory you can allocate is the physical limit of the machine, and memory is not reclaimed through garbage
collection.

C: The default storage pool is effectively the "heap".

Ada uses access types to create a handle to dynamically declared variables.

type IntegerPtr is access all Integer;

ip : integerPtr := new Integer;

In this example, IP access a dynamically declared integer. P isonly large enough to hold the address of where the integer is
located. To access the integer, we have to add the suffix .all to IP. Thisis called dereferencing.

ip.all :=5;

If you are dereferencing multiple pointers, the al is only required at the end to indicate that the final pointer isto be
dereferenced (for example,. ptrl.ptr2.ptr3.al).

Theword all inaccessall isnot strictly required. If all isincluded, the IntegerPtr type will be compatible on any other integer
pointer. Without all, Ada imposes certain restrictions on what the access type can point to, but in general always use access al.

Memory allocated with new is freed with unchecked_allocation (see the section on generics).

Y ou can assign initial values when you create a new dynamic variable. In the following example, we declare, allocate memory
and assign an initial value all at once.

ip: integerPtr := new Integer(5);

To create arecord with a pointer to itself, have an empty type statement with the record first:

type LinkedLi st Record;

type LinkedListPtr is access LinkedLi st Record;
type LinkedLi stRecord is record

info : string(l..80);

next : LinkedListPtr;
end record;

To point to variables you've declared, you must declare those variables as aliased to indicate they can be pointed to. To get the
address of something, use the 'access attribute.

type CustonerArray is array(l..100) of CustomerRecord;
type CustomerArrayPtr is access all CustonerArray;

ca : aliased CustonerArray;
cp : CustonerArrayPtr := ca' access;

cp now pointsto ca. Individual array elements can also be aliased.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (15 of 39) [7/20/2001 11:33:46 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

type CustonmerArray is array(l..100) of aliased CustonerRecord;
type CustomerArrayPtr is access all CustonerArray;

ca : CustonerArray;
cl5p : CustomerArrayPtr := ca(1l5)' access;

Adawill give you an error when you try to use 'access when the object pointing to may disappear after the pointer does. If
you're absolutely certain that this won't happen, you can circumvent the error by using 'unchecked access.

An access type is necessarily just the address of a dynamic object. To get the address of an access type, it's best to use gnat's
generic package System.Address To Access Conversions.

type intacc is access all integer;
package strConvert is new System Address_To_Access_Conversi ons(i ntacc);

string_address := strConvert. To_Address(Sonelnt AccVar);

|Ada 83: Theoriginal use of .all created too many ambiguities. Ada 95 requires greater use of .all.

11.10 Callbacks

A callback is a pointer to a subprogram. They are called callbacks because you usually give the pointer to another subprogram
that calls the procedure pointed to whenever it needsto. Y ou can declare callbacks using type.

type Updat eW ndow i s access procedure;
type Di spl ayNewval ue i s access procedure(newal : integer);

One important restriction isthat Ada requires that callbacksto refer to global subprograms. Thisis done to ensure that the
access variable always points to an existing subprogram. Y ou cannot create a callback to alocal procedure or function, even if
it's perfectly safe to do so. If you try, you'll get an obscure error message about one level being deeper than another.

The gnat equivalent for 'unchecked_access for callbacksis'unrestricted_access, which you can use if you're absolutely sure
the subprogram you're using will not save the access when it's finished running.

Y ou can get the address of a procedure using 'access. Suppose MyUpdateProcedure is a procedure fitting the description of
UpdateWindow, a procedure with no parameters.

updatePtr : Updat eW ndow : = MyUpdat eProcedure' access;
procedur e DoConpl exSl owConput ati on(updatePtr);

To call acallback, use the dereference operator .all.

UpdatePtr.all;

11.10.1 Storage Pools

Unlike languages like C that have only one storage pool, Ada allows you to define your own storage pools. Authors of
real-time applications, for example, can create a pool with a maximum size limit or a fixed access time.

Use a for clause to make an access type use a pool other than the default storage pool.

type AccountingRecPtr is access all Accounti ngRec;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (16 of 39) [7/20/2001 11:33:46 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

for AccountingRecPtr'storage_pool use ny_pool;

Gnat defines several storage pools besides the default storage pool. Perhaps the most useful is the debug pool. This storage
pool, available in version of Gnat before 3.12, works the same as the default storage pool except that it performs run-time
checks for severa different pointer related problems. If a check fails, an exception is raised.

The following program illustrates the errors caught by debug pool access types.

wth Ada. Text 10O System Pool Local, System Debug Pool s;
use Ada. Text |G

wi t h unchecked deal | ocati on;

-- This is an exanple of using the GNAT-specific debug_pool
-- storage pool.

procedure debpools is
type sales record is record

sal esman_code : integer;
sal es_anount : float;

end record;
-- just a typical record

type salesptr_normal is access all sales_record,

-- This is a normal access type. It is allocated
-- in the default storage pool (aka "the heap").
-- The default storage pool is called

-- Unbounded No_Recl ai mred Pool. That is, there's
-- no size limt, and nenory is not reclained by
-- garbage coll ection.

-- A debug pool

sal es_debug_pool : System Debug_Pool s. Debug_Pool ;
-- declare a new debug pool
:: Debug_Pool is a GNAT-specific pool.
type sal esptr_debug is access all Sal es_Record;
for sal esptr_debug' st orage_pool
use Sal es_Debug_Pool ;
-- This access type has no garbage col |l ection
-- but raises exceptions on allocation or

-- deallocation errors, useful for tracking down
-- storage leaks. Al 4 possible exceptions are

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (17 of 39) [7/20/2001 11:33:46 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

-- shown in this program

procedure Free is new Unchecked Deal | ocati on(sal es_record,
sal esptr _debug);

-- procedure to deal |l ocate sal esptr_debug access types

sr : aliased Sal es Record;
spd, spd2, spd3 : sal esptr_debug;

begi n

Put _Line("Fun with debug storage pools!");
New_Li ne;

-- Debug Pool Exception #1

begi n
Put _Line("Accessing a non-allocated access type is an exception:");
Put _Line("spd.sal esnan_code := 1");
spd. sal esman_code := 1; -- error: not allocated

excepti on when System Debug Pool s. Accessi ng_Not Al | ocat ed_St orage =>
Put _Line("***Accessing_Not_ Allocated_Storage raised");

when ot hers =>
Put _Line("***Unexpected exception”); raise;

end;
New Li ne;
- - Debug Pool Exception #2
begi n
Put _Line("Freeing a non-allocated access type is an exception:");
Put _Line("spd2 := sr'access --not allocated in pool");
Put _Line("Free(spd2)");
spd2 : = sr'access;

Free(spd2);
excepti on when
Syst em Debug_Pool s. Freei ng_Not Al | ocat ed_St orage =>
Put _Line("***Freeing_Not_ Allocated_Storage raised");
when ot hers =>
Put _Li ne("***Unexpected exception”); raise;

end;
New_Li ne;
spd : = new Sal es_Record' (sal esman_code => 1, sal es_amount => 55.50);

-- Debug Pool Exception #3

begi n
Put _Line("Accessing deall ocated access type is an exception:");
Put _Line("spd := new Sales_Record...");
Put _Line("Free(spd)");
Put _Line("spd.sal esman_code := 1");
Free(spd);
spd. sal esman_code := 1; -- error: not allocated

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (18 of 39) [7/20/2001 11:33:46 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

excepti on when System Debug Pool s. Accessi ng_Not Al | ocat ed_St orage =>
Put _Line("***Accessing_Deal | ocated_Storage raised");

when ot hers =>
Put _Line("***Unexpected exception"); raise;

end;
New_Li ne;
spd : = new Sal es_Record' (sal esman_code => 1, sal es_anmount => 55.50);

-- Debug Pool Exception #4

begi n
Put _Line("Freeing deallocated access type is an exception:");
Put _Line("spd := new Sal es_Record...");

Put _Line("spd2 := spd");
Put Line("Free(spd)");
Put _Line("Free(spd2)");
spd2 : = spd;
Free(spd);
Free(spd2);
excepti on when System Debug Pool s. Freei ng_Deal | ocat ed_St orage =>

Put _Line("***Freeing_Deal | ocated_Storage raised");
when ot hers =>

Put _Line("***Unexpected exception"”); raise;
end;
New Li ne;

end debpool s;

Program Result:

Fun wi th debug storage pool s!

Accessing a non-allocated access type is an exception:
spd. sal esnan_code : =1
*** Accessi ng_Not Al |l ocated_St orage raised

Freeing a non-all ocated access type is an excepti on:
spd2 := sr'access --not allocated in pool

Free(spd2)

***FEreei ng_Not _Al |l ocated_St orage raised

Accessi ng deal | ocated access type is an exception:

spd : = new Sal es_Record. .
Free(spd)
spd. sal esman_code : =1

*** Accessi ng_Deal | ocat ed_St orage rai sed

Freei ng deal | ocated access type is an exception:

spd : = new Sal es_Record. .
spd2 : = spd
Free(spd)

Free(spd2)
***Freei ng_Deal | ocat ed_St orage rai sed

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (19 of 39) [7/20/2001 11:33:46 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

To create your own storage pools, you need to extend the Root_Storage Pool tagged record found in the
System.Storage_Pools package.

[give example--KB]

11.10.2 Access Parameters

Because pointers are offen passed as parameters, Ada provides a special parameter type just for access types. access
parameters are access types behave the same as an in parameter: you cannot assign a new value to the parameter. However,
because it is an access type, you can change what the access parameter points to.

Access parameters offer some advantages over in parameters with an access type:
« Adawill verify that the parameter isn't null
» Access parameters can be used in functions where in out parameters are not allowed
« They avoid access type accessibility errors (without resortingto' unchecked_access)

Access parameters can't be compared or assigned, but you can typecast an access parameter into a normal access type and then
compare values or assign it.

w th Ada. Text 1O
use Ada. Text |G

procedure accparmis
-- An exanpl e of access paraneters

-- Create a custonmer account record

type noney is new fl oat;
type aPercent is new fl oat;

t ype aCustoner Account is record
noneyOns ng : noney := 0.0; -- nmoney on the account
i nterest : aPercent := 0.15; -- 15%i nterest

end record,

type aCustonerPtr is access all aCustoner Account;

procedure chargelnterest(cp : access aCustonerAccount) is
-- update the custoner record by charging the interest
begi n
cp. moneyOm ng : = cp. nbneyOwi ng * noney(1.0 + cp.interest);
end chargel nterest;

procedure chargelnterest2(¢ : in out aCustonerAccount) is
-- update the customer record by charging the interest
begi n
c. noneyOmM ng : = c. moneyOwi ng * noney(1.0 + c.interest);

end char gel nt er est 2;

function chargelnterest3(cp : access aCustoner Account) return boolean is
-- update the custoner record by charging the interest
-- i f under 1000, don't charge interest and return false

begi n
I f cp. noneyOwi ng < 1000.0 then

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (20 of 39) [7/20/2001 11:33:46 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

return false;
end if;
cp. noneyOwi ng : = cp. noneyOm ng * noney(1.0 + cp.interest);
return true;
end chargel nt er est 3;

cp : aCustonerPtr;

begi n
Put _Line("An Exanple of Access Paraneters");
New Li ne;
cp : = new aCustoner Account;

Put _Line("chargelnterest uses an access paraneter");

cp. noneyOwi ng : = 1500. 0;

Put _Line("Charging interest on" & cp.nmoneyOM ng'ing);
chargelnterest(cp);

Put Line("After interest, noney owing is" & cp.nmoneyOnM ng'ing);
New Li ne;

Put _Line("chargelnterest2 uses an in out paraneter”);

cp. noneyOwi ng : = 1700. 0;

Put _Line("Charging interest on" & cp.noneyOn ng'ing);
chargelnterest2(cp.all);

Put Line("After interest, noney owing is" & cp.noneyOm ng'ing);
New Li ne;

Put _Line("chargelnterest3 is a function with an access paraneter"”);
cp. noneyOwi ng : = 1900. 0;
Put _Line("Charging interest on" & cp.noneyOn ng'ing);
if chargelnterest3(cp) then
Put _Line("After interest, noney owing is" & cp.noneyOmM ng'ing);
el se
Put _Line("No interest was charged");
end if;
New Li ne;

Put _Line("A null pointer for an access paraneter causes an exception");
cp := null
Put _Line("Charging interest on a null pointer");
if chargelnterest3(cp) then
Put Line("After interest, noney owing is" & cp.nmoneyOni ng'ing);
el se
Put _Line("No interest was charged”);
end if;
New Li ne;

exception
when constraint_error =>
Put _Line(Standard_Error, "Constraint error exception raised");
when ot hers =>
Put _Line(Standard_Error, "Unexpected exception raised");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (21 of 39) [7/20/2001 11:33:46 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

end accparm

An Exanpl e of Access Paraneters

chargel nterest uses an access paraneter
Charging interest on 1.50000E+03
After interest, noney owing is 1.72500E+03

chargelnterest2 uses an in out paraneter
Charging interest on 1. 70000E+03
After interest, noney owing is 1.95500E+03

chargelnterest3 is a function with an access paraneter
Charging interest on 1.90000E+03
After interest, noney owing is 2.18500E+03

A null pointer for an access paraneter causes an exception
Charging interest on a null pointer
Constraint error exception raised

11.11 Multithreading

Gnat comes with two alternative libraries for multithreading support. It can either use the native Linux pthreads (built into
libc6), or it can use FSU (Florida State University) threads that are included with gnat. By default, the Linux version of gnat is
compiled for Linux native threads.

11.11.1 FSU verses Native Threads

The FSU threads provide better concurrency at very small time slices, but are incompatible with Linux's pthreads library. This
means you can't use the FSU version of gnat with the standard Linux libraries unless you recompile the libraries for FSU
threads as well. FSU threads also force blocking on system calls and can cause blocking problems multiprocessors, and as a
result most people don't use them. One exception is Florist, aPOSIX (that is, Linux O/S calls) binding using FSU threads. The
main benefit of FSU threads is that they are Ada Annex C & D compliant.

To use FSU threads, you need to compile gnat from its sources.

11.11.2 Tasks

In Ada, athread isreferred to ask atask. It has nothing to do with multitasking, asits name might imply. A task runs
independently of the main program, either by true parallelism on a multiprocessor computer, or as a separate job on asingle
processor computer. There is no way to specify which processor will receive atask: Linux takes care of this automatically.

Multithreaded programs have limits on the stack size for each thread--thisis true for all
Linux computer languages. Gnat 3.13 has an 8 Meg stack size limit per thread. Older versions had
limits aslow as 1 Meg per thread because of limits imposed by the Linuxthreads library.

A task can take on severa forms. Inits ssimplest form, atask is structured like a package, with a specification and a body. The
following is an example of asimple thread that waits 5 seconds after a program is started and displays a message.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (22 of 39) [7/20/2001 11:33:46 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

task Sinpl eTask;
task body SinpleTask is
begi n
del ay 5. 0;
Put _Line("The sinple task is finished");
end Si npl eTask;

The specification, like a package, indicates what identifiers are available to the outside world. The SimpleTask thread doesn't
communicate with the main program: it's specification is only one line long.

Communicating with the rest of the program can be difficult. For example, with the tasks and main program running in
parallel, sharing variables can be difficult. How does one task know when another task or the main programis finished
changing the value of avariable? If atask works with avariable that's only partially been udpated, the datawill be corrupt.

Ada provides two ways for a thread to communicate with the rest of the program.

The first communication method is called arendezvous. One task communicates with another by sending arequest. A task
may send a request to another task to update a certain variable, or to perform a certain action, that would otherwise risk data
corruption.

Because this communication happens "on the fly", it's declared in two parts. First, in the task specification, alist of all requests
the task is prepared to accept. These are called entry statements and look much like procedure declarations.

Suppose we write a task to keep arunning total, to be shared between several other tasks. We use a separate task to keep the
total from being corrupted.

task CountingTask is
entry add(anount : integer);
end Counti ngTask;

In the task body, atask indicates when it's ready to accept messages using the accept statement. This statement checks for
outstanding requests from the rest of the program.

task body CountingTask is
runni ngTotal : integer := O;
begi n
| oop
accept add(anmount : integer) do
runni ngTotal := runningTotal + anount;
end add;
end | oop;
end Counti ngTask;

When this thread runs, accept statement will check for an add request. If there are no outstanding add requests, the thread
suspends itself until arequest is sent, waiting indefinitely for a new request. Suspending for arequest is known as blocking.

An accept statement with do part will cause your task to wait for that request and then do nothing. Y ou can do thisto
synchronize two tasks.

accept WaitUntill Tel | YouToGo;

Suppose we add another entry statement to read the current value of the running total.

task CountingTask is
entry add(anount : integer);
entry currentTotal (total : out integer);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (23 of 39) [7/20/2001 11:33:46 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

end Counti ngTask;

In this case, we want the task to check for two different requests. The Ada select statement keeps a task from blocking and
instead checks for multiple messages.

task body CountingTask is

runni ngTotal : integer := O;
begi n
| oop
sel ect
accept add(amount : integer) do
runni ngTotal := runningTotal + anount;
end add;
or
accept currentTotal (total : out integer) do
total := runningTotal;
end currentTotal ;
end sel ect;
end | oop;

end Counti ngTask;
In this example, the task will repeatedly check for an add request or acurrentTotal request.
To communicate with the task, we make calls to the task as if it were a package. For example, to send a message to add 5 to the
running total, we'd use

Count i ngTask. Add(5);

Because accept is a statement that executes at run-time, you can create any kind of message policy you want. Some messages
can block. Some messages can be checked. Y ou can force certain message to be handled before others.

Thefina "or" part of a select can contain instructions to execute when none of the accepts statements are executed. For
example, atask can end itself with the terminate command. If you want atask to terminate when there are no more requests,
add a

or
term nate
at the end of your select statement.

If select statement doesn't give you enough control over blocking, select can include when clauses. The clauses work like an if
statement, executing the accept statement only if a condition istrue. If time2accept is a boolean variable, you could write

sel ect
when tine2accept =>
accept add(ampunt : integer) do

A when clause is referred to as a "guard” because, like a crossing guard, the accept will not execute unless the guard gives
permission.

Adaaso has adelay statement. Delay forces atask (or a program) to suspend itself for a number of seconds. To wait for
three-and-a-half seconds, use
del ay 3.5;

Y ou can place adelay statement in the last "or" part of a select statement to force the task to suspend itself for afew secondsiif
no requests were found.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (24 of 39) [7/20/2001 11:33:46 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

Delay can aso wait for aparticular time. The time is expressed using the Ada.Calendar time format. If Tomorrow isavariable
with the time of midnight tomorrow in the Ada.Calendar time format, you can delay the start of atask with

del ay until Tonorrow,

In an emergency, one task can terminate another with the abort statement.

abort Count er Task;

Adaprovides a variation of the select statement for tasks that timeout when they cannot complete their work in time. This
version has two parts: the first part consists of what to do if the task isn't completed in time, and the second consists of the task
to complete. For example, if BigCalculation is aslow process that we wish to timeout after 30 seconds,

sel ect del ay 30. 0;

Put Line("Tinmeout!");
t hen abort

Bi gCal cul ati on;
end sel ect;

In this example, BigCalculation will continue for up to 30 seconds. If it doesn't finish, "Timeout!" is displayed and
BigCalculation is aborted.

11.11.3 Task Types

Often multithreaded programs will need a set of identical tasks. For example, you many want to sort a customer's records for
several different customers using different threads. Y ou can't do this with the simple tasking examples shown so far.

To create a set of identical tasks, you must create atemplate of the tasksto run. Ada calls these templates atask type: they
look just like aregular task except the specification begins with "task type" instead of "task" by itself. The following is a task
template using the CountingTask example.

task type CountingTask is

entry add(anount : integer);

entry currentTotal (total : out integer);
end Counti ngTask;

This template will not run by itself. If we want to create a CountingTask task, we create one by declaring it.

Taskl, Task2 : Counti ngTask;
Task1 and Task2 are two copies of CountingTask. Thisis equivalent to creating two separate tasks:

task Taskl is

entry add(anount : integer);

entry currentTotal (total : out integer);
end Task2;
task Task2 is

entry add(anmount : integer);

entry currentTotal (total : out integer);
end Task2;

Because task types can be declared, we can create 20 tasks at once by declaring an array of 20 CountingTask's.

CountingTasks : array(1l..20) of CountingTask;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (25 of 39) [7/20/2001 11:33:47 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

Tasks can aso be declared in records as well, or allocated dynamically using the new operator.

type aTaskPtr is access Counti ngTask;
tp : aTaskPtr;

tp : = new CountingTask;

Using new, you can create as many copies of a particular task as you need.

11.11.4 Protected Items/Types

Adatasks are useful for many kinds of multithreading. However, Ada provides a second method of multithreading called
protected objects. These are similar to the "monitors" used by Java.

In an Adatask, you specify when and how different tasks communicate. When items are declared protected, Ada controls the
interaction for you.

Protected objects are declared the same was as a package, using a specification and a body. They act like a package that allows
only one task access to its contents at atime. While one task is using the contents, any other task wanting accessis blocked
until the first task is finished.

Here is our CountingTask rewritten as a protected item.

protected CountingType is

procedure add(anmount : integer);

procedure currentTotal (total : out integer);
private

runni ngTotal : integer := O;

end Counti ngType;

protected body CountingType is

procedure add(anount : integer) is
begi n
runni ngTotal := runningTotal + anount;
end add;
procedure currentTotal (total : out integer) is
begi n
total := runningTotal;

end current Tot al ;

end Counti ngType;

In this case, any task may execute the add or currentTotal procedures, but only one task may execute them at atime. This
ensures that runningTotal will not be corrupted.

Unlike a package, you can't declare variables in the spec or body unless you put them in a"private" part in the spec.

Protected items can include entry declarations. Since there isno "main program™ to the protected body, the protected body
contains no accept statements. Instead, the entry declarations are filled in as if they were a subprogram. Any guarding
conditions are attached to the end of the entry header.

For example, to create an aversion of our add procedure that blocks if the total is higher than 100, we could write

prot ected CountingType is

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (26 of 39) [7/20/2001 11:33:47 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

entry add(anmount : integer);

.brot ected body CountingType is

entry add(anount : integer) when runningTotal <100 is
begi n

runni ngTotal := runningTotal + anount;
end add;

Like tasks, you can create protected types by declaring the specification with "protected type" instead of "protected”. You can
then create arrays of protected items, or declare protected items dynamically.

This covers the basics of Ada's multithreading capabilities. There's much more that Ada can do. If you are writing complicated
multithreading programs, you're encouraged to investigate the Ada Reference Manual for more information.

11.12 Ada Text Streams

A stream is a sequential transmission of different types of data. When datais written to a stream, the stream converts the data
to aform suitable for transmission. When the datais read, it's converted from the stream'’s format back to its original form.

A practical example is saving tagged records belonging to the same classto afile.

Ada's syntax for using streamsis a bit cumbersome. Like tagged records, some of the features are implemented using
attributes, and others are found in standard packages.

The Ada.Streams.Stream_| O can write heterogeneous data to atext file, and then read it back again. This package contains a
number of subprograms similar to Ada.Text_IO, including, Open, Close, Reset, Delete, Is Open and End_Of File.
However, there are no Get or Put procedures. Instead, there are stream subprograms for working with the datain the file.

« Stream - returns a stream to the file

« Read - read data from the stream

o Write - write data to the stream

Read and Write are not used directly. Instead, the attributes 'read and ‘write will read and write an item to the stream. That is,
Gnat does the necessary conversion to stream data for you.

For classes of tagged records, 'input and 'output read and write any child of the class. These attributes are implicitly defined for
all class-wide types (that are not also limited). Asaresult, you usually combine 'class with the stream attributes for ‘classinput
and 'classoutput. If you don't supply 'class, nothing will be written and no exception will be raised.

W th ada.text _io, ada.streans.stream. o;
use ada.text io, ada.streams.stream. o;
wi t h ada. unchecked_deal | ocati on;

procedure class_streamis

-- Contact _Info: A sinple class
-- the base class nust not be abstract when using 'input and 'out put

type contact _info is tagged null record,
type contact _ptr is access all contact _info'class;

type phone_nunber is new contact_info with record

phone : string(1l..14);
end record;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (27 of 39) [7/20/2001 11:33:47 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

type office_nunber is new contact_info wth record
office : integer
end record;

procedure free is new ada. unchecked_deal | ocati on(
contact _info'class, contact_ptr);

-- A StreamFile and Its Stream

streamfile : Ada.Streans. Stream | QO Fil e Type;
the _stream : Ada. Streans. Stream | O Stream Access;

contact : contact_ptr;

begi n
Put _Line("An exanple of Ada. Streans. Stream 10O and a C ass");
RUi Ll M@{ "ee==scc=scc=cc=ccccss0c=c0ccc0c000c=00cc00c0=00 ")
New Li ne;

Create(streamfile, out file, "contact list.streanm');
Put Line("Created a streamfile"”);
-- open the streamfile

the stream:= stream streamfile);
-- get a streamrepresenting the file's contents

contact := new phone_nunber' (phone => "1-905-555-1023");
contact _info'class' output(the_stream contact.all);
free(contact);

Put _Line("Wote a phone nunber");

-- wite a record

contact := new office_nunber' (office => 8023);
contact _info'class' output(the_stream contact.all);
free(contact);

Put Line("Wote an office nunber");

-- wite a record

Cl ose(streamfile);
New Li ne;
-- close the streamfile

-- Read Them
Open(streamfile, in_file, "contact_list.streant);
Put _Line("Opened a streamfile");

-- open the streamfile

the stream:= strean(streamfile);
-- get a streamrepresenting the file's contents

while not End_of File(streamfile) |oop

decl are
contact : contact _info'class := contact_info' class'input(the_stream);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (28 of 39) [7/20/2001 11:33:47 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

begi n
-- if this were nore sophisticated, we could wite a Put procedure
-- for each tagged record and use dynam ¢ di spatching
if contact in phone_nunber then
Put _Line("read a phone nunber"”);
el sif contact in office_nunber then
Put _Line("read an office nunber");

el se
Put _Line("read sonmething else");
end if;
end;
end | oop;

Close(streamfile);
-- close the streamfile

end cl ass_stream

An exanpl e of Ada. Streans. Stream | O and a C ass

Created a streamfile
Wote a phone numnber
Wote an of fi ce nunber

Opened a streamfile
read a phone nunber
read an office numnber

Files of items of the same time are more easily created with Ada.Sequentia 10 or Ada.Direct 10.

Custom streams can be created to save or trasmit data in other ways such as in memory or through a network connection.
Custom streams are created as tagged records extended from aroot class, Ada.Streams.Root_Stream_Type'class.

type My_Streamis new Root Stream Type with record

Y our stream type must override the abstract Red and Write subprograms to add and remove data from the stream.

The following is an in-memory stream creating by Warren Gay. This stream can share data between programs, buffering the
data as text in memory. If abuffer overflow occurs, an END_ERROR israised.

-- $1d: nmenory_streamads,v 1.1 2000/11/26 05:00:18 wwg Exp $
-- (c) Warren W Gay VE3WAG ve3wwg@one. com ve3wwg@ahoo. com

-- Protected under the GNU GPL License

wi th Ada. Fi nali zati on, Ada. Streans;
use Ada.Finalization, Ada.Streans;

package Menory Streamis
type Stream Access is access all Ada. Streans. Root _Stream Type' d ass;

type Menory Buffer(Max_Elem Stream Elenment_Ofset) is new Controlled wth
private;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (29 of 39) [7/20/2001 11:33:47 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

-- The new Stream Type, which nust be derived from
-- Root _Stream Type. Note that Root_ Stream Type is
-- NOT derived fromControlled, so if
-- controlled attributes are necessary, they nust
-- be defined separately, and enbedded into this
-- Object, as is done with Menory_ Buffer here.
type Menory Buffer Stream(Max _Elem Stream El ement O fset) is new
Root _Stream Type with record
Mem Buf : Menory_ Buffer(Max_El en); -- Object with Finalization
end record;

type Menory Buffer Stream Ptr is access all Menory Buffer Stream

-- The overl oaded abstract for Read
procedure Read(Stream in out Menory Buffer_ Stream
Item out Stream El ement Array; Last: out Stream El enent O fset);

-- The overl oaded abstract for Wite
procedure Wite(Stream in out Menory Buffer_ Stream
Item in Stream El enment _Array);

-- Rewind the Read Menory Buffer | ndex
procedure Rewi nd_Read(Stream Stream Access);

-- Rewind the Wite Menory Buffer I|ndex
procedure Rewi nd_Wite(Stream Stream Access);

-- To permt easy destruction of this stream
procedure Free(Stream Stream Access);

private

-- To create a Menory Buffer streamw th an

-- Initialize procedure, it nust be derived from
-- a Controlled type. Unfortunately, the type

-- Root _Stream Type is not derived fromthe

-- Controlled type, so it is done privately here.

type Menory Buffer(Max_El em Stream El enent _Ofset) is new Controlled with record

Read O f set: Stream El emrent O f set;
Wite Ofset: Stream El ement _O f set;
Buf f er: Stream El ement _Array(1.. Max_El em;

end record;

procedure Initialize(Buf: in out Menory Buffer);
procedure Wite(Buf: in out Menory Buffer; Item in Stream El enent _Array);
procedure Read(Buf: in out Menory Buffer;
Item out Stream El ement _Array;
Last: out Stream El enent O fset);
procedure Rewi nd_Read(Buf: in out Menory_ Buffer);
procedure Rewind Wite(Buf: in out Menory Buffer);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (30 of 39) [7/20/2001 11:33:47 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

end Menory_Stream

-- $1d: nmenory_streamadb,v 1.1 2000/11/26 05:00: 18 wwg Exp $
-- (c) Wwarren W Gay VE3WAG ve3wwg@one. com ve3wwg@ahoo. com

-- Protected under the GNU GPL License
with Ada. Text 1GQ use Ada. Text IO

wi th Ada. Fi nalization; use Ada.Finalization;
wi th Ada. | O _Exceptions; use Ada.| O _Exceptions;
wi t h Ada. Unchecked_Deal | ocati on;

package body Menory Streamis

procedure Read(Stream in out Menory Buffer_Stream Item out
Stream El ement _Array; Last: out Stream El enent_Ofset) is
begi n
Read(Stream Mem Buf, It em Last);
end Read;

procedure Wite(Stream in out Menory Buffer_Stream Item in
Stream El enment _Array) is
begi n
Wite(Stream Mem Buf, lten);
end Wite,;

-- Rewind the Read Menory Buffer | ndex
procedure Rewi nd_Read(Stream Stream Access) is
Mem Str: Menmory Buffer _Stream Ptr := Menory Buffer_Stream Ptr(Stream;
begi n
Rewi nd_Read(Mem Str. Mem Buf);
end Rew nd_Read,;

-- Rewind the Wite Menory Buffer |ndex
procedure Rewind Wite(Stream Stream Access) is
Mem Str: Menmory Buffer _Stream Ptr := Menory Buffer_Stream Ptr(Stream;
begi n
Rewi nd_Wite(Mem Str. Mem Buf);
end Rewi nd_Wite;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (31 of 39) [7/20/2001 11:33:47 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

procedure Free(Stream Stream Access) is

type Menory Buffer_StreamPtr is access all Menory Buffer_ Stream

procedure Free_Streamis new

Ada. Unchecked_Deal | ocati on(Menory_Buffer _Stream Menory_ Buffer_StreamPtr);

Str_Ptr: Menmory Buffer _Stream Ptr := Menory Buffer_Stream Ptr(Stream;
begi n

Free Streanm(Str _Ptr);
end Free;

procedure Initialize(Buf: in out Menory_ Buffer) is

begi n
Buf . Read_Offset := Buf.Buffer'First;
Buf . Wite Ofset := Buf.Buffer'First;

end Initialize;

procedure Wite(Buf: in out Menory Buffer; Item StreamElenent_Array) is

Count : Stream El enment_Offset := ItemLast + 1 - Item First;
Last : Stream El ement _Offset := Buf . Wite Offset + Count - 1;
begi n

if Last > Buf.Buffer'Last then
rai se Ada.| O Exceptions. End_Error;

end if;

Buf . Buf fer(Buf . Wite Ofset..Last) := Item

Buf . Wite Ofset := Buf . Wite_Ofset + Count;
end Wite;

procedure Read(Buf: in out Menory Buffer; Item out Stream El enent_ Array; Last:

out Stream El enent_Ofset) is
Xfer _Count: Stream El enent O f set
Dat a_Count: Stream El ement O f set
begi n

Buf . Wite O fset -

if Xfer_Count > Data Count then
Xfer _Count := Data_Count;
end if;

ltem(1l.. Xfer _Count) :=

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (32 of 39) [7/20/2001 11:33:47 AM]

IltemLast + 1 - ltem First;

Buf . Read O f set;

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

Buf . Buf f er (Buf . Read_Of f set. . Buf . Read_Of f set +Xf er _Count -1);

Buf . Read Offset := Buf.Read O fset + Xfer_ Count;
Last := ItemMFirst + Xfer_Count - 1,
end Read;

-- Rewind the Read offset in the Menory Buffer

procedure Rewi nd_Read(Buf: in out Menory Buffer) is
begi n

Buf . Read_Offset := Buf.Buffer'First;
end Rew nd_Read;

-- Rewind the Wite offset in the Menory Buffer

procedure Rewind Wite(Buf: in out Menory Buffer) is

begi n
Buf . Read_Offset := Buf.Buffer'First; -- Inplies a Read offset rew nd
Buf . Wite Ofset := Buf.Buffer'First; -- Rewind the wite offset

end Rewind Wite;
end Menory_Stream

-- $ld: main.adb,v 1.1 2000/11/26 05:00:18 wwg Exp $
-- (c) Warren W Gay VE3WAG ve3wwg@one. com ve3wwg@ahoo. com

-- Protected under the GNU GPL License

w th Ada. Text 1O
use Ada. Text |G

W th Menory_ Stream
use Menory_Stream

-- This is a deno main program that nakes use of
-- our hone-brewed Menory_ Buffer_Stream

-- To denonstrate, a record of type nmy rec is
-- witten to the streamw th known val ues, and
-- then is read back twice, into records T and U.

-- Then the wite offset is rewound, and a new
-- float variable Fis witten, and then read
-- back into float variable G

procedure Main is

type ny rec is record -- A denonstration record
A nat ur al ;
B: i nt eger;
St string(1..8);
Z: float;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (33 of 39) [7/20/2001 11:33:47 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

end record;

Str St ream Access : = nul |; -- A Stream
R nmy rec := (23, -95, "oink ", 1.414); -- Aninitialized record
T: my rec :=(0, 0, " ", 0.0); -- For 1st read
U ny_rec := T, -- For 2nd read
F: float := 29.99; -- Aninitialized float
G float := 0.0; -- For 3rd read

begi n

put _|ine("Denonstration has begun:");

Str
byt es)

new Menory Buffer_ Strean(4096); --

ny_ rec' wite(Str, R);

ny_rec' read(Str, T);

put line("T.A :=" & natural'imge(T.A));
put line("T.B :=" & integer'inage(T.B));
put line("T.S: &T.S &"'");

put line("T.Z :=" & float'imge(T.2));

Rewi nd_Read(Str);

ny_rec' read(Str, U);
put line("U A : :
put line("U B :
put _line("U S :
put line("U Z :

& natural'imge(U. A))

" & integer'imge(U B));
"&US&"");

" & float'imge(U. 2));

Rewi nd Wite(Str);

float' wite(Str, F);
float'read(Str, G ;

put_line("G:=" & float'inmage(Q);
Free(Str);

put _|ine("Denonstration conplete.");
end Mai n;

Create in-nmenory buffer stream (4096

Wite record Rto stream
Read stream back to record T

Dump out T

Rewi nd the read pointer
Now read into record U

Dunp out U

Inplies a read rewi nd al so
Wite F to stream
Read streaminto G
Report G for verification

Del ete stream

Denonstrati on has begun:
T.A = 23

T.B :=-95

T.S := 'oink '

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (34 of 39) [7/20/2001 11:33:47 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

X 1. 41400E+00
:= 2.99900E+01
Denonstrati on conpl ete.

T.Z := 1.41400E+00
UA := 23

UB :=95

US :="oink '
Uuz: =

G

11.13 Pragmas

Pragmas, sometimes called compiler directives, are statements that provide additional information to the compiler build a
better executable. Pragmas never change the meaning of a program.

The following are the predefined Ada 95 pragmas:

|Abort_Defer |defer abouts over ablock of statements*

|Ada_83 |enforce Ada 83 conventions, even if compiler switches say otherwise*
|Ada_95 |enforce Ada 95 conventions, even if compiler switches say otherwise*
|AI | _Calls Remote |AII subprograms in a RPC package spec are RPC callable

|Annotate |add information for external tools*

|Assert |crea¢e an assertion*

Asynchronous call to remote subprogram can complete before subprogram is done
Atomic identifier must be read/written without interruption

Attach_Handler install asignal handler procedure

C_Pass By Copy when calling C functions, use pass by copy (not by reference) when able*
|C0mment same as ldent *

|Common_Obj ect |for Fortran, create variables that share storage space*

|Comp| ex_Representation |use gcc's complex number format (for speed)*
|Component_AIignment |i ndicate how record components should be stored*

|Contro||ed |turn off garbage collection for atype (no effect in gnat)

|Convention |app|y aconvention to an identifier

|CPP_CIass |treat arecord or tagged record as a C++ class*

|CPP_Constructor |treat imported function as a C++ class constructor*

|CPP_Destructor |treat imported function as a C++ class destructor*

|CPP_Vi rtual |i mport a C++ virtual function*

|CPP_VtabI e |specify avirtual function table*

|Debug |specify adebugging procedure call*

|Discard_Nam&s |discard ASCI| representation of identifiers, as used by 'img

|EI aborate |e| aborate a certain package before this one

|EI aborate All |e| aborate all with'ed packages before this one

|EI aborate_Body |e| aborate a package's body immediate after it's spec

|Elimi nate |indicate an identifier that is not used in a program, created by gnatelim *
|Error_M onitoring |treat errors as warnings during a compile*

Export export an identifier from your program so it can be used by other languages
Export_Function export an Ada function with additional information over pragma Export*

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (35 of 39) [7/20/2001 11:33:48 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

export an Adatagged record with additional information over pragma

Export_Object Export*

|Export_Procedure |export an Ada procedure with additional information over pragma Export*

export an Ada side effect function with additional information over pragma

Export_Vaued_Procedure

Export*
|Extend_5§/stem |obso| eter
|Fi nalize Storage Only |no finalize on library-level objects, primarily for gnat's internal use *
[dent object file identification string (no effect with Linux) *
Import import an identifer from another language so it can be used in your program

Import_Function import a non-Ada function with additional information over pragma I mport*

Import_Object import a non-Ada object with additional information over pragma Import*

Import_Procedure

import a non-Ada procedure with additional information over pragma
[mport*

Import_Valued_Procedure

import a non-Ada side effect function with additional information over
pragma | mport*

Inline the indicated subprogram may be inlined.

Inline_Always forces inter-unit inlining, regardless of compiler switches*
Inline_Generic for compatibility with other Ada compilers*

Inspection_Point specify that an identifier's value must readable at the given point in the

program (for code validation)

| Interface Name

|for compatibility with other Ada compilers*

|I nterrupt_Handler

|dec| areasignal handler procedure

|I nterrupt_Priority

|Specify the task/protected object's priority where blocking occurs

|Linker_AIias |se| ect an alternative linker[?] for a package (or other llinkable unit)*
|Linker_Options |pa$ astring of optionsto the linker

|Linker_Section |the gcc linker section to use *

|List |Iist source code while being compiled

Locking_Policy Spcify how protected objects are locked and when blocking occurs

Machine_Attribute

specify GCC machine attributes*

specify a procedure that is deliberately never returned from, to avoid

MELREL compiler warnings*

|No_Runti me |ensures no gnat run-time routines are use (e.g. for creating device drivers)*
|Norma|ize_ScaI ars |set scalars variablesto illegal values whenever possible

|Opti mize |i ndicates how statements should be optimzed

|Pack |i ndicates that the type should be compressed as much as possible

|Page |start anew page in aprogram listing

|Passive ifor competibility with other Ada compilers*

|Po||ing |if on, enables exception polling*

|Priority |Specify the priority of atask

| Preelaborate |preel aborate the specified package

Propagate Exceptions

specify imported subprogram that can handle Ada exceptions; used with
zero cost handling *

|Psect_Object

|Same as common_object*

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (36 of 39) [7/20/2001 11:33:48 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

|Pure specifies the packageis pure

Pure_Function specify afunction without side-effects*
Queuing_Policy How task/protected objects are sorted when queued
Ravenscar enforce the Ravenscar real-time policies*

Remote_Call_Interface

Ensure a package can be callable by remote procedure calls

Remote Types

used for communication between RPC partitions

Restricted Run_Time

like Ravenscar, turns on a number of restrictions for real-time programming
*

|Re£tri ctions |Disab|e certain language features

|Reviewab|e |Provide arun-time profiling (like gprof)

Share_Generic [for competibility with other Ada compilers*
|Shared_Passive |used for sharing global datawith separate RPC partitions

|Source_Fi le Name

|overri des normal Gnat file naming conventions*

|Source_Reference

|for use with gnatchop*

|Storage_Si ze |amount of storage space for atask

Stream_Convert simplified way of creating streams /O subprograms for a given type*
Subtitle for compatibility with other Ada compilers*

Suppress turn off specific checks for common exceptions

Suppress_All for compatibility with other Ada compilers*

Suppress Initialization |disable initialization of variables of a given type*
|Task_Dispatching specify how tasks sort dispatches (e.g. FIFO_Within_Priorities)
|Task_| nfo |specify information about a task*

|Task_Storage |Specify the guard area for a task*

|Ti me_Slice |specify tasking time slice for main program [in Linux?]*

|Tit|e |for compatibility with other Ada compilers*

|Unchecked_U nion

|treat arecord as a C union type*

|Uni mplemented_Unit

|for unfinished units, produces a compiler error if they are compiled*

|U nreserve All_Interrupts

|a||ow reassigning of signals normally handled by gnat, eg. SIGINT*

|Unsuppress

|opposi te of suppress*

|Use_VA DS Size

|for older Adacode, 'sizeis equivalent to 'vads size*

|Vo|ati|e

|val ue of variable may change unexpectedly

|Vo| atile_Components

|array components may change unexpectedly

|Warni ngs

|turn compiler warnings on or off*

|Weak_ExternaI

|specify an identifier that doesn't have to be resolved by the linker *

* - GNAT specific

The use of these pragmas are covered in detail in the GNAT and Ada 95 reference manuals.

11.14 Low-Level Ada

|Ada

|D$cri ption C Equivalent

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (37 of 39) [7/20/2001 11:33:48 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

. Variableisinflunced outside of . .
pragma vol atile vol ati | e declaration
program
for x'address use a Sp_emfyanabsoluteaddr&ssfora p = (typecast) integer;
pointer
C o Position the identifier x on b byte
for x"alignment use b , ?
boundaries
|f or x'bit_order use o0; |Storerecord using bit order o |’?
|8#va| ue# Specify aocta numeric literal |0Value
16#val ue# S_peC|fy a hexadecimal numeric oxValue
literal
|asm(inst, in, out) |Assemb|eaninstruction |asn(inst : in : out)

Ada contains a number of low-level features and libraries, such as the ability to add machine code to a program or to access a
hardware register in memory. I'll mention afew of these features here.

If you need to specify a specific number of bits, say to access a hardware register, use the for statement.

type Reg is new integer;
for Reg'size use 4; -- register is 4 bits
type RegPtr is access all Reg;

Y ou can refer an access type to a particular address using for var'addr ess clause. Together with 'size, you can theoretically
refer to an bit in the computer's memory. However, on Linux the address refers to alocation in your address space and doesn't

refer to areal physical location.

var'alignment will align storage to a particular byte boundary. var'bit_order can specify adifferent bit order for arecord than
the default for your machine. The bit orders are defined in the System package. (Gnat 3.12 doesn't fully support bit orders.)

for Reg' address use 16#2EF#; -- hex address 2EF in your nenory space
for Reg' alignnment use 2; -- align to 16-bit boundaries
for nyRecord' bit_order use systeml|ow order _first; -- low bits to high nachine

If the register value can change independently of the Ada program (usually true), we need to mark the pointer with pragma
volatile to make sure the compiler will make no assumptions while optimizing.

pragnma vol atile(RegPtr);
Adawill do bit-wise logic operations, but it will only do them on packed arrays of booleans or modular types. Y ou can't do

bit-wise operations on integers, for example. The bit-wise operators are and, or, xor and not.

type byte is array(1l..8) of bool ean;
pragma pack(byte);

bl, b2, b3 : byte;

bé.:: bl and b2;

If you need octal or hexadecimal numbers, Ada denotes these by using aleading base designation between 2 and 16, with the
value delimited by number signs.

Hex := 16#0FE9#;
Bin := 2#01101010%#;

The System.M achine_Code package can embed assembly language instructions in an Ada program. Since Gnat is based on

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (38 of 39) [7/20/2001 11:33:48 AM]

Big Online Book of Linux Ada Programming - 11 Advanced Ada Programming

Gcec, it uses Gec'sinlining features. If you've inlined assembly code in a C program, you'll find Gnat's capabilities virtually
identical.

Assembly code is embedded using the Asm.

Asnm("nop"); -- do nothing
A tutorial by Jerry van Dijk is available from AdaPower.com.

Large sections of assembly code should be linked in separately.

<--Last Chapter Table of Contents Next Chapter-->

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/11.html (39 of 39) [7/20/2001 11:33:48 AM]

http://www.adapower.com/articles/gnatasm/inline_asm_2.html

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

12 Standard Gnat Packages

<--Last Chapter Table of Contents Next Chapter-->

This section summarizes some of the more than 100 packages that come with the Gnat compiler. These include string
handling, operating system binding, and sorts.

12.1 Standard String and Character Packages

|Ada Package ’D&ecri ption |C Equivalent
’Ada.Character.HandIing]Character operations ’Stri ngs.h?
’AdaStrings.Fixed ’Ada string operations ’Stri ngs.h
’AdaStrings.Bounded Bounded strings and operations ’ -
Ada.Strings.Unbounded Unbounded strings and operations -

Gnat.Case Util Just case conversions -
’Ada.StringsUnbounded.Text_l o) Text_10 for Unbounded Strings ’ -

Adas built-in strings, or "fixed" strings, are made of array of characters. The length of the array determines the bounds of the
string. A string that's too short for an array is padded with blanks. Although these strings are fast, they are cumbersome to use
and not practical for string-intensive applications. One problemsis, although the string type is an array with an undefined
upper bound, sooner or later you have to specify an upper bound and run the risk of constraint errors working with arrays of
different sizes.

Ada operator "&" concatenates fixed strings: thisis the only built-in operator for fixed strings.

There are two alternative stringsin Ada. Bounded strings are arrays of strings with a definite maximum size, separate from
the length, which eliminates to constraint errors. These strings are till relatively fast, but waste alot of storage on small
strings and you run the risk of overflowing the string. | use 255 character bounded strings as general purpose stringsin my
programs.

The standard Adalibrary Ada.Strings.Bounded contains the definition of bounded strings and similar operations to
Ada Strings.Fixed. Because bounded strings have a definite upper bound, the package is generic and has to be instantiated for
the maximum length. The library also includes afunction to convert a bounded string to a fixed string.

Unbounded strings are strings that can be of any size. They are typically implemented by dynamic allocation, which makes
them slow, but they don't waste memory the way bounded strings do and there's no risk over a string overflow. The standard
Adalibrary Ada.Strings.Unbounded contains the definition of unbounded strings and operations on them, including a
function to convert an unbounded string to afixed string.

C: Unbounded strings are not exactly the same as C strings. For one thing, unbounded strings don't end
in null characters. C String support isin the packages Interfaces.C.

W th Ada. Text _| O Ada. Strings. Unbounded. Text | G,

use Ada. Text 1O Ada. Strings. Unbounded, Ada. Strings. Unbounded. Text | O
procedure unbio is

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (1 of 35) [7/20/2001 11:34:25 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

-- this program denonstrates basic input/output with
-- unbounded strings. These routines are nore efficient
-- because they avoid conversion into standard Ada
-- strings
us : Unbounded_Stri ng;
begi n
Put _Line("This programdisplays information on the screen");
Put _Line("and reads information fromthe keyboard");
New Li ne;
Put Line("Type in a string");
us := CGet _Line;
New Li ne;
Put _Line("Put_Line displays a line of text and advances to");
Put _Line("the next line.");
Put ("The string you typed was ");
Put _Line(us);
New Li ne;
end unbi o;

This program di splays information on the screen

and reads information fromthe keyboard

Type in a string

Uptown G rl, she been | ooking for a downtown nan...

Put _Line displays a line of text and advances to

t he next |ine.

The string you typed was Uptown G rl, she been | ooking for a downtown nan. ..

For characters, the standard Adalibrary Ada.Char acter .Handling provides basic operations such as conversions between
case, tests for types of characters, and conversions two and from 16-bit wide characters.

Text 1 O Put_Line(Ada. Character.Handling. To Upper("r"));
This example prints 'R’ on the screen.

For string handling capabilities, you need to use a package. The standard Ada library Ada.Strings.Fixed contains operations
for fixed strings, including extracting substrings, mapping characters from one set to another (for example, upper to lower
case), and string searching. Thereis aso an Ada.Strings.Unbounded package containing the same subprograms for
unbounded strings, and likewise an Ada.Strings.Bounded for bounded strings.

Figure: Standard String Subprograms

Append / & — concatenate one string to another

Element — return the character at a particular index
Replace_Element — replace a character at a particular index
Slice — return a substring

Replace Slice/ Overwrite — replace a substring

Insert — add a string in the midst of the original string
Delete — remove a string in the midst of the original string

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (2 of 35) [7/20/2001 11:34:25 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

Count — return the number of occurrences of a substring
Index — locate a string in the original string
Index_Non_Blank — locate the first non-blank character
Head — return the first character(s) of a string
Tail — return the last character(s) of astring
Trim — remove leading or trailing spaces
* - duplicate the string a specific number of times
Tokenize —
Translate — convert a string to anew set of characters using a mapping function
The following program demonstrates many of the standard Ada string subprograms using unbounded strings.
W th Ada. Text _| O Ada. Strings. Unbounded. Text | G,
use Ada. Text 1O Ada. Strings. Unbounded,

Ada. Strings. Unbounded. Text _| G
procedure strdeno is
-- denonstrate sone of the Ada strings subprograns

teststr : string := "The rich get richer";
us : Unbounded _String;
begi n

Put _Line("This program shows sone Ada string capabilities");
New_Li ne;

Put("Qur test stringis ");

Put _Line(teststr);

New_Li ne;

Put _Line("To_Unbounded_String converts a string to an unbounded string");
us : = To_Unbounded_String(teststr);

Put _Line(us);

New_Li ne;

Put _Line("The length of the string is " & length(us)'ing);
Put _Line("If we append, ' but not happier', the string is");
Append(us, " but not happier");

Put _Line(us);

New Li ne;

Put _Line("The anpersand will work as well: " & us);
New Li ne;

Put _Line("The fifth character is " & Elenent(us, 5));
New Li ne;

Put _Line("Replacing the 20th character, we get");

Repl ace_El enent (us, 20, ',');

Put _Line(us);

New Li ne;

Put Line("The 5th to 8th charcaters is " & Slice(us, 5 8));
New Li ne;
Put _Line("The first occurence of 'ch' is at " &

I ndex(us, "ch")'inmg);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (3 of 35) [7/20/2001 11:34:25 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

New Li ne;
Put _Line("The first non-blank character is at " &
| ndex_Non_Bl ank(us)'ing);
New Li ne;
Put _Line("Replacing the first "rich® with "RICH we get");
Repl ace_Slice(us, 5, 8, "RICH);
Put _Line(us);
New Li ne;
Put Line("Inserting 'really ' at the 5th character, we get");
Insert(us, 5, "really ");
Put _Line(us);
New Li ne;
Put Line("Overwiting characters 5to 8, we get");
Overwite(us, 5, "nost");
Put _Line(us);
New Li ne;
Put Line("Deleting characters 5 through 11, we get");
Delete(us, 5, 11);
Put _Line(us);
New_Li ne;
Put _Line("The first 8 characters at the head of the string are");
Put _Line(Head(us, 8));
New Li ne;
Put _Line("The last 8 characters at the tail of the string are");
Put _Line(Tail(us, 8));
New Li ne;
-- Count is anbi guous because of the use cl auses
Put _Line("The count of 'er' is " &
Ada. Strings. Unbounded. Count (us, "er")'ing);
New Li ne;

end strdeno;

Thi s program shows sone Ada string capabilities
Qur test string is The rich get richer
To_Unbounded_String converts a string to an unbounded string

The rich get richer

The length of the string is 19

I f we append, ' but not happier', the string is
The rich get richer but not happier

The anpersand will work as well: The rich get richer but not happier

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (4 of 35) [7/20/2001 11:34:25 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages
The fifth character is r
Repl aci ng the 20th character, we get
The rich get richer,but not happier
The 5th to 8th charcaters is rich
The first occurence of 'ch' is at 7

The first non-bl ank character is at 1

Repl acing the first '"rich" with '"RICH we get
The RICH get richer,but not happier
Inserting 'really ' at the 5th character,
The really RICH get richer,but not happier
Overwiting characters 5 to 8, we get

The nostly RICH get richer, but not happier
Del eting characters 5 through 11, we get

we get

The RICH get richer,but not happier

The first 8 characters at the head of the string are
The RICH

The | ast 8 characters at the tail of the string are
happi er

The count of 'er' is 2
There are a'so a number of libraries dealing with wide strings, strings with 16-bit characters.

