

Closed Charging Cordon Design Problem

Summer project funded by the EPSRC under grand number GR/S86266/01.

The co-operation of the UK Department for Transport is gratefully

acknowledged

Edward E. Hult

University of Cambridge

Department of Pure Mathematics and Mathematical Statistics

Judge Business School

September 2006

 2

Abstract

The UK Department for Transport (DfT) is currently looking into different methods of designing

closed charging cordons around smaller cities. The DfT’s current scope of interest is to find an

algorithm or method which uses SATURN, a traffic modelling software package, to help find an

optimal or near optimal closed charging cordon for any given network. They are currently using a

genetic algorithm to design and optimize cordons together with SATURN which evaluates each

cordon separately. This method seems to work for small road networks but takes too much

computational time for cities with networks of over a few hundred nodes. This paper suggests

some possible ways in which to approach the closed charging cordon design problem to get faster

computational results while still staying within the DfT’s current scope of interest.

Some parts of the paper discuss ideas that can quickly and easily be implemented to help

decrease the computational time by a small degree. These ideas are “quick fixes” to help get faster

results straight away without investing in extra resources and/or lots of time. One set of ideas are

improvements and suggested changes to the DfT’s current genetic algorithm to help decrease the

number of iterations needed before finding a satisfactory closed charging cordon design. The other

set of ideas comprise of changes to the set up of SATURN to help speed up the evaluation process

of each cordon.

Other parts of the paper discuss future research areas that are strongly suggested to be pursued.

These ideas are more time consuming and need to be researched before they will be able to be

implemented but will likely lead to favourable results. The first is to create a new heuristic algorithm

that uses more local then random searching compared to a GA. The second is to design and

implement a network aggregation algorithm to let SATURN evaluate cordons on a much smaller

but well represented network compared to the original network. Beyond these issues is the

question, for areas like the West Midlands in which there are several cities in close proximity, of

how to model and optimize road charging schemes where a single cordon may or may not be

appropriate.

 3

Contents

1. INTRODUCTION ...5

2. DEFINING THE PROBLEM...8

2.1. FORMULATION ...8
2.2. SOLVING METHODS ..8

3. GENETIC ALGORITHM CURRENTLY USED BY THE DFT ...12

3.1. INTRODUCTION ..12
3.2. INITIALISING THE POPULATION ..12
3.3. SELECTION..13
3.4. REPRODUCTION...14
3.5. TERMINATION ..15
3.6. CORDON CHARGE ...15

4. ONE SET OF RESULTS FROM THE CURRENT GA ..16

5. GENETIC ALGORITHM MODIFICATIONS ..17

5.1. CHANGES TO THE GENETIC ALGORITHM ...18
5.1.1. Initial Population...18
5.1.2. Choice of Parents ...19
5.1.3. Reproduction ..20
5.1.4. Offspring..21
5.1.5. Charge ...21

5.2. MANUAL DESIGN TOGETHER WITH THE GA ...22
5.2.1. Implementation ...23

6. SPECIFIC HEURISTIC ALGORITHM ...23

6.1. INITIALIZATION ...24
6.2. INFORMATION GATHERING ...26

6.2.1. A Vectors ...26
6.2.2. B Matrix..27

6.3. NEW CORDON PREDICTION ..30
6.4. AVOID LOCAL TRAPS ...31
6.5. UPDATING AND NEW PREDICTIONS ...31
6.6. NEEDED IMPROVEMENTS ...32
6.7. TESTING PROCEDURE..33

7. REDUCING DATA: SATURN OPTIONS ..39

7.1. DIFFERENT CHOICES..40
7.2. CURRENT SETUP ...41
7.3. CHANGES..42

7.3.1. Update Function ...43
7.3.2. Simple Setup ...43
7.3.3. Max Iteration and Stopping Distance ...43
7.3.4. User Classes and Simulation ..44

7.4. SUMMARY ...44

 4

8. RESEARCH QUESTIONS...45

8.1. REDUCING DATA: NETWORK AGGREGATION ...45
8.1.1. Existing Literature ..46
8.1.2. Aggregation for the Closed Charging Cordon Design48

8.2. WEST MIDLANDS ...48

9. NEXT STEP RECOMMENDATIONS ..49

REFERENCES ...51

 5

1. Introduction

The UK Department for Transport (DfT) is currently researching methods on

designing congestion charging schemes for smaller cities/towns that are located

within the UK. The objective of their research is to find or construct an

optimization method that will find a combination of tolled links which will form an

optimal or near optimal closed charging cordon. “A closed charging cordon is a

set of tolled links surrounding a designated area so that all travelers entering or

passing the area will be tolled. A definition of a closed cordon in the context of

graph theory is that all paths from all zones outside the cordon passing through

the nodes inside the cordon must be tolled at least once on a link related to those

paths” (Sumalee, 2004b). In this case the objective of the optimal cordon is to

maximize the net social welfare function, see Sumalee (2004a) for a detailed

formulation. The purpose of this paper is to suggest some different alternatives

and ideas, within the DfT’s scope of interest, on how to possibly go about to solve

the closed charging cordon design problem. The DfT’s scope of interest is to use

some type of optimization algorithm together with a traffic modelling software

called SATURN to find an optimal or near optimal closed charging cordon. The

paper will give some concrete suggestions and also talk about ideas that could

be pursued in future research projects in trying to find better and faster solution.

Currently the DfT is trying to find a near optimal cordon design using a genetic

algorithm (GA) together with the traffic modelling software SATURN. A similar

method, using a genetic algorithm together with SATURN, was also suggested

by Sumalee (2004a). By entering a certain cordon design and its accompanying

charge, for a certain city, SATURN calculates the net social welfare function1.

This calculation takes anywhere from five minutes up to several hours depending

on the size and number of users of the city studied and its road network. Since a

1
 SATURN does not actually calculate the net social welfare function, this is calculated separately

using the outputs from SATURN. Throughout the paper it will however be stated that SATURN
calculates the net social welfare function since this calculation by itself is very simple compared to
the needed outputs that SATURN produces.

 6

GA in general needs to make thousands of goal function calculations before a

significant improvement can be noticed, the GA together with SATURN as the net

social welfare function calculator is not a sufficient method.

Shrewsbury is one of the smaller cities in the UK that could eventually be

considered to have a congestion charging scheme put in place. It is therefore an

excellent 'testing ground' to be used for experimentation work in trying different

methods for finding near optimal solutions. To run Shrewsbury’s road network

through SATURN to get the net social welfare function calculated takes

approximately seven minutes with the current setup of SATURN. The current

method will therefore be used on Shrewsbury’s road network to find some results

that can later be compared to the results from other new methods.

The paper suggests some ideas for short term “quick fixes” and some ideas for

long term real solutions. The quick fixes can quickly and easily be implemented

to help decrease the computational time by a small degree without investing in

extra resources and/or lots of time. They consist of ideas to improve the DfT’s

current genetic algorithm to help decrease the number of iterations needed

before finding a satisfactory closed charging cordon design. They also consist of

changes to the set up of SATURN to help speed up the evaluation process of

each cordon.

The long term real solutions are ideas that first need to be researched in order to

be implemented. It is strongly suggest that the DfT invest in these or similar

research ideas in able to find real and actual solutions to the closed charging

cordon design problem for any given network size. A particularly promising idea

is to create a new heuristic algorithm that uses more local then random searching

compared to a GA. Designing and implementing a network aggregation algorithm

to let SATURN evaluate cordons on a much smaller but well represented network

compared to the original network. There is also the open question of how to

model and optimize road charging schemes in areas like the West Midlands

 7

where a cordon may not be optimal.

The paper is setup as follows: Chapter two defines the closed charging cordon

design problem and summarizes a few different suggestions on how to approach

the problem. Chapter three explains how the GA used by the Department for

Transport currently works and how it is setup. The results from a run using the

GA and SATURN with the Shrewsbury network are shortly summarized in

chapter four. Chapter five talks about the fist “quick fix” ideas concerning

suggested changes to the GA. Chapter six presents the fist long term approach

solution regarding the creation and testing of a new heuristic algorithm. Chapter

seven and most of eight present different suggestions on ways in which to relax

and reduce the data needed for SATURN. Chapter seven, which is the other set

of the “quick fix” ideas, talks about different options in SATURN that can be

turned on or off to decrease the computation time weighed against the cost of

receiving less accurate results. Chapter eight discusses the other long term

solution approaches to be pursued by further research. Section 8.1 talks about

network aggregation algorithms and how they could be used to more quickly find

a near optimal closed charging cordon. Section 8.2 talks about a fairly different

topic concerning areas like the West Midlands in which there are several cities in

close proximity where the question is how to model and optimize road charging

schemes when a single cordon may or may not be appropriate. Finally, in chapter

nine, the paper finishes off by recommending future steps to be taken which may

be of great interest.

