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Abstract 

 

The UK Department for Transport (DfT) is currently looking into different methods of designing 

closed charging cordons around smaller cities. The DfT’s current scope of interest is to find an 

algorithm or method which uses SATURN, a traffic modelling software package, to help find an 

optimal or near optimal closed charging cordon for any given network. They are currently using a 

genetic algorithm to design and optimize cordons together with SATURN which evaluates each 

cordon separately. This method seems to work for small road networks but takes too much 

computational time for cities with networks of over a few hundred nodes. This paper suggests 

some possible ways in which to approach the closed charging cordon design problem to get faster 

computational results while still staying within the DfT’s current scope of interest.  

 

Some parts of the paper discuss ideas that can quickly and easily be implemented to help 

decrease the computational time by a small degree. These ideas are “quick fixes” to help get faster 

results straight away without investing in extra resources and/or lots of time. One set of ideas are 

improvements and suggested changes to the DfT’s current genetic algorithm to help decrease the 

number of iterations needed before finding a satisfactory closed charging cordon design. The other 

set of ideas comprise of changes to the set up of SATURN to help speed up the evaluation process 

of each cordon. 

 

Other parts of the paper discuss future research areas that are strongly suggested to be pursued. 

These ideas are more time consuming and need to be researched before they will be able to be 

implemented but will likely lead to favourable results. The first is to create a new heuristic algorithm 

that uses more local then random searching compared to a GA. The second is to design and 

implement a network aggregation algorithm to let SATURN evaluate cordons on a much smaller 

but well represented network compared to the original network. Beyond these issues is the 

question, for areas like the West Midlands in which there are several cities in close proximity, of 

how to model and optimize road charging schemes where a single cordon may or may not be 

appropriate.  
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1. Introduction 

   

The UK Department for Transport (DfT) is currently researching methods on 

designing congestion charging schemes for smaller cities/towns that are located 

within the UK. The objective of their research is to find or construct an 

optimization method that will find a combination of tolled links which will form an 

optimal or near optimal closed charging cordon. “A closed charging cordon is a 

set of tolled links surrounding a designated area so that all travelers entering or 

passing the area will be tolled. A definition of a closed cordon in the context of 

graph theory is that all paths from all zones outside the cordon passing through 

the nodes inside the cordon must be tolled at least once on a link related to those 

paths” (Sumalee, 2004b). In this case the objective of the optimal cordon is to 

maximize the net social welfare function, see Sumalee (2004a) for a detailed 

formulation. The purpose of this paper is to suggest some different alternatives 

and ideas, within the DfT’s scope of interest, on how to possibly go about to solve 

the closed charging cordon design problem. The DfT’s scope of interest is to use 

some type of optimization algorithm together with a traffic modelling software 

called SATURN to find an optimal or near optimal closed charging cordon. The 

paper will give some concrete suggestions and also talk about ideas that could 

be pursued in future research projects in trying to find better and faster solution.   

 

Currently the DfT is trying to find a near optimal cordon design using a genetic 

algorithm (GA) together with the traffic modelling software SATURN. A similar 

method, using a genetic algorithm together with SATURN, was also suggested 

by Sumalee (2004a). By entering a certain cordon design and its accompanying 

charge, for a certain city, SATURN calculates the net social welfare function1. 

This calculation takes anywhere from five minutes up to several hours depending 

on the size and number of users of the city studied and its road network. Since a 

                                            
1
 SATURN does not actually calculate the net social welfare function, this is calculated separately 

using the outputs from SATURN. Throughout the paper it will however be stated that SATURN 
calculates the net social welfare function since this calculation by itself is very simple compared to 
the needed outputs that SATURN produces. 
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GA in general needs to make thousands of goal function calculations before a 

significant improvement can be noticed, the GA together with SATURN as the net 

social welfare function calculator is not a sufficient method.              

 

Shrewsbury is one of the smaller cities in the UK that could eventually be 

considered to have a congestion charging scheme put in place. It is therefore an 

excellent 'testing ground' to be used for experimentation work in trying different 

methods for finding near optimal solutions. To run Shrewsbury’s road network 

through SATURN to get the net social welfare function calculated takes 

approximately seven minutes with the current setup of SATURN. The current 

method will therefore be used on Shrewsbury’s road network to find some results 

that can later be compared to the results from other new methods.   

 

The paper suggests some ideas for short term “quick fixes” and some ideas for 

long term real solutions. The quick fixes can quickly and easily be implemented 

to help decrease the computational time by a small degree without investing in 

extra resources and/or lots of time. They consist of ideas to improve the DfT’s 

current genetic algorithm to help decrease the number of iterations needed 

before finding a satisfactory closed charging cordon design. They also consist of 

changes to the set up of SATURN to help speed up the evaluation process of 

each cordon.  

 

The long term real solutions are ideas that first need to be researched in order to 

be implemented. It is strongly suggest that the DfT invest in these or similar 

research ideas in able to find real and actual solutions to the closed charging 

cordon design problem for any given network size. A particularly promising idea 

is to create a new heuristic algorithm that uses more local then random searching 

compared to a GA. Designing and implementing a network aggregation algorithm 

to let SATURN evaluate cordons on a much smaller but well represented network 

compared to the original network. There is also the open question of how to 

model and optimize road charging schemes in areas like the West Midlands 
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where a cordon may not be optimal.  

  

The paper is setup as follows: Chapter two defines the closed charging cordon 

design problem and summarizes a few different suggestions on how to approach 

the problem. Chapter three explains how the GA used by the Department for 

Transport currently works and how it is setup. The results from a run using the 

GA and SATURN with the Shrewsbury network are shortly summarized in 

chapter four. Chapter five talks about the fist “quick fix” ideas concerning 

suggested changes to the GA. Chapter six presents the fist long term approach 

solution regarding the creation and testing of a new heuristic algorithm. Chapter 

seven and most of eight present different suggestions on ways in which to relax 

and reduce the data needed for SATURN. Chapter seven, which is the other set 

of the “quick fix” ideas, talks about different options in SATURN that can be 

turned on or off to decrease the computation time weighed against the cost of 

receiving less accurate results. Chapter eight discusses the other long term 

solution approaches to be pursued by further research. Section 8.1 talks about 

network aggregation algorithms and how they could be used to more quickly find 

a near optimal closed charging cordon. Section 8.2 talks about a fairly different 

topic concerning areas like the West Midlands in which there are several cities in 

close proximity where the question is how to model and optimize road charging 

schemes when a single cordon may or may not be appropriate. Finally, in chapter 

nine, the paper finishes off by recommending future steps to be taken which may 

be of great interest.          
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2. Defining the Problem 

 

2.1. Formulation 

 

A given road network can be represented by a graph G = (V, E) where the nodes 

V represent the intersections and the links E represent the roads in the road 

network. The number of nodes and links in graph G are given by |V| = n and |E| = 

m respectively. 

 

The problem is to find a closed charging cordon and its accompanying charge in 

a road network that will maximize the net social welfare function: 

f(w1, w2, …, wn ,C).  

Where:  

wi = 0 if node vi is outside the cordon and  

wi = 1 if node vi is inside the cordon  

for niVvi ,...,2,1, =∈∀  

and C is the amount charged for entering the charging cordon. C is a positive real 

number. 

 

Now consider the graph Gc = (Vc, Ec) where Vc is a subset of V representing all 

nodes that are placed inside the cordon in the road network and Ec is a subset of 

E representing all the links that are part of or inside the cordon. Given the road 

network represented by the graph G = (V, E), the problem can then be stated as 

to find a graph Gc = (Vc, Ec) that is connected and not ‘donut’ shaped with a 

charge C that will maximize the function f(w1, w2, …, wn ,C).  

 

2.2. Solving methods 

  

A city with n nodes, where each node can be considered to be inside or outside 

of the cordon, has 2n different possible cordon designs, not including the different 
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charging choices. Listing all possible cordons and choosing the one with the 

highest net social welfare function is unrealistic. The closed charging cordon 

design problem appears, like MPEC (Mathematical Program with Equilibrium 

Constraints) problems, to belong to the class of NP-Hard problems, meaning that 

there are no know methods or algorithms to finding a guaranteed optimal solution 

within polynomial time. The closed charging cordon design problem can be 

formulated as an MPEC problem but would most likely not be of any help, see 

Sumalee (2004a) for more details.  Therefore an optimization algorithm or some 

other method can be used at best to find a near optimal solution.  