If you are only interested in doing case conversions, gnat provides a small package called case _util that does case
conversions (and only case conversions) on characters and strings. Use case_util to avoid loading the entire
Ada.Character.Handling library.

The following sample program demonstrates the uses of case_util:

W th text_io,
use text _io;

gnhat . case_util;

procedure casetest is
teststr constant string := "This is a TEST_string";
tenpstr string (= ", "
begi n
Put _Line("This is an exanple of the Giat string case conversion tools:");
New Li ne;
Put _Line("The original stringis '" &teststr & """);
New Li ne;
TempStr := TestStr;
Gnat. Case_Util.To _Upper(TenmpStr);
Put _Line("Upper case is '" & TenpStr & "'");
tenpstr := teststr;
Gnat. Case_Util.To _Lower(TenpStr);
Put Line("Lower case is '" & TenpStr & "'");
tenpstr := teststr;
Ghat. Case_Util.To_ M xed(TenmpStr);
Put Line("M xed case is '" & TenpStr & "'");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (5 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

end casetest;

This is an exanple of the Ghat string case conversion tools:
The original string is 'This is a TEST_string'
Upper case is '"THIS IS A TEST_STRI NG
Lower case is 'this is a test_string
M xed case is '"This is a test_String'
Ada defines anumber of character sets. ASCI| isthe standard ASCII character set.
To put an "&" character on displays that support the Latin character set, use
Put (Ada. Characters. Latin_1.LC AE Di pthong);

12.2 Advanced Input/Output
12.2.1 GNAT.IO

For small programs that don't need the full capabilities of Text_|O, GNAT provides a package called GNAT.IO. This
package can get and put integers, characters and strings. Unlike Text_10, it's also preelaborated.

with GNAT. | O
use GNAT. 1 QO
procedure gi odeno is
-- this program denonstrates basic input/output using the
-- GNAT. I O package, a stripped down version of Text 10O
c : character; -- this is a letter
begi n
Put _Line("This programdisplays information on the screen”);
Put _Line("and reads information fromthe keyboard");
New_Li ne;
Put _Line("Put_Line displays a line of text and advances to");
Put _Line("the next line.");
Put("Put ");
Put _Line("displays text, but it doesn't start a new line");
Put _Line("New_Line displays a blank |ine");
New Li ne;
Put Line("Get waits for a character to be typed.");
Put _Line("Type a key and the Enter key to continue.");
Get(¢);
Put Line("The character you typed was '" & c¢c & "'");
end gi odenv;

This program di splays informati on on the screen
and reads information fromthe keyboard

Put _Line displays a line of text and advances to

t he next |ine.

Put displays text, but it doesn't start a new |line

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (6 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

New Li ne displays a blank line

Get waits for a character to be typed.

Type a key and the Enter key to continue.

g

The character you typed was 'g'

[Not complete]

These packages are only useful for simple programs. Usually you will rely on packages/libraries provided for your project.

Text_10 file operations are very limited and are only intended for quick and dirty programs. There are other libraries for
more extensive file operations, such as Ada.Sequential_10 and Ada.Direct_IO.

Thereis aso a subpackage for displaying formatted text, such as columns of numbers.

12.2.2 10_Aux

GNAT's10_Aux package provides three commonly used functionsto Text IO programs: testing for afile's existence, and
reading an unlimited length strings from atext file or a console.

with Ada. Text 1O GNAT. | O Aux;

use Ada. Text |1 QO GNAT. | O Aux;

procedure ioaux is

-- this program denonstrates the features of the IO _Aux

-- package
TestFile : string := "/etc/passwd";
procedure ScanString(s : string) is
begi n

Put Line("The string you typed was " & s);

Put Line("It is" &s'length'ing & " characters |ong");
end ScanString;

begi n

Put _Line("This program denonstrates the features of the");
Put _Line("1O _Aux package. This package adds three functions");
Put Line("to sinple Text 1O prograns.");
New Li ne;
Put Line("File Exists tests for a file's existence.");
if File Exists(TestFile) then

Put Line(TestFile & " exists");
el se

Put _Line(TestFile & " doesn't exist");
end if;
New Li ne;
Put _Line("Get_Line is the sanme as Ada. Text 10 s CGet_Line");
Put _Line("except that reads a string of unlimted |length");
Put _Line("and doesn't return an explicit length value.");
New_Li ne;
Put _Line("Please type in a string of any length");
ScanString(GNAT.I O Aux. Get _Line);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (7 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages
New Li ne;
Put Line("The third function is a version of Get Line");
Put Line("that reads any string froma Text 10files.");
New Li ne;

end i oaux;

Thi s program denonstrates the features of the

| O Aux package. This package adds three functions
to sinple Text | O prograns.

File Exists tests for a file's existence.

[etc/ passwd exists

Get _Line is the sanme as Ada. Text 10 s CGet _Line
except that reads a string of unlimted |ength
and doesn't return an explicit |ength val ue.

Pl ease type in a string of any length

Mary had a little [anmb

The string you typed was Mary had a little | anb
It is 22 characters |ong

The third function is a version of Get_Line
that reads any string froma Text 10O files.

12.3 Sequential IO

A sequential fileisalist of similar items saved on adisk (or other long-term storage media). They are similar to aone
dimensional array except there is no upper bound, and each item must be processed in sequence (hence the name
"sequential™). Y ou can create sequential files of same-length strings, or integer, but most commonly records are used.

Y ou can open an existing sequential 10 file, or you can create anew one. When you open or create afile, you have to
indicate what file mode you'll be using. "In" mode files can only be read. "Out" mode files can only be written to. "Append"
islike out mode except that records are added to the end of an existing file.

The reset procedure changes to a new mode and repositions your program accordingly to the end or beginning of thefile.
When you are finished with a sequential file, you can either closeit or deleteit if you don't need it again.

Because there is no way of knowing how many records are remaining in the file, thereis afunction called End_of File that
you can check after each read to seeif the last item has been read. Y ou can only use End_of _File in In mode--it makes no
senseto useit in Out or Append modes since you always write at the end of thefile.

The following program writes a couple of customer records to a sequential file and reads them back again:

W th Ada. Text | O Ada. Sequential 1O Ada.| O Exceptions;
use Ada. Text |IGQ

procedure sequentio is
-- Ada. Sequenti al _I O exanpl e

type aCustoner is record

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (8 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

nane . string(1l..40);
anmountOmM ng : float := 0.0;

end record,;

-- a custoner record with two fields

package aCustonerFile is new Ada. Sequential | aCustoner);
use aCustomerFil e;

-- instantiate a new package for sequential 10 on a file of
-- custoner records

CustonerFile : aCustonerFile.File Type;
-- our custoner file
-- use "aCustonerFile" because Text | O and Sequential | O have File_Type

cr : aCustoner;
begi n

Put _Line("This is a Ada. Sequential | O exanple");
New_Li ne;

-- create the file

Create(CustonerFile,
Mode => Qut _Fil e,
Name => "custoner.seq");

-- display sone statistics

Put _Line("We created the file " & Nane(CustonerFile));
Put Line("We're currently using " & Mbde(CustonerFile)'ing & " node");
if I's_Open(CustonerFile) then
Put _Line("The file is open");
el se
Put Line("The file isn't open");
end if;
New Li ne;

-- wite the first record

cr.name : = "Tokyo Book Distributors ;
Wite(CustonerFile, cr);
Put _Line("Witing " & cr.nane);

-- wite another record

cr.name : = "General Pizza Inc. ;
Wite(CustonerFile, cr);
Put Line("Witing " & cr.nane);
Put Line("End of File not allowed on Qut files");
begi n
if End O _File(CustonerFile) then
Put Line("We are at the end of the file");
el se

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (9 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

Put Line("We aren't at the end of the file");

end if;
exception when Ada.| O Exceptions. Mode_Error =>

Put _Line(Standard_Error, "End_of File caused Ada.| O Exceptions. Mode_Error");
when ot hers =>

Put _Line(Standard_Error, "Unexpected exception occurred”);
end;
New Li ne;

-- change nodes using Reset

Put _Line("Reset can change the file node");
Put _Line("Changing to In_File node");
Reset (CustonerFile, In_File);

-- read first record

Put _Line("Reading the next custoner");
Read(CustonerFile, cr);

Put _Line("Read " & cr.nane);

New _Li ne;

-- read second record

Put Line("Reading the next customer");
Read(CustonerFile, cr);

Put Line("Read " & cr.nane);

New Li ne;

-- check the end of the file

Put Line("End_of File works on In files");
if End_ O _File(CustomerFile) then
Put Line("We are at the end of the file");
el se
Put Line("We aren't at the end of the file");
end if;
New Li ne;

Put Line("Closing file");
Cl ose(CustonerFile);

end sequenti o;

This is a Ada. Sequential | O exanpl e

We created the file /home/ ken/ada/trial s/custoner. seq
We're currently using OUT_FI LE node
The file is open

Witing Tokyo Book Distributors

Witing General Pizza Inc.
End _of File not allowed on Qut files

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (10 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages
End_of _File caused Ada.| O Exceptions. Mbde_Error

Reset can change the file node
Changing to In_File node

Readi ng the next custoner

Read Tokyo Book Distributors

Readi ng t he next custoner
Read General Pizza Inc.

End _of File works on In files
W are at the end of the file

Closing file

[Form not covered--KB]

12.4 Direct_10

In relational database programming, you create tables of information. The tables act like arrays that are limited in length by
the amount of disk space you have. Each table consists of a series of rows, and each row is divided up into subcategories
called columns.

A telephone book, for example, can be considered one large table. Each row contains information about a different person.
Each row is subdivided into columns of names, addresses and phone numbers.

Although you could represent a database table using a sequential 10 file, it would be very difficult to use. To look up the
1000th entry in the file, you would have to read through the first 999 entries.

The Ada equivalent to a database tableis called adirect 10 file. Some languages refer to thiskind of file asa"random
access' file. A direct 1O fileis called "direct” because you can move directly to any row in the file without having to read any
other rows.

Therowsin adirect 1O file are typically represented by records (athough they can be any data of a known length) and the
columns are the fields in the records. Direct 10 files can also use variant records--Adawill ensure there is enough spacein
each entry for the largest variation.

Y ou can open an existing direct 10 file, or you can create a new one. When you open or create afile, you have to indicate
what file mode you'll be using. "In" mode files can only be read. "Out" mode files can only be rewritten. Unlike sequential 10O
files, thereisaso an "In Out" mode which allows you to both read and write records. Thisis the most common mode for
accessing direct 1O files.

If you move to a position beyond the end of the file, such astrying to write to row 100 when there are only 50 rows, the other
unused rows will be created and filled with zero bytes--ASCII.NUL in characters or strings, O in integers and long_integers,
and so forth. The only way to shorten adirect 10 fileisto create a new one, delete the origina and copy the new one in place
of the original.

There are several useful functionsfor direct 10 files:
o I s_Open istrueif thefile has been opened
« End_O Fil eistrueif you have read the last record in the file. (Thisis unavailable in out mode.)
« Nane isthe path of thefile
« Mode isthe current file mode
o Si ze isthe number of rowsin thefile
« | ndex isthe number of the current row

The following example program reads and writes customer information using the Ada.Direct_|O package.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (11 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

with Ada. Text 10O Ada.Direct IO Ada.l O Exceptions;
use Ada. Text | O

procedure dirio is
-- Ada.Direct 1O exanple

type aCustoner is record
nane » string(1l..40);
anount OM ng : float;

end record;

-- a custoner record with two fields

package aCustonerFile is new Ada.Direct | Q aCustoner);
use aCustonerFil e;

-- instantiate a new package for direct 1Oon a file of
-- custoner records

CustonerFile : aCustonerFile.File_Type;
-- our custoner file
-- use "aCustomerFile" because Text |10 and Direct_| O have File_Type

cr : aCustoner;
begi n

Put Line("This is a Ada.Direct | O exanple");
New Li ne;

-- create the file

Create(CustonerFile,
Mode => Qut _Fil e,
Name => "custoner.dir");

-- display sone statistics

Put Line("W created the file " & Nane(CustonerFile));
Put _Line("We're currently using " & Mbde(CustonerFile)'ing & " node");
Put _Line("There are" & Size(CustonerFile)'ing & " records");
Put Line("We are on row " & Index(CustonerFile)'ing);
if Is_Open(CustonerFile) then
Put _Line("The file is open");
el se
Put Line("The file isn't open");
end if;
New Li ne;

-- wite the first record
cr.nane := "Mdville Electric X
Wite(CustonerFile, cr);

Put Line("Witing " & cr.nane);
Put Line("There are" & Size(CustonerFile)'ing & " records");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (12 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

Put Line("We are on row " & Index(CustonerFile)'ing);
New Li ne;

-- wite the next record on row 7

cr.name := "New York Distributors "
Wite(CustonerFile, cr, To => 7);
Put Line("Witing " & cr.nane & " to row 7");
Put _Line("There are" & Size(CustonerFile)'ing & " records");
Put Line("We are on row " & Index(CustonerFile)'ing);
Put Line("End_of File not allowed on In files");
begi n
if End O _File(CustonerFile) then
Put Line("We are at the end of the file");
el se
Put _Line("W aren't at the end of the file");
end if;
excepti on when Ada.| O Exceptions. Mode_Error =>
Put Line(Standard _Error, "End_of File caused Ada.| O Exceptions. Mode Error");
when ot hers =>
Put _Line(Standard_Error, "Unexpected exception occurred”);
end;
New Li ne;

-- change nodes usi ng Reset

Put _Line("Reset can change the file node");
Put _Line("Changing to InQut_File node");
Reset (CustonerFile, InQut_File);

-- read first record

Put _Line("Reading the next customer");
Read(CustonerFile, cr);

Put Line("Read " & cr.nane);

New Li ne;

-- read second (undefined record)

Put _Line("Reading fromrow 2");

Read(CustonerFile, cr);

Put _Line("Read " & cr.nane);

New Li ne;

-- read 7th row

Put _Line("Reading fromrow 7");

Read(CustonerFile, cr, From=> 7);

Put Line("Read " & cr.nane);

New Li ne;

-- check the end of the file

Put Line("End_of File works on InQut files");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (13 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

if End O _File(CustonerFile) then
Put Line("We are at the end of the file");
el se
Put Line("We aren't at the end of the file");
end if;
New Li ne;

Put _Line("Closing file");
Cl ose(CustonerFile);

end dirio;

This is a Ada.Direct_| O exanpl e

W created the file /home/ada/custoner.dir
We're currently using OUT_FI LE node

There are 0 records

W are on row 1

The file is open

Witing Mdville Electric
There are 1 records
W are on row 2

Witing New York Distributors to row 7
There are 7 records

W are on row 8

End_of _File not allowed on In files

End_of _File caused Ada.| O Exceptions. Mbde_Error

Reset can change the fil e node
Changing to I nQut_Fil e node
Readi ng t he next custoner

Read Mdville Electric

Readi ng fromrow 2
Read

Readi ng fromrow 7
Read New York Distributors

End_of _File works on InQut files
We are at the end of the file

Closing file

Note: In this example, reading from the unassigned second record put arow of 40 ASCII.NUL
characters on the screen. Because these are non-printable characters, nothing is visible in the results.

[What about objects? How are tags treated? --K B]

Direct_|O files are suitable for small database tables. If you need to work with large amounts of data, you should consider
installing one of the free Linux databases (such as PostgreSQL or mySQL) and using them to store and retrieve your data.
Thisisdiscussed in upcoming chapters.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (14 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

Alternately, you can write your own database package using athe Linux kernel. segio, a sequential 10 package, is devel oped
in chapter 16.

12.5 Formatted Output

Formatted output refers to displaying a value based on atemplate showing, in general, how the output should look. Because
the template is a string, it's easy to visualize the results. Thisideais used in languages like COBOL and BASIC (with its
PRINT USING command).

The Ada.Text_IO.Editing provides formatted output. The string templateis called a picture. The picture can contain the
following symbols.

o '+ - the number will be printed with aleading + or -
« '-'-anegative numberswill be printed with aleading -
« '<"and'>'- anegative number will be printed with (..)
« "CR" - anegative number will be printed with aleading "CR" (credit)
» "DB" - anegative number will be printed with aleading "DB" (debit)
« '$ - the currency symbol will be printed, or afloating dollar sign if multiple instances
« "'~ marksthe actual position for adecimal point
o 'V'- marksthe assumed position for a decimal point
« '9' - gpace for anumber with leading zeros
o # -sameas'$, except only the leading character is shown
o 'Z'- gpace for anumbers with leading blanks
o ' ','B''0, "/ - inserted. 'B' isablank
o "*'-gpacefor anumber with leading asterisks
A PICTURE_ERROR israised if thereisamistakein the layout. A LAYOUT_ERROR israised if the layout can't be used

with a particular value. Using a negative number without specifying aformat symbol that allows negative numbers causes a
LAYOUT_ERROR.

Before using Text_1O.Editing, the internal generaic package Decimal_Output must be instantiated for a particular numeric
type. Only decimal types are allowed.

type noney is delta 0.01 digits 18;
package formatted_io is new ada.text _io.editing.decimal _output(noney);
To_Picture converts a string to a picture type. Pic_String returns the string of the picture type.
p : picture := To_Picture("###9.99");
S : string := Pic_String(p);

Valid returnstrueif astring isavalid picture. When Blank_When_Zero parameter is true, a zero represented as an empty
string is alowed. By default, the picture string must show something for a zero. Blank_When_Zero can also be used with
To_Picture.

if not Valid("####9.99") then
Put _Line(Standard_Error, "This is a bad picture string");
end if;

Put displays the formatted decimal value. There is also an Image function that returns the results as a string instead of
displaying it on the screen. L ength returns the length of the formatted output. Thereisno Put_Line.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (15 of 35) [7/20/2001 11:34:26 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

Put (455.32, pic);
str := Image(455.32, pic);
Put (str, 455.32, pic);

Hereisan larger example:

with ada.text io.editing;
use ada.text _io;
use ada.text _io0.editing;

procedure formatted is
type noney is delta 0.001 digits 18;
package formatted i o is new ada.text _io.editing.decinmal _output(noney);
use formatted_ i o;

procedure Showvalues(s : string) is
begi n
put(" 0.0 and " & & " => ");
put(0.0, To_Picture(s));
new | i ne;
put(" 75.12 and " & & " => ");
put (75.12, To _Picture(s));

new | i ne;
put("-75.12 and " & & " => ");
begi n

put(-75.12, To_Picture(s));
exception when others =>
put (" LAYOUT_ERROR');
end;
new | i ne;
end Showval ues;

begi n
put _line("This is an exanple of Formatted Qutput");
put _line("--------mmm oo ")
new | i ne;

put _line("Default currency synbol is " & Default_Currency);

put line("Default fill character is '" & Default _Fill &"'");

put line("Default separator character is '" & Default_Separator & "'");
put line("Default radix mark is '" & Default_Radix_Mark & "'");
new | i ne;

Showval ues("99999. 99");
New_Li ne;

Showval ues("ZZzZZ9.99");
New Li ne;

Showval ues("****9.99");
New Li ne;

Showval ues("-$$%$9. 99");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (16 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages
New Li ne;

Showval ues(" +###9. 99");
New Li ne;

Showval ues(" <###9. 99>");
New_Li ne;
end formatt ed,;

This is an exanple of Formatted CQutput

Default currency synbol is $
Default fill character is ' '
Default separator character is ','
Default radix mark is '.'

0.0 and Zz779.99 => 0. 00
75.12 and Zz7779.99 => 75.12
-75.12 and ZZZ79.99 => LAYQUT ERROR

0.0 and -9999.99 => 0000.00
75.12 and -9999.99 => 0075.12
-75.12 and -9999.99 => -0075.12

0.0 and ****9.99 => ****(Q, 00
75.12 and ****9.99 => ***75 12
-75.12 and ****9.99 => LAYOUT_ERROR

0.0 and -%$$%$9.99 => $0. 00
75.12 and -$$$9.99 => $75. 12
-75.12 and -$%$%$9.99 => - $75.12

0.0 and +###9.99 => + $0.00
75. 12 and +###9.99 => + $75. 12
-75.12 and +###9.99 => - $75.12

0.0 and <###9.99> => $0. 00
75.12 and <###9.99> => $75. 12
-75.12 and <###9.99> => ($75. 12)

Put has many parameters used to override default values.
« Currency - the currency string to use
o Fill - thefill character to use
o Separator - the separator character to use
« Radix_Mark - the radix mark to use

Thereisaso aWide Text_|O.Editing for wide string.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (17 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

12.6 Calendar Package

Calendar is the standard Ada package for telling time. Y ou can get the current time, compare time values, do time arithmetic
and comparisons. Thereis also a GNAT.Calendar package which extends the Ada.Caledar package with days of the week,
second duration, and other features.

Table: North American Federal Holidays and Celebrations

Work schedules (not including small retail stores) often affected by these holidays.
« New Year's Day, January 1st.
« Birthday of Martin Luther King (U.S.), third Monday in January.
« Inauguration Day (U.S.), January 20th every four years, starting in 1937.
» Washington's Birthday (U.S.), third Monday in Febrauary.
« Inauguration Day (U.S.), March 4th every four years, pre-1937.
« Good Friday and Easter Sunday (see below).
» Armed Forces Day (U.S.), third Saturday in May.
o Memoria Day (U.S)), last Monday in May.
« Flag Day (U.S.), June 14th.
« CanadaDay (Canada), July 1.
 United States of America's Independence Day (U.S.), July 4.
« Labor Day, first Monday in September.
« Columbus Day, second Monday in October.
« Thanksgiving Day (Canada), second Monday in October.
« Election Day (U.S.), Tuesday on or after November 2.
« Veterans Day (U.S.), November 11th.
o Remembrance Day (Canada), November 11th.
« Thanksgiving Day (U.S.), fourth Thursday in November.
o Christmas Day, December 25th.

North American Banking (and postal) Holidays include Easter Monday and Victoria Day (Canada).

Daylight Savings Time
Daylight Savings time begins, first Sunday in April (but not in Arizona, Hawaii, and parts of southern Indiana).
Daylight Savings Time ends, last Sunday in October (but not in Arizona, Hawaii, and parts of southern Indiana).

Table:Other Widely Celebrated North American Observances
« Groundhog Day, February 2.
« Lincoln'sBirthday (U.S.), February 12.
« Vaentine's Day, February 14.
« Washington's Birthday (U.S.), February 22.
o St Patrick's Day, March 17.
« April FoolssDay, April 1.
« Mothers Day, second Sunday in May (36 USC Sec. 142).
» Victoria Day (Canada), second last Monday in May [KB?)]
« Fathers Day, third Sunday in June (36 USC Sec. 142a).

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (18 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages
o St. Jean Baptiste Day (Quebec/Canada), last Saturday in June [KB7].
« Parents Day, fourth Sunday in July (36 USC Sec. 142c).
« Grandparents Day, Sunday after Labor Day (36 USC Sec. 142b).
o Columbus Day (U.S,, traditional), October 12.
« United Nations Day (U.S.), October 24.
« Halloween, October 31.
« Boxing Day, December 26.

The following program demonstrates the basic operations of the calender package.

wth text io, cal ender;
use cal ender;

procedure caldeno is
Year : Year Nunber;
Mont h : Mont h_Nunber;
Day : Day_Nunber;
Seconds : Day_Duration;
Christmas94 : tine;
begi n
Text 10O Put_Line("A sinple cal endar exanple");
Text | O New_Li ne;

Split(O ock, Year, Mnth, Day, Seconds);
Text 1O Put_Line("The current date is" &
Year'ing & "/" &
Month'ing & "/" &
Day'ing);
Text 10O Put_Line("It's" & seconds'ing &
" seconds into the day");
Text | O New_Li ne;

Christmas94 = Tinme_O (1994, 12, 25);
if Christnmas94 < d ock then

Text 1O Put_Line("It's after Christms 1994");
el se

Text 1O Put_Line("It's before Christmas 1994");
end if;
Text | O New_Li ne;

Split(Cock+12.5, Year, Mnth, Day, Seconds);
Text 1O Put_Line("In 12.5 seconds it will be " &
Year'ing & "/" &
Month'ing & "/" &
Day'ing);
Text 1O Put_Line("And" & seconds'ing &
seconds into the day");
end cal deno;

A sinpl e cal endar exanpl e

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (19 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

The current date is 1998/ 12/ 17
It's 59775. 185023000 seconds into the day

It's after Christmas 1994

In 12.5 seconds it will be 1998/ 12/ 17
And 59787. 686581000 seconds into the day

The GNAT. Cal endar . Ti me_I| Opackage will write atime value according to aformat string, similar to the Linux strftime
function.

Easter is one of the hardest holidays to calculate. The following is a program to calculate the date of Easter Sunday:
[This should be rewritten for Ada.Calender -- KB]

W th Ada. Text IO
use Ada. Text 1O

procedure easter is

procedure findEaster(year : integer; easter_nonth, easter_day : out integer) is

-- based on the public domain algorithm

-- by Ed Bernal

a,b,c,e, g, hi,k,ux,z : integer;

begi n

-- "Gauss' fampous algorithm (I don't know how or why it works,
-- so there's no coomenting)" -- Ed Berna
a .= year nod 19;
b := year / 100;
c := year rem 100;
z :=Db/ 4
e := b remd4
g := (8*b + 13) / 25;
h :=(19*a + b - z - g + 15) rem 30;
u:=(a + 11*h) / 319;
I :=c/ 4
k :=c rem4,
X :=(2*e + 2*i - K- h +u + 32) rem7,;
easter_nonth := (h-u+x+90) / 25;
easter_day := (h-u+x + easter_nonth +19) rem 32;

end findEaster;
nont h, day : integer;
begi n

findEaster(2000, nonth, day);
Put ("Easter Sunday 2000 is nonth " & nonth'ing);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (20 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages
Put Line(" and day " & day'ing);

end easter;

Easter Sunday 2000 is nonth 4 and day 23

12.7 Tags Package

AdaTags contains some utility proceduresto for the invisible tags that accompany tagged records, including converting tags
to and from strings. The following program shows what the tags package can do and shows tag comparison with thein
operator.

with text _io, ada.tags;
procedure t is

type ParentRec is tagged record
i . integer;

end record;

type ChildRec is new ParentRec with record
j . integer;

end record;

child : Chil dRec;

begi n
Text 1O Put_Line("Working with Tagged Record Tags:");
Text |1 O New_Li ne;
Text 1O Put_Line("ParentRec has an expanded nane of " &
Ada. Tags. Expanded_Nane(ParentRec' Tag));
Text 1O Put_Line("ChildRec has an expanded nane of " &
Ada. Tags. Expanded_Nane(Chil dRec' Tag));
Text | O New_Li ne;
Text | O Put _Line("ParentRec has an external tag of " &
Ada. Tags. External _Tag(ParentRec' Tag));
Text 1O Put_Line("ChildRec has an external tag of " &
Ada. Tags. External _Tag(ChildRec' Tag));
Text _|1 O New_Li ne;

if child in ParentRec' class then

Text 1O Put_Line("child (a child rec) is in ParentRec'class");
el se

Text 1O Put_Line("This should not happen");
end if;
if child in ChildRec' class then

Text 1O Put_Line("child (a child rec) is in ChildRec'class");
el se

Text 1O Put _Line("This should not happen");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (21 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

end if;
end t;

Working with Tagged Record Tags:

Par ent Rec has an expanded nane of T. PARENTREC
Chi | dRec has an expanded nanme of T.CHI LDREC

Parent Rec has an external tag of T.PARENTREC
Chil dRec has an external tag of T.CHI LDREC

child (a child rec) is in ParentRec' cl ass
child (a child rec) is in ChildRec'class

12.8 Tables

Gnat 3.11 introduces gnat.table, a gnat package for creating an aribrary length array (or, for that matter, alink list).

[expand and give example program]

12.9 Hash Tables

Gnat provides a generic package for hash tables called gnat.htable. Y ou provide gnat's package with information on the size
of the tables, the elements it contains, and a hash function and the instantiation provides Get and Set procedures to put values
in and take values out of your hash table.

Gnat 3.11: Thisversion of gnat adds remove and iterator subprograms for hash tables.

The following is an example using a hash table of integers.

with text_io, gnat.htable;
use text _io;
procedure hashtest is

-- First, define the itens required by gnat. htable

type HashTabl el ndex i s new nteger range 1..200;
subt ype HashEl enent is integer;
Enpt yPosition : constant HashEl enent := 9999;

function HashO (he : HashElenent) return HashTabl el ndex is
begi n

return HashTabl el ndex(((he * 91) nod integer(HashTablelndex'last)) + 1);
end HashOr;

-- OK, instantiate the package

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (22 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

-- IntTable is a sinple HashTabl e of integer.

-- Since we're using sinple integers, the hash key is the integer
-- itself and we can conpare integers with equals w thout having
-- towite a function to conpare the val ues.

package IntTable is new gnat. htabl e. si npl e_ht abl e(

Header _Num => HashTabl el ndex, -- how big the table is
El ement => HashEl enent,-- what's in the table
No_ El ement => EnptyPosition,-- what's in enpty positions
Key => HashEl enent, -- what the key is
Hash => HashOF,-- function to generate the hash
Equal => "="); -- how to conpare things in table
begi n
Put _Line("This is an exanple of a hash table of integers");
New Li ne;

Int Table.Set(1, 1);

I nt Tabl e. Set (27, 27);

Put _Line("Added 1 and 27 to the hash table");

Put _Line("Enpty positions are" & EnptyPosition'ing);

New Li ne;

Put Line("Pulling 1 fromthe hash table =" & IntTable. Get(1)'ing);

Put Line("Pulling 27 fromthe hash table =" & IntTable. Get(27)'ing);

Put _Line("Pulling 99 fromthe hash table =" & IntTable.Get(99)'ing);
end HashTest;

This is an exanple of a hash table of integers
Added 1 and 27 to the hash table
Enpty positions are 9999

Pulling 1 fromthe hash table =1
Pul ling 27 fromthe hash table
Pulling 99 fromthe hash table

27
9999

[Could use more realistic example--KB]

12.10 Bubble and Heap Sorts

Gnat provides two packages for bubble sorting. Both assume that your information isin an array with alower bound of zero.
The zero element is used as temporary space for the sort.

Thefirst, gnat.bubble sort_g, isageneric. You provide the package with a procedure to move datain the array and a
function to check for one value being less than another. The instantiation provides a sort procedure.

Wi th text _io, gnat.bubble sort _g;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (23 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages
use text _io;
procedure bubblel is
-- Qur table to sort

type IntegerTable is array(0..5) of integer;
it : IntegerTable := (0, 13, 4, 5, 16, 8);
-- Define the itens required by a generic gnat bubble sort
procedure Myvelntegers(From To : natural) is
begi n
it(To) :=it(From);
end Movel nt egers;
functi on Conparelntegers(left, right : natural) return boolean is
begi n
return it(left) <it(right);
end Conpar el nt egers;

-- OK, instantiate the package

package IntSort is new gnat.bubble_sort_g(

Move => Movel ntegers, -- how to nove two things
Lt => Conparelntegers); -- how to conpare to things
procedure ShowTable is
begi n
for i in IntegerTable'range | oop
Put _Line(i'inmg &" =" &it(i)'ing);
end | oop;

end ShowTabl e;

begi n
Put _Line("This is an exanple of bubble sorting an integer table");
New Li ne;
Put Line("The table begins as:");
ShowTabl e;
IntSort.Sort(it'last); -- sort elenents 1 to top of it array
New_Li ne;
Put _Line("The sorted table is:");
ShowTabl e;
end bubbl el

This is an exanple of bubble sorting an integer table
The tabl e begi ns as:

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (24 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

0

1 =13

2 =4

3 =5

4 = 16

5=28

The sorted table is:

= 13
=4
=5
8
= 13
= 16

g b~ W NP O
]

The second, gnat.bubble_sort_a uses callbacks instead of a generic package. Use this package if you want to conserve
memory by avoiding alot of instantiations of the generic bubble_sort_g. Remember that callbacks must be global, so we can't
simple pass the local subprograms we created in bubblel. This time we must store the array and subprograms in a separate
package.

wWith text _io, gnat.bubble sort_a, inttable;

use text _io, inttable;

procedure bubble2 is
begi n
Put Line("This is an exanple of bubble sorting an integer table");
New Li ne;
Put _Line("The table begins as:");
ShowTabl e;
gnhat . bubbl e_sort _a. Sort(n => it'last,
Move => Mbvel nt egers' access,
Lt => Conparel ntegers' access);
-- sort elements 1 to top of it array
New Li ne;
Put _Line("The sorted table is:");
ShowTabl e;
end bubbl e2;

package inttable is
-- Qur table to sort

type IntegerTable is array(0..5) of integer;
it : IntegerTable := (0, 13, 4, 5, 16, 8);

-- Define the itens required by a call back gnat bubble sort
-- these nust be global to work

procedure Mvelntegers(From To : natural);
-- nove one itemin the table from From position to To position

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (25 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

function Conparelntegers(left, right : natural) return bool ean;

-- conpare two itens in the table and determne if left is |less than
-- than right

procedur e ShowTabl e;

end i nttabl e;

wth text io;
use text _io;

package body inttable is

procedure Mvelntegers(From To : natural) is
begi n
it(To) :=it(From);
end Movel nt egers;
functi on Conparelntegers(left, right : natural) return boolean is
begi n
return it(left) <it(right);
end Conpar el nt egers;

procedure ShowTable is

begi n
for i in IntegerTable'range | oop
Put Line(i'img &" =" &it(i)'ing);
end | oop;

end ShowTabl e;

end i nttabl e;

This is an exanple of bubble sorting an integer table

The tabl e begi ns as:

0
= 13
= 4
5
= 16
=8

o b~ WONPF O
1

The sorted table is:

0 = 13
1 =4
2 =5

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (26 of 35) [7/20/2001 11:34:27 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

3 =28
4 = 13
5 = 16

The heap sort package works identically, with both generic (heap_sort_g) and callback (heap_sort_a) versions as well.
Heap sorts are better suited to large amounts of data. Here's the callback version using the same inttable package we used
above.

with text_io, gnat.heap sort_a, p;
usetext_io, p;

procedur e heaptest is
begin
Put_Line("Thisisan example of heap sorting an integer table");
New_Line;
Put_Line("Thetable beginsas:");
ShowTable;
gnat.heap_sort_a.Sort(n => it'last,
Move => Movel ntegersaccess,
Lt => Comparel ntegersaccess);
-- sort elements 1 to top of it array
New_Line;
Put_Line("The sorted tableis.");
ShowTable;
end heaptest;

Thisis an example of heap sorting an integer table

The table begins as:
[this wasn't corrupted before—M S Word bug?|

12.11 Regular Expressions

"Regular Expressions’ refers to pattern matching for strings:. identifying all strings that adhere to a certain pattern. For
example, listing al filesthat end with .ads using the shell command "Is*.ads" is an example of aregular expression.

GNAT has two built-in packages for dealing with regular expressions. Thefirst, called "Regexp", performs pattern matching
using two different standards. First, it supports standard UNIX shell "file globbing" expressions as described by "man bash".
Second, it supports BNF patterns as described in the Ada Reference Manual.

Using the package is atwo step process. First, you must compile the expression using the Compile function. Then, you check
for astring that matches the expression using the Match function.

The following program demonstrates the Regexp package.
w th Ada. Text | O GNAT. Regexp;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (27 of 35) [7/20/2001 11:34:28 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages
use Ada. Text | O GNAT. Regexp;

procedure regex is

procedure TestMatch(re : Regexp; s : string) is
begi n
if Match(s, re) then
Put _Line(s & " matches the expression");
el se
Put Line(s & " doesn't match the expression");
end if;
end Test Mat ch;

Criteria : Regexp;

begi n
Put _Line("This program denonstrates GNAT' s regul ar expression");
Put _Line("capabilities. These are used to find text that match");
Put _Line("a certain pattern.”);
New Li ne;

-- UNI X Regul ar Expressions

Put _Line("A 'globbing pattern" is a UNI X shell-style pattern matching");
Put _Line("The pattern 'a*' matches anything starting with the letter "a'");
Criteria := Conmpile("a*", A ob => true, Case_Sensitive => true);

New Li ne;

Test Match(Criteria, "accounting");

TestMatch(Criteria, "President");

TestMatch(Criteria, "sundries");

New_Li ne;

-- BNF Expressions

Put _Line("A non-globbing pattern is a BNF pattern, as used in the Ada");
Put Line("Reference Manual. For exanple, 'a[a-z]*' neans characters");
Put _Line("beginning with "a' and with any nunber of letters following.");
Criteria := Conpile("a[a-z]*", false, true);
New Li ne;
Test Match(Criteria, "accounting");
TestMatch(Criteria, "sales");
New Li ne;

end regex;

Thi s program denonstrates GNAT' s regul ar expression
capabilities. These are used to find text that match
a certain pattern.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (28 of 35) [7/20/2001 11:34:28 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

A 'gl obbing pattern' is a UNI X shell-style pattern matching
The pattern '"a*' nmatches anything starting with the letter 'a'

accounti ng matches the expression
Presi dent doesn't match the expression
sundri es doesn't nmatch the expression

A non-gl obbing pattern is a BNF pattern, as used in the Ada
Ref erence Manual . For exanple, 'a[a-z]*' neans characters
beginning with "a' and with any nunber of letters foll ow ng.

accounti ng matches the expression
sal es doesn't match the expression

The second Gnat pattern matching package is "Regpat” which interprets full UNIX V7 regular expressions as defined in the
"man regexp" Linux man page. Don't be confused by the naming conventions: the Regexp package does not do Linux regular
expressions.

12.12 Advanced String Processing

[spitbol-style string processing not finished]

12.13 GLADE Distributed Processing

GLADE isthe free distributed processing package for TCP/IP and gnat. It is distributed separately from the gnat compiler.
This should not be confused with the GTK's Glade, the GUI builder for the Gimp Toolkit widgets, which has bindings for
Ada (http://glade.pn.org/).

GLADE isbuilt into the ALT version of GNAT.
Toinstall GLADE, unpack it and type "configure" and "make install".

GLADE works on partitions, programs designed to run on other computers. Each partition has a channel between itself and
another partition. Of course, the partitions can also run concurrently on one computer. Y ou describe the partitions and
channels using an Ada-like language called Garlic.

GLADE uses rsh to start partitions, so make sure you don't run the programs under the root login since root is not allowed to
run programs viarsh.

[KB: | could install and compile programs with glade, but the communication wasn't working...error in my networking setup
or did | not install it properly?]

12.14 Basic Math Packages

|Type]Ada Package Description
basic math for

Generic Ada. Nuneri cs. Generi c_El enmentary_Functi ons |(floating point
numbers

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (29 of 35) [7/20/2001 11:34:28 AM]

http://glade.pn.org/

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

basic math for
short_float type

basic math for
float type

basic math for
long_float type

basic math for
Long_Long_Fl oat |Ada. Nuneri cs. Long_Log_El enment ary_Funct i ons |long_long_float

type

Short _Fl oat Ada. Nuneri cs. Short _El enentary_Functi ons

FI oat Ada. Nuneri cs. El enent ary_Functi ons

Long_Fl oat Ada. Nuneri cs. Long_El enent ary_Functi ons

Sooner or later, you will ask the question, "So, how do | compute the cosine of anumber?' The answer found is the
Ada.Numerics.Generic_Elementary_ Functions package. This package with the unusually long name is the basic floating
point math package. Thisis a generic package that you instantiate for a particular floating point type. For example, to set up
the package for a custom floating point type called "percent",

W th Ada. Nunerics. Generi c_El ementary_Functi ons;

type percent is new float range 0.0..1.0;

package percentMath is new Ada. Nunerics. Generi c_El enentary_Functions(percent);
use percent Mat h;

The "use percentMath" statement saves us from typing "percentMath." before every function we use.

With percentMath instantiated, we can now perform basic floating point math functions such as

Put _Line("20%to the power of 3 is" & percent'image(0.2**3.0));

Asshown in thetable at the start of this section, elementary function packages for the basic floating point types are included
with Gnat.

The elementary package includes:

|Function ’Description

’Sqrt(X)]SquareRoot

’Log(X) ’Natural Logarithm (I n in some other languages)
’Log(X, b) ’Logarithmtobaseb

’Exp(X) Raise e by power x

*x Power operator

Sin(x) Sinefor x radians

’Si n(x, c)]Sineforxwherecyclerangeisc(eg. 360 for degrees)
’Cos(X)]Cosineforxradians

]Cos(X, C) Cosinefor x where cyclerangeisc

Tan(X) Tangent for x radians

Tan(x, c) Tangent for x where cyclerangeisc

There are corresponding functions for arctan, arccot, sinh, cosh, tanh, coth, arccosh, arctanh, artcoth.

Here's an example using the built-in functions for the float type, and creating our own functions for our own percent type:

wi th Ada. Text 1O Ada. Nunerics. El enentary_Functi ons,
Ada. Nunerics. Generi c_El enentary_Functi ons;
use Ada. Text |1 O Ada. Nunerics. El enentary_Functi ons;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (30 of 35) [7/20/2001 11:34:28 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

procedure floatmath is
type percent is new float range 0.0..1.0;
package percentMath is new
Ada. Nuneri cs. Generi c_El enentary_Functi ons(percent);
use percent Mat h;

hal f : percent := 0.5;

begi n
Put Line("Here's sone floating point math!");
New Li ne;

Put Line("4.0 to the power 3.0 is" &
float'image(4.0 ** 3.0));

Put _Line("The sine of 0.4 radians is" &
float'image(sin(0.4)));

Put _Line("The cosine of 180 degrees is" &
float'imge(sin(180.0, 360.0)));

Put _Line("The square root of 81 is" &
float'imge(sqrt(81.0)));

Put _Line("50% squared is" &
percent'image(half ** 2.0));

end fl oat mat h;

Here's sone floating point nath!

4.0 to the power 3.0 is 6.40000E+01

The sine of 0.4 radians is 3.89418E-01
The cosine of 180 degrees is 0.00000E+00
The square root of 81 is 9. 00000E+00
50% squared i s 2.50000E-01

When you work with floating point subprogramsin libraries outside of Ada, there's a chance that the library will change the
floating point arithmetic settings for your CPU. When this happens, use the GNAT.Float_Control package to change your
CPU back to GNAT's preferred defaults. There is only one subprogram in this package: reset.

If you are interested in integer operations not covered by the built-in Adafeatures, the I nter faces package (the package used
to interface Adato other languages) defines several bit-shifting functions. In order to use these functions, you'll need to
convert (or derrive) your integer valuesto one of Interfaces integer types:

’Function ’Description

Rotate Left Rotate bits in integer types leftward

Rot at e_Ri ght Rotate bitsin integer types rightward

|Shi ft_Left Shift bitsin integer types leftward

’Shi ft_Right ’Shift bitsin integer types rightward

’Shi ft Right Arithnetic ’Arithmetic shift bitsin integer types rightward

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (31 of 35) [7/20/2001 11:34:28 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

C: Shift_Left isthe equivalent of the C << operator. Shift_Right is the equivalent of the >> operator.

In Gnat, bit-shifting operations areintrinsic. That is, they act as built-in functions and execute quickly.

Hereis an example of shifting integer values.

with Ada. Text 10 Interfaces;
use Ada. Text 1O Interfaces;

procedure shiftMath is
Si X : unsigned_64 := 6;
begi n

Put _Line("Time to do a little bit shifting");
New Li ne;

Put Line("Qur integer is" & six'ing);
Put _Line("In binary, this is" & six'ing);

Put Line("Shifted left once is" &
Shift Left(six, 1)"inmg);
Put Line("Shifted left twice is" &
Shift _Left(six, 2)"'ing);
Put _Line("Shifted right once is" &
Shift Right(six, 1)'inmg);
Put Line("Arithnetic Shifted right once is" &
Shift_Right _Arithnmetic(six, 1)'img);

end shi ft Mat h;

Time to do a little bit shifting

Qur integer is 6

In binary, this is 6

Shifted left once is 12

Shifted left twice is 24

Shifted right once is 3
Arithnmetic Shifted right once is 3

12.15 Exception Handling and Traceback Packages

Gnat includes packages for working with exceptions. Using these packages, you can add a message to your exceptions, save

exceptions, and examine an exception occurences when they are raised.

Traceback is atechnigque to examine the run-time stack and identify where an exception occurred. Gnat can identify the
specific source file and line where an exception occurred. To use tracebacks in Linux, you must compile your program with

the -funwind-tables switch and bind with the -E switch.

[Zero-cost exceptions not covered yet--KB]

wi th Ada. Text | O Ada. Exceptions, Gnat. Current Excepti on, Ghat. Traceback. Synbol i c;
use Ada. Text | O Ada. Excepti ons, Gnat. Current _Excepti on, Ghat. Tr aceback. Synbol i c;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (32 of 35) [7/20/2001 11:34:28 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

procedure exc is
e . exception;
saved_exception : Exception_Qccurrence;

procedure CrashMe is
begi n

Rai se_Exception(e'identity, "call exec devel opnent teant);
end CrashMe;

begi n
Put Line("This is an exanple of the Ada. Excepti ons package");
New Li ne;
-- Informati on about an exception that is not in progress
Put _Line("Exception_Nane returns a unique nane for an exception");
Put _Line("The uni que name our exception is " & Exception_Nanme(e'identity));
New Li ne;

-- Raising an exception with a nessage

Put Line("raise will raise an exception with no nessage");
New Li ne;
Put _Line("Raise_ Exception will raise an exception with a nessage");

Put Line("Raising " & Exception_Nane(e'identity) &
" with the nmessage 'call exc devel opnent teanmi™);

Put Line("in the subprogram' Crashe'.");

New Li ne;

CrashMe;

excepti on when occurrence: others =>
-- Informati on about an exception that is is in progress

PUt _ Line(M- mm s s m s e e e oo "),

Put Line("An exception has been raised! Now in exception handler");

Put _Line("The name of the exception is " & Exception_Nane(occurrence));

New Li ne;

Put _Line("Exception_Message returns the nessage for this exception”);

Put Line("The nmessage for this exception is '" & Exception_Message(occurrence)
& "),

New Li ne;

Put _Line("Exception_Information provides the nane, nessage and any traceback
information:");

Put _Line(Exception_Information(occurrence));

New Li ne;

Put _Line("The Gnat. Current Exception package contains short-hand"”);

Put Line("versions of Exception_Name, Exception_Message, Exception_Information."

Put _Line("These functions assunme you're referring to the current exception");

Put _Line("Gnat.Current Exception. Exception_Nanme is " & Exception_Nane);
Put _Line("Gnat.Current Exception. Exception_Message is '" & Exception_Message &

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (33 of 35) [7/20/2001 11:34:28 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

")
New Li ne;
Put Line("The Gnat. Traceback. Synbol i c package returns the contents of the");
Put _Line("runtinme stack. That is, it shows which subprograns were being");
Put _Line("executed when the exception occurred.”);
Put _Line("The synbolic traceback is");
Put _Line(Synbolic_Traceback(occurrence));
New Li ne;
Put _Line("Ada.Exceptions can al so save and re-raise in-progress exceptions");
New Li ne;
Put Line("Save_ Cccurence can save the in-progress exception");
Save Qccurrence(saved _exception, occurrence);
Put _Line("Exception now saved.");

New Li ne;
Put Line("Reraise Cccurrence will raise an in-progress exception”);
Put Line("Reraising the one we just saved...");

Rer ai se_Cccurrence(saved_exception);
--Al |l ocat e/ Deal | ocat eMachi neSt ate not covered--for zero-cost exceptions

end exc;

This is an exanple of the Ada. Excepti ons package

Excepti on_Nanme returns a unique nane for an exception
The uni que nane our exception is EXC E

raise will raise an exception with no nessage

Rai se_Exception will raise an exception with a nessage
Rai sing EXC.E with the nessage 'call exc devel opnent teani
in the subprogram' CrashMe'.

An exception has been raised! Now in exception handl er
The nanme of the exception is EXC E

Excepti on_Message returns the nessage for this exception
The nessage for this exception is 'call exec devel opnent teant

Exception_Informati on provi des the nane, nessage and any traceback information
Excepti on nane: EXC E
Message: call exec devel opnent team

The Gnat. Current _Exception package contains short-hand

ver si ons of Exception_Nane, Exception_Message, Exception_Information.
These functions assune you're referring to the current exception

Gnhat . Current _Exception. Exception_Nanme is E

Gnat . Current _Excepti on. Excepti on_Message is 'call exec devel opnent tean

The Gnat. Traceback. Synbol i ¢ package returns the contents of the

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (34 of 35) [7/20/2001 11:34:28 AM]

Big Online Book of Linux Ada Programming - 12 Standard Gnat Packages

runtime stack. That is, it shows which subprograns were being
execut ed when the exception occurred.

The synbolic traceback is

0x8049cb3 in exc at exc.adb: 10

Ada. Exceptions can al so save and re-rai se i n-progress exceptions

Save_Cccurence can save the in-progress exception
Excepti on now saved.

Rerai se_Qccurrence will raise an in-progress exception
Rer ai si ng the one we just saved...

rai sed EXC.E : call exec devel opnent team

Cal | stack traceback | ocations:

0x80497eb

Because the reraised exception propogated all the way to the main program and caused it to fail, the final line was actually
written to Standard_Error.

<--Last Chapter Table of Contents Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/12.html (35 of 35) [7/20/2001 11:34:28 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

13 Linux Introduction

<--Last Chapter Table of Contents Next Chapter-->

This section is an introduction to Linux programming.

13.1 Introduction to Processes

Linux is an operating system. It controls the execution of programs and access to system resources.

Linux can run multiple programs at one. Each running program is referred to as a process. The operating system switchesto a
new process every 100 milliseconds by default--like everything else in Linux, this value can be customized by changing the
kernel source code.

Even on aLinux computer with only one user, there are usually several programs running in the background. The one process
that isaways running is"init": thisisthe root process, the first process Linux starts when the system is started.

13.1.1 Parents, Children and Families

Processes are grouped together into families. Each time a program starts another process, the new processis called a child and
the original processis called a parent. When the parent unexpectedly stops running, Linux knows enough to stop all the
related processes as well.

A multitasking program is a program that starts other processes to run simultaneously and assist it with its work. When a child
process starts, Linux makes a copy of the parent's resources for the child. For example, al the files that where open to the
parent are also open to the child process.

A multithreading program refers to independent streams of execution within a single process. Linux refersto each stream asa
thread. Adatasks and protected types, for example, are threads--they do not create entirely new programs they way
multitasking works. Instead, they are miniature programs that run inside the parent task, sharing that parent's resources instead
of getting their own copy.

Don't confuse Ada tasks with multitasking--the term "task" was chosen before the term "multithreading” became popular.

PID's

The ps command shows alist of all processes that are running. Each process has its own identifying number, called the PID
(for Process Identification). Here's atypical output from the ps command:

$ ps
PID TTY TI ME CVD
579 ttyl 00: 00: 00 login
589 ttyl 00: 00: 00 bash
617 ttyl 00: 00: 00 ps
PPID's

Processes also have a PPID (Parent Process ID) for identifying its parent process. The ps command | option (for "long") shows
additional information about a process, including its PPID:

$ ps |
FS u D PID PPID C PRI N ADDR SZ WCHAN TTY TI ME CVD
100 S 0 579 1 0 60 0 - 549 wait4 ttyl 00: 00: 00 | ogi n

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (1 of 15) [7/20/2001 11:35:51 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

100 S 0 589 579 0 69 0 - 457 wait4 ttyl 00: 00: 00 bash
100 R 0 624 589 0 70 0 - 634 - ttyl 00: 00: 00 ps

In this case, there are three processes in one family. The ps process (PPID 589) has a bash shell asits parent (PID 589).
Likewise, the parent of the bash shell isthe login command.