 8

2. Defining the Problem

2.1. Formulation

A given road network can be represented by a graph G = (V, E) where the nodes

V represent the intersections and the links E represent the roads in the road

network. The number of nodes and links in graph G are given by |V| = n and |E| =

m respectively.

The problem is to find a closed charging cordon and its accompanying charge in

a road network that will maximize the net social welfare function:

f(w1, w2, …, wn ,C).

Where:

wi = 0 if node vi is outside the cordon and

wi = 1 if node vi is inside the cordon

for niVvi ,...,2,1, =∈∀

and C is the amount charged for entering the charging cordon. C is a positive real

number.

Now consider the graph Gc = (Vc, Ec) where Vc is a subset of V representing all

nodes that are placed inside the cordon in the road network and Ec is a subset of

E representing all the links that are part of or inside the cordon. Given the road

network represented by the graph G = (V, E), the problem can then be stated as

to find a graph Gc = (Vc, Ec) that is connected and not ‘donut’ shaped with a

charge C that will maximize the function f(w1, w2, …, wn ,C).

2.2. Solving methods

A city with n nodes, where each node can be considered to be inside or outside

of the cordon, has 2n different possible cordon designs, not including the different

 9

charging choices. Listing all possible cordons and choosing the one with the

highest net social welfare function is unrealistic. The closed charging cordon

design problem appears, like MPEC (Mathematical Program with Equilibrium

Constraints) problems, to belong to the class of NP-Hard problems, meaning that

there are no know methods or algorithms to finding a guaranteed optimal solution

within polynomial time. The closed charging cordon design problem can be

formulated as an MPEC problem but would most likely not be of any help, see

Sumalee (2004a) for more details. Therefore an optimization algorithm or some

other method can be used at best to find a near optimal solution.

Some possible approaches:

Approximation Algorithms

An approximation algorithm will find a near optimal solution to a hard problem in

polynomial time with a certain guarantee. The guarantee could be for example

that the solution found is within 5% of the optimal solution. However because of

the complexity of the cordon design problem it may be very difficult to construct

an algorithm that can give any such guarantees.

Heuristic Algorithms

Heuristic algorithms find solutions to hard problems but without any guarantees

on the quality of the solution or its run time. They have however been shown to

give good results with many practical problems. The main drawback with

heuristic algorithms is that they usually require fast goal function calculations (in

this case the net social welfare function) to be able to produce any reasonable

results (Carson and Maria, 1997). The net social welfare function takes a very

long time to calculate and this will be a major challenge to get around.

Given the time it takes for SATURN to calculate the goal function, the complexity

of the problem and that most existing optimization algorithms require hundreds or

even thousands of goal function calculations before showing any promise, makes

 10

this problem very difficult to solve within a reasonable amount of time. There are

a few different ways to approaching this problem to keep runtimes down.

1: Net Social Welfare Function Manipulation

One approach is to find a function that closely represents the net social welfare

function calculated by SATURN, or any other traffic modelling software, but that

can be calculated very quickly for any given road network. This would then be

used as the goal function in, for example, the genetic algorithm suggested by

Sumalee (2004a) for finding a near optimal closed charging cordon designs. It

would then be possible to generate the necessary thousands of generations in

the GA in a reasonable amount of time. The challenge with this approach is in

constructing a function that can quickly be calculated and that realistically

represents reality, almost as well as SATURN does, with what happens when

introducing different cordon designs in a road network. If this new representation

differs to greatly from reality then the solution found by the GA will most likely be

poor. In this approach a fine balance must be found between calculation time and

accuracy. This approach will not be discussed further in this paper but would be a

good option for further research.

2: Genetic Algorithm Customization

A second approach is based on customizing a Genetic Algorithm so that a lot

fewer iterations would be needed to find the same quality of solution that a

‘regular’ GA would find. Making modifications in how the initial population is

produced and how the GA performs reproduction in later iterations will aid in this.

The approach will be discussed in further detail in chapter 5.

3: A New Heuristic Algorithm

A third approach is to designing a new and very specific heuristic algorithm that

would require relatively few calls, perhaps only in the hundreds, to SATURN (or

any other traffic modelling software) to find a near optimal solution to the closed

charging cordon design problem. The idea with this approach is to construct a

 11

method that conducts a set of calculations so it can predict a good cordon design

using information learnt from previous evaluations. Every new predicted cordon

design would be sent into SATURN to be analysed. The method would then

update itself by adding the new evaluation to its “knowledge”. The idea is that

after a few hundred iterations a suitable and near optimal closed cordon design

would emerge. Ideas and thoughts about how this could possibly be done are

further examined in chapter 6.

4: SATURN Options

SATURN has a lot of functions that can be switched on and off to get more or

less accurate results in the net social welfare calculation. One approach is to turn

off some of the default settings to see how the runtime and results differ. This

would need to be conducted on a small network so adequate testing can be

done. See chapter 7 for further details on how this can be performed.

5: Network Aggregation

A final idea that will be discussed is network aggregation. The time it takes for

SATURN to calculate the net social welfare function for a network increases four

times when doubling the number of nodes in the network while using the same

parameter setup (number of user classes, simulation on or off, ect.). The idea

with this approach is to aggregate and disaggregate different parts of the network

to get quicker SATURN calculations.

None of the above mentioned approaches will likely lead to an optimal solution.

However all of them, if solved and performed correctly, have the potential of

giving good or even near optimal solutions to the closed charging cordon design

problem in less time then the method currently used by the Department for

Transport.

 12

3. Genetic Algorithm currently used by the DfT

3.1. Introduction

A genetic algorithm is a search and optimization technique used to identify good

solutions to hard optimisation problems. It is an optimization method that has

been inspired by the genetic evolution process. A GA is a structured random

search that combines promising candidates to produce new candidates for

evaluation. The technique has been proven efficient in large solution spaces

where the combination process is effective at moving through the solution space.

This chapter describes the way that the UK Department for Transport has

currently setup their GA to find a closed charging cordon design.

The GA needs a genetic representation of the solution and a fitness function

which in this case is the closed cordon and the net social welfare function

calculated by SATURN. The genetic representation of the cordon is an array of

191 zeros and ones which represent each of the nodes in the Shrewsbury

network. Each 'zero' represents a node outside the cordon and each 'one'

represents a node inside the cordon. The different fitness functions for the

different cordons are then directly compared to each other and the higher the

value the stronger the solution. The fitness function can also take on a negative

value if the net social welfare is less with a specific cordon then without any

cordon at all.

3.2. Initialising the Population

The GA needs an initial population of cordons which is randomly generated. To

generate these random cordons the study area of nodes has been mapped and

divided into a Delaunay triangulation. A Delaunay triangulation is a set of

triangles connecting a set of points in the plane where the circumcircle of each

 13

triangle does not contain any of the points. The reason for mapping the road

network into a Delaunay triangulation is because it is an easy way to randomly

select closed cordons.

The GA randomly selects one of these triangles as a starting point in the study

area. It will then undertake a random walk to surrounding triangles, with a 60%

chance of walking out from each side. Each of the nodes on each of the triangles

visited will become included in the cordon. If an outer edge triangle is walked

into, the two outer edge nodes will not be included in the cordon. A check is

undertaken to ensure the cordon is a solid area without holes and is valid (i.e.

there are no nodes within the cordon boundary which can not be reached by all

other nodes using the road network within the cordon). A check is also taken to

make sure that the cordon produced contains at least five nodes. These checks

are also done on the children, see below.

The size of the population has been set to 200 cordons.

3.3. Selection

When the initial population has been created and the fitness functions calculated

by SATURN the GA can begin to generate new solutions. Two parents are

chosen at random from the population. The probability of each cordon being

selected as a parent can vary and there are many methods for assigning these

probabilities. The one used by the DfT is weighted according to rank.

Weighted according to rank

If n is the total number of cordons and Ci is cordon i for i = 1,2,…,n then F(Ci) is

the fitness function of cordon i. P(F(Ci)) is the probability of choosing cordon i as

a parent where:

 14

()() ()() () () niimforCFCFandCFPCFP mimi ,...,2,1 ++=>>

and

()() ()() ()() ∑∑∑ =−==
i

n

ii

iCFPinCFPinCFP /1...,,/)1(,/ 21

The two selected parents are then combined to generate a child, a new cordon,

by a set of defined reproduction rules.

3.4. Reproduction

There are two main methods that the GA goes about generating new cordons

from the two parent cordons. They are intersection and union.

Intersection:

With intersection a new cordon is made by using only the nodes which are in

both of the two parent cordons as the new cordon. If the two parents do not have

any similar nodes inside their cordons then no new child is made.

