
Open-source Scientific Visualization:

 VisIt and ParaView

Jean M. Favre

Visualization Task Leader

November 2013

© CSCS 2013

Agenda

• Visualization pipelines
–Parallel pipelines
–Rendering modes

• Data formats, parallel I/O and parallel
visualization

• Remote, client-server, parallel viz

• Demonstrations with ParaView

• Demonstrations with VisIt
2 © CSCS 2013

Visualization Pipelines: Introduction

• From a survey article by Ken Moreland, IEEE Transactions on Visualizations

and Computer Graphics, vol 19. no 3, March 2013

3 © CSCS 2013

Visualization Pipelines: Definitions

• Modules are functional units, with 0 or

more inputs ports and 0 or more output

ports.

• Connections are directional attachments

between input and output ports.

• Execution management is inherent in the

pipeline

–Event-driven

–Demand-driven

4 © CSCS 2013

Visualization Pipelines: Metadata

• 1st pass: Sources describe the region they can generate.

• 2nd pass: The application decides which region the sink

should process.

• 3rd pass: The actual data flow thru the pipeline 5

Visualization Pipelines: Data Parallelism

• Data parallelism partitions the input data into a set

number of pieces, and replicates the pipeline for each

piece.

• Some filters will have to exchange information (e.g.

streamlines)

• A special rendering phase will be needed.
6

VisIt/ParaView

VisIt and ParaView are based on VTK

The Visualization ToolKit (VTK) is an open source, freely

available software system for 3D computer graphics, image

processing, and visualization.

VisIt and ParaView are end-user applications based on VTK,

with support for:

• Parallel Data Archiving

• Parallel Reading

• Parallel Processing

• Parallel Rendering

• Single node, client-server, MPI cluster rendering

OpenGL

VTK Python

Qt

MPI

7 © CSCS 2013

The VTK visualization pipeline (1)

VTK’s main execution paradigm

is the data-flow, i.e. the concept

of a downstream flow of data

Data Sources

Data Filters

Data Mappers

Rendering

Filter.SetInputConnection(Source.GetOutputPort())‏

Mapper.SetInputConnection(Filter.GetOutputPort())‏
8 © CSCS 2013

Contour

Cut

Clip

Threshold

Extract grid

Warp vector

Stream lines

Integrate flow

Surface vectors

Glyph

Calculator

Pick cell

Probe

Group

Ungroup

AMR outline

AMR extract part

AMR surface

Wavelet

Measure

Fractal

Sphere

Superquadric

Examples of Filters/Sources

9 © CSCS 2013

The VTK visualization pipeline (2)

• VTK extends the data-flow
paradigm

• VTK acts as an event-flow
environment, where data flow
downstream and events (or
information) flow upstream

ParaView’s Rendering drives
the execution:
view.StillRender()

VisIt defines its own meta-data
package, called “Contracts”

Data Sources

Data Filters

Data Mappers

Rendering

10 © CSCS 2013

Example of a VisIt Contract

Spatial extents are examined and the visualization

pipeline is by-passed for those outside the range

11 © CSCS 2013

Example of a VisIt Contract

 1 2 N … …

Surface Extraction &
data filtering

Rendering

Selection of partitions
and assignments to
processors

Data extents (min & max) are
examined and the
visualization pipeline is by-
passed for those outside the
range

12 © CSCS 2013

The VTK visualization pipeline (3)

• Large data (when dividable)

can be treated by pieces.

The Source will distribute

data pieces to multiple

execution engines

• Parallel pipelines will be

instantiated to treat all

pieces and create the

graphics output. This is

hidden from the user.

Data Source

1 2 N … …

Data Filters

Data Mappers

Rendering

13 © CSCS 2013

First Rendering option

The client (GUI) collects
all objects to be
rendered

• Each pipeline creates
rendering primitives from
its partial data,

• The client does a heavy
rendering

1 2 N … …

Data Filters

Mappers

Data Source

Rendering

14 © CSCS 2013

Second Rendering option

Sort-last rendering

Each pipeline does a full-
frame rendering of its
partial data

Final Image

An image compositor merges all
images by comparing Z-depth of
all pixels

1 2 N … …

Data Filters

Mappers

Data Source

Rendering
15 © CSCS 2013

Sort-last rendering [pixel compositing]

Node 0 sends its
frame buffer to the
client

Node 0 collects
[composits] all
frames buffers

16 © CSCS 2013

• N rendering tasks

• Depth of the tree is log(N)

+ +

+

17

Sort-last rendering [pixel compositing]

© CSCS 2013

Arbitrary (or adaptive) 3-D data partitioning

Is the final image order-independent?