Process Groups
For complex programs with many processes, Linux can organize processes into process groups.

The psIfw options (long, full, wide) will show the PID, the PPID and a simulated graph of groups of related processes.

$ ps Ifw
F UD PD PPIDPR N VSZ RSS WCHAN STAT TTY TI ME COMVAND
100 0 579 1 0 0 2196 1148 wait4 S ttyl 0:00 login -- root
100 0O 589 579 15 0 1828 1060 wait4 S ttyl 0: 00 - bash
100 0O 689 589 17 0 2484 824 - R ttyl 0:00 _ ps Ifw

Here, it showsthat "psIfw" isarelated to the bash shell process, but the bash shell is not related to the login command. The
PPID number shows you which process started another, but not which group it belongs to. Because the bash shell process and
the ps command are both members of the same group, if you were to kill the bash process, Linux would automatically kill the
ps command as well because they are in the same group. With this arrangment, if the bash shell crashed, Linux can return
control to the login program and allow you to log in again.

In the same way, if you have many processesin your program, you can group your processes so if they crash unexpectedly, the
main program can continue running and take emergency actions. Process groups also provides an easy way to stop several
processes at once. For example, aweb server could put all the child processes into one group to make it easy to stop them
when the server is being shut down.

Sopping Processes
Normally, a process stops when it reaches the end of the instructions it needs to execute.

Y ou can stop arunaway program (or process) with the kill command, giving the command the PID number returned by the ps
command.

kill 624 #killing ps
Below welll discuss stopping processes from inside a program.

A process that runs continually, performing some kind of regular system functions, is called a daemon (pronounced
"day-mon", avariation on the word "demon"). It's referred to as a daemon as if alittle evil creature was running around doing
work on its own. If you have aweb server running, for example, you could refer to it's process as the web daemon.

13.1.2 Ownership and Permissions

For the sake of security, all programs belong to an owner and one or more groups. In the same way that all users have alogin
name (the "owner") and alist of groups they belong to, every program acts asif it's running on behalf of a particular user and
their groups. If you'relogin is"bob", for example, any program you run will be owned by the "bob" login and whatever groups
the "bob" login belongs to--your program can only access files that the "bob" login can access. If a program is owned by the
superuser login, it doesn't automatically run with the full authority of the superuser.

This can be circumnavigated by the setuid and setgid permissions. When a program is marked with the setuid or setgid active,
the program is owned by whatever owner and group owns the file. Thisis used for system programs that have to schedule
events between multiple people, like the printer daemon.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (2 of 15) [7/20/2001 11:35:51 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

13.2 Using System and OsLib.Spawn

Often, the first question new Linux programmers ask is, "How to do you run a shell command like Is from a program?"

The easiest, though not necessarily most practical, way to do Linux programming is to use the standard C library's system call.
System starts a new process, starts a shell running and gives the shell whatever command to execute that you specify. The
command executes just as if you typed it in at the command prompt.

For example, to list the filesin the current directory on the screen, you'd type:

function system(cnd : string) returns integer;
pragnma | nport(C, system);

Result := systenm("Is" & ASCI|.NUL);
The result is the exit status returned by the command, usually zero if it executed successfully or non-zero if there was an error.

To capture the output of the system command, you can redirect the results to a file using the shell's output redirect, ">". This
creates atext file for you to open with Ada.Text_10.Open.

Result := systen("lIs > /tnp/ls.out” & ASCII.NUL);
Ada. Text 10 OQpen(fd, in_file, "/tnp/ls.out");

The following is a simple program to print to the printer with the Text_|O library. It creates atext file and then uses system to
run Ipr to print it.

with Ada. Text 1 QO use Ada. Text |Q
procedure printer is
-- a programfor sinple printing

function System(s : string) return integer;
pragnma inport(C, System "systenl);
-- starts a shell and runs a Linux conmmand

procedure PrintFile(s : string) is
-- run the | pr command

Result : integer;
begi n
Result := Systen("lpr " & s &ASCII NUL);
Put _Line("Queuing " &s &')

if Result /= 0 then
Put _Line("systen() call for lpr failed");
el se
Put Line("Printing is queued");
end if;
end PrintFile;

procedure CreateFile(s : string) is
-- run the touch command

Result : integer;
begi n
Put Line("Creatinig " &s &' ")

Result := Systen{("touch " & s & ASCI | . NUL);
if Result /= 0 then

Put _Line("systen() call for touch failed");
el se

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (3 of 15) [7/20/2001 11:35:51 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

Put _Line("Spool file initialized");
end if;
end CreateFil e;

-- the text file to print

Spool Path : constant string := "/tnp/spool.txt";
Spool File : File_Type;

begi n

-- To open an out _file in text_io, it nust exist.
-- Create file will create a new spool file.

-- Set _Qutput will redirect all output to the
-- spool file.

CreateFi |l e(Spool Path);
Open(Spool File, out _file, Spool Path);

Set _Qut put(Spool File);
-- wite the report to printer

-- Linux normally will not eject a page when
-- printing is done, so we'll use New_Page.

Put _Line("Sales Report");
Put Line("------------ E
New Li ne;

Put _Line("Sal es were good");

New_Page;

-- Now, restore output to the screen, close
-- the file and queue the file for printing
-- using | pr.

Set Qut put(Standard _Qutput);
Cl ose(SpoolFile);

PrintFile(Spool Path);
Put _Li ne("Program done...check the printer");

end printer;
Although this program will work for simple applications, another improved program to print using pipes is discussed below.

The system function is convenient but it has a couple of important drawback:
« It'sdow: it always opens a shell even if you're only using the shell execute some other program

« It'sasecurity risk: the shell could have aliases defined and what you thought you were running may not be what actually
runs.

GNAT's OsLib provides a subprogram like system called spawn. It executes a Linux program without starting a shell first.
Spawn requires a bit of setup to use. Y ou have to define an array of access type arguments for the command. Once you invoke
spawn, it returns a boolean value indicating whether the spawn succeeded or failed. The following excerpt is from an example
program in the OSLib section covered below.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (4 of 15) [7/20/2001 11:35:51 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

Argunents : Argunment List(1..1);
-- an argument list for 1 argunent

Ls : constant string := "/bin/ls";
-- the programwe want to run

WasSpawned: bool ean;

RootDir : aliased string :="/";
begi n
Argunents(1) := RootDi r'unchecked_access;

-- unchecked to avoid useless (in this case) accessibility warning
Spawn(Ls, Argunents, WasSpawned);

i f WasSpawned t hen

New Li ne;
Put Line("End of |s output -- Spawned worked");
el se
Put _Line("Spawn failed");
end if;

This fragment runs the s command, prints the results on the screen, and then displays the success of the command on the
screen. Notice there are differences between spawn and system:

« spawn only gives you a boolean result
« spawn does not start a shell, so it is more secure
« because there is no shell, you can't run built-in shell commands nor can you redirect output using ">"

If spawn istoo limited, many UNIX and Linux programming books tell you how to create your own spawn style subprograms
using fork, wait and the exec family of standard C commands. Here is an example of a short C function that executes a
program and puts the results (standard output and standard error) to atext file of your choosing, allowing up to three
parameters for the command.

int CRunlt(char * path, char * outfile,
char * paranil, char * paranR, char * paranB) {

pid_t child;
int fdo, fdl, fdz;
i nt status;
int i;
if (!(child = fork())) {
/* Redirect stdin, out, err */
for (i=0; i< FOPEN_MAX; ++i) close(i);
fdo = open("/dev/null", O RDONLY);
if (fd0 < 0) exit(110);
fdl = open(outfile, OWONLY | O CREAT | O TRUNC);
if (fdl < 0) exit(111);
fd2 = dup(1);
if (paranl[0]=="\0") {
execl p(path, path, NULL);
} else if (paran2[0]=="\0") {
execl p(path, path, paranil, NULL);
} else if (paranB[0]=="\0") {

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (5 of 15) [7/20/2001 11:35:51 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

execl p(path, path, paranil, paran2, NULL);
} else {
execl p(path, path, paranil, paranR, paranB, NULL);

}

/* if we got here, file probably wasn't found */

exit(errno);
}
wait(&status);
if (WFEXITED(status) !'=0)
status = WEXI TSTATUS(status);
return status,;

It is possible to rewrite this subprogram into Ada, but it's easier in C because of the
constants, macros and execlp takes a variable number of parameters.

This function returns some special exit status values: 110 if /dev/null couldn't be opened for standard input, and 111 if the
output file you specified couldn't be opened.

function CRunlt(cnmd, outfile, parnil, parnR, parnB : string) return integer;
pragnma Inport(C, Crunlt, "CRunlt");

Result := Crunlt("/bin/ls" & ASCII.NUL, -- executable to run
"/tnp/ls.out” & ASCII.NUL, -- where output should go
"" & ASCII.NUL, -- paranmeter 1 (none)
"" & ASCII.NUL, -- paraneter 2 (none)
& ASCII.NUL); -- paraneter 3 (none)

An important part of running commands like thisis deciding on temp file names that won't be used if two copies of the
program are run at the same time. There's two ways to do this:

« Usethe standard C function tmpfile (discussed below)
« Find the process number of your program with the standard C function getpid and add it to your filename
If you are interested in accessing Linux more directly, read the next section.

13.3 The Linux Environment

Because Linux is based on decades old UNIX, the Linux development environment is like an onion. Originaly, al UNIX
programs accessed the operating system through kernel calls. Astime went on, new ways of accessing the kernel were added,
and new libraries were made to encapsulate common problems. Finally, Adaitself comes with many standard packages and
features to work with the operating system.

For the Ada programmer, it's not difficult to work with the operating system. Gnat comes with many standard libraries. These
are built using the standard C libraries. The C libraries, in turn, work by accessing the kernel. The problem isto decide which
of the many ways to access Linux is the best suited for your program.

For simple tasks, using the standard Ada packages is the most straightforward way of working with Linux. However, the
standard Ada packages were designed for portability: they only allow access to the most basic Linux features, and they aren't
particularly fast when doing it. Working with the standard C libraries is a compromise between speed and convenience: the C
libraries give you more features, but require you to import C function calls and convert between Ada and C data types. For
maximum speed and flexibility, you can only work with kernel, but then you risk extrawork by rewriting subprograms that
already exist in the standard libraries.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (6 of 15) [7/20/2001 11:35:52 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

To understand the differences between these layers, consider the problem of allocating dynamic memory. Usually you allocate
memory with the Ada new statement. Where does new get its memory? It uses the standard C library's malloc function. But
where does malloc get its memory? It gets it from the Linux kernel call mmap (memory map). The most direct way to get
memory, and the method that gives you the most control, is mmap. On the other hand, the easiest way would be to use new and
to let Ada alocate the memory and manage the details for you.

It's the same with multithreading and sequential files. Multitasking is based on LinuxThreads, a part of the standard C library,
which in turn is based on the kernel's clone function. Sequential files are based on the standard C library's stream functions,
which in turn are implemented using the kernel's file handling functions.

Figure: Ways of Doing the Same Thing

!M emory Allocation !M ultithreading Sequential Files
|Standard Ada: |new |task / protected Ada.Sequential_10 package
|Standard C libraries: |ma||oc |LinuxThreadsfunctions C stream functions
|Linux Kernel: |mmap |CI one function |kerne| file functions

Asyou move down the list from the standard Ada libraries to the Linux kernel, your program becomes more platform specific.
A program that uses new will run on any operating system that can run Ada 95. If you use malloc, your program will run on
any operating system that uses has the standard UNIX C libraries available. If you use mmap, your program will run on any
Linux computer—not just Intel-based Linux, but any flavour of Linux, include Sun UltraLinux or Apple Mklinux. Remember
that Linux is a portable operating system: all versions of Linux will have mmap available.

13.4 Standard C Libraries

We've aready covered many of the standard Adalibraries and language features in the above sections.

The standard C libraries define standardized subprograms that exist across most version of UNIX. They are "wrappers': that
is, they do not work directly with the kernel. For example, the standard C libraries are not a part of the kernel, but they use the
kernel to implement standard C functions that you'd find across many UNIX'sThe main C library, called libc, is automatically
loaded by Gnat and you can import subprograms from it directly. Other standard C libraries, such as C's math library, libm, or
the password encryption library, libcrypt, need to be linked in at the linking stage. The standard C library calls are defined in
the online manual pages.

13.5 The Linux Kernel

There are three basic ways to work with the Linux kernel: kernel calls, devices and the proc file system. Because Linux is
organized around files, the last two ways | et you operate devices and get system information simply by opening and working
with files using standard Linux file operations. Thisis makes it easier to work with Linux, but it also can make some tasks hard
to visualize because you have to do them through a sequence of abstract file operations.

In afew cases, standard libraries and kernel calls have names that overlap, which can be confusing.

In addition, Linux sometimes provides alternative versions of system calls based on different flavours of UNIX. For example,
there are two different system calls to assign an environment variable, one based on BSD UNIX (setenv) and another based on
the POSIX standard (putenv). Both do exactly the same thing, but their parameters are dlightly different. Linux provides both
to make it easier to move programs written for other versions of UNIX to Linux. But for the Ada programmer, you have to
choose the one that's easiest to use in your program.

13.5.1 Kernel Calls

Kernel calls (sometimes called system calls or syscalls) are basic operations that are implemented directly in the kernel. There
are C libraries which supply some thin wrappers on the calls which do some of the setup and cleanup for your. Most kernel
calls arein described in the C header file unistd.h. The appendices contain alist of the Linux kernel calls.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (7 of 15) [7/20/2001 11:35:52 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

The kernel calls are documented in the online manual pages, but these are sometimes out of date due to the ever-changing
nature of Linux.

13.5.2 Devices

The /dev directory defines device files. These files et you work with devices connected to your computer by using standard
file operations. Devices can include hard drives, sound cards and the system console (the text display).

Devices are recognized by their names:
« /dev/hd devices: IDE hard drives, CD-ROMs, etc.
« /dev/sd devices: SCSI hard drives, CD-ROMS, etc.
« /dev/fd devices: floppy drives
« /dev/console device: the text display
« /dev/tty devices: the pseudo terminals. /dev/tty isan alias for the current tty terminal or ttyS serial port
« /dev/ttyS devices: the seria ports
« /dev/lp devices: the parallel ports (Ip stands for line printer)
In addition, most distributions define the following links:
« dev/cdrom: an alias for the main CD-ROM device
« /dev/imodem: an alias for the the port/device the modem is connected to
« dev/mouse: an alias for the port/device the mouse is connected to
« /dev/fdO: an aliasfor the first floppy drive

There are more device files than there are devices on a computer. For example, there may be 32 serial port device files defined,
but that doesn't mean that there are actually 32 serial port on the computer. Y ou will have to open the device and check for an
error if it does not exist.

For example, opening /dev/Ipl and writing afileto it writesthe file as raw datato the first paralel port printer. Information on
how these devices work is usually found in the How-To's and other system documentation.

Special functions specific to a device are programmed with the ioctl() function. For example, you'd useioctl() on /dev/dsp to
set the sound volume on your sound card.

The documentation for device files are often difficult to find. Sometimes documentation is contained in the kernel
documentation (the /usr/doc/kernel.. directory) or in the kernel C header files (the /usr/src/linux/include/... directories). A list of
some of the ioctl operations are listed in an appendix.

13.5.3 Proc File System

The /proc directory isn't really adirectory at al. That is, it's afake directory that's not physically on the hard disk, but you can
gtill look into it and open the files it contains. The proc file system contains system information that you can access by
opening the files and reading them. Some proc files may be written to in order to change system settings. For example, there
are files that give you the information on how busy the CPU is, how much free memory you have, and the environment
variables for the current process.

The contents of these files are described in the proc man page.

13.5.4 AudioCD: An Example Program

The following CD-ROM audio CD player illustrates kernel cals, a standard C library function, and using a devicefile.

Wi th Ada. Text 1O System
use Ada. Text |G
procedure audiocd is
-- Sanple program for playing audio CD s

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (8 of 15) [7/20/2001 11:35:52 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

-- DEVI CES

-- This section deals with device files, in particular,
-- the cdrom device

DevCDROM : constant string := "/dev/cdront;
-- path to the CDROM devi ce, usually /dev/cdrom

type ioctlIDis newinteger;

type aFilelD is new integer

-- Define these as separate types for error checking.
-- AioctlIDis never the sane as a FilelD.

type byte is new integer range 0..255;
for byte'size use 8;

CDROVPLAYTRKI ND : constant ioctl|D := 16#5304#;
CDROVSTOP : constant ioctl|ID := 16#5307#;

CDROVSTART : constant ioctl|ID := 16#5308#;

-- various CDROMioct!l functions as nentioned in the
-- CDROM docunentation in /usr/doc/kernel...

type aDummyParam i s new i nt eger;
-- define this as a separate type to nake sure nothing
-- inmportant is used as a third paraneter to ioctl_noparam

-- a version of ioctl for functions that don't
-- use a third paraneter

procedure ioctl _noparan(result : out integer;
fid: aFilelD
id: ioctllD
ignored : in out aDumryParam);
pragma inport(C, ioctl_noparam "ioctl");
pragna i nport_val ued_procedure(ioctl_noparam);
type cdromti is record
start _track, start_index : byte;
end_track, end_index : byte;
end record;

-- from/usr/src/linux/include/linux/cdromh
-- PLAYTRKIND ioctl function uses cdromti record

procedure ioctl _playtrkind(result : out integer;
fid: aFilelD
id: ioctllD
info : in out cdromti);

pragma i nport(C, ioctl _playtrkind, "ioctl");

pragnma i nport_val ued_procedure(ioctl _playtrkind);
-- KERNEL CALLS

-- Calls to the Linux kernel (besides ioctl).

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (9 of 15) [7/20/2001 11:35:52 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

procedure open(id : out aFilelD
path : string;
flags : integer);
pragna i nport(C, open, "open");
pragnma i nport_val ued_procedure(open);
-- open is a kernel call to open a file

procedure close(result : out integer; id : aFilelD);
pragnma i nport(C, close, "close");

pragma i nport val ued procedure(close);

-- close is a kernel call to close a file

-- C LI BRARY CALLS

-- Calls to the standard Linux Clibraries

procedure perror(prefixstr : string);
pragma i nport(C, perror, "perror");
-- perror is a standard C library call to print
-- the last error nmessage froma kernel call or the
-- standard C libraries on the screen

cd : aFilelD

playinfo : cdromti;
dumy : ADunmmyPar an
ioctl _result : integer;
close_result : integer;
ch : character;

begi n

Put _Line("This program plays an audio CD in your CDROM drive");
New Li ne;

-- open the /dev/icdromfile so we can control the CDROM dri ve
-- using ioctl

Put Line("Openning " & DevCDROM & "...");
Open(cd, DevCDROM 0);
if cd <0 then

perror("Error openning CDROM drive");
end if;
-- start the CDROM drive

Put _Line("Spinning up cdrom..");
ioctl _noparan{ ioctl_result, cd, CDROVSTART, dummy);
if ioctl _result < O then

perror("Error spinning up the CDROM drive");
end if;

-- display nenu
New Li ne;

Put Line("1 = Play, 2 = Quit");
New Li ne;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (10 of 15) [7/20/2001 11:35:52 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

-- Main | oop. Repeat until 2 is selected.

| oop

Put ("Select a function (1-2): ");

Get(ch);

case ch is

when '1' => playinfo.start _track := 1; -- first track
pl ayi nfo.start_index := 0; -- no effect
pl ayi nfo.end_track :=9; -- final track (inclusive)
pl ayi nfo.end_index := 0; -- no effect

ioctl _playtrkind(ioctl _result, cd, CDROVWLAYTRKIND, playinfo);
when '2' => joctl _noparam ioctl _result, cd, CDROVSTOP, dunmy);

exit;
when ot hers => Put _Line("Pardon?");
end case;

if ioctl _result < O then
perror("Error controlling CDROM drive");
end if;

end | oop;
-- Close the CDROM devi ce

Close(close result, cd);
if close_result < 0 then

perror("Error controlling COROM drive");
end if;

end audi ocd;

13.6 Standard Input/Output/Error

Linux defines three default 1/0 streams. Standard input (Linux fileid 0) isthefile form which all keyboard input normally
comes to your program. Standard output (Linux fileid 1) is the default where the output of your program is written. Standard
error (Linux fileid 2) isthe file to which error messages are written. Usually, standard input is from the keyboard, and
standard output and error are directed to the screen. There are two output streams so that if you redirect the results of a
command to afile, such as"ls > temp.out”, any errors that occur will still appear on the screen.

The following program writes messages to standard output and standard error using Text_|O:

Wi th ada.text io;
use ada.text _io;

procedure stderr is
-- an exanple of witing nessages to standard error

begi n

Put Line("This is an exanple of witing error nessages to stderr"”);
New Li ne;

-- Text 10 defines a file called Standard _Error, always open,
-- that you can wite error nessages to.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (11 of 15) [7/20/2001 11:35:52 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

Put Line(Standard_Error, "This nmessage is on standard error");
Put _Line("This nmessage is on standard output");

New Li ne;

-- you can use Set _Qutput to send all Put _Line's to Standard_Error

Set CQutput(Standard Error);
Put Line("This is also on standard error");

Set _Qut put (Standard_Qut put);

Put _Line("But this is on standard output");
end stderr;

This is an exanple of witing error nessages to stderr

This nessage is on standard error
Thi s message is on standard out put

This is also on standard error

But this is on standard out put

Everything looks normal until you redirect the output of the program. Thisis the result when the standard output is redirected
to afile called "out.txt". The error messages aren't redirected.

[root@rmtage trials]# stderr > out.txt
This nmessage is on standard error
This is also on standard error

13.7 Linux Binary Formats

Many people do not think of binary files as having aformat because they contain machine code instructions. However, binary
files are more than just raw microprocessor instructions. They contain information such as the type of the binary file and alist
of al DLL's needed by the program to run.

Linux binary files comein two formats: EL F (Executable and Linking Format) and "a.out". They both have different
characteristics and neither is better than the other. Most distributions let you install ELF or a.out compilers. The version of gnat
for Linux is compiled for ELF. ELF is current Linux standard primarily because it provides better support for shared libraries.

Fun Fact: "a.out" is an abbreviation for "assember output".

Since the kernel has to do the loading and execution of programs, support for ELF, a.out or both must be selected when the
kernel is compiled. Otherwise, the kernel will not recognize the format and will be unable to run the binary file.

13.9 Linux Libraries

A library isaset of object files that have been combined into asinglefile. You create aLinux library using the ar (archive),
which takes".0" object files can compiles them into or out of .aarchivefile. A Linux library files al start with "lib" and end
with ".a". The command parameters for ar are a bit odd: check the man page for more details.

The ar comamand has many options. Two useful variationsare ar cr (create anew archive and add object filesto it) and ar t
(show alist of all object filesin the archive file). See the example below for how these work.

A library which isdirectly linked into a program, so that it is added to the executable, iscalled astatic library. Tolink ina

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (12 of 15) [7/20/2001 11:35:52 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

static library, just include it's name with the gnatlink command (or gnatmake on simple projects). By default, gnat's own
libgnat library is always static, because of concerns over multithreading.

For example, if you install and compile the official JPEG library sources, astatic library fileis created named libjpeg.a. To link
thislibrary into your program, you'd include -1j peg when linking. Note that you don't use the entire name of the file: gnat
assumes there is a beginning "lib" and ending ".a".

One usefor static librariesisto create alibrary for others to use.

Asasmall example, suppose you have a package p and you want to create a static library to link into a program t. Y ou have to
put the library's object file (p.o) into a static library (eg. libp.a) and change p.ali to read-only so gnat knows there is no object
fileincluded with p. Then include -1p when making or linking.

arm tage:/ hone/ ken/ada/test# |s

p.ads p.adb p.ali p.o t.adb

arm tage:/ hone/ ken/ada/test# ar cr libp.a p.o

arm tage: / hone/ ken/ada/test# rmp.o

arm tage:/ hone/ ken/ ada/test# chnod -w p.ali

arm tage:/ hone/ ken/ ada/test# |s

libp.a p.ads p.adb p.ali t.adb

arm tage:/ hone/ ken/ada/test# ar t |ibp.a

p. o

arm tage:/ hone/ ken/ ada/test# gnatnmake t -Ip

(Strickly speaking, -1p should use gnatmake's linker options option, but this works.)

If the library isin aplace other than your current directory, you'll need to use the -L option to indicate the directory to check.

A shared library (or DLL, dynamic link library) isalibrary that is loaded into memory and shared between programs. It's not
actually saved as part of the executable. All Linux shared libraries end in .so.a ("shared object archive??"). They are loaded
when aprogram is executed.

[UNTESTED!] To create a shared library, compile the source code with the -fPIC (position independent code) option and link
using -shared. Y ou also need to include -W 1,-soname,nameofobj ect -- is this necessary under gnat if you use gnatlink? |
think it probably is. [see Linux Application programming, pg 72]

if you forget the —fPIC switch, your shared library will till load, but you won't be able to
share the code between applications that use the library.

-fpic will aso work on Intel processors because there is no maximum imposed for the global
offset table, but it may not work on other processors: the —fPIC switch is the preferred method.

The shared libraries are usualy stored in standard Linux directories, like /lib or /usr/lib. Once you copy a shared library into
one of these directories, you have to run Idconfig to register the new shared library, otherwise Linux will not load it.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (13 of 15) [7/20/2001 11:35:52 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction
To load a shared library from the current directory instead of the standard Linux directories, use -L. (where period isthe
current directory).

Shared libraries have the advantage of making executable's smaller, but they are slower to load and execute and use up more
memory than static libraries. The also have the advantage of being able to be ugraded separately from your program, provided
you don't change the format of any of the subprograms.

Too many shared libraries mean that you have small files scattered throughout the lib directories, making your program harder
to maintain.

Generally speaking, only subprograms that will be shared between programs should be shared libraries, and you should
combine small, related libraries into one shared library. For example, al the standard C libraries are compiled into one shared
library on Linux: libc.so.a

[from usenet]

makedl|.bat

gcc -c beep.adb

gnatbind -n beep.ali

gnatlink beep.ali -0 beep.jnk -mdll -WI,--base-file,beep.base

dlltool --dllname beep.dll --def beep.def --base-file beep.base --output-exp
beep.exp --output-lib libbeep.a

gnathind -n beep.ali

gnatlink beep.ali -o beep.jnk beep.exp -mdll -WI,--base-file,beep.base
dlltool --dllname beep.dll --def beep.def --base-file beep.base --output-exp
beep.exp --output-lib libbeep.a

gnatbind -n beep.ali

gnatlink beep.ali beep.exp -0 beep.dil -mdll

Thisisadef filel am using.

beep.def

EXPORTS

DIl GetClassObj ect=DI| GetClassObject @12 @2
DllCanUnloadNow=DIlCanUnloadNow@0@3
DlIRegisterServer=DIIRegisterServer@0@4
DllUnregisterServer=DIlUnregisterServer @0@5

NOTE: Since the exported functions or STDCALL, | need to provide the number of bytes used for parameters. If you were
using standard pragma C stuff it would be:

MY Function@XX XX

where XXX X iswhat ordinal inthe DLL - BTW you can leave this out all together if you don't need it and just put the name of
the function on the line.

[end]

Gnat has an option called -static which will link al shared libraries into your executable asif they were static libraries. This
makes your executable completely self-contained, but may violate GPL licensing restrictions on certain libraries.

Gnat comes with one shared library, libgnat.a. If you link agnat program without the -static option, you have to copy thisfile
into a standard library directory (e.g. /lib) and run Idconfig so that Linux will be able to find the gnat library when executing
your programs. Gnat always automatically linksin the library: you never have to type "-Ignat" explicitly when linking.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (14 of 15) [7/20/2001 11:35:52 AM]

Big Online Book of Linux Ada Programming - 13 Linux Introduction

13.10 Libc5, Libc6 and Upward Compatibility

One of the difficulties with Linux programming is that the standard libraries are seldom upwardly compatible. For example,
the ncurses 3 console drawing package is completely incompatible with ncurses 4. Likewise, ncurses 4 is completely
incompatible with ncurses 5. In an open source enviroment, subprogram parameters can appear and disappear with each new
release.

The Gnat compiler always links the standard C library into your programs. As aresult, you have to be aware of the problems
with Linux's standard C library, even if your Gnat program doesn't call its subprograms explicitly. Y our Gnat executable
always connected to the C library it was compiled against.

Like most open source libraries, the standard C library isn't upwardly compatible. Inspite of the fact libc version 5 and libc
version 6 (now called glibc 2.0) share the same name, many functions and names have been changed between the two versions.
Multithreading under libc5 is done with the linuxthreads library, an implementation of "pthreads’. LinuxThreads is based the
Posix 1003.1c thread model, with afew extensions. Linuxthreadsis a built in part of libc6.

In the Linux world, even minor changes between libraries will create problems. Thereis very little upward compatibility. For
example, a program may run on libc 6.0.x but won't run on libc 6.0.y because some symbol names have changed. Because of
this dependency, your programs should be compiled against a specific Linux distribution. Don't assume that if a Red Hat disk
and a Slackware disk are published in the same month that they are using exactly the same versions of the C library. By the
same token, don't assume you can simply include libc 6.0.y with your program and update the user's version of libc by
installing yours overtop. This can cause many programs to crash if they can't find the particular version of libc that they need.

The sameistrue of the gnat library, libgnat.a. ACT does not guarantee that a program compiled for gnat 3.11's gnat library will
run with gnat 3.12'sgnat library. In fact, it probably won't.

13.11 Linux Basics

[To befilledin -- KB]

<--Last Chapter Table of Contents Next Chapter-->

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/13.html (15 of 15) [7/20/2001 11:35:52 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

14 Linux Programming

<--Last Chapter Table of Contents Next Chapter-->

Fun Fact: The original Apple Macintosh operating system was written in Pascal, the ancestor language
of Ada

14.1 Gnat OS Library

Ada Description C Equivalent
create file CreatealLinux file creat
delete file DeletealLinux file unl i nk
etc.

The gnat OS library, gnat.os_lib, provides common UNIX operations independent of what flavour of UNIX
gnat is running on. It provides an extensive set of file utilities as well as the ability to run blocked and

non-blocked child processes. The price for this low-level OS support isthe need to use alot of addresses, 'access

and C strings.

there is also athin binding available for basic C stream functions, described below.

Wth text_io, gnat.os_lib;
use text _io, gnhat.os _|ib;
procedure ostest is
fd : File_Descriptor;
FilePath : constant string := "testfile.xxx" & ASCII. NUL;

-- for wite test

FirstLine : constant string := "This is the first line in the file";
AmountWitten : integer;

-- for tinme stanp test

ts : OS Tineg;

Year : Year Type;

Month : Mont h_Type;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (1 of 15) [7/20/2001 11:36:18 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming
Day : Day_Type;

Hour Hour _Type;

Mnute : Mnute_ Type;

Second : Second_Type;

for |ocation test

String_ Access;

for delete test

WasDel et ed : bool ean:;

for
Argunents
Ls : constant string :=
WasSpawned: bool ean;
Root Di r aliased string : =
begi n

spawn t est
Argunent _List(1..1);
“/bin/ls";

Il/ll;

Put _Line("This is an exanple of the Gnat's OS library:");

New Li ne;
Put _Line("Creating a new file...");
fd := create file(FilePath' address,
if fd = invalid_fd then

Put Line("Unable to create " & FilePath);
el se

Put Line("Created " & FilePath);

Binary);

end if;
New Li ne;
Put Line("CGetting the timestanp on the file...");
ts := File Time_Stanp(fd);
GM Split(ts, Year, Month, Day, Hour, Mnute, Second);
Put Line("The tine stanp is" &
Year'ing & "/" & Month'ing & "/" & Day'ing &
Hour'inmg & ":" & Mnute'ing & ":" & Second'ing);
New Li ne;
Put _Line("Witing to the file...");

Put Line(FirstLine);
AmountWitten := Wite(fd, FirstLine' Address,
Put Line("Wote" & AmountWitten'ing & "

FirstLine' Length);

byt es");

Put Line("The file length is" & File_Length(fd)'ing);

New Li ne;
Close(fd);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (2 of 15) [7/20/2001 11:36:18 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

Put Line("Closed the file");

New Li ne;

Put Line("Locating the file we just nmade...");
sp := Locate Regular File(File Name => Fil ePath,
Path => Get Env("PATH').all);

Put_Line("The fileis '" & sp.all &""");
New Li ne;
Put Line("Deleting the file...");

Del ete File(FilePath' address, WasDel eted);
I f WasDel eted then
Put Line("File was del eted");
el se
Put Line("File was not del eted");
end if;
New Li ne;
Put Line("Running Is / ...");
New Li ne;
Argunents(1l) := RootDir'unchecked access;
-- unchecked to avoid unl ess accessibility warning
Spawn(Ls, Argunents, WasSpawned);
I f WasSpawned t hen
New Li ne;
Put Line("End of |s output - Spawned worked");
el se
Put Line("Spawn failed");
end if;
New Li ne;

end ostest:;

This is an exanple of the Grat's OGS |ibrary:

Creating a new file...

Created testfile.xxx

Getting the tinestanp on the file...

The tinme stanp is 1998/ 12/ 18 23: 42: 24
Witing to the file...

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (3 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming
This is the first line in the file
Wote 34 bytes
The file length is 34
Closed the file

Locating the file we just nade...
The file is './testfile.xxx'
Deleting the file...

File was del eted

Running I's /

STARTUP
System map
System ol d
bi n

boot

cdrom

dev

dosc

etc

fd

honme

lib

| ost +f ound
mt

opt

proc

r oot

sbin

tnp

usr

var
vm | huz
vminuz.old
End of |s output - Spawned worked

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (4 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

14.2 Installing Binding Packages

A variety of Ada packages exist to alow you to call C libraries from Ada. These packages are called bindings.
For example, there are Ada bindings to Motif, TCL, WWW CGI and Posix (that is, the kernel).

A thin binding gives you direct accessto library calls. A thick binding providesindirect access, where the
package does some setup before invoking the library calls. The gnat.os lib library is an example of athick
binding to basic Linux file operations.

When installing binding libraries:

« Make sure that the filename endings are the right ones for gnat. Different compilers use different
conventions.

« Compile the binding package(s).
« Install thelibrary the binding isfor (if necessary)

« Include -Iname on the link line, where name is the library. Remember that the order of the-I'sis
important.

14.3 Catching Linux Signals

A programs has to be able to respond to unexpected events. What do you do when somebody types control-C?
How do you gracefully stop the program when somebody kills it with the kill command? These unexpected
events are referred to asignalsin Linux, and Gnat provides libraries for you to "catch” these signals and
respond to them gracefully.

The standard Ada 95 package Ada.Interrupts and its children handle unexpected operating system events.
Under Linux, these packages provide support for signal handling.

A completelist of Linux signalsislisted in an appendix. The package Ada.l nterrupt.Names defines the names
of these signals for you.

Signal Handler s are protected type procedures with no parameters. The body of the procedure performs
whatever actions you want to do when you receive asignal.

For example, to catch the SIGTERM signal, the signal that indicates that the program has been killed with the
"kill" shell command, you can write a handler like this:

pr ot ect edbodySi gnal Handl er is

procedure Handl eSI GTERM i s
-- normal kill signal handler
begi n
Put _Line("Quch! |'ve been killed!");
-- perform any other cleanup here
end Handl eS| GTERM
end Si gnal Handl er;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (5 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

To put the handler in place permanently, use pragma Attach_Handler.
pragma Attach_Handl er (Handl eSI GTERM SI GTERM) ;
Now whenever your program receives a SIGTERM signal, your handler will automatically run.

If you don't want to install a permanent handler, a handler can beinstalled or changed while the program is
running. To indicate that a procedure is an interrupt handler that can be installed at a later time, use pragma
Interrupt_Handler.

pragma | nterrupt_ Handl er (Handl eSI GTERM) ;

Gnat automatically handles one signal for you: SIGINT, the interrupt signal. Thisisthe signal that is sent to
your program when control-c is pressed. If you want to handle control-c presses yourself, you have to use
pragma Unreserve_All_Interrupts. Despiteit'slong name, this pragmasimply tells Gnat to ignore SIGINT's.

Certain signals can never be caught. SIGUNUSED, the unused signal, can't be caught for obvious reasons.
Some signals are used by the multithreading software and are not available for usein applications. In particular,
If you are running native Linux threads, you can't catch SIGFPE, SIGILL, SIGSEGV, SIGBUS, SIGTRAP,
SIGABRT, SIGINT, SIGVTALRM, SIGUNUSED, SIGSTOP, or SIGKILL. On 2.0 kernels or older, native
Linux threads use SIGUSR1 and SIGSUR2 and are not available. If you're running FSU threads, then
SIGALRM is also not available.

Adalnterrupts also contains several subprograms for signal handling.

o Is Reserved istrueif aparticular signal is uncatchable.

Is Attached istrueif a particular signal has a handler attached.

Current_Handler returns a pointer to the handler for a particular interrupt.

Exchange Handler will put anew handler in place and return a pointer to the previous handler.
« Detach_Handler will uninstall a handler

The following package sets up three signal handlers, which display a message at set the
EMERGENCY_SHUTDOWN variable to true. The demo program demonstrates some of the Ada.Interrupts
subprograms and entersinto a slow loop. The main program was killed with the "kill —SIGPWR" shell
command, ssimulating a power failure signal.

Wi th Ada. | nterrupts. Nanes;
use Ada.lnterrupts, Ada.lnterrupts. Nanes;
package SigHand is

-- Package to handl e basi c Linux signals

pragma Unreserve All Interrupts;

-- Grat will no longer handle SIA NT for us
EMERGENCY_SHUTDOWN : bool ean : = fal se;

-- set in the event of a signal to shut down the program
-- Signal Handl er will handle the signals independently

-- fromthe main programusing nultithreadi ng

protected Signal Handl er is

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (6 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming
procedur e Handl eContr ol C,
pragma Attach_Handl er (Handl eControl C, SIG NT);
-- SIA@NT (Control-C) signals will be intercepted by
-- Handl eControl C
procedure Handl eKi | |

pragma Attach_Handl er(HandleKill, SIGIERM);
-- SIGTERM (kill command) signals will be intercepted by
-- Handl eKi |

procedur e Handl ePower Fai | ur e;
pragma Attach_Handl er (Handl ePower Fai | ure, SIGPWR);
-- SIGPWR (power failure signal) intercepted by
-- Handl ePower Fai | ure
end Si gnal Handl er;

end Si gHand;

wth Ada. Text 1O
use Ada. Text | O
package body SigHand is

-- Package to handl e basic Linux signals

prot ected body Signal Handler is
-- This protected type contains all our signal handlers
procedure Handl eControl Cis
-- Control -C signal handl er
begi n
i f EMERGENCY_SHUTDOWN t hen
Put _Line("Handl eControl C. The programis already shutting down");
el se
Put _Line("Handl eControl C. Control -C was pressed, shutting down");
end if;
EMERGENCY_SHUTDOWN : = true;

end Handl eControl C

procedure HandleKill is
-- normal kill signal handler
begi n
i f EMERGENCY_SHUTDOWN t hen
Put Line("HandleKill: The programis already shutting down");
el se

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (7 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

Put Line("HandleKill: Programis shutting down");
end if;
EMERGENCY_SHUTDOWN : = TRUE;
end Handl eKil | ;

procedur e Handl ePower Failure is
-- power failure handl er
begi n

i f EMERGENCY_SHUTDOWN t hen

Put _Li ne("Handl ePower Failure: The programis already shutting down"

)

el se

Put _Li ne("Handl ePower Failure: Programis shutting down");

end if;
EMERGENCY SHUTDOWN : = TRUE;

end Handl ePower Fai | ur e;
end Si gnal Handl er;
end Si gHand;

w th Ada. Text |1 O, SigHand, Ada.lnterrupts. Nanes;
use Ada. Text | O SigHand, Ada.Interrupts, Ada.lnterrupts. Nanes;
procedure SigDeno is
Handl er : Paraneterl ess Handl er;
Counter : integer := 2;
begi n
Put _Line("This program denonstrates signal handling.");
Put _Line("To stop this program type Control-Cor ");
Put Line("kill it with the shell kill command.");
New Li ne;
-- |Is_Reserved exanpl e
If I's Reserved(SIGIERM) then
Put Line("The SI GTERM handler is reserved");
el se
Put Line("The SI GTERM handler isn't reserved");
end if;
-- |Is_Reserved exanpl e

If Is Attached(SIA@NT) then
Put Line("There is a SIGANT handler installed");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (8 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming
el se
Put _Line("There is no SIANT handler installed");
end if;
-- Current _Handl er exanpl e

Put _Line("Testing SI GTERM handler...");
Handl er := Current_Handl er(SI GTERM) ;
-- Current _Handl er gives a callback to the handl er
Handl er . al | ;
-- run the handl er call back
I f EMERGENCY_SHUTDOWN t hen
Put Line("Handl er works");
el se
Put Line("Handl er doesn't work");
end if;
-- test conplete: reset energency shutdown fl ag
EMERGENCY_SHUTDOWN : = f al se;

-- a long | oop

New Li ne;

Put Line("The nunber is " & Counter'ing);

| oop
exi t when EMERGENCY_ SHUTDOWN,
Counter := Counter * 2;
Put Line("Doubling, the nunber is " & Counter'ing);
del ay 1. 0;

end | oop;

Put Line("The program has shut down");

end Si gDeno;

Thi s program denonstrates signal handling.
To stop this program type Control -C or
kill it with the shell kill commuand.

The SI GTERM handl er isn't reserved

There is a SIGA@NT handler installed
Testing SI GTERM handl er. . .

Handl eKi |l | : Programis shutting down
Handl er wor ks

The nunber is 2

Doubl i ng, the nunber is 4

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (9 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

Doubl i ng, the nunber is 8

Doubl i ng, the nunber is 16
Doubl i ng, the nunber is 32
Doubl i ng, the nunber is 64
Doubl i ng, the nunber is 128
Doubl i ng, the nunber is 256

Doubl i ng, the nunber is 512
Handl ePower Fai |l ure: Programis shutting down
The program has shut down

14.4 Working with the Command Line

Ada Description C Equivalent
Function Command_Name return string; The name of this command (path?). |argv[0]
Function ArgumentCount return natural; The number of arguments. argn
Function Argument(n : natural) return string; The n'th argument. argv[n]
Procedure Set_Exit_Status(e : Exit_Status); The exit status to return. exit(e)

Adainteracts with the outside world through the standard Ada package Ada.Command_L ine.

Suppose you have an Ada program called "myprog" and a user types in the following command: "myprog -v
sally.com".

« "myprog" isthe name of the command.
o "-v" and "sally.com" are arguments to the command.

Command_Name returns the name of the command. If the program was run from a shell, it returns the name as
typed in by the user. In the above example, Command_Name returns "myprog".

ArgumentCount returns the number of arguments, not including the name of the program. The shell
determines how arguments are grouped together, but typically each argument is separated by a space. In the
above example, there are two arguments, "-v" and "sally".

Argument returns an argument. In the above example, argument(1) returns "-v".

Set_Exit_Status gives Adathe error code you want to return when the program is finished running. Ada
definestwo Exit_Status values, Success and Failure. Since Exit_Status isjust an integer, you can return
other values. Zero indicates that the program ran without error, non-zero values indicate an error. The
predefined values of Success and Failure are 0 and 1.

Properly flagging errorsisimportant for shell programming. For example, you have to return the proper exit
status for "myprog & & echo 'all iswell™ to work properly. Y ou can retrieve the exit status of the last command
using "$?". For example:

#!/ bi n/ bash

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (10 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

nmyprog -v sally
if [$?2 -eq 0] ; then
echo "There were no errors”
el se
echo "The programreturned error code = $?"
fi
See the example program in the next section for an example using this package.

14.5 Linux Environment Variables

Ada.Command_L ine.Environment is agnat package for accessing Linux environment variables.

Ada Description C Equivalent
Function Environment_Count return natural; The number of environment variables |?
Function Environment_Value(n) return string; | The name value of the nth variable getenv(n)

The Environment_Count function returns the number of environment variables.

The Environment_Value function returns the name and value of a variable, separated by an equals sign. For
example, Environment_Value(5) returns the name and value of the fifth environment variable.

The following program is an example of Ada.Command_Line and Ada.Command_Line.Environment. The
results assume that you started the program by typing "cmdtest -v".

wth text io, Ada.Conmand_Li ne. Environnent;

use text io, Ada.Command Li ne, Ada.Conmand_Li ne. Environnment;

procedure cndtest is

begi n

Put _Line("This is an exanple of Ada. Comrand_Li ne");

New Li ne;

Put _Line("The command to invoke this exanple was '" & Command_Nanme & "'"
);

Put Line("There is/are" & Argunent_Count'ing & " command |ine argunents”
);

I f Argunent _Count > 0 then

Put _Line("The first argunent is '" & Argunent(1) & "'");
end if;
New Li ne;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (11 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

Put Line("There is/are" & Environnment Count'ing & " environnent
vari ables.");

Put Line("The first environnment variable is '" &
Envi ronnent _Value(1) & """);
Set Exit_ Status(Success);
end cndt est;

This is an exanpl e of Ada. Conmand_Li ne

The conmand to i nvoke this exanple was 'cndtest'
There is/are 1 command |ine argunents

The first argunent is '-V'

There is/are 24 environnment vari abl es.
The first environnent variable is ' LESSOPEN=| | esspi pe. sh %'

Environment variables can be removed using the Gnat Ada. Conmand_Li ne. Renove package.

14.6 GNAT.Directory_Operations Package

This Gnat package allows you to create and explore directories. Although the package is portable to all
operating systems, the format of the directory depends on the particular operating system.

For this package, a directory name string (Dir_Name_Str) is a pathname in the standard Linux format. The
trailing '/' character is optional when using this package, but directory names returned will always have a

trailing '/'. "." isthe current directory. ".." is the parent directory of the current directory.

Get_Current_Dir returns the name of the current directory. Change Dir changes the current directory to a
new location.

with ada.text _io, gnat.directory operations;
use ada.text _io0, gnat.directory_operations;

procedure gdir is
dir : string(1..80);
l en : natural;
begi n
Put ("The current working directory is ");
Put Line(Get Current Dr);

Change Dir("..");

Put ("Moving up, the current working directory is ");
Put Line(Get Current Dr);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (12 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

Change Dir("work");
Get _Current _Dir(dir, len);

Put ("Mving down to "work', the current working directory is ");

Put _Line(dir(1..len));
end dir;

The current working directory is /hone/kburtch/work/

Movi ng up, the current working directory is /honme/kburtch/
Movi ng down to "work', the current working directory is /hone/kburtch/work/

For viewing directories, the package opens directorieslikea Text_|O file. Dir_Typeisalimited private

directory type correspondsto afile typein Text _10. Directories can only be read.

« Open - Open adirectory for reading
e Close- Close adirectory

» Read - Read adirectory entry. When anull string is returned, there are no more entries

« Is Open - Trueif the directory is open

« Read Is Thread_Safe- Trueif the directory can be read by separate tasks (threads). That is, if thereisa

readdir_r kernel call
Any error will raise aDIRECTORY _ERROR exception

wth ada.text _io, gnat.directory operations;
use ada.text _io, gnat.directory_operations;

procedure gdir2 is

dir . Dir_Type;
dirnanme : string(1..80);
| en . natural;

begi n

I f Read |s Thread Safe then
put |line("Tasks nay read the sane directory");
el se

put |line("Tasks nay not read the sanme directory"

end if;
New Li ne;

Qpen(dir, ".");
If I's Open(dir) then
put Line("The directory was opened");
el se
put _Line("The directory was not opened");
end if;
| oop
Read(dir, dirnane, len);
exit when len = O;
Put Line(dirname(1..len));
end | oop;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (13 of 15) [7/20/2001 11:36:19 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

Put _Line("End of directory");
Close(dir);

end gdir2;

Tasks may not read the sanme directory

The directory was opened

gdir. ads
gdir. ali
gdir. adb
gdir.o
gdir
gdi r 2. adb
gdir 2. al
gdir2.0
gdir2

End of directory
Thedirectories"." and ".." are always returned.

New directories can be made with Make Dir.

Make Dir("logs"); -- make a new "l ogs" directory

If you need more features that these, the Linux kernel callsfor directories are described in 16.9. The section
includes a command to remove directories which cannot be done with Gnat.Directory Operations.

14.7 GNAT.Lock_Files Package

This Gnat package contains subprograms for obtaining exclusive access to a particular file or directory. When a
fileislocked, only your program may use the file until the file is unlocked.

L ocks are implemented using lock files. When afileislocked, Gnat checks for the presence of a separatefile. If
the file exists, the file has been locked by another application. If afile cannot be locked, aLOCK_ERROR is
raised.

The programmer supplies the lock file name. Linux programs usually place lock filesin the /var/lock/ directory.

The Lock_File procedure locks a particular file. By default, if the procedure will continue trying to relock the
file every second forever (actually, for Natural'Last seconds, avery long time). The delay and the number of
retries can be changed.

Lock File("/var/lock/", "custonmers.txt");
Lock_File("/var/lock/custoners.txt");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (14 of 15) [7/20/2001 11:36:20 AM]

Big Online Book of Linux Ada Programming - 14 Linux Programming

Lock_File("/var/lock/custoners.txt", Wait => 5.0, Retries => 10);

Files are unlocked using Unlock_File. This procedure deletes the lock file.

Unl ock_File(LockDir, "custoners.txt");
Unl ock _File("/var/lock/custoners.txt");

The lock file approach is a voluntary convention. Programs that honour the convention can share thefilein an
orderly way. A program that doesn't use the package will not be denied access. For true file locking, use the
Linux kernel calls described in 16.7.

<--Last Chapter Table of Contents Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/14.html (15 of 15) [7/20/2001 11:36:20 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

15 Free Ada Bindings

<--Last Chapter Table of Contents Next Chapter-->

15.1 Using Florist, the POSIX binding

Florist (Florida Statue University/Forest) isa GPL binding of the POSIX (IEEE Standard 1003.5b-1996)
standard operating system functions. These include file operations, date and time functions, and
multitasking—the same kinds of function provided by the standard C libraries and the Linux kernel.

If you are writing an application that will run on several different operating systems, Florist provides a
level of operating system independence. Once you install gnat and Florist on your new platform, you
should be able to recompile a Florist application without having to worry about variations in system
cals.

Florist is designed for gnat and runs on Linux as well as Solaris, OFS1, AlX, IRIX and HP-UNIX. Florist
works closely with the gnat run-time system: you must compile Florist against a particular gnat
installation. If you change your gnat installation, you will need to recompile Florist.

Older versions of Florist for Gnat 3.11 work best with aversion of Gnat compiled for FSU
threads. Native threads require some patching to work, and not all Florist features are supported--see
the Florist documentation for details. For more information on FSU threads, read the multitasking
section above.

Newer versions of Florist, such asthe ALT RPM, works with the normal (native threads) version of
Gnat.

Commercia support for Florist isavailable form ACT.

Because the Linux kernel largely adheresto the POSIX standard, many of Florist functions have the
same parameters as their Linux counterparts.

Florist divides the POSIX functionsinto a set of 73 Ada packages, all prefixed with the name "posix".
The main package is called "posix.ads’ and contains the definition of data types and many of the basic
POSIX functions.

To write Florist applications, you'll need to link in the Florist library with "-lposix" (check?) and, if
necessary, use "-1" to indicate where you've installed the package specifications.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (1 of 13) [7/20/2001 11:36:37 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

15.2 Using Texttools

The Texttools packages are a GPL, ncurses-based library for the Linux console. Texttools contain more
than 600 procedures and functions to create windows, draw scroll bars, handle the mouse and keyboard
events, play sounds, and much more. The Texttools package also provides athick binding to Linux
kernel calls. You can create awide variety of application programs using Texttools alone.

Thisisthe same package used to implement TIA.

[to be rewritten—KB]

15.2.1 Installation

1. Inthe C_code directory, type "gcc -O -¢ *.c" to compile the C files.

2. The Adafiles should compile when you build your project with Gnatmake. If TextTools are installed
in adifferent directory than your project, you will need to use the gnatmake -1 switch.

When linking, you'll need to include the "-Im" and "-Icurses" switches as well as the object files from
C_code. TextTools uses the C math library and ncurses 4.0. For example,

gnatlink -Im-Incurses C code/*.0 ...

15.2.2 Introduction

Although there are over 600 procedures and functionsin TextTools, to open window isfairly
uncomplicated.

Everything in TextToolsis drawn in awindow. Everything in awindow is a control (sometimes called a
"widget"). To display awindow, you must create a window, fill in the window with controlsto display,
and run the window manager's DoDial og command.