Union:

With union a new cordon is made by using all the nodes in both the parent

cordons to create the new cordon.

Intersection and union are chosen randomly with a 50% chance each of being

picked. Before scoring the child there is an X% chance that the child undergoes

mutation. Mutation is applied to either increase or decrease the boundary of the

cordon by randomly taking away or adding on extra nodes. The reason for

mutation is to make sure that the GA does not get stuck in a local optimum. After

this the GA checks that the resulting child is a valid cordon and that it is not

exactly the same as an earlier cordon. If the child is not feasible or is exactly the

same as an old cordon then the GA picks two new parents and tries to make a

child from them. The GA keeps trying to make a new child until it has failed n2/2

 15

times in a row, where n is number of the population, before it gives up and aborts

the program. Once found, the child cordon is scored using Saturn. If the new

child cordon has a higher fitness function than the weakest cordon in the

population it will replace the weak cordon. Otherwise the new cordon is discarded

from the population.

Mutation rates can be set at run time, but should remain low, approximately 1%.

If a cordon is mutated there are further mutation rates that are applied to

determine exactly how the cordon is changed. For each pair of nodes, where one

is inside the cordon and the other is outside, the GA will decide whether to

increase, decrease or not change the cordon area. Note that each node can be in

more than one pair. These rates are initially set to 15%, 15% and 70%

respectively for each pair. To increase the cordon area the external node is

included within the cordon, whereas to decrease the cordon area the internal

node is removed from the cordon.

3.5. Termination

The process of generating children is repeated until a predefined stopping

condition is met. The condition can be any of the following: no more time to

generate solutions, the diversity of the population is so low that the GA can not

generate any new cordons within the allowed maximum number of tries, a pre-

defined number of generations have been generated.

After the program has terminated then all that is left is to sort the remaining

population by their fitness functions and plot the top cordons to see their designs.

Hopefully these designs will be similar and have similar fitness function values.

3.6. Cordon Charge

Two different methods are currently used for choosing the charge for entering the

 16

cordon. The first method is simply predefining the charge before the GA is run

and finding a near optimal cordon for that charge. The second method lets the

GA choose the charge by randomly assigning one of the following charges to the

initial population: .50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50 and 5.00

pounds. During reproduction the child is run through SATRUN twice if the two

parents have different charges, once with each of their charges. This gives two

new children with the same cordon structure but different charges.

4. One Set of Results from the Current GA

Originally there were a lot of numerical results from different runs of the current

setup that the DfT uses. However these results were later found to be unreliable

since a programming error was found in the setup. A recommendation is for DfT

to go back and fill in this chapter after more new runs have been made and

analysed. For now there is only one run that has been completed.

At the DfT several computers are available to make parallel calculations of

different cordons simultaneously in SATURN. Using multiple computers and the

Shrewsbury network a run was made pre set to stop after 2000 cordons had

been calculated. Using the GA and SATURN to solve for the closed charging

cordon design problem took approximately two and half days. The GA was set to

randomly place a charge, see chapter 3.6., for each initial cordon in the

population. After the run was completed the results were analyzed.

The best few cordons designed by the GA were all very similar. They were all

placed in and around the same area with only a few nodes differing from being

inside or outside the cordon. The best cordon resulted in a net social welfare

score of approximately 841 pounds and was the 1724th cordon designed by the

GA. The charge was set to 2.50 pounds. The 10th best cordon got a score of

approximately 640 pounds giving a difference of 201 pounds between the top ten

 17

scores. This difference is quite significant which means that perhaps the GA

should have been let to run a bit longer. In total 235 cordons got a positive net

social welfare score but with many of the scores being very small, the rest were

negative.

After the run was completed the top cordon was tested with some different

charges to see what would happen. Using higher charges resulted in lower

scores. When the cordon was tested with lower charges the score improved for

the first couple of steps before it started getting worse again. This suggests that

either the GA should have been left to make a few more runs as commented on

above or that the GA is not finding very good charges for its cordons which in

effect may be damaging the entire search. Looking at the way the GA assigns

charges it is most likely that the GA just needs to be let to run longer, however a

few suggestions on possible improvement to the charging method are given in

the next chapter.

5. Genetic Algorithm modifications

Solving the closed cordon design problem with shorter and/or fewer calculations

becomes very important with larger road networks. Using the setup discussed in

chapter three it would take over a year before any reasonable solutions would be

found with larger road networks. In this chapter some modifications to the current

GA used by the DfT are suggested to try to minimize the number of iterations

needed by the GA to find a good solution.

According to the No Free Lunch Theorem all search algorithms over all problems

will perform on average the same (Wolpert and Macready, 1997). With this

theorem in mind, simply using another search algorithm in place of the genetic

algorithm will most likely not lead to any significant improvements. Instead to get

any significant improvements it is important to customize an algorithm as much

 18

as possible to fit the problem at hand.

5.1. Changes to the Genetic Algorithm

One criterion when using a Genetic Algorithm is that the fitness function can

quickly be calculated for each child. This is necessary because it usually takes

several generations before any significant improvements in the fitness function

can be found (Carson and Maria, 1997). In the case of optimal cordon design it

takes a very long time to calculate the fitness functions for each cordon, up to

several hours. It is therefore important that the GA makes as few fitness function

calculations as possible which mean that changes need to be made in the GA to

make this happen.

Sumalee (2004a) also suggests the use of a genetic algorithm together with a

traffic modelling program to find the optimal cordon design. The genetic algorithm

he suggests uses a Branch-Tree Framework with a small fixed starting cordon

that will be included in every produced cordon. During the reproduction process

his GA uses crossover and mutation. With crossover the process starts by finding

the identical nodes in each parent. Then they randomly exchange a non identical

set of nodes that get added to the identical set creating two new children. Note

that this is only a rough description of how the crossover process works with the

Branch-Tree Framework, see Sumalee (2004a) for a thorough and in-depth

presentation of this process. One of the advantages with his method is that each

new cordon that is produced maintains the closed cordon design and therefore

no checks for feasibility need to be made.

5.1.1. Initial Population

In the GA that Sumalee (2004a) suggests there is a small chosen starting cordon

that all the cordons made by the GA build from. This is a risk since a poorly

chosen starting cordon will most likely not lead to any optimal or near optimal

final solutions. On the other hand in the GA currently used by the DfT a lot of

 19

computing time is being wasted on undesirable cordons along the outskirts of the

city. Therefore a combination of the two methods may be more desirable.

Idea 1: Partly fixed initial population

Manually choose 5 nodes with the rule in mind that every initial cordon made by

the GA has to randomly pick, with a 20% chance, one of these nodes to start its

random walk from. By adding this rule it is most likely that the following benefits

will be found.

• There will be fewer undesirable cordons to be evaluated since all initial

cordons will be within or partly within the critical area.

• It will be easier for the GA to generate new cordons using intersection and

union since there will be more cordons that have identical or neighbouring

nodes.

• Smaller initial populations can be used because many undesirable

cordons are no longer initially produced.

• Poorly chosen initial nodes can be overcome with reproduction and/or

mutation since only the initial population is required to have them within

their cordons.

5.1.2. Choice of Parents

Parents are chosen for reproduction with a certain probability depending on their

rank. What makes one parent better then the other? In the current GA it is solely

based on the fitness function value from Saturn but is this really accurate?

Possible things to consider:

- What percent of the worst congested areas are within the parent

cordon?

- What links that lead to the worst congested areas are within the parent

cordon?

If these can be identified then perhaps the parents containing more of the two

points above should get an additional few percent added to their probability of

being chosen as a parent cordon.

 20

5.1.3. Reproduction

After the parents have been chosen a reproduction method is randomly selected

with a 50% chance of being either intersection or union. Both intersection and

union will produce a very different child cordon if the two parents have very few

identical nodes inside their cordons. This can both be good and bad. It is more

likely, but not at all definitely, bad if one of the parents is very strong. This may be

bad because the strong cordon may loose all of its beneficial nodes.

Idea 2: Priority Reproduction

Lower the chance for the GA to choose intersection or union as the reproduction

methods to 35% each. Add a third reproduction method with a 30% chance of

being chosen. The new reproduction method should let the child inherit more of

the stronger parents’ traits. The new cordon should closely represent the stronger

parent with only a few minor changes inherited from the weaker parent. Start off

by using intersection but then make a random walk, as described in chapter

three, from the intersected edge out adding each step taken into the child cordon

but staying within the stronger parents cordon boundary. The probability to take

each step should be Ps. Then do the same random walk from the edge of the

intersection but only allowing steps to be taken within the weaker parents cordon

boundary with a probability of Pw. Ps should equal the rank of the stronger parent

divided by the sum of the rank of the stronger and weaker parent.

