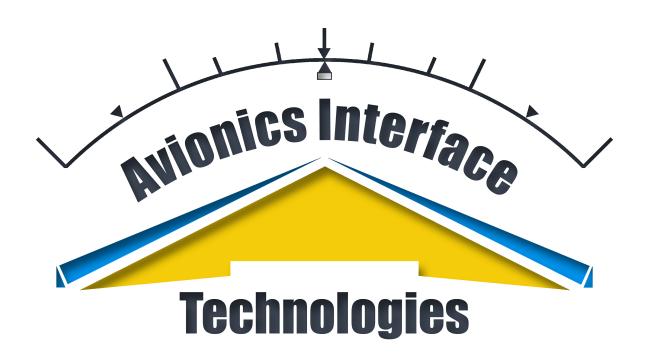


PXI-C1553 Hardware Manual

Single, Double, or Quad Stream MIL-STD-1553 Test and Simulation Module for cPCI/PXI

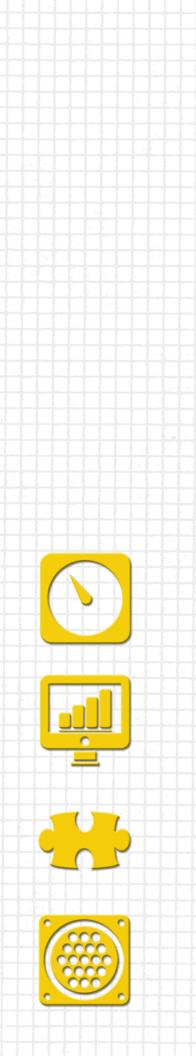
February 2013

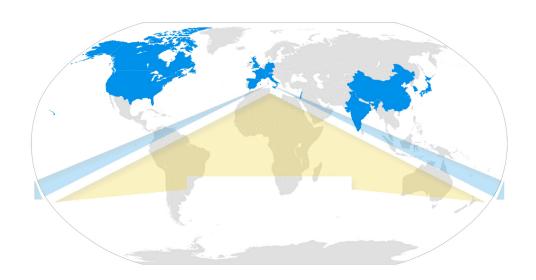
V01.00 Rev F



TODAY'S SOLUTIONS
FOR TOMORROW'S DEMANDS

Avionics Interface Technologies 3703 N. 200th Street Omaha, NE 68022 +1 402.763.9644




PXI-C1553 Hardware Manual

Single, Double, or Quad Stream MIL-STD-1553 Test and Simulation Module for cPCI/PXI

V01.00 Rev F

February 2013

AIT HEADQUARTERS 3703 N. 200th Street Omaha, NE 68022 Tel: +1 402.763.9644

Fax: +1 402.763.9645

WESTERN TERRITORY OFFICE 9221 E. Baseline Road Suite A-109, #432 Mesa, AZ 85209 Tel: +1 480.354.0142 DESIGN & PRODUCTION CENTER 2689 Commons Blvd. Suite 201 Beavercreek, OH 45431 Tel: +1 937.427.1280 Fax: +1 937.427.1281 ext. 202

EASTERN TERRITORY OFFICE 34 Country Road East Hampstead, NH 03826 Tel: +1 603.378.0957

Find your local Sales Representative at: www.aviftech.com/sales sales@aviftech.com

Notice: The information that is provided in this document is believed to be accurate. No responsibility is assumed by AIT for its use. No license or rights are granted by implication in connection therewith. Specifications are subject to change without notice.

Table of Contents

Section 1 INTRODUCTION	I
1.1 General	1
1.2 How This Manual is Organized	4
1.3 Applicable Documents	5
1.3.1 Industry Documents	5
1.3.2 Product Specific Documents	5
Section 2 STRUCTURE OF THE PXI-C1553 MODULE	6
Section 3 INSTALLATION	8
3.1 Installing the PXI-C1553 Module	8
3.1.1 Installation Instructions	8
3.1.2 Board Connectors	8
3.2 Connections to the I/O Signals	9
3.2.1 Connection to the MIL-STD-1553 Interface	9
3.2.1.1 Direct Coupling	10
3.2.1.2 Transformer Coupling	11
3.2.1.3 Direct to Device (Network) Coupling	13
3.2.2 PXI-C1553 Breakout Cables	14
3.2.3 PXI-C1553 Front Panel Connector (J3)	16
3.2.4 PXI-C1553-EF Front Panel Connector (J3)	18
3.2.5 PXI XJ4 Connector	20
3.2.6 IRIG Connections	20
3.2.7 Discrete Connections	20
Section 4 TECHNICAL DATA	22
4.1 Power Consumption	

Section 5 NOTES		.25
5.1 Acronyms and Ab	breviations	25
Section 6 APPENDIX	Δ	.27

1 INTRODUCTION

1.1 General

DOCUMENT HISTORY

Version	Date	Author	Description	
V01.00 Rev. A	October 2010	Andy Kragick/Melissa Amarawardana	Created document	
V01.00 Rev. B	December 2010	Melissa Amarawardana	Format revisions	
V01.00 Rev. C	March 2011	Melissa Amarawardana	Updated connector cable specification Connecting the AIT Module to the Bus	
V01.00 Rev. D	September 2011	Drew Dingman/Bill Fleissner	Updated connector cable specifications	
V01.00 Rev. E	March 2012	Troy Troshynski	Updated J9 connector pinout	
V01.00 Rev. F	January 2013	Drake Dingeman/ Melissa Amarawardana	Updated power consumption and structural specifications	

This document comprises the Hardware User's Manual for the PXI-C1553 hardware module which is a member of AIT's family of advanced MIL-STD-1553 test and simulation modules. This document covers the hardware installation, the board connections, a general description of the hardware architecture, and specific electrical and physical technical data of the module. For programming information, refer to the appropriate reference documents listed in the **Applicable Documents** section of this manual.

The PXI-C1553 modules are capable of operations in both 3.3V PCI and PCI-X systems. The modules can be used to simulate, monitor, and inject protocol errors in MIL-STD-1553A/B systems and can provide up to 4 MIL-STD-1553 Dual Redundant interfaces. The Full Function variant of the module is capable of simultaneously supporting the operations of a Bus Controller (BC), Bus Monitor (BM), and up to 31 Remote Terminals (RT). The Single Function variant of the module is capable of supporting either BC operations, or BM and Monitor only RT operations, or up to 31 RT simulation operations. The Simulator Only variant of the module is capable of simultaneously supporting BC operations, up to 31 RT simulations, and up to 31 RT monitor only operations.

Both Transformer and Direct MIL-STD-1553 bus coupling modes are supported. Additionally, an extended function variant of the module (PXI-C1553-EF) provides additional functions that support software programmable MIL-STD-1553 bus coupling (Transformer, Direct, Network, or Isolated) and software programmable output voltages.

The modules provide an onboard IRIG B Time Decoder/Encoder in support of time synchronization with external equipment. Each module may be configured to synchronize its

internal clock to an input IRIG B time signal. Additionally, the module may also be configured as an IRIG B time source capable of providing a reference time signal.

The PXI-C1553 module provide 10 programmable (as input or output) discretes. Each discrete is capable of up to 30 V operations with an external power supply.

Table 1.1: PXI-C1553 Variants

Part Number	Description
PXI-C1553-1 PXI-C1553-2 PXI-C1553-4	 1, 2 and 4 channel full function interfaces for PXI Simultaneous BC, 31 RTs and BM operations IRIG-B Input/Output, 10 programmable discretes, PXI backplane triggers and timing synchronization
PXI-C1553M-1 PXI-C1553M-2 PXI-C1553M-4	 1, 2 and 4 channel single function interfaces for PXI BC or 31 RTs or BM and 31 RT monitor only operations IRIG-B Input/Output, 10 programmable discretes, PXI backplane triggers and timing synchronization
PXI-C1553S-1 PXI-C1553S-2 PXI-C1553S-3	 1, 2 and 4 channel simulate only interfaces for PXI BC or 31 RTs and 31 RT monitor only operations IRIG-B Input/Output, 10 programmable discretes, PXI backplane triggers and timing synchronization
PXI-C1553-EF-1 PXI-C1553-EF -2 PXI-C1553-EF -4	 1, 2 and 4 channel extended full function interfaces for PXI Simultaneous BC, 31 RTs and BM operations Programmable bus coupling/output voltage IRIG-B Input/Output, 10 programmable discretes, PXI backplane triggers and timing synchronization
PXI-C1553M-EF-1 PXI-C1553M-EF-2 PXI-C1553M-EF-4	 1, 2 and 4 channel single function interfaces for PXI BC or 31 RTs or BM and 31 RT monitor only operations Programmable bus coupling/output voltage IRIG-B Input/Output, 10 programmable discretes, PXI backplane triggers and timing synchronization
PXI-C1553S-EF -1 PXI-C1553S-EF -2 PXI-C1553S-EF -3	 1, 2 and 4 channel simulate only interfaces for PXI BC or 31 RTs and 31 RT monitor only operations Programmable bus coupling/output voltage IRIG-B Input/Output, 10 programmable discretes, PXI backplane triggers and timing synchronization

1.2 How This Manual is Organized

This manual is comprised of the following sections:

- Section 1, **INTRODUCTION**, contains an overview of this manual.
- Section 2, **STRUCTURE OF THE PXI-C1553**, describes the physical hardware interfaces on the PXI-C1553 using a block diagram and a description of each main component.
- Section 3, **INSTALLATION**, describes the steps required to install the PXI-C1553 device and to connect the device to other external interfaces, including the MIL-STD-1553 databus, IRIG-B, and discretes.
- Section 4, **TECHNICAL DATA**, describes the technical specification of the PXI-C1553.
- Section 5, NOTES, contains a list of acronyms and abbreviations used in this manual.

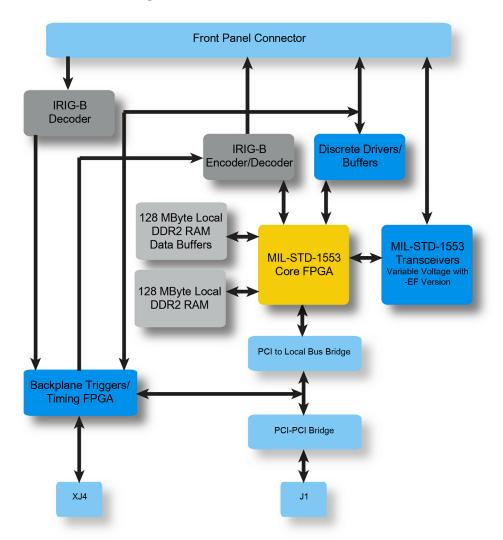
1.3 **Applicable Documents**

The following documents shall be considered to be a part of this document to the extent that they are referenced herein. In the event of conflict between the documents referenced and the contents of this document, the contents of this document shall have precedence.