The following program opens a simple window.

with conmbn, oS, userio, controls, w ndows:
use conmobn, 0S, userio, controls, w ndows;

procedure ttdeno is
-- Define Wndow Controls

OKButton : aliased ASi npl eButton;
MessagelLine : aliased AStaticlLi ne;

-- The Di al og Record

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (2 of 13) [7/20/2001 11:36:37 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

DT : AD al ogTaskRecor d;

begi n
-- Start TextTool s
St art upConmon("denp", "denmp");
St art upGCs;

StartupUserl Q
StartupControls;
St art upW ndows;

-- Create a new wi ndow. The wi ndow wi || not appear until the
-- DoDi al og procedure is used.

OpenW ndow(To255("Deno Wndow'), -- title at top of w ndow

0, 0, 78, 23, -- the coordinates of the w ndow

Style => normal, -- type of wi ndow, usually "normal"
Hasl nfoBar => true); -- true if control information is
-- displayed at the bottom of the

-- W ndow

-- Setup the controls in the w ndow
-- OK Button | ocated near bottom of w ndow

I nit(OKButton,

36, 20, 44, 20, -- coordinates in w ndow
0"); -- hot key for OK button
Set Text (OKButton, "OK"); -- button will have "K"

Setlnfo(OKButton, To255("Select ne to quit"));

AddControl (Si npl eButton, OKButton'unchecked_access, |sd obal
fal se);

-- Message at top of window in bright red

I nit(Messageli ne,
1, 1, 78, 1);
Set Text (MessageLi ne, "Wel cone to Text Tool s");
Set Styl e(Messageline, Bold);
Set Col our (Messageline, Red);

=>

AddControl (Si npl eButton, Messageli ne' unchecked_access, |sd obal =>

fal se);

-- Display the wi ndow and handl e any i nput events. Wen dial og

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (3 of 13) [7/20/2001 11:36:37 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings
-- is finished, return control which conpleted the dial og.

| oop

DoDi al og(DT);
exit when DT.Control = 1; -- first control is the OK button
end | oop;

-- close the wi ndow
Cl oseW ndow,
- - Shut down Text Tool s

Shut downW ndows;
Shut downCont r ol s;
Shut downUser | Q,
Shut downGs;

Shut downConmon;

end ttdeno;

Package Overview
TextTools is broken into 5 main packages, based on what they do.

Common - this package contains all the basic data types used by TextTools, plus subprograms that work
with those types. In particular, two important types are defined:

e Str255 - most TextTools subprograms use this bounded, 255 character string type instead of the
standard Ada fixed strings. The function To255 converts an Ada string to a Str255. ToString
convertsin the other direction.

o Str255List - somelist controls display ablock of text. These controls use the Str255List.List
type, alinked list of Str255 strings. The subprograms for this type are defined the generic package
gen_list.

Most TextTools calls do not return errors. There are some exceptions, such in the OS package. Error
numbers are returned in the LastError variable. LastError isO if thereis no error.

OS - this package contains subprograms for working with the Linux operating system: that is, for reading
the current time, deleting files, and the like. Texttools pathnames are defined in this package. A pathisa
Str255 string. The OS package can define path prefixes, beginning with a"$". For example, "$HOME" is
predefined as the user's home directory. To delete afile called "temp.txt" from the user's home directory,
you can use the OS erase command:

Erase(To255("$HOVE/tenp.txt"));

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (4 of 13) [7/20/2001 11:36:37 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

$SY Sisanother predefined prefix. Thisrefersto adirectory in the user's home directory named with the
"short name" you specify in the StartupCommon procedure. Sounds, keyboard macros and the
session_log file are located here.

Userl O - this package contains all the input/output routines for TextTools: it handles mouse clicks, draws
text, and so forth. Normally, only people writing controls will need access to this package. However, the
pen colours, beep sounds and text styles, are also defined here.

Controls - this package contains all the window controls and related subprograms. Currently defined
controls are:

o Thermometer

o ScrollBar

« StaticLine

« EditLine (and family)
o CheckBox

« RadioButton

« WindowButton

« Rectangle

o Line

» Horizontal Sep

o VerticalSep

o StaticList

o CheckList

« RadioList

o EditList

« SourceCodeList (used by TIA)

Windows - thisis the window manager. It creates and draws windows, and DoDialog procedure lets a
user interact with the window. It also handles the " Accessories' window that appears when ESC is
pressed.

Each package is started with a " Startup” procedure, and shutdown with a " Shutdown" procedure. The
only procedure to take parameters is StartupCommon: you need to specify a program name and a short
name to use for temporary files.

15.2.4 Window Overview

The Window Manager draws all the windows on the screen. For ssmple programs, you will need to use
only four Window Manager procedures.

OpenWindow - this procedure creates a new window. Each window has atitle, coordinates on the screen,
a"style", and an optional info bar.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (5 of 13) [7/20/2001 11:36:37 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

AddControl - adds a control to the current window. If 1sGlobal is false, the coordinates you specified in
the control's Init call will be treated as relative to the top-left corner of the window, as opposed to the top
left corner of the screen.

CloseWindow - closes the last window you created

DoDialog - this procedure displays the window and handles all interaction between the user and the
window. It has one parameter, ADialogTaskRecord, which lets you set up callbacks (if necessary) and
returns the number of the control which terminated the dialog.

5.2.5 Other Useful Window Manager Subprograms

Windows can be saved using the SaveWindow command, and |oaded again using LoadWindow. When a
window isloaded with LoadWindow, you don't need to open the window or set up the controls--the
Window Manager does this automatically for you.

ShellOut will close the windows, run a shell command, and reopen the windows.
RefreshDesktop will redraw all the windows on the screen.

SetWindowTimeout will set a default control to be selected if there is no response after a certain amount
of time.

15.2.6 Alerts

Alerts are small windows that show a short message.
NoteAlert - displays a message with an "OK" button. The status sound is played, if installed.

CautionAlert - displays a message with an "OK" button. The text is drawn to emphasize the message.
The warning sound is played, if installed.

SopAlert - displays a message with an "OK" button. The text is drawn to emphasize the message. The
warning sound is played, if installed.

YesAlert - display a message with "yes" (default) and "no" buttons. Plays an optional sound.
NoAlert - display a message with "yes" and "no" (default) buttons. Plays an optional sound.

CancelAlert - display a message with cancel button and a customized button (default). Plays an optional
sound.

YesCancelAlert - display a message with "yes', "no", and "cancel" buttons and returns the number of the
button selected. Plays an optional sound.

Example:
Not eAl ert ("The dat abase has been updated");

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (6 of 13) [7/20/2001 11:36:37 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

15.2.7 Other Predefined Windows

SelectOpenkFile - displays adialog for opening files. It has parameter, A SelectOpenFileRec. Y ou have to
fill in certain before displaying this window.

SectSaveFile - displaysadialog for saving files. It has one parameter, A SelectSaveFileRec. Y ou have
to fill in certain details before displaying this window.

ShowlListinfo - displays a Str255L.ist list in awindow
EditListInfo - displays a Str255L.ist list in awindow and let's the user edit the list.
Example:

sof : ASel ect OpenFi | eRec;

sof . pronpt : = To255("Select a file to open");
sof .direct := false; -- can't select directories
Sel ect OpenFil e(sof);
I f sof.replied then

FilePath := sof.path & "/" & sof.fnane;
el se

-- user cancel |l ed
end if;

Control Overview

Every control must be initialized with the Init procedure. Init positions the control in the window and
assigns a"hot key", a short cut key for moving to the control.

Y ou can turn a control off (make it unselectable) using SetStatus. Setting the control's status to Standby
will make it selectable. Some controls are automatically turned off, such as the static line control.

The following controls can be used in a TextTools window:
Thermometer

Thisisathermometer bar graph. It shows the percentage between the maximum value and the current
value, and isfilled based on the percentage

ScrollBar

Thisisascroll bar. A thumb isdrawn at the relative location of the thumb value to the maximum value
of the bar. The bar will be horizontal or vertical depending on the shape specified in the Init procedure.

StaticLine

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (7 of 13) [7/20/2001 11:36:37 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings
Thisisan unchanging line of text.

EditLine (and family)
Thisis an editable line of text.

AdvanceMode - if set, the cursor will move to the next control when the edit field isfull. Thisis useful
in business applications where fixed-length product numbers are typed in.

BlindM ode - if set, hides the characters typed. Thisis useful for typing in passwords.
SimpleButton
Thisis abutton that, when selected, terminates the dialog.

Instant - if set, the button acts like a menu item. Pressing the hot key will immediately select the button
and terminate the dialog. Otherwise, pressing the hot key only moves the cursor to the button.

CheckBox
A check box is an option which may be turned on or off.
RadioButton

A radio button is one of a set of options which may be turned on or off. Every radio button has a family
number defined in the Init procedure. When aradio button is turned on, all other buttons in the family are
turned off.

WindowButton

L oads a window from disk and displays it. The window must have been saved with the Window
Manager's SaveWindow procedure.

Rectangle

A box which can be drawn around controls.

Line

A line--what else would it be--drawn between two corners of the enclosing rectangle defined by the Init
procedure.

Horizontal Sep

A horizontal line, often used to separate controls into groups.
Vertical Sep

A vertical line, often used to separate controls into groups.
StaticList

A scrollable box of unchanging text.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (8 of 13) [7/20/2001 11:36:38 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings
CheckList
A scrollable box of check boxes.
RadioList
A scrollable box of radio buttons.
EditList
A scrollable box of editable text.
SourceCodelist (used by PegaSoft's TIA)

A scrollable box containing source code.

OS Package

This package contains various calls for working with the operating system. All calls support path prefixes
as described above. Here are some of the subprograms:

e UNIX - runaUNIX shell command. The function variations return the result of the command.
o Runlt - runsa UNIX program.

» ValidateFilename - check for a syntactically correct filename.

o NotEmpty - trueif afileis not empty

o IsDirectory - trueif fileisadirectory

o IsFile-trueif fileisa"regular" file

o MakeTempFileName - creates a random file name for atemporary file
« Erase- deletesafile

o LoadList - load a Str255L.ist list from afile

o Savelist - savea Str255List list to afile

e MyID - return the PID for your program

« SessionLog - write to the session log. If a$SY S directory exists, SessionLog creates afile called
"session_log" in that directory. All SessionLog calls write to thisfile.

15.2.10 UserlO Overview

The Userl O package handles all the input and output for TextTools. Unless you are writing a game or
new controls, you'll probably won't need to use UserlO at all. However, there are afew useful
subprograms to be aware of:

» Beep - play a.wav file. Requires Warren Gay's wavplay program. These files must be saved in the
$SY S directory, with the name of the beep sound in upper case.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (9 of 13) [7/20/2001 11:36:38 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings
o Keypress- get akeypress

o DrawErr - draw an error message. DrawErr draws the text on the left-side screen in white. Use
only for emergencies.

« GetDisplaylnfo - retrieve information about the current screen, such as whether it supports colour,
and it's dimensions. Use this information to resize your windows for different screens.

Example:
Beep(Startup); -- play startup sound

Keyboard Macros

UserlO will load a set of keyboard macros at startup. These must be saved in the $SY S directory, in afile
called macro_file. Thefirst letter of each lineisthe key for the macro, and the rest of thelineisthe
expanded macro. For example, if alinein macro_file contained

pPegaSof t

then typing control-A followed by "p" would put the word "PegaSoft" in the input queue asif the person
had typed "PegaSoft".

15.2.11 Appearance and Keys

Most of the objects on the screen should be easily understood, the mgjority designed after their GUI
counterparts. Hereis alist:

o <> Text- A button. Press Return to activate. Type the hilighted letter to go immediately to this

button.

« | > Text - An menu button. Enter Return to activate. Type the hilighted letter to immediately
activate.

e () Text - A radio button. Press Return to select this item and deselect the previousitem in the
group.

e [] Text- A check box. Press Return to switch on or off.

o« --—-- Hemmmeee - A scroll bar.

o« —---- 50%----- - A thermometer graph.
Buttons with hyphens in them are not selectable.

Basic Keyboard Shortcuts:
Movement Keys

Up/Down Arrow - move up or down to the next menu item
* inlists - move up or down onelineinthelist

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (10 of 13) [7/20/2001 11:36:38 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings
* in scroll bars - adjust up or down by 10%

Left/Right Arrows - move left or right to the next menu item
* in lists - move up or down onelineinthelist
* in scroll bars - adjust up or down by 1

Page Up (or Control-P) - move up one pagein alist
* in scroll bars - same as up and down arrows

Page Down (or Control-N) - move down one pagein alist
* in scroll bars - same as up and down arrows

Home Key (or Control-Y) - move to the top of alist
* in scroll bars - go to the top

End Key (or Control-E) - move to the bottom of alist
* in scroll bars - go to the bottom

Tab Key - move to the next item in the window
Control-T - move to the previous item in the window
Return Key (or Spacebar) - activate a button

When inside of alist box, the movement keys move you around the list. If you are on the Linux console,
pressing alt and the hilighted letter will always jump to the appropriate object, even if you'reinside alist
box or the notepad.

Editing Keys

Control-6 - mark text
* only worksin edit lists

Control-X - clear text
* in lists, clear the current line (or lines, if control-6 used)

Control-B - copy text
* in lists, copy the current line (or lines, if control-6 used)

Control-V - paste text
* in notepad, paste the last line copied

Misc. Keys

ESC Key (or F1) - bring up the accessories menu
Control-L - redraw the screen

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (11 of 13) [7/20/2001 11:36:38 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings
Control-A (or F2) - execute a keyboard macro

15.3 Using NCurses

Ncursesis afree toolset for drawing on text screens, such as the Linux console.

[not finished]

15.4 Using GTK+ Widgets

GTK+, the Gimp ToolKit, isawidget set (or sometimes called a control set). These are the same widgets
used by the Gimp drawing program. Unlike Motif and QT widgets, GTK+ uses an LGPL license, making
it very popular for new Linux software, include the GNOME desktop project.

GTK+ also contains 2D drawing operations.
GTK+ isavailable for download from the GTK web site at http://www.gtk.org.
GtkAda can be downloaded from the ALT web site, or from its home page at http://ada.eu.org/gtkadal.

GtkAdaisan Adads binding of Gtk+ version 1.2.0. It allows you to develop graphical applicationsin
Adads using Gtk+. General GTK+ documentation and atutorial written with examplesin C are available
from the GTK web site.

[not finished]

15.5 Using Motif Widgets

Motif (pronounced "Moe-Teef") isan X Windows widget standard created by the Open Software
Foundation (OSF), a group of several UNIX companies. Matif is built for the stanadard X Windows
library Xt. With Motif, you can create windows and dialog boxes menus, buttons, scrolling lists and the
like. Motif isaregistered trademark of OSF.

LessTif (pronounced "Less-Teef") is an open source compatible version of Motif 1.2 with some
extensions, licenced under LGPL. It is available for download from the LessTif web site at
http://www.lesstif.org. This site also includes documentation on compiling and installing LessTif.

There are no Adabindings for LessTif, but there are Ada bindings for Motif which should work equally
well for Lesstif. The bindings are available from the Home for Brave Ada Programmers,
http://www.adahome.com.

Motif (and LessTif) have not proven to be very popular. Motif programs tend to be very large, with
widgets layouts that are difficult to design, and have a heavy reliance on Motif's cumbersome resource
files. Even small Motif programs typically require contain several hundred lines of source code to set up

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (12 of 13) [7/20/2001 11:36:38 AM]

Big Online Book of Linux Ada Programming - 15 Free Ada Bindings

their initial window. Toolsets such as Qt (used in KDE) and GTK+ (used in GNOME) have larger
followings, and Motif support is primarily for older applications being ported to Linux.

However, Motif, as a standard, is continuing to evolve.

15.6 Using the TCL Binding

TASH (Tcl AdaSHell) isabinding to TCL/TK. It includes both athin binding to the basic TCL/TK
functions (as found in the C header filetcl.h), aswell as versions of the functions made for easier calling
from Ada. The binding supports TCL 8.0

http://tash.cal span.com/
TASH also comes with its own TCL shell interpreter which functions like tclsh but is written in Ada.

15.7 Using the OpenGL/Mesa Binding

Mesais an OpenGL library for 3D graphics. It can create 3D objects, transform them, and supports
accelerated drivers.

Y ou can use Mesa under GTK+ by using a GTK+ "GL Ared" widget and draw graphics inside using
Mesa.

15.8 Engine_3D

Engine 3D isarea-time 3D drawing package written entirely in Ada. The Linux port is by Duncan
Sands. The Engine 3D packageis at http://members.nbci.com/gdemont/e3d.htm.

<--Last Chapter Table of Contents Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/15.html (13 of 13) [7/20/2001 11:36:38 AM]

http://members.nbci.com/gdemont/e3d.htm

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

16 Advanced Linux Programming

<--Last Chapter Table of Contents Next Chapter-->

16.1 Writing Your Own Bindings

|Ada Package |Descripti on |C Equivalent
|pragma i mport |Importidentifierfrom another language |extern?
|pragma expor t |Exportidentifierto another language |extern?
|pragma i mport_function |Likeimport, but extra options

|pragma i mport _procedure |Likeimport, but extra options

. Import afunction that returns values as

pragma i nport_val ued_procedure parameters extern?
pragnma export _function |Like export, but extra options

pragma export_procedure |Like export, but extra options

Because gnat is tightly integrated with gcc, we can make certain assumptions that would otherwise be impossible.
« thebasic Adadatatypes are equivalent to their C counterparts. an Adainteger array isa C integer array

in parameters are the same as pass by copy parametersin C

« in out parameters are the same as passing a pointer as a parameter in C

Adastring parameters ending in ASCI1.NUL are the same asa C string

Ada procedures are the same as C void functions

There are rare cases when these assumptions don't hold (e.g. certain cases when null pointer parameters are not allowed by
Ada), but, generally speaking, these assumptions are valid under Linux. Gnat has general purpose interfacing pragmas and
support for C typesin the Interfaces.C package. Use these if you want maximum portability.

Because of these assumptions, most C library calls are easily represented in Ada. For example, we check the man page for
gettime and discover it returns the current time as along integer. To call thisfrom Ada, we use

function gettime return | ong_integer;
pragnma I nport(C, gettinme);

Since there isno Ada body for the gettime function, we use pragma import to let gnat know gettime is a C function. When we
link, we need to specify the C library that function isin. In the case for the GNU C library, thisis unnecessary sinceit's
automatically linked. We can now call the C function gettime as if we wrote it ourselves.In C, it's possible to call afunction
and discard the result by not assigning it to anything. Y ou can call C functions from Adathis way by declaring them a
procedure. For example:

procedure gettine;
pragma Inport(C, gettinme);

In this case, it's not particularly useful to call gettime and throw away the time it gives you. In general, you should avoid
discarding the result because you may find it useful at some time in the future. However, there are certain C function where the
result is provided only for flexibility, such as functions that return a pointer in a parameter and return the same pointer as the
function result as well. These can safely be discarded by treating the function as a procedure.|f we wanted to export an integer
variable called Total TimeEstimate to C, we'd use

Tot al Ti neEsti mate : integer;
pragnma Export(C, Total Ti mneEstinmate);

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (1 of 47) [7/20/2001 11:37:13 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

A C function that returns void corresponds to an Ada procedure.

When importing or exporting to C, gnat converts the variable to lower case because C is a case-sensitive language.
Tota TimeEstimate would be called totaltimeestimate in a C program. Y ou can override this by providing a specific C name to
link to. For example,

pragnma Export(C, Total Ti meEsti mate, "Total Ti neEsti mate");

Import and Export don't require the name be the same at all. However, using entirely different namesin C and Adawill make
your program hard to understand.

If you want to import functions from libraries other than the standard C library, you will have to explicitly link them in. For
example, to use the C math library, libm.a, would have to be explicitly linked using -Im. In C, functions can have parameters
that change value, while in Adathis kind of function is not allowed because functions can only have "in" parameters. To get
around this problem, gnat defines an import_valued_procedure pragma. Suppose you have a C function like this:

i nt SonmeCFunction(char * param)

Normally, thereis no way to represent this kind of function in an Ada program. However, we can import it by treating it asa
procedure using the import_valued_procedure pragma:

procedure SonmeCFunction (result : out integer; param: in out integer);
pragma i nport(C, SoneCFunction);
pragma i nport_val ued_procedure(SoneCFunction);

Theimport_valued_procedure pragmatells gnat that this procedure corresponds to a C function: the first parameter isthe
result of the C function, and the remaining parameters correspond to the parameters of the C function. The first import pragma
isnot strictly required, but ACT recommends using it.

Y ou can't import identifiers created by the #define statement since they only exist before a C program is compiled. Y ou also
can't import types (except for C++ classes) since types have no address in memory. [KB-true?]

There is one case where these tricks fail: when the C function returns a pointer to a C variable that it declared. In this case, the
function isreturning a new C pointer. Luckily, Ada provides a package called Address To_Access Conversionsto convert
between C pointers and Ada access types. Y ou instantiate the package with the type you want to convert between, and the
package creates an access type that can be converted to and from an address (which is a C pointer).The following program
demonstrates conversions to and from C pointer types.

with Ada. Text 1O System Address_To_Access_Conver si ons;
use Ada. Text |G
procedure pointers is

package IntPtrs is
new System Address_To_Access_Conversions(integer);
-- Instantiate a package to convert access types to/from addresses.
-- This creates an integer access type called Cbject Pointer.

five : aliased integer := b5;
-- Five is aliased because we will be using access types on it
int_pointer : IntPtrs. Object_ Pointer;

-- This is an Ada access all type

i nt _address : System Address;
-- This is an address in nenory, a C pointer

begi n

int_pointer := five' unchecked_access;
-- Unchecked_access needed because five is local to main program

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (2 of 47) [7/20/2001 11:37:13 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

-- If it was global, we could use 'access.
i nt_address : = five' address;

-- Addresses can be found with the 'address attri bute.
-- This is the equivalent of a C pointer.

int_pointer :=IntPtrs. To_Pointer(int_address);
int_address := IntPtrs. To_Address(int_pointer);
-- Convert between Ada and C pointer types.

end poi nters;

For example, the standard C library function get_current_dir_name returns a pointer to a C string which it declares. To use
get_current_dir_name, we have to instantiate Address To_Access_Conversions for an array of characters (a C string), and
convert the address to an access type using something like

Char Array_pointer := CharArrayPtrs. To Pointer(get_current_dir_nane);
Thereis no other way in Adato access the array that get_current_dir_name points to.

KB-If your main program is a C program, you need to call adainit before any Ada code.

16.2 Linux Errors and Errno

Most standard C library errors are returned in an integer variable called "errno”. Y ou can examine errno in your Ada programs
by importing it.

errno : integer;

pragnma inport(C, errno);

Errno contains a number for the error returned by the last library function.

In Multithreading programs, be aware errno may not be not "thread safe" because it can be
shared between threads. [KB: document how to do it with threads]

Linux provides two functions for working with errno error numbers.

type string255is new string(1l..255);
type strptr is access string255;
-- error nmessages are no |longer than 255 characters

procedure perror(nessage : string);
pragma i nport(C, perror);
Perror prints a standard error description with aleading message to standard error.

function strerror(error_nunber : integer) return strptr;
pragma i nport(C, strerror);
Retuns a C string standard error description.

The following example program makes a deliberate error with the link function and prints the error message using perror and
stderror.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (3 of 47) [7/20/2001 11:37:13 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

wi th ada.text_io, ada.strings.fixed;

use ada.text _io, ada.strings.fixed;

procedure perr is

-- an exanple of perror and strerror error nessages

procedure perror(nessage : string);
pragma i nport(C, perror);
-- print a standard error description with a | eadi ng nessage

type string255 is new string(1l..255);
type strptr is access string255;
-- error nessages are no |longer than 255 characters

function strerror(error_nunber : integer) return strptr;
pragma i nport(C, strerror);
-- get a standard error description

errno : integer;
pragnma inport(C, errno);
-- last error nunber

function link(pathl, path2 : string) return integer;
pragma i nport(C, |ink);

-- we'll use the link function to create an error

Li nkResul t . integer; -- value returned by |ink

Error MessagePtr : strptr; -- pointer to stderror nmessage

Nul | Locati on . integer; -- location of NUL in stderror nessage
begi n

Put_Line("This is an exanple of perror and strerror");
New Li ne;

-- make a deliberate error and print it with perror

Put _Line("Trying to link a non-existent file to itself..");
Li nkResul t : = Link("blahblah", "blahblah");
if LinkResult = -1 then
perror("Link failed");
end if;
New_Li ne;

-- Retrieve the last error nessage with strerror.
-- Because strerror returns a C string, only print the
-- string up to the first NUL character.

Error MessagePtr := StrError(Errno);
Nul | Location := Index(string(ErrorMessagePtr.all), "" & ASCII.NUL);
Put ("The last error nessage was '");

Put (Head(string(ErrorMessagePtr.all), NullLocation-1));
Put _Line("'.");

end perr;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (4 of 47) [7/20/2001 11:37:13 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

This is an exanple of perror and strerror

Trying to link a non-existent file to itself.

Link failed: No such file or directory

The | ast error nessage was 'No such file or directory'.

A table of error numbersisin the appendix.

16.3 The Linux Clock

The Ada.Calendar package is the standard method of working with time in Ada programs. If you need to interface with C
programs, you may need to use Linux's time features.

The Linux clock functions are either kernel calls or are a part of the standard C library, and they don't need to be linked in with
the -Ic option.

16.3.1 Basic time functions

The basic Linux time functions work with the number of seconds since January 1, 1970. Thisisreferred to as the epoch in the
Linux man pages. Because of the limits of along integer value, the Linux clock will stop working properly around the year
2038.

The basic functions use along_integer for the time:

type tine_t is new | ong_i nteger;
procedure tine (time : in out time_t);
pragnma inport(C, tine);

Returns the current time.

function difftinme(tinel, time2 : time_t) return |ong_float;
pragma inport(C difftinme);
Returns the number of seconds between two times (as along_float).

16.3.2 Timeval Calls - Microsecond Accuracy

The timeval kernel calls return (or set) the current time with microsecond accuracy using atimeval record.

type tineval is record
tv_sec : tine_t; -- nunber of seconds (since epoch)
tv_usec : long_integer; -- nunber of m croseconds
end record;

type tinmezone is record

tz_mnuteswest : integer; -- mnutes west of Greenw ch

tz _dsttine : integer -- unsupported in Linux
end record;
procedure gettinmeofday(result : out integer; tv : in out tinmeval, tz : in out
ti mezone);

pragma i nport(C, gettinmeofday);

pragna i nport_val ued_procedure(gettineofday);

Get the current time as the number of microseconds since January 1, 1970. Returns O for success. ftime() is an obsolete
version of thisfunction

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (5 of 47) [7/20/2001 11:37:13 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

procedure settinmeofday(result : out integer; tv : in out tinmeval; tz : in out
ti mezone);

pragma i nport(C, settineofday);

pragna i nport_val ued_procedure(settineofday);

Set the current time as the number of microseconds since January 1, 1970. Returns O for success.

procedure tzset;

pragma i nport(C, tzset);

Create the TZ environment variable, if it doesn't exist, and setsit to the current timezone as specified in /etc/localtime or
lusr/lib/zoneinfo/localtime. Thisis automatically invoked by the standard C library time functions whenever necessary.

procedure adjtimex(result : out integer; buf : inout tinmex);
pragma inport(C, adjtinmex);
Tunes the kernel's clock for specific time parameters

16.3.3 Functions using the tm record

Besides the number of seconds elapsed since 1970, Linux can also work with records containing the time broken down into
common measurements. These functions use atm record. These functions are al a part of the standard C library.

type tmis record

sec i nteger; -- seconds on the clock (0-59)

mn integer; -- mnutes on the clock (0-59)

hour i nteger; -- hour on the clock (0-23)

nday : integer; -- day of the nonth (1-31)

non . integer; -- nonth (0-11)

year : integer; -- year

wday i nteger; -- day of the week (0-6)

yday i nteger; -- day of the year (0-365)

I sdst integer; -- >0 is daylight savings tinme, O=not, <0 unknown

end record;

Y ou will also need the Address To_Access Conversions package to convert C pointers to tm record into Ada access type
pointers.

package TnPtrs is
new System Address_To_Access_Conversions(tm);

function localtinme(time : in out tinme_t) return system address;
pragma inport(C, localtine);
Change the time into atm record, making changes for the current time zone. time is the C pointer to the seconds since 1970.

function gntine(time : in out tine t) return system address;

pragnma i nport(C, gntinme);

Change the time into atm record for UTC (Coordinated Universal Time). time is the C pointer to the seconds since 1970.
function nktine(tm: systemaddress) return tine_t;

pragma i nport(C, nktinme);
Convert atm record into the seconds since 1970.

To get the current time in tm format,

seconds_since_1970 : long_integer;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (6 of 47) [7/20/2001 11:37:13 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

tmrec : tm

ti me(seconds_since 1970);
tm= TnPtrs. To_Pointer(|ocaltinme(seconds_since 1970 address)).all;

16.3.4 Time as a String

function asctime(tm: systemaddress) return string;
pragna i nport(C, asctine);
Convert the tm into a standard UNIX time C string, such as you see with the Is -I shell command.

function ctinme(time : in out time_t) return |long_integer;

pragma i nport(C, ctine);

Get the current time as a standard UNIX time C string. It's equivalent to using asctime() on the localtime() of the current
time().

procedure strftime(result: size t; datestr : in out stringtype; max : size_ t; format
string; tm: in out tnrec);

pragma inport(C, strftine);

Like asctime(), converts atm timeinto text. strftime() uses formatting codes to determine the appearance of the text, similar to

the shell date command. Returns the length of the date string (including the ending ASCII.NUL). See the man page for

complete details.

Example:
datestring : string(1..80);

statftinme(datestringsize, datestring, datestring size/8, "%:%W & ASCII.NUL, tm);
Ada. Text 1O Put_Line("The time is " & datestring(1..datestringsize-1));

16.3.5 Timer Functions

Timer functions use the timeva structure

function tinerclear(tv : tineval);
function tinmerisset(tv : tineval);
function tinmercnp(tO, t1 : timeval; operator : ?);

16.4 Process Information

The Linux process functions are part of the standard C library, and do not need to be linked in with -Ic.

function getpid return integer;
Returns the Process Identification Number (PID) for your program.

16.4.1 Ownership

The owner of a program isreferred to as the UID (user identification number). Under Linux, there are actually three ownersto
any given program: the effective UID, thereal UID and the saved UID. Normally, these three are all the same login. The real
and saved uids are provided for programs that must temporarily pretend to be somebody else, like a daemon that needs special
login for a short period of time, or setuid/setgid programs that must temporarily switch between owners. These special

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (7 of 47) [7/20/2001 11:37:13 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming
functions are not covered here.

function getuid return integer;
pragma i nport(C, getuid);

Get the (real) UID of a process.

Example: Put_Line("My UID is" & getuidimg);

function setuid (uid : integer) return integer;
pragma i nport(C, setuid);
Change the effective (and saved and real) UID of a process to a new owner.

The GID (group identification number) is the group the program belongs to. In Linux, there's a main, effective group number,
and any number of secondary groups that a program can belong to. Thereis also real and saved GIDs, just like UIDs.

procedure getgroups(result : out integer; num: integer; gidlist);
pragma i nport(C, getgroups);

pragna i nport _val ued_procedure(getgroups);

Return alist of group numbers that a process belongsto. Gidlist isthe address of alist of C strings.

function getgid return integer;
pragma i nport(C, getgid);

Get the (real) UID of the process.

Example: Put_Line("My GID is" & getgidimg);

function setguid(gid : integer) return integer;
pragma i nport(C, setgid);
Change the effective GID (and saved and real) of a process to a new group.

Linux also allows you to arrange processes into groups for easier management of multiple processes at once. Each process
group as a, no surprise, a process group identification number (PGID).

function setpgid(pid, pgid : integer) return integer;

pragma i nport(C, setpgid);

Place a process into a new process group. PID 0 isthe current process. PGID 0 creates a new process group.

function getpgid(pid : intger) return integer;
pragnma i nport(C, getpgid);

Example: Put_Line("My PGID is" & getpgidimg);

Returns the process group number for a process. PID 0 is the current process.

Every program and process group aso belongs to a session (asin alogin session). When you log off the computer, Linux
automatically stops all programs that were running in your session. The session leader isthe top processin a session, such as
your login shell. However, if you want to create a new session for some reason, you can use the following function:

function setsid return integer;

pragma i nport(C, setsid);

Start a new session and return a new session identification number (SID).
Example: NewSID := etsid;

16.4.2 Other Functions

function kill(uid, signal : integer) return integer;

pragma inport(C, kill);

Stop a child process that your process has started, the same as using the kill command at the shell prompt. (More accuately,
send asignal to a child process—some signals won't stop the child process.)

Example: Result := kill(MyRunawayChildUID, 15); -- send SIGTERM (terminate) signal

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (8 of 47) [7/20/2001 11:37:13 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Signal handling, in general, is easier through Ada.lnterrupts than through Linux kernel calls because of their heavy reliance on
C macros.--KB

function alarn(seconds : Interfaces.C unsigned) return Interfaces.C. unsigned;
pragma inport(C, alarm);
After the specified number of seconds, cause a SIGALRM interrupt in the current process.

16.5 Environment Variables

Environment variables can easily be set and read with Ada.Command_L ine.Environment package. Y ou can aso set them
directly through the standard C library.

function putenv(str : string) return integer;

pragma i nport(C, putenv);

Define aLinux environment variable. putenv literaly saves a pointer to the string; therefore the string must be global (or a
literal).

Example: Result := putenv("TERM=vt102" & ASCII.NUL);

function getenv(str : string) return string;
pragma i nport(C, putenv);
Read the value of an environment value. Remember the string returned is a C string with an ending ASCII.NUL.

16.6 Multitasking

Multitasking creates child processes to do tasks for your main program. On multiprocessor machines, different processes can
be assigned to different processors allowing work to be done simultaneously. On single processor machines, the processor
switches several times a second between processes and does a little work on each.

The function to create a new child processis called fork. When Linux creates a new process, it doesn't start by creating a blank
process. Instead, it makes a copy of the original process so there are effectively two copies of your program running. The fork
function returns avalue to tells your program if it isthe original program or the new copy.

If you want to run a different program, you'll have to use one of the exec family of functions to load and run the new program.
The exec functions destroy the old program and run a new program in its place. The above section, Using System and
OSLib.Spawn, has an example C function called Crunlt that uses fork to start a new process and run a new program.

type pid_t is new integer;

function fork return pid_t;

pragma i nport(C, fork);

Create anew child processidentical to the original process and return O if the program is running as the child process or the
PID of the parent if the program is running as the original parent process.

Example: myPID := fork;

procedure wait(pid : out pid_t; status : in out integer);

pragna inport(C, wait);

pragma i nport val ued procedure(wait);

Wait until achild process have finished running. Pid isthe PID of the child. status is an integer code indicating whether the
child finished normally, and if it was stopped by a signal, which signal terminated the program. Status can be a null pointer if
you don't want status information.

Example: wait(wait_pid, wait_status);

procedure waitpid(pid : out pidt, pidor _gid: in out pidt; status : in out

i nteger; options : integer);

pragma i nport(C, waitpid);

pragnma i nport_val ued_procedure(waitpid);

Wait for a specific child. If pid_or_gidislessthan -1, waitpid waits for any child in the specified group id. If pid_or_gidis-1,

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (9 of 47) [7/20/2001 11:37:14 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

it waits for any child (the same as wait). If pid_or_gidisO0, it waits for any child in the same group id as the parent. If
pid_or_gid is greater than zero, waits for the child with the specified pid. Status can be anull pointer if you don't want status
information. Options can determine whether waitpid returns immediately or blocks indefintely.

Example: waitpid(child_pid, -children_gid, wait_status, 0);

Wait3 and Wait4 are BSD UNIX variations which perform the same functions as wait and waitpid but with dightly different
parameters.

When multitasking, if achild process stops, it's retained in memory so that the parent can use wait to find out the reason it
stopped running. These children are called "zombies'. If the parent process doesn't use wait, the zombies will remain
indefinitely, using up system resources. For any large multitasking program, make sure you handle SIGCHLD signals: these
are created when a child stops running. The SIGCHLD handler only needs to call wait and Linux will then remove the child
process from memory.

The following is a smple multitasking example that multitasks two Put_L ine statements.

-- a sinple exanple of multitasking that nultitasks
-- two put _|ine statenents

W th ada.text _io;

use ada.text io;

procedure nmultitask 1is
type pid_t is new integer;

function fork return pid_t;
pragnma inport(C, fork);
-- Create a new process

errno : integer;
pragma i nport(C, errno);
-- the last error code

procedure wait(pid : out pid_t; status : in out integer);
pragma inport(C, wait);

pragma i nport_val ued_procedure(wait);

-- wait until all child processes are finished

nyPID : pid_t;
wait_pid : pid_t;
wait_status : integer;

begi n
Put _Line("Welcone to this multitasking exanple");
Put Line("This is the original process.");

New Li ne;

-- the fork function duplicates this programinto
-- two identical processes.

Put Line("Splitting into two identical processes...");
Put_Line("------------- i ")
myPID := fork; -- split in two!

-- This programis now the original process or the

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (10 of 47) [7/20/2001 11:37:14 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

-- new child process. nyPID tells you which process
-- you are.

if myPID < 0 then

Put _Line(Standard_Error, "Fork has failed. Error code " & errno'ing);
elsif myPID = 0 then

Put Line("This is the child process"”);
el se

Put Line("This is the original process.");

-- wait until child is finished

wait(wait_pid, wait_status);

if wait_pid < 0 then

Put _Line(Standard_Error, "WAit error: wait returned PID" & wait_pid'ing
& " and error nunber " & errno'ing);

end if;

end if;

end nultitask;

Wel cone to this multitasking exanpl e
This is the original process.
Splitting into two identical processes...

This is the original process.
This is the child process

16.7 Linux File Operations

The Linux file operations are part of the standard C library, and don't need to be linked in with the -Ic option. The C calls are
defined in the "fentl.h" header file.

[Explain Linux files here]

Linux never shortensfiles. If your file gets smaller, you must shorten it yourself using
truncat e.

The following bindings assume these types have been defined.

type file_id is newinteger;
-- file I D nunber are di scussed bel ow

type node_t is new integer;

type gid_t is new integer;

type uid_t is new integer;

type size_t is new | ong_integer;

function unlink(pathnane : string) return integer;
pragma i nport(C, unlink);

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (11 of 47) [7/20/2001 11:37:14 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Delete afile.
Example: Result := unlink("/tnp/tenp.txt" & ASCII.NUL);

function [ink(oldpath, newpath : string) return integer;

pragma i nport(C, link);

Make a shortcut (hard link) to afile.

Example: Result := link("/tnp/tenp.txt" & ASCII.NUL, "/tnp/newtenp.txt" & ASCII.NUL);

procedure getcwd(bufl : out StringPtr; buf2 : in out stringptr; size : integer);
pragnma i nport(C, getcwd);

pragnma i nport_val ued_procedure(getcwd)

Return the current working directory.

function nkdir(pathnanme : stringPtr; node : node_t) return integer;
pragma i nport(C, nkdir);
Create anew directory and set default permissions.

function rndir(pathname : string) return integer;
pragma inport(C, rndir);

Delete adirectory.

Example: Result = rndir("/tnp/tenpdir" & ASCII.NUL);

function umask(mask : integer) return integer;
pragma i nport(c, umask);
Sets the default file permissions.

function stat(filenane : stringPtr; buf : stat_struct) return integer;
pragnma i nport(C, stat);
Get information about afile, such as size and when it was last opened.

function Istat(filenanme : stringPtr; buf : stat_struct) return integer
pragma inport(C, Istat);
Same as stat function, but doesn't follow symboalic links.

function tnmpnam(s : stringPtr) return stringPtr;
pragma i nport(C, tnpnam);
Create arandom name for atemporary file.

function chown(path : string; owner : uid_t; group : gid_t) return integer;
pragma i nport(C, chown);

function fchown(file : file_id; owner : uid_t; group : gid_t return integer;
pragnma i nport(C, fchown);

Change the ownership of afile to the specified owner and group.

Example: Result := chown("root.txt" & ASCI|.NUL, O, 0);

function chnod(path : string; node : node_t) return integer;
pragma i nport(C, chnod);

function fchrnod(file : file_id; node : node_t) return integer;
pragma i nport(C, fchnod);

Change the read/write/execute permissions on afile.

Example: Result : = chnod("secure.txt" & ASCII.NUL, #8#640);

Other low-level file operations are all done with the fentl (file control) function. There are three variationsto fentl: it may have
an operation code, an operation code and along integer argument, or an operation code and a locking record argument.

The operation numbers are defined in /usr/src/linux/asm-i386/fnctl.h:

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (12 of 47) [7/20/2001 11:37:14 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

F_DUPFD constant integer := O0;
F_GETFD constant integer := 1;
F_SETFD constant integer := 2;
F_GETFL constant integer := 3;
F_SETFL constant integer := 4;
F _GETLK constant integer := 5;
F SETLK : constant integer := 6;
F SETLKW: constant integer := 7;
F SETOMNN : constant integer := 8;
F_GETOMN : constant integer := 9;
F SETSI G : constant integer := 10;
F GETSIG : constant integer := 11;
function fcntl(fd : file_id; operation => F_DUPFD)
pragnma i nport(C, fcntl);

Duplicates afile descriptor (same as dup2, but different errors returned). New descriptor shares everything except
close-on-exec. New descriptor is returned.

function fentl (fd :
pragnma i nport(C,

file_id,
fentl)

operation => F_CETFD)

Get close-on-exec flag; low bit is zero, file will close on exec kernel call.

function fentl (fd :
pragma i nport(C,

file_id,
fentl)

operation => F_SETFD; arg :

| ong_i nt eger)

Set the close-on-exec flag; low bit is 1 to make file close on exec kernel call.

function fentl (fd :
pragma i nport(C,

file_id;
fentl)

operation => F_CETFL)

Get flags used on open kernel call used to open thefile

function fentl (fd :
pragnma i nport(C,

file_id,;
fentl)

operation => F_SETFL; arg :

| ong_i nt eger)

Set flags for open kernel call. Only async, nonblock and appending can be changed.

procedure fcntl (result
| ockstruct)

out

return integer

pragma i nport(C,

fentl);

out

i nt eger;

fd: file_id; operation => F_GETLK; lock : in

pragma i nport_val ued_procedure(fcntl);
Return a copy of the lock that prevents the program from accessing the file, or elseif there is nothing blocking, the type of lock

procedure fcntl (result out integer; fd : file_id; operation => F_SETLK; lock : in
out | ockstruct)

return integer

pragma i nport(C, fcntl);

pragma i nport_val ued_procedure(fcntl);

Place alock on the file. If someone else has locked the file already, -1 is returned and errno contains the locking error.
procedure fcntl (result out integer; fd : file_id; operation => F _SETLKW lock : in

out

| ockstruct)

return integer

pragnma i nport(C,

fentl)

pragma i nport_val ued_procedure(fcntl);
Place aread or write lock on the file, or to unlock it. If someone else has locked the file already, wait until the lock can be

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (13 of 47) [7/20/2001 11:37:14 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

placed.

Additional information about locks are found in /usr/src/linux/Documentati on/locks.txt

type aLock is new s

F RDLCK : constant alLock := O;
F WRLCK : constant alLock := 1,
F_UNLCK : constant alLock := 2;
F_EXLCK : constant alLock := 3;
F SHLCK : constant alLock := 4;
type aWhenceMode i s new short i
SEEK SET : constant aWiencelMde :
SEEK _CUR : constant aWhenceMode :
SEEK END : constant aWenceMde :
type |l ockstruct is record

| _type aLock; --

| _whence : short_integer; --

| _start i nt eger; --

| _len i nt eger; --

| _pid i nt eger; --

end record

hort _i nt eger

-- read | ock

-- wite lock

-- unlock (renove a | ock)
-- exclusive |ock

-- shared | ock

nt eger;
= 0; -- absolute position
=1, -- offset fromcurrent position
= 2; -- offset fromend of file

type of |ock

how to interpret | _start

of fset or position

nunber of bytes to lock (0 for all)
wi th GETLK, process I D owning |ock

To lock afile, create alockstruct record and fill in the details about the kind of lock you want.

A read lock (F_RDLCK) makes the part of the file you specify read-only. No one can write to that part of thefile.

A write lock prevents any other program from reading or writing to the part of the file you specify. Y our program may change

that part of the file without being concerned that another process will try to read it before you're finished.

If your program stops prematurely, the locks will be released.
Example: Get exclusive right to write to the file, waiting until it's possible:

-- lock file

myLockStruct : | ockStruct;

resul t i nt eger

myLockStruct.| _type := F_WRLCK;
myLockStruct.| _whence := 0;

myLockStruct.| _start := O;
nmyLockStruct.|l _end := 0;

fentl(result, fd, F_SETLKW nyLockStruct);

if result = -1 then
put _|ine(standard_error,

end if;

-- file is now | ocked

-- unl oc
myLockSt
myLockSt

fentl (result,

ruct.

k file
[
ruct. |

if result = -1 then
put |ine(standard_error,

end if;

"fentl failed");

_type = F_UNLCK;
_whence : = 0;
fd, F_SETLKW nyLockStruct);

"fentl failed");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (14 of 47) [7/20/2001 11:37:14 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

[Double check off_t sizefor |_start, |_len--KB]

function fcntl(fd : file_id; operation => F_GETOMN)

pragma i nport(C, fcntl);

Get the process (or process group) id of owner of file. The owner is the process that handles SIGIO and SIGURG signals for
that file.

function fentl(fd : file_id; operation => F_SETOMN, arg : |long_integer)

pragma i nport(C, fcntl);

Set the process (or process group) id of owner of file. The owner is the process that handles SIGIO and SIGURG signals for
that file. This affects async files and sockets.

function fcntl(fd : file_id; operation => F_CETSIG)

pragma inport(C, fcntl);

Get the signal number of the signal sent when input or output becomes possible on afile (usually SIGIO or zero). (Thisisa
Linux-specific function.)

function fcentl(fd : file_id; operation => F_SETSIG arg : long_integer)

pragma i nport(C, fcntl);

Set the signal number of the signal sent when input or output becomes possible on afile (zero being the default SIGIO). Use
thisto set up asignal handler aternative to the kernel calls select and poll. See the man page for more information. (Thisisa
Linux-specifc function.)

16.8 Opening and Closing Files

The standard Ada packages Text_10, Sequential_10 and Direct_|O are suitable for simple projects, but they were never
intended as a complete solution for large-scale applications. If you want to do efficient file manipulation, you'll have to write
your own routines based on kernel calls or the standard C library.

gnat's OSLIB package contains low-level commands to work with UNIX files. However, you can aways create your own.

The following bindings assume these types have been defined.

type file_id is new integer;
type node_t is new integer;

type off _t is new |l ong_integer;
type size t is new | ong_integer;
subype ssize t is size t;

function open(path : string; flags : integer; node : node_t) return file_id;

pragma i nport(c, open);

Open afile and return and file identification number. flags indicates how the file should be opened and what kind of access the
file should allow (defined in /usr/include/fcntlbits.h). Mode defines the access permissions you want on thefile.

The flags are a set of bits with different meanings:

O RDONLY : constant integer := 8#00#; -- open for reading only

O WRONLY : constant integer := 8#01#; -- open for witing only

O RDVWR . constant integer := 8#02#; -- open for reading and witing
O _CREAT . constant integer := 8#0100#; -- no file? create it

O _EXCL . constant integer := 8#0200#; -- lock file (see bel ow)

O NOCTTY : constant integer := 8#0400#; -- if tty, don't acquire it

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (15 of 47) [7/20/2001 11:37:14 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

O _TRUNC . constant integer := 8#01000#; -- file exists? truncate it

O APPEND : constant integer := 8#02000#; -- file exists? nove to end

O NONBLOCK : constant integer := 8#04000#; -- if pipe, don't wait for data
O _SYNC . constant integer := 8#010000#; -- don't cache wites

O _ASYNC . constant integer := 8#020000#; -- async. IOvia SIAO

O_DI RECT : constant integer := 8#040000#; -- direct disk access

O LARCEFI LE: constant integer := 8#0100000#; -- not inplenented in Linux (yet)
O DI RECTORY: constant integer := 8#0200000#; -- error if fileisn't a dir

O NOFOLLOW : constant integer := 8#0400000#; -- if symlink, open link itself

Flags may be added together.
O_EXCL issomewhat obsolete and has limitations on certain file systems. Use fentl to lock files instead.
O_SYNC only works on the ext2 file system or on block devices.

function creat(path : string, node : node_t) return file_id,
pragma i nport(c, creat);
Creat isashort form for open(path, create + writeonly + truncate, mode)

function close(file : file_id) return integer;
pragma i nport(C, close);
Closes afile.

function truncate(path : string; length : size t) return integer;

pragma i nport(C, truncate);

function ftruncate(file : file_id; length : size_t) return integer;

pragma i nport(C, ftruncate);

Shorten afile to a specific length. Despite its name, ftruncate isakernel call, not a standard C library call like fopen.

function read(file : file_id; b : in out buffer; length : size t) return ssize_t;
pragma i nport(C, read);

Read bytes from the specified file into a buffer. Buffer is any type of destination for the bytes read, with length being the size
of the buffer in bytes. The number of bytesread isreturned, or -1 on an error.

function wite(file : file_id; b : in out buffer; length : size t) return ssize_t;
pragma inport(C, wite);

Write bytes from a buffer into the specified file. Buffer is any type of destination for the bytes read, with length being the size
of the buffer in bytes. The number of bytes written is returned, or -1 on an error.

function Iseek(file : file_id; offset : off _t; whence : integer) return integer;
pragma i nport(C, |seek);

Move to aparticular position in the specified file. Whence is a code representing where your starting position is. Offset is how
many bytes to move.

There are three possible "whence" values:

SEEK _SET : constant integer := 0; -- fromstart of file
SEEK CUR : constant integer :=1; -- offset fromcurrent position
SEEK END : constant integer := 2; -- fromend of file

File input/output is naturally suited to generic packages. Y ou can use the generic package to hide the low-level details of the
standard C library. In following example, SeqlO is a generic package for reading and writing a sequentia file of some type,
using the kernel calls mentioned above.