Ps = RankStrongParent / (RankStongParent + RankWeakParent)

Pw = 1 - Ps

Idea 3: Strong Mutation

A fourth reproduction method that is very simple but can be very beneficial is

Strong Mutation. Strong Mutation is performed simply by selecting the stronger of

the two parents and conducting a random walk in any direction starting from a

random point along the edge of the cordon. If the walk goes into the cordon then

each node reached should be taken out of the cordon. If the walk goes out of the

 21

cordon then every node visited should be added to the cordon. The random walk

should be performed in the same manner as described in chapter 3 but should

have a 50% chance of taking a step in any direction. Nothing is done with the

weaker parent. This method should have a 10% chance of being chosen and so

Union and Intersection need to be lowered to a 30% chance each of being

chosen as the reproduction method and keeping the Priority Reproduction

method at 30%.

5.1.4. Offspring

Sending every feasible offspring through SATURN is not advisable since each

calculation takes a long time. Instead every new child should quickly be analysed

to see if the new cordon has even the smallest possibility of being or leading to a

desirable cordon. If so then it should be kept otherwise it should be discarded.

Idea 4: Pre-checking the offspring

Define what nodes in the network are within the critical area, meaning: what

nodes are in the more congested parts of the road network or have critical links

leading into these parts. If the offspring produced has none of these nodes within

its cordon then the child can be discarded without being analysed further.

5.1.5. Charge

Currently the charge is randomly chosen for each cordon in the initial population

and then the parents transfer over their charges to the child resulting in two new

children, with the same cordon shape, if the charges differ. There are a few

things that could be added to the charge method and also a worst case scenario

that needs to be solved. The worst case scenario with this method could lead to

the cancellation of one or more important charges leading to a local optimum

trap.

Idea 5: Charge Mutation

After the children have gotten their charges from their parents, there should be a

 22

30% chance that the charge inherited from the weaker parent should randomly

be changed with an equal probability of receiving any of the other charges not

possessed by either of the two parents.

Idea 6: Initial Charge Rank

Give each available charge an initial rank that seems suitable for the given

network. That is, what charges will most likely turn out to be good according to a

judgemental approach?

Ex) If charge 2.00, 2.50, 3.00, 3.50 and 4.00 pounds seem like they might

realistically be better then give them a higher probability to be chosen then the

others during the charge assignment for the initial population.

Idea 7: Charge change for area difference

If the area within the cordon changes dramatically, as will happen with union and

intersection if the parents differ greatly, decrease or increase the charge in part of

the percent increase or decrease of the child cordon respectively. This is

because a larger cordon will ‘consume’ more travellers and will therefore most

probably not need an as high charge.

5.2. Manual Design Together with the GA

A lot of computational time is spent evaluating the initial population in the GA.

The initial population is more or less randomly produced by the GA and the

purpose with the GA is to keep upgrading the population so only stronger and

stronger individuals survive. Starting with a random population makes this

process very time consuming. If the GA instead could skip the first X% of fitness

function evaluations and generations then the time for the process of finding a

near optimal solution would greatly decrease. This could be done by having a

well trained and experienced person manually design the initial population for the

GA.

 23

5.2.1. Implementation

Thoroughly design ten to fifteen different but well placed closed cordons for the

given road network. Choose three different tolls that seem most plausible to be

used in the final cordon. Assign one of the tolls to each of the cordons designed

but make sure that each of the different toll charges are used by at least two of

the cordons. Use these cordons with their associated charges as the initial

population in the GA. Run the GA using the reproduction rules discussed in

chapter 3 and 5.1. Let the charge associated with the stronger parent go to the

child with a 60% chance and with the other two charges available the child

should get one of these with a 20% chance for each. Run the GA for 150 fitness

function calculations or more for the smaller networks if desired.

6. Specific Heuristic Algorithm

A GA can be seen as a guided randomization search for finding optimal or near

optimal solutions. If this randomization could instead be turned into a more

specific local optimum search a lot of time could be saved. One idea in trying to

solve the cordon design problem is to construct a very specific heuristic algorithm

that can make good predictions how a cordon should be setup for any given

network. The idea is that for every produced cordon on average to be sent

through SATURN should be a better prediction of how the cordon should look

than what a GA produces by itself during reproduction. A correctly designed

algorithm will require a greatly decreased number of calls, compared to a GA, to

SATURN, or any other traffic modelling software, and a lot of time can be saved.

This is assuming that the extra work done by the algorithm takes in total less time

then the time saved from the decreased number of calls to SATURN. The goal is

to construct the algorithm is such a way that only approximately 150 SATURN

calculations need to be performed. Below presents a ‘crazy’ idea of how

something like this could possibly be setup. It also serves as a template for how

 24

other heuristic algorithms can be set up and tested. More research is advised

and needed in this area for it to be able to mature.

6.1. Initialization

Start off by producing around 15 random cordons using the process described in

section 5.1.1. assigning a few different charges to the different cordons. Run all

the initial cordons through SATURN to be evaluated. The purpose of the first runs

is to gather information that can be used to make the first prediction of how the

cordon should look.

For simplicity’s sake an example will be used from here on out to help describe

the methodology of this idea.

Take the following small network with 9 nodes and 13 links.

Figure 1: Example Road Network

Assume that the five following cordons represent the total initial set of randomly

produced cordons. (In the example only five cordons are used in the initial set

1

2

3

6

5

4

7

8

9

 25

because of the extremely small size of the network)

1. Node 1 is in the cordon and a charge of 2 pounds is set on links 5-1, 2-1,

4-1 and 3-1 (where 5-1 represents the link going from node 5 to node 1).

2. Nodes 1, 4 and 5 are in the cordon and a charge of 1 pound is set on links

8-4, 7-4, 8-5, 2-5, 2-1 and 3-1.

3. Nodes 1, 2 and 5 are in the cordon and a charge of 3 pounds is set on

links 8-5, 4-1, 3-1 and 6-2.

4. Nodes 1, 2, 4, 5 and 8 are in the cordon and a charge of 1 pound is set on

links 6-8, 6-2, 7-4 and 3-1.

5. Nodes 1, 2, 3 and 5 are in the cordon and a charge of 2 pounds is set on

links 8-5, 4-1, 6-2, 7-3 and 8-3.

Assume that the following matrix represents the traffic behaviour, in a specific

unit (traffic flow, travel time per vehicle, ect.), on each link for the network in

figure 1 before any cordon has been placed. The rows represent the origin nodes

and columns represent the destination nodes.

 1 2 3 4 5 6 7 8 9

1 - 20 6 8 15 - - - -

2 30 - - - 25 5 - - -

3 15 - - - - - 5 - 2

4 20 - - - - - 3 4 -

5 18 15 - - - - - 5 -

6 - 25 - - - - - 8 7

7 - - 15 4 - - - - -

8 - - - 5 20 3 - - -

9 - - 20 - - 10 - - -

Table 1: Traffic behaviour for each link before implementation of a cordon

Now assume that the following matrix represent the traffic behaviour calculated

 26

by SATURN, or any other traffic modelling software, with cordon 1 in place. The

bold numbers represent the charged links and the red and blue numbers show

where there have been increases and decreases in the link usage respectively.

 1 2 3 4 5 6 7 8 9

1 - 20 6 8 15 - - - -

2 25 - - - 25 5 - - -

3 14 - - - - - 5 - 2

4 10 - - - - - 6 9 -

5 16 15 - - - - - 5 -

6 - 28 - - - - - 8 7

7 - - 18 4 - - - - -

8 - - - 5 23 5 - - -

9 - - 20 - - 10 - - -

Table 2: Traffic behaviour for each link with cordon 1 in place

As can be seen, only the tolled links, in this example, have had a decrease in

traffic behaviour and an increase on some of the other links has occurred.

6.2. Information Gathering

When all the initial cordons have been sent through SATURN some information,

other then the net social welfare function result, must be gathered so it can later

be used.

6.2.1. A Vectors

Define the column vector A1(x)k that represents the difference in the traffic

behaviour on each link k in the network between having cordon 1 in place and

having no cordon in place. In this example A1(x)k will be written as A1(1)k. The A

in A1(1)k represents that it is an A vector which is a family of vectors that stand

 27

for the difference in traffic behaviour between a certain cordon and no cordon.

The 1, A1(1)k, represents when the cordon was analyzed in relation to the rest of

the A vectors (1 means it was the first cordon to be analyzed, 23 means it was

the 23rd cordon to be analyzed). The numbers in the parentheses, A1(1)k,

represents what nodes are inside the cordon.