A sort-last compositing enables complete freedom in
data partitioning. Each pixel carries its color & depth

18 © CSCS 2013

Third Rendering option

Tiled-Display

Each renderer does a partial-
frame rendering of the full data

1 2 N … …

Data Filters

Mappers

Final
Image

Data Source

19

When there is too much data…

Adaptive resolution processing should be used

20 © CSCS 2013

When large data require distributed processing

• Sub-sampling can help prototype a visualization

–As long as the data format/reader supports
it. (see the Xdmf reader in ParaView)‏

• Piece-wise processing (on a single node)‏

–Data streaming (when the whole
visualization will not fit in memory)‏

• Distributed processing (on multiple nodes)‏

–Parallel file I/O
–Parallel processing
–Parallel rendering

21 © CSCS 2013

Sub-sampling, streaming or
multi-pass…

• The snow removal was done
in about 5 passes

Data Streaming = Divide and

conquer

• Load datasets of any size by
splitting the volumes in
pieces

• Process the split data

22 © CSCS 2013

Example: Digital Elevation Model

The VTK file header =>

vtk DataFile Version 3.0
European DEM File
BINARY
DATASET STRUCTURED_POINTS
DIMENSIONS 8319 7638 1
ORIGIN 0 0 0
SPACING 1 1 1
POINT_DATA 63540522

23 © CSCS 2013

Use sub-sampling when data are too big

Warning: 64 millions points

are first read in memory,

then sub-sampled

The memory footprint can

still be huge

Data Sources

ExtractSubset

PolyDataMapper

Rendering

WarpScalar

24 © CSCS 2013

Memory usage blows-up down the pipeline...

25 © CSCS 2013
 © CSCS 2013

Data Streaming in VTK

• Data larger than memory can be easily

treated

• Piece by piece

• Releasing or re-using memory after each subset

• Optionally accumulating sub-object

representations for the final image

• The upstream filters should be prepared to

handle piece requests of any size

• Each filter can translate the piece request

26

Reminder: VTK pipeline

Data Sources

Data Filters

Data Mappers

Rendering

 The VTK pipeline enables a two-
way exchange of data &
information.

 The renderer drives the request
for data updates.

 First pass: Get general bounds
information, without reading the
data

 Second pass: Decide how much
to sub-divide [The Extent
Translator], and process pieces

27 © CSCS 2013

The Extent Translator

The Extent

Translator does a

binary subdivision

of the data and let

the user access

pieces one at a

time

28 © CSCS 2013

Streaming the data

mapper = vtkPolyDataMapper()

mapper.SetNumberOfPieces(64)

mapper.SetPiece(0)

Data Sources

ExtractSubset

PolyDataMapper

Rendering

29 © CSCS 2013

The Vis pipeline is “under the hood”

Data Parallelism

• data are divided automatically

based on the number of servers

available

Transient Data

• time-dependent data requests

are also managed similarly via

the two-way pipeline data

exchange

Data Source

1 2 N … …

Data Filters

Data Mappers

Rendering

30 © CSCS 2013

Summary

• VisIt and ParaView hide all the pipeline

management

• Meta-data are paramount to let the pipeline

schedule the most efficient processing

The real questions are:

Can you provide data that can be distributed?

Is the distribution “piece invariant”?

31 © CSCS 2013

Data formats, parallel I/O and

visualization

32 © CSCS 2013

Prelude

Data formats

–Interface between simulations and visualization

–Many formats exist. Pick the most appropriate

–High level libraries (HDF5, netCDF, …)

–Make up your own

–Parallel I/O

33 © CSCS 2013

Data formats

Purpose of I/O

–Archive results to file(s)

–Provide check-point / restart files

–Analysis

–Visualization

–Debugging simulations

Requirements

–Fast, parallel, selective

–Independent off # of processors

–Self-documented

34 © CSCS 2013

Data formats

• Community specific

–CGNS, CCSM, NEK5000, H5Part

• Ad-hoc

–Make up your own. No!

–Many formats exist. Choose the most

appropriate

–High level libraries (HDF5, netCDF, …)

35 © CSCS 2013

Data formats and Parallelism

• MPI-IO

–Raw data parallelism

–The BOV format can be read by VisIt and

ParaView

• ADIOS

–Raw data but complexity is hidden

• HDF5, NetCDF

–content-discovery is possible, but semantic

is left-as-an-exercise.