-- Seql O

-- A sinple sequential |10 package using standard C functions

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (16 of 47) [7/20/2001 11:37:14 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

generic
type AFil eEl enent is private;

package SeqlOis

type AFilel D is new short _integer;
seqgi o_error : exception;

function Open(path : string; read : boolean := true) return AFilelD
-- open a new file for read or wite

procedure Close(fid : AFilelD);
-- close a file

procedure Read(fid : AFilelD, data : in out AFileEl enment);
-- read one data itemfromthe file. seqio_error is raised
-- if the data couldn't be read

procedure Wite(fid : AFilelD;, data : AFil eEl enent);
-- Wwite one data itemto the file. seqio_error is raised
-- if the data couldn't be witten

end Seql O

package body SeqlOis
pragna optim ze(space);

-- Inport Cfile handling functions

type node_t is new integer; -- C node_t type
type size t is newinteger; -- Csize_ t type
subtype ssizet is size t; -- Cssize_t type
-- The Cfile functions we'll be using

-- (denoted with a C_ prefix for clarity)

function C Open(path : string; flags : integer; node : node_t)
return AFil el D
pragma i nport(C, C_Open, "open");

function C Close(file : AFilelD) return integer
pragnma inport(C, C O ose, "close");

procedure C Read(size : out ssize_t;

file : AFilelD

data : in out AFil eEl enent;

count: size_ t);
pragma i nport(C, C Read, "read");
pragna i nport_val ued_procedure(C_Read);
-- Using an "in out" paraneter is the easiest way to pass
-- the address of the data el enent. Because Ada doesn't
-- allow in out paraneters in functions, we'll use gnat's
-- valued procedure pragna to pretend read is a procedure

procedure C Wite(size : out ssize t;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (17 of 47) [7/20/2001 11:37:14 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

file : AFilelD

data : in out AFileEl enent;

count: size t);
pragna inport(C, C Wite, "wite");
pragnma i nport_val ued_procedure(C Wite);
-- Using an "in out" paraneter is the easiest way to pass
-- the address of the data el ement. Because Ada doesn't
-- allowin out paraneters in functions, we'll use gnat's
-- val ued procedure pragna to pretend wite is a procedure
-- Qur Ada subprograns

function Open(path : string; read : boolean :=true) return AFilelD is
-- open a newfile for read or wite
flags : integer;

begi n

-- the flag values are listed in fcntlbits. h and man 2 open
if read then

flags := 0; -- read only, existing file
el se

flags := 1000 + 100 + 1; -- wite only, create or truncate
end if;

-- octal 640 => usr=read/wite, group=read, others=no access

return C Open(path & ASCII.NUL, flags, 8#640#);
end Qpen;

procedure Close(fid : AFilelD) is
-- close a file

Result : integer; -- we'll ignore it
begi n

Result := C Cose(fid);
end C ose;

procedure Read(fid : AFilelD, data : in out AFileElenent) is
-- read one data itemfromthe file
BytesRead : ssize_t;
begi n
-- 'size returns the size of the type in bits, so we
-- divide by 8 for nunber of bytes to read
C Read(BytesRead, fid, data, AFileElenent'size / 8);
if BytesRead /= AFileEl enent'size / 8 then
rai se seqi o_error
end if;
end Read;

procedure Wite(fid : AFilelD, data : AFileElenent) is
-- wite one data itemto the file
BytesWitten : ssize_t;
data2wite : AFi | eEl enent;

begi n
-- can't use data directly because it's an
data2wite : = data;
-- '"size returns the size of the type in bits, so we
-- divide by 8 for nunber of bytes to wite

i n" paraneter

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (18 of 47) [7/20/2001 11:37:14 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

CWite(BytesWitten, fid, data2wite, AFileEl enment'size / 8);
if BytesWitten /= AFil eEl enent'size / 8 then
rai se seqi o_error;
end if;
end Wite;

end Seql G

Y ou can test Segl O with the following program:

w th Seql G
with Ada. Text 1O
use Ada. Text 1 G

procedure Seql Gtest is
-- programto test Seql O

package Int1Ois new Seql O integer);
-- IntlOis a Seql O for integer nunbers

id: IntlQO AFil el D

int2read : integer;

begi n
Put _Line("Testing Seql O package...");
New Li ne;

-- Part #1: Wite nunbers to a file

Put Line("Witing nunbers 1 to 10 to a file...");
id:=1IntlOOCpen("int_list.txt", read => false);
for i in 1..10 |loop

IntlOWite(id, i)
end | oop;
Int1 O Cose(id);

-- Part #2: Read the nunbers back fromthe sane file

Put _Line("Readi ng nunbers back...");
id:=1IntlOCpen("int_list.txt", read => true);
for i in 1..10 1oop

Intl O Read(id, int2read);

Put Line("Nunber"” &i'ing & " =" & int2read ing);
end | oop;

Intl1O. Close(id);

exception when IntlO seqio_error =>
Put _Line("Ch, oh! seqio_error!");
end Seql O est;

Note: This should be rewritten because afailure to write all the bytes is not necessarily an error--Linux has a buffer limit on
how much it writes at one time--KB

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (19 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Witing nunbers 1 to 10 to a file...
Readi ng nunbers back. ..

Nunber
Nunber
Nunber
Nunber
Nunber
Nunber
Nunber
Nunber
Nunber
Nunber = 10

File Multiplexing Operations

©CooO~NOUIThWNPEF
1 1 B 1 A 1|
©CooO~NOOUIThWNE

=
(@)

These kernel calls help programs that have to monitor several file descriptors at once for activity.

procedure select(result : out integer; topplusone : integer; readset : in out fdset;
witeset : in out fd set; errorset : in out fd_set; tineout : in out tinmeval);
pragma i nport(C, select);

pragnma i nport_val ued_procedure(select);

Select checks one or more file descriptorsto seeif they are ready for reading, writing, or if thereis an error. It will wait up to
timeout microseconds before timing out (0 wll return immediately). topplusone is the numerically highest file descriptor to
wait on, plue one. Theresult is O for atimeout, -1 for failure, or the number of file discriptors that are ready and the file
discriptor sets indicate which ones.

Unlike most UNIX's, Linux leaves the time remaining in the timeout record so that you can use select in atiming loop--to
repeatedly select file descriptors until the timeout counts down to zero. Other UNIX's leave the timeout unchanged.

type pollfd is record
fd : integer;
events : short _integer
revents : short _integer;
end record;

Poll Events
PCLLI N : = 16#1#;

POLLPRI : = 16#2#,
POLLOUT : = 16#4#,
POLLERR : = 16#8#;
POLLHUP : = 16#10%#;

POLLNVAL : = 16#20#;

These are defined in asm/poll.h.

procedure poll(result : out integer; ufds : in out pollfd; nfds : integer;
timeout_mlliseconds : integer);

pragma i nport(C, poll);

pragma i nport _val ued _procedure(poll);

The name of thiskernel call ismisleading: poll isaform of select(). timeout_milliseconds is a timeout in milliseconds, -1 for
no timeout. ufdsis an array of pollfd recordsfor files that poll() should monitor. Poll returns the number of pollfd array
elements that have something to report, 0 in atimeout, or -1 for an error. Each bit in events, when set, indicates a particul ar
event that the program is waiting for. Revents represents the events which occurred.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (20 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

16.9 Directories

Directories are "folders" containing collections of files and other directories. In Linux, adirectory isaspecial kind of file.
Some of the standard file operations work on directories and some other file operations are specific to directories.

The top-most directory is/, or the root directory. All files on a system are located under the root directory. Disk drives do not
have separate designations asin MS-DOS.

A period (.) represents the current directory, and a double period (..) represents the parent directory of the current directory. All
directories have . and .. defined. The root directory, of course, doesn't have a parent: it's .. entry pointsto itself.

Many of the kernel calls and standard C library functions dealing with directories use functions that return C pointers. As
mentioned in the bindings section, the only way to convert these kind of functions to Adais by declaring the C pointersas a
System.Address type and changing the C pointers to Ada access types using the Address To_Access_Conversions package.

procedure getcwd(buffer : out string; nmaxsize : size_t);

pragma i nport(C, getcwd);

Returns the name of the current working directory asa C string in buffer. Maxsize is the size of the buffer. All symbolic links
are dereferenced.

function get_current _dir_nane return System Address;

pragma i nport(C, get_current_dir_nane);

Like getcwd, returns the current working directory name as a pointer to a C string. Unlike getcwd, symbolic links aren't
dereferenced. Use this function to show the current directory to a user.

procedure chdir(path : string);

pragma i nport(C, chdir);

Change the current working directory to the specified path.
Example: chdir ("/ hone/ bob/stuff” & ASCII.NUL);

function nkdir(path : string; node : size_t) return integer;
pragma i nport(C, nkdir);
Create anew directory with permission bits as specified by mode.

function rndir(path : string) return integer;
pragma inport(C, rndir);
Remove a directory.

function opendir(path : string) return System Address; pragma inport(C, opendir);
Open adirectory in order to read its contents with readdir.

function closedir(info : System Address) return integer;
pragma i nport(C, closedir);
Close adirectory openned with opendir. Info is the C pointer returned by opendir.

function readdir(info : System Address) return DirEntCPtr;

pragma i nport(C, readdir);

Read the next entry in the directory. A null C pointer is returned if thereis no more entries. Info is the C pointer returned by
opendir.

function rewinddir(info : System Address) return integer;
pragma inport(C, rew nddir);
Begin reading from the top of the directory. Info is the C pointer returned by opendir.

function telldir(info : System Address) return integer;

pragma inport(C, telldir);
Mark the current position in the directory, to return to it later using the seekdir function. Info isthe C pointer returned by

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (21 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

opendir.

function seekdir(info : System Address; position : integer) return integer;
pragnma i nport(C, seekdir);
Return to a position in the directory marked by telldir. Info is the C pointer returned by opendir.

function chroot(newoot : string) return int;

pragma i nport(C, chroot);

Make Linux think that a different directory isthe root directory (for your program). Thisis used by programs such as FTP
servers to prevent uses from trying to access files outside of a designated FTP directory.

Example: Resul t := chroot("/hone/server/stay-in-this-directory" & ASCI|.NUL);

Thereisalso ascandir function that reads a directory and sorts the entries, but thisis difficult to use directly from Ada.

The following program demonstrates some of the directory subprogramsin Linux.

with Ada. Text 1O Interfaces.C, Ada. Strings. Fi xed;
use Ada. Text IO Interfaces.C, Ada. Strings. Fi xed,;
with System Address_To_Access_Conver si ons;

procedure direct is
-- Working with directories

subtype size t is Interfaces.C size t;
-- renamng size_t to save sonme typing

package CStringPtrs is new
Syst em Address_To_Access_Conversions(string);
use CStringPtrs;
-- Convert between C and Ada pointers to a string

subtype DirInfoCPtr is System Address;

subtype DIirEntCPtr is System Address;

-- two C pointers (System Address types), renaned for
-- clarity bel ow

type DirEnt is record

i node : long_ integer; -- inode nunber

offset : integer; -- system dependent

of fset2: unsigned_char; -- system dependent
reclen : unsigned_short; -- system dependent
nanme : string(1..257); -- nanme of file

end record;
pragma pack(dirent);
-- dirent is defined in /usr/src/linux../linux/dirent.h

package DirEntPtrs is new
Syst em Address_To_Access_Conversions(DirEnt);
use DirEntPtrs;
-- Convert between C and Ada pointers to a directory entry

procedure getcwd(buffer : out string; nmaxsize : size_t);
pragma i nport(C, getcwd);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (22 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

function get_current _dir_nanme return System Address;
pragma i nport(C, get _current _dir_nane);

function nkdir(path : string; node : size_t)

pragma inport(C, nkdir);

function rndir(path : string) return integer;

pragma inport(C, rndir);

function opendir(path : string) return DirlnfoCPtr
pragma inport(C, opendir);

function closedir(info : DirinfoCPtr) return integer;
pragma inport(C, closedir);

function readdir(info : DirlnfoCPtr) return DirEntCPtr
pragma inport(C, readdir);

function rewinddir(info : DirlnfoCPtr) return integer
pragnma inport(C, rewinddir);

function telldir(info: DirinfoCPtr) return integer;
pragma inport(C, telldir);

function seekdir(info : DirlnfoCPtr; position

pragma i nport(C, seekdir);

-- scandir hard to use from Ada

s: string(1l..80);

csop: CStringPtrs. Cbject Pointer
Resul t: integer

Dirinfo: DirlnfoCpPtr;

direntop : DirEntPtrs. Obj ect _Pointer;

Position : integer;
Last Position : integer;
begi n

i nt eger)

return integer;

return integer;

Put _Line("This program denonstrates Linux's directory functions");
New_Li ne;

-- getcwd exanpl e

getcwd(s, s'length);
Put("The current path (sinplified) is ");
Put _Line(Head(s, Index(s, ASCII.NUL & "")-1));

-- Index for fixed strings takes a string as the second paraneter

-- ' ||

-- get_current _dir_nanme exanple

csop

.= To_Pointer(get_current_dir_nane);

make a string containing an ASCII.NUL with &

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (23 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Put("The current path is ");
Put _Line(Head(csop.all, Index(csop.all, ASCII.NUL & "")-1));

-- nkdir exanple: create a directory named "tenp"

Result := nkdir("temp"” & ASCII.NUL, 755);
if Result /= 0 then
Put _Line("nkdir error"”);
el se
Put Line("tenp directory created");
end if;

-- rndir exanple: renove the directory we just nade

Result :=rmdir("tenp" & ASCI|.NUL);
if Result /= 0 then

Put _Line("rmdir error");
el se

Put Line("tenp directory renoved");
end if;
New Li ne;

-- directory reading

Dirinfo := OpenDir("/honme/ ken/ada" & ASCI1.NUL);
Put Line("Directory /honme/ ken/ada contains these files:");
| oop
direntop := To_Pointer(ReadDir(Dirlnfo));
exit when direntop = null;

-- TellDir returns the position in the directory
-- LastPosition will hold the position of the last entry read

Last Position := Position;

Position := TellDir(Drinfo);

Put _Li ne(Head(Direntop.nane, Index(Direntop.nane, ASCII.NUL & "")-1));
end | oop;
New Li ne;

-- SeekDir: nove to last position in directory

Result := SeekDir(Dirlnfo, LastPosition);

Put("The last positionis ");

direntop := To_Pointer(ReadDir(Dirinfo));

Put Line(Head(Direntop.name, Index(Direntop.nane, ASCII.NUL & "")-1));
New Li ne;

-- RewindDir: Start reading again

Result := RewindDir(Drinfo);

Put("The first positionis ");

direntop := To_Pointer(ReadDir(Dirlnfo));

Put _Line(Head(Direntop.nane, Index(Direntop.nane, ASCII.NUL & "")-1));
New Li ne;

-- close the directory

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (24 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Result := CoseDir(Dirinfo);
end direct;

Thi s program denonstrates Linux's directory functions
The current path (sinplified) is /hone/ken/ada/trials
The current path is /hone/ ken/ada/tria

tenp directory created

tenp directory renoved

Directory /hone/ ken/ ada contains these files:

tenp
all.zip
README

posi X. zi p
sm

posi X

cgi

tia

X

rcsi nfo. txt
text_only
ori gi nal
l'intel
texttool s
snbet a2. zi p
trials

pl ugi ns
texttool s. zip

The | ast position is texttools.zip

The first positionis .

16.10 Stdio Files

C hasalibrary called stdio, or STanDard 10, which contains standard operations for text files. Loosely, stdio isthe C
equivalent of Ada's Text_|O package.The standard gnat package cstreams(?) provides a thin binding to many of the stdio
functions. In this section, we'll looking at using stdio directly.

Some of the stdio functions can't be used from Ada because of differences in the languages. For example, printf, the standard
command for writing to the screen, has a variable number of parameters. Because there's no way to express a variable number
of parametersin Ada, printf can't be imported into Ada.

with System
type AStdioFilelD is new System Address;

function fputc(¢ : integer; fid : AStdioFilelD) return integer;
pragma i nport(C, fputc, "fputc");
Part of standard C library. Writes one charcter to afile.

function fputs(s : string; fid : AStdioFilelD) return integer;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (25 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

pragma i nport(C, fputs, "fputs");
Writesa C string to afile.

function ferror(fid : AStdioFilelD) return integer;
pragma i nport(C, ferror);
Return error from last file operation, if any.

procedure clearerr(fid : AStdioFilelD);
pragnma i nport(C, clearerr);
Clear the error and end of file information.

function feof (fid : AStdioFilelD) return integer;
pragma i nport(C, feof);
Return non-zero if you are at the end of thefile.

function fileno(fid : AStdioFilelD) return integer;
pragma i nport(C, fileno);
Return the file number for use with Linux file kernel calls.

function flock(fd, operation : integer) return integer;
pragma i nport(C, flock);

Locks or unlocks afile (or aportion of afile).

Thisisfor compatibility with other UNIXes--use fentl instead.

Operation: LOCK SH (1) shared | ock

LOCK _EX (2) - exclusive |ock
LOCK_NB (4) - no block flag (may be added to others)
LOCK _UN (8) - unlock

16.11 Stdio Pipes

Pipes are the equivalent of shell command pipes formed by the'| character. Y ou can open a pipe to or from a shell command,
depending if the pipeisfor writing or reading respectively.
These single direction pipe commands are a part of the standard C library.

function popen(comrand, node : string) return AStdi oFil el D,
pragma i nport(C, popen, "popen");
Opens a pipe to aLinux shell command.Mode can be "w" for write or "r" for read.

procedure pclose(result : out integer; fid : AStdioFilelD);
pragma i nport(C, pclose, "pclose");

pragnma i nport_val ued_procedure(pclose);

Closes apipe.

The following program prints to a printer by opening a pipe to the |pr command.

with Ada. Text 1O System Seql G
use Ada. Text |1 G

procedure printer2 is
-- a program for sinple printing

---> Pipe Stuff ---------mi

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (26 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

type AStdioFilelD is new System Address;
-- a pointer to a C standard 10 (stdio) file id

function popen(command, nmode : string) return AStdioFilelD;
pragnma i nport(C, popen, "popen");
-- opens a pipe to conmand

procedure pclose(result : out integer; fid : AStdioFilelD);
pragma i nport(C, pclose, "pclose");

pragma i nport val ued _procedure(pclose);

-- closes a pipe

function fputc(¢ : integer; fid : AStdioFilelD) return integer;
pragnma inport(C, fputc, "fputc");
-- part of standard C library. Wites one charctera to a file.

function fputs(s : string; fid : AStdioFilelD) return integer;
pragma i nport(C, fputs, "fputs");

-- part of standard C library. Wites a string to a file.

PipelD : AStdioFilelD, -- File ID for |pr pipe

procedure BeginPrinting is
-- open a pipe to |pr

begi n
Put _Line("Opening pipe to lpr ...");
Pi pel D : = popen("lpr" & ASCI|.NUL, "wW'& ASCII.NUL);

end Begi nPrinting;

procedure EndPrinting is
-- close the pipe.Result doesn't matter.
-- Linux normally will not eject a page when
-- printing is done, so we'll use a form feed.
Result : integer;

begi n
Result := fputc(character' pos(ASCII.FF), PipelD);
pcl ose(Result, PipelD);

end EndPrinting;

--> |lnput/Qutput Stuff --------------------~““-------

procedure Print(s : string) is

-- print a string to the pipe, with a carriage

-- return and |ine feed.

Result : integer;
begin

Result := fputs(s & ASCI1.CR & ASCI|.LF & ASCII.NUL, PipelD);
end Print;

begi n
-- Open the pipe to the | pr command

Put_Line("Starting to print..."); BeginPrinting; Print("Sales Report™"); Print("'------------ "); Print(""); Print("Saleswere
good"); -- Now, close the pipe. EndPrinting; Put_Line("Program done...check the printer"); end printer2;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (27 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

16.12 Memory Management

The amount of virtual memory for a process depends on the processor. For Intel x86 processors, your program and data must
be 3 Gigabytes or less. (An additional 1 Gigabyte per processis reserved for the kernel, accounting for the full 32-bits of
addressing space.)

[not finished--KB]
16.13 The Virtual Consoles

The virtual consoles are controlled by theioctl() function.

[not finished--KB]
The following example catches SIGWINCH signals and reports the new window size.

W th Ada.lnterrupts. Nanes;
useAda. I nterrupts;

package sigw nch is

protected Signal Handler is
procedure SizeChangeHandl er;
pragna Attach_Handl er (Si zeChangeHandl er, Names. SI GAV NCH) ;
-- this handler will catch SIGANNCH signals, a wi ndow si ze
-- change

end Si gnal Handl er;

end si gw nch;

with Ada. Text | O
useAda. Text 1O

package body sigwi nch is
-- inmported C functions

TIOGW NSI Z : constant integer := 16#5413#,;
-- get window size ioctl request

type WndowSi zelnfo is record

row, columm, unusedl, unused2 : short _integer;
end record;
pragnma pack(W ndowSi zelnfo);

-- the window size information returned by ioctl

type AFilel D is new integer;
-- a file descriptor, a new integer for safety

procedure ioctl _winsz(Result : out integer; fid : AFilelD;, request : integer;
info : in out WndowSi zelnfo);
pragnma inport(C, ioctl_winsz, "ioctl");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (28 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

pragma i nport_val ued_procedure(ioctl_w nsz, "ioctl");
-- get the size of the w ndow

function open(path : string; flags : integer) return AFilelD
pragma i nport(C, open, "open");

-- open a file (in this case, the tty)

procedure close(fid : AFilelD);

pragnma i nport(C, close, "close");

-- close a file

-- The Signal Handl er

protected body Signal Handl er is

procedure Si zeChangeHandler is
-- handl e a wi ndow si ze change, SI GA NCH

fid: AFilelD;,-- open's file ID

Result : integer; -- function result of ioctl
I nfo: WndowSi zel nfo; -- w ndow size returned by ioctl
begi n

fid:= Open("/dev/tty" & ASCII.NUL, 0);
ioctl winsz(Result, fid, TIOGANSI Z, Info);

if Result = 0 then
Put _Line("Wndow is now" & info.colum'ing &" x " & info.rowing);

el se

Put _Line("ioctl reports an error");
end if;
Cose(fid);

end Si zeChangeHandl er;
end Si gnal Handl er;

end si gw nch;

wi th Ada. Text 1O sigw nch;

useAda. Text | QO si gw nch;

procedure winch is

begi n
Put _Line("This program catches SI GAN NCH signal s");
New Li ne;
Put Line("It will stop running is 60 seconds. If you are using");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (29 of 47) [7/20/2001 11:37:15 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Put _Line("X Wndows, nove the wi ndow to send signals.");
New Li ne;

delay 60.0; -- run for 60 seconds

end w nch;

16.14. Making Database Queries
16.14.1 mySQL

mySQL (pronounced "my ess que ell") is afree, high-performance database from T.c.X. It's available for a number of
platform, including Linux. The mySQL home page is http://www.mysgl.org.

mySQL comeswith aC library called "mysqglclient”. If an Ada program linksin thislibrary with "-Imysglclient”, it can access
mySQL databases. Y ou issue commands to the database called queries using the database language SQL (pronounced

"sequel").
Connecting to amySQL database isa six step process:
1. Open anew connect using mysgl_init.
Login using mysql_real_connect.
Perform database queries with mysgl_query or mysqgl_real_query. real_query alows binary datain the query.
Retrieve the results using mysgl_store result or mysgl_use result.
Free any memory using mysqgl_free result.
Close your connection with mysgl_close.

S

Usually, anull point or non-zero integer result indicates an error. mysgl_errono returns the error.

Complete documentation is available from the mySQL web site.

16.14.2 PostgreSQL

Not finished--KB

16.15 Dynamic Loading

Not finished--KB

16.16 A Word on Device Drivers

The details of writing kernel device driversin Adais beyond the scope of this book. However, you'll have to use "GNORT"
(pragmano_run_time).

with Ada. Text |G
use Ada. Text |G

procedure nrt2 is

-- Sinple Program
begi n

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (30 of 47) [7/20/2001 11:37:16 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

put _line("Hello Wrld");
end nrt2;

pragma no_run_ti ne;

procedure nrt is
-- Sane as nrt2 but using no run tine

type file_id is new integer;

-- No Ada. Text |1 O possible, so we'll wite our own
-- that talks directly to the Linux kernel

procedure wite char(amobunt_witten : out |ong_integer;

id: file_id;
buffer : in out character;
anount2wite : long_integer);

pragnma inport(C, wite_char, "wite");
pragma i nport val ued procedure(wite char, "wite");

procedure put(c : character) is

result : |ong_integer;

buf : character := c;
begi n

wite char(result, 1, buf, 1);
end put;

procedure new line is
begi n

put (character'val (10));
end new | i ne;

procedure put line(s : string) is
pragma suppress(index_check, s);
-- s(i) won't throw a range error, but Ghat checks for it
-- by default. Exceptions are a part of the run tine.

begi n
for i in s'range |oop
put (s(i));
end | oop;
new_| i ne;

end put _I|ine;
begi n

put _line("Hello World");
end nrt;

16.17 Linux Sound

The Linux sound capabilities, called OSS, were devel oped by 4front technologies.Y ou can find more advanced documentation
at their website http://www.opensound.com. This section describes only the basic functions.

The newest Linux sound standard is ALSA.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (31 of 47) [7/20/2001 11:37:16 AM]

http://www.opensound.com/

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Most distributions have OSS in the kernel by default, but there's no reason that OSS must be present--it can always be turned
off for computers without a sound card.

16.17.1 Detecting a Sound Card

Open the file /dev/sndstatus. If there is no error, the computer has a sound card.

16.17.2 Playing Sound Samples

There areno C libraries or kernel calls to play sound samples. Instead, thereis adevice file called /dev/dsp which plays sound
samplesin the .au sound format.

The .au sound format consists of a header describing the sound followed by the actual sound data. The header 1ooks like this:

type AAUHeader is record
Magi c : integer; -- a uni que nunber denoting a .au file,
-- as used with the magic file, SND MAG C
-- Hex 646E732E (bytes 2E, 73, 6E, 64)

dataLocation : integer; -- offset or pointer to the sound data
dat aSi ze: integer; -- nunber of bytes of sound data

dat aFor mat: i nteger; -- the data format code

sanplingRate : integer; -- the sanpling rate

channel Count : integer; -- the nunber of channels

infol, info2, info3, infod4 : character;-- name of sound

end record;

datalocation is an offset to the first byte of the sound data. If there's no sound name, it's 28, the size of the header. It can a
pointer to the data, depending on the dataFormat code, but that doesn't apply if you're playing a.au file.

dataSze is the size of the sound data in bytes, not including the header.

dataFormat describes how the sound datais to be interpreted. Here is a table of some common values.

|Val ue |Code |Format

|O |SN D_FORMAT_UNSPECIFIED |unSpeCified format

|1 |SN D FORMAT MULAW 8 |8-bit mu-law samples

2~ [SND_FORMAT_LINEAR 8 [8-bit linear samples

|3 |SN D FORMAT LINEAR 16 |16-bit linear samples

|4 |SN D FORMAT LINEAR 24 |24-bit linear samples

|5 |SN D FORMAT_ LINEAR 32 |32—bit linear samples

|6 |SN D_FORMAT_FLOAT |f|oating-poi nt samples

|7 |SN D_FORMAT_DOUBLE |doub|eprecision float samples
|8 |SN D_FORMAT _INDIRECT |fragmented sampled data

|1O |SN D_FORMAT_DSP_CORE |DSP program

|11 |SN D_FORMAT_DSP DATA 8 |8-bit fixed-point samples

|12 |SN D_FORMAT_DSP DATA_16 |16-bit fixed-point samples

|13 |SN D_FORMAT _DSP DATA_ 24 |24-bit fixed-point samples

|14 |SN D _FORMAT _DSP DATA_ 32 |32-bit fixed-point samples

16 |SN D_FORMAT_DISPLAY |non-audio display data

18 |SN D_FORMAT _EMPHASIZED |16-bit linear with emphasis
19 |SN D_FORMAT_COMPRESSED |16-bit linear with compression

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (32 of 47) [7/20/2001 11:37:16 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

|20 |SN D_FORMAT_COMPRESSED EMPHASIZED |Combo of the two above
21 SND_FORMAT_DSP_COMMANDS |M usic Kit DSP commands

SamplingRate is the playback rate in hertz.CD quality samples are 44100.
channelCount is 1 for mono, 2 for stereo.

The info characters are a C null-terminated string giving a name for the sound. It's always at least 4 characterslong, even if
unused.

In order to play a sound, treat /dev/dsp as if it were a device attached to your computer for playing .au sounds.Write a program
to open /dev/dsp for writing and write the .au sound to it.

Playing sounds is a natural candidate for multithreading because you don't want your entire program to stop while asound is
being played.

The following program uses the seqio generic package we developed above to play an .au sound through /dev/dsp.

W th seqio;

with Ada. Text 1O
use Ada. Text |G
procedure playsnd is

-- sinple programto play an .au sound file

package byteio is new seqi o(short_short _integer);
-- sequential files of bytes

au_filename : constant string := "beep.au";
-- sound file to play. supply the nane of the .au file to play

au file: byteio.AFilelD;, -- the sound file
dev_dsp: byteio.AFilel D, -- /dev/dsp device

soundbyte : short_short i nteger;

begi n
Put Line("Playing " & au filename & "...");
-- open the files

au file :
dev_dsp :

byt ei 0. Open(au_fil enane, read => true);
byt ei 0. Open("/dev/dsp”, read => fal se);

-- read until we run out of bytes, send all bytes to
-- /dev/dsp. The end of file will cause a seqgio_error

begi n
-- nested block to catch the exception

| oop
byt ei 0. Read(au_file, soundbyte);
bytei o. Wite(dev_dsp, soundbyte);
end | oop;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (33 of 47) [7/20/2001 11:37:16 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

excepti on when byteio.seqio_error =>
null; -- just |eave bl ock
end;

-- close files

bytei o. Cl ose(au file);
byt ei 0. O ose(dev_dsp);

Put _Line("All done");

exception when ot hers =>
Put _Line("Onh, oh! An exception occurred!");
bytei o. Cl ose(au file);
byt ei 0. C ose(dev_dsp);
raise;

end pl aysnd;
16.17.3 Using the Mixer

Y ou control the mixer chip, if your sound card has one, by using the ioctl() kernel call. If there is no mixer, the ioctl() function
returns -1. Mixer Functions Table

|SOUND_M IXER_NRDEVICES ’ﬁ|Number of mixer functions on this computer
|SOUND_M IXER_VOLUME ’T|The master volume setting
[SOUND_MIXER_BASS [T [Bass setting

[SOUND_MIXER_TREBLE [2[Treble setting

|SOUND_M IXER_SYNTH ’37|FM synthesizer volume
[SOUND_MIXER_PCM]T|/dev/dsp volume

|SOUND_M IXER_SPEAKER ’57|| nternal speaker volume, if attached to sound card
|SOUND_MIXER_LINE ’67|"Iinein" jack volume
[SOUND_MIXER_MIC ’77|mi crophone jack volume
[SOUND_MIXER_CD ’87|CD input volume

|SOUND_M IXER_IMIX ’97|Rec0rdi ng monitor volume
SOUND_MIXER_ALTPCM]ﬁ|vol ume of aternate codec, on some cards
SOUND_MIXER_RECLEV ’ﬁ|Recordi ng level volume
SOUND_MIXER_IGAIN 12 [Input gain

SOUND_MIXER_OGAIN 13 [Output gain

|SOUND_M IXER_LINE1 ’ﬁ“ nput source 1 (aux1)

|SOUND_M IXER_LINE2 ’E“ nput source 2 (aux2)

|SOUND_M IXER_LINE3 16 |I nput source 3 (line)

Reading or writing values have a specia bit set [Ken check using soundcard.h].

loctl calls return an integer value. Volume levels can be 0 to 100, but many sound cards do not offer 100 levels of volume.
/dev/mixer will set the volume to setting nearest to your requested volume.

[Not complete--KB]

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (34 of 47) [7/20/2001 11:37:16 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Sound_m xer _vol une : constant integer := 0;
Sound_M xer _Read : constant integer := ?;
Sound_M xer _Wite : constant integer := ?;
ol dVol une : i nteger;
ioctl Result := loctl(mxer _file_id, sound_m xer_read + sound_m xer _vol une, ol dVol une
)
-- master volune now i n ol dVol une
if ioctlResult = -1 then
Put _Line("No mxer installed ");
end if;
newMol une : = 75;
ioctlResult :=ioctl(mxer file_ id, sound _m xer_wite + sound_m xer_vol une,

newVol une) ;

-- nmaster volune is 75%

16.17.4 Recording Sound Samples

Recording sounds works is the reverse process of playing sounds. Open /dev/dsp for reading, and it returns sound data.
However, before you can begin recording from /dev/dsp, you need to describe how you want the recording done. Y ou need to
select the input source, sample format (sometimes called as number of bits), number of channels (mono/stereo) , and the
sampling rate (speed). These are set by using the ioctl function on the /dev/dsp file.

To select the input source, you'll need to use /dev/mixer.
[Not finished--KB

Sound_M xer _Recsrc : constant integer := ?;

Sound_M xer _Read : constant integer := ?;

Sound M xer Wite : constant integer := ?;

new nput Sour ce : = Sound_M xer _M c;

ioctl Result :=ioctl(mxer _file_id, sound_m xer_wite + sound_m xer_recsrc,
newl nput Sour ce

)

Common formats

/* Audio dataformats (Note! U8=8 and S16_L E=16 for compatibility) */

|A FMT_QUERY | 164#00000000# | Returns current format

|A FMT_IMA_ADPCM | 16#00000004# |A DPCM compressed data
|A FMT_U8 | 16#00000008# |U nsigned bytes

|A FMT _S16 LE |16#00000010# |L ittle endian signed 16 bits
|A FMT_S16 BE |16#00000020# |Bi g endian signed 16 bits
|A FMT_S8 |16#00000040# |S| gned bytes

IAFMT_U16 _LE |16#00000080# |Little endian U16 bits

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (35 of 47) [7/20/2001 11:37:16 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

[AFMT_U16_BE [16#00000100% [Big endian U16 bits

|AFM T _MPEG |16#00000200# |M PEG (2) audio

sndctl| _dsp_setfnt : constant integer := ?;

newFor mat : i nteger;

newFor mat : = 16#0000010#;

ioctlResult :=ioctl(dsp_id, sndctl _dsp _setfm, newFormat);

-- recording format now 16 bit signed little endi an

i f newFormat /= 16#00000010 then
Put _Line("Sound card doesn't support recording format");
end if;

Selecting mono or stereo recording is amatter of O or 1 respectively.

sndct| _dsp_stereo : constant integer := ?;

stereo : integer;

stereo : = 1,

ioctlResult :=ioctl(dsp_id, sndctl _dsp _stereo, stereo);

-- recording format now stereo

if stereo /=1 then
Put _Line("Sound card doesn't support stereo");
end if;

Finally, select a sampling rate.

sndct| _dsp_speed : constant integer := ?;
newSpeed : i nteger;

newSpeed: = 44100;

ioctlResult :=ioctl(dsp_id, sndctl _dsp_speed, newFormat);
-- recording now CD quality sanpling speed

i f newSpeed /= 44100 then
Put _Line("Sound card doesn't support sanpling speed”);
end if;

Now read /dev/dsp for the raw sound data. If you want to save the sound as an .au file, you'll have to create the .au header
information to attach to the sound data.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (36 of 47) [7/20/2001 11:37:16 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

16.18 Audio CDs
16.19 Kernel Pipes
16.20 Shared Memory

Shared Memory Flags

|I PC_CREAT |Create new shared memory block
|I PC_EXCL |p| us read, write and execute bits.

IPC_PRIVATE indicates no key is supplied.

function shnget(key : key t; bytes : integer; shnflag : integer) return integer;
pragma i nport(C, shnget);

Key isanid you supply to identify the memory (or IPC_PRIVATE for no key). bytesis the minimum amount of memory that
you need. shmflag indicates options for this call. Returns -1 on error, or an id for the memory.

Example: shm d : = shnget (nmykey, 4096, |PC CREAT+I PC EXCL+8#0660%#) ;

function shmat(result : out system address; shmd : integer; shnmaddr

system address; shnflag : integer) return system address;

pragma i nport(C, shmat);

Shared memory attach. Makes shared memory accessible by returning a pointer to it. shmid istheid returned by shmget. if
shmaddr isn't zero, the kernel will the address you give instead of chosing oneitself. shmflags are additional options. Returns
the address of the shared memory, or an address of -1 for an error.

Example: shmat (ShnCPtr, nyl D, To_Address(null), 0);

ShnPtr := To_Address(ShnCPtr);

SHM_RDONLY - thismemory isread-only (that is, asif it wasconst ant).
SHM_RND - alows your shmaddr to be truncated to a virtual memory page boundary.

function shndt (shmaddr : system address) return integer;

pragnma i nport(C, shndt);

Shared memory detach. Removes the association of the shared memory to the pointer. Returns O if the memory was detached,
-1 for failure.

Example: Result : = shndt (To_Address(ShnPtr));

function shnttl(shmd : integer; cnd : integer; info : system address) return

i nt eger;

pragma i nport(C, shnttl);

Performs miscellaneous shared memory functions, including deall ocating shared memory allocated with shmget. Returns O if
the function was successful, or -1 for afailure.

Example: Result := shmctl(myID, IPC_RMID, To_Address(null));

IPC_RMID - deallocate shared memory

16.21 Message Queues

16.22 Semaphores

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (37 of 47) [7/20/2001 11:37:16 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

16.23 Sockets

Send (sentto and sendmsg) are supersets of write. When you use write on a socket, it's actually implemented using the send
family.

Write will not work on UDP because it's connectionless. Use send to specify an address everytime.

Protocol Families

PF_INET Internet (1Pv4)

PF_INET®6 Internet (IPv6)

PF_IPX Novell

PF_NETLINK Kernel user interface device
PF X25I1TU-T X.25/1S0-8208

PF_AX25 Amateur radio AX.25

PF_ ATMPVC Accesstoraw ATM PVCs
PF_APPLETALK Appletalk

PF_PACKET Low-level packet interface

Socket Types
SOCK_STREAM Two-way reliable connection, with possible out-of-band transmission (eg. TCP/IP)

SOCK_DGRAM (Datagram) Connectionless, unreliable messages (eg. UDF/IP)
SOCK_SEQPACKET Sequenced, reliable datagram connection.

SOCK_RAQ Raw network protocol access.

SOCK_RDM Reliable, unordered datagrams.

function socket(domain, soctype, protocol : integer) return integer;

pragma i nport(C, socket);

Creates a network socket for protocol family domain, connection type soctype, and a protocol (0 uses the default protocol).
Returns-1 on an error, or else akernel file descriptor for the socket.

Example: nySocket : = socket(PF_INET, SOCK STREAM O); -- open a standard I nternet
socket

procedure connect(result : out integer; socket : integer; addr : in out socketaddr;
addrlen : integer);

pragma i nport(C, connect);

pragna i nport_val ued_procedure(connect);

Connectsto a server on the network. socket is the socket to use; addr is the machine and service to connect to; addrlen isthe
length of the addr record. Returns-1 on an error, O for success.

Example: connect (result, webserver, webserver'size/8); -- connect to the web server
descri bed by the webserver record
function shutdown(socket, how : integer) return integer;

pragma i nport(C, shutdown);

Shuts down one or both directions of asocket. Thisis used, for example, by web browsersto let the server know there are no
more HT TP requests being sent. Returns 0 on sucess, -1 on failure.

Example:resul t : = shutdown(nysocket, 1);

procedure bind(result : out integer; myaddr : in out sockaddr, addrlen : integer);
pragma inport(C, bind);

pragnma i nport_val ued_procedure(bind);

Registers your server on a particular port number with the Linux kernel. addrlen is the length of myaddr. Returns O on success,
-1 onfailure.

Example: bi nd(result, mnyservice, nyservice'sizel/8);

function listen(socket : integer; backlog : integer) return integer;

pragma i nport(C, |isten); pragmaimport_valued procedure(listen);
Prepares a socket for your server to listen for incoming connections. Backlog is the maximum number of established

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (38 of 47) [7/20/2001 11:37:17 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

connections that can be queued. Returns 0 on success, -1 on failure.

Example:result := listen(nysocket, 10);
procedure accept(result : out integer; socket : integer; clientaddr : in out
sockaddr; addrlen : in out addrlen);

pragma i nport(C, accept);
pragna i nport _val ued_procuedre(accept);
Returns the next connection to your server. If there are no connections, it waits for a new connection (unless you disabled
blocking on the socket.) myaddr is the address of the incoming connection, and addrlen is the size of the address is bytes.
addrlen should beinitialized to the size of your sockaddr record. Y ou must use listen before accept. Returns -1 on failure, or a
new socket with the connection on success. Y ou have to close the new socket when you are finished handling the connection.
Example: | en : = clientaddr'size/8;

accept (newsocket, listensocket, clientaddr, len);

This section ends with a demonstration of how to get aweb page off the Internet.

with Ada. Text 1O Interfaces.C, System Address_To Access_Conversi ons;
use Ada.Text IO Interfaces.C,

procedure websocket is

-- Aprogramto fetch a web page froma server

-- Socket related definitions

-- These are the kernel calls and types we need to create
-- and use a basic Internet socket.

type aSocket FD i s new int;

-- a socket file descriptor is an integer -- man socket
-- make this a new integer for strong typi ng purposes

type aProtocol Fam |y is new unsigned_short;
AF | NET : constant aProtocol Famly := 2;

-- Internet protocol PF_Net defined as 2 in
-- Jusr/src/linux/include/linux/socket.h
-- Make this a new integer for strong typi ng purposes

type aSocket Type is new int;
SOCK_STREAM : constant aSocket Type : = 1,

-- this is for a steady connection. Defined as 1 in
-- Jusr/src/linux/include/linux/socket.h
-- Make this a new integer for strong typing purposes

type aNet Protocol is newint;
| PPROTO TCP : constant aNet Protocol := 6;

-- The nunber of the TCP/IP protocol

-- TCP protocol defined as 6 in /etc/protocols

-- See man 5 protocols

-- Make this a new integer for strong typing purposes

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (39 of 47) [7/20/2001 11:37:17 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

type aNet Donmain is new integer
PF_I NET : constant aNetDomain := 2,

-- The nunber of the Internet domain
-- Make this a new integer for strong typing purposes

type alnAddr is record
addr : unsigned := 0;
end record,
for al nAddr' size use 96;
-- A sockaddr_in record is defined as 16 bytes long (or 96 bits)
-- Request Ada to use 16 bytes to represent this record

type aSocket Addr is record

famly : aProtocol Fam |y := AF_INET; -- protocol (AF_INET for TCP/IP)
port . unsigned_short :=0; -- the port nunber (eg 80 for web)
ip . al nAddr; -- | P nunber

end record;

-- an Internet socket address

-- defined in /usr/src/linux/include/linux/socket.h
-- and /usr/src/linux/include/linux/in.h

function socket(domain : aNet Domai n
stype : aSocket Type;
protocol : aNetProtocol)

return aSocket FD
pragma i nport(C, socket);
-- initialize a communi cati on socket. -1 if error

procedure bind(result : out int; sockfd : aSocket FD,
sa : in out aSocket Addr; addrlen : int);

pragma inport(C, bind);

pragnma i nport_val ued_procedure(bind);

-- give socket a nane. O if successful

procedure Connect(result : out int; socket : aSocketFD;
sa : in out aSocket Addr; addrlen : int);

pragma i nport(C, connect);

pragma i nport_val ued _procedure(connect);

-- connect to a (Internet) server. O if successful

procedure C ose(fd : aSocketFD);
pragma i nport(C, close);
-- close the socket, discard the integer result

procedure Read(result : out integer; from: aSocketFD; buffer : in out string;
buffersize : integer);

pragma inport(C, read);

pragna i nport_val ued_procedure(read);

-- read froma socket

procedure Wite(result : out integer; from: aSocketFD;

buffer : system address; buffersize : integer);
pragnma inport(C, wite);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (40 of 47) [7/20/2001 11:37:17 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

pragma i nport_val ued_procedure(wite);
-- wite to a socket

package addrListPtrs is new System Address_To_Access_Conversi ons(System Address);
-- W& need to use C pointers with the address |ist because this is

-- a pointer to a pointer in C. This will allow us to dereference

-- the C pointers in Ada.

subtype addrListPtr is System Address;
-- easier to read than System Address

type aHostEnt is record

h_nane . System Addr ess; -- pointer to offical nane of host
h_al i ases . Syst em Addr ess; -- pointer to alias |ist
h_addrtype : int 1= 0; -- host address type (PF_I NET)

h_I ength coint .= 0; -- length of address

h_addr _list : addrListPtr; -- pointer to list |IP addresses

-- we only want first one
end record;
-- defined in man get host bynane

package HEptrs is new System Address_To_Access_Conversi ons(aHostEnt);
-- Again, we need to work with C pointers here

subtype aHEptr is System Address;

-- and this is easier to read

use HEptrs;

-- use makes = (equals) visible

function get Host ByName(cnanme : string) return aHEptr;
pragma i nport(C, getHostByNane);
-- look up a host by it's nane, returning the IP nunber

function htons(s : unsigned_short) return unsigned_short;
pragma inport(C, htons);

-- acronym host to network short -- on Intel x86 platforns,
-- switches the byte order on a short integer to the network
-- Most Significant Byte first standard of the Internet

procedure nmencpy(dest, src : System Address; nunmbytes : int);
pragma i nport(C, nenctpy);

-- Copies bytes fromone C pointer to another. W could probably
-- use unchecked_conversion, but the C exanples use this.

errno : int;
pragma inport(C, errno);
-- last error nunber

procedure perror(s : string);
pragma i nport(C, perror);
-- print the last kernel error and a |l eading C string

procedure PutlPNum(ia : alnAddr) is
-- divide an I P nunber into bytes and display it
P : unsigned :=ia.addr;
Bytel, Byte2, Byte3, Byte4 : unsigned;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (41 of 47) [7/20/2001 11:37:17 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

begi n
Byt e4 :: | P nod 256;
IP:=1P / 256;
Byt e3 := | P nod 256;
IP:= 1P/ 256;
Byte2 := | P nod 256;
Bytel := 1P/ 256;
Put(Byted'ing);
Put(".");
Put(Byte3d'ing);
Put(".");
Put (Byte2'ing);
Put ();

Put (Bytel'ing);
end Put | PNum

procedure SendHTTPCommand(soc : aSocketFD;, cnd : string) is
-- Wite a HITP command string to the socket

amount Witten : integer := 0;

total Witten : integer := 0;

posi tion . integer :=cnmd first;
begi n

| oop

Wite(amountWitten, soc, cnd(position)'address,
cnd'length - integer(total Witten));
if anobuntWitten < O then
Put _Line(Standard_Error, "Wite to socket failed");

return;
end if;
Put _Line("Sent" & anbuntWitten'ing & " bytes");
total Witten := total Witten + anount Witten;
position := position + anobuntWitten;
exit when total Witten = cnd' | engt h;

end | oop;
end SendHTTPConmand,

procedure ShowbPage(soc : aSocketFD) is
-- Read the web server's response and display it to the screen

amount Read : integer := 1,
buffer : string(1..80);
begi n

-- continue reading until an error or no nore data read
-- up to 80 bytes at a tine
whi | e anbunt Read > 0 | oop

Read(ampunt Read, soc, buffer, buffer'length);

i f anpbunt Read > 0 then

Put (buffer(1..anmuntRead));

end if;

end | oop;
end ShowébPage;

Server Nanme: string := "ww. adapower. cont
my Socket . aSocket FD; -- the socket
myAddr ess . aSocket Addr ; -- where it goes

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (42 of 47) [7/20/2001 11:37:17 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

nmy Server . aHEptr; -- | P nunber of server
myServerPtr : HEptrs. Qbj ect Pointer;
addr Li st : addrListPtrs. Gbj ect Pointer
Resul t coint;
begi n

Put _Line("Socket Denonstration");

New Li ne;

Put Line("This program opens a socket to a web server");
Put _Line("and retrieves the server's honme page");
New Li ne;

-- initialize a new TCP/I P socket
-- 0O for the third paramlets the kernel decide

Put Line("Initializing a TCP/IP socket");
Put _Line("Socket(" & PF_INET'inmg & ',' & SOCK STREAMing &
"0t);

mySocket := Socket(PF_INET, SOCK STREAM 0);
if nmySocket = -1 then
perror("Error meking socket" & ASCII.NUL);
return;
end if;
New Li ne;

-- Lookup the I'P nunber for the server

Put _Line("Looking for information on " & ServerNane);
Put _Line("GetHostByNane(" & ServerNane & ");");

myServer = CetHost ByNane(ServerNanme & ASCI|.NUL);
nmyServerPtr := HEptrs. To_Pointer(nyServer);
if nmyServerPtr = null then
Put _Line(Standard_Error, "Error |ooking up server");
return;
end if;

Put _Line("IP nunber is" & nyServerPtr.h _length'ing & " bytes |ong");
addrList := addrlistPtrs. To_Pointer(myServerPtr.h_addr _list);

New_Li ne;

-- Create the IP, port and protocol information

Put _Line("Preparing connection destination informtion”);
nmyAddress.fam |y : = AF_I NET,

my Addr ess. port := htons(80);

mencpy(nyAddress.ip'address, addrlist.all, nyServerPtr.h length);
New Li ne;

-- Open a connection to the server

Put Line("Connect(Result, Socket, Fam |y/Address rec, F/Arec size)");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (43 of 47) [7/20/2001 11:37:17 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Connect (Result, nySocket, nyAddress, mnmyAddress'size/8);

Put("Connect(" & Result'img & ",");

Put (nyAddress.famly'img & "/");

Put | PNum(nyAddress.ip);

Put("," & integer'imge(nyAddress'size / 8) & ")");

if Result /= 0 then
perror("Error connecting to server"” & ASCII.NUL);
return;

end if;

New Li ne;

-- Wite the request

-- "CGET" returns a web page froma web server

-- Also send m nimal HTTP header using User - Agent

-- Followed with a blank line to indicate end of conmand

Put _Line("Transmitting HTTP conmand...");

SendHTTPCommand(nySocket ,
"GET /index.htm HITP/1.0" & ASCI|.CR & ASCI|.LF &
"User - Agent: WebSocket/ 1.0 (Bi gBookLi nuxAda Exanple)” & ASCI1.CR & ASCII. LF
& ASCII.CR & ASCI I . LF);

New Li ne;

-- read web page back

Put _Line("---Web Page / Server Results------------------------- ")l
ShowebPage(nySocket);
R [G e R T R ")

-- close the connection

Put _Line("C osing the connection");
cl ose(nySocket);

Put _Line("Denonstration finished - have a nice day");

end websocket ;

Socket Denpnstrati on

Thi s program opens a socket to a web server
and retrieves the server's honme page

Initializing a TCP/ 1P socket
Socket(2, 1, 0);

Looki ng for informati on on wwv adapower.com
CGet Host ByNane(www. adapower . com ;
| P nunber is 4 bytes |ong

Prepari ng connection destination information

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (44 of 47) [7/20/2001 11:37:17 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Connect (Result, Socket, Fam |y/Address rec, F/A rec size)
Connect(0, 2/ 216. 92. 66. 46, 16)

Transm tting HTTP command. ..

Sent 81 bytes

---Web Page / Server Results-------------------------
HTTP/ 1.0 200 K

Date: Wed, 29 Mar 2000 02:32:56 GMI

Server: Apache/1.3.3

Last-Modi fied: Thu, 11 Nov 1999 02:03: 14 GMVI

Et ag: " 1f 31-406- 382a23e2"

Accept - Ranges: Bytes

Content - Length: 1030

Cont ent - Type: text/htm

Age: 39

Via: HITP/ 1.0 csnc2 (Traffic-Server/3.0.3 [uScHs f p eNt cCH p s])

<! DOCTYPE HTML PUBLIC "-//I| ETF/ / DTD HTM./ / EN' >
<HTM_>
<HEAD>

<META NAME="aut hor" CONTENT="Davi d Botton">>

<META NAME="keywor ds" CONTENT="Ada AdaPower power source code free treasury
reposi tory">

<META NAME="descri ption” CONTENT="The Ada Source Code Treasurey contains
conponents, procedures, algorithns and articles for Ada devel opers.">

<META htt p-equi v="Page- Enter" CONTENT="reveal trans(durati on=2.0, transition=3)">

<Tl TLE>AdaPower . conx/ Tl TLE>

<LI NK href="mailto: Davi d@Botton. cont rev="nmade">
</ HEAD>
<FRAMESET COLS="120, *" FRAMEBORDER=0 FRAMESPACI NG=0 BORDER=0>

<FRAME SRC="buttons. htm " nane="nenu" franeborder=0 margi nhei ght =0
mar gi nwi dt h=0 noresi ze scrolling=auto border=0>
<FRAME SRC="http://ww. adapower. coni body. ht M " nane="body" franeborder=0

mar gi nhei ght =5 mar gi nwi dt h=0 nor esi ze scrol | i ng=auto bor der =0>
<NOFRAMES>
<meta HITP- EQU V="REFRESH' CONTENT="0; URL="body. htm ">
<body bgcol or="#ffffff" text="#000000">
Cick here
</ BODY>
</ BODY>
</ NOFRAMES>
</ FRAMESET>

Cl osi ng the connection
Denonstration finished - have a nice day

16.24 Memory Management

type aProtection is new integer;
type aMapFl ag i s new i nteger

function getpagesi ze return | ong_integer;
pragnma i nport(C, getpagesize);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (45 of 47) [7/20/2001 11:37:17 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

Return the size of aLinux memory page (that is, the size of the memory blocks that your program and data are broken up into
when loaded into memory).

function nmap(start system address; size : long_integer; prot aProt ecti on;
aMapFl ag; fd : integer; offset | ong_integer) return system address;

pragma i nport(C, nmap);

Allocates size bytes of memory and returns a C pointer. If it failed, -1 isreturned. If MAP_FIXED and start are used, the

memory will be at the specified address. The protection flags indicate how the memory will be accessed: asignal will be raised

on anillegal access. If MAP_ANON is used, fd should be -1 and no file will be associated with the memory, otherwisefd isa

flags

file that will be copied into the block of memory and offset indicates how many bytes into the file the copying should take

place.

function munmap(start
pramga inport(C, nmunmap);

syst em addr ess;

si ze :

Deallocate memory allocated by mmap. Returns-1 on an error.

function nremap(ol d_start

new si ze :

| ong_i nt eger;
pragma inport(C, nremap);

flags :

syst em addr ess;
aMapFl ag)

| ong_i nt eger)

ol d _size :
return system address;

return integer;

| ong_i nt eger;

Changes the size of ablock of memory allocated by mmap, possibly moving it.

function nprotect(start

aProtection)

syst em addr ess;
return integer;

pragma i nport(C, nprotect);
Change the protection settings on a block of memory allocated by mmap. Returns -1 on an error.