Example)

Link 1-2: 20-20=0 gives: A1(1)1 = 0

Link 1-3: 6-6=0 gives: A1(1)2 = 0

Link 1-4: 8-8=0 gives: A1(1)3 = 0

Link 1-5: 15-15=0 gives: A1(1)4 = 0

Link 2-1: 25-30=-5 gives: A1(1)5 = -5

… … …

Link 9-6: 10-10=0 gives: A1(1)26 = 0,





























−

=

0

5

0

0

0

0

)1(1

M

kA

Produce the A vectors A2(1,4,5)k, A3(1,2,5)k, A4(1,2,4,5,8)k, and A5(1,2,3,5)k that

represent the other initial cordons and calculate their values.

The purpose of the A vectors is to use them as a start in trying to find some sort

of cause and effect in the traffic behaviour when different nodes are placed inside

or outside the cordon.

6.2.2. B Matrix

The next step is to produce a B matrix Bk,i for all links k in the network and for all

nodes i that have been inside a cordon. Bk,i must be extendable to allow

 28

additional columns to be added that represent other nodes that might get placed

inside the cordon. Use the A vectors to calculate the values for in Bk,i. For all

numbers that are ether all greater then zero or are all less then zero, that

represent the same link and node in each of the A vectors, calculate the average

and enter that number in the appropriate section in the Bk,i matrix. If not all

numbers are of the same sign or some are zero then the corresponding number

in the Bk,i matrix must be zero. The exception is if 95% or more of the numbers

are of similar type (all greater then zero or all less then zero) then an average

should also be calculated using all the values representing that link and node.

Example)

Assume that the following data is collected from the five cordons above and that

each of the rows with actual values represents the same rows in each vector (for

descriptions sake assume these rows represent links X, Y and Z).





























−

−

=





























−

−

=





























−

=





























−

−

−

=





























−

=

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

3

4

5

)5,3,2,1(5,

0

1

7

)8,5,4,2,1(4

0

3

6

)5,2,1(3;

1

3

8

)5,4,1(2,

0

3

5

)1(1

kk

kkk

AA

AAA

When filling in Bk,i it is important not to get the columns mixed up. Bk,i has 6

columns representing nodes 1, 2, 3, 4, 5 and 8 since these are the only nodes

that have so far been inside an analyzed cordon.

 29

()

()

()

()

()

()

1

)8,5,4,2,1(4

4

)5,3,2,1(5)8,5,4,2,1(4)5,2,1(3)5,4,1(2

2

)8,5,4,2,1(4)5,4,1(2

1

)5,3,2,1(5

3

)5,3,2,1(5)8,5,4,2,1(4)5,2,1(3

5

)5,3,2,1(5)8,5,4,2,1(4)5,2,1(3)5,4,1(2)1(1

6,

5,

4,

3,

2,

1,

k

k

kkkk

k

kk

k

k

k

kkk

k

kkkkk

k

A
B

AAAA
B

AA
B

A
B

AAA
B

AAAAA
B

=

+++
=

+
=

=

++
=

++++
=

Note that the above formulas are only correct for each link k if the values in at

least 95% of the A vectors are all greater then zero or are all less then zero. If

this is not the case then the value entered in the B matrix must be zero for that

link and node. Using the values in the example above the B matrix becomes:





























−

−−

−−−−−−

=

MMMMMM

MMMMMM

MMMMMM

MMMMMM

000300

102400

75.65.7562.6

,ikB

The idea behind the B matrix is to show how any one node that has been inside a

cordon will affect the traffic behaviour on some link or links in a certain way until

proven otherwise.

In the example it can be seen that by placing any of the nodes 1, 2, 3, 4, 5 or 8 in

the cordon a decrease in the traffic behaviour will occur on link X. This is not

however true on links Y and Z. Placing node 3 in the cordon will lead to an

increase of traffic behaviour on link Y by 4 units. This is obviously not an accurate

representation of what happens but the thought is that it will give a starting point

in helping to predict what the next cordon should look like and it will also become

 30

increasingly more accurate for each iteration to come.

6.3. New Cordon Prediction

When the B matrix has been calculated it is time to predict the next cordon

design with its help. Assume that C represents the subset of nodes which have

been in at least one analyzed cordon. Then define Xi to be a binary integer that

equals one if node i is inside the cordon and zero otherwise. Now setup the

following:

()

CiX

CiXts

XB

i

i

Ci k

iik

∉∀=

∈∀=

⋅∑∑
∈∀ ∀

0

}1,0{..

min ,

This could be solved by linear programming if it were not for the risk of losing the

closed cordon design. Therefore it is easier to solve this approximately by using a

genetic algorithm like the one described in chapter 3 and 5. The main difference

from the GA in chapter 3 and 5 is that the above goal function would be used to

calculate the fitness function instead of SATURN. It can also be desirable to

allow one or two of the nodes not in C to be able to be placed inside the cordon if

it is necessary to keep the closed cordon design. This can also lead to further

benefits in that more nodes will have values representing them in the B matrix.

When the new cordon is found by the GA it needs to be checked to make sure

that an exact same cordon has not already been produced and analyzed, if so

then the next best cordon suggested by the GA should be checked for

uniqueness and then the next until a unique cordon is found. When a unique

cordon is found it should be sent through SATRUN to be analyzed. The results

should be gathered and used to calculate a new A vector that must be produced,

in this case A6(x)k.

 31

6.4. Avoid Local Traps

Getting stuck in a local optimum is very likely if not more different nodes can be

brought into a cordon than those from the initial population. The one or two nodes

that may be brought into the cordon, as described in section 6.3., that have not

earlier been inside is not a sufficient enough method. To keep from getting stuck

in a local optimum it is important to produce a completely new and random

cordon every time one cordon has been produced with the help of the B matrix.

This can be done by using the method described in chapter 3.2. The new random

cordon also needs to be checked for uniqueness and should then be sent

through SATURN if unique. If it is not unique a new random cordon should be

made. The results should be used to calculate the values for a new

corresponding A vector. Here it would be A7(x)k.

6.5. Updating and New Predictions

The two new A vectors produced from 6.3. and 6.4. must now be taken into

consideration for the next cordon prediction and so the B matrix must be

updated. Recalculate all the values in the B matrix, as described in section 6.2.

but using all of the 7 A vectors. Also add columns to the B matrix where needed

to make sure all the nodes that have been inside a cordon are represented.

Example:

Say that the best result from the GA suggests the following unique cordon to be

analyzed by SATURN is:

Nodes 2 and 5 are inside the cordon with a 2 pound charge set on links 8-

5, 1-5, 1-2 and 6-2.

Also say that the random cordon made is:

Nodes 6 and 8 are inside the cordon with a 3 pound charge set on links 4-

8, 5-8, 2-6 and 9-6.

Assume that the two new A vectors get the following data on links X, Y and Z as

 32

used above.





























−

=





























−

=

M

M

M

M

M

M

M

M

8

1

0

)8,6(7,

0

2

4

)5,2(6 kk AA

Now recalculate the B matrix with the new data, find a new cordon with the GA as

discussed in section 6.3 and make a new random cordon. Keep repeating these

steps for approximately 60-80 times. By the end of all the iterations hopefully a

descent cordon design has been found.

6.6. Needed Improvements

This process is far from complete and does not talk about how to update the

charges. This would need to be added into the B matrix some how so it can be

considered when predicting the new cordon design. The B matrix itself needs to

be revised to better represent different nodes and also a faster method of

updating the B matrix itself would be beneficial.

To get a better representation of how each node affects different links it might be

a good idea to look at specific combinations of nodes. Very specific rules must be

setup for this since all combinations of nodes cannot be looked at in polynomial

time. Perhaps certain nodes can be aggregated, or some play off each other

more than others and how can they be found? There is still much that can be

done and tested with this method to see if proper predictions can be made with

only one or two hundred calls to SATURN being made.

 33

6.7. Testing Procedure

To test and implement this idea some basic steps can be followed. These steps

can also serve as template for developing and testing other heuristic algorithms.

Before the steps are started make sure to define the main goal with the test and

also some sub goals. The sub goals should be steps to be reached on the way to

completing the main goal. For example if the main goal was to run a marathon

some sub goals could be to run a 10 km race and a half marathon race prior the

marathon and to run at least 15 miles a week. Some sub goals should be

reached in sequence and some will run throughout the testing and

implementation. In the example above the 10 km race will be run before the half

marathon but the 15 miles minimum a week goal will be throughout. It is a good

idea to write these sub goals differently to help keep the testing and

implementation clear and on track. For example:

Sub goal 1:

Run 10 km race.

Sub goal 2:

Run half marathon race.

Sub goal A:

Run a minimum of 15 miles a week.