1.3.1 **Industry Documents**

- MIL-STD-1553B, Department of Defense Interface Standard for Digital Time Division Command/Response Multiplex Data Bus, Notice 1-4, January 1996
- MIL-STD-1760, 1 August 2003, Department of Defense Interface Standard for Aircraft/Store Electrical Interconnection System
- PICMG 2.0 R3.0 CompactPCI Specification
- PXI Hardware Specification, Revision 2.2, PXI Systems Alliance
- PXI Hardware Specification, Revision 2.2 ECN 1, PXI Systems Alliance
- PCI Local Bus Specification, R2.3 &3.0
- PCI-to-PCI Bridge Architecture Specification, Revision 1.1

1.3.2 **Product Specific Documents**


- AIT MIL-STD-1553 Getting Started Manual, provides detailed instructions to assist first time users of AIT MIL-STD-1553 interface modules with software installation, hardware setup, and starting a sample project.
- AIT MIL-STD-1553 Object Wrapper Library Reference Manual, provides a detailed description of the high level object oriented programming interface between host application programs and the PXI-C1553.

2 STRUCTURE OF THE PXI-C1553 MODULE

The structure of the PXI-C1553 module is shown in Figure 2 below.

Figure 2: Structure of the PXI-C1553

The primary components of the **PXI-C1553** are:

PCI to PCI Bridge

This bridge allows multiple devices (namely the PMC1553 and PXI Trigger/IO controller) on the on-card PCI bus. This bus runs at 33.333 MHz, whereas the CompactPCI backplane may run at 66 MHz or 33 MHz.

MIL-STD-1553 Core/PowerPC FPGA

The MIL-STD-1553 Core and PowerPC is implemented in a Xilinx Virtex 4. The PowerPC operates at 250MHz and is capable of hosting time critical user application functions. The MIL-STD-1553 Core supports simultaneous Bus Controller, Bus Monitor and Remote Terminal (up to 31) functions on each of the available four bus interfaces.

Full error injection and error detection capabilities are provided.

SDRAM

Two 128MB banks of SDRAM provide storage for bus transmit & receive buffers and for PowerPC program and data stores.

- MIL-STD-1553 Transceivers and Coupling circuits The Transceivers and Coupling circuits provide both transformer and direct coupling access to all four dual redundant bus interfaces.
- IRIG-B Encoder/Decoder

The IRIG-B Decoder allows the PXI-C1553 module to synchronize its time tagging clock source to an external IRIG-B time source. The IRIG-B Encoder allows the PXI-C1553 module to output an IRIG-B time signal derived from the modules onboard time tagging clock so that external equipment may be synchronized to the module. This IRIG time may be reset by the PXI STAR signal if configured through software to do so.

Discrete Drivers and Buffers

Ten discrete signals are provided, each independently programmable as an input or output. In support of MIL-STD-1760 applications, outputs can be used to driver up to +30V signals with the help of an external power supply and inputs can tolerate up to +30V signals.

The variable output voltage MIL-STD-1553 transceivers provide for the generation of variable voltage bus signals. The output voltage is controlled by an software programmable control voltage via the digital potentiometers. When direct bus coupling is used, the output voltage can be varied between 140 mVp-p and 7Vp-p (measured with 36 Ohm load). When transformer bus coupling is used, the output voltage can be varied between 410 mVp-p and 19Vp-p (measured with 73 Ohm load).

The onboard coupling circuits allow software to control the bus coupling mode of each of the four channels independently, and set them in either direct, transformer, network or isolated mode. For definitions of these modes, see Table 3.2.4-I.

3 INSTALLATION

3.1 **Installing the PXI-C1553 Module**

The PXI-C1553 features full PCI 'plug-and-play' capability. There are no jumpers or switches on the board which have to be modified by the user.

Note: We recommend that you use a wrist strap for any installations. If there is no wrist wrap available, then touch a metal plate on your system to ground yourself and discharge any static electricity during the installation work.

The following instructions describe how to install the PXI-C1553. Follow the instructions carefully to avoid any damage on the device.

3.1.1 Installation Instructions

To Install the PXI-C1553 Module:

- 1. Shut down your system and all peripheral devices. Unplug the power cord from the wall outlet. (Inserting or removing modules with power applied may result in damage to the module devices.)
- 2. Remove any chassis panel covers necessary to gain access to a PXI/ CompactPCI peripheral slot.
- 3. Place the PXI-C1553 module into an open slot in your chassis.
- 4. Screw the PXI-C1553 board into the top rail with the captive screw at the top of the faceplate.
- 5. Connect system with power source and turn on the power to your system.

3.1.2 **Board Connectors**

The PXI-C1553, provides user access to the MIL-STD-1553 Bus signals, Discrete I/O signals and IRIG-B Input/Output Signals at the front panel 68-pin VHDCI (J4) connector.

3.2 Connections to the I/O Signals

3.2.1 Connection to the MIL-STD-1553 Interface

The MIL-STD-1553 bus interface of the PXI-C1553 (non -EF) supports up to four dual redundant 1553 channels. For each channel both transformer coupled and direct coupled connections are provided. The transformer coupled signals can be connected directly to a stub of a MIL-STD-1553 coupler. The direct coupled connections can be connected directly to the MIL-STD-1553 bus. Both the direct and transformer coupled signals are provided at the front panel connector (J3). Additionally, the transformer coupled signals are provided at the rear I/O connector (J4).

The MIL-STD-1553 bus interface of the PXI-C1553-EF also supports up to four dual redundant 1553 channels. For each channel one of four bus coupling modes can be independently programmed as described in the table below. The MIL-STD-1553 bus signals of the PXI-C1553-EF modules are only provided at the front panel connector (J3).

Table 3.2.1: Bus Coupling Modes

Coupling Mode	Description
Direct	Bus signal provided at front panel is direct coupled and can be connected directly to the 1553 bus
Transformer	Bus signal provided at the front panel is transformer coupled and can be connected directly to a stub of a bus coupler
Network	A properly terminated bus network is simulated on the PXI-C1553-EF card and a bus stub is provided at the front panel connector, the bus signal at the front panel can be connected directly to a transformer coupled MIL-STD-1553 device
Isolated	No bus signal is provided at the front panel, the front panel bus signal pins are disconnected from the internal circuitry of the PXI-C1553-EF module

The MIL-STD-1553 specification clearly defines the process of coupling subsystems to the bus. This connection, called a stub, has two coupling options: direct coupled and transformer coupled. In addition to these two methods of connecting to the bus, a direct to device (network) coupling configuration is also an option. All three methods are described in this section.

The Flight Director bus analyzer software allows the user to select isolated, transformer, direct or network coupling, through the system setup controls. Use of an AIT module without the Flight Director software is accomplished with library setup calls.

3.2.1.1 **Direct Coupling**

Direct coupling connects the subsystem/terminal device directly to the bus and can only be used in connections under one foot in length.

Since a direct coupled stub provides only limited isolation in the event of a device (subsystem or terminal) short, transformer coupling is normally the recommended method of connecting to the bus.

Bus A **Terminators** Bus B Stub Length One Foot Max. **AIT Module Test Terminal**

Figure 3.2.1.1: Direct Coupling

3.2.1.2 Transformer Coupling

Transformer coupling utilizes a bus coupler that contains an isolation transformer and isolation resistors. Transformer coupling extends the stub length to 20 feet and provides electrical isolation, better impedance matching and higher noise rejection characteristics than direct coupling. The electrical isolation prevents a terminal fault or stub impedance mismatch from affecting bus performance.

Figure 3.2.1.2-I: Bus Coupler

Connecting to the bus using transformer coupling requires a coupler for each subsystem/ terminal device and proper termination on the bus.

Figure 3.2.1.2-II: Terminal Device Connection Cables

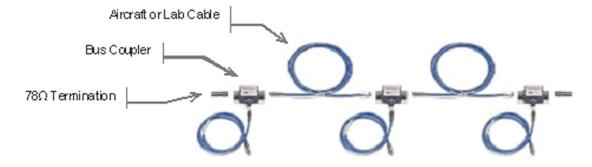
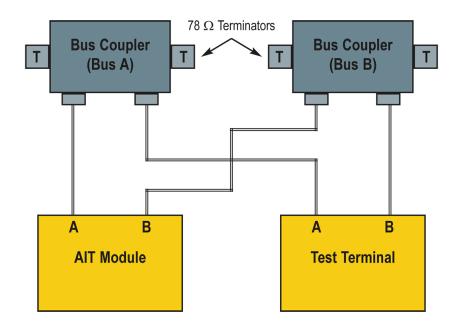
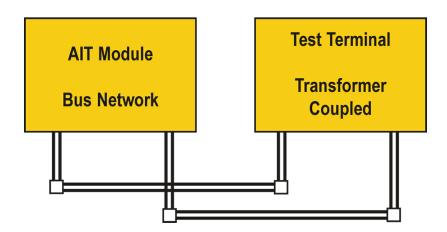



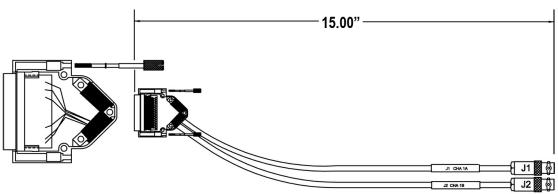
Figure 3.2.1.2-III: Transformer Coupling



3.2.1.3 **Direct to Device (Network) Coupling**

Direct to Device (Network) coupling is an option with AIT modules. The AIT design includes onboard bus network circuitry that is software selectable. This allows the user to connect directly to a single terminal device without the need for any bus coupling. network coupling mode, selected by the user via software controls, provides a terminated MILbus network simulation on the AIT module for direct connection between the AIT module, software, and the terminal under test.

Figure 3.2.1.3: Direct to Device (Network) Coupling



3.2.2 **PXI-C1553 Breakout Cables**

The PXI-C1553 and PXI-C1553-EF modules are delivered with one of three cable assemblies, which provide only transformer coupled outputs for the non -EF, and software selectable coupling for the -EF:

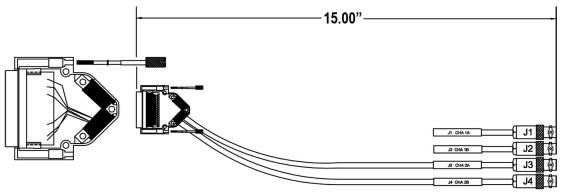
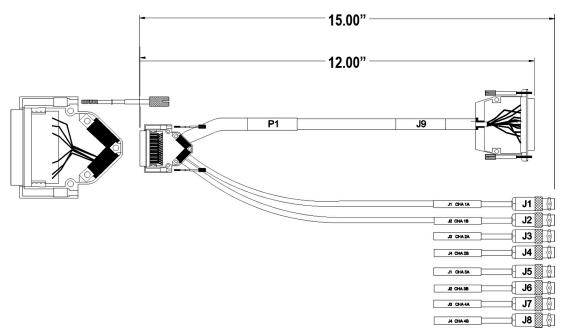

- A single channel card is delivered with one break out cable Part Number CBL-VHDCI-1553-1. It includes two Twinax BNC connectors for each of the MIL-STD-1553 bus connections.
- A dual channel card is delivered with one break out cable Part Number CBL-VHDCI-1553-2. It includes four Twinax BNC connectors for each of the MIL-STD-1553 bus connections.
- A quad channel card is delivered with one break out cable Part Number CBL-VHDCI-1553-4. It includes eight Twinax BNC connectors for each of the MIL-STD-1553 bus connections, and one 15 pin standard DSUB breakout connector to provide access to the IRIG, Digital I/O (DIO), and the Voltage I/O (VIO) control signal.

Figure 3.2.2: PXI-C1553 Cable Assemblies



AIT#CBL-VHDCI-1553-1 Delivered with the PXI-C1553-1

AIT#CBL-VHDCI-1553-2 Delivered with the PXI-C1553-2

AIT#CBL-VHDCI-1553-4 Delivered with the PXI-C1553-4

If the customer application requires IRIG or other signals for a single or dual channel card (normally shipped standard only with a quad channel card), customers may order the quad channel cable from AIT's Price List. For assistance, contact your AIT Sales Engineer or call AIT at +1 402.763.9644. AIT will make any custom cable configurations and/or length required.

Table 3.2.2: Breakout Cable Pinout

Pin	Signal Name		
J1-J8	MIL bus twinax BNC		
BNCs	connections		
J1	CHA_1A_XC+		
J1	CHA_1A_XC-		
J2	CHA_1B_XC+		
J2	CHA_1B_XC-		
J3	CHA_2A_XC+		
J3	CHA_2A_XC-		
J4	CHA_2B_XC+		
J4	CHA_2B_XC-		
J5	CHA_3A_XC+		
J5	CHA_3A_XC-		
J6	CHA_3B_XC+		
J6	CHA_3B_XC-		
J7	CHA_4A_XC+		
J7	CHA_4A_XC-		
J8	CHA_4B_XC+		
J8	CHA_4B_XC-		
D-Sub	15 pin Standard		
J9-1	VIO_IN		
J9-2	GND		
J9-3	IRIG-OUT		
J9-4	IRIG-IN		
J9-5	GND		
J9-6	DIO9		
J9-7	DIO8		
J9-8	DIO7		
J9-9	DIO6		
J9-10	DIO5		
J9-11	DIO4		
J9-12	DIO3		
J9-13	DIO2		
J9-14	DIO1		
J9-15	DIO0		

3.2.3 **PXI-C1553 Front Panel Connector (J3)**

For applications not using the break out cables provided, the PXI-C1553 (non-EF) front panel connector (J3) is a 68-pin VHDCI connector that provides access to the transformer coupled and direct coupled MIL-STD-1553 databus signals (four redundant channels), IRIG-B Input/Output signals, and the Discrete I/O signals. Pinouts for the PXI-C1553 are given below.

Table 3.2.3-I: PXI-C1553 Front Panel Connector (J3) Pin Assignment

	Pin No.	Signal	Direction	Pin No.	Signal	Direction
	1	VIO_IN	Input	35	GND	Bidir.
	2	IRIG_OUT	Output	36	GND	Bidir.
	3	IRIG_IN	Input	37	GND	Bidir.
	4	GND		38	GND	
	5	DIO9	Bidir.	39	GND	Bidir.
	6	DIO8	Bidir.	40	GND	Bidir.
	7	DIO7	Bidir.	41	GND	Bidir.
	8	DIO6	Bidir.	42	GND	Bidir.
	9	DIO5	Bidir.	43	GND	Bidir.
	10	DIO4	Bidir.	44	GND	Bidir.
	11	DIO3	Bidir.	45	GND	Bidir.
68 1 24	12	DIO2	Bidir.	46	GND	Bidir.
68 34 66 32 66 32 66 32 66 37 66 37 67 37 68 37 68 37 68 37 68 37 69 26 59 25 58 24 57 22 58 24 57 22 58 32 58 32 59 34 50 32 50 32 51 32 52 32 53 32 54 32 55 32 56 32 57 32 58 32 58 32 58 32 58 32 58 32 58 32 58 32 59 32 50	13	DIO1	Bidir.	47	GND	Bidir.
64 30 63 29 62 28	14	DIO0	Bidir.	48	GND	Bidir.
61 27 60 26 59 25	15	GND		49	GND	
58 24 57 23 56 22 55 21	16	CHA_4B_DC+	Bidir.	50	CHA_4B_DC-	Bidir.
54 20 53 19 52 18	17	CHA_4B_XC+	Bidir.	51	CHA_4B_XC-	Bidir.
51 17 50 16 49 15	18	CHA_4A_DC+	Bidir.	52	CHA_4A_DC-	Bidir.
48 14 47 13 46 12	19	CHA_4A_XC+	Bidir.	53	CHA_4A_XC-	Bidir.
44 10 43 9 42 8	20	GND		54	GND	
41 7 40 6 39 5	21	CHA_3B_DC+	Bidir.	55	CHA_3B_DC-	Bidir.
38 4 37 3 36 2	22	CHA_3B_XC+	Bidir.	56	CHA_3B_XC-	Bidir.
35 1 1	23	CHA_3A_DC+	Bidir.	57	CHA_3A_DC-	Bidir.
	24	CHA_3A_XC+	Bidir.	58	CHA_3A_XC-	Bidir.
	25	GND		59	GND	
	26	CHA_2B_DC+	Bidir.	60	CHA_2B_DC-	Bidir.
	27	CHA_2B_XC+	Bidir.	61	CHA_2B_XC-	Bidir.
	28	CHA_2A_DC+	Bidir.	62	CHA_2A_DC-	Bidir.
	29	CHA_2A_XC+	IN	63	CHA_2A_XC-	Bidir.
	30	GND		64	GND	
	31	CHA_1B_DC+	Bidir.	65	CHA_1B_DC-	Bidir.
	32	CHA_1B_XC+	Bidir.	66	CHA_1B_XC-	Bidir.
	33	CHA_1A_DC+	Bidir.	67	CHA_1A_DC-	Bidir.
	34	CHA_1A_XC+	Bidir.	68	CHA_1A_XC-	Bidir.

Table 3.2.3-II: Signal Descriptions

Signal	Description
CHA_xB_DC	MIL-STD-1553 Bus B Direct Coupled Interface Signal
CHA_xA_DC	MIL-STD-1553 Bus A Direct Coupled Interface Signal
CHA_xB_XC	MIL-STD-1553 Bus B Transformer Coupled Interface Signal
CHA_xA_XC	MIL-STD-1553 Bus A Transformer Coupled Interface Signal
IRIG_OUT	IRIG-B Output Signal
IRIG_IN	IRIG-B Input Signal
DIOx	Discrete I/O Input/Output
VIO_IN	Discrete I/O Output Reference Voltage Input
NC	No Connection
GND	Ground

PXI-C1553-EF Front Panel Connector (J3) 3.2.4

For applications not using the break out cables provided, the PXI-C1553-EF (Extended Functionality), the pinout for the PXI-C1553-EF front panel connector, are different than those for the PXI-C1553 due to the fact that the PXI-C1553-EF supports multiple software programmable bus coupling modes on the same front panel pins. Pinouts for the PXI-C1553-EF are given below.

 Table 3.2.4: PXI-C1553-EF Front Panel Connector (J3) Pin Assignment

Pin No.	Signal	Direction	Pin No.	Signal	Direction
1	VIO_IN	Input	35	GND	Bidir.
2	IRIG_OUT	Output	36	GND	Bidir.
3	IRIG_IN	Input	37	GND	Bidir.
4	GND		38	GND	Bidir.
5	DIO9	Bidir.	39	GND	Bidir.
6	DIO8	Bidir.	40	GND	Bidir.
7	DIO7	Bidir.	41	GND	Bidir.
8	DIO6	Bidir.	42	GND	Bidir.
9	DIO5	Bidir.	43	GND	Bidir.
10	DIO4	Bidir.	44	GND	Bidir.
11	DIO3	Bidir.	45	GND	Bidir.
12	DIO2	Bidir.	46	GND	Bidir.
13	DIO1	Bidir.	47	GND	Bidir.
14	DIO0	Bidir.	48	GND	Bidir.
15	GND	Bidir.	49	GND	Bidir.
16	N.C.		50	N.C.	
17	CHA_4B+	Bidir.	51	CHA_4B-	Bidir.
18	N.C.		52	N.C.	
19	CHA_4A+	Bidir.	53	CHA_4A-	Bidir.
20	GND	Bidir.	54	GND	Bidir.
21	N.C.		55	N.C.	
22	CHA_3B+	Bidir.	56	CHA_3B-	Bidir.
23	N.C.	Bidir.	57	N.C.	
24	CHA_3A+	Bidir.	58	CHA_3A-	Bidir.
25	GND	Bidir.	59	GND	Bidir.
26	N.C.		60	N.C.	
27	CHA_2B+	Bidir.	61	CHA_2B-	Bidir.
28	N.C.	Bidir.	62	N.C.	
29	CHA_2A+	Bidir.	63	CHA_2A-	Bidir.
30	GND	Bidir.	64	GND	Bidir.
31	N.C.		65	N.C.	
32	CHA_1B+	Bidir.	66	CHA_1B-	Bidir.
33	N.C.		67	N.C.	
34	CHA_1A+	Bidir.	68	CHA_1A-	Bidir.

3.2.5 **PXI XJ4 Connector**

Table 3.2.5: XJ4 Connector

Pin	Z	Α	В	C	D	E	F
1	GND	GA4	GA3	GA2	GA1	GA0	GND
2	GND						GND
3	GND				GND		GND
4	GND						GND
5	GND	PXI TRIG3	PXI TRIG4	PXI TRIG5	GND	PXI TRIG6	GND
6	GND	PXI TRIG2	GND		PXI STAR	PXI CLK10	GND
7	GND	PXI TRIG1	PXI TRIG0		GND	PXI TRIG7	GND
8	GND	RSV	GND	RSV	PXI LBL6	PXI LBR6	GND

3.2.6 **IRIG Connections**

The IRIG IN and IRIG OUT signals of the PCI-C1553 and PCI-C1553-EF are provided at both the front panel connector (J4). The IRIG_IN and IRIG_OUT signals shall be connected depending on the time tagging method used as described below:

- Single module with no external IRIG source: No connections required
- Multiple modules with no common synchronization requirement: No connections
- Single or multiple modules with external IRIG source: Connect IRIG source to IRIG IN and GND of all modules
- Multiple AIT modules with no external IRIG source: Connect the IRIG_OUT signal and the GND of the module you have chosen as the time master to all IRIG_IN and GND signals of all boards (including the master's)

3.2.7 **Discrete Connections**

Ten Discrete I/O signals are provided at the front panel connector (J4). Each discrete can be operated as an output or an input. The discrete outputs can be configured (in software) as open-collector (current sink), emitter follower (current source) or a TTL-like output. In the case of the emitter follower configuration VIO_IN may be provided from an external source and used to externally set the high output voltage level. If VIO IN is not provided externally, then the onboard +5V supply is used. External pull-up or pull-down resistors must be selected to ensure that the output load does not exceed +/- 100mA.

An output voltage decrease will be seen as loads increase as described below.

Table 3.2.8: Output Voltage

Logic '1' output powered by on	ogic '1' output powered by onboard +5V VIO				
Load	Output Voltage				
10mA	4.0V				
70mA	3.5V				
100mA	3.0V				
Logic '0' output powered by on	board +5V VIO				
Load	Output Voltage				
any load up to +/-100mA	0.2V				
Logic '1' output powered by ex	ternally provided +30V at VIO_IN				
Load	Output Voltage				
10mA	28V				
100mA	27V				
Logic '0' output powered by ex	ternally provided +30V at VIO_IN				
Load	Output Voltage				
any load up to +/-100mA	0.2V				

The discrete input Logic '1' minimum voltage is +2.5V. The input Logic '0' maximum voltage is +0.8V. All discrete inputs are protected up to +30V.

Note: An optional onboard pull-up resistor to onboard 5V supply or the externally provided VIO_IN may be provided. Please consult factory for details.

TECHNICAL DATA 4

PCI Interface: 32-bit/33 MHz PCI plus PXI Trigger Bus, PXI System Clock, and PXI

Star Trigger

Form Factor: 3U Hybrid Slot Compatible PXI Module

256 Mbyte DDR2 SDRAM (128MB for channel data, 128MB for Memory:

onboard processor)

MIL-STD-1553

Channels:

• PXI-C1553-EF: Up to 4 Dual Redundant MIL-STD-1553 channels with programmable coupling and output voltage are supported.

• PXI-C1553: Up to 4 Dual Redundant MIL-STD-1553 channels with both transformer and direct coupling modes are supported.

• Each channel independently capable of simultaneous Bus Controller,

Bus Monitor, and Remote Terminal (up to 31) simulation.

MIL-STD-1553 Bus Controller:

• Major Framing, Minor Framing, and Acyclic message transfer scheduling

• Inter-message Gap Scheduling

• Full error injection capabilities in support of AS4112 RT Validation

Automatic Bus Retries

Full Mode Code generation support

MIL-STD-1553

• Simultaneously supports 31 RTs

Remote Terminals:

• Full Error Injection

• Intelligent Mode Code responses

• Passive, receive only monitor mode operations

MIL-STD-1553

• Chronologically time tags and stores all bus traffic

• Programmable Response Times (250 ns increments)

Bus Monitor:

• Error detection and notifications including detection of Gap and

• Response time violations, low bit/word counts, parity errors, sync

errors, and status work exceptions

Complex Triggering and Filtering

Programmable Pre/Post Trigger storage

MIL-STD-1553

• Replay of stored bus monitor data

Replay:

• Replay can be synchronized across channels/modules

Time Tagging: 46-bit IRIG time tag (IRIG time + microseconds since start of second)

Resolution: IRIG Input: 1 us

> Width: 14 BCD digits (400 days)

Signal Type: Single ended analog

Signal Waveform: Amplitude modulated sine wave or

square wave

Modulation Ratio: 3:1 to 6:1

0.2Vpp to 3Vpp Input Amplitude:

Input Impedance: > 3k Ohm

Coupling: AC Coupled

Time Jitter: +/-5nS (typical, module to module)

depending on input signal quality

Lock time: 1 to 5 seconds depending on input

signal quality

IRIG Output: Signal Type: Single ended analog

> Signal Waveform: Amplitude modulated sine wave

Modulation Ratio: 3:1

Output Amplitude: +/-1.5 volts

Output Impedance: 1.3 Ohms typ. (designed for 50

Ohm load)

Discretes: 10 Fully programmable (as input or output) discrete signals

> Inputs: Min. Logic '1': +2.5V

> > Max. Logic '0': +0.8V

Tolerant of up to +30V input

Outputs: Software configurable as open

> collector or emitter followers Maximum load +/-100mA Emitter Follower configuration capable of providing up to +5V signal without external (VIO_IN) supply or up to +30V signal with

external (VIO_IN) supply.

Connectors: J1

XJ4

J4

Dimensions: 3U CompactPCI (100mm x 160mm)

Weight: < 0.6 lbs.

Supply +3.3V + / -5%**Voltages:** +5V +/- 5%

+12V +/- 5% -12V +/- 5%

Temperature: Operating: 0 °C to +70° C

> -40° C to +85° C Storage:

Humidity: 0 to 95% (non condensing)

Power Consumption 4.1

	PXI-0	C1553-	-1/2/4	-EF (Extended Function)		
Channels	1	2	4	1	2	4
3.3 v	1500 ma	1600 ma	1800 ma	1600 ma	1600 ma	1600 ma
5 v	400 ma	400 ma	400 ma	550 ma	700 ma	1000 ma
12 v	0	0	0	100 ma	100 ma	100 ma
-12 v	0	0	0	0	0	0
Total Power	7.0 w	7.3 w	8.0 w	9.3 w	10 w	11.5 w

5 **NOTES**

5.1 **Acronyms and Abbreviations**

ADC Analog to Digital Converter Avionics Full Duplex Databus AFDX

ALBI Local Bus Interface

American National Standards Institute ANSI ARINC Aeronautical Radio, Incorporated

Advanced RISC Machine ARM

Bus Controller BC

BIP Bus Interface Processor Bus Interface Unit BIU

Chronological Bus Monitor CM

cPCI Compact PCI CPLD Coupled

CPU Central Processing Unit DAC Digital to Analog Converter

DC-DC Direct Current to Direct Current (power conversion)

DIP Data Interface Processor DMA **Direct Memory Access**

DRAM Dynamic Random Access Memory

DSUB **D-Subminiature**

EDO Enhanced Data Output

EEPROM Electrically Erasable and Programmable Read Only Memory

Erasable Programmable Read Only Memory **EPROM**

FIFO First in/First out

FLASH Page oriented electrical erasable and programmable memory

FPGA Field Programmable Gate Array

GND Ground

IEEE Institute of Electric and Electronic Engineers

IRIG Inter Range Instrumentations Group

IRIG-B Inter Range Instrumentations Group Time code Format Type B

I/O Input/Output

LCA Logic Cell Array (XILINX - Programmable Gate Array)

LED Light-emitting Diode MIL-STD Military Standard

OWL Object Wrapper Library PC Personal Computer

PCI Peripheral Component Interconnect

Peripheral Component Interconnect Express **PCIe**

PMC PCI Mezzanine Card

PROM Programmable Read Only Memory

PSC PCI and System Controller

PCI Extensions for Instrumentation PXI

PXIe PCI Extensions for Instrumentation Express

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RMW Read-Modify-Write

Recommended Standard No.232 (US-Norm) RS-232

RT Remote Terminal

RTPTP Remote Terminal Production Test Plan

RXD Received Data

AIT's Software Development Kit SDK Single Inline Memory Module SIMM **SRAM** Static Random Access Memory

Synchronous Static Random Access Memory SSRAM

TBD To be determined **TCP** Time Code Processor TTL Transistor-Transistor Logic

TXD Transmitted Data

Universal Asynchronous Receiver and Transmitter **UART**

USB Universal Serial Bus VERSAmodule Eurocard VME VME64 VME 64bit extension

VXI VME Extensions for Instrumentation

XMC PCI Express Mezzanine Card

6 **APPENDIX A**

Avionics Interface Technologies Product Information for People's Republic of China

This document provides product information as required by the People's Republic of China Electronic Industry Standard SJ/T11364–2006, Marking for Control of Pollution Caused by Electronic Information Products.

Table 1 lists toxic or hazardous substances or elements contained in Avionics Interface Technologies (AIT) electronic information products (EIPs), including subassemblies, that exceed limits specified in SJ/T11363-2006.

Table 1 - Toxic or Hazardous Substances or Elements in Product

	Toxic or hazardous Substances or Elements								
Component Name	Lea d (Pb)	Mercur y (Hg)	Cadmiu m (Cd)	Hexavale nt Chronium (Cr6+)	Polybrominate d Biphenyls (PBB)	Polybrominat ed Diphenyl Ethers (PBDE)			
PXI 1553 4 Channel Carrier for PMC 1553	X	0	0	0	0	0			
Hardware Standoff HEX 5mm x 10mm M2.5 (Aluminum Clear Iridite finish)	0	0	0	0	0	0			
Hardware Screw Metric M2.5 x 5mm	0	0	0	0	0	0			
Hardware Faceplate Overlay	0	0	0	0	0	0			
Hardware Face Plate(PXI-1553)	0	0	0	0	0	0			
PMC 1553 Channel Conduction Cooled Parts List	Х	0	0	0	0	0			

Product Marking Explanations

In accordance with the requirements specified in SJ/T11364–2006, all AIT EIPs sold in the People's Republic of China are marked with a pollution control marking. The following marking applies to AIT products.

This marking indicates that some homogeneous substance within the EIP contains toxic or hazardous substances or elements above the requirements listed in SJ/T11363-2006. These substances are identified in Table 1.

The size or function of some products may prevent them from being directly marked. These products still meet SJ/T11364–2006 requirements, and their marking information is covered by this document.

Environmentally Friendly Use Period

The number in the marking, shown as 40 in the illustration above, refers to the EIP's environmentally friendly use period (EFUP). The EFUP is the number of years from the date of manufacture that toxic or hazardous substances or elements contained in EIPs will not leak or mutate under the normal operating conditions described in the EIP user documentation, resulting in any environmental pollution, bodily injury, or damage to assets.

Note: Except as expressly stated herein and as required under mandatory provisions of regulations of the People's Republic of China, Avionics Interface Technologies makes no representation or warranty of any kind, expressed or implied, with respect to the EFUP and expressly disclaims any representations or warranties, expressed or implied, with respect to the EFUP.

Original Equipment Manufactured (OEM) EIPs

SJ/T11364–2006 specifies that OEM EIPs shipped by AIT should include hazardous substance information and EFUP markings. Table 1 applies to products that do not supply OEM product information.

Manufacture Date

Contact your local sales representative to obtain the manufacture date of your product.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers: At the end of the product life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives and compliance with WEEE Directive 2002/96/EC on Waste Electrical and Electronic Equipment, visit ni.com/environment/weee.htm