Other mmap flags:

size : |long_integer;

new_pr ot

PROT_NONE constant aProtection := 0; shorthand for no access

PROT_READ constant aProtection := 1; read access all owed

PROT_WRI TE constant aProtection := 2; wite access all owed

PROT_EXEC constant aProtection := 4; execute access all owed

MAP_SHARED const ant aMapFl ag : = 16#01#, share changes with child
processes

(wite changes to the file, if

any)

MAP_PRI VATE constant aMapFl ag : = 16#02#, separate copy for child processes

(changes kept in nmenory, if any)

MAP_FI XED constant aMapFl ag : = 16#10#; use specified address

MAP_ ANON const ant aMapFl ag : = 16#20#, just alloc nmenory, no rel ated
file

MAP_ANONYMOUS : constant aMapFl ag : = MAP_ANON; anot her name for MAP_ANON

MAP_GRONSDOWN : constant aMapFl ag : = 16#0100%#; st ack-1ine usage

MAP_DENYWRI TE : constant aMapFl ag : = 16#0800%#; wite lock the file

MAP_EXECUTABLE: constant aMapFl ag : = 16#1000%#; mar k as executabl e

MAP_LOCKED . constant aMapFl ag : = 16#2000#; don't swap out nenory

MAP_NORESERVE : constant aMapFl ag : = 16#4000%#; don't check for reservations
function nmsync(start system address; size : |ength;

flags :

avsyncFl ag)

pragma i nport(C, nsync);
Updates the file associated with the memory alocated by mmap. Returns -1 on an error.

return integer;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (46 of 47) [7/20/2001 11:37:18 AM]

Big Online Book of Linux Ada Programming - 16 Advanced Linux Programming

M5_ASYNC . constant aSyncFlag := 1; -- request nenory to be saved soon

M5_| NVALI DATE: constant aSyncFlag : = 2; -- mark cache as needi ng updati ng

M5_SYNC . constant aSyncFl ag : = 4; -- save nenory to file inmediately
function m ock(start : system address; size : long_integer) return integer;

pragma i nport(C, mock);
Deny page swapping on this block of memory allocated by mmap. Only a superuser process may lock pages. Returns-1 on an
error.

function munl ock(start : system address; size : long_integer) return integer;
pragma i nport(C, nunl ock);
Allow page swapping on this block of memory allocated by mmap. Returns -1 on an error.

function mockall(flags : alLockFlag) return integer;
pragma i nport(C, mockall);
Deny swapping on al memory for this process. Only a superuser process can lock memory. Returns-1 on an error.

function munl ockall return integer;
pragma import(C, mlockall);
Allow swapping on all memory for this process. Returns-1 on an error.

MCL_CURRENT : constant alLockFl ag :
MCL_FUTURE : constant alLockFl ag :

1; -- lock current bl ocks
2; -- lock subsequent bl ocks

function brk(end_data_segnment : system address) return integer;

pragma i nport(C, brk);

Resi ze the (Intel) data segnent to the specified ending address. Returns -1 on an
error.

procedure sbrk(increment : |long_integer);
pragma i nport(C, sbrk);
Increase the (Intel) data segnent by the specified nunber of bytes.

16.25 Exit Procedures

procedure C exit;

pragnma inport(C, Cexit, "exit");

pragma i nport_val ued _procedure(Cexit);

exit is a Ca standard C library function that closes all your standard C library
files and stops your program This procedure is neant to be used by C. It is not
recomended in an Ada program

procedure K exit;

pragnma inport(C, Kexit, " _exit");

pragma i nport_val ued procedure(K exit);

_exit is a kernel call to stop your program It |eaves any open file open. Not
reconmended in an Ada program there are nore effective ways to stop your program

<--Last Chapter Table of Contents Next Chapter-->

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/16.html (47 of 47) [7/20/2001 11:37:18 AM]

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

17 Moving C Programs To Ada

<--Last Chapter Table of Contents Next Chapter-->

17.1 c2ada: Trandating Your Programs

c2adais available from http://www.skinner.demon.co.uk/aidan/programming/

17.2 Interfaces.C package

|Ada Package |Deﬁcripti on |C Equivalent
|int |Cinteger |int

|unsi gned |C unsigned integer |unsi gned
|char_array(n) |C character array |char [Nn]
long_long |C long long |I0ng long
etc

The Interfaces.C and I nter faces.C.Extensions packages provide basic type definitions and conversions functions for C
programs.

Gnat 3.12 introduces a new boolean type, C_bool, which behaves as a proper C boolean value: 0 isfalse and any other valueis
true.

One thing to remember about this package is that C strings are defined as an array of characters, and Adawill raise a
CONSTRANT_ERROR exception if two arrays of characters are not exactly equal length, even if asmaller array isbeing
assigned to alarger one. For example,

s : char_array(1..80) := To_C("Fred Smth"); -- bad

This example will raise the exception because the string is 11 characters long (10 characters plus a null character), but the array
being assigned to is 80 characters. Y ou can get around these kind of errors with dynamic allocation.

The following program demonstrates some of the types and functions in the Interfaces.C packages.

with text_io, unchecked_deal | ocati on,
I nt er faces. C. Ext ensi ons;

use text _io, Interfaces.C, interfaces.C Extensions;

procedure ctest is

-- Ny types

-- pointer to C string and deal | ocati on procedure for sane

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (1 of 11) [7/20/2001 11:37:38 AM]

http://www.skinner.demon.co.uk/aidan/programming/

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada
type stringptr is access all char_array;

procedure free is new
unchecked_deal | ocati on(char_array, stringptr);

-- types from standard Ada package Interfaces.C

i i nt; -- integer

u unsi gned; -- unsi gned i nt eger

I | ong; -- long

ul unsi gned_l ong; -- unsigned | ong

o char; -- a character

sp stringptr; -- ptr to a string (array of characters)
f C fl oat; -- a float

d doubl e; -- a double

WC wchar _t; -- 16-bit w de character

-- additional types from Gnhat package Interfaces. C Extensions

[1 : long_long; -- long | ong

ull: unsigned_|ong_long; -- unsigned |ong |ong

vp : void_ptr; -- void pointer

begi n
Put Line("This is an exanple of Interfaces.C');
New Li ne;
sp := new char_array' (To_C("This is a string"));
Put Line("The C string s is '" & To Ada(sp.all) &

AR L

Free(sp);

end ctest;

This is an exanple of Interfaces.C
The C string s is "This is a string'.
17.3 Interfaces.C.Pointers Package

One C feature that Ada programs lack is pointer arithmetic. In C, you can move pointers forward and backwards through an
array by using ssimple arithmetic operations. For example, adding two to an character pointer move the pointer two characters
forward in a string. Decrementing an integer pointer moves the pointer back one index position in an integer array.

Since pointer arithmetic isimportant in many C programs, especially sorts, Ada 95 provides a standard generic package called
Interfaces.C.Pointers which implements access types that can use pointer arithmetic.

To instantiate the package, you need to specify the elements that will be in your arrays, an unbounded array that will contain
the elements, the range of index values, and a default terminator value used by some of the package's subprograms.

For example, to create C-style pointers for the unbounded Char_Array (C string) type in Interfaces.C, you could instantiate the
package with

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (2 of 11) [7/20/2001 11:37:38 AM]

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada
package StringPtrs is new Interfaces. C Pointers(

I ndex => size_t, -- the index range is size_t

El enent => char, -- the array contains chars

El ement _Array => char_array, -- the unbounded type

Default _Term nator => char'val(0) -- the term nator value, ASCII.NUL
)
use StringPtrs; -- need this to make + and - visible

strptr : StringPtrs. Pointer;

The use clauseis very important. Without it, the arithmetic operators would not be directly available because they would be
hidden inside the StringPtrs package.

Pointers created using Interfaces.C.Pointers are access types, and can be used like any other access type.

Put Line("strptr is pointing to the character " & strptr.all);

However, unlike other access types, they have new pointer arithmetic features. Addition and subtraction is performed the same
way asin C by specifying how many positionsin the array to move. To move strptr ahead 2 index positionsin astring, add 2
toit:

strptr := strptr + 2;
Since Ada has no increment or decrement operators, two procedures are provided to move a pointer forward or backward by
one array position:

I ncrenent(strptr); -- forward one position
Decrenent (strptr); -- back one position

The package also makes four additional subprograms available: The Virtual_L ength function returns the length of an array,
up to end of the array or until aterminator isfound. [If no terminator, do you get a storage error?--KB] The Value function
returns a slice from the array, from the position of the pointer to the end of the array or until aterminator isfound. It can aso
slice a specific number of elements from an array.

Copy_Array copies adlice of aspecific number of elements from one pointer to another. Copy_Terminated Array copiesa
dlice from the pointer position until aterminator is found.

The following program demonstrates C pointersto integer arrays.

with Ada. Text 10O Interfaces. C Pointers;

use Ada. Text |G

procedure point is

-- To use Interfaces.C Pointers, you need to define an unbounded
-- array type. In this case, we'll create an unbounded array
-- called IntegerArrays with a maxi numindex range of 1 to 9.
-- BiggestArray is the |largest IntegerArrays array possible,
-- with an index range of 1 to 9. IntegerArrays nust have

-- aliased el enents because we will be accessing themw th an
-- access type.

subt ype Poi nterRange is integer range 1..9;

type IntegerArrays is array PointerRange range <>)

of aliased integer;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (3 of 11) [7/20/2001 11:37:38 AM]

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

type BiggestArray is new IntegerArrays(PointerRange);

package IntPtrs is new Interfaces. C Pointers(
| ndex => Poi nterRange, -- the index range
El enent => Integer, -- what the array contains
El ement _Array => IntegerArrays, -- the unbounded type
Default _Termnator => 0); -- the term nator val ue

use IntPtrs; -- need this to nake + and - visible
procedure ShowArray(ia : IntegerArrays) is
-- show the contents of any IntegerArrays array
begi n

for i iniafirst..ia last-1 |oop

Put(i'ing);
Put(" =>");

Put(ia(i)'ing);
PUt("1");

end | oop;

Put(ia'last'ing);

Put(" =>");

Put Line(ia(ia'last)'ing);
end ShowArr ay;

ia, ia2 : BiggestArray; -- two integer arrays
ip, ip2 : IntPtrs.Pointer; -- two pointers to integer arrays
begi n

Put _Line("This program denonstrates C-style pointers provided");
Put _Line("by Interfaces.C Pointers");
New Li ne;

-- initialize and display the contents of the array

for i in PointerRange'first..PointerRange'last-1 |oop
ita(i) 1= 1%*2;
end | oop;

i a(PointerRange'last) := 0;
Put _Line("The array is: ")
ShowArray(IntegerArrays(ia));

-- must typecast ia because ShowArray is expecting an |IntegerArrays

Put _Line("Zero is our termnator in this exanple");
New Li ne;

-- set the pointers to the first elenments in the arrays

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (4 of 11) [7/20/2001 11:37:38 AM]

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada
ip:=ia(ia first)'access;
ip2 :=ia2(ia first)'access;

-- ip works like a nornal access type

Put _Line("Qur pointer is set to first position in the array");
Put Line("The elenent is " &ip.all'img);
New Li ne;

-- increnment exanple

Increment(ip);

Put _Line("Increnenting the pointer, it now points at " &
ip.all"ing);

New Li ne;

-- decrenment exanple

Decrenment(ip);

Put _Line("Decrenenting the pointer, it now points at" &
ip.all"ing);

New_Li ne;

-- addition exanple

ip:=ip + 3

Put Line("Addition noves the pointer forward.");

Put _Line("Mwving forward three elenents, it now points at”
&ip.al'img);

New_Li ne;

-- subtraction exanple

ip:=ip - 2

Put _Li ne("Subtraction noves the pointer backwards.");

Put _Li ne("Moving backwards two el enents, it now points at”
&ip.all'img);

New Li ne;

-- Virtual Length exanpl es
Put _Line("Virtual _Length gives the length fromthe pointer to the");

Put Line("default termnator. The length fromthis position is" &
Virtual _Length(ip)'ing &" positions");

Put _Line("Virtual _Length can also use an arbitrary termnator.");
Put _Line("The length fromthe pointer to the first 14 is" &
Virtual _Length(ip, 14)'ing & " positions");

New_Li ne;

-- Val ue exanpl es
Put Line("Value returns the array slice fromthe pointer position to");

Put Line("the terminator. The array value fromthis position is");
ShowArray(Value(ip));

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (5 of 11) [7/20/2001 11:37:39 AM]

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

Put Line("Value can also return a slice of a specific length.");
Put _Line("The next four elenments are");

ShowArray(Value(ip, Length =>4));

New Li ne;

-- Copy_Term nated_Array exanpl e

Put _Line("Qur second array contains");
ShowArray(IntegerArrays(ia2)); -- nust typecast here
New Li ne;

Put _Line("Copy_Term nated_Array copies elenents fromone pointer to");
Put _Line("another, up to and including the term nator. Copying to");
Put Line("the second array ");
Copy_Term nated_Array(ip, ip2);
ShowArray(IntegerArrays (ia2)
New_Li ne;

); -- nust typecast here

-- Copy_Array exanple

Put _Line("Copy_Array copies a specific nunber of elenents.");
Put _Line("Copying 4 elenents from3 positions ahead, the new');
Put _Line("array contains");

Copy Array(ip+3, ip2, 4);

ShowArray(IntegerArrays(ia2)); -- nust typecast here
New Li ne;

end poi nt;

Thi s program denonstrates C-style pointers provi ded
by Interfaces.C Pointers

The array is:

1 =>2 2=>4 3=>6, 4=>8, 5=>10, 6 =>12, 7 => 14, 8 => 16, 9 == 0
Zero is our termnator in this exanple

Qur pointer is set to first position in the array

The elenent is 2

Incrementing the pointer, it now points at 4

Decrenmenting the pointer, it now points at 2

Addi ti on noves the pointer forward.
Moving forward three elenents, it now points at 8

Subtracti on noves the pointer backwards.
Movi ng backwards two el enents, it now points at 4

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (6 of 11) [7/20/2001 11:37:39 AM]

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

Virtual Length gives the length fromthe pointer to the
default termnator. The length fromthis position is 7 positions

Virtual Length can also use an arbitrary term nator.
The length fromthe pointer to the first 14 is 5 positions

Val ue returns the array slice fromthe pointer position to
the termnator. The array value fromthis position is

1 =>4, 2=>6, 3=>8, 4=>10, 5=>12, 6 => 14, 7 => 16, 8 => 0
Val ue can also return a slice of a specific |ength.

The next four elenents are
1 =>4 2=>6, 3=>28, 4=10

Qur second array contains

1 =>12, 2 => 134531961, 3 => 12, 4 => 1, 5 => 134560412, 6 => 134891560, 7 =>
134575980, 8 => 0, 9 => 134560432

Copy_Term nated Array copies elenents fromone pointer to another, up to

and including the term nator.

Copying to the second array

1 =>4 2=>6, 3=>28 4=10, 5=>12, 6 => 14, 7 => 16, 8 => 0, 9 => 134560432
Copy_Array copies a specific nunber of el enents.

Copying 4 elenents from 3 positions ahead, the new array contains

1 =>10, 2 =12, 3 => 14, 4 => 16, 5 => 12, 6 => 14, 7 => 16, 8 => 0, 9 => 134560432

17.4 Interfaces.C_Streams package

|Ada Package|D$cri ption |C Equivalent
|fopen |Open atext file (C stream) |fopen
|fc| ose |CI ose atext file (C stream) |fc| ose
|fread |Read bytes from atext file (C stream) |fread

Although the basic Adatypes are identical to their C counterparts, the 10 libraries are not guaranteed to write datain aformat
that is readable from other languages. Text files are fine, but to write binary files that can be accessed by C, you'll need to read
and write the filesusing C file handing libraries.

The Interfaces.C_Streams package provides a thin binding to the C stdio library. Thisis comparable to the gnat.os lib
library, but the binding is "thinner" and covers all C stream operations. Some stdio library functions aren't covered because
they can't be represented by Ada. Gnat guarantees these functions will be available, no matter what platform gnat is running
under, even if it isn't UNIX-based.

It isalso possible to call stdio directly. See the discussion above.
C_streams uses "stream" to refer to aLinux text file.

procedure clearerr(stream: FILEs);
Clear any error associated with the stream.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (7 of 11) [7/20/2001 11:37:39 AM]

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

function fclose(stream: FILES) return int;
Close a stream.

function fdopen(handle : int; node : chars) return FILEs;
Open astream by a handle (UNIX file descriptor).

functi on feof (stream: FILES) returnint;
Check for the end of stream.

function ferror(stream: FILES) return int;
Return any error associated with the last stream operation.

functionfflush(stream: FILEsS) return int;
Finish writing any outstanding data to the stream.

function fgetc(stream: FILEsS) return int;
Read one character from the stream. Characters will be ASCII values between 0 and 255, and can be converted to a character
with character'val.

function fgets(strng : chars; n: int; stream: FILES) return chars;
Read a string from the stream. Note thisis not an Ada string.

function fileno(stream: FILES) return int;
Return the fine number associated with a stream for use with standard Linux file operations.

function fopen(filename : chars; Mdde : chars) return FlLEs;
Open a stream.

function fputc(C: int; stream: FILES) return int;
Write one character to a stream. Convert the character to an integer using character'val.

function fputs(Strng : chars; Stream: FILES) return int;
Write a string of charactersto the stream.

function fread(buffer : voids; size : size_ t; count : size t; stream: FILES) return
size_t;
Read count bytes into a buffer of length size and return number of bytes actually read.

function freopen(filename : chars; node : chars; stream: FILES) return FlLEs;
Reopen the stream with a new mode.

function fseek(stream: FILEs; offset : long; origin : int) return int;
Move offset bytes from the specified origin point.

function ftell (stream: FILEs) return | ong;
Get stream offset for fseek.

function fwite(buffer : voids; size : size_t; count : size t; stream: FILES)
return size t;
Write count bytes from a buffer of count length and return the number of bytes actually written.

function isatty(handle : int) return int;
[NQS--determineif streamisaTTY device?--KB]

procedure nktenp(tenplate : chars);
Create arandom name for atemporary file.

procedure rewi nd(stream: FILEs);
Move to the start of the stream.

function setvbuf(stream: FILEs; buffer : chars; node : int; size : size_t) return
i nt;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (8 of 11) [7/20/2001 11:37:39 AM]

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada
[NQS--used to know what this did--KB]

procedure tnmpnam(string : chars);
[Difference with tmpnam?--KB]
The parameter must be a pointer to a string buffer of at least L_tmpnam bytes (the call with anull parameter is not supported).

function tnpfile return FILEs;
[NQS-KB]

function ungetc(c : int; stream: FILES) return int;
Back up one character in the stream.

function unlink(filename : chars) returnint;
Delete astream file.

The following are related utility functions added by ACT. They are not standard UNIX functions like the above.

function file_exists(nane : chars) return int;
Returns O if afile doesn't exist, 1if it does.

function is_regular_file(handle : int) return int;
Return 1 if given handle isfor aregular file, or O for some other kind of file.

procedure set _binary_node(handle : int);
Read text without trandlation. Only works if compiled with text_translation_required.

procedure set _text _node(handle : int);
Trandate text. Only works if compiled with text_trandation_required.

procedure full _name(nam: chars; buffer : chars);
Return the full path of afileasaC string.

The following program demonstrates some of the c_stream functions.

with text _io, unchecked deall ocation, Interfaces.C Streans;
use text _io, Interfaces.C Streans;

procedure cstreantest is

fd : FILEs;

line2wite : constant string := "This is a test";

cline2wite: constant string := "This is a test" &
ASCI | . NUL;

path : constant string := "testfile.xxx";

cpath : constant string := path & ASCI|. NUL;

fileMode : constant string := "wW';

anount Witten : size t;
result : int;

begi n

Put _Line("This is an exanple of Interfaces.C Streans");
New Li ne;

fd := fopen(cpath' address, fil eMde' address);
if ferror(fd) = 0 then
Put Line("Opened " & path & " with fopen");
Put _Line("Witing '" &line2wite & "' with fwite");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (9 of 11) [7/20/2001 11:37:39 AM]

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada

amountWitten := fwite(line2wite' address, -- what to wite
1, -- size of elenents
line2wite' length, -- how many to wite
fd); -- to which file

Put _Line("Wote" & anbuntWitten'ing & " characters");

New Li ne;

Put Line("Witing with fputs");

result := fputs(cline2wite' address, fd);

Put Line("Result was" & result'ing);

New_Li ne;

result := fclose(fd);

Put Line("Closed " & path & " with fclose");
Put Line("Result was" & result'ing);
New_Li ne;

result := unlink(cpath'address);
Put Line("Deleted " & path & " with unlink");
Put Line("Result was" & result'ing);

end if;

end

cstreant est;

This is an exanple of Interfaces.C Streans

Opened testfile.xxx with fopen
Witing 'This is a test" with fwite
Wote 14 characters

Witing with fputs
Result was 1

Closed testfile.xxx with fcl ose
Result was O

Deleted testfile.xxx with unlink
Result was O

17.5 Ada and C Files

Gnat provides several interfacing packages to allow Adato read and write C files. These are a "thicker binding" than
Interfaces.C_Streams.

Ada. Di rect | O. C_Streans - avariation of Ada.Direct_|O of reading and writing C direct files.

Ada. Sequenti al _I1 O C_Streans - avariation of Ada.Sequentia_IO for reading and writing C sequential files
Ada. Streans_Stream | O. C Streans - a package for reading and witing C streans
Ada. Text _1O. C Streans - a package for reading and witing C text files

Ada. Wde_Text 10 C Streans - a package for reading and witing 16-bit character
Ctext files

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (10 of 11) [7/20/2001 11:37:39 AM]

Big Online Book of Linux Ada Programming - 17 Moving C Programs To Ada
17.6 A Word on Interfaces.Fortran

Gnat provides interfacing packages for | anguages besides C. Interfaces. Fortran
contains types and subprograns to |link Fortran | anguage prograns to your Ada
prograns. The GCC Fortran 77 conpiler is g77.

As with gcc, nost of the Fortran data types correspond identically with an Ada type.
A Fortran real variable, for exanple, is the sanme as an Ada float, and a double
precision variable is an Ada long float. Other Ada conpilers may not do this: if
portability is an issue, always use the types of Interfaces. Fortran.

Gnat 3.12 introduces a proper Fortran |ogical type that behaves according to Fortran
semanti cs.

Fortran subprograns may be inported into Ada using pragma inport:

procedure MyFortranSubroutine;
pragma i nport(Fortran, MFortranSubroutine);

Vari abl es may be |ikew se inported.
Real Var : fl oat;
pragma i nport(Fortran, Real Var);

g77 adds an undescore to subroutine nanmes, so ifyou are inporting fromg77 you'll
need to include the nane of the subroutine with a trailing underscore in pragma

i nport.

pragma i nport (Fortran, MFortranSubroutine, "M/FortranSubroutine ");

<--Last Chapter Table of Contents Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/17.html (11 of 11) [7/20/2001 11:37:39 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

18 Data Structures

<--Last Chapter Table of Contents Next Chapter-->

Good programmers write good programs. Great programmers write good programs and good data structures. Organizing your
datais asimportant as the program that crunches the data and produces a result.

Unfortunately, my experiences in the corporate world have taught me that that the only data structure used is the single
dimensional array. When results are the only goal and more processing power is the cure for bad software design, arrays are
easy to implement (they are built into Ada). Even the worst programmer knows how to use an array. And arrays are easy to
understand. Try to use alinked list, and a programmer can get into trouble with his boss for using risky, "advanced"
technology.

Alternatively, programmers will sometimes rely on the complexity and overhead of databases when asimplier solution using
the correct data structure would be faster and easier to implement.

If you are lucky enough to work for a company that uses more than arrays, this chapter will discuss how to use other kinds of
data structures in Ada.

18.1 Using the Booch Components

Like Ada, C++ has no advanced data structures built into the language. To provide a standard set of data structures, what is
now called the Standard Template Library was devel oped to provide the tools necessary to organize most types of data.

Perhaps because of an oversight, Ada 95 with al its annexes has no equivalent to the C++ Standard Template Library. There
are no standard packages providing common data structures. The Gnat compiler fills part of this void with packages for
creating simple tables and hash tables.

The Booch components are a set of C++ objects created by Grady Booch. These were later ported to Ada 95. The components
contain sets of general purpose data structures. The Booch components are available from AdaPower.Net or in RPM format

from the Ada Linux Team. Thisis one popular choice for Ada's unofficial "Standard Template Library".

The components are organized into three main categories: tools, support and structs. The tools cover many items already
implemented in the standard Ada or Gnat packages, such as searching, sorting and pattern recognition. Support refers to

components that implement the tools and structs.

The structs (data structures) are the primary interest of Ada programmers. These are further subcategorized by the user's
reguirements: bounded (where the size is known at compile-time or there's no heap allocation), unbounded (using dynamic
allocation and item caching), or the dynamic (a compromize between bounded and unbounded). The default if no others are
available is unbounded.

Dynamic and unbounded types can specify a storage manager to use. The storage manager is a program that allocates memory.
Use Global _Heap package if you have no preference.

Unbounded structures allocate memory whenever a new item is added to the structure.

Dynamic structures allocate memory in fixed-sized chunks. Each chunk is large enough for several items. The chunk sizeis set
when the dynamic data structureisfirst created, but it can be altered at any time. When a chunk isfull, the structure is grows
by the size of another chunk. This reduces the number of memory allocations to improve performance.
Each dynamic structure includes these subprograms:

« Create - Change the chunk size for the collection

o Set Chunk_Size - Change the chunk size for the collection

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (1 of 26) [7/20/2001 11:38:16 AM]

http://www.adapower.net/booch/
http://www.gnuada.org/alt.html

Big Online Book of Linux Ada Programming - 18 Data Structures

« Preallocate - Increase the size of the collection immediately
o Chunk_Size - Returns the current chunk size

The Booch components are organzied in a hierarchy of packages. The BC package is the top-most package. BC defines the
basic execptions that can be raised by the various components:

Cont ai ner _Error : exception;
Duplicate : exception;

Il egal Pattern : exception;

s _Null : exception;

Lexi cal _Error : exception;

Mat h_Error : exception;

Not Found : exception;

Not Null : exception;

Not Root : exception;

Overflow : exception;

Range_Error : exception;
Storage_Error : exception;
Synchroni zati on_Error : exception;
Underfl ow : exception;

Shoul d_Have Been_Overridden : exception;
Not _Yet I nplenented : exception;

The data structure components are:

gt?fj?:ture Booch Packages Description
Unordered
bc- cont ai ner s- bags- bounded ﬁ(;tlr]e;:tlon e
Bags bc- cont ai ner s- bags-dynam ¢ DU Ii.cat%are
bc- cont ai ner s- bags- unbounded b
counted but not
actually stored.
Ordered
bc- cont ai ners-col | ecti ons-bounded i(,:[(élllne;tlon el
Collections |bc-cont ai ners-col | ecti ons-dynami ¢ DU Ii.cateﬁare
bc- cont ai ners-col | ecti ons-unbounded b
allowed and
stored.
bc- cont ai ner s- deques- bounded
Deques bc- cont ai ner s- deques-dynami ¢ Dlj)eltbglﬁeended
bc- cont ai ner s- deques- unbounded q
A sequenceof 0
. . or more items
flir;tgslellnked bc-containers-lists-single with a head and
apointer to each
successive item.
A sequence of O
or more items
Double bc-containers-1ists-double with ahead and
linked Lists apointer to both
successive and
previous items.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (2 of 26) [7/20/2001 11:38:16 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

. A set with
bc- cont ai ner s- maps- bounded . :
: . relationships
Maps bc- cont ai ner s- maps-dynami c :
) between pairs of
bc- cont ai ner s- maps- unbounded :
items.
bc- cont ai ner s-queues-boundfed Firet in, first out
Queues bc- cont ai ner s- queues-dynami c list
bc- cont ai ner s- queues- unbounded '
Ordered bc- cont ai ner s- queues- or der ed- bounded A sorted list,
(Priority) bc- cont ai ner s- queues- or der ed- dynani c items removed
Queues bc- cont ai ner s- queues- or der ed- unbounded from the front.
bc- cont ai ners-ri ngs-bounded A deque with
Rings bc- cont ai ners-rings-dynam c only one
bc- cont ai ners-ri ngs-unbounded endpoint.
Unordered
bc- cont ai ner s- set s- bounded collection of
Sets bc- cont ai ners-sets-dynani c items.
bc- cont ai ner s- set s- unbounded Duplicates are
not allowed.
bc- cont ali ners-stacks-bound_ed Last in, first out
Stacks bc- cont ai ners-stacks-dynam ¢ i
. Ist.
bc- cont ai ner s- st acks- unbounded
AVL Trees |bc-contai ners-trees-avl 2 el ITET
trees
bc- cont ai ners-trees-binary-in_order A list with two
Binary Trees |bc- cont ai ners-trees-bi nary- post _order SUCCESSOr'S per
bc- cont ai ners-trees-binary-pre_order item.
Multiway bc-cont ai ners-trees-nul ti way- post_order Trsewnhan b
Trees bc- cont ai ners-trees-mul tiway-pre_order 1O) (TS
- of children.
Directed _ G_roups of items
Graphs bc- graphs-directed W|th‘one~_/vay
relationships
Undirected : G_rc;lups of items
Graphs bc- graphs-undi rected with two-way
relationships
Access types
that
go?ﬁ:;rs bc-smart automatically
deallocate
themselves

A definition of common data structures can be found at the National |nstitute of Standards and Technology.

The components are generic packages and must be instantiated for a particular type. They are arranged in hierarchies of
generic packages. Each parent package must be instantiated before its child. For example, to use single linked lists
(bc.containers.lists.single), bc.containers, be.containers.lists, and be.containers.lists.single must al be be created for the item

type.

As with many component libraries, the Booch components represent all structuresin memory, not in long-term storage. They

cannot be used to create disk files, although the data could be saved to disk and reloaded later.

18.1.1 Containers

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (3 of 26) [7/20/2001 11:38:16 AM]

http://hissa.nist.gov/dads/terms.html

Big Online Book of Linux Ada Programming - 18 Data Structures

Containers form the cornerstone of the Booch components.

Containers are a controlled tagged record that encloses an item. The Booch components are composed of items stored in
containers that are arranged in different ways.

To use any of the Booch components, a container must be instantiated to hold your item. For example, to create a new package
to manage character in containers, use

package charContainers is new BC Containers (ltem => Character);
18.1.2 Iterators

The Container package also manages the iterators used by the Booch components. An iterator is avariable that keeps track of
the position in a data structure during atraversal.

Iterators are created by New _Iterator in a data structure's package, but the subprograms that work with the iterator are defined
in the Container package.

o Reset - start anew traversal at the first item

« Next - continue to another item in the component

o Is Done- Trueif there are no more items

o Current_Item - return the current item

The Is_Done function indicates when all items have been traversed. When Is_Doneistrue, Current_ltem is undefined. In other
words, the program must loop through al itemsin thelist, plus 1, before Is_Doneistrue.

Because an Iterator is a class-wide type, it must be assigned a new value when it is declared to avoid a compiler error.

i : charContainers.lterator'class := charList.New_ Iterator(custoners);
18.1.3 Single linked Lists

Creating asingle linked list requires the instantiation of 3 separate generic packages. BC.Containers, BC.Containers.Lists, and
BC.Containers.Lists.Single. To avoid problems with access types, these should be declared globally (that is, in a package

SPec).
First, a container must be defined to hold the item you want to store in your linked list.

package Containers is new BC. Containers (Item => Character);

Second, basic operations on lists must be instantiated.

package Lists is new Containers. Lists;

Finally, the single linked list package must be instantiated. For an unbounded package, you chose a storage pool to use. Single
linked lists are always unbounded. Use Global_Heap if you have no preference.

package LS is new Lists. Single (Storage_Manager => d obal _Heap. Pool ,
St orage => d obal Heap. Storage);
The single linked list package provides the following subprograms:
o Clear - destroy thelist
o Insert - add an item to thelist
« Append - add an item to the end of thelist
« Remove - remove an item from the list
« Purge- remove consecutive items

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (4 of 26) [7/20/2001 11:38:16 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

« Preserve- inverse of Purge, keep consecutive items, removing the rest
o Share/ Head/ Foot - makethelist an aliasfor a sublist in another list
« Tail - discard everything but the last item in the list

« Length - return the number of itemsin thelist

e Is Null - trueif thelist has no items

e Is Shared - trueif therean aliasto asublist in the list

« Head - return the top-most item

o Foot - return thelast itemin the list

« Item_at - return an item at a given position

o New_lterator - return an iterator for traversing the list

« Process Head/Tail - generic procedure to return an item with processing
o Swap_Tail - NQS-KB

Notice that the term "Foot" refersto the last item in the list. The Ada string packages uses the term "Tail".

Here's an example:

wi t h BC. Contai ners. Lists. Single;
wi th G obal _Heap;

package custoners is

type aCustoner is record
custoner! D . integer;
account Bal ance : float;

end record,

-- thisis the itemto put in the |ist

package custonerContainers is new BC Containers (Item => aCustoner);
-- create a new controll ed tagged record contai ner for custoners

package custonerLists is new custoner Contai ners. Lists;
-- create a new |list support package for our using container type

package custonerlList is new custonerlLists. Single (Storage_ Minager =>
d obal _Heap. Pool, Storage => d obal Heap. St orage);

-- create a single linked |ist package using the |ists support

-- custom zed for our container type

end custoners;

with ada.text _io, BC, custoners;
use ada.text _io, BC, custoners;

procedure |ist_deno is

custoners : custonerlList. Single List;

c . aCustoner,

i . customerContainers.lterator'class := custonerList.New Iterator(
custoners);
begi n

Put Line("This is a denp of the Booch conponents: single-linked lists");

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (5 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

New Li ne;
-- The Newly Decl ared Li st

Put Line("The list is newy declared.");

Put Line("The list is enpty? " & custonerList.ls _Null(customers)'ing);
Put Line("The list is shared? " & custonerlList.|ls_Shared(custoners)'ing);
Put Line("The list length is" & customerlList.Length(custoners)'ing);
New Li ne;

-- Inserting a custoner

c.custoner| D : = 7456,
c. account Bal ance : = 56. 74;
custonerlList.lnsert(custoners, c);

Put _Line("Added custoner" & c.custonerlDing);

Put Line("The list is enpty? " & custonerList.ls_Null(customers)'ing);
Put Line("The list is shared? " & custonerList.|ls_Shared(custoners)'ing);
Put Line("The list length is" & custonmerlList.Length(custoners)'ing);

C := custonerlList.Head(custoners);
Put _Line("The head itemis custoner id" & c.custonerlDing);
C := custonerlList.Foot(custoners);

Put _Line("The foot itemis custoner id" & c.custonerlDing);
New Li ne;

-- Apendi ng a custoner

c.custonerl D .= 9362,
c. account Bal ance : = 88. 92;
cust oner Li st. Append(custoners, c);

Put _Line("Appended custonmer"” & c.custonerlDing);

Put Line("The list length is" & customerlList.Length(custoners)'ing);
C := customerlList.Head(custoners);

Put _Line("The head itemis custoner id" & c.custonerlDing);

C := customerlList.Foot(custoners);

Put _Line("The foot itemis custoner id" & c.custonerlDing);

New Li ne;

-- Iterator exanple

Put Line("Resetting the iterator..");
cust oner Cont ai ners. Reset (i);
c := custonerContainers.Current_item(i);

Put _Line("The current itemis customer id" & c.custonerlDing);
Put Line("Are we done? " & custonerContainers.ls Done(i)'ing);

Put _Line("Advancing to the next item..");
cust omer Cont ai ners. Next (i);
C := custonmerContainers.Current _item(i);

Put _Line("The current itemis custoner id" & c.custonmeriDing);
Put Line("Are we done? " & custonerContainers.ls Done(i)'ing);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (6 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

Put _Line("Advancing to the next item..");
custoner Contai ners. Next (i);
Put Line("Are we done? " & custonerContainers.ls Done(i)'ing);
begi n
c := custonerContainers.Current_item(i);
excepti on when BC. NOT_FOUND =>
put _|ine("BC NOT_FOUND exception: no itemat this position in the list");
end;

end |ist_deno;

This is a denp of the Booch conponents: single-linked lists

The list is newy decl ared.
The list is enpty? TRUE
The list is shared? FALSE
The list length is O

Added customer 7456

The list is enpty? FALSE

The list is shared? FALSE

The list length is 1

The head itemis custoner id 7456
The foot itemis custoner id 7456

Appended cust onmer 9362

The list length is 2

The head itemis custoner id 7456
The foot itemis custoner id 9362

Resetting the iterator..

The current itemis custonmer id 7456

Are we done? FALSE

Advancing to the next item..

The current itemis custonmer id 9362

Are we done? FALSE

Advancing to the next item..

Are we done? TRUE

BC. NOT_FOUND exception: no itemat this position in the |ist

Single linked lists should not be Guarded.
18.1.4 Double linked Lists

Double linked lists are implemented exactly the same as single-linked lists except that the word "Double" is substituted for the
word "Single".

Double linked lists are useful for lists that must be browsed backwards and forwards continuously.
Double linked lists should not be Guarded.

18.1.5 Bags

Bags, like linked lists, are collections of items. However, there is no attempt to order the items. Duplicate items can be stored,
but the bag keeps a count of duplications to save memory instead of storing copies of the duplicates.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (7 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

The bags package provides the following subprograms:
« Are Equal - Trueif two bags have the same contents
« Clear - Removesdl items from the bag
« Add - Adds an item to the bag
« Remove - Removes an item from the bag
« Union - Add one bag to another

« Intersection - Remove all items not common between two bags. Where there are duplicates, keep the lower duplicate
count

« Difference - Remove al items not common between two bags. Where there are duplicates, subtract from the original
and discard the item if the total is>=0

« Extent - Return the number of distinct items

o Total Size- Return the total number of items (including duplicates)

« Count - Return the number of occurences of an item in the bag

o Is Empty - Trueif the bag is empty

« Is Member - Trueif one or more copies of an item isin the bag

o |Is Subset - Trueif the contents of one bag is completely contained in another
o |Is Proper_Subset - Same as|s_Subset, but the bags must not be equal

Bags can be bounded, dynamic or unbounded.

Bags are implemented using a hash table. To declare abag, a program must provide a hash function for storing itemsin the
bag, and must indicate the size of the hash table.

Here's an example. Notice that some of the subprograms are in the Bags instantiation, and some in the Bags.Unbounded
instantiation. Also notice the iterator moves over the items, but not the duplications:

wi t h BC. Cont ai ners. Bags. Unbounded;
wi th G obal _Heap;

package customers is
type aCustonerI D is new integer range 1 _000..9 999;

function IDHash(id : aCustonerI D) return Positive;
-- our hash function

package custonerContai ners is new BC Containers (Item => aCustonerl|D);
-- create a new controll ed tagged record contai ner for custoners

package custonerBags i s new cust oner Cont ai ners. Bags;
-- create a new bag support for our using container type

package custonerBag is new custoner Bags. Unbounded(
Hash => | DHash,
Buckets => 99,
St or age_Manager => d obal Heap. Pool
St orage => d obal Heap. St orage);
-- create an unbounded bag package hol di ng custonmer nunbers

end custoners;

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (8 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

package body custoners is

function IDHash(id : aCustomerID) return Positive is
-- our hash function
begi n
return Positive(id); -- in this case, using the id is good enough
end | DHash

end custoners;

with ada.text _io, BC, custoners;
use ada.text _io, BC, custoners;

procedure bag deno is
custoners : custoner Bag. Unbounded_Bag;

C . aCustonerl D

i . custonerContainers.lterator'class := custonerBag. New | terator(
custoners);
begi n

Put Line("This is a denp of the Booch conponents: bags");

New Li ne;

-- The Newly Decl ared Bag

Put _Line("The bag is newy declared.");

Put _Line("The bag is enpty? " & custonmerBag.|s_Enpty(custoners)'ing);

Put _Line("The bag extent is" & custonerBag. Extent(custoners)'ing);

Put _Line("The bag total size is" & custonerBags. Total _Size(custoners)'ing);
New_Li ne;

-- Inserting a customer

Cc .= 745¢6;
cust onmer Bags. Add(custoners, c);

Put Line("Added custonmer" & c'ing);

Put _Line("The bag is enpty? " & custonerBag.ls_Enpty(custoners)'ing);
Put _Line("The bag extent is" & custonerBag. Extent(custoners)'ing);
New_Li ne;

-- Inserting anot her custoner

c := 9362;
cust onmer Bags. Add(custoners, c);

Put Line("Added custoner"” & c'ing);

Put Line("The bag is enpty? " & custonmerBag.|s_Enpty(custoners)'ing);

Put Line("The bag extent is" & custonerBag. Extent(custonmers)'ing);

Put _Line("The bag total size is" & custonerBags. Total Size(custoners)'ing);
New Li ne;

-- Inserting duplicate custoner

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (9 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

c .= 9362
cust onmer Bags. Add(custoners, c);

Put _Line("Added custoner"” & c'ing);

Put _Line("The bag is enpty? " & custonerBag.ls _Enpty(custonmers)'ing);

Put _Line("The bag extent is" & custonerBag. Extent(custoners)'ing);

Put Line("The bag total size is" & custonerBags. Total Size(custoners)'ing);
New Li ne;

-- lterator exanple

Put _Line("Resetting the iterator..");
cust oner Cont ai ners. Reset (i);
C := custonmerContainers.Current _item(i);

Put _Line("The current itemis custoner id" &c'ing);
Put _Line("Are we done? " & custonerContainers.ls _Done(i)'inmg);

Put _Line("Advancing to the next item..");
custoner Contai ners. Next (i);
C := custonerContainers.Current _item(i);

Put _Line("The current itemis customer id" & c'ing);
Put _Line("Are we done? " & custonerContainers.ls Done(i)'ing);

Put _Line("Advancing to the next item..");
custoner Contai ners. Next (i);
Put Line("Are we done? " & custonerContainers.ls Done(i)'ing);
begi n
Cc := custonerContainers.Current _item(i);
excepti on when BC. NOT_FOUND =>
put _|ine("BC NOT_FOUND exception: no itemat this position in the bag");
end;

end bag_denv;

This is a denp of the Booch conponents: bags

The bag is newy decl ar ed.
The bag is enpty? TRUE
The bag extent is O

The bag total size is O

Added custoner 7456
The bag is enpty? FALSE
The bag extent is 1

Added cust oner 9362
The bag is enpty? FALSE
The bag extent is 2
The bag total size is 2

Added custoner 9362

The bag is enpty? FALSE
The bag extent is 2

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (10 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

The bag total size is 3

Resetting the iterator..

The current itemis custonmer id 7456

Are we done? FALSE

Advancing to the next item..

The current itemis custoner id 9362

Are we done? FALSE

Advancing to the next item..

Are we done? TRUE

BC. NOT_FOUND exception: no itemat this position in the bag

Bags are useful for counting the occurrences of an item in alarge amount of data.
18.1.6 Sets

Sets are essentially the same as bags but may not contain duplicates. The are useful for detecting the presence/absence of an
item, or representing flags or conditions.

wi t h BC. Cont ai ners. Sets. Bounded:;
w th d obal Heap;

package fruit_sets is
-- my grandfather owned one of the largest fruit conpanies in the world
type aFruit is (Apples, G apes, Peaches, Cherries, Pears, Plums, OQher);

function FruitHash(f : aFruit) return Positive;
-- our hash function for the set

package fruitContainers is new BC Containers(iten> aFruit);
-- basic fruit container

package fruitSets is new fruitContainers. Sets;
-- basic set support

package fruitBoundedSets is new fruitSets. Bounded(fruitHash,
Buckets => 10,
Size => 20);

-- our actual set is an unbounded set

end fruit_sets;

package body fruit_sets is

function FruitHash(f : aFruit) return Positive is
begi n

return aFruit' pos(f)+1; -- good enough for this exanple
end FruitHash;

end fruit_sets;

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (11 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

W th ada.text _io, kb_sets;
use ada.text io, kb _sets;

procedure set_deno is
use fruit Sets;
use fruitBoundedSets;
sl : Bounded_ Set;
s2 . Bounded_Set;
s3 : Bounded_ Set;
begi n

Put Line("This is a denpb of the Booch conponents: sets");

New Li ne;

Add(s1, apples);
Add(s1, peaches);
Add(s2, apples);
Add(s2, peaches);
Add(s2, pears);

Put Line("Set 1 has apples and peaches.");

Put Line("Set 2 has apples, peaches and pears.");

New Li ne;

Put _Line("Extent of set 1? " & Extent(sl)'ing);
Put _Line("Extent of set 2? " & Extent(s2)'ing);
Put Line("Peaches in set 1? " & Is_Menber(sl1l, peaches)'ing);

Put _Line("Pears inset 1?7 " & Is_Menber(sl1, pears)'ing
& Is_Subset(sl1, s2)’

Put Line("Set 1
Put _Line("Set 2

Put _Line("Set 1
New Li ne;

s3 .= sl,
Uni on(s3, s2);

)
a subset of set 2?7 " i

a subset of set 1? " & |Is_Subset(s2, sl1)'
Put Line("Set 1 a subset of set 1? " & Is_Subset(sl1, sl1)’

a proper subset of set 1? " S

g)
g)
g)

& | s_Proper_Subset (

Put _Line("Set 3 is the union of set 1 and set 2");
Put _Line("Extent of set 3? " & Extent(s3)'ing);

end set _deno;

él, sl)'imy);

This is a denp of the Booch conponents:

Set 1 has appl es and peaches.
Set 2 has appl es, peaches and pears.

Extent of set 1? 2
Extent of set 2?7 3
Peaches in set 1? TRUE
Pear s in set 1? FALSE

Set 1 a subset of set 2? TRUE
Set 2 a subset of set 1? FALSE
Set 1 a subset of set 1? TRUE
Set 1 a proper subset of set 1? FALSE

Set 3 is the union of set 1 and set 2
Extent of set 3? 3

sets

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (12 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

18.1.7 Collections

Collections are a (conceptually) combination of lists and bags. Duplicates actually exist as copiesin the collection, not simply
counted. Collections are also indexed, like alist, so that items can be referenced in the collection.
The Collections package provides the following subprograms:

« Create- Create anew collection and itsinitial chunk

o Clear - Removeall itemsfrom acollection

e Insert - Add anitem in front of another

« Append - Add anitem to the end of the collection

« Remove - Remove an item at an index

» Replace - Replace an item at an index

« Length - Return the number of itemsin the collection

o Is Empty - Trueif there are no itemsin the collection

« First - Return the item at the front of the collection

o Last - Return theitem at the end of the collection

« Item_At - Return the item at a particular index

o Location - Return thefirst index where an item isfound (O if

Collections are implemented as dynamically allocated arrays.

wi t h BC. Cont ai ners. Col | ecti ons. Dynam c;
wi th d obal Heap;

package products is

type aProduct is record
id: integer;
wei ght : float;
end record,

package productContainers is new BC. Containers (ltem => aProduct);
-- this is the basic container

package productCollections is new product Cont ai ners. Col | ecti ons;
-- create a new collection support for our using container type

package productCollection is new product Coll ections. dynam c(
St or age_Manager => d obal _Heap. Pool ,
St orage => d obal Heap. St orage);

-- create a dynanmi c collection hol ding products

end products;

wi th ada.text _io, BC, products;
use ada.text _io, BC, products;

procedure collection_deno is
products : productCol |l ection.Dynam c_Col | ecti on;
p : aProduct;
i . product Containers.lterator'class := productCol | ection. New_Iterator(

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (13 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

products);

begi n
Put _Line("This is a denpo of the Booch conponents: collections");
New Li ne;

products := product Col | ection. Create(100);

-- The Newly Declared Col |l ection

Put Line("The collection is newly declared with a chunk size of 100...");

Put _Line("The collection is enmpty? " & productCollection.ls _Enpty(products)'ing
)

Put _Line("The collection length is" & productCollection.Length(products)'ing);

Put _Line("The collection chunk size is" & productCollection.Chunk_Si ze(products
)'img),

New Li ne;

-- Adding an Item

p.id := 8301,

p. wei ght := 17.0;

product Col | ecti on. Append(products, p);

Put _Line("Product id" & p.id ing & " was added...");

Put _Line("The collection is enpty? " & productCollection.ls Enpty(products)'ing
)

Put Line("The collection length is" & productCollection.Length(products)'ing);

Put _Line("The collection chunk size is" & productColl ection.Chunk_Si ze(products
) ing);

p := productCol |l ection.First(products);

Put Line("The first itemis" & p.iding);

p := productColl ection.Last(products);

Put _Line("The last itemis" & p.iding);

New Li ne;

-- Addi ng another Item

p.id := 1732;

p. wei ght := 27.0;
product Col | ecti on. Append(products, p);

Put _Line("Product id" & p.id ing & " was added...");
Put _Line("The collection is enpty? " & productCollection.ls Enpty(products)'ing

Put Line("The collection length is" & productCollection.Length(products)'ing);

Put _Line("The collection chunk size is" & productCollection.Chunk_Si ze(products
) img),

p := productCollection.First(products);

Put Line("The first itemis" & p.iding);

p := productColl ection.Last(products);

Put Line("The last itemis" & p.id ing);

New Li ne;

-- Changi ng the Chunk Size

product Col | ecti on. Set _Chunk_Si ze(products, Size => 1);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (14 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

Put _Line("The chunk size was reduced to only 1...");
Put Line("The collection is enpty? " & productCollection.ls Enpty(products)'ing
)
Put _Line("The collection length is" & productCollection.Length(products)'ing);
Put _Line("The collection chunk size is" & productCollection. Chunk_Si ze(products
)'ing);
p := productCollection.First(products);
Put Line("The first itemis" & p.iding);
p := productCol |l ection.Last(products);
Put Line("The last itemis" & p.iding);
New Li ne;

-- Iterator exanple

Put _Line("Resetting the iterator..");
product Cont ai ners. Reset (i);
p := productContainers.Current_item (i);

Put _Line("The current itemis custoner id" & p.iding);
Put Line("Are we done? " & productContainers.ls Done(i)'ing);

Put _Line("Advancing to the next item..");
product Contai ners. Next (i);
p := productContainers.Current_item (i);

Put Line("The current itemis custoner id" & p.iding);
Put _Line("Are we done? " & productContainers.ls Done(i)'ing);

Put _Line("Advancing to the next item..");
product Cont ai ners. Next(i);
Put _Line("Are we done? " & productContainers.ls Done(i)'ing);
begi n
p := productContainers.Current_item(i);
excepti on when BC. NOT_FOUND =>
put _|ine("BC NOT_FOUND exception: no itemat this position in the collection");
end;

Collections are suitable for small lists or lists where the upper bound is known or rarely exceeded.

This is a deno of the Booch conponents: coll ections

The collection is newly declared with a chunk size of 100...
The collection is enpty? TRUE

The collection length is O

The coll ection chunk size is 100

Product id 8301 was added. ..

The collection is enpty? FALSE
The collection length is 1

The col |l ection chunk size is 100
The first itemis 8301

The last itemis 8301

Product id 1732 was added. ..
The collection is enpty? FALSE

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (15 of 26) [7/20/2001 11:38:17 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

The collection length is 2

The col |l ection chunk size is 100
The first itemis 8301

The last itemis 1732

The chunk size was reduced to only 1...
The collection is enpty? FALSE

The collection length is 2

The col |l ection chunk size is 1

The first itemis 8301

The last itemis 1732

Resetting the iterator..

The current itemis custonmer id 8301

Are we done? FALSE

Advancing to the next item..

The current itemis custonmer id 1732

Are we done? FALSE

Advancing to the next item..

Are we done? TRUE

BC. NOT_FOUND exception: no itemat this position in the collection

18.1.8 Queues

Queues are alist in which items are removed in the same order they are added. Items are added at the end of the queue and
removed at the front.

An ordered (or "priority") queue is a queue in which added items are sorted.

The queues package provides the following subprograms:
« Clear - Remove al items from the queue
« Append - Add an item to the back of the queue
« Pop - Remove an item from the front of the queue and return it
« Remove - Remove an item at a particular index
« Length - Return the number of itemsin the queue
o |Is Empty - Trueif there are no itemsin the queue
« Front - Return the item at the front of the queue without removing it
« Process - generic procedure to return an item with processing
« Location - Return the first index where an item appears else 0
« Are Equal - Trueif two queues have the same items and length
« Copy - Copy one queue to another

An ordered queue is identical except that append adds an item in sorted order.
Queues can be bounded, dynamic or unbounded.

Queues provide "fair" processing and reduce starvation.
18.1.9 Stacks

Stacks are lists in which the last item placed in the list is the first item removed.