Writing them up this way helps keep it clear that sub goal 1 should be completed

before pursuing sub goal 2 and that sub goal A (also sub goal B, C, … if there

were any) should be under consideration at all times.

The main goal is usually quite obvious but can be worthwhile to define anyway.

The sub goals are sometimes not as clear and are therefore more important to

state and keep clear at hand.

Main Goal:

Construct a heuristic algorithm that can solve the closed charging cordon design

 34

problem by requiring no more then N SATURN calls where N << M and M is the

number of SATURN calls required by the GA. It is also important to make sure

that the computation time spent outside of SATURN is insignificant in comparison

to that of SATURN.

Sub goal 1:

Construct a heuristic algorithm that can solve the main goal but with a set charge

and for a very small specific network.

Sub goal 2:

Test and modify the algorithm so it works the same as in sub goal 1 but with any

random and slightly bigger (but still small) networks.

Sub goal 3:

Modify the algorithm so it can solve the main goal (without a set charge) for the

same network used in sub goal 1.

Sub goal 4:

Test and modify the algorithm so it works the same as in sub goal 3 but using the

same network types as in sub goal 2.

Sub goal A:

Get an idea of how much the quality of the solution is affected by varying N.

Sub goal 5:

Test and modify the algorithm so it works for big network and figure out, if it is

possible, how big N needs to be in comparison to the size of the network.

When the main goal and sub goals are defined the following steps can be taken

in testing and trying to construct the heuristic algorithm.

Step 1: Small network, GA with set charge

Construct a very small connected road network (approximately 15-25 nodes).

Find a subset of global optimization results for a few different pre set charges.

Get these by running the GA (described in chapter three with some of the

modifications suggested in chapter five) together with SATURN and setting M

(the number of SATURN calls used by the GA) to a few thousand. This

 35

computation should not take very long because of the small size of the network.

Step 2: Small network, new algorithm with set charge.

Construct an algorithm as described in 6.1.-6.5. but use only a pre set charge.

Run several tests using the different set charges that where used in step 1 and

check what happens to the result when varying N (the number of SATURN calls

made by the algorithm) for each charge. If the algorithm finds as good or better

results then the GA in step 1 using N <= 200 go to step 3 (sub goal 1 completed).

If the results are good but only with N > 200 go to step 9. If the results are worse

then what the GA is producing then go to step 8.

Step 3:

The algorithm is so far finding good results using a fixed charge for a small

network.

Step 3.1: Vary N

If not already done, see how low N can be and still get good results and also see

how much better the results are, if any, with a much higher N. This can later be of

good use to compare with other networks of similar size and with other networks

of much greater size.

Step 3.2: Midsize network, GA with set charge

Randomly construct two or three slightly bigger connected road network

(approximately 75-100 nodes). As in step 1 find a subset of global optimization

results for a few different pre set charges for each network. Get these by running

the GA together with SATURN and setting M = 5000-10000.

Step 4: Midsize network, new algorithm with set charge

Now test the new algorithm on each of the new networks. As in step 2 run

several tests using the different set charges that where used in step 3 and check

what happens to the result when varying N for each charge. If the algorithm finds

as good or better results then the GA using N <= 200 go to step 5 (sub goal 2

completed). If the results are good but only with N > 200 go to step 9. If the

 36

results are worse then what the GA is producing then go to step 8. If the results

are as good or better the then the results from the GA using N <= 200 but there is

a big improvement when N > 300 or so, then read ‘note 2’ at the end of this

chapter before continuing.

Step 5: Small network, new algorithm with variable charge

Modify and test the new algorithm, using the small network constructed in step 1,

so it can find a cordon with an accompanying charge without having a pre set

charge given. This result should be as good or better then the best result found

using different pre set charges by the GA in step 1. Again test this with different

values of N. If the algorithm finds as good or better results with N <= 200 go to

step 6 (sub goal 3 completed). If the results are good but only with N > 200 go to

step 9. If the results are unsatisfactory go to step 8.

Step 6: Midsize network, new algorithm with variable charge

Test the modified algorithm on each of the slightly bigger networks constructed in

step 3.2 without using a pre set charge and different values for N. Compare the

results with the best results found in step 3.2. If the results are satisfactory for N

<= 200 go to step 7 (sub goal 4 completed). If the results are good but only with

N > 200 go to step 9. If they are worse go to step 8. Also if the results are good

for N <= 200 but there is a big improvement when N > 300 or so, then read ‘note

2’ below before continuing.

Step 7: Test on smaller real road network with variable charge

The new algorithm is doing quite well and it is time to test it on a real road

network. Find a near optimal closed charging cordon for, for example, the

Shrewsbury network using the GA and setting M >= 8000 to make sure that a

good result is found. Run the new algorithm with the same network using

different values of N. Compare the results. If the results are highly unsatisfactory

and major modifications and changes need to made, redo the entire testing

process again from the start. If the results are good go to either step 9 or step 10

 37

as appropriate.

Step 8: Non desirable results

The new algorithm is not producing an as good cordon as the GA. The algorithm

needs to be modified since it is not producing any desirable results. Start off by

looking into the couple of ideas given in the second half of section 6.6. and/or try

to come up with other alternative modifications and/or additions to the algorithm.

For each new idea found, make that change and start the testing process over at

the appropriate stage. Add only one new change for each testing process unless

that turns out to be unpractical.

Step 9: N is too high

The algorithm is producing good results but making to many SATURN calls. Try

to figure out how to modify the algorithm so it “evolves” quicker. For each

modification restart the testing procedure at the appropriate stage to see how

much faster, if any, it has gotten.

Step 10: Test on large real road network with variable charge

The algorithm has so far passed all the tests and seems to working. The last and

final test is to try it on a large network. At this time it would be good if there is an

idea of how big N needs to be to give satisfactory result (sub goal A should now

be completed but note that it has been under consideration throughout). Run the

algorithm on a large real road network with the smallest N value that seems

feasible to give good results. Make also a second run with a 20-50% increase of

the N value. Compare the results with each other and also with the results found

by using a judgmental approach. If the results are unsatisfactory try to figure out

why the algorithm works for small networks but not for large ones. Does N need

to be increased more? Is there some function in the algorithm that can’t handle

large amounts of data? Make the necessary changes and start the testing

process over from the beginning if need be. If the results are good, what can be

said about varying N (sub goal 5, note that part of this sub goal goes hand in

 38

hand with sub goal A)? Are there any modifications that can be taken to speed up

the process even more or get even better result? Also check to make sure that

the main goal is now fulfilled.

Note 1:

If the algorithm is finding a good solution and using few SATURN calls but still

takes to long then modifications need to be made to speed up the calculations

within the algorithm itself. For each modification restart the testing process to

make sure the modifications are going in the right direction.

Note 2:

If good results, compared to the GA, are being found for N <= 200 but the results

are much better for higher N values a couple of things should be looked at. Make

sure that the GA is set up correctly and giving satisfactory and hopefully better

results then results from a judgmental approach. If the GA is not giving good

results then the whole testing process may be compromised. If the GA seems to

be giving satisfactory result then it has now been shown that the new algorithm

has the potential of finding very good results. See if it is possible to modify the

algorithm so it “evolves” even faster so large network can benefit from the

excellent results being produced when setting N > 200.

The testing process can be quite time consuming but is very important. It is

important that the testing and modification process of any algorithm is done

thoroughly to make sure that the algorithm is doing what it is thought to be doing.

A poorly tested algorithm can lead to a lot of time wasted and can become

extremely expensive if it is believed to be producing something it is not.

 39

7. Reducing Data: SATURN Options

The vast amount of data and the precise as possible types of calculations being

made for larger networks are what are causing much of the computational time in

SATURN. The purpose with this and the next chapter is to look at some different

ideas on how to reduce and relax the amount of data needed to find a near

optimal closed charging cordon for larger networks.

Although the final result may differ slightly between using a “relaxed” data set up

compared to the original set up does not mean that the results are incorrect. This

is because, and is important to remember, that there are a lot of factors in the

original set up that are not taken into consideration. Factors such as traffic

accidents, weather changes, increased or decreased oil prices, the slow change

towards free telecommunication, closure of a big factory resulting in major origin-

destination changes, ect. which all individually affect traffic behaviour not

accounted for. It may in fact be that crude, or relaxed, optimization modelling is

more beneficial when looking at traffic charging schemes and cordon design.

SATURN is the traffic modeling software used by the DfT to calculate the net

social welfare function for any given network together with its accompanying

charging cording. SATURN is set up to calculate as accurate a net social welfare

function as possible. With larger networks this calculation takes a very long time.

There is however some different options within SATURN that the user may turn

on, off or change in order to increase the calculation speed of SATURN but to a

cost of a less accurate result. One can however argue the accuracy of any

calculation performed by any traffic modeling software, but this is a different

question and will not be discussed here. For now assume that what SATURN is

calculating with its current setup is accurate. This chapter serves as a guideline

for how a few different setups of SATURN could be used to help increase the

calculation speed.

 40

7.1. Different choices

There are several different choices that a user can choose, change and/or modify

in SATURN to get satisfactory results. Only some of all the available options will

be discussed here. For a full description of all the possibilities and also how to

implement them see SATURN 10.5 USER MANUAL by Dirck Van Vliet and Mike

Hall (2004). The choices looked at here will be of interest concerning

computational time.

There are two main setup options available in SATURN which are of interest for

the closed charging cordon design problem. The first one is a pure assignment

setup and the other is a combination of an assignment and simulation setup. The

purpose with the simulation part is that it takes into consideration the time delays

that occur for travelers at junctions which might in turn lead to different root

choices.

Within the Assignment methods there are four main categories:

1. All-or-nothing assignment

2. Pure stochastic assignment with fixed costs

3. Wardrop’s equilibrium assignment (UE)

4. Stochastic user equilibrium assignment (Burrell multiple route assignment)

(SUE)

The first two options should, as a rule of thumb, only be used with networks that

have very low trip volumes. Studies have shown that the difference between UE

and SUE tend to be very small with high trip volumes but that SUE gives better

results for intermediate trip volumes spread across the network (Van Vliet and

Hall, 2004). There are also other assignment options within SATURN but these

will not be looked at here as these options tend mostly to increase the

computational time.

The simulation part can be as big or small as one wishes. It is optional within

 41

SATURN to have the entire network or only part of the network subject to

simulation during the assignment-simulation setup. Note, although not discussed

further there are some different parameters that can be manipulated within the

simulation part itself, for example: flows, signal settings, number of junctions

simulated, number of maximum iterations allowed, ect. that might be of interest.

Within the assignment method itself there are many variables that can be

manipulated, turned on or turned off. For example there is the number of different

user classes, meaning the number of different subsets of travelers that perceive

the cost of time differently. The maximum number of iterations made by an

algorithm can be changed and so on. This will be discussed further in the

sections to come.

SATURN also has some inbuilt functions that can be turned on or off that are

specially made to help decrease the computation time on bigger networks. One

such function is of special interest for the closed charging cordon design problem

and is called the UPDATE function.

7.2. Current Setup

SATURN is currently being used with the assignment and simulation combination

turned on for the entire network. The assignment method used is the default

setting which is to find Wardrop’s equilibrium using the Frank-Wolfe algorithm.

There are four different User Classes being used and all other options are set on

default. See SATURN 10.5 USER MANUAL by Dirck Van Vliet and Mike Hall

(2004) for what all the default settings are.

The following changes in SATURN will be suggested in various ways.

1. Turn on the Update function.

2. Use the All-or Nothing assignment.

3. Try different number of User Classes.

 42

4. Make changes in the Frank-Wolfe assignment method.

5. Use different simulation spaces.

7.3. Changes

Changes made in the setup of SATURN should be done following a set

procedure with test runs and performed under a controlled environment. There

are two main ways to approach the testing of how different changes in SATURN

affect the computational time and accuracy of the results. Each change made

should be tested by running the GA (for a set amount of iterations of a few

thousand) with the new SATURN setup and compared to the result from using

the same GA (with the same number of iteration) with the ‘original’ SATURN

setup. One approach to the testing is to start by “stripping off” one function or

change at a time leading to “one step” of decreased run time and checking that

the results remain satisfactory. This test should be stopped first when the results

become unsatisfactory and the time decreased for a run should be noted. If the

decrease in amount of time is not satisfactory then a trade off of time decrease

and resulting accuracy needs to be made. The second approach is the reverse,

start by “stripping off” as many extra functions and changes as possible to get the

shortest computational time as possible. Then add one function or change at a

time leading to longer run times and more accurate results. When the results are

satisfactorily note the time decreased and check if this is satisfactory. As in the

first approach, if the time saved is not satisfactory then a weighing of time vs

accuracy needs to be made.

Here the second of the two above approach will be taken. However before all this

is begun a test should be made by activating the ‘Update’ function to see what

time can be saved by adding this (see subsection 7.3.1). If the time saved is not

significant enough then the Update function should be kept on since it should not

interfere with the final results and the second approach of testing can begin.

 43

7.3.1. Update Function

Use the update function in SATURN (see section 15.3 in SATURN 10.5 User

Manual) to decrease the number of iterations for each cordon analysis after the

first cordon has been analysed. Since only slight changes to the network are

being made for each cordon to be tried it may be very beneficial to start each

new cordon analysis by using the end results from the last run as the initial

starting values. This can help to greatly decrease the number of iterations

needed in finding the net social welfare function compared to starting each

analysis from scratch. The update function in SATURN does this automatically if

used.

A more advanced version of this function is to use the perturbation techniques

that can be used with the path-based algorithm. See chapter 21 in SATURN 10.5

User Manual for more information about this method.

7.3.2. Simple Setup

Start the testing phase with the most simple and fastest assignment method

available in SATURN. Turn off the simulation setup, use only one User Class and

analyze each cordon with the All-or-Nothing assignment method. This method

should be fairly quick but will most likely not lead to a great result. However it is

still interesting to see what the GA can come up with using SATURN with this

assignment method and how fast the results are found.

7.3.3. Max Iteration and Stopping Distance

The next step to try is to reinitialize the Frank-Wolfe algorithm. This algorithm is

based on the All-or-Nothing assignment but keeps modifying it with each

iteration. There are four stopping parameters for the Frank-Wolfe algorithm that

can be set in SATURN where two are of particular interest. One is called NITA

and is the maximum number of allowed iterations for the algorithm and other is

called UNCRTS. UNCRTS is set to stop the algorithm when a set “distance”

between the current and ultimate solution is found. The default values for NITA

 44

and UNCRTS are 20 and 0.2% respectively. Start by setting the NITA = 3 and

UNCRTS = 10%. This should still lead to fairly quick results. Then start testing a

few different runs by decreasing UNCRTS. The lower UNCRTS gets the better

the final solution should become. For the first few cordons the results will most

likely be fairly poorly calculated but they should become better and better since

the Update function is turned on. Then try a few runs by increasing NITA and

also with a few different combinations of different appropriate values of NITA and

UNCRTS. Note the time it takes for each run to complete and also the

differences between the end results compared to each other and the original

solution.

7.3.4. User Classes and Simulation

If the results are still poor then retry 7.3.2. and 7.3.3. with more User Classes. If

this does not work go back to one User Class and retry 7.3.3. using the

assignment-simulation combination. It can be worth setting the simulation so only

critical junctions are simulated, that is, junctions that have, or possibly will get,

high traffic flows. Then up the number of User Classes and the size of the

simulation space until a satisfactory result is found.

7.4. Summary

Although only roughly explained, the testing process should be done carefully so

appropriate steps are taken and good combinations of changes are not missed.

The SUE assignment has not been a suggested change since this in general

takes a lot more computational time. The steps above which should be followed

until a satisfactory balance between time and accuracy has been found are

summarized.

1. Turn the Update function on.

2. Use the All-or Nothing assignment with one User Class.

3. Use the Frank-Wolfe assignment setup with a decreased maximum number of

allowed iterations and an increased stopping distance parameter.

 45

4. Redo step 2 and 3 with more User Classes.

5. Redo step 3 with part of the network being simulated and with one User

Class.

6. Same as step 5 but with more User Classes.

7. Redo step 5 and 6 but with an Increased simulation space.

Hopefully before the end of step 7 a satisfactory result has been found and some

time has been decreased from the total calculation time. SATURN also has a

function called Partan Assignment which is a variation on the Frank-Wolfe

method. It is designed to decrease the computational time but still seems to be

under development. There are several other options in SATURN that are

unexplored and also ways in which SATURN could be further used. For example

SATURN could most likely be used to analyse the marginal social cost per link

with respect on cordon fees which could lead to some development of a

modification of an algorithm. There is much that can be done by manipulating

and using SATRUN to speed up the computational time and it could be worth

spending some time experimenting with it.

8. Research Questions

8.1. Reducing Data: Network Aggregation

This is effectively an extension on chapter 7 in that it talks about ways of

reducing the amount of data needed.

A promising approach to solving the closed cordon design problem for larger

networks within reasonable computational time could be by applying network

aggregation. “Broadly speaking, aggregation involves studying constituent micro

processes of macro systems in order to represent the latter by a fraction of the

 46

complete information from the former with the greatest accuracy possible”

(Uludag, Nahrstedt, Lui and Brewster, 2005). It is a topic that would require

further research but seems likely lead to very favorable results. The idea would

be to construct an algorithm that could automatically shrink a large network

without losing vital data. Then we could solve the cordon design problem using a

GA and SATURN on an aggregated network. Then we could use this solution to

narrow the search area for the GA to get faster run times for the network when it

is less aggregated. The idea would be to keep disaggregating the network in

steps till the optimal cordon is found for the original non aggregated network.

8.1.1. Existing Literature

A lot of research has been conducted on network aggregation with heavy focus

on two main areas. One area that is currently of special interest is within

topological aggregation. Topological aggregation for quality of service routing is

currently of great interest because of the strong growth in communication

networks. Routing consists of gathering state information about each node and

finding a new optimal path for a new connection. The state of a node is ideally

broadcast to every other node in the network but becomes unrealistic with a

strong growth of a network. Topological aggregation therefore plays an important

roll in routing for communication networks to help with routing optimization

algorithms. Another reason for topological aggregation of communication

networks are for security reasons since it may not always be desirable to present

the exact structure of a network itself.

Topological aggregation is usually done in a hierarchal fashion where a set of

nodes and links get represented by a fewer number of nodes and links. The

major challenge is to find the right balance between compaction and routing

performance. Some basic aggregation techniques have been proposed for this

which are the full-mesh, the star, the spanning tree and the Lee method but each

have different short comings, see Yoo, Ahn and Kim (2006). Yoo, Ahn and Kim

 47

(2006) propose a modified algorithm that maps nodes onto a Bruijn Graph which

speeds up the computational time compared to the full-mesh approach. There

are many different methods proposed to compensate the shortcomings of the full-

mesh, the star and the spanning tree approach. See Uludag, Nahrstedt, Lui and

Brewster (2005) for a good summary on different resent topological aggregation

methods. Also Ansari (2003) conducts a clear explanation and looks at a few

different existing methods. Kowalik and Collier (2004) use a game-theoretic

framework to look at how three different aggregation techniques coexist in a

single network. Also of interest is the paper by Sarangan, Ghosh and Acharya

(2002) which propose a topological aggregation technique for state aggregation

based on link flows for stochastic networks.

The other main area of research is within roadmap generalization. In roadmap

generalization the main theme is to figure out which roads can be taken out in the

aggregation without losing important points of interest and keep users from taking

big detours when going from one point to the next. Important is also to keep the

aggregated roadmap connected. Other themes consider the actual presentation

of the roadmap itself by using different colors and going from double lines to

single lines and so forth. Kreveld and Peschier (1998) suggest a three point

method for roadmap generalization. They categorize each node and road by

importance and delete unimportant roads weighed against conflicts. A conflict is

when two roads lie to close together. They then delete more important roads to

resolve the conflicts and finish off by adding less important roads to minimize

possible detours that may have occurred. Peschier (1997) suggests a different

method but with a similar ‘flavor’. One difference is that his third step involves

adding roads to increase the general quality of the aggregated map for example

keeping connectedness since his algorithm does not guarantee this in the first

two steps.

 48

8.1.2. Aggregation for the Closed Charging Cordon Design

An aggregation method for the closed charging cordon design problem would

most likely need to be a combination of topological aggregation and roadmap

generalization based on link flows. It is not however exactly clear how the

existing literature could be used to help solve this problem. An idea would be to

somehow keep all major and important roads disaggregated while performing a

hierarchal aggregation method on smaller, less important roads. This aggregation

would need to take into consideration the sum of flows going into and out of the

aggregated areas.

Some main challenges would be to keep the user equilibrium accurately updated

with the implementation of different cordon designs. To make sure that an

optimally tolled link is not missed because it gets aggregated. To correctly

represent the aggregated parts and to figure out how this should all be done

automatically.

There are several possible ways to tackling this problem and a lot of information

is available that handle similar situations. As mentioned it is not exactly clear

though how this information might be utilized. If a specific algorithm can be

constructed to handle the aggregation needed for the closed charging cordon

design problem then considerable computational time could be saved.

8.2. West Midlands

In some geographical locations cities are located quite close to each other. They

are located so near each other that any changes in the traffic behavior from one

city will most certainly affect the traffic patterns in the other city or cities. One

such area is the West Midlands containing three cities where traffic patterns

interact.

 49

There are several questions that need to be considered when trying to model

traffic charging in places like these. For example how does a closed charging

cordon around one city affect the traffic behaviour in the other cities? Is it even

wise to set up closed charging cordons in any or all of the cities? How much

traffic is drive through traffic and does not even start and end in any of the cities

or their surrounding areas? How does this affect congestions within the cities

themselves? What type of charging scheme is both good and realistic to

implement?

A problem concerning traffic congestion modeling with places such as these is

that it is not strait forward how to describe or model the space of admissible

traffic charging schemes, let alone optimize over them.

9. Next Step Recommendations

This paper has presented some ideas and steps to be taken on how to possibly

solve the closed charging cordon design problem within the realm of the DfT’s

interests. To get life into some of these ideas further work and steps are needed.

It is important to get the current GA used by the DfT up and running satisfactorily

as this is currently not the case. Some of the suggestions in chapter five may be

of good use for this. Since these suggestions may not be to difficult to try and

may slightly speed up the process they should be considered and tried. It is also

highly recommended that the different changes in SATURN be tried because

they are trivial to implement.

Since it is still unclear how the closed charging cordon design problem can be

solved and since the above recommendations are most likely not enough, further

research is needed. A plan and budget must be set up for future research within

this area to support DfT personnel, people in academia and/or consultants to

 50

help further develop this field of knowledge.

A strongly recommended starting point is to invest in research regarding the

ideas presented in chapter eight where investigation of optimal cordon design on

aggregated networks seems very promising. A second topic is to figure out how

to model and optimize road charging schemes in areas like the West Midlands

where a cordon may not be optimal.

In parallel, a project that looks into ideas of designing a better search algorithm

then the GA could be started, see chapter six. This together with an aggregation

algorithm could lead to incredibly fast and reliable solutions.

There is nothing to say that different and further approaches should not be

looked into and tried. It might be that faster and more suitable assignment

algorithms can be found compared to those used by SATURN and that this in

itself could solve the problem. Perhaps a single algorithm that optimizes the

cordon design while it performs assignment iterations could be constructed using

a more crude or relaxed model that still generates satisfactory result.

There is much still to be learnt and further research is of the essence. In my

opinion however it would be advisable to start with the ideas presented in chapter

eight and to immediately start planning and budgeting for the necessary

resources needed to get this off the ground.

 51

References

A. Ansari, “Topology Aggregation and Multi-Constrained Quality of Service

Routing”, Department of Computer Science, Florida State University, 2003.

Y. Carson and A Maria, “Simulation Optimization: Method and Applications”,

State University of New York at Binghamton, Department of Systems Science

and Industrial Engineering, USA, 1997.

K. Kowalik and M. Collier, “Coexistence of various topology aggregation methods

in a hierarchical network”, RINCE, Dublin City University, Ireland, 2004.

M. van Kreveld and J. Peshier, “On the Automated Generalization of Road

Network Maps”, Department of Computer Science, Utrecht University and

Compass Interactive, Netherlands, 1998.

J. Peschier, “Computer aided generalization of road network maps”, M. Sc.

Thesis, Department of Computer Science, Utrecht University, Netherlands, 1997.

V. Sarangan, D. Ghosh and R. Acharya, “State Aggregation using Network Flows

for Stochastic Networks”, Department of CSE, Penn State University, USA, 2002.

A. Sumalee, ”Optimal road pricing scheme design”, PhD thesis, Institute for

Transport Studies, University of Leeds, UK, 2004a.

A. Sumalee, “Optimal Road User Charging Cordon Design: A Heuristic

Optimization Approach”, Computer aided in Civil and Infrastructure Engineering,

19, p 377-392, 2004b.

Uludag, Nahrstedt, Lui and Brewster, “Comparative Analysis of Topology

Aggregation Techniques and Approaches for the Scalability of QoS Routing”,

DePaul University, University of Hong Kong, University of Illinois Urbana-

Champaign, 2005.

 52

D. Van Vliet and M. Hall, “SATURN 10.5 User Manual”, Institute for Transport

Studies, University of Leeds and Atkins Planning Consultants Ltd. UK, 2004.

D. Wolpert and W. Macready, “No Free Luch Theorems for Optimization”, IEEE

Transactions On Evolutionary Computation, Vol. 1, No. 1, 1997.

Yoo, Ahn and Kim, “Topology Aggregation Using a de Bruijn Graph in ATM

Networks”, School of Computer Science and Engineering, Seoul National

University, Department of Computer Science and Statistics, University of Seoul,

Article was found by searching with Google on the internet 2006.

