

Object-Based Playlists

A Senior Project

presented to

the Faculty of the Computer Science & Engineering

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science

by

Aaron Baldwin

Jeremy Bradshaw

Kevin Mathew

June, 2011

© 2011 Aaron Baldwin, Jeremy Bradshaw, Kevin Mathew

Introduction

 Problem

 Playlists originated several decades ago from radio stations. The stations needed to limit

and keep track of the listing of songs that played daily. Today, a playlist refers to an order of

songs within a time period. Even though unique methods of constructing playlists have been

developed, such as iTunes‟ Genius or Smart Playlists, the main issue at hand is that the core

structure remains unchanged.

 With smart playlists like Genius, the user does not have complete control over what each

playlist contains. Smart playlists analyze a user‟s library or current playlist content. Based on the

data accumulated, it will decide and generate playlists on the go for users which is convenient.

However, the user may not agree with the selections from the smart playlist.

gfisher
Inserted Text
in iTunes

gfisher
Inserted Text
Start a new paragraph, and add this:

There have been some advances in electronic playlists, compared to the original form used by radio stations. For example, figure 1 shows an example of so-called "genius" playlists offered by Apple iTuens [reference].

The [referece] needs to be added to a bibliography of references at the end of the report.

gfisher
Sticky Note
Marked set by gfisher

gfisher
Sticky Note
Add figure number and caption.

gfisher
Sticky Note
Add figure number and caption.

gfisher
Inserted Text
,

gfisher
Cross-Out

gfisher
Replacement Text
can be

gfisher
Sticky Note
Explain a bit about what's in the picture.

 Playlists can contain numerous amounts of songs. Organizing and keeping track of all

these songs within a playlist is difficult. Because there are so many songs listed, the playlist can

look messy or like a wall of text that seams together in one blur. Some media players do not

catch or check for duplicate entries. If one attempts to combine two or multiple playlists

together, the problem is still there. Lists of all the songs from all of the playlists involved in the

combination are listed. The user cannot keep track of what song came from what playlist on a

large scale.

 Solution

 The answer to the problem is hierarchical playlists, or also known as object-based

playlists. The basic premise of an object-based playlist is that each item within a playlist is a

playlist itself, allowing greater complexity and control of the playlist format. Playlists, at their

core, have remained the same since their inception: a list of songs to be played in or out of order.

Advancements such as “smart playlists” only make the creation and filling of playlists easier by

guessing at what the user wants to listen to using sample data. This system still uses the same

core playlist mechanic.

 Object-based playlists resemble the structure of classic file systems. This new type of

playlist allows for a granular control of playlists. More complex structures can be created

without the mess. An example with a mess would be combining two playlists. With this system,

a playlist can be listed within a playlist.

 Playlists are no longer treated as simple lists of songs to play. Playlists are considered to

be a „media object.‟ Playlists are not the only items to be considered as a media object.

Essentially, everything is which include songs, albums, and artists. With this system, playlists are

now a list of media objects which opens up more robust methods of creating a playlist.

 In Figure 1, the UML diagram of the relationships between playlists, artists, albums, and

songs is shown. All of these are considered to be interfaced with „MediaObject.‟ A playlist

contains entries of MediaObjects which can mean anything. Artists contain lists of albums by

that specific artist. Albums contain songs within the album. The song is the deepest child in the

tree and is the object that is actually played.

 Figure 2 shows a good, simple example of the capabilities of object-based playlists. With

an object-based playlist, a user can create a playlist containing all the albums from his or her

favorite band (one entry on the playlist per album), set the music player to random, and then one

album is randomly chosen to be played, in order, in its entirety, then another album is picked,

and so on. The figure below illustrates the structure of the described situation:

gfisher
Cross-Out

gfisher
Replacement Text
can be

Figure 1: UML Diagram of hierarchical system

Figure 2: A playlist containing 2 playlists as entries

Figure 2 illustrates a very simple example, but figure 3 shows a slightly more complex model

using the same object-based playlist architecture. The “Good” playlist in figure 3, if played in

order, will play “First Playlist” first, which plays “Another Playlist” before the last song in “First

Playlist.” Then the song in the “Good” playlist will play, immediately followed by “Second

Playlist.”

Figure 3: A more complex playlist

 Outline
 Will add when report is mainly finished

 Objective

Scenario of System Use

 The main interesting feature of this project is the ability to customize playlists the way

the user wants. The user is able to add Media Objects to either existing playlists or create a brand

new playlist.

 The user has the option under the playlist tab to edit currently existing playlists. They can

also traverse through a selected playlist. In the following example, the user selects playlist „a‟

and then selects „Linkin Park.‟ The user gets taken to a list of all available Linkin Park albums.

The album that displays is „A Thousand Suns.‟ The user can venture even further down the tree

by selecting the album. Now all the songs listed under the album are displayed. When playing

the playlist, the media player will go down the tree to where the songs are and play them. Once

all the songs are played, it will go up to its parent and move to the next branch.

Design & Implementation

 The original platform choice was to have the system work on the desktop. A simple mock

GUI was created with Java Swing. The basic desktop GUI was able to play music and it was able

to display a hierarchy for the playlists. However, the application did not operate in the way a

normal user would want. There were extreme delays during skipping songs and pausing/playing

them as well. This became a serious issue. The decision to switch to another platform was made

in order to allow more focus on the core of the project which is the structure of how the playlists

and songs are listed.

 The alternative platform selected was Android. The reasoning behind this is because the

project originally began in Java. Android is a Java based operating system for mobile devices

developed by Google. The SDK is for Android is readily available for download and is not

difficult to set up. It also is easy to setup with Eclipse. The application is codenamed

„PlayListener.‟

//need more on evolution of android app

Testing

 The Android SDK includes the ability to run an emulator of the different versions of the

operating systems. PlayListener was tested on Éclair, Android 2.1, and Froyo, Android 2.2.

Gingerbread was not tested because there are not as many mobile devices with that specific

version. Its predecessors are far more popular and saturated within the consumer based market.

On the „Now Playing‟ screen, the things that need testing are the following:

Function Evidence

Pause/Play

Button

Switches icon between pause/play

Pauses/plays current song

Next Button Switches to next song within queue or list

Previous Button Switches to previous song within queue or list

Seek Bar Seek bar moves at appropriate speed based on length of song.

Moving seek bar can lead to skipping through or rewinding through songs

properly.

Album Art If song is playing, album art should display if song is properly tagged or has

the art.

Library Button Leads to Library screen with tabs for different display lists of songs.

Menu Button Displays the option to exit and quit the application.

Exit Button Exits application.

For the „Library‟ screen, the functionality needing testing are the following:

Function Evidence

Tabs When selecting a tab, the appropriate section should display in

the content viewer

Select Song Song should immediately play on now playing

Select Album List of songs within album should display in content viewer.

Select Artist List of albums by artist should display in content viewer.

Hold Down on Song, Artist,

Album

Ability to add object to existing playlist.

Create a new playlist and add an object to it.

Add the object to the queue for now playing.

Create New Playlist Customizable name.

OK and Cancel buttons work.

Playlist displays under playlist tab in library.

Hold Down on Playlist Play playlist.

Add additional objects to playlist.

Edit criteria for the playlist.

Set the playlist to repeat.

Shuffle the elements of the playlist.

Rename the playlist.

Delete the playlist.

Menu Button Displays the option to exit and quit the application.

Exit Button Exits application.

Technical Section III

Related Work

Conclusion & Future

 Currently, the android application functions properly. The main purpose behind driving

the project works. The user is able to customize the way they want their playlist structure to look

like. The user can continuously create nested playlists or list all their favorite albums. However,

the „PlayListener‟ application is still not available on the market. There are still a few issues

regarding crashes on alternate versions of the operating system.

 Now, there are plans to move the core model view design of the playlist structure to

various platforms. There is talk of creating a desktop application that will allow users to sync

their media to their mobile devices. Because this was not the focus of the project, these ideas

have been pushed for work in the future.

Appendix A: User Manual

 When first launching the app, the user is greeted with the Now Playing screen. On this

screen, the user has control over the seek-bar to traverse through the song and buttons to

pause/play or skip through the Now Playing queue. The album art of the current song is

displayed above the seek-bar.

In order to select a song, the user must first touch the Library button located near the top. The

Library screen will now show up. The Library section is navigated with the use of the tab

system. The tabs sort the songs according to the following criteria: Artists, Albums, Songs, and

Playlists.

Each of these sections contains a list of the appropriate Music Objects depending on the current

tab that is selected. The artists tab lists all artists. When selecting one of the artists, a new screen

will appear with all the albums on the device done by the artist. The user can decide on what

album they want to play, or they can go even further to by looking for a specific song under one

of the albums.

Under the albums tab, a list is displayed of all the available albums on the mobile device.

Alongside each of the listed albums to the left of the title is the album art. This allows the user to

experience a visual recognition of what each album is which may allow the user to distinguish

the different albums from one another.

The songs tab is simply an alphabetized list of every mp3 song stored within the device. The

playlist tab is similar except the list of playlists is not alphabetized. It is ordered in chronology of

creation. First created is first listed.

The user has the ability to create new playlists. The user can hold down on one of the listed

Music Objects. A submenu will appear giving the user a choice to either play the current object

and all of its children or add the item to a playlist. When selecting „Add to Playlist‟, another

submenu will pop up. This menu shows the user all previously created playlists in the order that

they were created. The user also has the options to either queue an item to the end of what is

currently playing, or create a new playlist. If a new playlist is to be created, a pop up box

requiring text input for the name of the playlist will appear. Once the name is entered, the „Ok‟

button can be selected and the playlist is created. The user can then add items to the newly

created playlist and should be listed under the Playlist tab section.

When the user holds down to reach the submenu for a playlist, the submenu is different. There

are several additional options that the user can select within this scrollable menu. The user can

enable the playlist to shuffle the elements it contains and/or repeat, or loop, the playlist, edit

elements within the playlist, rename the playlist, or delete it.

Appendix B: Power Point Slides

Appendix C: Code Listings

Music Object

public interface MediaObject extends Serializable {

 public MediaObject get(int index);

 public int size();

 public String toString();

 public MediaObject getParent();

 public void setParent(MediaObject parent);

 public Song getNextSong();

 public Song getPreviousSong();

 public void resetPositions();

}

Playlist

public Playlist(Playlist oldList) {

 position = 0;

 this.repeat = oldList.repeat;

 this.shuffle = oldList.shuffle;

 this.parent = oldList.parent;

 this.name = oldList.name;

 entries = new ArrayList<MediaObject>();

 for(int i = 0; i < oldList.size(); i++) {

 if(oldList.get(i) instanceof Playlist) {

 entries.add(new Playlist((Playlist)oldList.get(i)));

 }

 else if(oldList.get(i) instanceof Artist) {

 entries.add(new Artist((Artist)oldList.get(i)));

 }

 else if(oldList.get(i) instanceof Album) {

 entries.add(new Album((Album)oldList.get(i)));

 }

 else if(oldList.get(i) instanceof Song) {

 entries.add(new Song((Song)oldList.get(i)));

 }

 }

 }

//Seriously considering doing javadocs and uploading them to a website instead of code snippets