The Stacks package provides the following subprograms:
o Clear - Remove all items from the stack

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (16 of 26) [7/20/2001 11:38:18 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures
« Push - Add anitem to the top of the queue
« Pop - Remove an item from the top of the stack and return it
« Depth - Return the number of itemsin the stack
o Is Empty - Trueif there are no items in the stack
« Top - Return the item at the top of the stack without removing it
o Process Top - generic procedure to return an item with processing
« Are Equal - Trueif two stacks have the same items and length
« Copy - Copy one stack to another

Stacks can be bounded, dynamic or unbounded.

Stacks are used for temporary storage, compact representation and fast data access.
18.1.10 Deques

Deques (double-ended queues, pronounced "deck™) are a combination of a stack and queue where items can be placed at the
front or the back and removed from either the front or the back.
The Deqgues package provides the following subprograms:
« Clear - Remove al items from the deque
« Append - Add an item to the deque
« Pop - Remove an item from the deque and return it
« Remove - Remove an item at a particular index
« Length - Return the number of itemsin the deque
o |Is Empty - Trueif there are no itemsin the deque
« Front - Return the item at the front of the deque without removing
« Back - Return the item at the back of the deque without removing it
« Process Front/_Back - generic procedure to return an item with processing
o Location - Return thefirst index where an item appears else 0
« Are Equal - Trueif two deques have the same items and length
« Copy - Copy one deque to another

Deques can be bounded, dynamic or unbounded.
18.1.11 Rings

Rings are similar to deques, but rings have no "front" or "back", only a moving point of reference called "top".

In addition to the deque subprograms, rings include "Mark" to mark a point in the ring, "Rotate_ To_Mark" to move the ring to
the marked position, and "At_Mark" to test to seeif the top of thering is at the mark.

Rings can be bounded or dynamic.
18.1.12 Maps

Maps are ordered pairs of related items. Each item is related to a"value" which may or may not be the same type. Maps relate
itemsto values by "binding" them.
The Maps package provides the following subprograms:

o Clear - destroy amap

« Bind - relate an item to avalue

« Rebind - relate an item to a different value

« Unbind - remove the relationship between an item and its value

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (17 of 26) [7/20/2001 11:38:18 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

« Extent - return the number of relationships

« |Is Empty - trueif there are no relationships

o Is Bound - trueif theitemisrelated to avalue

o Value Of - thevalue an itemisrelated to

« Visit - a"read-only" procedure to traverse the map

« Modify - aprocedure that traverses the map making changes

Maps are implemented with a hash table and caching.
Maps can be bounded, dynamic, unbounded or synchronized.
Maps are useful as trandation tables.

18.1.13 Binary Trees

Binary trees are lists with two successors instead of 1, named "left" and "right". The itemsin the tree are not sorted by the
Booch component. The program has full control on how items are added to the tree.

Programs "walk" the tree by moving the root of the tree up and down the links to the items. Left_Child follows the left child
link. Right_Child follows the right child link. Parent follows the parent link. Each of these subprograms can be used as a
procedure (to move the root of the tree) or as afunction (to examine the item the link connects to).

item:= ltemAt(tree);

Put("Left child of " &item) ;
item:= ItemAt(Left _Child(tree));
Put Line(" is " &item) ;

When the root of the tree is moved, any items above the new root that aren't referenced anymore are destroyed. To move
around the tree without destroying nodes (which is typically what you want to do), create an "alias’ to the root of the tree with
Create prior to moving.

root := Create(tree); -- create a reference to the root
Left _Child(tree); -- safe: old root is not destroyed

Moving into an empty (null) position in the tree is alowed, but any attempt to look at the item there will raise an exception.
The leaves and the parent of the root are empty.
The Trees.Binary package provides the following subprograms:
« Clear - Destroy the tree
o Insert - Insert an item at the tree's root
« Append - Add an item in the place of aparticular item, moving the old item to a new position
« Remove - Remove an item from the tree
« Share- Create an aliasto a subtree of the tree
« Child/Left_Child/Right_Child - Moveto achild item
« Parent - Move towards the root
o Set_Item - Make an item the root of the tree
« Has Children - Trueif the tree has any children items
o Is Null - Trueif the tree has no items
e |Is Shared - Trueif any subtree has an diasto it
o Is Root - Trueif thetreeisat the root of tree
o Item_At - Return the item at the root of the tree

In addition, the tree may have an in_order, pre_order or post_order generic procedure. This procedure traverses the tree and

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (18 of 26) [7/20/2001 11:38:18 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

executes processes each item. Pre_order processes an item before its children. Post_order processes an item after its children.
In_order processes anode in the sort order of the tree--after al the left children but before all the right.

wi th BC. Cont ai ners. Trees. Binary. I n_Order;
wi th BC. Cont ai ners. Trees. Bi nary. Pre_Order;
wi t h BC. Cont ai ners. Trees. Bi nary. Post _Order;
wi th G obal _Heap;
package shi pnent_binary is

-- grandfather would be proud

type aQuantity is (Unknown, Basket 6Quart, Basket 11Quart, Bushel, Skid, Boxcar);

type aFruit is (Apples, G apes, Peaches, Cherries, Pears, Plunms, OQher);
type aShi pment is record

nunber . Positive; -- nunber of containers

quantity : aQuantity; -- the containers

contents : aFruit; -- type of fruit

end record;

procedure visitShipnment(s : aShipnent; OK : out bool ean);
-- our tree traversal function

package shi pnent Contai ners is new BC. Containers(item> aShi pnent);
-- basic fruit container

package shi pnent Trees i s new shi pment Cont ai ners. Tr ees;
-- basic tree support

package shi prment Bi naryTrees i s new shi pnent Trees. Bi nary(
St or age_Manager => d obal _Heap. Pool ,
Storage => d obal Heap. Storage);

-- our binary tree support

procedure i nOrdershi pnent Traversal is new shi pnent Bi naryTrees. I n_Order (

Vi si t Shi pnent) ;

-- an in-order traversal

procedure preOrdershi pnent Traversal is new shipnent Bi naryTrees. Pre_Or der (
Vi si t Shi pnent) ;

-- a pre-order traversal

procedure post Ordershi pment Traversal is new shi prment Bi naryTrees. Post _Order (
Vi si t Shi pnent) ;

-- a post-order traversal

end shi pnent _bi nary;

Wi th ada.text io;
use ada.text _io;

package body shipnment _binary is

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (19 of 26) [7/20/2001 11:38:18 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

procedure visitShipnment(s : aShipnent; OK : out boolean) is
-- our tree traversal function
begi n

Put (" Shi pnent of");

Put (s.nunber'ing);

Put(" ");

Put(s.quantity'ing);

Put("(S) of ");

Put _Line(s.contents'ing);

XK = true;
end vi sit Shi pnent ;

end shi pnent _bi nary;

W th ada.text _io, shipnent_binary;
use ada.text _i o, shipnent_binary;

procedure bintree_deno is
use shi pnent Bi naryTr ees;
root : Binary_Tree;

t . Binary_Tree;

S . aShi pnent ;

K . bool ean;
begi n

Put Line("This is a denp of the Booch conponents: binary trees");
New Li ne;

-- this is the root item

s. nunber : =
s.quantity := basket 6quart;

s.contents : = cherries;

Insert(t, s, Child => Left);

-- child doesn't really matter because there's no prior itemat the root

non o

root := Create(t); -- renenber where the root is
-- add to left of root

s. nunber : =
s.quantity := basket llquart;

s.contents : = pears;

Append(t, s, Child => Left, After => Left);
-- child doesn't really matter here

o~

-- add to right of root

s. nunber := 12;

s.quantity := bushel;

s.contents : = apples;

Append(t, s, Child => Left, After => Right);
-- child doesn't really nmatter here

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (20 of 26) [7/20/2001 11:38:18 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

Left _Child(t); -- nove "t" down |eft branch
S. nunber := 3;
s.quantity := skid,

S.contents : = peaches;
Append(t, s, Child => Left, After => Right);
-- child doesn't really nmatter here

Put Line("Qur tree is: ");

Put _Line(" 5 6 gt baskets of cherries");

Put _Line(" ");

Put _Line(" A +"),

Put _Line(" | [)

Put Line("7 11 gqt baskets of pears 12 bushel s of appl es"

Put _Line(" | ")

Put _Line(" e e 1")

Put _Line(" 3 skids of peaches");
New Li ne;

Put Line("In-order traversal:");
i nOr der Shi pment Traversal (root, OK);
if not OK then
Put _Line("The traversal was interrupted");
end if;
New Li ne;

Put _Line("Pre-order traversal:");
preOr der Shi pnent Traversal (root, OK);
if not OK then
Put _Line("The traversal was interrupted");
end if;
New Li ne;

Put Line("Post-order traversal:");
post Or der Shi prnent Traversal (root, OK);
if not OK then
Put _Line("The traversal was interrupted");
end if;

end bi ntree_deno;

This is a denp of the Booch conponents: binary trees

Qur tree is:
5 6 qt baskets of cherries

7 11 qt baskets of pears 12 bushel s of apples

3 skids of peaches

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (21 of 26) [7/20/2001 11:38:18 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

I n-order traversal:

Shi pment of 7 BASKET_11QUART(S) of PEARS
Shi pnment of 3 SKID(S) of PEACHES

Shi pment of 5 BASKET_6QUART(S) of CHERRIES
Shi pment of 12 BUSHEL(S) of APPLES

Pre-order traversal:

Shi prent of 5 BASKET 6QUART(S) of CHERRIES
Shi prrent of 7 BASKET _11QUART(S) of PEARS
Shi pnment of 3 SKID(S) of PEACHES

Shi prent of 12 BUSHEL(S) of APPLES

Post -order traversal:

Shi pment of 3 SKID(S) of PEACHES

Shi pnent of 7 BASKET _11QUART(S) of PEARS
Shi prent of 12 BUSHEL(S) of APPLES

Shi pment of 5 BASKET _6QUART(S) of CHERRI ES

Binary trees should not be Guarded.
18.1.14 AVL Trees

AVL trees are binary trees that are balanced. On every insert or delete, the tree is restructured to keep its symmetry. Asa
result, the trees must be sorted by the Booch component and the program using the AVL tree must provide a"<" function to
sort the tree by.
The AVL package provides fewer subprograms than the binary tree package:

o Clear - destory the AVL tree

o Insert - add an iteminto the AVL tree

o Delete- remove anitem form the AVL tree

« Extent - return the number of itemsin the AVL tree

e Is Null - trueif there are no itemsin the AVL tree

e Is Member -trueif anitemisinthe AVL tree

« Visit - traverse the tree in-order executing a "read only" procedure

« Moadify - traverse the tree in-order executing a procedure that can alter the items.

There are no subprograms for walking the tree.

Here is a sample declaration:

wi t h BC. Cont ai ners. Trees. AVL;
w th d obal _Heap;

package fruit_avl is
-- nore fun with fruit

type aQuantity is (Unknown, Basket 6Quart, Basket_ 11Quart, Bushel, Skid, Boxcar);

type aFruit is (Apples, Gapes, Peaches, Cherries, Pears, Plunms, OQher);
type aShi pnent is record

nunber . Positive; -- nunber of containers

quantity : aQuantity; -- the containers

contents : aFruit; -- type of fruit

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (22 of 26) [7/20/2001 11:38:18 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

end record;

function sortCriteria(left, right : aShipnent) return bool ean;
-- for sorting the AVL tree

package shi pnent Contai ners is new BC. Containers(items> aShi pnent);
-- basic fruit container

package shi prment Trees i s new shi pnent Cont ai ners. Tr ees;
-- basic tree support

package shi pment AVLTrees i s new shi pnent Tr ees. AVL(
sortCriteria,
St orage_Manager => d obal Heap. Pool ,
Storage => d obal Heap. Storage);

-- our AVL tree support

end fruit_avl;

package body fruit_avl is

function sortCriteria(left, right : aShipnent) return boolean is
begi n

return | eft.nunber < right. nunber;
end sortCriteria;

end fruit_avl;

AVL trees have slower inserts and del etes than binary trees but are faster than a normal binary tree for searching.
18.1.15 Multiway Trees

A multiway treeis atree with any number of unsorted children (as opposed to a binary tree which always has no more than
two chidren).

The subprograms are similar to a binary tree. The append procedures add child itemsto an item. A new function called "Arity"
returns the number children an item has.

Multiway trees should not be Guarded.
18.1.16 Graphs

Essentially, graphs are a generalization of maps where any number of items can be related to each other (as opposed to only
two).

A directed graph is a set of items (vertices) that are connected by relationships (edges or "arcs'). Like asingle linked list, a
program can only move forward along an arc.

Items can also be linked to themselves.

The graphs-directed package provides the following subprograms:
« Create Arc - add arelationship between two items
o Number_Of_Incoming_Arcs - return the number of incoming arcsto an item
« Number_Of Outgoing_Arcs - return the number of outgoing arcs to an item
o Set From_Vertex - move an arch's source to a new item

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (23 of 26) [7/20/2001 11:38:18 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

o Set To Vertex - move an arc's destination to a new item
o From_Vertex - return the source item for an arc
o To Vertex - return the destination item for an arc

There are four iterators: agraph iterator, and three iterators for visiting items (incoming, outgoing and both).

An undirected graph is a directed graph with pointers to both the previous and next item along an arc. Like adouble linked list,
aprogram can move forwards or backwards along an arc.

The graphs-undirected package provides the following subprograms:
« Create Arc - add arelationship between two items
« Arity - return the number of arcs. Self-arcs are counted only once
e Set First_Vertex - move an arch'sfirst item to anew item
o Set Second Vertex - move an arc's second item to a new item
o First_Vertex - return thefirst item for an arc
« Second_Vertex - return the second item for an arc

There are two iterators: a graph iterator and an item iterator.

Graphs should not be Guarded.
18.1.17 Smart Pointers

Smart pointers are an access type that counts the number of references to the item being pointed to. Y our program allocates the
item. The item is deallocated when no more pointers point to it. Smart pointers are a simplified form of garbage collection.

The smart package provides the following subprograms:
« Create - create anew smart pointer from an access variable
« Value - return the item pointed to by the smart pointer

with BC smart;
package depts is

type departnments is (accounting, information_technol ogy, shipping, human_resources

)

type dept Access is access all departnents;

package deptPtrs is new BC. snmart(departnents, deptAccess);
end depts;

W th ada.text _io, depts;
use ada.text_io, depts;

procedure sp_denp is

accountingPtr : deptPtrs. Pointer;
accounting2Ptr : deptPtrs. Pointer;
depar t ment . dept Access;

begi n

Put Line("This is a denp of the Booch conponents: smart pointers”);
New_Li ne;

department := new departnents' (accounting);

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (24 of 26) [7/20/2001 11:38:18 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

Put _Line("Assigning dynanmically allocate value to a smart pointer");

accountingPtr := deptPtrs. Create(departnent);

Put _Line("The accounting pointer points at " & deptPtrs. Value(accountingPtr
).all'"img);

New Li ne;

Put Line("Assigning a smart pointer to a snmart pointer"”);

accounting2Ptr := accountingPtr;

Put Line("The accounting pointer 2 points at " & deptPtrs. Val ue(accounti ng2Ptr
).all'inmg);

New Li ne;

Put _Line("The menory is rel eased when the program ends or no nore pointers");
Put Line("access the nenory.");
end sp_denv;

This is a deno of the Booch conponents: smart pointers

Assigning dynamically allocate value to a smart pointer
The accounti ng poi nter points at ACCOUNTI NG

Assigning a smart pointer to a smart pointer
The accounting pointer 2 points at ACCOUNTI NG

The nenory is rel eased when the program ends or no nore pointers
access the nenory.

18.1.18 Booch Multithreading

Booch components can be guarded (manually "locking" the structure for exclusive access) or synchronized (implicit blocking)
for multithreading purposes.

Guarding isimplemented by creating extending a container type to a Guarded_Container using the GC.Containers.Guarded
package. Guarded containers contain two new subprograms, "Seize" and "Release”, to lock and unlock a container. (Thisis
implemented using a semaphore.) Any Booch data structure can be made guarded using guarded containers, but in some cases
guarding will not work as expected and should not be used (for example, with lists).

The basic semaphore locks individual objects (although it many not work as expected on certain structures such as lists,
according to AdaPower.Net). The basic semaphore can be extended and customized by a programmer.

Rewriting the Bags example with guards:

wi t h BC. Cont ai ners. Bags. Unbounded;
wi t h BC. Cont ai ners. Guar ded;
wi t h BC. Support. Synchroni zati on;
wi th G obal _Heap;
package guarded _custoners is
type aCustonerI D is new integer range 1 000..9 999;

function IDHash(id : aCustonerlD) return Positive;
-- our hash function

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (25 of 26) [7/20/2001 11:38:19 AM]

Big Online Book of Linux Ada Programming - 18 Data Structures

package custonerContainers is new BC Containers (Item => aCustonerl|D);
-- this is the basic container

package custonerBags i s new cust oner Cont ai ners. Bags;
-- create a new bag support for our using container type

package custonerBag i s new custoner Bags. Unbounded(
Hash => | DHash,
Buckets => 99,
St or age_Manager => d obal Heap. Pool
Storage => d obal Heap. St orage) ;

-- create an unbounded bag hol di ng custoner nunbers

package custoner GuardedBag i s new cust oner Cont ai ners. Guarded (
Base Cont ai ner => cust oner Bag. Unbounded_Bag,
Semaphore => BC. Support. Synchroni zati on. Semaphore);

-- create a new controlled tagged record contai ner for custoners

end guarded_cust oners;

A new guarded bag can now be declared:

customers : custoner Guar dedBag. Guar ded_Cont ai ner;

and the bag can be locked using

cust oner Guar dedBag. Sei ze(customers);

Synchronized access by threads isimplemented in specia versions of the data structure packages (for example,
maps.synchronized). With synchronized packages, the implementation details are hidden from the user.

<--Last Chapter Table of Contents Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/18.html (26 of 26) [7/20/2001 11:38:19 AM]

Big Online Book of Linux Ada Programming - 19 Specialized Topics

19 Specialized Topics

<--L ast Chapter Table of Contents Next Chapter-->

19.1 Ada Meets Java
19.1.1 The Java Virtual Machine

19.1.2 JGnat Most of the Gnat tools have a corresponding JGnat version, including gnatmake. To
compile an Ada program into a Java byte-code program, use jgnatmake:

| gnat make hell o

Table: jgnatmake switches

JGnatmake Switch Description

-a Consider all files, even readonly ali files

-C Compile only, do not bind and link

-f Force recompilations of non predefined units

-i In place. Replace existing ali file, or put it with source
-jnum Use nnn processes to compile

-k Keep going after compilation errors

-m Minimal recompilation

-M List object file dependences for Makefile

-n Check objects up to date, output next file to compile if not
-0 hame Choose an alternate executable name

-q Be quiet/terse

-S Recompile if compiler switches have changed

-V Display reasons for al (re)compilations

-Z No main subprogram (zero main)

--GCC=command Use this jgnat command

--GNATBIND=command Use this gnatbind command

--GNATLINK=command Use this gnatlink command

-aldir Skip missing library sourcesif ali in dir

-Adir like -aL.dir -aldir

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/19.html (1 of 4) [7/20/2001 11:38:32 AM]

Big Online Book of Linux Ada Programming - 19 Specialized Topics

-a0dir Specify library/object files search path

-aldir Specify source files search path

-Idir Like -aldir -aOdir

-1- Don't look for sources & library filesin the default directory
-Ldir Look for program libraries also in dir

-nostdinc Don't look for sources in the system default directory
-nostdlib Don't look for library filesin the system default directory
-cargs opts opts are passed to the compiler

-bargs opts opts are passed to the binder

-largs opts opts are passed to the linker

-0 Generate debugging information

-Idir Specify source files search path

-I- Do not look for sources in current directory

-0[0123] Control the optimization level

-gnata Assertions enabled. Pragma Assert/Debug to be activated
-gnatA Avoid processing gnat.adc, if present file will be ignored
-gnatb Generate brief messages to stderr even if verbose mode set
-gnatc Check syntax and semantics only (no code generation)
-gnatd? Compiler debug option ? (a-z,A-Z,0-9), see debug.adb
-gnatD Debug expanded generated code rather than source code
-gnate Error messages generated immediately, not saved up till end
-gnatkE Dynamic elaboration checking mode enabled

-gnatf Full errors. Verbose details, all undefined references
-gnatF Force all import/export external namesto all uppercase
-gnatg GNAT implementation mode (used for compiling GNAT units)
-gnatG Output generated expanded code in source form

-gnath Output this usage (help) information

-gnati? |dentifier char set (?=1/2/3/4/8/p/f/n/w)

-gnatk Limit file names to nnn characters (k = krunch)

-gnatl Output full source listing with embedded error messages
-gnatL Use longjmp/setjmp for exception handling

-gnatmnnn Limit number of detected errors to nnn (1-999)

-gnatn Inlining of subprograms (apply pragma Inline across units)
-gnato Enable overflow checking (off by default)

-gnatO nm Set name of output ai file (internal switch)

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/19.html (2 of 4) [7/20/2001 11:38:32 AM]

Big Online Book of Linux Ada Programming - 19 Specialized Topics

'—gnatp Suppr&s all checks
-gnatP Generate periodic callsto System.Polling.Poll
-gnatq Don't quit, try semantics, even if parse errors
-gnatR List representation information
-gnats Syntax check only
-gnatt Tree output file to be generated
-gnatTnnn All compiler tables start at nnn times usual starting size
-gnatu List units for this compilation
-gnatU Enable unique tag for error messages
-gnatv Verbose mode. Full error output with source lines to stdout
-gnatw? Warning mode. (?=s/e/l/u for suppress/error/elab/undefined)
-gnatW Wide character encoding method (h/u/s/e/8/b)
-gnatx Suppress output of cross-reference information
-gnatX L anguage extensions permitted
-gnaty Enable al style checks
Enable selected style checks xxx = list of parameters:

« 1-9 check indentation

« b check no blanks at end of lines

 Ccheck comment format

« e check end labels present

« f check no form feeds/vertical tabsin source
e « hcheck no horizontal tabsin source

« | check if-then layout

« k check casing rulesfor keywords, identifiers

« m check line length <= 79 characters

« Mnnn check line length <= nnn characters

I check RM column layout

« Scheck separate subprogram specs present

« tcheck token separation rules
-gnatz Distribution stub generation (r/s for receiver/sender stubs)
-gnatZ Use zero cost exception handling
-gnat83 Enforce Ada 83 restrictions

jgnatmake will create two files: hello.class and ada _hello.class. To run the program under the Java
interpreter, type

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/19.html (3 of 4) [7/20/2001 11:38:32 AM]

Big Online Book of Linux Ada Programming - 19 Specialized Topics

java hello

Table: java switches

Java Interpreter Switch

Description

-hel p Print usage info

-versi on Print version number

-SS size Maximum native stack size

-nX si ze Maximum heap size

-8 Si ze Initial heap size

-as size Heap increment

-cl asspath path Set classpath

-verify Verify adl bytecode
-verifyrenote Verify bytecode loaded from network
-noverify Do not verify any bytecode

- Dpr operty=val ue Set a property

-ver bosegc Print message during garbage collection
- nocl assgc Disable class garbage collection

-v, -verbose

Be verbose

-verbosejit

Print message during JI'T code generation

-ver bosenem

Print detailed memory allocation statistics

- debug

Trace method calls

- noasyncgc

Do not garbage collect asynchronously

-cs, -checksource

Check source against classfiles

- 0SS Si ze

Maximum java stack size

-] ar

ExecutableisaJAR

Limitations: Ada streams don't work with Jgnat.
19.2 ASIS Information on ASIS is available at http://info.acm.org/sigada/\WG/asi swg/asi swg.html.

<--Last Chapter Table of Contents Next Chapter-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/19.html (4 of 4) [7/20/2001 11:38:32 AM]

http://info.acm.org/sigada/WG/asiswg/asiswg.html

Big Online Book of Linux Ada Programming - 20 Developing Your Project

20 Developing Your Project

<--Last Chapter Table of Contents Appendices-->
20.1 The Project Proposal

Before you begin any project that will be released to the public, it's a good idea to draw up a proposal.
The proposal should be about one page document describing the purpose of the project, who it's being
made for, and how long it will take and what kind of investments (time, money or otherwise) you

expect. Thisisespecially important if there is anybody working with you. Don't assume your teammates
see the project in exactly the same was as you do: write a proposal to avoid misunderstandings.

For example, calling a project "a database" doesn't say much. Calling it a"fast, distributed database for
businesses' tells your teammates where the database will be used, gives them an idea about the features
required, and tells that the design emphasisis on execution speed.

Once your proposal is finished, bounce the ideas of afew people you respect and trust, especialy if they
are potential users of your program. If none of them think the project is practical, you may want to
change the target audience or features of your project, or chose another project altogether.

Y ou can later use your proposal as the basic text for an announcement of the release of your program.
20.2 The Design Phase

When it comes time to begin designing the basic layout of a project, remember that Ada has features
designed just for this task.

Break up your project into a series of packages, and include basic type definitions and subprograms
(using pragma stubbed). Remember that the design doesn't have to be perfect, but you need a starting
place for you and your teammates to discuss the work. Use lots of comments to avoid continually
explaining the purpose of each package and it's contents.

When you have a basic layout, compile each of the specs to make sure the design is sound.
20.3 The Development Phase

Check list:

Did you use pragma pure, preelaborate or no_elaboration_code whenever possible?

Did you use pragma Normalize_Scalars whenever possible?

20.4 The Alpha/Beta Release

Check list for first alpha or beta release:

Check your integers: did you use integer when short_integer or long_integer would have been better?

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (1 of 7) [7/20/2001 11:38:49 AM]

Big Online Book of Linux Ada Programming - 20 Developing Your Project
Do you have pragma Optimize set in all of your packages?

Did you use pragma Pack al arrays and records that need packing? Do some need packing turned off?
Did you assign your access types to a debug pool in order to check for run-time errors?

20.5 Releasing Y our Software

Check list:

Did you remove al pragma Normalize _Scalars?

Did you remove al access type references to debug pools?

20.5.1 A Third Party Library

If you want to release a package as athird party library:

Change your .ads files to read-only with chmod -w.

Collect your executables into an archive with the ar command (see the section on libraries above).

Include instructions for installing the archive and make sure you mention that those who use your library
must use the -f option for gnatmake. This option treats all read-only files as third party libraries that
cannot be recompiled because the package bodies were not included.

20.6 Distribution Formats
20.6.1 RPM: Red Hat Package Manager

RPM (Red Hat Package Manager) is the most popular installation tool. It installs, uninstalls, and
checksums packages. S.U.S.E.'s YaST (Y et Another Setup Tool) works using RPM. RPM filesend in
“.rpm". Full details on the RPM format are available from Red Hat's RPM site at http://www.rpm.org.

The -q command checks for a package. -a shows all installed packages.
[root@redbase /root]# rpm -q uucp
uucp-1.06.1-14

[root@redbase /root]# rpm -q kernel
kernel-2.0.32-2

[root@redbase /root]# rpm -q -a
setup-1.9.1-1

filesystem-1.3.1-2
basesystem-4.9-1
AnotherLevel-0.5-2
|dconfig-1.9.5-2

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (2 of 7) [7/20/2001 11:38:49 AM]

Big Online Book of Linux Ada Programming - 20 Developing Your Project

XFree86-Mach64-3.3.1-14
Creating anew RPM archive is a cumbersome, multistep process.
20.6.2 TGZ Packages

TGZ (tar-ed gzip packages) are created by collecting al the filesinto one file using tar (tape archiver)
and compressing the file gzip (GNU zip) or tar's z (compress) option. Thefiles are usually named with
".tgz" ending but sometimes have the ".tar.gz" longform ending.

To create anew .tar archive, use the "cfv" options.
tar cfv archivenamefile

To add additional filesto the archive, use "rfv".
tar rfv archivenamefile

When the tar file isfinished, compressit with gzip
gzip —9 archivename.tar

And renameit to .tgz
mv archivename.tar.gz archivename.tar.gz

20.6.3 TAR.BZ2 Packages

TAR.BZ2 (tar-ed bzip packages) are another option. Like TGZ, these are tar files that are compressed,
but instead use the new bzip2 command that compresses better than gzip.

Other Formats

TZ isan older format, these are tar files that are compressed with the old compression command,
compr ess.

ZIP packages are collected and compressed in the popular PC zip format using zip.
ZOO packages use an older compression program, zoo.

CPIO (Copy In-Out) is another archiving program similar to tar. It collects files but doesn't compress
them.

DEB is apackage for the Debian distribution.
There are a host of other tools and formats, including ones to create archives for other platforms.
20.7 Man Pages

Linux man pages are special text files formatted for the groff program (GNU run off) is based on the
older UNIX programstroff (for printers) and nroff (for terminals). Troff was originally created in 1973
by Joseph F. Ossanna.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (3 of 7) [7/20/2001 11:38:49 AM]

Big Online Book of Linux Ada Programming - 20 Developing Your Project

man pages are text files containing groff markup codes embedded in the text. These codes, much like
HTML tagsin aweb page, control the fonts, layout and graphics used in the pages. Y ou can also define
your own groff codes (using groff macros).

Here's an example of a man page with groff markup codes:

\"This is a comment

. TH MAN 7 "25 July 1993" "Linux" "Linux Programmer's Manual "
. SH NAME

man \- macros to format nman pages

. SH SYNOPSI S

.B groff \-Tascii \-man

o file

Here, the ".B" groff code indicates that the text that follows should be bold (similar to &It;b& gt;), and the
".SH" groff code incidcates the text that followsis a subheading (similar to &It;hn>).

The groff predefined macros pretaining to manual pages are documented in the section 7 manual page on
man ("man 7 man").

All the man pages are stored in subdirectories in /usr/man. The subdirectories are numbered, each
number representing a different section number of the Linux manual. The manuals sections include:

1. Linux introduction
2. System Calls
3. CLibrary Cdlls
4. Summaries and Data Structures
For example, the C library call manual pages are located in /usr/man/man3.

The easiest way to create a ssmple man page for your program isto find a similar man page and make a
copy. Usethiscopy asabasisfor your new man page. Y ou can perform asimple test on your new man

page by
groff nypage | | ess

To convert your page to another format, use
groff mypage > nypage. ps

to create a PostScript version of your man page (or use the -Tdvi switch to createa TeX .dvi file). Use
one of the free conversion programs available on the Internet to trand ate the PostScript file to another
format.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (4 of 7) [7/20/2001 11:38:49 AM]

Big Online Book of Linux Ada Programming - 20 Developing Your Project

20.8 Linux Software Map Entry

The Linux Software Map (http://www.ExecPC.com/lsm/) is aweb site devoted to tracking Linux
software. Software registered with the map usesaLSM (Linux Software Map) file to describe
programs. One important Linux site, Metalab (http://metalab.unc.edu), requiresaLSM file for every
program initsarchive.

A Linux Software Map entry isatext fileending with a".Ism" suffix. It'sformatted like an email
message header. There are named fields that begin with a keyword and a colon, followed by the data for
that field. Continue lines by pacing over beneath the previous line.

Hereisan example LSM entry:

Begin3

Title: YAK - Bulletin Board System for Linux

Version: 1.08b

Entered-date: 09JUN97

Description: BBS software with sources for DOS, OS/2 and Linux. Includes also
tosser and tick program without sources.

Keywords: yak bbs tosser conference bulletin board

Author: skyreader@fw.nullnet.fi (Timo Sirainen)

Primary-site: Skyliner BBS +358-15-176242

Alternative-site: sunsite.unc.edu

Patform: DOS, OS2, Linux, ...

Copying-policy: GPL

End

Hereisthe LSM entry for System Manager in aBox 0.9.1 (beta):

Begin3

Title: System Manager in a Box

Version: 0.9.1 (beta)

Entered-date: Wednesday, May 26, 1999

Description: Linux configuration and administration utility using Al techniques.

PegaSoft home page is http://www.vaxxine.com/pegasoft
Keywords. system administration box ai pegasoft

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (5 of 7) [7/20/2001 11:38:49 AM]

Big Online Book of Linux Ada Programming - 20 Developing Your Project

Author: pegasoft@tiamet.vaxxine.com (PegaSoft Canada)

Maintained-by: pegasoft@tiamet.vaxxine.com (PegaSoft Canada)

Primary-site: metalab.unc.edu /pub/Linux/system/admin
700kB smiab-0.9.1.tgz

Alternate-site:

Origina-site:

Matforms:

Copying-policy: freeware

End

[KB-platform or platforms?]

Details about the format are available from the LSM web site.

To register aprogram with the Linux Software Map, email your LSM entry to 'lsm@execpc.com' with
the subject 'add'.

20.9 Software Licensing Options
Thefollowing is avery ssmplistic overview of the basic licensing options for Linux:

Commercial — sold for money, with warranty. Windows 95 is commercial, as are most programs that
run on it.

Free/Freeware — free for all use, usually has no warranty.

GPL (GNU Public License) — free for use and no warranty. If it'saprogramming tool, you can only
Incorporate it into your programs to create more GPL software. In other words, GPL isfree public
software that can only be used to make more free public software. Imagine afree enginefor cars. If any
car is built to take that free engine, it must be sold for free as well.

LGPL (Library GPL) — sameas GPL. Commercia programs may only useit if it's shared, not
statically linked. A car can be sold with no enginein it, and the engine can be added separately by the
dealer, but you can't sell the car with the free engine factory-installed.

Shareware — commercia software that's sold on the honor system: people who like the software and
who use it are expected to send in a cheque to the author. There'salot of shareware for Windows.

Xfree86 uses a different licence that's compatible with GPL/LGPL.

Virtually al the standard C libraries are LGPL, including libc, but you should check to documentation or
C header files to make sure.

Details on these and other licensing options, and how they interact, are described in the book Linux
Application Development from Addision-Wesley-L ongman.

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (6 of 7) [7/20/2001 11:38:49 AM]

Big Online Book of Linux Ada Programming - 20 Developing Your Project

<--Last Chapter Table of Contents Appendices-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/20.html (7 of 7) [7/20/2001 11:38:49 AM]

Big Online Book of Linux Ada Programming - Appendix A

<--Chapter 20 Table of Contents Appendix B-->

Appendix A: The Linux Shell

The default Linux shell isbash. Here's a summary of common bash shell commands.

|s— lists the filesin the current directory

[root@rmtage tenp]# |s

t ypescri pt

touch — create anew, blank file. If the file exists, changes the time it was last modified but otherwise

|eaves the file unchanged.

[root @rm tage tenp]# touch tenp.txt
[root@rmtage tenp]# |s
tenp. t xt t ypescri pt

rm — permanently remove afile
[root @rm tage tenp]# rmtenp. txt
rm renove tenp.txt'?y

Note: Red Hat defines aliases for rm, mv and cp that prompt before they overwrite or erase afile. Most
other distributions use the default behaviour, which is to take action without warning. You can disable
Red Hat's aliases with the unalias command.

mv — change the name of afile, or moveit to a new location
[root @rm tage tenp]# touch tenp.txt
[root@rmtage tenp]# nmv tenp.txt tenp2.txt

[root@rmtage tenp]# |s
tenp2. t xt t ypescri pt

cp — copy afile
[root@rmtage tenp]# cp tenp2.txt tenp3.txt

[root@rmtage tenp]# |s
tenp2. t xt tenp3. t xt t ypescri pt

grep — search afile for aword or phrase

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99.html (1 of 3) [7/20/2001 11:39:10 AM]

Big Online Book of Linux Ada Programming - Appendix A

[root @rm tage tenp]# grep "procedure” /hone/ken/ada/ basici o2. adb
procedure basicio2 is

find — search for afile
[root@rm tage tenp]# find /hone/ ken -type f -nane basici 03. adb
/ honme/ ken/ ada/ basi ci 03. adb

lpr — print afile

[root @rmtage tenp]# | pr basici 03. adb
lprm — stop printing afile, if the file hasn't started printing yet
[root@rmtage tenp]# | prm

df AO17Aa01370 dequeued
cf A0O17Aa01370 dequeued

lpg — list your files waiting to be printed

[root @rm tage tenp]# | pq

no entries

cat — display afile

[root @rmtage tenp]# cat hello.adb

W th Ada. Text |G
use Ada. Text 1O

procedure hello is

begi n
Put _Line("Hello world!");
end hell o;

| ess —display a file one screen at a tine,
al l owi ng you to nove around

[root @rm tage tenp]# | ess basicio. adb

tr —translate characters. To transl ate a DOS
text file to a Linux text file, use

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99.html (2 of 3) [7/20/2001 11:39:10 AM]

Big Online Book of Linux Ada Programming - Appendix A

tr —d ‘\r' < dos.txt > |inux.txt

<--Chapter 20 Table of Contents Appendix B-->

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99.html (3 of 3) [7/20/2001 11:39:10 AM]

Big Online Book of Linux Ada Programming - Appendix B

<--Appendix A

Table of Contents Appendix C-->

Appendix B: Linux Error Codes

Linux numeric error codes as defined by the Linux kernel.

C Name Value Description

EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process
EINTR 4 Interrupted system call
EIO 5 1/O error

ENXIO 6 No such device or address
E2BIG 7 Arg list too long
ENOEXEC 8 Exec format error
EBADF 9 Bad file number
ECHILD 10 No child processes
EAGAIN 11 Try again

ENOMEM 12 Out of memory
EACCES 13 Permission denied
EFAULT 14 Bad address

ENOTBLK 15 Block device required
EBUSY 16 Device or resource busy
EEXIST 17 File exists

EXDEV 18 Cross-device link
ENODEV 19 No such device
ENOTDIR 20 Not a directory

EISDIR 21 Is adirectory

EINVAL 22 Invalid argument
ENFILE 23 File table overflow
EMFILE 24 Too many open files
ENOTTY 25 Not atty device
ETXTBSY 26 Text file busy

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_b.html (1 of 4) [7/20/2001 11:39:27 AM]

Big Online Book of Linux Ada Programming - Appendix B

EFBIG 27 Filetoo large

ENOSPC 28 No space |eft on device
ESPIPE 29 Illegal seek

EROFS 30 Read-only file system
EMLINK 31 Too many links

EPIPE 32 Broken pipe

EDOM 33 Math argument out of domain of func
ERANGE 34 Math result not representable
EDEADLK 35 Resource deadlock would occur
ENAMETOOLONG 36 File name too long

ENOLCK 37 No record locks available
ENOSY S 38 Function not implemented
ENOTEMPTY 39 Directory not empty

ELOOP 40 Too many symbolic links encountered
EWOULDBLOCK same as EAGAIN Operation would block
ENOMSG 42 No message of desired type
EIDRM 43 |dentifier removed
ECHRNG 44 Channel number out of range
EL2NSYNC 45 Level 2 not synchronized
EL3HLT 46 Level 3 halted

EL3RST 47 Level 3 reset

ELNRNG 48 Link number out of range
EUNATCH 49 Protocol driver not attached
ENOCSI 50 No CSl structure available
EL2HLT 51 Level 2 halted

EBADE 52 Invalid exchange

EBADR 53 Invalid request descriptor
EXFULL 54 Exchange full

ENOANO 55 No anode

EBADRQC 56 Invalid request code
EBADSLT 57 Invalid slot

EDEADLOCK same as EDEADLK |-

EBFONT 59 Bad font file format
ENOSTR 60 Device not a stream
ENODATA 61 No data available

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_b.html (2 of 4) [7/20/2001 11:39:27 AM]

Big Online Book of Linux Ada Programming - Appendix B

[ETIME 62 [Timer expired

ENOSR 63 Out of streams resources

ENONET 64 Machine is not on the network
ENOPKG 65 Package not installed

EREMOTE 66 Object isremote

ENOLINK 67 Link has been severed

EADV 68 Advertise error

ESRMNT 69 Srmount error

ECOMM 70 Communication error on send
EPROTO 71 Protocol error

EMULTIHOP 72 Multihop attempted

EDOTDOT 73 RFS specific error

EBADMSG 74 Not a data message

EOVERFLOW 75 Vauetoo large for defined data type
ENOTUNIQ 76 Name not unique on network
EBADFD 77 File descriptor in bad state
EREMCHG 78 Remote address changed

ELIBACC 79 Can not access a needed shared library
ELIBBAD 80 Accessing a corrupted shared library
ELIBSCN 81 Jib section in a.out corrupted
ELIBMAX 82 Linking in too many shared libraries
ELIBEXEC 83 Cannot exec a shared library directly
EILSEQ 84 Illegal byte sequence

ERESTART 85 Interrupted system call should be restarted
ESTRPIPE 86 Streams pipe error

EUSERS 87 Too many users

ENOTSOCK 88 Socket operation on non-socket
EDESTADDRREQ 89 Destination address required
EMSGSIZE 90 M essage too long

EPROTOTY PE 91 Protocol wrong type for socket
ENOPROTOOPT 92 Protocol not available
EPROTONOSUPPORT |93 Protocol not supported
ESOCKTNOSUPPORT (94 Socket type not supported
EOPNOTSUPP 95 Operation not supported on transport endpoint
EPFNOSUPPORT 96 Protocol family not supported

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_b.html (3 of 4) [7/20/2001 11:39:27 AM]

Big Online Book of Linux Ada Programming - Appendix B

[EAFNOSUPPORT 97 'Addressfamily not supported by protocol
EADDRINUSE 98 Address already in use
EADDRNOTAVAIL 99 Cannot assign requested address
ENETDOWN 100 Network is down
ENETUNREACH 101 Network is unreachable
ENETRESET 102 Network dropped connection because of reset
ECONNABORTED 103 Software caused connection abort
ECONNRESET 104 Connection reset by peer
ENOBUFS 105 No buffer space available
EISCONN 106 Transport endpoint is already connected
ENOTCONN 107 Transport endpoint is not connected
ESHUTDOWN 108 Cannot send after transport endpoint shutdown
ETOOMANY REFS 109 Too many references. cannot splice
ETIMEDOUT 110 Connection timed out
ECONNREFUSED 111 Connection refused
EHOSTDOWN 112 Host is down
EHOSTUNREACH 113 No route to host
EALREADY 114 Operation already in progress
EINPROGRESS 115 Operation now in progress
ESTALE 116 Stale NFSfile handle
EUCLEAN 117 Structure needs cleaning
ENOTNAM 118 Not a XENIX named typefile
ENAVAIL 119 No XENIX semaphores available
EISNAM 120 Is anamed typefile
EREMOTEIO 121 Remote I/O error
EDQUQOT 122 Quota exceeded
ENOMEDIUM 123 No medium found
EMEDIUMTY PE 124 Wrong medium type

<--Appendix A Table of Contents Appendix C-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_b.html (4 of 4) [7/20/2001 11:39:27 AM]

Big Online Book of Linux Ada Programming - Appendix C

<--Appendix B Table of Contents Appendix D-->

Appendix C: Linux Kernel Calls

Thisisalist of Linux kernel calls from section 2 of the manual.

_exit - termnate the current process

_Ilseek - reposition read/wite file offset

_newsel ect - NQS

sysctl - read/wite system paraneters

accept - accept a connection on a socket

access - check user's permssions for a file

acct - switch process accounting on or off

adjtinmex - tune kernel clock

afs_syscall - uninpl enented

alarm- set an alarmclock for delivery of a signal
bdf | ush - start, flush, or tune buffer-dirty-flush daenon
bind - bind a nane to a socket

break - uni npl enent ed

brk - change data segnent size

cacheflush - (MPS) flush contents of instruction and/or data cache
chdir - change working directory

chmod - change permi ssions of a file

chown - change ownership of a file

chroot - change root directory

__clone - create a child process for nultithreadi ng
close - close a file descriptor

connect - initiate a connection on a socket

creat - open and possibly create a file or device
create_nodule - create a | oadable nodule entry

del ete_nodule - delete a | oadabl e nodul e entry

dup - duplicate a file descriptor

dup2 - duplicate a file descriptor

execve - execute program

exit - cause normal programterm nation

fchdir - change working directory

fchnmod - change permissions of a file

fchown - change ownership of a file

fcntl - manipulate file descriptor

fdatasync - synchronize a file's in-core data wth that on disk
flock - apply or renove an advisory |lock on an open file
fork - create a child process

fstat - get file status

fstatfs - get file systemstatistics

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_c.html (1 of 5) [7/20/2001 11:39:50 AM]

Big Online Book of Linux Ada Programming - Appendix C

fsync - synchronize a file's conplete in-core state with that on di sk
ftruncate - truncate a file to a specified |ength
get _kernel _syns - retrieve exported kernel and nodul e synbol s
getdents - get directory entries

get domai nnane - get domai n nane

get dt abl esi ze - get descriptor table size

getgid - get group identity

geteuid - get user identity

getgid - get group identity

getgroups - get/set list of supplenentary group
gethostid - get the unique identifier of the current host
get host nanee - get host nane

getitimer - get value of an interval tiner

get pagesi ze - get system page size

get peernane - get name of connected peer

getpgid - get process group

getpgrp - get process group

getpid - get process identification

getppid - get process identification

getpriority - get/set program scheduling priority
getresgid - get real, effective and saved group ID
getresuid - get real, effective and saved user ID
getrlimt - get resource limts

getrusage - get resource limts

getsid - get session ID

get socknane - get socket nane

get sockopt - get options on sockets

getti meofday - get tine

getuid - get user identity

gtty - uninpl enent ed

idle - make process 0 idle

[
init_nmodule - initialize a | oadable nodule entry
ioctl - control device

I operm - set port input/output perm ssions

iopl - change I1/O privilege |eve

ipc - SystemV | PC systemcalls

kill - send signal to a process

killpg - send signal to a process group

| chown - change ownership of a file

link - make a new nane for a file

listen - listen for connections on a socket

|1 seek - reposition read/wite file offset

| ock - uni npl enent ed

| seek - reposition read/wite file offset

| stat - get file status

nkdir - create a directory

nknod - create a directory or special or ordinary file
m ock - disable paging for sone parts of nenory
m ockal | - disable paging for calling process
mmap - map files or devices into nenory

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_c.html (2 of 5) [7/20/2001 11:39:50 AM]

Big Online Book of Linux Ada Programming - Appendix C

nodi fy Idt - get or set |dt

mount - nount and unnount fil esystens.

nprotect - control allowable accesses to a region of nenory
npx - uni npl enent ed

nremap - re-map a virtual nenory address

nsgctl - nessage control operations

nsgget - get a nessage queue identifier
nsgrcv - receive a nesssage
nmsgsnd - send a nessage

nmsync - synchronize a file with a nenory map

munl ock - reenabl e paging for sone parts of nenory
munl ockal | - reenabl e paging for calling process
munmap - unmap files or devices into nenory

nanosl eep - pause execution for a specified tine
nfsservctl - syscall interface to kernel nfs daenon
nice - change process priority

ol df stat - obsolete

ol dl stat - obsol ete

ol dol dunane - obsol ete

ol dstat - obsolete

ol dunane - obsol ete

open - open a file or device

outb, outw, outl - port output nacros

pause - wait for signal

personality - set the process execution donain

pi pe - create pipe

poll - wait for sonme event on a file descriptor
prctl - operations on a process

prof - uni npl enent ed

ptrace - process trace

query _nodul e - query the kernel for various bits pertaining to nodul es
guot act| - mani pul ate di sk quot as

read - read froma file descriptor

readdir - read directory entry

readlink - read value of a synbolic |ink

readv - read a vector

reboot - reboot or enable/disable Crl-Alt-Del

recv - receive a nessage froma socket

recvfrom - receive a nessage froma socket

recvimeg - receive a nessage from a socket

renane - change the nane or location of a file
rmdir - delete a directory

sbrk - change data segnment size

sched_get _priority max - get static priority range
sched_get _priority mn - get static priority range
sched_get param - get scheduling paraneters
sched_set schedul er - get schedul e al gorithm paraneters
sched_rr_get _interval - get the SCHED RR interval for the named process
sched_set param - set schedul ing paraneters
sched_setschedul er - set schedul e al gorithm paraneters

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_c.html (3 of 5) [7/20/2001 11:39:50 AM]

Big Online Book of Linux Ada Programming - Appendix C

sched yield - yield the processor

sel ect - synchronous |I/0O nmultipl exing

senct!| - semaphore control operations

senget - get a semaphore set identifier

senop - senmaphore operations

send - send a nmessage from a socket

sendfile - transfer data between file descriptors
sendnsg - send a nessage from a socket

sendto - send a nessage from a socket

set domai nnane - set domai n nane

setegid - set effective group ID

seteuid - set effective user ID

setfsgid - set group identity used for file system checks
setfsuid - set user identity used for file system checks
setgid - set group identity

setgroups - set list of supplenentary group

sethostid - set the unique identifier of the current host
set host nane - set host nane

setitimer - get or set value of an interval tiner
setpgid - set process group ID

setpgrp - set process group

setpriority - set program scheduling priority

setregid - set real group ID

setresgid - set real, effective and saved user

setresuid - set real, effective and saved user

setreuid - set real and / or effective user ID

setrlimt - set resource limts

setsid - creates a session and sets the process group ID
set sockopt - set options on sockets

settineofday - get / set tine

setuid - set user identity

setup - setup devices and file systens, nount root file (not avail able)
sgetmask - ANSI C signal handling

shmat - shared nenory operations

shntt!l - shared nenory contro

shnmdt - shared nenory operations

shnget - allocates a shared nenory segnent

shutdown - shut down part of a full-duplex connection
sigaction - change signal action

si gbl ock - change bl ocked signals

si ggetmask - get bl ocked signals

sigmask - C macro to create signal masks

signal - install signal handl er

si gpause - atomically rel ease bl ocked signals and wait for interrupt
si gpendi ng - exam ne pending signals

si gprocnmask - change bl ocked signals

sigreturn - return fromsignal handl er and cl eanup stack
sigsetmask - set net group of blocked signals

si gsuspend - replace signal mask and suspend process
sigvec - obsolete

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_c.html (4 of 5) [7/20/2001 11:39:50 AM]

Big Online Book of Linux Ada Programming - Appendix C

socket - create an endpoint for comrunication

socketcall - socket systemcalls entry point

socketpair - create a pair of connected sockets

sset mask - NQS

stat - get file status

statfs - get file systemstatistics

stime - set tine

stty - uninpl enented

swapoff - stop swapping to file/device

swapon - start swapping to file/device

symink - nake a new nane for a file

sync - commt buffer cache to disk

sysctl - read/wite system paraneters

sysfs - get file systemtype information

sysinfo - returns information on overall systemstatistics
syslog - read and/or clear kernel nessage ring buffer; set consol e | ogl evel
time - get tinme in seconds

times - get process tines

truncate - truncate a file to a specified |length

umask - set file creation mask

umount - unnount fil esystens

unane - get nanme and information about current kernel
unlink - delete a nane and possibly the file it refers to
uselib - select shared library

ustat - get file systemstatistics

utime - change access and/or nodification tinmes of an inode
uti mes - change access and/or nodification tines of an inode
vifork - alias for fork

vhangup - virtually hangup the current tty

viB6 - (Intel) enter virtual 8086 node

vnB6ol d - obsol ete

wait - wait for process term nation

wait3 - wait for process termnation, BSD style

wait4 - wait for process termnation, BSD style

waitpid - wait for process termnation

wite - wite to a file descriptor

witev - read or wite a vector

<--Appendix B Table of Contents Appendix D-->

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_c.html (5 of 5) [7/20/2001 11:39:50 AM]

Big Online Book of Linux Ada Programming - Appendix D

<--Appendix C Table of Contents Appendix E-->

Appendix D: Signals

Be aware that the mapping of names to signals may be -to-one. There may be aliases. Also, for alsignal
names that are not supported on the current systemthe value of the corresponding constant will be zero.

SI GHUP -- hangup

SIG@NT -- interrupt (rubout)

SIGUIT -- quit (ASCD FS)

SIALL -- illegal instruction (not reset)
SI GTRAP -- trace trap (not reset)
SIAOT -- 10T instruction

SI GABRT used by abort, SIGOT in the future
SIGFPE -- floating point exception

SIKILL -- kill (cannot be caught or ignored)
SI@BUS -- bus error

SI GSEGV -- segnentation violation

SIGPIPE -- wite on a pipe wwth no one to read it
SI GALRM - - al arm cl ock

SI GTERM - - software term nation signal fromkill
SIGUSRL -- user defined signal 1

SI GUSR2 -- user defined signal 2

SIGCLD -- child status change

SI GCHLD -- 4. 3BSD s/ PCsSI X nane for Sl GCLD

SIGN NCH -- w ndow si ze change

SI GQURG -- urgent condition on | O channel

SI GPOLL -- pollable event occurred

SIAO -- input/output possible, SIGPOLL alias (Sol aris)
SI GSTOP -- stop (cannot be caught or ignored)

SI GTSTP -- user stop requested fromtty

SI GCONT -- stopped process has been conti nued
SIGITIN -- background tty read attenpted
SIGITTQU -- background tty wite attenpted

SI GVTALRM -- virtual tinmer expired

SIGPRCF -- profiling tinmer expired

SIGXCPU -- CPUtine limt exceeded

SIGXFSZ -- filesize limt exceeded

SI GUNUSED - - unused si gnal

SI GSTKFLT -- stack fault on coprocessor

SIAOST -- Linux alias for SIA O

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_d.html (1 of 2) [7/20/2001 11:40:07 AM]

Big Online Book of Linux Ada Programming - Appendix D

SIGPWR -- Power failure

<--Appendix C Table of Contents Appendix E-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_d.html (2 of 2) [7/20/2001 11:40:07 AM]

Big Online Book of Linux Ada Programming - Appendix E

<--Appendix D Table of Contents Appendix F-->

Appendix E: loctl parameters

man ioctl_list givesalist of operations and parametersfor ioctl. Thisisa copy of that man page.