 

Some possible approaches:   

 

Approximation Algorithms 

An approximation algorithm will find a near optimal solution to a hard problem in 

polynomial time with a certain guarantee. The guarantee could be for example 

that the solution found is within 5% of the optimal solution. However because of 

the complexity of the cordon design problem it may be very difficult to construct 

an algorithm that can give any such guarantees.  

 

Heuristic Algorithms 

Heuristic algorithms find solutions to hard problems but without any guarantees 

on the quality of the solution or its run time. They have however been shown to 

give good results with many practical problems. The main drawback with 

heuristic algorithms is that they usually require fast goal function calculations (in 

this case the net social welfare function) to be able to produce any reasonable 

results (Carson and Maria, 1997). The net social welfare function takes a very 

long time to calculate and this will be a major challenge to get around.      

  

Given the time it takes for SATURN to calculate the goal function, the complexity 

of the problem and that most existing optimization algorithms require hundreds or 

even thousands of goal function calculations before showing any promise, makes 
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this problem very difficult to solve within a reasonable amount of time. There are 

a few different ways to approaching this problem to keep runtimes down.  

 

1: Net Social Welfare Function Manipulation 

One approach is to find a function that closely represents the net social welfare 

function calculated by SATURN, or any other traffic modelling software, but that 

can be calculated very quickly for any given road network. This would then be 

used as the goal function in, for example, the genetic algorithm suggested by 

Sumalee (2004a) for finding a near optimal closed charging cordon designs. It 

would then be possible to generate the necessary thousands of generations in 

the GA in a reasonable amount of time. The challenge with this approach is in 

constructing a function that can quickly be calculated and that realistically 

represents reality, almost as well as SATURN does, with what happens when 

introducing different cordon designs in a road network. If this new representation 

differs to greatly from reality then the solution found by the GA will most likely be 

poor. In this approach a fine balance must be found between calculation time and 

accuracy. This approach will not be discussed further in this paper but would be a 

good option for further research.     

 

2: Genetic Algorithm Customization 

A second approach is based on customizing a Genetic Algorithm so that a lot 

fewer iterations would be needed to find the same quality of solution that a 

‘regular’ GA would find. Making modifications in how the initial population is 

produced and how the GA performs reproduction in later iterations will aid in this. 

The approach will be discussed in further detail in chapter 5.  

 

3: A New Heuristic Algorithm 

A third approach is to designing a new and very specific heuristic algorithm that 

would require relatively few calls, perhaps only in the hundreds, to SATURN (or 

any other traffic modelling software) to find a near optimal solution to the closed 

charging cordon design problem. The idea with this approach is to construct a 
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method that conducts a set of calculations so it can predict a good cordon design 

using information learnt from previous evaluations. Every new predicted cordon 

design would be sent into SATURN to be analysed. The method would then 

update itself by adding the new evaluation to its “knowledge”. The idea is that 

after a few hundred iterations a suitable and near optimal closed cordon design 

would emerge. Ideas and thoughts about how this could possibly be done are 

further examined in chapter 6.    

 

4: SATURN Options   

SATURN has a lot of functions that can be switched on and off to get more or 

less accurate results in the net social welfare calculation. One approach is to turn 

off some of the default settings to see how the runtime and results differ. This 

would need to be conducted on a small network so adequate testing can be 

done. See chapter 7 for further details on how this can be performed.       

 

5: Network Aggregation 

A final idea that will be discussed is network aggregation. The time it takes for 

SATURN to calculate the net social welfare function for a network increases four 

times when doubling the number of nodes in the network while using the same 

parameter setup (number of user classes, simulation on or off, ect.). The idea 

with this approach is to aggregate and disaggregate different parts of the network 

to get quicker SATURN calculations.        

 

None of the above mentioned approaches will likely lead to an optimal solution. 

However all of them, if solved and performed correctly, have the potential of 

giving good or even near optimal solutions to the closed charging cordon design 

problem in less time then the method currently used by the Department for 

Transport.   
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3. Genetic Algorithm currently used by the DfT 

 

3.1. Introduction 

 

A genetic algorithm is a search and optimization technique used to identify good 

solutions to hard optimisation problems. It is an optimization method that has 

been inspired by the genetic evolution process. A GA is a structured random 

search that combines promising candidates to produce new candidates for 

evaluation. The technique has been proven efficient in large solution spaces 

where the combination process is effective at moving through the solution space. 

This chapter describes the way that the UK Department for Transport has 

currently setup their GA to find a closed charging cordon design.  

 

The GA needs a genetic representation of the solution and a fitness function 

which in this case is the closed cordon and the net social welfare function 

calculated by SATURN. The genetic representation of the cordon is an array of 

191 zeros and ones which represent each of the nodes in the Shrewsbury 

network. Each 'zero' represents a node outside the cordon and each 'one' 

represents a node inside the cordon. The different fitness functions for the 

different cordons are then directly compared to each other and the higher the 

value the stronger the solution. The fitness function can also take on a negative 

value if the net social welfare is less with a specific cordon then without any 

cordon at all.  

 

3.2. Initialising the Population 

 

The GA needs an initial population of cordons which is randomly generated. To 

generate these random cordons the study area of nodes has been mapped and 

divided into a Delaunay triangulation. A Delaunay triangulation is a set of 

triangles connecting a set of points in the plane where the circumcircle of each 



 13

triangle does not contain any of the points. The reason for mapping the road 

network into a Delaunay triangulation is because it is an easy way to randomly 

select closed cordons.     

 

The GA randomly selects one of these triangles as a starting point in the study 

area. It will then undertake a random walk to surrounding triangles, with a 60% 

chance of walking out from each side. Each of the nodes on each of the triangles 

visited will become included in the cordon. If an outer edge triangle is walked 

into, the two outer edge nodes will not be included in the cordon. A check is 

undertaken to ensure the cordon is a solid area without holes and is valid (i.e. 

there are no nodes within the cordon boundary which can not be reached by all 

other nodes using the road network within the cordon). A check is also taken to 

make sure that the cordon produced contains at least five nodes. These checks 

are also done on the children, see below.  

 

The size of the population has been set to 200 cordons. 

 

3.3. Selection 

 

When the initial population has been created and the fitness functions calculated 

by SATURN the GA can begin to generate new solutions. Two parents are 

chosen at random from the population. The probability of each cordon being 

selected as a parent can vary and there are many methods for assigning these 

probabilities. The one used by the DfT is weighted according to rank. 

 

Weighted according to rank 

If n is the total number of cordons and Ci is cordon i for i = 1,2,…,n then F(Ci) is 

the fitness function of cordon i. P(F(Ci)) is the probability of choosing cordon i as 

a parent where: 
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The two selected parents are then combined to generate a child, a new cordon, 

by a set of defined reproduction rules.  

 

3.4. Reproduction 

 

There are two main methods that the GA goes about generating new cordons 

from the two parent cordons. They are intersection and union.  

 

Intersection: 

With intersection a new cordon is made by using only the nodes which are in 

both of the two parent cordons as the new cordon. If the two parents do not have 

any similar nodes inside their cordons then no new child is made. 

  

Union: 

With union a new cordon is made by using all the nodes in both the parent 

cordons to create the new cordon.  

 

Intersection and union are chosen randomly with a 50% chance each of being 

picked. Before scoring the child there is an X% chance that the child undergoes 

mutation. Mutation is applied to either increase or decrease the boundary of the 

cordon by randomly taking away or adding on extra nodes. The reason for 

mutation is to make sure that the GA does not get stuck in a local optimum. After 

this the GA checks that the resulting child is a valid cordon and that it is not 

exactly the same as an earlier cordon. If the child is not feasible or is exactly the 

same as an old cordon then the GA picks two new parents and tries to make a 

child from them. The GA keeps trying to make a new child until it has failed n2/2 
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times in a row, where n is number of the population, before it gives up and aborts 

the program. Once found, the child cordon is scored using Saturn. If the new 

child cordon has a higher fitness function than the weakest cordon in the 

population it will replace the weak cordon. Otherwise the new cordon is discarded 

from the population.  

 

Mutation rates can be set at run time, but should remain low, approximately 1%. 

If a cordon is mutated there are further mutation rates that are applied to 

determine exactly how the cordon is changed. For each pair of nodes, where one 

is inside the cordon and the other is outside, the GA will decide whether to 

increase, decrease or not change the cordon area. Note that each node can be in 

more than one pair. These rates are initially set to 15%, 15% and 70% 

respectively for each pair. To increase the cordon area the external node is 

included within the cordon, whereas to decrease the cordon area the internal 

node is removed from the cordon.  

 

3.5. Termination 

 

The process of generating children is repeated until a predefined stopping 

condition is met. The condition can be any of the following: no more time to 

generate solutions, the diversity of the population is so low that the GA can not 

generate any new cordons within the allowed maximum number of tries, a pre-

defined number of generations have been generated. 

 

After the program has terminated then all that is left is to sort the remaining 

population by their fitness functions and plot the top cordons to see their designs.  

Hopefully these designs will be similar and have similar fitness function values. 

 

3.6. Cordon Charge 

 

Two different methods are currently used for choosing the charge for entering the 
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cordon. The first method is simply predefining the charge before the GA is run 

and finding a near optimal cordon for that charge. The second method lets the 

GA choose the charge by randomly assigning one of the following charges to the 

initial population: .50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50 and 5.00 

pounds. During reproduction the child is run through SATRUN twice if the two 

parents have different charges, once with each of their charges. This gives two 

new children with the same cordon structure but different charges.     

 

 

4. One Set of Results from the Current GA 

 

Originally there were a lot of numerical results from different runs of the current 

setup that the DfT uses. However these results were later found to be unreliable 

since a programming error was found in the setup. A recommendation is for DfT 

to go back and fill in this chapter after more new runs have been made and 

analysed. For now there is only one run that has been completed. 

   

At the DfT several computers are available to make parallel calculations of 

different cordons simultaneously in SATURN. Using multiple computers and the 

Shrewsbury network a run was made pre set to stop after 2000 cordons had 

been calculated. Using the GA and SATURN to solve for the closed charging 

cordon design problem took approximately two and half days. The GA was set to 

randomly place a charge, see chapter 3.6., for each initial cordon in the 

population. After the run was completed the results were analyzed.  

 

The best few cordons designed by the GA were all very similar. They were all 

placed in and around the same area with only a few nodes differing from being 

inside or outside the cordon. The best cordon resulted in a net social welfare 

score of approximately 841 pounds and was the 1724th cordon designed by the 

GA. The charge was set to 2.50 pounds. The 10th best cordon got a score of 

approximately 640 pounds giving a difference of 201 pounds between the top ten 
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scores. This difference is quite significant which means that perhaps the GA 

should have been let to run a bit longer. In total 235 cordons got a positive net 

social welfare score but with many of the scores being very small, the rest were 

negative.  

 

After the run was completed the top cordon was tested with some different 

charges to see what would happen. Using higher charges resulted in lower 

scores.  When the cordon was tested with lower charges the score improved for 

the first couple of steps before it started getting worse again. This suggests that 

either the GA should have been left to make a few more runs as commented on 

above or that the GA is not finding very good charges for its cordons which in 

effect may be damaging the entire search. Looking at the way the GA assigns 

charges it is most likely that the GA just needs to be let to run longer, however a 

few suggestions on possible improvement to the charging method are given in 

the next chapter.   

 

 

5. Genetic Algorithm modifications 

 

Solving the closed cordon design problem with shorter and/or fewer calculations 

becomes very important with larger road networks. Using the setup discussed in 

chapter three it would take over a year before any reasonable solutions would be 

found with larger road networks. In this chapter some modifications to the current 

GA used by the DfT are suggested to try to minimize the number of iterations 

needed by the GA to find a good solution.    

 

According to the No Free Lunch Theorem all search algorithms over all problems 

will perform on average the same (Wolpert and Macready, 1997). With this 

theorem in mind, simply using another search algorithm in place of the genetic 

algorithm will most likely not lead to any significant improvements. Instead to get 

any significant improvements it is important to customize an algorithm as much 
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as possible to fit the problem at hand.   

 

5.1. Changes to the Genetic Algorithm 

 

One criterion when using a Genetic Algorithm is that the fitness function can 

quickly be calculated for each child. This is necessary because it usually takes 

several generations before any significant improvements in the fitness function 

can be found (Carson and Maria, 1997). In the case of optimal cordon design it 

takes a very long time to calculate the fitness functions for each cordon, up to 

several hours. It is therefore important that the GA makes as few fitness function 

calculations as possible which mean that changes need to be made in the GA to 

make this happen.  

 

Sumalee (2004a) also suggests the use of a genetic algorithm together with a 

traffic modelling program to find the optimal cordon design. The genetic algorithm 

he suggests uses a Branch-Tree Framework with a small fixed starting cordon 

that will be included in every produced cordon. During the reproduction process 

his GA uses crossover and mutation. With crossover the process starts by finding 

the identical nodes in each parent. Then they randomly exchange a non identical 

set of nodes that get added to the identical set creating two new children. Note 

that this is only a rough description of how the crossover process works with the 

Branch-Tree Framework, see Sumalee (2004a) for a thorough and in-depth 

presentation of this process. One of the advantages with his method is that each 

new cordon that is produced maintains the closed cordon design and therefore 

no checks for feasibility need to be made.  

 

5.1.1. Initial Population 

In the GA that Sumalee (2004a) suggests there is a small chosen starting cordon 

that all the cordons made by the GA build from. This is a risk since a poorly 

chosen starting cordon will most likely not lead to any optimal or near optimal 

final solutions. On the other hand in the GA currently used by the DfT a lot of 
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computing time is being wasted on undesirable cordons along the outskirts of the 

city. Therefore a combination of the two methods may be more desirable.  

 

Idea 1: Partly fixed initial population 

Manually choose 5 nodes with the rule in mind that every initial cordon made by 

the GA has to randomly pick, with a 20% chance, one of these nodes to start its 

random walk from. By adding this rule it is most likely that the following benefits 

will be found. 

• There will be fewer undesirable cordons to be evaluated since all initial 

cordons will be within or partly within the critical area.  

• It will be easier for the GA to generate new cordons using intersection and 

union since there will be more cordons that have identical or neighbouring 

nodes. 

• Smaller initial populations can be used because many undesirable 

cordons are no longer initially produced.   

• Poorly chosen initial nodes can be overcome with reproduction and/or 

mutation since only the initial population is required to have them within 

their cordons. 

  

5.1.2. Choice of Parents 

Parents are chosen for reproduction with a certain probability depending on their 

rank. What makes one parent better then the other? In the current GA it is solely 

based on the fitness function value from Saturn but is this really accurate?  

Possible things to consider: 

- What percent of the worst congested areas are within the parent 

cordon? 

- What links that lead to the worst congested areas are within the parent 

cordon? 

If these can be identified then perhaps the parents containing more of the two 

points above should get an additional few percent added to their probability of 

being chosen as a parent cordon.    
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5.1.3. Reproduction 

After the parents have been chosen a reproduction method is randomly selected 

with a 50% chance of being either intersection or union. Both intersection and 

union will produce a very different child cordon if the two parents have very few 

identical nodes inside their cordons. This can both be good and bad. It is more 

likely, but not at all definitely, bad if one of the parents is very strong. This may be 

bad because the strong cordon may loose all of its beneficial nodes.  

 

Idea 2: Priority Reproduction 

Lower the chance for the GA to choose intersection or union as the reproduction 

methods to 35% each. Add a third reproduction method with a 30% chance of 

being chosen. The new reproduction method should let the child inherit more of 

the stronger parents’ traits. The new cordon should closely represent the stronger 

parent with only a few minor changes inherited from the weaker parent. Start off 

by using intersection but then make a random walk, as described in chapter 

three, from the intersected edge out adding each step taken into the child cordon 

but staying within the stronger parents cordon boundary. The probability to take 

each step should be Ps. Then do the same random walk from the edge of the 

intersection but only allowing steps to be taken within the weaker parents cordon 

boundary with a probability of Pw. Ps should equal the rank of the stronger parent 

divided by the sum of the rank of the stronger and weaker parent.   

Ps = RankStrongParent / (RankStongParent + RankWeakParent)     

Pw = 1 - Ps 

 

Idea 3: Strong Mutation  

A fourth reproduction method that is very simple but can be very beneficial is 

Strong Mutation. Strong Mutation is performed simply by selecting the stronger of 

the two parents and conducting a random walk in any direction starting from a 

random point along the edge of the cordon. If the walk goes into the cordon then 

each node reached should be taken out of the cordon. If the walk goes out of the 



 21

cordon then every node visited should be added to the cordon. The random walk 

should be performed in the same manner as described in chapter 3 but should 

have a 50% chance of taking a step in any direction. Nothing is done with the 

weaker parent. This method should have a 10% chance of being chosen and so 

Union and Intersection need to be lowered to a 30% chance each of being 

chosen as the reproduction method and keeping the Priority Reproduction 

method at 30%.   

   

5.1.4. Offspring 

Sending every feasible offspring through SATURN is not advisable since each 

calculation takes a long time. Instead every new child should quickly be analysed 

to see if the new cordon has even the smallest possibility of being or leading to a 

desirable cordon. If so then it should be kept otherwise it should be discarded. 

  

Idea 4: Pre-checking the offspring 

Define what nodes in the network are within the critical area, meaning: what 

nodes are in the more congested parts of the road network or have critical links 

leading into these parts. If the offspring produced has none of these nodes within 

its cordon then the child can be discarded without being analysed further.        

 

5.1.5. Charge 

Currently the charge is randomly chosen for each cordon in the initial population 

and then the parents transfer over their charges to the child resulting in two new 

children, with the same cordon shape, if the charges differ. There are a few 

things that could be added to the charge method and also a worst case scenario 

that needs to be solved. The worst case scenario with this method could lead to 

the cancellation of one or more important charges leading to a local optimum 

trap.  

 

Idea 5: Charge Mutation 

After the children have gotten their charges from their parents, there should be a 
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30% chance that the charge inherited from the weaker parent should randomly 

be changed with an equal probability of receiving any of the other charges not 

possessed by either of the two parents.        

 

Idea 6: Initial Charge Rank 

Give each available charge an initial rank that seems suitable for the given 

network. That is, what charges will most likely turn out to be good according to a 

judgemental approach?  

Ex) If charge 2.00, 2.50, 3.00, 3.50 and 4.00 pounds seem like they might 

realistically be better then give them a higher probability to be chosen then the 

others during the charge assignment for the initial population. 

 

Idea 7: Charge change for area difference 

If the area within the cordon changes dramatically, as will happen with union and 

intersection if the parents differ greatly, decrease or increase the charge in part of 

the percent increase or decrease of the child cordon respectively. This is 

because a larger cordon will ‘consume’ more travellers and will therefore most 

probably not need an as high charge.     

 

 

5.2. Manual Design Together with the GA 

 

A lot of computational time is spent evaluating the initial population in the GA. 

The initial population is more or less randomly produced by the GA and the 

purpose with the GA is to keep upgrading the population so only stronger and 

stronger individuals survive. Starting with a random population makes this 

process very time consuming. If the GA instead could skip the first X% of fitness 

function evaluations and generations then the time for the process of finding a 

near optimal solution would greatly decrease. This could be done by having a 

well trained and experienced person manually design the initial population for the 

GA.  
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5.2.1. Implementation     

Thoroughly design ten to fifteen different but well placed closed cordons for the 

given road network. Choose three different tolls that seem most plausible to be 

used in the final cordon. Assign one of the tolls to each of the cordons designed 

but make sure that each of the different toll charges are used by at least two of 

the cordons. Use these cordons with their associated charges as the initial 

population in the GA. Run the GA using the reproduction rules discussed in 

chapter 3 and 5.1. Let the charge associated with the stronger parent go to the 

child with a 60% chance and with the other two charges available the child 

should get one of these with a 20% chance for each. Run the GA for 150 fitness 

function calculations or more for the smaller networks if desired.       

  

 

6. Specific Heuristic Algorithm 

 

A GA can be seen as a guided randomization search for finding optimal or near 

optimal solutions. If this randomization could instead be turned into a more 

specific local optimum search a lot of time could be saved. One idea in trying to 

solve the cordon design problem is to construct a very specific heuristic algorithm 

that can make good predictions how a cordon should be setup for any given 

network. The idea is that for every produced cordon on average to be sent 

through SATURN should be a better prediction of how the cordon should look 

than what a GA produces by itself during reproduction. A correctly designed 

algorithm will require a greatly decreased number of calls, compared to a GA, to 

SATURN, or any other traffic modelling software, and a lot of time can be saved. 

This is assuming that the extra work done by the algorithm takes in total less time 

then the time saved from the decreased number of calls to SATURN. The goal is 

to construct the algorithm is such a way that only approximately 150 SATURN 

calculations need to be performed. Below presents a ‘crazy’ idea of how 

something like this could possibly be setup. It also serves as a template for how 
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other heuristic algorithms can be set up and tested. More research is advised 

and needed in this area for it to be able to mature.      

 

6.1. Initialization    

 

Start off by producing around 15 random cordons using the process described in 

section 5.1.1. assigning a few different charges to the different cordons.  Run all 

the initial cordons through SATURN to be evaluated. The purpose of the first runs 

is to gather information that can be used to make the first prediction of how the 

cordon should look.   

 

For simplicity’s sake an example will be used from here on out to help describe 

the methodology of this idea.  

 

Take the following small network with 9 nodes and 13 links.   

  

Figure 1: Example Road Network 

 
Assume that the five following cordons represent the total initial set of randomly 

produced cordons. (In the example only five cordons are used in the initial set 

1 

2 

3 

6 

5 

4 

7 

8 

9 
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because of the extremely small size of the network) 

1. Node 1 is in the cordon and a charge of 2 pounds is set on links 5-1, 2-1, 

4-1 and 3-1 (where 5-1 represents the link going from node 5 to node 1). 

2. Nodes 1, 4 and 5 are in the cordon and a charge of 1 pound is set on links 

8-4, 7-4, 8-5, 2-5, 2-1 and 3-1.  

3. Nodes 1, 2 and 5 are in the cordon and a charge of 3 pounds is set on 

links 8-5, 4-1, 3-1 and 6-2. 

4. Nodes 1, 2, 4, 5 and 8 are in the cordon and a charge of 1 pound is set on 

links 6-8, 6-2, 7-4 and 3-1. 

5. Nodes 1, 2, 3 and 5 are in the cordon and a charge of 2 pounds is set on 

links 8-5, 4-1, 6-2, 7-3 and 8-3.  

 

Assume that the following matrix represents the traffic behaviour, in a specific 

unit (traffic flow, travel time per vehicle, ect.), on each link for the network in 

figure 1 before any cordon has been placed. The rows represent the origin nodes 

and columns represent the destination nodes. 

 

 1 2 3 4 5 6 7 8 9 

1 - 20 6 8 15 - - - - 

2 30 - - - 25 5 - - - 

3 15 - - - - - 5 - 2 

4 20 - - - - - 3 4 - 

5 18 15 - - - - - 5 - 

6 - 25 - - - - - 8 7 

7 - - 15 4 - - - - - 

8 - - - 5 20 3 - - - 

9 - - 20 - - 10 - - - 

 
Table 1: Traffic behaviour for each link before implementation of a cordon  

 

Now assume that the following matrix represent the traffic behaviour calculated 
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by SATURN, or any other traffic modelling software, with cordon 1 in place. The 

bold numbers represent the charged links and the red and blue numbers show 

where there have been increases and decreases in the link usage respectively. 

 

 1 2 3 4 5 6 7 8 9 

1 - 20 6 8 15 - - - - 

2 25 - - - 25 5 - - - 

3 14 - - - - - 5 - 2 

4 10 - - - - - 6 9 - 

5 16 15 - - - - - 5 - 

6 - 28 - - - - - 8 7 

7 - - 18 4 - - - - - 

8 - - - 5 23 5 - - - 

9 - - 20 - - 10 - - - 

 
Table 2: Traffic behaviour for each link with cordon 1 in place 

 

As can be seen, only the tolled links, in this example, have had a decrease in 

traffic behaviour and an increase on some of the other links has occurred. 

 

6.2. Information Gathering 

  

When all the initial cordons have been sent through SATURN some information, 

other then the net social welfare function result, must be gathered so it can later 

be used.  

 

6.2.1. A Vectors 

Define the column vector A1(x)k that represents the difference in the traffic 

behaviour on each link k in the network between having cordon 1 in place and 

having no cordon in place. In this example A1(x)k will be written as A1(1)k. The A 

in A1(1)k represents that it is an A vector which is a family of vectors that stand 
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for the difference in traffic behaviour between a certain cordon and no cordon. 

The 1, A1(1)k, represents when the cordon was analyzed in relation to the rest of 

the A vectors (1 means it was the first cordon to be analyzed, 23 means it was 

the 23rd cordon to be analyzed). The numbers in the parentheses, A1(1)k, 

represents what nodes are inside the cordon.  

Example) 

Link 1-2: 20-20=0 gives: A1(1)1 = 0  

Link 1-3: 6-6=0 gives:  A1(1)2 = 0  

Link 1-4: 8-8=0 gives:  A1(1)3 = 0 

Link 1-5: 15-15=0 gives: A1(1)4 = 0 

Link 2-1: 25-30=-5 gives: A1(1)5 = -5 

…  …   … 

Link 9-6: 10-10=0 gives:  A1(1)26 = 0,  
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Produce the A vectors A2(1,4,5)k, A3(1,2,5)k, A4(1,2,4,5,8)k, and A5(1,2,3,5)k that 

represent the other initial cordons and calculate their values.  

 

The purpose of the A vectors is to use them as a start in trying to find some sort 

of cause and effect in the traffic behaviour when different nodes are placed inside 

or outside the cordon.   

 

6.2.2. B Matrix 

The next step is to produce a B matrix Bk,i for all links k in the network and for all 

nodes i that have been inside a cordon. Bk,i must be extendable to allow 
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additional columns to be added that represent other nodes that might get placed 

inside the cordon. Use the A vectors to calculate the values for in Bk,i. For all 

numbers that are ether all greater then zero or are all less then zero, that 

represent the same link and node in each of the A vectors, calculate the average 

and enter that number in the appropriate section in the Bk,i matrix. If not all 

numbers are of the same sign or some are zero then the corresponding number 

in the Bk,i matrix must be zero. The exception is if 95% or more of the numbers 

are of similar type (all greater then zero or all less then zero) then an average 

should also be calculated using all the values representing that link and node. 

 

Example)  

Assume that the following data is collected from the five cordons above and that 

each of the rows with actual values represents the same rows in each vector (for 

descriptions sake assume these rows represent links X, Y and Z). 
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When filling in Bk,i it is important not to get the columns mixed up. Bk,i has 6 

columns representing nodes 1, 2, 3, 4, 5 and 8 since these are the only nodes 

that have so far been inside an analyzed cordon.  
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Note that the above formulas are only correct for each link k if the values in at 

least 95% of the A vectors are all greater then zero or are all less then zero. If 

this is not the case then the value entered in the B matrix must be zero for that 

link and node. Using the values in the example above the B matrix becomes: 
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The idea behind the B matrix is to show how any one node that has been inside a 

cordon will affect the traffic behaviour on some link or links in a certain way until 

proven otherwise.  

In the example it can be seen that by placing any of the nodes 1, 2, 3, 4, 5 or 8 in 

the cordon a decrease in the traffic behaviour will occur on link X. This is not 

however true on links Y and Z. Placing node 3 in the cordon will lead to an 

increase of traffic behaviour on link Y by 4 units. This is obviously not an accurate 

representation of what happens but the thought is that it will give a starting point 

in helping to predict what the next cordon should look like and it will also become 
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increasingly more accurate for each iteration to come.   

 

6.3. New Cordon Prediction 

 

When the B matrix has been calculated it is time to predict the next cordon 

design with its help. Assume that C represents the subset of nodes which have 

been in at least one analyzed cordon. Then define Xi to be a binary integer that 

equals one if node i is inside the cordon and zero otherwise. Now setup the 

following: 
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This could be solved by linear programming if it were not for the risk of losing the 

closed cordon design. Therefore it is easier to solve this approximately by using a 

genetic algorithm like the one described in chapter 3 and 5. The main difference 

from the GA in chapter 3 and 5 is that the above goal function would be used to 

calculate the fitness function instead of SATURN. It can also be desirable to 

allow one or two of the nodes not in C to be able to be placed inside the cordon if 

it is necessary to keep the closed cordon design. This can also lead to further 

benefits in that more nodes will have values representing them in the B matrix.  

 

When the new cordon is found by the GA it needs to be checked to make sure 

that an exact same cordon has not already been produced and analyzed, if so 

then the next best cordon suggested by the GA should be checked for 

uniqueness and then the next until a unique cordon is found. When a unique 

cordon is found it should be sent through SATRUN to be analyzed. The results 

should be gathered and used to calculate a new A vector that must be produced, 

in this case A6(x)k.  
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6.4. Avoid Local Traps 

 

Getting stuck in a local optimum is very likely if not more different nodes can be 

brought into a cordon than those from the initial population. The one or two nodes 

that may be brought into the cordon, as described in section 6.3., that have not 

earlier been inside is not a sufficient enough method. To keep from getting stuck 

in a local optimum it is important to produce a completely new and random 

cordon every time one cordon has been produced with the help of the B matrix. 

This can be done by using the method described in chapter 3.2. The new random 

cordon also needs to be checked for uniqueness and should then be sent 

through SATURN if unique. If it is not unique a new random cordon should be 

made. The results should be used to calculate the values for a new 

corresponding A vector. Here it would be A7(x)k. 

 

6.5. Updating and New Predictions 

 

The two new A vectors produced from 6.3. and 6.4. must now be taken into 

consideration for the next cordon prediction and so the B matrix must be 

updated. Recalculate all the values in the B matrix, as described in section 6.2. 

but using all of the 7 A vectors. Also add columns to the B matrix where needed 

to make sure all the nodes that have been inside a cordon are represented. 

 

Example: 

Say that the best result from the GA suggests the following unique cordon to be 

analyzed by SATURN is: 

Nodes 2 and 5 are inside the cordon with a 2 pound charge set on links 8-

5, 1-5, 1-2 and 6-2. 

Also say that the random cordon made is: 

Nodes 6 and 8 are inside the cordon with a 3 pound charge set on links 4-

8, 5-8, 2-6 and 9-6. 

Assume that the two new A vectors get the following data on links X, Y and Z as 



 32

used above. 
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Now recalculate the B matrix with the new data, find a new cordon with the GA as 

discussed in section 6.3 and make a new random cordon. Keep repeating these 

steps for approximately 60-80 times. By the end of all the iterations hopefully a 

descent cordon design has been found.  

 

6.6. Needed Improvements 

 

This process is far from complete and does not talk about how to update the 

charges. This would need to be added into the B matrix some how so it can be 

considered when predicting the new cordon design. The B matrix itself needs to 

be revised to better represent different nodes and also a faster method of 

updating the B matrix itself would be beneficial.   

 

To get a better representation of how each node affects different links it might be 

a good idea to look at specific combinations of nodes. Very specific rules must be 

setup for this since all combinations of nodes cannot be looked at in polynomial 

time. Perhaps certain nodes can be aggregated, or some play off each other 

more than others and how can they be found? There is still much that can be 

done and tested with this method to see if proper predictions can be made with 

only one or two hundred calls to SATURN being made.  
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6.7. Testing Procedure  

 

To test and implement this idea some basic steps can be followed. These steps 

can also serve as template for developing and testing other heuristic algorithms.  

 

Before the steps are started make sure to define the main goal with the test and 

also some sub goals. The sub goals should be steps to be reached on the way to 

completing the main goal. For example if the main goal was to run a marathon 

some sub goals could be to run a 10 km race and a half marathon race prior the 

marathon and to run at least 15 miles a week. Some sub goals should be 

reached in sequence and some will run throughout the testing and 

implementation. In the example above the 10 km race will be run before the half 

marathon but the 15 miles minimum a week goal will be throughout. It is a good 

idea to write these sub goals differently to help keep the testing and 

implementation clear and on track. For example: 

Sub goal 1: 

Run 10 km race. 

Sub goal 2: 

Run half marathon race. 

Sub goal A: 

Run a minimum of 15 miles a week.  

 

Writing them up this way helps keep it clear that sub goal 1 should be completed 

before pursuing sub goal 2 and that sub goal A (also sub goal B, C, … if there 

were any) should be under consideration at all times.  

The main goal is usually quite obvious but can be worthwhile to define anyway. 

The sub goals are sometimes not as clear and are therefore more important to 

state and keep clear at hand.  

 

Main Goal: 

Construct a heuristic algorithm that can solve the closed charging cordon design 
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problem by requiring no more then N SATURN calls where N << M and M is the 

number of SATURN calls required by the GA. It is also important to make sure 

that the computation time spent outside of SATURN is insignificant in comparison 

to that of SATURN. 

Sub goal 1: 

Construct a heuristic algorithm that can solve the main goal but with a set charge 

and for a very small specific network.  

Sub goal 2: 

Test and modify the algorithm so it works the same as in sub goal 1 but with any 

random and slightly bigger (but still small) networks. 

Sub goal 3: 

Modify the algorithm so it can solve the main goal (without a set charge) for the 

same network used in sub goal 1. 

Sub goal 4: 

Test and modify the algorithm so it works the same as in sub goal 3 but using the 

same network types as in sub goal 2.  

Sub goal A: 

Get an idea of how much the quality of the solution is affected by varying N.   

Sub goal 5: 

Test and modify the algorithm so it works for big network and figure out, if it is 

possible, how big N needs to be in comparison to the size of the network.   

 

When the main goal and sub goals are defined the following steps can be taken 

in testing and trying to construct the heuristic algorithm.  

 

Step 1: Small network, GA with set charge 

Construct a very small connected road network (approximately 15-25 nodes). 

Find a subset of global optimization results for a few different pre set charges. 

Get these by running the GA (described in chapter three with some of the 

modifications suggested in chapter five) together with SATURN and setting M 

(the number of SATURN calls used by the GA) to a few thousand. This 
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computation should not take very long because of the small size of the network.    

 

Step 2: Small network, new algorithm with set charge. 

Construct an algorithm as described in 6.1.-6.5. but use only a pre set charge. 

Run several tests using the different set charges that where used in step 1 and 

check what happens to the result when varying N (the number of SATURN calls 

made by the algorithm) for each charge. If the algorithm finds as good or better 

results then the GA in step 1 using N <= 200 go to step 3 (sub goal 1 completed). 

If the results are good but only with N > 200 go to step 9. If the results are worse 

then what the GA is producing then go to step 8.   

 

Step 3:  

The algorithm is so far finding good results using a fixed charge for a small 

network. 

Step 3.1: Vary N 

If not already done, see how low N can be and still get good results and also see 

how much better the results are, if any, with a much higher N. This can later be of 

good use to compare with other networks of similar size and with other networks 

of much greater size.  

Step 3.2: Midsize network, GA with set charge 

Randomly construct two or three slightly bigger connected road network 

(approximately 75-100 nodes). As in step 1 find a subset of global optimization 

results for a few different pre set charges for each network. Get these by running 

the GA together with SATURN and setting M = 5000-10000.  

 

Step 4: Midsize network, new algorithm with set charge 

Now test the new algorithm on each of the new networks. As in step 2 run 

several tests using the different set charges that where used in step 3 and check 

what happens to the result when varying N for each charge. If the algorithm finds 

as good or better results then the GA using N <= 200 go to step 5 (sub goal 2 

completed). If the results are good but only with N > 200 go to step 9. If the 
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results are worse then what the GA is producing then go to step 8. If the results 

are as good or better the then the results from the GA using N <= 200 but there is 

a big improvement when N > 300 or so, then read ‘note 2’ at the end of this 

chapter before continuing.    

 

Step 5: Small network, new algorithm with variable charge 

Modify and test the new algorithm, using the small network constructed in step 1, 

so it can find a cordon with an accompanying charge without having a pre set 

charge given. This result should be as good or better then the best result found 

using different pre set charges by the GA in step 1. Again test this with different 

values of N. If the algorithm finds as good or better results with N <= 200 go to 

step 6 (sub goal 3 completed). If the results are good but only with N > 200 go to 

step 9. If the results are unsatisfactory go to step 8. 

 

Step 6: Midsize network, new algorithm with variable charge 

Test the modified algorithm on each of the slightly bigger networks constructed in 

step 3.2 without using a pre set charge and different values for N. Compare the 

results with the best results found in step 3.2. If the results are satisfactory for N 

<= 200 go to step 7 (sub goal 4 completed). If the results are good but only with 

N > 200 go to step 9. If they are worse go to step 8. Also if the results are good 

for N <= 200 but there is a big improvement when N > 300 or so, then read ‘note 

2’ below before continuing.       

 

Step 7: Test on smaller real road network with variable charge 

The new algorithm is doing quite well and it is time to test it on a real road 

network. Find a near optimal closed charging cordon for, for example, the 

Shrewsbury network using the GA and setting M >= 8000 to make sure that a 

good result is found. Run the new algorithm with the same network using 

different values of N. Compare the results. If the results are highly unsatisfactory 

and major modifications and changes need to made, redo the entire testing 

process again from the start. If the results are good go to either step 9 or step 10 
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as appropriate.   

 

Step 8: Non desirable results 

The new algorithm is not producing an as good cordon as the GA. The algorithm 

needs to be modified since it is not producing any desirable results. Start off by 

looking into the couple of ideas given in the second half of section 6.6. and/or try 

to come up with other alternative modifications and/or additions to the algorithm. 

For each new idea found, make that change and start the testing process over at 

the appropriate stage. Add only one new change for each testing process unless 

that turns out to be unpractical.  

 

Step 9: N is too high 

The algorithm is producing good results but making to many SATURN calls. Try 

to figure out how to modify the algorithm so it “evolves” quicker. For each 

modification restart the testing procedure at the appropriate stage to see how 

much faster, if any, it has gotten.    

 

Step 10: Test on large real road network with variable charge    

The algorithm has so far passed all the tests and seems to working. The last and 

final test is to try it on a large network. At this time it would be good if there is an 

idea of how big N needs to be to give satisfactory result (sub goal A should now 

be completed but note that it has been under consideration throughout). Run the 

algorithm on a large real road network with the smallest N value that seems 

feasible to give good results. Make also a second run with a 20-50% increase of 

the N value. Compare the results with each other and also with the results found 

by using a judgmental approach. If the results are unsatisfactory try to figure out 

why the algorithm works for small networks but not for large ones. Does N need 

to be increased more? Is there some function in the algorithm that can’t handle 

large amounts of data? Make the necessary changes and start the testing 

process over from the beginning if need be. If the results are good, what can be 

said about varying N (sub goal 5, note that part of this sub goal goes hand in 
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hand with sub goal A)? Are there any modifications that can be taken to speed up 

the process even more or get even better result? Also check to make sure that 

the main goal is now fulfilled.   

 

Note 1: 

If the algorithm is finding a good solution and using few SATURN calls but still 

takes to long then modifications need to be made to speed up the calculations 

within the algorithm itself. For each modification restart the testing process to 

make sure the modifications are going in the right direction. 

 

Note 2: 

If good results, compared to the GA, are being found for N <= 200 but the results 

are much better for higher N values a couple of things should be looked at. Make 

sure that the GA is set up correctly and giving satisfactory and hopefully better 

results then results from a judgmental approach. If the GA is not giving good 

results then the whole testing process may be compromised. If the GA seems to 

be giving satisfactory result then it has now been shown that the new algorithm 

has the potential of finding very good results. See if it is possible to modify the 

algorithm so it “evolves” even faster so large network can benefit from the 

excellent results being produced when setting N > 200. 

 

The testing process can be quite time consuming but is very important. It is 

important that the testing and modification process of any algorithm is done 

thoroughly to make sure that the algorithm is doing what it is thought to be doing. 

A poorly tested algorithm can lead to a lot of time wasted and can become 

extremely expensive if it is believed to be producing something it is not.       
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7. Reducing Data: SATURN Options 

 

The vast amount of data and the precise as possible types of calculations being 

made for larger networks are what are causing much of the computational time in 

SATURN. The purpose with this and the next chapter is to look at some different 

ideas on how to reduce and relax the amount of data needed to find a near 

optimal closed charging cordon for larger networks.    

 

Although the final result may differ slightly between using a “relaxed” data set up 

compared to the original set up does not mean that the results are incorrect. This 

is because, and is important to remember, that there are a lot of factors in the 

original set up that are not taken into consideration. Factors such as traffic 

accidents, weather changes, increased or decreased oil prices, the slow change 

towards free telecommunication, closure of a big factory resulting in major origin-

destination changes, ect. which all individually affect traffic behaviour not 

accounted for. It may in fact be that crude, or relaxed, optimization modelling is 

more beneficial when looking at traffic charging schemes and cordon design.    

 

SATURN is the traffic modeling software used by the DfT to calculate the net 

social welfare function for any given network together with its accompanying 

charging cording. SATURN is set up to calculate as accurate a net social welfare 

function as possible. With larger networks this calculation takes a very long time. 

There is however some different options within SATURN that the user may turn 

on, off or change in order to increase the calculation speed of SATURN but to a 

cost of a less accurate result. One can however argue the accuracy of any 

calculation performed by any traffic modeling software, but this is a different 

question and will not be discussed here. For now assume that what SATURN is 

calculating with its current setup is accurate. This chapter serves as a guideline 

for how a few different setups of SATURN could be used to help increase the 

calculation speed.  
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7.1. Different choices 

 

There are several different choices that a user can choose, change and/or modify 

in SATURN to get satisfactory results. Only some of all the available options will 

be discussed here. For a full description of all the possibilities and also how to 

implement them see SATURN 10.5 USER MANUAL by Dirck Van Vliet and Mike 

Hall (2004). The choices looked at here will be of interest concerning 

computational time. 

 

There are two main setup options available in SATURN which are of interest for 

the closed charging cordon design problem. The first one is a pure assignment 

setup and the other is a combination of an assignment and simulation setup. The 

purpose with the simulation part is that it takes into consideration the time delays 

that occur for travelers at junctions which might in turn lead to different root 

choices.     

 

Within the Assignment methods there are four main categories: 

1. All-or-nothing assignment 

2. Pure stochastic assignment with fixed costs 

3. Wardrop’s equilibrium assignment (UE) 

4. Stochastic user equilibrium assignment (Burrell multiple route assignment) 

(SUE) 

The first two options should, as a rule of thumb, only be used with networks that 

have very low trip volumes. Studies have shown that the difference between UE 

and SUE tend to be very small with high trip volumes but that SUE gives better 

results for intermediate trip volumes spread across the network (Van Vliet and 

Hall, 2004). There are also other assignment options within SATURN but these 

will not be looked at here as these options tend mostly to increase the 

computational time.  

 

The simulation part can be as big or small as one wishes. It is optional within 
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SATURN to have the entire network or only part of the network subject to 

simulation during the assignment-simulation setup. Note, although not discussed 

further there are some different parameters that can be manipulated within the 

simulation part itself, for example: flows, signal settings, number of junctions 

simulated, number of maximum iterations allowed, ect. that might be of interest.   

 

Within the assignment method itself there are many variables that can be 

manipulated, turned on or turned off. For example there is the number of different 

user classes, meaning the number of different subsets of travelers that perceive 

the cost of time differently. The maximum number of iterations made by an 

algorithm can be changed and so on. This will be discussed further in the 

sections to come.   

 

SATURN also has some inbuilt functions that can be turned on or off that are 

specially made to help decrease the computation time on bigger networks. One 

such function is of special interest for the closed charging cordon design problem 

and is called the UPDATE function.  

 

7.2. Current Setup 

 

SATURN is currently being used with the assignment and simulation combination 

turned on for the entire network. The assignment method used is the default 

setting which is to find Wardrop’s equilibrium using the Frank-Wolfe algorithm. 

There are four different User Classes being used and all other options are set on 

default. See SATURN 10.5 USER MANUAL by Dirck Van Vliet and Mike Hall 

(2004) for what all the default settings are.      

 

The following changes in SATURN will be suggested in various ways. 

1. Turn on the Update function. 

2. Use the All-or Nothing assignment. 

3. Try different number of User Classes. 
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4. Make changes in the Frank-Wolfe assignment method. 

5. Use different simulation spaces.  

 

7.3. Changes 

 

Changes made in the setup of SATURN should be done following a set 

procedure with test runs and performed under a controlled environment. There 

are two main ways to approach the testing of how different changes in SATURN 

affect the computational time and accuracy of the results. Each change made 

should be tested by running the GA (for a set amount of iterations of a few 

thousand) with the new SATURN setup and compared to the result from using 

the same GA (with the same number of iteration) with the ‘original’ SATURN 

setup. One approach to the testing is to start by “stripping off” one function or 

change at a time leading to “one step” of decreased run time and checking that 

the results remain satisfactory. This test should be stopped first when the results 

become unsatisfactory and the time decreased for a run should be noted. If the 

decrease in amount of time is not satisfactory then a trade off of time decrease 

and resulting accuracy needs to be made. The second approach is the reverse, 

start by “stripping off” as many extra functions and changes as possible to get the 

shortest computational time as possible. Then add one function or change at a 

time leading to longer run times and more accurate results. When the results are 

satisfactorily note the time decreased and check if this is satisfactory. As in the 

first approach, if the time saved is not satisfactory then a weighing of time vs 

accuracy needs to be made.  

 

Here the second of the two above approach will be taken. However before all this 

is begun a test should be made by activating the ‘Update’ function to see what 

time can be saved by adding this (see subsection 7.3.1). If the time saved is not 

significant enough then the Update function should be kept on since it should not 

interfere with the final results and the second approach of testing can begin.     
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7.3.1. Update Function 

Use the update function in SATURN (see section 15.3 in SATURN 10.5 User 

Manual) to decrease the number of iterations for each cordon analysis after the 

first cordon has been analysed. Since only slight changes to the network are 

being made for each cordon to be tried it may be very beneficial to start each 

new cordon analysis by using the end results from the last run as the initial 

starting values. This can help to greatly decrease the number of iterations 

needed in finding the net social welfare function compared to starting each 

analysis from scratch. The update function in SATURN does this automatically if 

used.  

 

A more advanced version of this function is to use the perturbation techniques 

that can be used with the path-based algorithm. See chapter 21 in SATURN 10.5 

User Manual for more information about this method.  

 

7.3.2. Simple Setup 

Start the testing phase with the most simple and fastest assignment method 

available in SATURN. Turn off the simulation setup, use only one User Class and 

analyze each cordon with the All-or-Nothing assignment method. This method 

should be fairly quick but will most likely not lead to a great result. However it is 

still interesting to see what the GA can come up with using SATURN with this 

assignment method and how fast the results are found.  

 

7.3.3. Max Iteration and Stopping Distance 

The next step to try is to reinitialize the Frank-Wolfe algorithm. This algorithm is 

based on the All-or-Nothing assignment but keeps modifying it with each 

iteration. There are four stopping parameters for the Frank-Wolfe algorithm that 

can be set in SATURN where two are of particular interest. One is called NITA 

and is the maximum number of allowed iterations for the algorithm and other is 

called UNCRTS. UNCRTS is set to stop the algorithm when a set “distance” 

between the current and ultimate solution is found. The default values for NITA 
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and UNCRTS are 20 and 0.2% respectively. Start by setting the NITA = 3 and 

UNCRTS = 10%. This should still lead to fairly quick results. Then start testing a 

few different runs by decreasing UNCRTS. The lower UNCRTS gets the better 

the final solution should become. For the first few cordons the results will most 

likely be fairly poorly calculated but they should become better and better since 

the Update function is turned on. Then try a few runs by increasing NITA and 

also with a few different combinations of different appropriate values of NITA and 

UNCRTS. Note the time it takes for each run to complete and also the 

differences between the end results compared to each other and the original 

solution.  

 

7.3.4. User Classes and Simulation 

If the results are still poor then retry 7.3.2. and 7.3.3. with more User Classes. If 

this does not work go back to one User Class and retry 7.3.3. using the 

assignment-simulation combination. It can be worth setting the simulation so only 

critical junctions are simulated, that is, junctions that have, or possibly will get, 

high traffic flows. Then up the number of User Classes and the size of the 

simulation space until a satisfactory result is found.   

 

7.4. Summary 

 
Although only roughly explained, the testing process should be done carefully so 

appropriate steps are taken and good combinations of changes are not missed. 

The SUE assignment has not been a suggested change since this in general 

takes a lot more computational time. The steps above which should be followed 

until a satisfactory balance between time and accuracy has been found are 

summarized. 

1. Turn the Update function on. 

2. Use the All-or Nothing assignment with one User Class. 

3. Use the Frank-Wolfe assignment setup with a decreased maximum number of 

allowed iterations and an increased stopping distance parameter. 
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4. Redo step 2 and 3 with more User Classes.  

5. Redo step 3 with part of the network being simulated and with one User 

Class. 

6. Same as step 5 but with more User Classes. 

7. Redo step 5 and 6 but with an Increased simulation space. 

 

Hopefully before the end of step 7 a satisfactory result has been found and some 

time has been decreased from the total calculation time. SATURN also has a 

function called Partan Assignment which is a variation on the Frank-Wolfe 

method. It is designed to decrease the computational time but still seems to be 

under development. There are several other options in SATURN that are 

unexplored and also ways in which SATURN could be further used. For example 

SATURN could most likely be used to analyse the marginal social cost per link 

with respect on cordon fees which could lead to some development of a 

modification of an algorithm. There is much that can be done by manipulating 

and using SATRUN to speed up the computational time and it could be worth 

spending some time experimenting with it.   

 

 

8. Research Questions 

 

8.1. Reducing Data: Network Aggregation 

 

This is effectively an extension on chapter 7 in that it talks about ways of 

reducing the amount of data needed.  

 

A promising approach to solving the closed cordon design problem for larger 

networks within reasonable computational time could be by applying network 

aggregation. “Broadly speaking, aggregation involves studying constituent micro 

processes of macro systems in order to represent the latter by a fraction of the 
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complete information from the former with the greatest accuracy possible” 

(Uludag, Nahrstedt, Lui and Brewster, 2005). It is a topic that would require 

further research but seems likely lead to very favorable results. The idea would 

be to construct an algorithm that could automatically shrink a large network 

without losing vital data. Then we could solve the cordon design problem using a 

GA and SATURN on an aggregated network. Then we could use this solution to 

narrow the search area for the GA to get faster run times for the network when it 

is less aggregated. The idea would be to keep disaggregating the network in 

steps till the optimal cordon is found for the original non aggregated network.  

 

8.1.1. Existing Literature 

 

A lot of research has been conducted on network aggregation with heavy focus 

on two main areas. One area that is currently of special interest is within 

topological aggregation. Topological aggregation for quality of service routing is 

currently of great interest because of the strong growth in communication 

networks. Routing consists of gathering state information about each node and 

finding a new optimal path for a new connection. The state of a node is ideally 

broadcast to every other node in the network but becomes unrealistic with a 

strong growth of a network. Topological aggregation therefore plays an important 

roll in routing for communication networks to help with routing optimization 

algorithms. Another reason for topological aggregation of communication 

networks are for security reasons since it may not always be desirable to present 

the exact structure of a network itself.  

 

Topological aggregation is usually done in a hierarchal fashion where a set of 

nodes and links get represented by a fewer number of nodes and links. The 

major challenge is to find the right balance between compaction and routing 

performance. Some basic aggregation techniques have been proposed for this 

which are the full-mesh, the star, the spanning tree and the Lee method but each 

have different short comings, see Yoo, Ahn and Kim (2006). Yoo, Ahn and Kim 
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(2006) propose a modified algorithm that maps nodes onto a Bruijn Graph which 

speeds up the computational time compared to the full-mesh approach. There 

are many different methods proposed to compensate the shortcomings of the full-

mesh, the star and the spanning tree approach. See Uludag, Nahrstedt, Lui and 

Brewster (2005) for a good summary on different resent topological aggregation 

methods. Also Ansari (2003) conducts a clear explanation and looks at a few 

different existing methods. Kowalik and Collier (2004) use a game-theoretic 

framework to look at how three different aggregation techniques coexist in a 

single network. Also of interest is the paper by Sarangan, Ghosh and Acharya 

(2002) which propose a topological aggregation technique for state aggregation 

based on link flows for stochastic networks.   

 

The other main area of research is within roadmap generalization. In roadmap 

generalization the main theme is to figure out which roads can be taken out in the 

aggregation without losing important points of interest and keep users from taking 

big detours when going from one point to the next. Important is also to keep the 

aggregated roadmap connected. Other themes consider the actual presentation 

of the roadmap itself by using different colors and going from double lines to 

single lines and so forth. Kreveld and Peschier (1998) suggest a three point 

method for roadmap generalization. They categorize each node and road by 

importance and delete unimportant roads weighed against conflicts. A conflict is 

when two roads lie to close together. They then delete more important roads to 

resolve the conflicts and finish off by adding less important roads to minimize 

possible detours that may have occurred. Peschier (1997) suggests a different 

method but with a similar ‘flavor’. One difference is that his third step involves 

adding roads to increase the general quality of the aggregated map for example 

keeping connectedness since his algorithm does not guarantee this in the first 

two steps.        
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8.1.2. Aggregation for the Closed Charging Cordon Design 

 

An aggregation method for the closed charging cordon design problem would 

most likely need to be a combination of topological aggregation and roadmap 

generalization based on link flows. It is not however exactly clear how the 

existing literature could be used to help solve this problem. An idea would be to 

somehow keep all major and important roads disaggregated while performing a 

hierarchal aggregation method on smaller, less important roads. This aggregation 

would need to take into consideration the sum of flows going into and out of the 

aggregated areas.   

 

Some main challenges would be to keep the user equilibrium accurately updated 

with the implementation of different cordon designs. To make sure that an 

optimally tolled link is not missed because it gets aggregated. To correctly 

represent the aggregated parts and to figure out how this should all be done 

automatically.    

 

There are several possible ways to tackling this problem and a lot of information 

is available that handle similar situations. As mentioned it is not exactly clear 

though how this information might be utilized. If a specific algorithm can be 

constructed to handle the aggregation needed for the closed charging cordon 

design problem then considerable computational time could be saved. 

 

8.2. West Midlands 

 

In some geographical locations cities are located quite close to each other. They 

are located so near each other that any changes in the traffic behavior from one 

city will most certainly affect the traffic patterns in the other city or cities. One 

such area is the West Midlands containing three cities where traffic patterns 

interact.    
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There are several questions that need to be considered when trying to model 

traffic charging in places like these. For example how does a closed charging 

cordon around one city affect the traffic behaviour in the other cities? Is it even 

wise to set up closed charging cordons in any or all of the cities? How much 

traffic is drive through traffic and does not even start and end in any of the cities 

or their surrounding areas? How does this affect congestions within the cities 

themselves? What type of charging scheme is both good and realistic to 

implement? 

     

A problem concerning traffic congestion modeling with places such as these is 

that it is not strait forward how to describe or model the space of admissible 

traffic charging schemes, let alone optimize over them.    

 

 

9. Next Step Recommendations 

 

This paper has presented some ideas and steps to be taken on how to possibly 

solve the closed charging cordon design problem within the realm of the DfT’s 

interests. To get life into some of these ideas further work and steps are needed.   

 

It is important to get the current GA used by the DfT up and running satisfactorily 

as this is currently not the case. Some of the suggestions in chapter five may be 

of good use for this. Since these suggestions may not be to difficult to try and 

may slightly speed up the process they should be considered and tried. It is also 

highly recommended that the different changes in SATURN be tried because 

they are trivial to implement.  

 

Since it is still unclear how the closed charging cordon design problem can be 

solved and since the above recommendations are most likely not enough, further 

research is needed. A plan and budget must be set up for future research within 

this area to support DfT personnel, people in academia and/or consultants to 
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help further develop this field of knowledge.  

 

A strongly recommended starting point is to invest in research regarding the 

ideas presented in chapter eight where investigation of optimal cordon design on 

aggregated networks seems very promising. A second topic is to figure out how 

to model and optimize road charging schemes in areas like the West Midlands 

where a cordon may not be optimal.    

 

In parallel, a project that looks into ideas of designing a better search algorithm 

then the GA could be started, see chapter six. This together with an aggregation 

algorithm could lead to incredibly fast and reliable solutions.   

 

There is nothing to say that different and further approaches should not be 

looked into and tried. It might be that faster and more suitable assignment 

algorithms can be found compared to those used by SATURN and that this in 

itself could solve the problem. Perhaps a single algorithm that optimizes the 

cordon design while it performs assignment iterations could be constructed using 

a more crude or relaxed model that still generates satisfactory result.  

 

There is much still to be learnt and further research is of the essence. In my 

opinion however it would be advisable to start with the ideas presented in chapter 

eight and to immediately start planning and budgeting for the necessary 

resources needed to get this off the ground.      
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