• SILO

–Poor man’s parallelism (1 file per process +

metafile) but strong semantic
36 © CSCS 2013

MPI tasks, ghost-cells, hyperslabs

• Grids are sub-divided with ghost regions

• Ghost cells/nodes are usually not archived

• The User (You) is responsible for managing

the subdivisions and know what to archive

Example: a 12-processor run

© CSCS 2012 - 37

© CSCS 2013

MPI tasks, ghost-cells, hyperslabs

38

Example: a 4-processor run

© CSCS 2013

MPI tasks, ghost-cells, hyperslabs

39

The goal of (parallel) I/O:

Present a uniform grid storage/display

The Visualization software (ParaView or

VisIt) will do its own subdivision and re-

construct ghost-zones – when necessary
© CSCS 2013

MPI tasks, ghost-cells, hyperslabs

40

The Visualization

software should know

how to re-construct

ghost-zones – when

necessary

© CSCS 2013

MPI tasks, ghost-cells, hyperslabs

41

Def: a hyperslab, is a subset in n-D of a larger

grid. Parallel I/O is a composition

(superposition) of multiple hyperslabs.

Each processor

must know

where each

piece fits in the

global mesh

© CSCS 2013

Data formats. Parallelism

• Once you know the IJK extents of all your

hyperslabs, you can use

–MPI-IO, or

–HDF5, or

–NetCDF, or

–ADIOS

42 © CSCS 2013

SILO Data Format

• https://wci.llnl.gov/codes/silo

• A very versatile data format. The "Getting

Data Into VisIt" manual covers how to

create files of this type. In addition, there

are many code examples here

• http://portal.nersc.gov/svn/visit/trunk/src

/tools/DataManualExamples/CreatingComp

atible

43 © CSCS 2013

https://wci.llnl.gov/codes/silo
https://wci.llnl.gov/codes/silo
http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/CreatingCompatible
https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf
http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/CreatingCompatible
http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/CreatingCompatible
http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/CreatingCompatible
http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/CreatingCompatible
http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/CreatingCompatible
http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/CreatingCompatible

SILO Data Format

From the User Manual:

• Silo is a serial library. Nevertheless, it (as

well as the tools that use it like VisIt) has

several features that enable its effective use

in parallel with excellent scaling behavior.

44 © CSCS 2013

Pixie (HDF5) Data Format

© CSCS 2013

45

Modes:
radial, toroidal,
poloidal, kd-tree
sub-divisions

Data Parallelism by example: BOV format

Read a single block in a single file,
but split the block in pieces
Cube dimension = 640x640x640
Bricklets = 80x80x80
Divide_brick = true
Modes: stride = 8, random, block

46

Data Parallelism by example: BOV format

47

Alternatively, each process writes its own file independently,
A 64x64x64x4 block of floats

 Each file can also be gzipped

Data Parallelism by example: BOV format

VisIt can put the pieces together (serially, or in
parallel) with the following meta-file
“benchmark.0004.bov”

BOV version: 1.0
I/O benchmark program
DATA_FILE: benchmark.%05d.04.bof.gz
DATA SIZE: 192 128 64
DATA_BRICKLETS: 64 64 64
DATA FORMAT: FLOAT
VARIABLE: node_data
BRICK ORIGIN: 0.0 0.0 0.0
BRICK SIZE: 3.0 2.0 1.0

48

Volume rendering uses a hybrid approach

 “Object-space” partitioning “Image space” partitioning

VisIt employs a hybrid

approach that acts as a object
space partition, but identifies

regions of imbalance and
handles those regions using an

image space partition.

© CSCS 2013

Scientific Visualization

• Why visualization?

• How to:

–Remote Visualization

–Client server

–Parallel Visualization

–In-situ Visualization

50 © CSCS 2013

Visualization is many complementary things

Presentation Graphics Visual

Debugging Visual Debugging

Quantitative Analysis

Project Introduction

Data Exploration Comparative Analysis

?
=

51
©
CSCS
2013

© CSCS 2012 - 52

Scientific Visualization: Two modes

• Post-mortem

This does not mean you can start thinking about it

[The Visualization] after the simulations are done.

You should plan it before running your code…

• Live, a.k.a. in-situ visualization

Simulation and visualization codes run at the same

time, on a shared resource, or a distributed set of

machines. An advanced topic, … (see demo)

53 © CSCS 2013

Scientific Visualization

VisIt and ParaView support two modes of

execution:

1. Interactive imaging, analysis, query…

Requires a GUI, to test and try multiple visual

representations.

2. A batch-oriented movie-making process

Requires a script (python), to enable reproducible

visualizations, and the support of time series, or

multiple experiments
54 © CSCS 2013

Visualization: Client Server

ParaView and VisIt use the client-server

concept:

• A client (optional) runs the GUI

• A server, embedded and local (by default), or

remote and/or parallel, does the real work:

• I/O

• Data analysis

• Image generation

55 © CSCS 2013

Parallel Visualization

Parallelism is a
must for big data.

Parallelism is the
source of many
problems.

56 © CSCS 2013

Parallel Visualization

Should we bother?

Yes!

Interactive visualization is necessary to gain
insight from exploration.

Yes!

Parameter tuning should be fast.

57 © CSCS 2013

Client and Remote Servers: Direct connections

• A client app can request a direct connection to a

parallel visualization server (thru a firewall)

• ParaView and VisIt use ssh tunnels to establish

connections

Parallel server at CSCS Local (remote) Clients

Vis Server

D
at

a
D

at
a

D
at

a

Vis Server

Vis Server

58 © CSCS 2013

Supercomputer or graphics cluster?

© CSCS 2013 - 59

VisIt Launcher

#SBATCH --nodes=12

#SBATCH --ntasks=96

#SBATCH --gres=gpu:2

#SBATCH --exclusive

mpirun -np 96 engine_par

-sshtunneling

-hw-accel -display :0.%l

-host castor0

-port 15129 -key 709adcfbf26c5bb8fcc

00: Creating (HW-based) display

01: Creating (HW-based) display

02: Creating Mesa (SW-based) display

03: Creating Mesa (SW-based) display

04: Creating Mesa (SW-based) display

05: Creating Mesa (SW-based) display

06: Creating Mesa (SW-based) display

07: Creating Mesa (SW-based) display

08: Creating (HW-based) display

09: Creating (HW-based) display

10: Creating Mesa (SW-based) display

11: Creating Mesa (SW-based) display.

12: Creating Mesa (SW-based) display

13: Creating Mesa (SW-based) display

60 © CSCS 2013

ParaView Launcher

#SBATCH --nodes=12

#SBATCH --ntasks=96

#SBATCH --gres=gpu:2

#SBATCH --distribution=cyclic

#SBATCH --exclusive

mpiexec -binding rr -ppn 1 -n 48 -env DISPLAY

:0.0 pvserver -rc -ch=148.187.19.45 -sp=11111 :

-n 48 -env DISPLAY :0.1 pvserver -rc -

ch=148.187.19.45 -sp=11111

61 © CSCS 2013

From the Supercomputing’13 Showcase

© CSCS 2013 http://www.youtube.com/watch?v=fQ4pRrNPDSg

62

No interactivity for 150 millions cells

0

20

40

60

80

100

120

140

160

4x4 8x4 8x8 12x8

Render

Normals

Smoother

Extract
Surface

Distribute

Reader

HDF5 Reader

Distribute Data

Extract Surface

Generate Normals

Smoother

Still Render
63

Visualization without a client

ParaView and VisIt can run a server-only job

• Ideal for batch-processing

• A python script is necessary

• While creating a new visualization (with the

client), one can save the corresponding

python commands to construct the pipelines

• Python programs do not include any explicit

parallel programming! (that’s easy!)

64 © CSCS 2013

In-situ Visualization

• Clients runs locally and

display results computed on

the server

n
e
tw

o
rk

 c
o
n
n
e
c
ti
o
n

Vis
Server

Vis
Server

M
P

I

Data
Plugin

Data
Plugin

Data
Plugin

Parallel Cluster Local VisIt Clients Files

D
at

a
D

at
a

D
at

a Vis
Server

Vis Server

Filter

Filter

Filter

Data Flow
Network

 Server runs remotely in parallel,

handling data processing for client

 Data processed in data flow

networks

 Filters in data flow networks can

be implemented as plug-ins

65 © CSCS 2013

L
ib

s
im

R

u
n

ti
m

e

Coupling of Simulations and VisIt

Libsim is a VisIt library that simulations use

to enable couplings between simulations and

VisIt. Not a special package. It is part of

VisIt.

Simulation

Libsim

Front

End

Data
Access
Code

Libsim
Front
End

Data
Access
Code

Data

Source

Filter

Filter

66 © CSCS 2013

Data model for in-situ visualization

• Mesh Types

• Structured meshes

• Point meshes

• CSG meshes

• AMR meshes

• Unstructured & Polyhedral meshes

 Materials

 Species

 Variables

• 1 to N components

• Zonal and Nodal

67 © CSCS 2013
 © CSCS 2013

Summary

• Visit and ParaView support visualization with

a focus on large data typically output by

simulations in HPC.

• Remote, client-server, parallel, interactive

and batch oriented executions are used daily.

• A data format which supports distributed

access is essential.

68 © CSCS 2013

VisIt and ParaView tutorials on-line

We will now follow with several demonstrations of the

VisIt and ParaView applications

http://visitusers.org/index.php?title=VisIt_Tutorial

http://www.paraview.org/Wiki/images/5/5d/ParaVi

ewTutorial41.pdf

© CSCS 2013 69

http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://visitusers.org/index.php?title=VisIt_Tutorial
http://visitusers.org/index.php?title=VisIt_Tutorial
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf
http://www.paraview.org/Wiki/images/5/5d/ParaViewTutorial41.pdf

Thank you for your attention.

70 © CSCS 2013