/1 I ntroduction

This is loctl List 1.3.27, a list of ioctl calls in Linux/i386
kernel 1.3.27. |t contains 421 ioctls from
[usr/include/{asmlinux}/*.h.

For each ioctl, | list its nunerical value, its nane, and its
argunent type.

An argunent type of 'const struct foo *' neans the argunent is
I nput to the kernel. 'struct foo *' neans the kernel outputs the
ar gunent .

I f the kernel uses the argunent for both input and output, this
Is marked with // 1-0O

Sone ioctls take nore argunents or return nore val ues than a
single structure. These are marked // MORE and docunented further
I n a separate section.

This list is inconplete. It does not include:

-- loctls defined internal to the kernel ('scsi _ioctl.h").
-- loctls defined in nodules distributed separately fromthe kernel.

And, of course, it may have errors and om ssions.

[/ Main tabl e.
/! <include/ asmi 386/ socket. h>

0x00008901 FI OSETOMWN const i nt
0x00008902 SI OCSPGRP const int *
0x00008903 FI OGETOMN i nt *
0x00008904 SI OCGPGRP int *
0x00008905 SI OCATMARK i nt *
0x00008906 SI OCGSTAMP ti neval *

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (1 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

/! <include/asmi 386/term os. h>

0x00005401 TCGETS struct term os *
0x00005402 TCSETS const struct termos *
0x00005403 TCSETSW const struct term os *
0x00005404 TCSETSF const struct termos *
0x00005405 TCGETA struct termo *
0x00005406 TCSETA const struct termo *
0x00005407 TCSETAW const struct termo *
0x00005408 TCSETAF const struct termo *
0x00005409 TCSBRK i nt

0x0000540A TCXONC i nt

0x0000540B TCFLSH i nt

0x0000540C TI CCEXCL voi d

0x0000540D TI OCNXCL voi d

0x0000540E TI OCSCTTY i nt

0x0000540F TI OCGPGRP pid_ t *

0x00005410 TI OCSPGRP const pid t *
0x00005411 TIOCAUTQ i nt *

0x00005412 TI CCSTI const char *
0x00005413 TI OCGN NSZ const struct w nsize *
0x00005414 TI OCSW NSZ struct w nsize *
0x00005415 TIOCMGEET int *

0x00005416 TIOCMBI S const int

0x00005417 TIOCMBI C const int

0x00005418 TI OCMSET const i nt

0x00005419 TI OCGSOFTCAR i nt *

0x0000541A TI CCSSOFTCAR const int *
0x0000541B FI ONREAD i nt *

0x0000541B TIOCCINQ i nt *

0x0000541C TI OCLI NUX const char *

/1 MORE

0x0000541D TI OCCONS voi d

Ox0000541E TI OCGSERI AL struct serial _struct *
0Ox0000541F TI OCSSERI AL const struct serial _struct *
0x00005420 TI OCPKT const int *

0x00005421 FIONBI O const int *

0x00005422 TI OCNOTTY voi d

0x00005423 TI OCSETD const int *

0x00005424 TIOCGETD int *

0x00005425 TCSBRKP i nt

0x00005426 TI OCTTYGSTRUCT struct tty struct *
0x00005450 FI ONCLEX voi d

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (2 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0x00005451 FI OCLEX voi d

0x00005452 FI OASYNC const int *

0x00005453 TI OCSERCONFI G voi d

0x00005454 TI OCSERGW LD int *

0x00005455 TI OCSERSW LD const int *

0x00005456 TI OCALCKTRM OS struct termos *

0x00005457 TI OCSLCKTRM OS const struct tem os *

0x00005458 Tl OCSERGSTRUCT struct async_struct *

0x00005459 TI OCSERGETLSR int *

O0x0000545A TI OCSERGETMULTI struct serial _rmultiport_struct *
0x0000545B TI OCSERSETMULTI const struct serial _nultiport _struct *

/! <include/linux/ax25. h>

Ox000089EQ0 SI OCAX25CETUI D const struct sockaddr _ax25 *
Ox000089E1 SI OCAX25ADDUI D const struct sockaddr _ax25 *
Ox000089E2 SI OCAX25DELUI D const struct sockaddr ax25 *
Ox000089E3 SI OCAX25NQUI D const int *

Ox000089E4 SI OCAX25DI GCTL const int *

Ox000089E5 SI OCAX25CGETPARMS struct ax25 parns_struct * // 1-0
Ox000089E6 SI OCAX25SETPARMS const struct ax25 parns-struct *

[/ <include/linux/cdk. h>

0x00007314
STL_BI NTR
voi d

0x00007315
STL_BSTART
voi d

0x00007316 STL_BSTOP void
0x00007317 STL_BRESET voi d

/! <include/linux/cdrom h>

0x00005301 CDROMPAUSE voi d

0x00005302 CDROVRESUME voi d

0x00005303 CDROVWPLAYMSF const struct cdrom nsf *

0x00005304 CDROVPLAYTRKI ND const struct cdromti *
0x00005305 CDROVREADTOCHDR struct cdrom tochdr *

0x00005306 CDROVREADTOCENTRY struct cdromtocentry * // 1-0O

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (3 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0x00005307
0x00005308
0x00005309
0x0000530A
0x0000530B
0x0000530C
0x0000530D
0x0000530E
0x0000530F
0x00005310
0x00005311
0x00005312
0x00005313
0x00005314
0x00005315
0x00005316

CDROMSTOP voi d

CDROVSTART voi d

CDROVEJECT voi d

CDROWOLCTRL const struct cdromvolctrl *
CDROMSUBCHNL struct cdrom subchnl * // 1-0
CDROVREADMODE2 const struct cdromnsf * // MORE
CDROVREADMODEL1 const struct cdromnsf * // MORE
CDROVREADAUDI O const struct cdromread audio * // MORE
CDROVEJECT _SW i nt

CDROMMULTI SESSI ON struct cdrommultisession * // -0
CDROM GET_UPC struct { char [8]; } *

CDROVRESET voi d

CDROWOLREAD struct cdromuvolctrl *

CDROVREADRAW const struct cdromnsf * // MORE
CDROMREADCOCKED const struct cdromnsf * // MORE
CDROMSEEK const struct cdrom nsf *

/1 <include/linux/cnR06. h>

0x00002000
0x00002001

CMRO6CTL_GET_STAT i nt
CMRO6CTL_GET_LAST_STAT i nt

/'l <include/linux/cycl ades. h>

0x00435901
0x00435902
0x00435903
0x00435904
0x00435905
0x00435906
0x00435907
0x00435908
0x00435909

CYGETMON struct cycl ades _nonitor *
CYGETTHRESH i nt *

CYSETTHRESH i nt

CYCGETDEFTHRESH i nt *
CYSETDEFTHRESH i nt

CYGETTI MEQUT int *

CYSETTI MEQUT i nt

CYGETDEFTI MEQUT int *

CYSETDEFTI MEQUT i nt

/'l <include/linux/ext2 fs.h>

0x80046601
0x40046602
0x80047601
0x40047602

EXT2 | OC_ GETFLAGS int *

EXT2_| OC_SETFLAGS const int *
EXT2_| OC_GETVERSI ON int *
EXT2_| OC_SETVERSI ON const int *

/1 <include/linux/fd.h>

0x00000000
0x00000001
0x00000002

FDCLRPRM voi d
FDSETPRM const struct floppy_struct *
FDDEFPRM const struct floppy_struct *

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (4 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0x00000003
0x00000004
0x00000005
0x00000006
0x00000007
0x00000008
Ox0000000A
0x0000000B
0x0000000C
0x0000000E
0x00000010
0x00000014
0x00000015
0x00000016
0x00000017
0x00000018
0x00000019
0x0000001B
0x0000001C
Ox0000001E
0x00000028

FDGETPRM struct fl oppy_struct *

FDVSGON voi d

FDVSGOFF voi d

FDFMIBEG voi d

FDFMITRK const struct format _descr *

FDFMTEND voi d

FDSETEMSGTRESH i nt

FDFLUSH voi d

FDSETMAXERRS const struct floppy max _errors *
FDGETMAXERRS struct floppy_nax_errors *
FDGETDRVTYP struct { char [16]; } *
FDSETDRVPRM const struct fl oppy drive parans *
FDGETDRVPRM struct fl oppy_drive_parans *
FDGETDRVSTAT struct floppy _drive_struct *
FDPOLLDRVSTAT struct floppy drive struct *
FDRESET i nt

FDGETFDCSTAT struct floppy fdc_state *
FDWERRORCLR voi d

FDWERRORGET struct floppy wite errors *
FDRAWCMD struct floppy rawcnmd * // MORE |I-0O
FDTWADDLE voi d

/] <include/linux/fs.h>

0x0000125D
0x0000125E
0x0000125F
0x00001260
0x00001261
0x00001262
0x00001263
0x00000001
0x00000002

BLKROSET const int *
BLKROGET int *
BLKRRPART voi d
BLKGETSI ZE i nt *
BLKFLSBUF voi d
BLKRASET i nt
BLKRAGET i nt *
FIBVAP int * // 1-0
FI GETBSZ int *

/'l <include/linux/hdreg. h>

0x00000301
0x00000302
0x00000304
0x00000307
0x00000308
0x00000309
0Ox0000030A
0x0000030B
0x0000031F
0x00000321

HDI O GETGEO struct hd_geonetry *

HDI O GET_UNMASKI NTR i nt *

HDI O GET_MULTCOUNT int *

HDI O GET_| DENTI TY struct hd_driveid *
HDI O GET_KEEPSETTI NGS i nt *

HDI O GET_CHI PSET int *

HDI O GET_NOWERR i nt *

HDI O GET_DMA int *

HDIO DRIVE CMD int * /] 1-0O

HDI O SET_MULTCOUNT i nt

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (5 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0x00000322 HDI O SET_UNMASKI NTR i nt
0x00000323 HDI O SET_KEEPSETTI NGS i nt
0x00000324 HDI O SET_CHI PSET i nt
0x00000325 HDI O SET_NOWERR i nt
0x00000326 HDI O SET DMA i nt

/'l <include/linux/if_eql.h>

/1
/1
/1
/1

| -O

ifreq * // MORE I-0O

MORE | - O
MORE | - O
MORE | -0
MORE | -0
} *

} *

Ox000089F0 EQ._ENSLAVE struct ifreq * // MORE |I-0O
O0x000089F1 EQ._EMANCI PATE st ruct

O0x000089F2 EQL_CGETSLAVECFG struct ifreq *
Ox000089F3 EQ._SETSLAVECFG struct ifreq *
Ox000089F4 EQ._GETMASTRCFG struct ifreq *
Ox000089F5 EQ._SETMASTRCFG struct ifreq *

/1 <include/linux/if _plip.h>

Ox000089F0 SI OCDEVPLI P struct ifreq * //

/'l <include/linux/if_ppp.h>

0x00005490 PPPI OCGFLAGS int *

0x00005491 PPPI OCSFLAGS const int *
0x00005492 PPPI OCGASYNCVAP int *

0x00005493 PPPI OCSASYNCMVAP const int *
0x00005494 PPPIOCCGUNIT int *

0x00005495 PPPI OCSI NPSI G const int *
0x00005497 PPPI OCSDEBUG const int *
0x00005498 PPPI OCGDEBUG i nt *

0x00005499 PPPI OCGSTAT struct ppp_stats *
0x0000549A PPPI OCGTI ME struct ppp_ddinfo *
0x0000549B PPPI OCGXASYNCMAP struct { int [8];
0x0000549C PPPI OCSXASYNCVAP const struct { int [8];
0x0000549D PPPI OCSMRU const int *

O0x0000549E PPPI OCRASYNCVAP const int *
0x0000549F PPPI OCSMAXCI D const int *

/'l <include/linux/ipx.h>

Ox000089E0D0 SI OCAI PXI TFCRT const char *
Ox000089E1 SI OCAlI PXPRI SLT const char *
Ox000089E2 SI OClI PXCFGDATA struct
[/ <include/linux/kd. h>

0x00004B60 A O FONT struct { char

[8192] ;

} *

| px_config_data *

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (6 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0x00004B61
0x00004B6B
0x00004B6C
0x00004B70
0x00004B71
0x00004B2F
0x00004B30
0x00004B31
0x00004B32
0x00004B33
0x00004B34
0x00004B35
0x00004B36
0x00004B37
0x00004B3A
0x00004B3B
0x00004B3C
0x00004B3D
0x00004B40
0x00004B41
0x00004B69
0x00004B6A
0x00004B66
0x00004B67
0x00004B68
0x00004B44
0x00004B45
0x00004B62
0x00004B63
0x00004B64
0x00004B65
0x00004B46
0x00004B47
0x00004B48
0x00004B49
0x00004B4A
0x00004B4B
0x00004B4C
0x00004B4D
0x00004B4E

Pl O FONT const struct { char [8192]; } *

G O FONTX struct console font _desc * // MORE I-O
Pl O FONTX const struct console font desc * //MORE
G O CMAP struct { char [48]; } *

Pl O CMAP const struct { char [48]; }

Kl OCSOUND i nt

KDWVKTONE i nt

KDGETLED char *

KDSETLED i nt

KDGKBTYPE char *

KDADDI O i nt // MORE

KDDELI O int // MORE

KDENABI O void // MORE

KDDI SABI O void // MORE

KDSETMODE i nt

KDGETMODE i nt *

KDVAPDI SP void // MORE

KDUNVAPDI SP void // MORE

G O SCRNMAP struct { char [E TABSZ]; } *

Pl O SCRNVAP const struct { char [E_TABSZ]; } *
G O_UNI SCRNVAP struct { short [E_TABSZ]; } *
Pl O_UNI SCRNVAP const struct { short [E TABSZ]; } *
G O _UNI MAP struct uni mapdesc * // MORE |-0O

Pl O UNI MAP const struct uni mapdesc * // MORE
Pl O UNI MAPCLR const struct unimapinit *
KDGKBMODE i nt *

KDSKBMODE i nt

KDGKBMETA i nt *

KDSKBMETA i nt

KDGKBLED i nt *

KDSKBLED i nt

KDGKBENT struct kbentry * // 1-0

KDSKBENT const struct kbentry *

KDGKBSENT struct kbsentry * // -0

KDSKBSENT const struct kbsentry *

KDG&GKBDI ACR struct kbdiacrs *

KDSKBDI ACR const struct kbdiacrs *
KDGETKEYCODE struct kbkeycode * // -0
KDSETKEYCODE const struct kbkeycode *

KDSI GACCEPT i nt

/'l <include/linux/lp.h>

0x00000601
0x00000602
0x00000604

LPCHAR i nt
LPTI ME i nt
LPABORT i nt

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (7 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0x00000605 LPSETI RQ i nt

0x00000606 LPGETIRQ int *

0x00000608 LPWAIT int

0x00000609 LPCAREFUL i nt

O0x0000060A LPABORTOPEN i nt

0x0000060B LPGETSTATUS int *
0x0000060C LPRESET voi d

0x0000060D LPGETSTATS struct |p_stats *

/] <include/linux/nroute. h>

Ox000089EQ0 SI OCGETVI FCNT struct sioc vif req * // 1-0
Ox000089E1 SI OCGETSGCNT struct sioc_sg req * // 1-0

/'l <include/linux/ntio.h>

0x40086D01 MIl1 OCTOP const struct ntop *

0x801C6D02 MIl OCGET struct ntget *

0x80046D03 Ml OCPCS struct ntpos *

0x80206D04 Mrl OCGETCONFI G struct ntconfiginfo *
0x40206D05 MrIl OCSETCONFI G const struct ntconfiginfo *

[/ <include/linux/netrom h>

Ox000089E0 SI OCNRGETPARMS struct nr_parns_struct * // 1-0
Ox000089E1 SI OCNRSETPARMS const struct nr_parns_struct *
Ox000089E2 SI OCNRDECOBS voi d

Ox000089E3 SI OCNRRTCTL const int *

/'l <include/linux/sbpcd. h>

0Ox00009000 DDI OCSDBG const int *
0x00005382 CDROVAUDI OBUFSI Z i nt

/! <include/linux/scc.h>

0x00005470 TI OCSCCI NI voi d

0x00005471 TI OCCHANI NI const struct scc_nodem *
0x00005472 TI OC&KI SS struct ioctl _command * // 1-0
0x00005473 TI OCSKI SS const struct ioctl _command *
0x00005474 TI OCSCCSTAT struct scc_stat *

/! <include/linux/scsi.h>

0x00005382 SCSI | OCTL_GET_IDLU struct { int [2]; } *
0x00005383 SCS| _| OCTL_TAGGED_ENABLE voi d

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (8 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0x00005384 SCSI | OCTL_TAGGED DI SABLE voi d
0x00005385 SCSI _| OCTL_PROBE_HOST const int // MORE

/1 <include/linux/snb fs.h>
0x80027501 SMB | OC GETMOUNTUI D uid_t *
[/ <include/linux/sockios. h>

0x0000890B SI OCADDRT const struct rtentry * // MORE
0x0000890C SI OCDELRT const struct rtentry * // MORE
0x00008910 SI OCA FNAME char []

0x00008911 SI OCSI FLI NK voi d

0x00008912 SI OCA FCONF struct ifconf * // MORE I-0O
0x00008913 SI OCA FFLAGS struct ifreq * // 1-0O
0x00008914 SI OCSI FFLAGS const struct ifreq *
0x00008915 SI OCA FADDR struct ifreq * // 1-0
0x00008916 SI OCSI FADDR const struct ifreq *
0x00008917 SI OCA FDSTADDR struct ifreq * // 1-0
0x00008918 SI OCSI FDSTADDR const struct ifreq *
0x00008919 SI OCA FBRDADDR struct ifreq * // 1-0
0x0000891A SI OCSI FBRDADDR const struct ifreq *
0x0000891B SI OCA FNETMASK struct ifreq * // 1-0
0x0000891C SI OCSI FNETMASK const struct ifreq *
0x0000891D SIOCA FMETRI C struct ifreq * // 1-0
Ox0000891E SI OCSI FMETRI C const struct ifreq *
Ox0000891F SI OCGA FMEM struct ifreq * // 1-0
0x00008920 SI OCSI FMEM const struct ifreq *
0x00008921 SIOCA FMIU struct ifreq * // 1-0
0x00008922 SI OCSI FMITU const struct ifreq *
0x00008923 OLD_SI OCA FHWADDR struct ifreq * // 1-0
0x00008924 SI OCSI FHWADDR const struct ifreq * // MORE
0x00008925 SI OCG FENCAP int *

0x00008926 SI OCSI FENCAP const int *

0x00008927 SI OCA FHWADDR struct ifreq * // 1-0
0x00008929 SI OCA FSLAVE voi d

0x00008930 SI OCSI FSLAVE voi d

0x00008931 SI OCADDMULTI const struct ifreq *
0x00008932 SI OCDELMULTI const struct ifreq *
0x00008940 SI OCADDRTOLD voi d

0x00008941 SI OCDELRTOLD voi d

0x00008950 SI OCDARP const struct arpreq *
0x00008951 SI OCGARP struct arpreq * // 1-0O
0x00008952 Sl OCSARP const struct arpreq *
0x00008960 SI OCDRARP const struct arpreq *
0x00008961 SI OCGRARP struct arpreq * // 1-0

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (9 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0x00008962 S| OCSRARP const struct arpreq *
0x00008970 SI OCA FMAP struct ifreq * // 1-0
0x00008971 SI OCSI FMAP const struct ifreq *

[/ <include/linux/soundcard. h>

0x00005100 SNDCTL_SEQ RESET voi d

0x00005101 SNDCTL_SEQ SYNC voi d

0xC08C5102 SNDCTL_SYNTH I NFO struct synth info * // 1-0
0xC0045103 SNDCTL_SEQ CTRLRATE int * // 1-0O

0x80045104 SNDCTL_SEQ GETOQUTCOUNT int *

0x80045105 SNDCTL_SEQ GETI NCOUNT int *

0x40045106 SNDCTL_SEQ PERCMODE voi d

0x40285107 SNDCTL_FM LOAD | NSTR const struct sbi _instrunment *

0x40045108 SNDCTL_SEQ TESTM DI const int *

0x40045109 SNDCTL_SEQ RESETSAMPLES const int *

0x8004510A SNDCTL_SEQ NRSYNTHS int *

0x8004510B SNDCTL_SEQ NRM DI S int *

0xC074510C SNDCTL_ M DI INFO midi _info * // 1-0

0x4004510D SNDCTL_SEQ THRESHOLD const int *

OxC004510E SNDCTL_SYNTH MEMAVL int * // 1-0O

0x4004510F SNDCTL_FM 40P _ENABLE const int *

OxCFB85110 SNDCTL_PMGR _ACCESS struct patngr_info * // 1-0
0x00005111 SNDCTL_SEQ PANI C void

0x40085112 SNDCTL_SEQ QUTOFBAND const struct seq _event rec *

0xC0045401 SNDCTL_TMR TIMEBASE int * // 1-0O
0x00005402 SNDCTL_TMR _START void

0x00005403 SNDCTL_TMR _STOP voi d

0x00005404 SNDCTL_TMR_CONTI NUE voi d

0xC0045405 SNDCTL_TMR TEMPO int * // -0
0xC0045406 SNDCTL_TMR SOQURCE int * // 1-0O
0x40045407 SNDCTL_TMR _METRONOMVE const int *
0x40045408 SNDCTL_TMR SELECT int * // 1-0O
OxCFB85001 SNDCTL_PMER | FACE struct patngr_info * // -0
0xC0046D00 SNDCTL_ M DI _PRETIME int * // 1-0
0xC0046D01 SNDCTL_M DI _MPUMODE const int *
0xC0216D02 SNDCTL_M DI _MPUCMD struct npu_comrand rec * //
0x00005000 SNDCTL_DSP_RESET void

0x00005001 SNDCTL_DSP_SYNC voi d

0xC0045002 SNDCTL_DSP_SPEED int * // 1-0O
0xC0045003 SNDCTL_DSP_STEREO int * // 1-0O
0xC0045004 SNDCTL_DSP GETBLKSIZ int * /] -0
0xC0045006 SOUND PCM WRI TE CHANNELS int * // 1-0O
0xC0045007 SOUND PCMWRI TE FILTER int * // 1-0
0x00005008 SNDCTL_DSP_POST voi d

0xC0045009 SNDCTL_DSP_SuBDIVIDE int * // 1-0

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (10 of 15) [7/20/2001 11:40:32 AM]

I-O

Big Online Book of Linux Ada Programming - Appendix E

0xC004500A
0x8004500B
0xC0045005
0x800C500C
0x800C500D
0x0000500E
0x80045002
0x80045006
0x80045005
0x80045007
0x00004300
0xCFB04301
0xC0144302
0xC0144303
0x40144304
0x40144305
0xC0144306
0xC0144307
O0x4FA44308
Ox8FA44309

0x80044D00
0x80044D01
0x80044D02
0x80044D03
0x80044D04
0x80044D05
0x80044D06
0x80044D07
0x80044D08
0x80044D09
0x80044D0A
0x80044D0B
0x80044D0C
0x80044D0D
0x80044D0OE
0x80044D0OF
0x80044D10
0x80044D1C
0x80044D1D
0x80044D1E
0x80044DFF
0x80044DFE
0x80044DFD
0x80044DFB
0x80044DFC

SNDCTL_DSP_SETFRAGVENT i nt *
SNDCTL_DSP_GETFMTS int *
SNDCTL_DSP_SETFMT int * // |
SNDCTL_DSP_GETOSPACE st r uct
SNDCTL_DSP_GETI SPACE st r uct
SNDCTL_DSP_NONBLOCK voi d
SOUND_PCM READ RATE int *
SOUND_PCM READ CHANNELS i nt
SOUND_PCM READ BI TS int *
SOUND_PCM READ FI LTER int *
SNDCTL_COPR_RESET voi d

I/ 1-0

-0

audi o_buf info *
audi o_buf _info *

*

SNDCTL_COPR _LOAD const struct copr_buffer *

SNDCTL_COPR_RDATA struct copr_debug _buf * //
SNDCTL_COPR_RCODE struct copr_debug buf * //
SNDCTL_COPR_WDATA const struct copr_debug buf

| -O
-0

* 1

SNDCTL_COPR_WCODE const struct copr_debug buf *

SNDCTL_COPR_RUN struct copr _

SNDCTL_COPR_HALT struct copr
SNDCTL_COPR_SENDMSG const st

debug_buf * [/
_debug_buf * //
ruct copr_nsg *

I-O
| -O

SNDCTL_COPR_RCVMSG struct copr_nsg *

SOUND M XER READ VOLUME i nt
SOUND M XER READ BASS int *
SOUND M XER READ TREBLE i nt
SOUND M XER READ SYNTH i nt *
SOUND M XER READ PCM int *
SOUND M XER READ SPEAKER i nt
SOUND M XER READ LINE int *
SOUND M XER READ M C int *
SOUND M XER READ CD int *
SOUND M XER READ IM X int *
SOUND M XER READ ALTPCM i nt
SOUND M XER READ RECLEV i nt

SOUND_M XER READ | GAI N
SOUND M XER READ OGAI N
SOUND M XER READ LI NE1
SOUND M XER READ LI NE2
SOUND M XER READ LI NE3

I nt
I nt
I nt
i nt
I nt

SOUND_M XER READ MJTE i nt
SOUND M XER READ ENHANCE i nt

*

* % F X 3k

SOUND M XER READ LOUD int *
SOUND M XER READ RECSRC i nt
SOUND M XER READ DEVMASK i nt
SOUND_M XER READ RECMASK i nt

*

*

*

*

*

*

*

*

SOUND_M XER READ STEREODEVS int *
SOUND M XER READ CAPS int *

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (11 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0xC0044D00
0xC0044D01
0xC0044D02
0xC0044D03
0xC0044D04
0xC0044D05
0xC0044D06
0xC0044D07
0xC0044D08
0xC0044D09
0xC0044D0A
0xC0044D0B
0xC0044D0C
0xC0044D0D
0xC0044DOE
0xC0044DOF
0xC0044D10
0xC0044D1C
0xC0044D1D
0xC0044D1E
0xC0044DFF

SOUND M XER WRI TE_ VOLUME int * // 1-0O
SOUND M XER WRI TE_ BASS int * // 1-0
SOUND_ M XER WRI TE_TREBLE int * // 1-0O
SOUND M XER WRI TE_SYNTH int * // 1-O
SOUND M XER WRI TE PCMint * // 1-0
SOUND_M XER WRI TE_SPEAKER int * // [-0O
SOUND M XER WRI TE_LINE int * // 1-0
SOUND M XER WRITE MCint * // 1-0
SOUND M XER WRITE CD int * // I-0
SOUND M XER WRITE IMX int * // 1-0
SOUND M XER WRI TE_ ALTPCM int * // [-0O
SOUND M XER WRI TE_ RECLEV int * // 1-0O
SOUND M XER WRITE IGAIN int * // |-O
SOUND M XER WRI TE OGAIN int * // |-O
SOUND M XER WRI TE_LINEL int * // 1-O
SOUND M XER WRI TE_LINE2 int * // |-O
SOUND M XER WRI TE_LINE3 int * // |-O
SOUND M XER WRI TE MUTE int * // 1-0
SOUND M XER WRI TE_ENHANCE int * // 1-0
SOUND M XER WRI TE_LOUD int * // 1-0O
SOUND M XER WRI TE_RECSRC int * // 1-0O

/'l <include/linux/unsdos fs. h>

0x000004D2
0x000004D3
0x000004D4
0x000004D5
0x000004D6

0x000004D7
0x000004D8
0x000004D9
0x000004DA
0x000004DB
0x000004DC

UVBDOS READDI R DOS struct unsdos ioctl * // -0
UVBDOS UNLI NK_DOS const struct unsdos_ioctl *
UVBDOS RMDI R DOS const struct unsdos _ioctl *
UVBDOS STAT _DOS struct unsdos_ioctl * // 1-0
UVBDOS CREAT_EMD const struct unsdos _ioctl *
UVEDOS UNLI NK_EMD const struct unsdos ioctl *
UVBDOS READDI R EMD struct unsdos ioctl * // -0

UVBDOS GETVERSI ON struct unsdos_ioctl *
UVBDOS | NI T_EMD voi d

UVBDOS DOS SETUP const struct unsdos _ioctl *
UVBDOS RENAME DOS const struct unsdos_ioctl *

[l <include/linux/vt.h>

0x00005600
0x00005601
0x00005602
0x00005603
0x00005604
0x00005605
0x00005606

VT_OPENQRY int *

VT_GETMODE struct vt _node *
VT_SETMODE const struct vt_node *
VT _GETSTATE struct vt _stat *
VT_SENDSI G voi d

VT_RELDI SP i nt

VT_ACTI VATE i nt

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (12 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0x00005607 VT_WAI TACTI VE i nt

0x00005608 VT_DI SALLOCATE i nt

0x00005609 VT_RESI ZE const struct vt _sizes *
Ox0000560A VT_RESI ZEX const struct vt _consize *

/1 Nore argunents.

Sone ioctl's take a pointer to a structure which contains

addi ti onal pointers. These are docunented here in al phabeti cal

order. CDROVREADAUDI O takes an input pointer 'const struct
cdromread_audio *'. The '"buf' field points to an output buffer of

| engt h CDROVREADCOCKED, CDROVREADMODE1l, CDROVREADMODE2, and
CDROVREADRAW t ake an i nput pointer 'const struct cdromnsf *'.

They use the sanme pointer as an output pointer to 'char []'. The length
varies by request. For CDROVREADMODELl, nost drivers use

'CD FRAMESI ZE', but the Optics Storage driver uses ' OPT_BLOCKSI ZE'

I nstead (both have the nunerical val ue 2048).

CDROVREADCOOKED char [CD_FRANMESI ZE]

CDROVREADMODEL1 char [CD_FRAMESI ZE or OPT_BLOCKSI ZE]
CDROVREADMODE2 char [CD_FRAMESI ZE_RAWD]
CDROVREADRAW char [CD_FRAMESI ZE_RAW

EQL_ENSLAVE, EQ. EMANCI PATE, EQ. GETSLAVECFG EQ._ SETSLAVECFG
EQL_ GETMASTERCFG and EQL SETMASTERCFG take a 'struct ifreq
**, The "ifr _data' field is a pointer to another structure as
fol |l ows:

EQL_ENSLAVE const struct slaving request *
EQL_EMANCI PATE const struct sl aving_request *
EQL_GETSLAVECFG struct slave config * // 1-0
EQL_SETSLAVECFG const struct slave config *
EQL_CGETMASTERCFG struct master_config *
EQL_SETMASTERCFG const struct naster _config *

FDRAWCMD t akes a 'struct floppy rawcmd *'. |If 'flags & FD RAWWRI TE
IS non-zero, then 'data' points to an input buffer of length 'l ength'.
If 'flags & FD_ RAW READ is non-zero, then 'data' points to an out put
buffer of length 'l ength'.

A O FONTX and PI O FONTX take a 'struct console font _desc *' or a

a buffer of 'char [charcount]'. This is an output buffer for A O FONTX
and an input buffer for Pl O FONTX

G O UNI MAP and PI O UNI MAP take a 'struct unimapdesc *' or a

of '"struct unipair [entry ct]'. This is an output buffer for A O UN NMAP
and an input buffer for PI O _UN NMAP.

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (13 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

KDADDI O, KDDELI O, KDDI SABI O, and KDENABI O enabl e or disable access to
|/ O ports. They are essentially alternate interfaces to 'ioperm.
KDMVAPDI SP and KDUNMAPDI SP enabl e or di sabl e nenory mappi ngs or 1/0O port
access. They are not inplenented in the kernel.

SCSI _| OCTL_PROBE_HOST takes an input pointer 'const int *, whichis a
| ength. |t uses the sane pointer as an output pointer to a 'char []°'
buffer of this |ength.

SI OCADDRT and SI OCDELRT take an input poi nter whose type depends on
t he protocol:

protocols const struct rtentry *
AX. 25 const struct ax25 route *
NET/ ROM const struct nr_route struct *

SI OCA FCONF takes a 'struct ifconf *'. The '"ifc _buf' field points to a
buffer of Iength "ifc_len' bytes, into which the kernel wites a list of
type 'struct ifreq []"'.

SI OCSI FHWADDR t akes an i nput poi nter whose type depends on the protocol:

Most protocols; const struct ifreq *
AX. 25 const char [AX25_ADDR_LEN]

TI OCLI NUX takes a 'const char *'. It uses this to distinguish several
| ndependent sub-cases. In the table below, 'N + foo' neans 'foo' after
an N-byte pad. 'struct selection' is inplicitly defined in

TI OCLI NUX-2 1 + const struct selection *

TI OCLI NUX- 3 voi d

TI OCLI NUX- 4 voi d

TI OCLI NUX-5 4 + const struct { long [8]; } *
Tl OCLI NUX-6 char *

Tl OCLI NUX-7 char *

TI OCLI NUX-10 1 + const char *

/1 Duplicate ioctls

This list does not include ioctls in the range SI OCDEVPRI VATE and
S| OCPROTOPRI VATE.

0x00000001 FDSETPRM FI BVAP

0x00000002 FDDEFPRM FI GETBSZ
0x00005382 CDROVAUDI OBUFSI Z SCSI _| OCTL_GET_| DLUN

file://IG|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (14 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix E

0x00005402 SNDCTL_TMR_START TCSETS
0x00005403 SNDCTL_TMR_STOP TCSETSW
0x00005404 SNDCTL_TMR_CONTI NUE
TCSETSF

<--Appendix D Table of Contents Appendix F-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_e.html (15 of 15) [7/20/2001 11:40:32 AM]

Big Online Book of Linux Ada Programming - Appendix F

<--Appendix E

Table of Contents

Glossary-->

Appendix F: Overview of GNAT Packages

Thisisan overview of some of the more useful packages included with Gnat 3.13p's more than 300

standard packages:
File Package Description
aastaco |Ada.Asynchronous Task Control Unimplemented
a-caldel Ada.Caendar.Delays Sleeping using Calendar types
aacalend |AdaCalendar Standard Ada Caledar package
achahan |AdaCharacters.Handling Stand_ar d Ada character
handling package
a-chlatl Ada.Characters.Latin_1 Sta.r“?'?rd Latin 1 Character set
definition
acoliea |AdaCommand_Line.Environment =L O ACRETA AT
- package
a-colire Ada.Command_Line.Remove Unset environment variables
acomlin |Ada.Command Line SETIET A SERMINE R
arguments package
acwilal |AdaCharacters.Wide Latin 1 SEMSER O £ I WIEE
character set
adecima |AdaDecimal Limits and def'ns for Decimal
types
. . Generic package for
aadiocs |AdaDirect 10.C_Streams reading/writing C direct files
aadireio |AdaDirect 10 Standard Ada generic direct
— |/O package
] . . . Changing task priorities
adynpri |Ada.Dynamic_Priorities on-the-fly
: Standard Ada exception
aexcept |AdaExceptions handling package
] . Support for exception
a-exctr Ada.Exceptions. Traceback tracebacks
afilico AdaFinalization.List_Controller Support for controlled tagged
- records

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (1 of 9) [7/20/2001 11:40:56 AM]

Big Online Book of Linux Ada Programming - Appendix F

Standard Ada controlled

afindli Ada.Finalization tagged record package

aflteio AdaFloat Text 10 Instantiated Text 10 for floats

afwteio |AdaFloat WideText 10 IrsEnEteeliee T IO
floats

ainteio Ada.lnteger Text 10 I LEE L CoOKe R OALE:
integers

arinterr Ada.Interrupts SEfes bt tlliz it
package

aintnam |Ada.lnterrupts.Names Linux signal names

aioexce |AdalO_Exceptions HOEEESIElIneEL
packages

aiwteo |Adalnteger Wide Text IO I =L Sotillo. et (Ol
integers

alfteio Ada.Long Float Text 10 Iz Colle (O
floats

alfwtio AdalLong_Float Wide Text |10 I THETERie.2 TET e
long floats

aliteio Adalong_Integer Text IO I TEELEE TR Oer lerg
integers

aliwtio Adalong_Integer Wide Text |10 II nstant STElUIE 2 Rese ol
ong integers

allftio Ada.Long Long Float Text 10 IrsE el IES [Oiarlieig
long floats

allfwiti Ada.Long Long Float Wide Text IO sk il e [loerleng
long floats

allitio Ada.Long Long Integer Text IO I 1= TEL e lengle
integers

alliwti AdalLong_Long Integer Wide Text 10 Jist W' U8 I JOerleng
long integers

ancelfu |Ada.Numerics.Complex Elementary Function Inrg)srts & STel @Sl G e

angcefu |Ada.Numerics.Generic_Complex_Elementary Functions CEMETG = Eg2a el Cpoiies
complex nbrs

angcoty |Ada.Numerics.Generic_Complex_Types CETEE CEligE AULosR
package

angelfu |AdaNumerics.Generic_Elementary Functions CETENBET CPSIEr CnieX

numbers

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (2 of 9) [7/20/2001 11:40:56 AM]

Big Online Book of Linux Ada Programming - Appendix F

Inst. of std ops for long

anlcefu |AdaNumerics.Long Complex_ Elementary Functions
complex nbrs
anlcoty |AdaNumerics.Long_Complex_Types Jiste il o O (g ies
complex nbrs
a-nlelfu Ada.Numerics.Long Elementary Functions St TG 1 6 £1el @ Bl
long floats
Ada.Numerics.Long_Long_ Inst. of std ops for long long
a-nllcef :
Complex_Elementary Functions complex nbrs
Ada.Numerics.Long_Long_ Instantiation of long long float
anllcty
Complex_Types complex nbrs
Ada.Numerics.Long _Long_ Inst. of std ops for long long
a-nllefu .
Elementary _Functions floats
Ada.Numerics.Short_Complex_ Inst. of std ops for short float
a-nscefu :
Elementary _Functions complex nbrs
anscoty |Ada.Numerics.Generic_Complex_Types s iIE 0D @ STl 1%
complex nbrs
a-nselfu Ada.Numerics.Short_Elementary Functions Inst. of std ops for short floats
anucoty |Ada.Numerics.Complex_Types IR HETER 6 IEEL CEimplE:
numbers
anudira |Ada.Numerics.Discrete Random CEREE ILES S E RO
number package
anuelfu |Ada.Numerics.Elementary Function Jish @7 €T EEuer e
complex nbrs
anuflra |AdaNumerics.Float_ Random FUCE 1) [ERJt [Lo 00 (LIS
package
anumaux |AdaNumerics. Aux Internal use
anumeri |Ada.Numerics Defn's of Pi and epsilon
areatim |AdaRea Time Real-time timing declarations
aretide Ada.Real_Time.Delays Sleeping using real-time types
, , Standard Ada generic
asequio |Ada.Sequentia |10 sequential 1/0 package
a-sfteio Ada.Short Float Text 10 ISt UEEL 1eT JOpreEes
for short floats
asfwtio |Ada.Short_ Float Wide Text 10 IS e O
package for short floats
Generic package for
a-siocst Ada.Sequential 10.C_Streams reading/writing sequential C

files

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99 _f.html (3 of 9) [7/20/2001 11:40:56 AM]

Big Online Book of Linux Ada Programming - Appendix F

Instantiated Text_10 package

asteio Ada.Short_Integer Text 10 for short integers
aswtio |AdaShort_Integer Wide Text 10 Inst. Wi d_e L[OpEEEes
for short integers
assicst Ada.Streams.Stream _10.C_Streams FasERiier e gl e
— = streams
it Inst. Text_|O package for
assitio Ada.Short_Short_Integer Text 10 short short integers
p——— Ada.Short_Short_Integer Inst. Wide_Text 10 package
Wide Text 10 for short short integers
astmaco |AdaStrings.Maps.Constants Upper_Set, Lower_Set and
other char mappings
a-storio Ada.Storage 10 -
astrbou |Ada.Strings.Bounded Standard Ada bounded strings
package
astream |Ada.Streams Standard Ada streams package
asrfix |AdaStringsFixed Standard Adafixed strings
package
a-string Ada.Strings Standard Ada string defn's
i : Standard Ada string mapping
astrmap |Ada.Strings.Maps package
astrsea Ada.Strings.Search Internal Use
astrunb |Ada.Strings.Unbounded =ERz AUz
strings package
a-ststio Ada. Streams.Stream_|O Standard Ada streams 1/0
- package
astunau |Ada.Streams.Unbounded.Aux Additional unbounded string
subprograms
astwibo |AdaStrings.Wide Bounded Wide bounded strings package
a-stwifi Ada.Strings.Wide_Fixed Wide fixed strings package
astwima |AdaStrings.Wide Maps Wide version of strings.maps
astwise |Ada.Strings.Wide Search Internal Use
astwiun |AdaStrings.Wide_Unbounded Uil 2UnlsRle SIS HRES
package
a-suteio Ada.Strings.Unbounded.Text_|O Unbounded strings package
aswmwco |AdaStrings.Wide Maps.Wide Constant Urasr =z, LEET SSiEne

other wide char mappings

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_f.html (4 of 9) [7/20/2001 11:40:56 AM]

Big Online Book of Linux Ada Programming - Appendix F

Wide unbounded strings

aswuwti |Ada.Strings.Wide_Unbounded.Wide Text 10
package
Subprograms to synchronize
asytaco |AdaSynchronous Task_Control tasks
atags Ada.Tags Standard Adatag package
a-tasatt AdaTask_Attributes Set/get task attributes
ataside Ada.Task_Identification Task ID package
a-teloed Ada.Text_|O.Editing FELCIRIES IBAE HEe
Text_10
a-textio AdaText IO SEMRERGERETE Ve [0
— package
a-ticoau Ada.Text_|O.Complex_Aux eElEiglerg COmZiElie
package
aticoio Ada.Text_|O.Complex_1O CEAE Ut O ST el
complex numbers
a-tideau Ada.Text_|O.Decima_Aux Internal Use
atidelo AdaText 10.Decima 10 Internal Use
a-tienau Ada.Text_|O.Enumeration_Aux Internal Use
atienio AdaText |O.Enumeration 10 Internal Use
atifiio Ada.Text_|O.Fixed 10 Internal Use
atiflau AdaText |O.Float_ Aux Internal Use
atiflio Ada.Text_IO.Float_IO Internal Use
a-tigeau AdaText 10.Generic_Aux Internal Use
atiinau Ada.Text_|O.Integer Aux Internal Use
atiinio Ada.Text_|O.Integer 10 Internal Use
atimoau |AdaText 10.Modular_Aux Internal Use
atimoio |AdaText |O.Modular 10 Internal Use
tiocst AdaText 10.C_Sireams Text__IO for reading/writing C
text files
atitest AdaText 10.Text_Streams Text_|O stream definition
aunccon |AdaUnchecked_Conversion Standar_d ACRIRENEE e
- conversions subprogram
auncdea |AdaUnchecked Deallocation SETUE .A AT
deallocation subprogram
awitdo |AdaWide Text 1O Vet (O e >

characters

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99 _f.html (5 of 9) [7/20/2001 11:40:56 AM]

Big Online Book of Linux Ada Programming - Appendix F

Basic Text_ 10 package for

awtcoau |AdaWide Text 10.Complex_Aux long long float complex
numbers

awtcoio |AdaWide Text |0.Complex_IO CELElE Lo IEC [0
package for complex numbers
Wide Text 10 package for

a-wtcstr Ada.Wide Text 10.C_Streams reading/writing wide C text
files

awtdeau |AdaWide Text |O.Decima_Aux Internal Use

awtdeio |AdaWide Text 10.Decima 10 Internal Use

. . . Package for formatted

awtedit |AdaWide Text |O.Editing Wide Text IO

awtenau |AdaWide Text |O.Enumeration_ Aux Internal Use

awtenio |AdaWide Text_|O.Enumeration 1O Internal Use

awtfiio Ada.Wide Text 10.Fixed 1O Internal Use

awtflau |AdaWide Text_|O.Float_Aux Internal Use

awtflio Ada.Wide Text 10.Float_10 Internal Use

awtgeau |AdaWide Text 10.Generic_ Aux — _by Uil 2ETEREES (O
generic packages

awtinau |AdaWide Text_|O.Integer Aux Internal Use

awtinio |AdaWide Text |O.Integer 10 Internal Use

awtmoau |AdaWide Text |O.Modular_Aux Internal Use

awtmoio |AdaWide Text IO.Modular_10 Internal Use

a-wttest Ada.Wide Text 10.Text_Streams DEienertlestz=g e
streams

g-busora |GNAT.Bubble Sort A Bubblesort using access types

g-busorg |GNAT.Bubble Sort G Generic bubblesort package

_ Ada.Calendar plus day of
Gy [CNRULCE ey week, second duration, etc.
: : Character case conversion
g G without Characters.Handling
. . Formatted 1/O for time values,

g-catiio GNAT.Calendar.Time_|O like Linux strftime()
More powerful than

g-comlin |GNAT.Command_Line Ada.Command_Line, like
Linux getopts()

g-curexc |GNAT.Current_Exception DIESAREES) VDS

style exception handling

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99 _f.html (6 of 9) [7/20/2001 11:40:56 AM]

Big Online Book of Linux Ada Programming - Appendix F

g-debpoo

GNAT.Debug_Pools

Storage pool with alocation
and dereference error checking

Program debugging utilities:

g-debuti GNAT.Debug_Utilities eg. system address output
. . . Linux directory changing,
g-dirope |GNAT.Directory_Operations creating, walking
g-except |GNAT.Exceptions Ada predefined exceptions for
pure packages
Set the floating point
g-flocon |GNAT.Float_Control processor back to the Gnat
defaults
g-hesora |GNAT.Heap Sort A AICE SEE (P28 CE DEE) EEeEsS
types
g-hesorg |GNAT.Heap Sort G Generic heapsort package
g-htable |GNAT.HTable Generic hash table package
g-io GNAT.IO Text 1/O for preelaborated
packages
: Get_Linefunctions and file
SHIEOEW | RIS existence test for Text_10
Package for locking
g-locfil GNAT.Lock Files files/directories with retry
capability
o5 lib GNAT.OS Lib Package for common Linux
905 T OIS operations
Simple package for Linux
g-regexp |GNAT.Regexp globbing pattern matching and
AdaBNF
Package providing full UNIX
g-regpat |GNAT.Regpat regular expression pattern
matching
Check for atypo, similar to
gessens [ENAT=EEl Crze G my Typo_Of in TextTools
= . Package providing SPITBOL
g-spipat GNAT.Spitbol .Pattern pattern matching
P . SPITBOL string processing
g-spitbo |GNAT.Spitbol data sructures
g-sptabo |GNAT.Spitbol. Table Boolean Boolean type SPITBOL table
g-sptain GNAT.Spitbol. Table Intege Integer type SPITBOL table

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99 _f.html (7 of 9) [7/20/2001 11:40:56 AM]

Big Online Book of Linux Ada Programming - Appendix F

g-sptavs |GNAT.Spitbol.Table VString glgleollBJ gdl_e?aﬁlr |eng type

o-table GNAT Table Dynamic one-dimensional
arrays package

g-tasloc GNAT Task_Lock Pac_kage_for protecting critical
regionsin tasks

g-thread |GNAT.Threads Import C threads as Adatasks

g-traceb |GNAT.Traceback NETEIT CellBESE oTeit
support

g-trasym |GNAT.Traceback.Symbolic Symbolic tracebacks

G Interfaces.C Standard Ada C interfacing
package

I-cexten Interfaces.C.Extensions AAlllETE. ©feesiol
covered by Interfaces.C

i-cobol Interfaces. COBOL _Standarpl AdaCOBOL
interfacing package

I-cpoin Interfaces.C.Pointers C style pointer arithmetic

i-cpp Interfaces.CPP GNAT C++ classinterfacing
package

I-csthre Interfaces.C.Sthreads Dummy package

I-cstrea Interfaces.C_Streams]];Ihég Sl 1719 CEEE UETE

I-Cstrin Interfaces.C.Strings GNAT C string operations

: Standard Ada Fortran

i-fortra I nterfaces.Fortran . .
interfacing package

I-0s2err Interfaces.OS2Lib.Errors OS/2 error codes

I-os2lib Interfaces.OS2Lib 0OS/2 support

I-os2syn |Interfaces.OS2Lib.Synchronization 0OS/2 support

I-0s2th Interfaces.OS2Lib. Threads 0OS/2 support
Packed decimal fixed types

I-pacdec |Interfaces.Packed Decimal support for Machine Radix 10
computers

I-vxwork |Interfaces.VxWorks VxWords API support

. . Function returning a

I-addimg |System.Address Image system. address image
64 bit arithmetic with support

s-arit64 System.Arith_64 for intermediate results > 64

bits

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99 _f.html (8 of 9) [7/20/2001 11:40:56 AM]

Big Online Book of Linux Ada Programming - Appendix F

s-atacco System.Address To_Access Conversions gg?:{:: gr? dbi\g:;ntjprgge
s-bitops.ads|System.Bit_Ops }‘O?V;'lgv;l E'S;Vt';e Operations
Storage pool with afunction
s-chepoo |System.Checked Pools c alljdgfopr) any dereference
, Generic function for signed
HEEE | [BIAIREL I integer exponentiati ong
s-pooglo |System.Pool _Global ggég SSZE ier ENATEEeE
s-pooloc |System.Pool L ocal 2&222' tgszg s G lees
spowtab |System.Powten Table table of powers of 10
s-stoele System.Storage Elements Standard Ada package
<--Appendix E Table of Contents Glossary-->

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99 _f.html (9 of 9) [7/20/2001 11:40:56 AM]

Big Online Book of Linux Ada Programming - Glossary

<--Appendix F Table of Contents End of Book

Glossary

AARM The Annotated Ada Reference Manual contains the entire text of the Ada 95 standard (ISO/IEC
8652:1995(E)), plus various annotations. It isintended primarily for compiler writers, validation test
writers, and other language lawyers. The annotations include detailed rationale for individual rules and
explanations of some of the more arcane interactions among the rules.

Ada 9X theworking title of Ada 95 before the language was completed.

ASIS The Ada Semantic Interface Specification is alayered vendor-independent open architecture.
ASIS queries and services provide a consistent interface to information within the Ada compilation
environment.

Dynamic Polymor phism Polymorphism implemented at run-time using a "tag" to determine the type of
item; tagged records, objects.

Inheritance Creating new items containing an original item's features without changing the original
item.

LRM isthe abbreviated name of the Language Reference Manual, sometimes called Ada Reference
Manual. "LRM" was often used in the days of Ada 83; "RM" or "rm95"

Multiple Inheritance Creating new items from two or more original item's features without changing
the original item.

Polymor phism A means of factoring out differences amongst a collection of items so that programs
may be written in terms of the common features.

RM seeLRM.
RM95 seelLRM.

Static Polymor phism Polymorphism implemented at compile-time; generics.

<--Appendix F Table of Contents End of Book

file:///G|/Linux/http-www.vaxxine.com-pegasoft-people-html/book/99_z.html [7/20/2001 11:41:10 AM]

	Local Disk
	The Big Book of Linux Ada Programming
	 i Preface
	1 Introduction
	2 Installing Gnat on Linux
	3 Introduction to the IDE's
	4 From Source Code to Executable
	5 Building Large Projects
	6 Development Utilties
	7 Optimizing Your Project
	8 Debugging Your Project
	9 Team Development
	10 An Introduction to Ada
	11 Advanced Ada Programming
	12 Standard Gnat Packages
	13 Linux Introduction
	14 Linux Programming
	15 Free Ada Bindings
	16 Advanced Linux Programming
	17 Moving C Programs To Ada
	18 Data Structures
	19 Specialized Topics
	20 Developing Your Project
	Appendix A: The Linux Shell
	Appendix B: Linux Error Codes
	Appendix C: Linux Kernel Calls
	Appendix D: Signals
	Appendix E: Ioctl parameters
	Appendix F: Overview of Gnat Packages
	Glossary

	PNMPIHMMCBHJALMGCDAMBPKLLDAPGOGH:
	form1:
	x:
	f1:
	f2: Search

	f3:

