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1. Introduction

1.1 Background

The goal of the thesis is to investigate the software andWemelmechanisms needed
to maintain integrity while centralizing the execution idams for applications in
todays vehicle. Normally a subcontractor would providdrtbein ECU to control
their part of the vehicle. This has resulted in growing nuralé ECUs the past few
years. To meet this trend, vehicle manufactures have a reeouhdling the sub
contractor’s applications into larger, more powerful ECWkis will raise the need
for integrity and fault tolerance mechanisms in the execuglatform.

Volvo Technology is concerned not to favor any RTOS venddrisTed the
project into choosing an open standard for time-triggerd®® aimed at the au-
tomotive industry - the OSEKtime standard. The originallgess to verify the func-
tionality of a simple memory protection system by extendamyopen source im-
plementation of the OSEK standards. It was soon realizednimamplementation
exists with an open source license. Without a RTOS to mod#yfocus of the thesis
changed to an in depth theoretical examination.

1.2 Method

Our approach to ensure integrity and fault tolerance is folement memory pro-
tection in combination with static time triggered schedgliThrough encapsulation
of each application into a memory container and limiting dlseess to memory out-
side of the container, an application will not be able to disecorrupt the data of
another application. The time-triggered schedule willrgngee execution time for
each application and by combining the two, a complete séparaf applications

from different vendors is possible.

1.3 Course of action

The work began with a study of the OSEKtime and the Rubus tipgraystem. Af-
ter followed a study on memory protection methods which coedbwith a study of
the supervising company’s needs, led to an investigatidgheohardware needed for
an implementation of the different protection mechanishie next step was to take
everything to a higher level and specify software struguceimplement IPC (Inter
Process Communication). This naturally led to a specificatif the basic IPC and
necessary changes needed to adapt these structures to aynpeatected environ-
ment. The last area studied before our attention was foauged extending Rubus,
was to look at how to integrate an external communication utegdvolcano, and
make the communication transparent to whether the sigaatls over a CAN-bus
or is local within the same ECU. With all the background tlyeiorplace a proposal
for modifications of the Rubus operation system was develope



1.4 Result

The work has resulted in a proposal for updates of the Rubesatpg system with
added memory protection. Rubus is a time-triggered RTO® ffocticus systems
which was chosen upon failing to find a suitable OSEKtime anpntation. The
thesis also contains a thorough analysis of the implicatishmemory protection
and methods to solve integrity and fault tolerance issuestudly of available mi-
crocontrollers targeted at the automotive industry has béen conducted and has
resulted in a preferred target platform for our implemeataproposal.



2. Objectives

2.1 Requirements

Volvo Technology’s main goal is to reduce the number of EGUgshicles to reduce
costs. This is done by merging software from several vendnts a shared piece
of hardware. Isolation between applications from différeendors and fault detec-
tion is needed due to legal and liability issues. Prior tottiesis it was decided that
the introduction of a time-triggered operating system igefgrable way of isolat-
ing applications for temporal integrity (i.e. allocatiohtbe central processing unit).
Memory protection is a further addition to also guaranteta dlategrity. Finally, a
fault tolerant system should be capable of detecting episroperations and imple-
ment ways to handle critical situations. Hence, we havedhewing basic needs

e the possibility of running several applications on one ECU
¢ introduction of a time-triggered operating system

e Mmemory protection

e error detection and handling

e must confirm to previous basic requirements such as detsmmiand fault
tolerance issues

The boundaries of memory protection must be further defifbib is somewhat part
of the study although the system should aim at supplyingdheviing property

e a subcontractor should be able to supply a piece of softweateig protected
from software developed by other suppliers

Since the exact definition of such a component was not negefgsahe first part of
the study, a piece of software with its own protected domais simply be referred
to as a software component, without further definition. Tofégare component was
later refined and compared to other terms such as applisatind processes. The
concept is desccribed at the end of this chapter.

2.2 Desired features

As work progressed new features where discussed and sorherofwhere added
to the objectives of the thesis. The possibility of runnimgezent-based system in
conjunction with the time-triggered, was discussed eantyp the work cycle. The
event-based model has some beneficial properties that caselefor not-so-time-
critical tasks utilizing the spare time of a time-triggesdtem.

A need to further optimize the system resource utilizatio® processing time
and memory) was stressed by Volvo. This led to a more modeldrapplication ap-
proach in which the interpretation and practical definitdéthe software component
became an important aspect. A need for flexibility and smalllutes was taken into
consideration as the software component definition wasafin

The basic isolation requirement had to do with write protecbetween soft-
ware components. The possibility of detecting also reanris a natural extension.
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Taking it even further, one may also consider internal &dtch as stack overflow
within a specific piece of software. Such aspects were alasidered as memory
protection could allow them to be efficiently implemented.fAult detection is good
for isolation and identification of software errors. Theteys may become more tol-
erant if errors can be detected and dealt with at an earlg stagjlation of errors also
decrease development times.

2.3 Assignments

The work has been aimed at the following assignments
1. study and describe time-triggering and memory protactio
2. study the effects of software isolation

3. choose a platform (hardware and operating system) faldpment and test-
ing

4. propose extensions to the chosen platform
5. identify areas for further work

Aspects on fault tolerance, determinism, etc. are consttifiroughout the complete
study.

Assignment one is presented in Chapters 3 and 4. Followiegligcussion of
memory management, a selection of relevant hardware iemtex$ in Chapter 5.
Chapters 6 and 7 handle the effects of memory isolation. €h&mlso discuss how
to implement a common transparent distributable commtinitdayer. The choice
of operating system is discussed in chapter 8 and chaptep@ges some extensions.
Finally, further work is presented in chapter 10 after a samynof this report.

2.4 The software component

In todays distributed environment, sub contractors tyljyigaovide the vehicle man-
ufacturer with a "black box” in the form of an ECU hardware eoament and the
controlling software. Software from different suppliemmmunicate over a bus net-
work (typically CAN) independent of from where and whom théirmation orig-
inate. The vehicle manufacturer administrate the netwark upply the developer
with vital information concerning the period, latenciegdgitter of communicated
signals.

D L WD
Application Applicationl Application Application2 Application Application3
architect architect architect
/ /
4 7/ 7/
1 7/ /
/ Vi /
/ 4
I I [ol [oo] Illl

ECU1

m

Ccu2 ECU3

Figure 2.1 In todays system, the developer supplies an applicationtenECU.
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The primary purpose of the centralization is to reduce tleeeimsing number of
ECUs in todays automotive systems. The first step then, islieve the developer
of the additional task of supplying an ECU and let them focnghe software ap-
plication. It is necessary for the vehicle developer to ime@ system coordinator to
handle the deployment of applications to ECUs.

Centralization causes a concern for application integgyserveral application
may share an ECU. There are five main areas to this issue.

1. Guaranteed execution
2. Concurrency

3. Independence

4. Data consistency

5. Data privacy

Guaranteed execution time is realized through the adopfi@ntime-triggered sys-
tem. Concurrency deals with the problems of sharing syst&sources. Software
must be guaranteed exclusive access to resources to ageidoaditions. Data con-
sistency and privacy is in the context of other applicatibagg able to modify or

read local data. Data consistency is primary as it ensuegsthlfunctional applica-
tions do not directly affect other applications. Data privés secondary and could
be excluded for performance reasons. Both are realizedghra memory protection
system. Independence has to do with applications beingtalienction indepen-

dently of with whom they share an ECU. This attribute restriocal interprocess
communication between applications to the same mecharasmsed in the dis-
tributed environment.
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Figure 2.2 Applications are divided into several components.

General concept

The introduced new real-time environment is based on tiggering but also incor-
porate the possibility of running event based tasks in omktla@ same application.
The difference is commonly discussed in terms of hard-iea-and soft-real-time or
critical and non-critical tasks. The OSEKtime specificatiates that for OSEKtime
(the time-triggered kernel) to run in combination with OSKERX (the event/pri-

ority based kernel) there must be memory protection betweertwo. This means
that memory protection must exist within an applicationazstn time-triggered and
event-based tasks. However, the severity of faulty belhafia task may differ not
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because of its hard- or soft-real-time requirement but beeaf the function it per-
forms. We therefore propose a different view where partsiaplication are sepa-
rated because of their function and not because of thektiraalproperties (although,
this may very well be tightly coupled). We call these isateparts of an application
software components.

The proposed software component is a more flexible struchae separation
between hard- and soft-realtime. The OSEKtime separasiaitili possible through

design decisions.

Figure 2.3 Software components are pieces of the puzzle creating dicaim.

The basic isolation derived from the previous discussisrhat every software
component is memory protected individually. A further regment is that software
components should be arbitrarily distributable over ECUss implies that they
are at least partially hardware independent. Software coets can be supplied as
source code and compiled for a specific CPU but interactiattstire system must be
performed through a common interface. Thus, the comporeatsestricted to using
distributed communication protocols while communicatilmjernal communication
between tasks of a component is not affected. Suppliers malyitfipreferable to
supply software components as compiled object code. In sash, also the CPU
architecture must be common to all ECUs or the supplier vellehto be involved in
transfers of components between ECUs.
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Figure 2.4 In the new system, a developer supplies a set of software @oemps that can be
freely distributed over ECUs by the vehicle manufacturer.
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3. Time-triggered scheduling

This chapter will introduce a time-triggered approach &slus the OSEK and Rubus
operating systems. We specifically discuss time-triggeeind not event-triggering
since the former plays a central role in the proposed sysdechthe latter has been
around since long in the vehicle industry. Time-triggentftges not necessarily imply
static scheduling, but since this is the case for both OS&&#&nd the Rubus time-
triggered kernel, it goes without saying for the remaindehis document.

3.1 Introduction

Time triggered scheduling is used in applications such a$ ABaks, All Wheel
Drive and other critical systems. Its main purposes are traguee deadlines and
execution time. Another feature, which is of interest frdm tentralizing point of
view, is the ability to separate applications from each iotimethe time-triggered sys-
tem, all tasks run under the same conditions as comparedriordypbased system
where tasks are differently privileged. This causes prableetween applications as
discussed in the problem formulation.

The time-triggered approach is relatively simple. This etk easy to grasp and
get a complete view of a system. The predefined schedulesllievio make guaran-
tees, even at 100% processor utilization.

If the system coordinator has the worst case execution fipeggods, and dead-
lines for tasks within every application she can use thermétion to group the tasks
on forehand and possibly reduce the number ECUs requiredirdlg, the system
coordinator may set restrictions to the worst case exattitioes in cooperation with
the application engineers, while the sub contractors ketpériod and deadline re-
straints within each application.

3.2 Time-triggered tasks

It is important to characterize the time-triggered task anderstand what makes it
different from its event-triggered counterparts. A typiesent-triggered tasks has
four states

running The task is assigned to the CPU and is executing its insbnti

ready The task is ready to be assigned to the CPU. A task entergaltésvghen it is
activated or preempted.

waiting The task is waiting for at least one event before it is readgatinue its
execution.

suspendedThe task is passive and can be activated.

Figure 3.1A illustrate these states and the possible transi

For time-triggered tasks, the waiting state does not ekigs means that they are
not allowed to use blocking resources or wait for events.tAgonotable difference
is the direct transition from the suspended state to theimgnstate. The execution
states and transitions of time-triggered tasks are showigimre 3.1B.

14
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preempt
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Figure 3.1 Execution states of event-triggered (A) and time-trigdgE) tasks.

The time-triggered task runs periodically, leaving andegng the suspended
state upon each invocation. The event-triggered task wiypidally only leave the
suspended state at system startup and enter it again beftemnsshutdowh It
would release the processor during temporary inactivilgguhe wait state. A time-
triggered task is never ready without returning to the sadpd state. It only releases
the processor if

e it terminates
e itis preempted
e an interrupt causes the processor to switch to an interaipice routine

There is of course, also the possibility of the kernel idgimg an error, causing the
system to enter a special state. This is seen as a speci@drhienot of interest for
the general discussion.

The time spent utilizing the processor between leaving tispended state and
reentering it, is the execution time of the invoked timgdered task. This time may
vary due to conditional statements and iterations in theecddhe worst possible
execution time on any invocation is referred to as the taskstzase execution time
(WCET).

Since the discussion has compared the time-triggered amd-based task, it is
worth pointing out the existence of a third type. Anyone f@amiwith OSEK/VDX
knows it as the basic task. Others commonly refer to it as glesishot or one-shot
task. This task is similar to the time-triggered task butcexes in the event-triggered,
priority based environment. It does not have a waiting statthence, should always
actively perform its task when it has not been preempted kgtzeh priority task or
an interrupt. When the task is complete, it returns to thpesuded state. A difference
between the single-shot task (due to its execution in tregipribased environment)

Although several real-time systems also implement evased tasks without the waiting state
(basic tasks in OSEK).
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and the time-triggered task, is that the single-shot tasérerhe ready state as it is
activated.

3.3 Scheduling

The fundamentals of time-triggered scheduling is thatuhoa worst case execution
time and definition of a deadline for each task, create acssatiedule that allow

every task to meet its respective deadline. In generaldingila schedule is NP-hard
(i.e. verifiable in nondeterministic polynomial timé{n*), where n is input and k is

a non-negative number]). However, the characteristicheftime-triggered system
makes it a wise choice to use deadlines for an heuristic apprdzarliest Deadline
First (EDF) scheduling is the common name for dynamic daadicheduling. In its

simplest for we have the following requirements

e preemptive

e periodic tasks

¢ independent task execution

e each task has a period?

e each task has a worst-case computation tiie
e each task has a deadline requiremeby

e D,=P

In EDF, the scheduling technique is to always execute thewdth the shortest time
remaining until its deadline. With the requirements meis gasy to calculate CPU
utilization and make sure it is less than 100%, which is tigeirement for all dead-
lines to be met.

t:nC
U=y =2t < 3.1
;Pt— (3.1)

In our static approach, we could base scheduling on thisleiBPF principle.
However, the preferred technique used to create a scheslusually undefined and
up to the end user. Note though, that basic EDF guaranteew/¢hean find a valid
schedule up to 100% utilization. However, the requirem@nt= P; is very restric-
tive.

One of the benefits of creating a static schedule is that sisabecomes very
simple. All we need to do to validate the schedule is to goughoit and check
that all timing requirements are met. We can try to set sonaglldess less than the
periods O; < P,), generate the schedule, and run through it to check walidie
may sometimes be able to handle special cases and tweakduse by hand. We
could also use a more sophisticated computer program togferschedules that try
to minimize for example the jitter of specific tasks.

Another benefit of the static schedule is the ease of use lyetinel. The system
scheduler simply runs through a schedule stored in memagryaiic approaches re-
quire the kernel to perform steps such as altering dynanucifees and searching for
the highest priority task. On the down side, a schedule coutdume relatively large
amounts of memory. In fact the schedule length may grow hapithen increasing
the number of tasks. The length can be calculated as thedeashon multiplier of
the periods of all scheduled tasks

Lschedule = lcm(Ph P27 sy Pn) (32)
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If the task count is kept small, the schedule length will migsty not be much of a
problem. However, when centralizing many tasks to one EG&Jdngth can become
very large. The need to keep the schedule small could patigndrive a system coor-
dinator to limit the accepted periods to multiples of a giugeger or set of integers.
This could force periods to be smaller than necessary ardeces unnecessary load
on the CPU. This would also limit the flexibility for systemvedopers.

The kernel may want to perform some special operations antef the sched-
ule. Long intervals between these operations are not de$igen, methods to sched-
ule these operations to occur within the schedule are usgdaid. An example of
such a specific operation could be deadline monitoring.

Possitive aspects of time-triggered scheduling are

e possible to guarantee execution time pre-run-time

easy to create reproducible results since the executiar @dtatic

deterministic behavior

even at high load, we can guarantee deadlines
e easy to analyze the schedule

and the following drawbacks are the main disadvantages
e relies on polling for events.

e schedule must be defined pre-runtime.

3.4 Resource allocation

It is clear that dynamic memory allocation gives rise to fnagtation issues and the
possibility of running out of memory. Both result in a systeiith non deterministic
behavior. This is generally unacceptable in a real-timéesysand especially for the
hard-real-time nature of the time-triggered system.

In a time-triggered system, all task can share the same. sthik is due to the
fact that a preempted task will never continue its executiatil the preempting task
has exited, thus restoring the stack. For every task, thast be a defined maximum
stack usage. The total allocated stack memory must be as d&rghe largest sum
of maximum stack usages within the schedule, i.e. to cdkeulee stack size, step
through the schedule. Every time a thread starts, add itshmizx usage to the stack
size. Every time a thread exists, remove its maximum usage tine size. The largest
value obtained during this procedure is the required staek s

To be able to guarantee the deterministic features of aftiiggered system, re-
sources must be statically defined. Although it is the mostroon case, off-line
allocation is not necessarily required (resources coulstdecally set up during sys-
tem initialization). The off-line scheduling describedles, is an allocation of the
central processor unit resource.

3.5 Synchronization
Since time-triggered tasks are not allowed to block, resmunanagement must be

taken into consideration while scheduling the tasks. Mutalusion on shared re-
sources must be guaranteed by the scheduler. Common taekrigch as semaphores
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and mutexes are not allowed at all. Thus, tasks sharing a conmesource may not
preempt each other. Methods to ensure no preemption betwvegtin tasks can be
added to the scheduling algorithm. Sorting the scheduléatathe task writing to a
resource precedes the tasks reading the resource is atsblposhis ensures minium
delay to the signal transmitted through the resource. Hewall this increases the
scheduling complexity and makes it less possible to findalskg solution.

It is the blocking restriction that eliminates the usageyifchronous resources.
Asynchronous communication does not cause any problemstantic sized vari-
ables never cause concern. However, time-triggered tamlsl @lso communicate
grouped sets of data as long as the system guarantees ajmmations. It must then
be taken into consideration that any atomic operation rtansic to the processor,
basically "halts” the system during operation. This affesystem responsiveness.
Preferably, only methods fast enough to be neglectablenglanalysis should be
available.

3.6 Ildle time

It is highly unlikely that a real-time application (or seakrpplications) will reach
a processor utilization of 100%. This can be due to precedeglations and exclu-
sion relations between threads as well as resource caoristrdiis very uncommon
that a time-triggered schedule will result in full processblization. When a system
approaches very high loads, it is likely that some deadlaresmissed and no valid
schedule can be found. Therefore, a valid schedule almastyalleave a few (and
often more) percent unused. Also, the worst case executi@stused to create the
schedule are worse than the average time spent to execkse $asn general, there
is even more free processor time than the schedule suggests.

Both Rubus and OSEKTtime use this spare capacity to execlgeesnt-triggered
sub-system. In Rubus, it is an incorporated part of the dipgraystem. In OS-
EKtime, it is done by running an OSEK/VDX system in the idlskaf the time-
triggered system.
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4. Memory management

4.1 Introduction

In this section we introduce memory management and protetdi solve the prob-
lem of isolating applications from each other. We will dissuand evaluate some
approaches, starting with the most basic ideas as useden ateration systems. In
its basic form, memory management is not concerned with mgprotection. In-
stead, its purpose is to create a multiprocess environmehtaautilize memory as
efficiently as possible.

Dynamic memory and the loading and unloading of programs amd out of
memory, gives rise to a phenomenon known as fragmentatius iFof great concern
in a general purpose system and therefore memory managéaedeveloped a lot
within this area of computer science. For special purposéesys we can more or
less predefine memory and thereby avoid fragmentation. lengtroblem solved
by predefined memory is that of relocation. In a general pgegpaultiprogramming
system, processes will be swapped in and out of memorynitpessible to determine
exactly where in memory a program will be placed and so,cstatilressing becomes
a problem. We will not look into this as our presumptions aeg the complete system
has been set up off-line.

Our special purpose system will greatly reduce the comigletimemory man-
agement. The statically defined system does not need to kerad with effective
memory swapping and there is no need for logical addressimglative addresses
and address redefinitions.

4.2 Memory setup with software components

Each software component contains the memory of the includskls stack, data
memory and code. The code is often located in flash memory lseréfore has a

natural separation. The data memory must be shared betWdeaska of the same

software component. This to allow direct communicationdeetn these tasks. The
stacks can be separated go gain security. This would rego@extra memory region
of the hardware compared to when tasks share memory for doksstlt is desired

that the stack of the executing task is surrounded by smgheats of memory with

write and read protection acting as trip wires for stack fioess.

4.3 Criteria for evaluation

The memory protection techniques discussed in this seaterevaluated through a
list of pros (+) and cons ). A property may have more than one positive sign if
it is very good and more that one negative if it is very bad sTrharking is relative
to the other concepts. The-] notation is used for uncertainties. Every property is
followed by a short comment to describe why it was chosen assiiye or negative
aspect. Choices are made from what would be expected torgamthe concept but
also as a result of the hardware support found. Table 4slthstinvolved evaluation
criterias with a short description.
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Analyzability / Pre-
dictability

Is it easy to analyze and predict system properties

and are the results certain?

Overhead

The extra work conducted by the CPU when

n-

troducing access rights (read/write, user/supervisor)

and additional functionality such as logical addrefs-

ing.

Functionality

The protection properties supported.

Context Switch

The work load required to update the memory man-

agement system during context switches.

Initialization

The work load required to initialize the memory

management system during startup.

Memory utilization

How well the memory is utilized.

Portability Can we expect to be able to easily port to several dif-
ferent architectures or will implementations be very
specific.

Complexity Simpler systems will be easier to work with and yn-
derstand. This could decrease development timejand
be less error prone than complex alternatives.

Cost Expected cost relative to other approaches.

Remarks Negative if the concept imposes restriction not |n-

cluded in the properties above.

Table 4.1 Evaluation criteria

4.4 Base & Bounds

With simple base and bounds, an application owns a singlatprmemory area. Two
registers define the starting address of the memory aredébe register) and the
size (bounds register). Every memory reference is comparéite bounds register
and then added to the base register. An error trap is trigggven bounds violation.

The kernel runs in supervisor mode unrestricted by any b&umtis approach is

attractive due to its simplicity and minimal overhead. Hoereit is not useful to our

purpose for several reasons:
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1. Since every process is restricted to a single continuartgipn we cannot ex-

ecute directly from Flash-memory. This would require a vierge RAM to
host all executable code and data. We could instead loas itsskRAM at ex-
ecution time but that would increase the time for contextavas enormously.
Also, we would need to allocate and use an area of RAM largegnao fit
the largest executable entity to avoid external fragmemassues.

. The stack memory cannot be separate from static/globaiane This allows

the stack to grow into data memory and pointers to corrupstaek without
notice. Detection would, of course, not solve invalid perstand overflow-
ing stack issues but it would simplify debugging and couldtsprors before
serious damage is done.

. For optimization purposes and code reusability, we mangtuasks to share

common parts of memory. One example is shared libraries &izhigcon-
stants. This may become problematic with only one partiientask.



4.5 Partitioning / Segmentation

Base & Bounds is too restrictive but it is not far fetched tmkhthat the addition
of a few more simultaneously active regions would be enoogdetve our purpose.
Partitioning simply refers to dividing the memory into sealeregions. In its basic
form, every partition hosts a complete process. The terrmsatation can be seen
as an extension, where every process is divided betweemnas@agtitions. These
partitions are called segments. We could, for example ragpa program into a code,
a data and a stack segment. For dynamic systems, this id teefelocation issues
as well as for reducing the size of partitions, making fotdratnemory utilization.

The segmentation aspect does not need to be explicitlydadlin the hardware,
especially in our static system. The off-line memory defnifrees us from the need
to use any logical addressing. We are free to compile all nesdnto one package
and use direct memory addressing as long as we have they dbilitefine offsets
for each module (linking stage) and restrictions on diffé@eas in memory (during
execution).

The realization could be done in several ways by exploitipgastunities in sim-
ple or more complex memory systems. Our goal though, is tcausgstem that is
as simple as possible. Typically, systems that supportlsimpgrtitioning have one
or more drawbacks. Basic support is most commonly found wrdod systems and
with the main ambition to separate kernel and user spaceh&nproblem is the lack
of standardization. In Chapter 5 however, we will discuss hardware architectures
with good potential. These micro-processors have embrdmeedoncept of a MPU
(Memory Protection Unit). This is a simple and fast unit desid for special purpose
systems, as opposed to the MMU (Memory Management Unittslei for general
purpose designs.

Pros and cons

We state two cases for pros and cons, weak hardware suppbie(4.2) and strong
hardware support (Table 4.3). The first case is based on wtigpically found in
older, commonly used hardware specifications. The seca®lisdased on the con-
cept of MPUs which comes really close to fulfilling all our teégments.

4.6 Paging (the MMU)

Unequal fixed-size as well as variable-size partitions meéficient memory manage-
ment techniques in general purpose systems. With paging, memory as well as
processes are divided into equal fixed-size, relativelyllschanks. Process chunks
are referred to as pages. Pages can be assigned to avdilables ©of memory, called
frames. Frames are not required to be aligned in phyiscalangralthough to pro-
cesses the virtual memory looks continuous. MMUSs are desidor paging systems.

Paging is often associated with virtual memory. It is impaottto distinguish be-
tween virtual memory and logical addressing. Virtual meynextends logical ad-
dressing with page swapping to a larger and slower memoiy. adds a huge over-
head and is of no interest in a real-time environment.

Utilizing a memory management unit

When using a MMU the CPU does not have direct access to the mpefibcom-
munication passes through the MMU. The MMU interprets thggdal address the
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-+ | Analyzability / Pre-| Simple to calculate the exact cycles required to pp-

dictability date the limited amount of registers.

+ | Overhead. None

— | Functionality Only able to deny writing, no detection of read vip-
lations.

+ | Context switch Fast since we only update a few registers.

+ | Initialization None needed. Regions are fetched from constant
memory or in the extreme case even compiled in as
instruction constants.

—— | Memory utilization | Large internal fragmentation due to a large mipi-
mum size for partitions.

— | Portability Lacking standards

+ | Complexity Simple method.

+ | Cost We expect such a simple method to be relatively
cheap and to be found in older architectures.

— | Remarks Few simultaneously active partitions.

Table 4.2 Partitioning/Segmentation - Weak hardware support (e RCSb5)

+ | Analyzability / Pre-| Simple to calculate the exact cycles required to up-

dictability date the limited amount of registers.

+ | Overhead. None

+ | Functionality Read, write and no access support.

+ | Context switch Fast since we only update a few registers.

+ | Initialization None needed. Regions are fetched from constant
memory or in the extreme case even compiled in as
instruction constants.

+ | Memory utilization | Better than the previous case but could still capse
problems.

— | Portability Lacking standards

+ | Complexity Simple method.

+ | Cost We expect such a simple method to be relatively
cheap and to be found in older architectures.

+ | Remarks Still very limited amount of simultaneous partitions
but probably satisfactory in most cases.

Table 4.3 Partitioning/Segmentation - Good hardware support (l§TARM, MPU sup-

port)

CPU is using to a physical address in memory. This transldtmm virtual to phys-
ical adds some overhead to the access time. To overcome #&agsdhe MMU has
a cache, the TLB (described below), where recent tranglatioe stored. The draw-
back is different access times between pages cached in tBeaitl pages not yet
cached, which implies a system with poor real-time qualitie
This is normally not a problem since deterministic behaigarot crucial in com-
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mon operating systems. In hard real-time applicationsdaiot be tolerated, thus
using a MMU in an ordinary fashion is not a viable solutionolr case, we are deal-
ing with static predetermined memory areas. It is possibtetermine the maximum
overhead caused by table lookups during the execution akabiat it is not possible

to determine exactly when TLB misses occur, hence, the mystnot be said to
be completely deterministic. The question is whether ekaotvledge of when the

overhead occurs is required.

The translation look-aside buffer (TLB)

The TLB is a small, very fast, array of registers. Each entrthe TLB contains a
virtual page address and a corresponding physical pagesslddepending on page
table implementation, the TLB also include a status fieldvwiformation regarding
page sizes and access rights. A typical TLB has about 32eegli$-igure 4.1 shows
a sketch of a simple TLB.

| Entry 1 | | Logical A ddress [31:12] | | Physical Address [31:12] ‘ | status ‘
| Entry 2 | | Logical Address [31:12] | | Physical Address [31:12] ‘ | status ‘
Entry 32 | | Logical Address [31:12] | | Physical Address [31:12] ‘ | status ‘

Figure 4.1 TLB Layout

Deterministic memory protection using a MMU

In this approach we discuss the possibility of completelgdrinistic memory pro-
tection using a memory management unit (MMU). A problem withmplementa-
tions utilizing a cache is that it is hard to make it deterstioi due to cache misses.
In this approach we will consider the case when not using mwmory than the
cache (TLB) can contain at the same time. This will ensurestdad deterministic
behavior since no TLB misses can occur.

The problem lies in filling the TLB during context switch in ast and efficient
manner. TLB misses are handled in different ways for evepcgssor family. In
some architectures a TLB update is done completely in haelwéthout the OS
ever knowing. This makes it hard to control the update. Ong wauld be to gen-
erate a memory access to every page a task needs, duringhiexicewitch. The
overhead added to every context switch is an interrupt feryepage associated with
the process and the time it takes to read these from memaig/nigihod will need a
separate analysis to prove that the TLB will actually cantdi relevant pages when
a context switch is finished, else deterministic behavidirvait be guaranteed. More
on how to fill the TLB can be read in [9].

Another way of handling a TLB miss is to let the programmerdiarthe update.
This is called a software update. Whenever a TLB miss occunstarrupt fires and it
is up to the interrupt routine to update the TLB. In this wag klernel is in full control
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of the update process. This implies some demands on thegtistr set of the CPU.
There must be a way to update a specific entry with given agdvéish such a feature
it would be possible to pre-fill the TLB during a context sviitend then eliminate all
further TLB misses for the next task to execute. The TLB migtrroutine mentioned
above would only execute every time a process tries to acoessory outside of its
boundaries, thus a fault.

Filling up the TLB impose a large overhead on context swicheaking it an
unwise decision to perform a complete context switch onyekernel interference.
There must be a way for the kernel to execute without refnestiie TLB. One way
would be to reserve space for the kernel in the TLB (for evepliaation) and pro-
tect it with super user rights. This would on the other handtezgaome TLB entries
and probably impose a demand of variable page sizes to redtez@al memory
fragmentation.

Another possibility would be to combine the TLB with some rsemtation tech-
nique. In this setup the TLB will impose a more fine-graineok@ction between tasks
while the registers setting up the segments divide the mgintwr segments defining
OS specific memory, program memory and data memory (reféoredFigure 4.2 as
Segment 1, Segment 2 and Segment 3). The TLB protectionysactive in segment
2 and 3. To access memory in segment 1 the task must be in ggremode. This
makes it ideal to store the kernel in segment 1 since it istfastvitch between user
and supervisor mode.

Sagment 1 Task 1

Application 1

Task 2

T T

Sagmant 2 Application 2 Task 3

Unusad

Data. task 1

Data, task 2

Sagmentd <

==

I
T | Data, task 3
H—R

Drata for tasks in app 2 |

| 112 buffars |

Figure 4.2 RAM layout

Pros and cons

We state two cases of pros and cons. One for full utilizatibthe MMU with TLB
updates performed as needed (Table 4.4) and one where thasTiyRRlated com-
pletely during the context switch (Table 4.5).
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Table 4.5 MMU - TLB update during context switch (deterministic memqrotection)

4.7 External hardware

—— | Analyzability / Pre-| Complex to analyze and cannot be exactly predicted.
dictability It may not even be possible to guarantee an exact
overhead caused by table lookups.

— | Overhead. TLB misses cause overhead.

++ | Functionality Read, write and no access support for user and su-
pervisor modes. Implicitly adding logical address-
ing.

+ | Context switch Update one or a few MMU registers.

— | Initialization Requires setting up the MMU functionality.

+ | Memory utilization | Depends on available page sizes and TLB entries.
Minimum of 4 kb page size seems to be standard|but
support for smaller sizes exist. TLB with 32 entries
are common but larger and smaller variants exist.

+ | Portability MMU standard.

— | Complexity Complex technology.

+ | Cost The MMU is a well spread technology and is qujte
cheap.

+ | Remarks No further negative aspects found.

Table 4.4 MMU - Full utilization
+ | Analyzability / Pre-| Requires a careful analysis to guarantee no TLB
dictability misses. Predictability is good if this requirement is
met.

++ | Overhead. None. TLB lookups are included in the processor
pipeline.

++ | Functionality Read, write and no access support for user and su-
pervisor modes. Implicitly adding logical address-
ing.

— | Context switch Extensive update of the TLB entries.

— | Initialization Requires setting up the MMU functionality.

+ | Memory utilization | Depends on available page sizes and TLB entries.
Minimum of 4 kb page size seems to be standard|but
support for smaller sizes exist. TLB with 32 entries
are common but larger and smaller variants exist.

+ | Portability Special MMU requirements.

— | Complexity Complex technology.

— | Cost Advanced MMUs are new to embedded systems

+ | Remarks TLB and page size may restrict available memory to
applications/tasks.

In this section we will have a look at an example of a memorygmtion system using
an external programmable logic device attached to the mebns. Two protection
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techniques are discussed, a variant of partitioning anderadvanced version with
similarities to a MPU or MMU. It is material for discussiondshould in no way
be thought of as a recommendation for implementation. Hewew create a clear
picture we go into some basic details and therefore it ishwvpointing out that

e The name of pins, registers or any other component are natyinvay related
to a real set-up. Names may coincide with pins found on a ngglementation
performing a completely different task or with differentamditional synchro-
nization.

e The PLD memory controller implementation is always reféne as the PLD
as to not confuse it with the memory controller of the micom@ssor.

PLD internals

The PLD controller is meant to function as a simple comparased to partition
memory. No logical addressing is involved so the PLD doeseed to perform any
conversions. Functionality is very similar to partitiogibut could be extended with
additional functions since we are in control of the hardwarmglementation.

We consider two distinct operational techniques. One isreviiee PLD knows
nothing of applications and tasks. In this case, the PLD wovith a small set of
registers that define memory protection for a fixed amountditppns at the current
point in time. These registers need to be updated by the ketmenever there is a
context switch. The other variant is where the PLD knows alimory information as-
sociated with applications and tasks. In this case, the Rtdp& a record of memory
information for every application and/or task. The kernel@y updates application-
and task-id’s when a context switch occurs.

The latter case requires an extensive initialization dusystem boot and a more
complex PLD module. The former requires more work during rext switch. The
kernel needs to lookup the memory definition of active apgilin and task, and use
this information to update the PLD registers. Not many itegisneed an update, but
relative to the latter case, the update process would taksiderable time. However,
relative to the tasks, the context switch could probably girform really well (e.g.
compared to updating a TLB).

Whichever way we choose to implement the PLD, we need to dpvaeshort and
fast algorithm for boundary comparison. To do this, resbits may be imposed on
how memory regions are defined (e.g. sizes and starting sskedo the power of
two). If it is possible to create a fast enough PLD able to defagions of any size
and located at any offset in memory, it would be a great arguifioe this approach.

General operation

This section applies to Figures 4.3, 4.4 and 4.5.

The PLD waits for theéOperation Enablepin to become active. This signals that
either a read/write or a PLD control operation is in progrés$it in the MemCirl
array is used to determine if the kernel is sending a PLD obmiperation. The
Memint, MemCtrendMemStatports are used by the kernel to operate the PLD and
should be accessed by the kernel only.

In case of a regular memory access operati@antrol signal bit inactive) the
PLD will compare the address to an active memory partitidreste. This scheme
has areas with read only, read/write or no access permiséioite operations are
signaled by thaNrite Enable pin being active. When an invalid request is sent the
PLD fires an interrupt through a dedicated interrupt pin. Kémmel gets information
about the invalid action through the status port.
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A simple PLD implementation could use the Control bus to slwhietween user
and supervisor modes. Since there is no logical addressiundved the supervisor
gets direct, unrestricted access to memory and the PLD f#@jpot into an idle state.
It is common for a memory controller to also include supewigccess permissions
on a memory region basis (e.g. per page in a paging systens)could be useful to
restrict also the kernel and aid in detecting any malfumstio

Hardware setup (wiring) considerations

In the case of th®bserver setuggFigure 4.3) the PLD simply listens in on all com-
munication. In theGateway setugFigure 4.4) the PLD intercepts communication
and forwards it to the memory only when access is grantedrivilliead error occurs
the PLD fires an interrupt and the kernel has the possibifitsesolving the issue.
The observer setup has no ability to halt an ongoing writeaifm, thus no write
protection.

The extended observer case (Figure 4.5) has a solution tavrites protection
problem. The PLD is able to inactivate thériteEnableinput of the memory with
an AND-gate. A potential problem with this setup is that itltbdisturb the timing
requirements of pin activation/deactivation, especi@fiank-triggering, and thereby
cause erroneous results. It might also not be hard to ensatdhte PLD acts fast
enough to actually cancel the operation before some patieofitemory has been
altered.

The gateway case lets the PLD handle all transmissions agstfit. This setup
has the ability to completely hide restricted memory whetba former cases actu-
ally allow applications to read data with the addition of Keenel being notified. To
make this a robust implementation we allow the use of extria states to analyze
permissions and thereafter forward data to the memory arrretome null (zero or
undefined) result and fire the violation interrupt. The setgd potentially decrease
performance by adding overhead to memory operations bofrsdsease robustness
and portability.

The observer cases, without synchronization registefsonly require the ad-
dress signal to pass through short gate logic before a igsuitput. It is not uncom-
mon for a memory operation to include one or more synchrdioizacycles where
e.g. theWrite Enablepin is active and the address is on the bus, however the data is
not yet transferred to the data bus. Such a stage would gyobakenough for the
PLD to conclude its result and cancel the operation.

Timings must be carefully considered and studied for eacheary case. Nei-
ther can we take for granted that switching a single inpuglgl and effectively
cancels the operation, other problems could arise due tiwhoiving protocol.

Another definite problem is accessing on-chip memory. Theranatontroller
must support an external slave device that is allowed fudkss to internal mem-
ory or we have no choice but to use external memory.

In the pros and cons lists 4.6, 4.7 and 4.8, we only considedifferent hardware
setups. The PLD boundary setup affects context switchalizsition in all cases. In
the two cases discussed earlier one leads to a fast finalizhtit a slower context
switch and vice versa. The flexibility given by creating agakzed PLD allows us
to make this a later design issue. However, it is importamkesp this in mind when
comparing these variants to other concepts.
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Figure 4.5 Extended observer layout

4.8 Software techniques
It is tempting to exclude memory protection through sofeviechniques because of

the extreme overhead it would cause. For pure software mgaations this could be
justified but software techniques could potentially alsdhady to support features
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+ | Analyzability / Pre-| The hardware analysis could be quite complex byt is
dictability of no relevance to the kernel/application developers
and administrators. Knowing the hardware specifics
implies good predictability.
Overhead. None.

—— | Functionality No write protection.

+ | Context switch Depends on the chosen implementation

+ | Initialization Depends on the chosen implementation.

+ | Memory utilization | Designed to fit the purpose.

+ | Portability Interaction with memory make coupling with sur-
rounding more complex.

— | Complexity The concept is simple enough and kernel implemen-
tation can be made fairly simple. The hardware (in-
teraction could be very complex.

——| Cost Hardware development and the addition of external
hardware increase costs.

— | Remarks May not be able to utilize internal memory.

Table 4.6 External PLD - Observer setup
+ | Analyzability / Pre-| The hardware analysis could be quite complex but is
dictability of no relevance to the kernel/application developers
and administrators. Knowing the hardware specifics
implies good predictability.

— | Overhead. Extra wait states delays memory access.

+ | Functionality Read and write protection.

+ | Context switch Depends on the chosen implementation

+ | Initialization Depends on the chosen implementation.

+ | Memory utilization | Designed to fit the purpose.

+ | Portability As long as the micro controller supports wait states.

—— | Complexity The concept is simple enough and kernel implemen-
tation can be made fairly simple. The hardware |in-
teraction could be very complex.

——| Cost Hardware development and the addition of external
hardware increase costs.

— | Remarks May not be able to utilize internal memory.

Table 4.7 External PLD - Gateway setup

perhaps lacking in hardware. However, we have found putevacé techniques that
indicate an acceptable performance loss. Such losses beutdmpensated with a
faster processor. The documentation of such techniquesryssparse and mostly
teasers introducing the reader to current research. Thergladea is to use off-line
analysis through theorem provers (the common name forcatifntelligence logic

analyzers) and add instructions to compiled code in p@kytiangerous areas.
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-+ | Analyzability / Pre-| Knowing the hardware specifics implies good pfe-

dictability dictability.
— | Overhead. None.
+ | Functionality Read and write protection.
+ | Context switch Depends on the chosen implementation
+ | Initialization Depends on the chosen implementation.
+ | Memory utilization | Designed to fit the purpose.
— | Portability Interaction with memory make coupling with syr-
rounding more complex.
— | Complexity The concept is simple enough and kernel implemen-

tation can be made fairly simple. The overall hafd-
ware/software interaction however, could be quite

complex.

——| Cost Hardware development and the addition of external
hardware increase costs.

— | Remarks May not be able to utilize internal memory.

Table 4.8 External PLD - Extended Observer setup

The most basic approach would be to add address checkingtactiag code
at every memory access. Such an approach would create emoanwunts of over-
head. To improve it, we could let the analyzer allow code #itaess static addresses
within acceptable areas. This could cover a large part ofatteesses made in our
predefined system. The analyser must also take care of trerieat of pointers and
other ways to access memory in a more dynamic manner. Thisas things start to
get complex and it becomes hard to guarantee complete pasiec

We state a hypothetical pros and cons list for a pure softsaklaion in Table
4.9. The few and short introductory articles we have enaredt claim that write
protection can be ensured with as small overhead as 4%.poiaiing read error
detection, increases the overhead a lot.

4.9 Conclusions

The MMU has established itself as a standard for memory neamegt and memory
protection, at least for the desktop market. It seems thayrdasigners of embedded
real-time systems blindly pursue the idea of embracing thdMoncept and use it
in their systems. For dynamic systems, this is the best ehascthe paging system
of MMUs is well suited for dynamic allocation and supportgit@l addressing. For
static systems, the MMU supports features that are beyancetjuirements.

The non determinism of TLB misses is not the largest condeisiclear that in a
static system, the amount of misses is restricted and cewdlsulated or determined
through a trace utility. Also, the overhead of loading amemito the TLB is very
small compared to other delays in most systems. The flaw dfitvi&J in our targeted
system is its complexity. Whether or not this complexityastty is unclear. Usually
we have to pay for the development of advanced systems buaviitability and
standardization of MMUs reduce their relative cost. Theeeather concerns to the
MMU. Kernel development will be more challenging on a comdgstem. The fact
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——| Analyzability / Pre-| It is hard to guarantee that the analyzers will find
dictability every possible case access violations.

——| Overhead. Lots of overhead compared to hardware approaches
(although some argue that simple write protectjon
only gives about 4% overhead on average).

+ | Functionality Could do almost anything but adding functionality
will increase overhead.

+ | Context switch None since everything is within the application code
itself.

+ | Initialization (Like above).

+ | Memory utilization | Quite exact bounds could be used.

— | Portability The method could work on object code generated by
the compiler.

—— | Complexity Severe.

— | Cost Extensive development cost. Low production cgsts

but fast processors are needed to compensate for
added work load.

— | Remarks Adding security code will increase program size.

Table 4.9 Software techniques

that TLBs consume relatively large amounts of power couldalserious issue in
small embedded systems but for a vehicle this may be moressiingifferent. The
last and most serious property is the paging system. Pagihglways suffer from

a minimum page size creating internal fragmentation isswegiicing the memory
utilization.

It is more fitting to use the simpler MPU approach, based onigage of a simple
partitioning/segmentation setup with static addresdiaably, this can be deduced
by simply considering the respective names of these sysfEnesMemory Manage-
ment Unit is designed for complex memory management. Otic Sigstem does not
make use of such advanced techniques as dynamic allocatbridual memory.
All we require is memory protection, hence, the Memory Rrsb@ Unit suits well
with our purpose.

Creating specialized hardware or using a software approacioe excluded be-
cause of the complexity, timely development and (at leastdodware development)
the large costs involved. Hardware would have been a irttegeapproach to chal-
lenge the wide spread MMU concept. However, the market arslgartly presented
in the following chapter, has proven the availability of pier, sufficient hardware
utilizing MPUs.
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5. Hardware support

5.1 Introduction

In this section a number of potential microcontrollers asenpared. The hardware
is a selection of the controllers that have been invesii§?é], [27], [28], [29],
[30], [31], [32], [34], [35] throughout the thesis work. Wihaistinguishes these mi-
crocontrollers are that they have a suitable memory ptiotechechanism and addi-
tional components such as a CAN bus. Almost all of the miantodlers are marked
“suited for automotive industry”. This means the device &aperational temper-
ature range from -40 to 80 degrees Celsius. There are oftea than one candi-
date based on the same architecture, with minor differeni@eseduce the amount
of presented controllers, only the most appropriate froohesd the architectures is
included.

Note that the text makes no distinction between the termsocontroller and
microprocessor. The devices are refered to as microctersalr in a shorter form as
controllers or processors.

5.2 Requirements

Segments The number of active segments the memory can be divided snito-i
portant. Basically there must exist at least three areasn Tie memory can be split
into the following areas: Currently running applicatiorerizel, and the rest of the
memory. This is a simplified picture of our memory protectsmmeme. The size and
placement restrictions are also of importance. Normaklyetexists a minimum size
to a protected region and starting addresses are limitede¢dan set. These require-
ments are implications of speed and resource optimizatiotingn the hardware.

Accessrights  The possible access rights for each block or segment areuo$e&o
crucial. No access, Read/Execute, Write and Read & Writerewreommon levels.
Necessary levels are Read/Execute and Write & Read. Thessdsar the minimum
requirements.

Run modes There must be a way of disabling the memory protection. Theete

and other trusted code (such as drivers) need full accesg tapplications memory
pools. This is often called supervisor mode and user moderte processor is put
in supervisor mode the execution application will have adtess to the complete
address range. This feature is very common and includeckiry @wvodern microcon-

troller.

Run modehandling How the handling of supervisor mode is implemented in hard-
ware has a major impact on low level memory protection imgletation. The over-
head of entering supervisor mode is crucial for performaarte should not be too
large. If the mode can be changed through an instructiontiignthe address range
from where supervisor mode can be entered is also an impdeiare, but not nec-
essary.
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Performance Rather fast processors are desired but not required. Ous isdhe
performance impact relative to the system running with dheat memory protec-
tion. Since applications are supposed to be merged intdngron the same ECU,
the end result will require a processor that is much fastem tbday’s standards.

5.3 Microcontrollers

The remainder of this chapter will introduce the followingcnecontrollers which
all support partitioning or paging: ARM 940T, MPC 555, MPC585 Infineon Tri-
Core 1765 and Renesas SH7760. In addition to these, moreoevwery controller
designed for the automotive industry and with some sort ahorg protection has
been studied during the work. The ones described in thistehagpresent the vast
majority of the most suiting hardware the market has to offsery controller is
briefly presented with a short description and a list of pnod eons based on the
requirements described previously.

ARM 940T

This microcontroller is designed with the automotive irtdpisn mind. It is a gen-
eral controller for embedded systems. It has no internal €ARntroller and is not
certified for the automotive industry. The 940T has a MPU dngs tuses simple
partitioning as protection mechanism. There exist a spteressor to the 940T, the
920T which sports a complete MMU instead of a MPU. This is ndiject to fur-
ther investigation by us, due to various reasons. One bhatgtthas no easy way of
controlling the content of the TLB.

The 940T MPU has 8 available segments. They are divided iftasa address
and an segment size. The base address must be a multiple s#gheent size. The
minimum segment size is 4 kb, which is very large in relevanaaur target system.
The processor also has the possibility to turn off cachetglof segments. This will
improve deterministic behavior. Table 5.1 shows the prascams for this processor.

Feature Description Pro or con

Segment 8 data and code segments registers are very nice but
with size limitations. See the min. size will cause somge
note above. wasted memory.

Accessrights | R, RIW Good support

Run modes User mode, supervisor mode Average support.

Run mode hant Not specified

dling

Performance 185 MHz RISC processof. Very good performance.
Harvard architecture.

Table 5.1 Summarize of ARM 940T

MPC 555

This processor is PowerPC compatible and developed witautwnotive industry in
mind. It has 2 CAN controllers and is operational in the terapge range -40 to 125
°C. It has a MPU and no MMU. The MPU supports 4 data segmentsanitmimum
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size of 4 kb. The base address must be a multiple of the segizentOverlapping
is supported. By overlapping segments a protection with dt&ps can be achieved.
Table 5.2 states pros and cons.

Feature Description Pro or con

Segment 4 segments with size limits.| The small amount of seg-
ments will lead to interna
memory fragmentation.

Accessrights | R, R/W. Average support

Run modes User mode, supervisor modeAverage support

Run mode hani Not specified

dling

Performance 40 MHz RISC processor. Slower than the average of

Harvard architecture. the other compared CPUs.

Table 5.2 Summarize of MPC 555

MPC5554

This processor is a new PowerPC compatible processor frotorila. It looks very
promising since it has both a MMU with a 24 entry fully asstiecea TLB and a
MPU supporting 8 registers. The processor is designed éoautitomotive industry. It
has two internal CAN-controllers and can be extended toatymcal Interconnect
Network (LIN). The CPU core supports up to 600 MHz but thisiasair operates
at 133 MHz. This makes it reasonable to believe that futuoegssors will have
great performance. Page size and size limitations on sdgraes yet to be defined
in the specification and without that nothing can be said abwmory utilization.
Another specific feature needed is the ability to update th® through software-
implemented routines. This is common on desktop processibifsas not yet reached
the embedded market.

Feature Description Pro or con
Segment 8 segments with size limitg. Memory fragmentation.
24 entry in TLB
Accessrights | R, R/W. Average support
Run modes User mode, supervisor modeAverage support
Run mode hani Not specified
dling
Performance 133 MHz RISC processor | Maybe enough for a real im-
plementation.

Table 5.3 Summarize of MPC 5554

Infineon TriCore 1765

This special processor is designed with the automotivesimgun mind. It has full
automotive temperature range and two CAN bus controlleusthErmore, it has a
MPU (Memory Protection Unit) instead of a MMU. The MPU implents a parti-
tioning memory protection. The MPU can divide the memory iditsegments at a
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time. The processor can hold two sets with 4 segments eatfislway 8 partitions

can be held but only 4 can be active at same time. Switchingdasst the two sets
of partitions is fast. When entering supervisor mode the orgrprotection is not
switched off. Context switches are fast. Store and load dfdfathe registers are
done in hardware. A complete context switch of all registens be done in 2 clock
cycles. The CPU has a frequency of 40 MHz, a bit slow but woadifficient in

todays vehicles.

Feature Description Pro or con
Segment 2x4 data segments. 2x2 in-4 segments are just enough
struction segments but nothing more. Very fine
grained and precise segmegnt
limits is a plus.
Accessrights | R, R/W, X. Good support
Run modes User mode, User mode withAbove average support with
peripheral access, supervisptwo user modes.
mode
Run mode han{ Fast context switches andPerformance optimized.
dling run mode switches. Does nptHave all necessary features,
seem to have any method of
limiting mode changes.
Performance 40 MHz RISC processor. BSlower than the average of
parallel pipelines which are 4 the other compared CPUs.
steps deep. Harvard arch.

Table 5.4 Summarize of Infineon TC1765

Renesas SH7760

The SH7760 processor is based on the SH4 platform from Hitaéthough it does
not fulfill the automotive requirements or is a target platidor Rubus, we feel it is
still worth mentioning. This architecture has a very good MM'he MMU supports
64 data region and four instruction regions. The SH7760 airZ00 MHz, which
makes it a good candidate for a real implementation. Evemgihdt is fast the MMU
is the most interesting part of the device. It has some veiguanfeatures. The MMU
supports tasks to share the same virtual address spaces tasle an identifier in the
TLB links the entry to the right task. By doing so, no flush oeitl of the TLB is
needed during context switch. This performance optinorais very useful for tasks
with short periods. If the number of tasks is low it may be jjassto completely
eliminate the need to update the TLB during context switdte MMU also supports
variable page size, 1 KB pages and is fully associative. DBinéents of the TLB can
be updated by software which gives the possibility to piettié TLB during the
context switch. The minimum page size of 1 KB is still too bagniake it a realistic
candidate. The 1 KB resolution is good enough for instructieemory located in
flash but for variables located in RAM the fragmentation Veifld to too much wasted
memory. The controller has no internal RAM.
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Feature

Description

Pro or con

4  instructions
segments  an(
64  segmentg
for data and

The 64 segments can co
] tain both data or instruction
while the four other segment
are reserved for instructiong

n-This one of the best MMUs$

swe have found still the pag
ssize is too big.

D.

D

4%

instructions. 1 KB min page size.
R, RIW

User mode, User and supe
visor mode support

Access rights Average support

riNormal support

Run modes

Run mode han
dling

Does not have any method
limiting mode changes.

200 MHz RISC processor.

oThis feature is not very im;
portant

Will be sufficient for a real
implementation.

Performance

Table 5.5 Summarize of Renesas SH7760

5.4 Conclusions

In our comparison of microcontrollers we have emphasizethamg utilization and
the possibility to ensure deterministic behavior. A builtGAN controller has also
been considered an advantage but no requirement. Our rezodation for further
investigation is the Infineon Tri Core. This is also the moxnatroller the Rubus mod-
ification is based on (Chapter 9). The future of the MPU is serhat diffuse and
currently there are only a few processor vendors still dgiab new versions. Most
vendors have chosen to include both a MMU and a MPU or only a MMbewer
controllers. These raise some doubt about the future of the MAnother trend ob-
served is the adaptation of the MMU to embedded systems. g gize gets smaller
and variable page sizes are coming. The TLB update in futtoeegsors also tend
to be software based. This is a natural progression sinagettldop market have had
this feature for a while. To go with a MMU could potentially bébetter choice con-
sidering where the industry is heading in the future. Butsiaur requirements are
not met by any other than the TC1765 the choice was rather easy
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6. Transferring data

6.1 Introduction

This chapter notes some basic techniques for transferratg lletween protected
memory regions. We relieve the reader from any in-depth eémgintation aspects
and focus on basic properties. The overhead of a techniglisdgssed in relevance
to direct memory access. All operations are considered iafafmot specifically
stated that they are not.

As always, no technigque can completely avoid the possibilitprogramming
errors (bugs). Such errors can result in badly generate dafy pointers, illegal
access to resources etc. The transfer routine itself ddesan®about the actual data
content. Invalid data must be identified as an additionailtgameck, for example
in the software at the receiving end. Other errors can be mokess identified de-
pending on how well each resource is isolated. Just as tble istaeparated from the
data region, not to protect one piece of software from amdibheto identify internal
errors, resources could also be isolated for detectiongsep

When considering overhead, one must take into consideratecution over a
long period of time. Even if one access to a resource is alnglgsively fast, a large
amount of accesses may consume considerable amounts e§pootime. Optimized
approaches then save processing power. For the most pangetieral savings of
processing time is reason enough to study and consider siothe fault tolerance
but also the speed of kernel routines.

6.2 Shared memory

The fastest form of inter-process communication provided i
UNIX is shared memory[1].

A simple and effective way of performing inter-process caminating would
be to open up a part of memory and make it available for reaaivtwriting by all
execution software. For some amount of access restrictmoould allow access to
be granted to groups of software components. This is a marergkeapproach and
the way that shared memory is handled in for example UNIX.uBed access can,
of course, always be reverted to "all access” through argati only a single large

group.

Data transportation  Data is written directly to the same memory where it is later
read. Applications use resources within the shared memitinydivect access so there
is no transfer by any third part between the write and readabioas.

Datastorage Data is stored in a shared part of memory accessible formgamtid
writing by a group of software.

Protection  In this mode, anyone in the group can overwrite and corruptdata.

Race conditions can occur if software do not use API callsuarantee mutual ex-
clusion or atomic operations. Due to memory utilization daddware requirements
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(below) it is reasonable to believe that groups will be glsatge. Therefore, the pro-
tection is generally weak.

Detection  Erroneous read and write by software not included in the gmwith
access to the memory can be detected. Just as describedtectiom, the groups
can be expected to often be quite large. Therefore, the detection is poor since
the kernel cannot easily detect any erroneous reading @ingof illegal resources
within the group.

Overhead "All access” shared memory has no execution overhead alalen the
components are grouped, the overhead is the time takenup setess rights during
context switches.

Memory utilization  As long as the shared memory is divided into large blocks the
memory utilization will be good regardless of the hardwasedi As protection and
detection gets better when memory is divided into smalleags, memory utilization
gets severely worse due to internal memory fragmentation.

Hardwarerequirements Shared memory can be implemented without any protec-
tion mechanisms (i.e. one large partition). The number aflable partitions avail-
able in the hardware and restrictions to their minimum siziéldimit the amount of
possible groups.

6.3 Transfer buffers

One way of achieving total isolation between software conepds would be to use
local buffers. We can view this as shown in Figure 6.1a. THéelmistore outgoing
messages and supply input from other software componergsftivare component
sends information by writing to data resources locatedsimoital buffer. The infor-
mation is transferred to receiving ends by the kernel at sefegant execution point.

Data transportation  The kernel performs the actual transfer of data between the
two protected regions. It is the sending part that initigtestransmission. The trans-
fer will always take place if a task within the sending softevhas updated a resource,
regardless of whether the receiving software makes useoohibt.

Data only needs to be transferred whenever a context switblesnexecution
from one protected region to another and if any resource aamuated by the two
has been updated. The transfer routine is preferably callethg every context
switch, at task startup or as a result of a task voluntarilgiremits execution. This
would relieve the programmer from explicitly initiatingettransfer and ensure when
and how often the routine is invoked. However, task startogh @rmination does
not work for event based tasks may continue their executidefinitely. These tasks
must call the routines explicitly. It is also important thiae¢ check for updated data is
fast, especially if it is to be performed at every contexttekui

Data storage Data is stored within each protected region participatmthe com-
munication. One region stores it as output data and one oy rsi@ne it as input
data.

Protection  Both read and write protection can be applied. If the buffesplit into
two as illustrated in Figure 6.1b, it is even possible to@rotnput data from writing
and output data from reading.
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Detection  This concepts allows at normal operation, without separatand input
buffers, detection of erroneous reads and writes from soéwther than those com-
municating. By separating input and output into bufferdwexclusive read and write
access even erroneous operations from within the commnturgoeomponent can be
detected. Another possibility is to only isolate the inpuffér and keep the output
buffer with other component data. It is then possible to ceterornous writing to
input resources.

Figure 6.1c serves as an example of a scattered memory $etupdtentially
allows for even better detection of stray pointers and steekflows.

Hardwarerequirements To implement the separation into exclusive write and read
protected buffers, exclusive write protection is needetidrdware. This is a quite
rare feature. The number of possible active partitions supg by the hardware is a
limiting factor too.

Memory utilization  Without the separation into an input and an output buffex, th
buffer might as well be part of the data region. This meanstti@communication
memory is included in larger blocks of protected memory aedce, utilization is
good. If the separation is made, internal fragmentatioh veillarge if the hardware
has a restricted minimum size on partitions.

Overhead The overhead of this communication is roughly one memory d¢op
struction and the time required by the kernel to decide wisfources to transfer
(i.e. which resources have been updated).

Further notes  Write operations to the buffers do not necessarily need tidiaic.
We just need to ensure that a resource update flag is set assthapkration of the
resource update.

= ICCinput )
ICC buffer ICC output Data area SwC 1
ICC input SwC 2
Data area Data area SwC 1
= SwC 1 >
Stack SwC 1
Stack Stack
Y, = Data area Swi 2
ICC buffer ICCinput )
er np ICC input S 1
Data area Data area ICC output
| swe2 . SwC2
Stack Stack Stack swC2
A —~
a b c

Figure 6.1 RAM layout

6.4 Export buffers

If the transfer buffer meets shared memory half way, we getettport buffer. The
transfer buffers completely isolated a software compaer@mory. The export buffer

39



is less restrictive but eliminates the need for the kernetansfer data. Figure 6.2
illustrates the approach. Here, the output buffer (cirelgilable to task 1, is read-
/write enabled while task 1 executes. As the context swit¢hmm task 1 to task 2,

the write permission is removed from the buffer. Task 2 rdeat® the same area as
task 1 wrote to.

Task 1 Com. buffer Task 2

Read

Figure 6.2 Export buffers communication

Data transportation  Data is written directly to the same memory where it is later
read. Software use the resources with direct access sasheydransfer by any third
part between the write and read operations.

Data storage Data is stored within the protected region where it was ptedu
Input is obtained by others by reading directly from this nogyn

Detection  Default for this configuration erroneous reads will not beedied. The

error detection can be increased by using a grouped appasagtth shared memory.
By doing so both erroneous read and write operations aretdéte (to a limited

extent).

Overhead The overhead is added at the context switch. The numberci clles
needed to modify the permissions of a memory region is haeldependent. In the
worst case a complete update of the TLB in a MMU is needed. lroeemrrealistic
situation one or a few regions in a MPU needs to be updatedatike case compares
to updating registers in the CPU, for most micro controllers

Hardware requirements  Since the method is based on changing permissions on a
region containing a buffer, a small minimum region size isf@mred. The number of
possible active partitions can also be a limiting factor.

Memory utilization  Restricted minimum size for partitions will generally résn
internal memory fragmentation.

6.5 Using the stack

We could also consider a buffered approach moving data @atéck. As we sus-
pect most programming are to be performed in the C languagther higher level
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languages, the input and output data would be representld pwogrammer as func-
tion input parameters and return values respectively.dasy to realize that such an
approach does not work for event based tasks which haveeakeauting function
invoked only once. Time-triggered tasks can use this tegkmi

Datatrangportation  The kernel transfers input data as function parameter&sTas
transfer output data as return values. Data is transfemddgifunction invocations
and return (task startup and task shutdown).

Data storage Data must be stored with the kernel and software is serveal loc
copies via the stack.

Protection  Protection is really good since this mode is able to isolagyesingle

resource. A task does generally not even have the posgibilialtering or reading
resources served to other tasks within the same protectetbrgeBoth read and
write protection is supported.

Detection  Error detection is also good since resources reside in kere@ory and
are both read and write protected.

Overhead The overhead is the copying of parameters onto the stackhaneturn
values of the stack.

Memory utilization ~Memory utilization is good.

Further notes Can not be used by event based tasks.

6.6 Kernel bound resources

When the kernel has full control of the memory resources dtiigight forward to
enable protection of more fine grained nature than befostedad of grouping shared
data elements into local software component buffers we rtmw grotection per
resource (previously a data structure within the softwaramonent buffer). All re-
sources can be kept in the kernel domain. Write calls wilkevdirectly to kernel
domain memory and read calls will read from kernel domain wrymTo ensure
no unauthorized access is made to the resources some saskaflentification and
authorization must be conducted by the kernel. This willseasome overhead. To
optimize the resource handling the resources should bdifidenby id's and not
pointers. If pointers are used the kernel has to do extehigeks to ensure the given
pointer actually refers to memory owned by the calling safeev These checks can be
made unnecessary if the resources are referred to witHmd®ad an ID verification
and address translation must be performed by the kernel.

Data transportation  The kernel transfers the data. Data is transferred duritiy bo
read and write operations.

Datastorage Data is stored in the kernel domain. Software componentsatgen
local copies since the kernel memory is read protected anbutfier must be reached
via system calls.

Protection  Protection is really good since this mode is able to isola&zyesingle
resource. Both read and write protection are supported.
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Detection  Error detection is also good since resources reside in keremory and
are both read and write protected.

Overhead This method induces an overhead of data copy to the bufferttamnd
time being used to enter and leave supervisor mode. The lkenn also ensure
authorization and perform address translation.

Memory utilization  The memory utilization in this case is not optimal since the
data is stored in both the kernel and the software comporentsnunicating. How-
ever, since the buffers are part of larger memory protecti@as the internal frag-
mentation is assumed small.

Hardwarerequirements  All hardware with memory protection can be used to im-
plement this approach.

6.7 Publisher - Subscriber

Since system calls operate in kernel mode and thereforedwoess to all of mem-
ory, they might as well operate directly on the software congmts local memory.
Thus, it is not necessary to keep a kernel resident copy aksgmurce. In this mode,
resources are distributed to receivers as the updatingmaysdll is performed. This
section has been inspired by [7] and [15].

Data transportation  Data is transferred by kernel during write operation.

Data storage Data is stored within the receiving software components orgm
domains.

Protection  All buffers have the same protection as the default secpioticy for
software component memory. If the policy is set to neithadneor write access they
will inherit this protection. Write authorization could@v be implemented on a task
level without affecting the properties of the approach.

Detection  Error detection is good. Once again, write authorizatiomade imple-
mented on a task level without affecting the properties efapproach.

Overhead A data transfer suffer from the overhead of entering andihgasuper-
visor mode during write operations. The kernel must alsaenauthorization and
perform address translation.

Memory utilization  Since the communication buffers are stored with other soft-
ware component data, the internal memory fragmentatiorbeilimited.

Hardwarerequirements  All hardware with memory protection can be used to im-
plement this approach.

Further notes A potential benefit of this approach is that it reduces the warho
of system calls as long as subscribing software componeake mise of the updated
data and in a case where several tasks within a software c@npase the same
resource.
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6.8 Client - Server

In this concept the idea from publisher-subscriber is ®e@r Now the subscribers
(clients) fetch the data from the publisher (server). Theeseupdates resources lo-
cally. Clients use system calls to get the resource fromesgrmemory domain.

Data transportation  Data is transferred by the kernel during read operation.

Data storage Data is stored within the server software components mermory
main.

Protection  All buffers have the same protection as the default secpoticy for
software component memory. If the policy is set to neithadrer write access they
will inherit this protection. Read authorization could evee implemented on a task
level without affecting the properties of the approach.

Detection  Error detection is good. Once again, read authorizatiotddoe imple-
mented on a task level without affecting the properties efapproach.

Overhead A data transfer suffer from the overhead of entering andihgasuper-
visor mode during read operations. The kernel must alsorerauthorization and
perform address translation.

Memory utilization  Since the communication buffers are stored with other soft-
ware component data, the internal memory fragmentatiorbeilimited.

Hardware requirements  All hardware with memory protection can be used to im-
plement this approach.

Further notes A potential benefit of this approach is that it reduces thewarof
system calls when data is updated often without actuallygbesed.

6.9 Conclusions

A definite approach to data transportation techniques d¢amm@oncluded without
a clear definition of the transported resources. For exangpigort buffers cannot
be easily used with resources that require updating whenaresread. Examples
of this are queues, that require updating of indexes, aralress with update flags
(signaling that the resource has been updated since it wheelad). The latter can
be easily solved through the use of local memory (which is aécessary if several
tasks read the same resource) but the former cannot be sosedhged. The last three
techniques all operate in supervisor mode. They are neveecoed with such prob-
lems but induce more overhead. In Chapter 7 we will see thiféreal approaches
are good from an analysis point of view.
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/. Signal routing

7.1 Introduction

The software component was introduced in Chapter 2. Oneeoblfectives was to
make these components independently distributable oversEEor this reason, the
coupling between components and between a component andisding hardware
must be low. The components should be completely obliviousitether communi-
cation with external sources is performed locally on the E2ldver a network and
whether the other end consists of a hardware device or ansdiftevare component
etc. This requires a hardware abstraction which is refaes signal routing.

7.2 The signal routing layer

Figure 7.1 illustrates the addition of an interface layenMolcano. Volcano is a com-
munication specification and library used for communicataver CAN and LIN
buses. This layer would provide applications with necgsfamctions to read and
write Volcano signals. The arrow in the interface layer thaints back to its origin
is meant to illustrate the idea that signals do not necdgdaaive to be written to
the Volcano sub-system. Instead, signals could be routdteipdestination directly
from the interface layer whenever the receiving applicatEsides on the same ECU
as the sender. Such functionality is also an implementagpect that should be of
no concern to the application developer.

| Time triggered task |

interface

Volcano intorface layer

CAN/LIN
signal interface i

Figure 7.1 Volcano interface layer
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Today, Volcano is typically configured by the vehicle mamtidiger and the soft-
ware developer in cooperation. Application functionalgycompiled into the sup-
plied system by the subcontractor while network proper{@AN setup, such as
baud rate) are handled by the vehicle manufacturer. Voloanst now be handled
as a whole by the kernel developer or vehicle manufactutee. dpplication devel-
opers only concern are the guaranteed latency propertiés.straight forward to
remove the Volcano system and use another CAN interfaceesr amother type of
network, as long as it does not affect application timingsifig this one step further
we could abstract away more hardware below the middlewaa&jng it indifferent
to the application whether a signal is output directly taaloltO, to another appli-
cation locally, to another application over a network orredeectly to local I/0O on
another ECU via the network. This is illustrated in Figur2. T.he Volcano interface
has now become a general signal routing system.

Time triggered task

CAN/LIN

1O signal
signal interface g

interface

- Local 'O

Figure 7.2 Signal routing system

As long as the system can guarantee worst case timings falsjghis approach
would be very attractive. It would basically mean that anliagfion is made indif-
ferent to surrounding hardware. Signals are defined by trasported value and a
maximum delay time. As long as the system setup keeps tirestgctions valid, the
administrator may switch applications in and out of ECUslessees fit.

7.3 When to transfer data

The implementation of the signal routing layer may use antheftechniques de-
scribed in Chapter 6. For signals traveling through Volcdmactual sending and
receiving of data takes place at regular intervals. Theiegbn stores or reads data
from the Volcano database. The Volcano routines that corsignals to and from
CAN frames and output or read them from the network, are ieddk a predefined
manner outside of the communicating tasks. As long as arugrgaask completes
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without being preempted by the committing Volcano taskretis no use transport-
ing data to the Volcano signal database directly. The syst@gnneeds to ensure that
data is up to date in the Volcano database when the commirscthis could be
accomplished through transfer buffers (presented in 6.3).

It may feel natural to the programmer that setting or reogiwialues from local
I/0 is performed instantly as a request is made. Buffering ounfuse a developer
if he perceives such operations as having direct accessrdwaee. This will not
be the case since the defined system is based on the conceptnfine definitions
that are indifferent to the developer. The signal routingtabstracts away hardware
and forces the designer to always work with maximum delags$inThe application
imposes restraints to the 1/0 delay. In cases with very hardahds the application
can be forced to reside on the same ECU as the I/O hardwaree\dovihis is still
of no concern to the developer as the system administrasures a worst case delay
and must design the complete system accordingly.

Since there is always a maximum transfer delay attachedstsignal it is straight
forward to always buffer data. A typical control algorithmrform the following steps

1. Obtain input data
2. Calculate output data
3. Write output data
4. Calculate memory variables
If we split these steps into two tasks we get one task perfaymi
1. Obtain input data
2. Calculate output data
3. Write output data
and another performing
1. Obtain input data
2. Calculate memory variables
3. Save data

If we adapt this scheme for all tasks it is natural to trangfia during task startup
and task shutdown. The memory used to store the Volcanoldigit@base will be
memory protected. Figure 7.3 illustrates the use of systalts where every read
and write directly manipulates the signal database. Itearcthat exact analysis of
when signals are transferred becomes very complex. Fot wass analysis this can
be avoided but there are still problems due to the unceytahevents. Looking at
figure 7.3 we can see that the red task performs two read elisever, between
these calls the thread is preempted by the task performmg/diicano input call.
This call could very well manipulate the two signals readhmy task creating serious
inconsistencies since the first call received an older value

Figure 7.4 illustrates the use of buffers with data trarssbetween protected re-
gions during context switches. In this system, we get a migdrer view since we
know exactly when data is transferred to and from the red. tA&kalso eliminate
the inconsistency problem since input data is never updduedg the execution of
the task. Note that there was never a similar inconsistenalylgm with the written
signals. Volcano can be configured with grouped signalsh Signals are not sent
until all signals in the group are updated, and they are fearesl simultaneously.
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Figure 7.3 System calls

It is also worth pointing out that if we analyse a system ushmy system call
approach, the worst case must be that we receive signaldegptafore the task
starts and that written signals are sent after the task &ids.reduces to what we

see in figure 7.4 and hence, the worst case is the same fonsgatks and transfer
buffers.
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Figure 7.4 Transfer buffers

Note also that in the buffered case there may be unnecessaryations of the
input and output tasks. These are the invocations duringxéeution of the red tasks.
Depending of the implementation of these tasks, the im@mtatmay never actually
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perform any relevant actions. They can then be removedcimgluhe load of the
static schedule.

7.4 Conclusions

To facilitate the deployment of software components transpily over ECUs, there
must be a way for the kernel to handle communication with tmeosinding environ-
ment, be itlocal I/0O or over a network. This does not meanttiekernel implements
all routines for communicating with hardware but rathert ihas always the ker-
nel that invoke them. The system must supply a uniform exatytiatform making
the software component completely ECU independent. Spetgfvice drivers can
be deployed where the actual hardware interaction occuecbaccess to hardware
devices is implemented through trusted tasks (not part itlvace components) or
through drivers compiled into the routing layer. Sub cartves supply applications
as software components and additional trusted entitiesgdecial hardware access.
The vehicle manufacturer does not have to be too concernidtieé operation of
isolated software components but needs to have trustetieergo through special
validation. Device drivers also have the added positivectfdf reusability by other
applications.

A routing layer should also provide a common way to deal wittirig concerns.
System coordinators should be able to provide latency gteea and the layer could
provide deadline monitoring on communication for faultestgion. Additional ex-
tensions could add redundancy and the possibility of piogidignal filters. Such a
middleware layer could become very large and complex. Basictionality should
be kept to a minimum and extensions should be modularizé#eatels on all ECUs
do not need to have the same mechanisms in the routing layengas the basic
mechanisms for communication are the same.

It is natural to conclude that an environment of both disiiéldl communication
and distributable applications require a throughout stedidation of the platform. In
8.2 it was stated that the creation of independent module=ysmuch the aim of the
OSEK specification. The flaw in OSEK is that there is no disiculsen memory pro-
tection and distributable application components. Howethe OSEK specification
may be a good source for inspiration.
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8. Operating systems

8.1 Introduction

Both OSEK and the Rubus operating system have played a cevigaduring the
course of this work. This chapter gives a breif overview @sth systems. The work
was initially aimed at studying and modifying the OSEKTtinpesification along with
appropriate extentions but the work soon turned it attentiothe Rubus operating
system instead. The reasons for this are stated in the cdoclof this chapter.

8.2 The OSEK specification

Introduction

Offene Systeme und deren Schnittstellen fir die Elektronkeaftzeugen (OSEK) is
a joint project of the German automotive industry with thalg®t to develop an open
standard for distributed control units in vehicles. ThecHeation covers the areas
of real-time operating systems, communication [17] andvogt management. The
actual name is OSEK/VDX where VDX stands for (Vehicle Distited eXecutive).
VDX was a French standard which has been merged with OSEK EKD&EDX.

The standards intention is not to guarantee compatibilgiyvben the operating
systems fulfilling the standard. Instead, the goal is toeehportability within the
software modules developed for an OSEK operating system.

The OSEK standard is targeted at the simplest systems aasveighly special-
ized complex control units. To support such a wide rangefacorance classes have
been introduced. Each conformance class includes diffeagrabilities specialized
for certain applications.

OSEKtime
The OSEKtime specification [19] aims at specify a time-teigggl RTOS with static
scheduling. It was developed to fulfill the following receinents:

e Predictability (deterministic behavior even under peakdi@nd fault condi-
tions)

Clear, modular concept as a basis for certification

Dependability (reliable operations through fault detactnd fault tolerance)

Support for modular development and integration withodesffects (com-
pose ability)

OSEK/VDX compatible

OSEKtime also include the possibility to slim down the kérnmeonly support
the features needed by the applications running. In doingheoOSEKtime kernel
suits even very small ECUs. This can be compared to the aoaface classes in
the OSEK/VDX standard [16]. OSEKtime also supports executf the ordinary
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OSEK/VDX kernel within its idle-task. Thus, allowing botlent based scheduling
and time-triggered to the application developer.

An addition to OSEK is the fault tolerant communication lagalled FT COM
[18]. This ensures real-time fault tolerant communicatioth other ECUs.

Figure 8.1 illustrates the process levels of an OSEKtimeegsysA task with

Processing
A Level

Non-maskable Interrupt Routines

OSEKtime Dispatcher

Maskable TT Interrupt
Routines

Time-Triggered Tasks

ttidleTask OSEK Interrupt Routines

OSEK Scheduler

OSEK Tasks

Figure 8.1 The process levels of OSEKtime (figure from [19])

higher process level preempts tasks at a lower level. Ther@skable Interrupt
Routines at the top of the hierarchy preempt everythingse&meutines must be very
short and completely deterministic since they add to akkiothsks execution time.
An example of this would be the system clock.

At the next level the OSEKtime Dispatcher is located. The wilthe dispatcher
is to handle the schedule and determine whether the ISR foremk-able interrupt
routine shall execute or not. The dispatcher also monitessilihes.

At the level below the dispatcher the mask-able time-tnigdanterrupts reside
next to time-triggered tasks. This is because the timgrigd tasks may choose
to ignore these interrupts. At the bottom of OSEKtime, we fimelidle-task. An in-
stance of the OSEK/VDX operating system can be run withindieetask. If so, there
exist three additional layers: the OSEK/VDX Interrupt Rpes, the OSEK/VDX
scheduler and the OSEK/VDX tasks. Since OSEK/VDX taskgleeat the last level
they will constantly be preempted. This makes it very harguarantee any real-
time performance. These tasks should therefore not be wsethy hard real-time
functionality.

As a side note the OSEKtime specification states that mentotggiion is needed
to guarantee integrity and stability of very critical ajgglions. It is noticeable that the
requirement is to implement protection between the OSE&amd the OSEK/VDX
systems, when combined. This implies that OSEK does novaglouping of time-
triggered tasks and event-triggered tasks into the sanmegses. Neither does the
specification require any memory protection internal to ®tae or OSEK/VDX.

The distinction above and the simple memory protection @sed, is not as
strange and unfulfilling as it may seem. The OSEKtime spextitino does not discuss
any complex memory management and protection. It only degua short statement
to ensure clear distinction and isolation of the two syste@fSEKtime is not aimed
at being used in a multi-application environment. The mgnpootection is meant to
isolate the hard-real-time and soft-real-time softwaigioating from one vendor.

Rumors circulate, suggesting that recent proposals to O&fvi been aimed at
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incorporating OSEKtime into OSEK/VDX. This may very well bee first step to-
wards a framework for a multiple application system anddvdtbundaries for mem-
ory protection. Time will tell, whether or not these rumoddchtrue.

OSEKFT COM

In a distributed environment, such as a modern car, comratioic must be con-
ducted over a bus, in most cases a CAN bus. Natural restraiatdistributed control
environment are predictability and fault tolerance. Theg® problems are the main
objectives of the FT COM layer in OSEK. The FT COM layer is n&NCspecific.
For communicating with the hardware, FT COM relies on a dragplied by the
operating system.

The FT COM layer handles messages when transporting dath.re@ssage con-
tains one or more application signals. The messages areathapip frames which
are sent over the bus. These frames are statically allocatddare sent over the
bus following a static periodic schedule which is defined-nurgime. To support
fault-tolerant communication each message is mapped t@onsre frame every
period of the frame schedule, i.e., one message in everyrsemt. If more than one
BUS controller exist the messages can be multiplied over fratnes and buses. In
this way redundancy is achieved and fault tolerance gaih#teacost of bandwidth.
When a message is multiplied over more than one frame, mefiooderifying mes-
sage consistency are necessary. This is also includedhmfeit COM layer. Optional
routines to handle duplicated messages can be implemértiede routines process
messages before they are presented to the applicationg.tyipieally handle cases
when messages differ from frame to frame. Pick any, averadarejority vote are
typical algorithms.

e Application layer

— Provides the API towards the application developer
e Message filtering Layer

— Provides mechanisms for filtering messages
e Fault Tolerant Layer

— Provides judgment mechanisms to ensure message congisiahéault
detection.

— Support message status information
e Interaction Layer

— Provides services for the transfer of messages on difféests.

To ensure a completely deterministic behavior the FT COMi&ytime-triggered.
This makes it possible to schedule and thus take into acdbentommunication
mechanism while designing the complete application.

e An API call from the application to send the signal
e The FT COM packs the signal in appropriate message.

e Atime-triggered task transfers the message to the hardousdfer

At the receiving end the FT COM performs the following steps.
e The time-triggered task copies the message from the haedwudfer
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Figure 8.2 FT COM layers

e The time-triggered task splits the message into signalanderts the signal
to local platform endianness.

e Optional signal processing is performed.

8.3 Rubus OS

The Rubus operating system is developed in Sweden by Ascliél It is a real-time

operating system with support for time-triggered, evergeaand interrupt based
tasks. Rubus main focus is on safety-critical systems watid lieal-time require-
ments.
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Rubus is used today by Volvo Construction Equipment (VCEhiniVolvo AB.
Rubus is also used by Haldex which is a subcontractor to V@lao Corporation
(VCO).

The following text about Rubus OS is based on the Rubus O#8alfbl].

Task model

In version 3.2 of the Rubus operating system reference ntfa8liathere exist three
kinds of tasks. Time-triggered tasks (referred to as rekisjagvent-triggered (or
priority based) tasks (referred to as blue tasks) and uqpétvased tasks (referred to
as green tasks).

Red tasks The part of Rubus handling red tasks is referred to as the eeakk
These tasks are time-triggered and have their run-time etkfima static schedule.
The kernel is preemptive, which means that when a task iglsée to start it does
S0, preempting any running task. Preempted tasks are dgtackkcontinued accord-
ingly.

A period, worst case execution time and deadline must befsggbtor each task.
The schedule is setup before the execution is started. It gussantee that all red
tasks meet their deadline. How the schedule is created ispettified. To ensure
completely deterministic behavior, no dynamic resouréecation is allowed. Thus
this must also be done pre-runtime.

In a typical embedded system implemented with Rubus theaskstare used
to implement critical periodic tasks such as control aljpons and communication
mechanisms.

Blue tasks Blue tasks are often referred to as event based tasks siegeften
wait in a queue for a special event. Once the event occursatheis moved to the
ready queue and waits for its turn to execute. This makes itheahfor implementing
operations based on sporadic events such as events rg$dtimGUI manipulations.
The blue kernel uses fixed priority scheduling, thus alwayaanteeing the task with
highest priority to execute. The priorities range from 0 fovithere O is the lowest
and 15 the highest.

The blue tasks are executed with lower priority than the as@ts. No blue task
can preempt a red task. This is to guarantee the red tasksnild@ttic behavior and
execution time. It is realized by executing the blue kernighiw the red kernels idle
task. The idle task is the task running when no other red tasknining.

In a mixed environment utilizing both red and blue tasks,igimbe hard to make
any guarantees concerning the execution of blue tasks. llieekbrnel is therefore
typically reduced to handling only non-critical tasks. ti€al sporadic events must
then be handled by polling in red threads or through utilirabf the green kernel.

Green tasks Green tasks are invoked by an interrupt. They run with thédsg

priority of all tasks, which means that they also interruy ted kernel. The WCET
of red tasks must take this into consideration. This meaatsttie WCET of a red
task must include the sum of WCETSs for all green tasks thdtlqoossibly interrupt

it during execution. A frequent green task may very well barted several times.
Normally, the green tasks have a very short WCET and theguigacies should be
kept to a minimum.

Security mechanisms

Rubus sports some security mechanisms such as deadlineonmaniand WCET
measurement. If a red task violates its deadline a special myutine is executed.
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This makes it possible to detect some faulty task and takeopgpte action. The
worst case execution time is also possible to measure. Thisles the possibility to
trim the red schedule. A task can by itself also invoke thergmandler. This makes
it possible to do some internal sanity checking within eakt

Rubus does not implicitly check the status of stacks butdésdarovide the pro-
grammer with API calls for checking and reporting the statustacks. This makes it
possible to implement simple but unreliable stack veriftcatWithout memory pro-
tection, stacks will have to be dealt with in this manner.dasive stack verification
is not worth the implementational effort and the additionsé of processing time.

Memory management

All memory used in Rubus must be statically allocated to $ifsnpnalyzability and
ensure deterministic behavior. An API is used to help depaie® handle memory
structures but there is no run-time memaory protection. Tt memory manage-
ment is quite limited.

Red kernel  The red tasks are able to share a common stack. This is beaause
preempting task always finish executing before the preaintatsk continues. As
long as the preempting tasks executes correctly, the stdkckewestored to where

it was before the preemption. The required size of the comstack can easily be
determined by studying the red schedule.

Blue kernel  Pure dynamic memory allocation is not allowed in the bluenkér
either. However, Rubus does support a semi-dynamic steictfierred to as mem-
ory pools. Memory pools are predefined queue areas from wahielsk can create
mailboxes.

The blue kernel is run with dynamic scheduling but that dassatiow the pro-
grammer to create new tasks online. In the blue environnientaisks cannot share a
common stack. This is due to the nature of the blue tasks amdability to block on
resources.

Inter-process communication

The Rubus API supplies the programmer with three messagegngaservices. The
Basic Queuas a FIFO queue that passes copies messages as opposedBtsite
Mailbox that passes references to d&asic Memory Poolare semi-dynamic struc-
tures used to allocate mailboxes. The blue kernel additiosapplies theBlue Mutex
which is a binary semaphore with an owner and uses the BriGstling Protocol.
The blue kernel also supplies an ordinary binary semaphore.

Red to Red communication  Since these tasks are time-triggered they are not al-
lowed to block. This implies that the communication must beelasynchronously or
synchronized via the schedule. In Rubus, two communicagdgasks may not pre-
empt each other. This ensures the consistency of data. Tin@onication media (or
port) can be either a shared variable or a message queued&ymy the tasks in the
schedule such that the producing task executes beforedbwirg task a minimum
latency is achieved. In case the producing task have a sipanied and thus produce
more than one instance of a message between every invocdtioa receiving task,

a mailbox is necessary to store the messages.

Red and Bluetask communication Red tasks may only communicate to blue tasks
via a message queue or a mailbox. When using a mailbox theasidcan signal
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the blue task that a new message has arrived. The blue tas&ngesponsible for
removing the message. While the blue task fetches a megbagaterrupt level is

raised to ensure that no data corruption occurs, i.e. nogadlowed to preempt the
consumer. Thus follows that red tasks can be delayed by askevthile they access
data in the mailbox.

Blueto Bluetask communication  Blue tasks communicate with each other through
mutexes, signals and message queues. The most basic foromofiunication is
when a task waits for an event. This is called signaling inuulA blue task can
enter a wait queue through a system call. The waiting tadkoeimade ready again
when the appropriate signal has been received by the systeextent to signals
there are mutexes. The Rubus implementation of mutexesdeasdranted an added
support for the priority ceiling protocol.

For data communication, blue tasks rely on message quehessystem API
supplies send and receive calls to add and read a messagth&gueue. Read oper-
ations block indefinitively until there is available datatlive queue. Write operations
fail if the queue is full. There is no way of waiting for the aqueeto be relieved of
messages.

8.4 Other

In the search for an appropriate operating system, an attesap made to find an
open source implementation of OSEKtime. None was foundrc@diorge[24] hosts
a couple of attempts at OSEK/VDX systems. The FreeOSEK Ofpgrwas regis-
tered at SourceForge in 2001 but shows no progress at atielf dot have a single
release. The same goes for SticOS, registered in 2003. A dewnercial OSEK-
time operating systems exist but buying licenses for tggtirposes in a previously
unknown operating system was not in the best interest ofdvdachnology.

The study led to brief overviews of some other systems, soeither time-
triggered nor OSEK compatible. The INTEGRITY[25] opergtsystem from Green-
hill Software is one such system. It guarantees executioa through the use of time
slots in an event-triggered system. A short discussionisfdéin be found in the sec-
tion on further work (section 10.2).

8.5 Conclusions

There are several problems with using OSEKtime as the basiextensions. The
unavailability of an operating system is not really a biglpeon. If the aim is to use
OSEK compatible systems in the future, then the vast amaailbble will be eval-
uated and licenses bought eventually. However, gettingi¢élsessary changes tested
and in place may prove to be a hard and time consuming taskK@Skcertification
authority with an extensive specification. Changes are rastarover night. OSEK
also incorporate ideas from many contributers, in many viajisg to please every-
one. This may be good in a production environment but too niachesearch and
testing purposes. The distinction between OSEKtime andkKd8EBEX (actually any
system running in the OSEKtime idle-task) also complichiegs. The OSEKtime
specification requires them to be memory protected from edioér, which is not
in-line with the distinctions considered in this study.
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The Rubus operating system is simpler and it considers tilpgering and event-
triggering through the use of different kernels, but still@art of the same system.
In cooperation with Arcticus Systems, memory protectionldde introduced and
tested in Rubus. The company has expressed a wish to hawesthmsconfirm to the
OSEK standard. Pushing for such a change is probably easldaster than getting
changes through with the OSEK committee and then get hold oparating system

with the necessary extension.
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9. Rubus modifications and
extensions

9.1 Introduction

This chapter proposes modifications and extensions to thedRoperating system
aimed at the requirements put forward by Volvo. The propbsalbeen worked out
without in depth knowledge of the implementation aspecth®iRubus architecture.
Most sections not only contain concrete statements but aldetailed discussion
to illustrate the thoughts leading to the proposed systeme. t€xt could serve as a
reference for implementation or as an inspiration to a sindapproach.

POSIX comparison

The software component is based on a view proposed for filue projects. Doc-
ument [23] defines an application component as the atomitydntm a system
engineers point of view when allocating customer featureffions to ECUs during
system design.

An application component is a realization (implementation
a customer feature/function or part of a customer featuregf
tion[23].
Rubus OS uses POSIX as a basis for many of its definitions. ¥amngle, the
following are POSIX definitions of application (1), proc€83 and thread (3).

1. A computer program that performs some desired function.

2. An address space with one or more threads executing withiraddress space,
and the required system resources for those threads.

3. A single flow of control within a process. Each thread haown thread 1D,
scheduling priority and policy, errno value, thread-spediey/value bindings,
and the required system resources to support a flow of control

This relates nicely to our view of application, software gmment and task. The
terms task and thread differ only in a matter of personal itestagical preference.
Task is the common name at Volvo and the term used in OSEK. $ageuof the
term software component is preferred over the POSIX proedsieh is commonly
associated with a general purpose system and run in singiellenvironments. The
software component has the ability of encapsulating taskshitable over several
kernels, each utilizing different scheduling techniqued provides specialized ser-
vices.

Software components in Rubus
The proposed Rubus software component has the followiriguges:

1. Isolated memory domain protected by the operating system
2. Can be a mix of red and blue tasks

3. May only communicate to other components via the use ofssg
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4. May communicate any kind of data structures between tmd&mnal to the
software component

A software developer supplies the system coordinator woftwsre components.
Components may be spread among several ECUs. A set of sefteanponents
sharing a common purpose create an application.

Green tasks are not incorporated into the software compa@mrehtherefore not
viewed as regular application components. They are trustéties used for special
purposes and with access to all ECU resources. With thip sittelgreen tasks should
be seen as operating system entities rather than part ofpdicatjon, and they must
be used with special care. The system engineer must be al#éfiothe code used in
any green tasks supplied by customers. Preferably thisrie toough examination
of the source code but could also be performed using toolsalyze compiled object
code.

9.2 Hardware

It is been decided to base this extension on the possibilifethe Infineon 1765.
The architecture of this microcontroller has very good pti& it is fairly simple
but adequate for memory protection. Currently the 1765 atres maximum of 40
MHz but it expected that newer models with higher frequeneidl be available in
the future.

The disadvantage of basing the extension on this specificonuatroller is that
it will not apply directly to other hardware for which Rubus g¢urrently available.
The advantages are that concrete statements can be madearlified so that the
reader gets a clear view of the proposed system. It shouwdbalsoted that since the
MPU of the Infineon is a simpler piece of hardware than the MM possible to
transfer these ideas to an architecture utilizing an MMWdfwere to start off using
an MMU, it may be hard to port all mechanisms to the simpler MPhe MPU of
the Infineon 1765, is also great from a memory utilizatiompof view.

9.3 Memory setup

Stacks

Currently in Rubus, all red tasks share a common stack. Blskstall have their
own stack. Figure 9.1 illustrate the need for separate Wiaeks. In this example
the priorities areB3 > B2 > B1. The problem occurs wheB3 has added to the
stack and decides to wait for an event, handing over the CPBRtaB2 continues

executing but works with the data added to the staciBBy

The memory protection system is supposed to isolate memitinynvthe context
of software components. To do so a separate red stack forseétetare component
must be introduced. The blue tasks are, as described, edguireach use a separate
stack so there will be several stacks associated with sgftaamponents utilizing
blue tasks.

For error detection purposes it is useful to also protedfiregstacks within each
software component. If stacks are not protected indivigiluithin components they
could grow into each other without notice. Rubus implemeanmvises for software
detection of corrupt stacks and monitoring of stack usagéh @otection, software
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Figure 9.1 Example of blue stack usage on a shared stack, to motivateetw for sepa-
rate stacks. The problem occurs when task B3 decides to @raginf event and B2 continues
executing.

detection becomes obsolete as stack overflows generate mmacuess errors de-
tected in hardware. This is a more secure approach but eecétse possible soft-
ware version (which, if used correctly, should detect mases) and the static nature
of the system (stack usage is predetermined and testesip tandidate for removal
if a choice must be made between which regions to protect.

Remark In a software component where there is only one blue taskpibssible to
combine the red and blue stack. This is only useful to preseremory space when
the protected regions have a limited minimal size. With tbe-restrictive region
setup of the Infineon MPU the blue and red stack can be alignetemory without
internal fragmentation. The total size will be the same #s§ were combined. If the
hardware impose a restriction to the minimum size of a pamtifas with an MMU)
a separation would give rise to additional internal fragtagon since two regions
must fulfill the requirements instead of one.

Defined regions

The separation of memory into regions with different acc&ggs is made to protect
the operating system from customer software and to protdtivare components
from each other, but also to enable error detection.

All tasks within a software component share a read only degeon which typi-
cally stores constants. This is useful so that some parasned@ be altered without
recompiling the system. Constants could otherwise be demhpito the executable
code. Rubus currently places constant resource informatio Flash memory, not
compiled into executable code. This is kept intact. Thedadko share a readable
and writeable region for static variable memory. There $® &l region for each the
stack.

A global read only area is provided for the operating systestare information
available to all software. There is also a separate readayely provided for each of
the red and the blue kernel. Red tasks should only have atzéise red area and
blue tasks to the blue area. Green tasks have been deemedted ffi.e. have full
access) and therefore there is no use specifying a read @ayf@ the green kernel.

A software component must have access to the executableotad¢asks. There
must be one area for basic services (provided to all tasks)aaseparate area for
services provided in each of the three kernel modes. A taazgsibcess to the basic
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services and the services of the kernel to which it belonggetgain, green tasks
actually have access to all services due to its privilegegsgrights.

The separation into these areas means that red tasks wilhddgeuto access
services and resources specific to blue tasks and vice Wdisamizing the legal
memory for tasks creates a greater chance for detectiolegdilpointers. Also, if for
example a red task tries to use a mutex it will generate a meagmess error during
runtime. The faulty task can be pinpointed by the system #isaavéhe illegal address.
This information can be used to easily pin down and corregetdirornous code.
lllegal access to resources can also be detected by awttionizhecks performed by
the system API. Choosing memory protection over this aptraaakes for a faster
system as it reduces the need for such code.

Extra care must be taken for green tasks. Since they arestidtted by memory
protection they must be throughly examined and certifiedestdd tasks. This means
that they should be developed in cooperation between thglisuand the system
engineer.

Protection

The Infineon MPU supplies two sets of four data protectiomoregy(DPRs) and two

code protection regions (CPRs). Only one of these sets igaat a time making

for four data regions and two code regions specified durimghaboperation. Each
region is specified through two 32 bit registers, the loweraband the upper bound.
If an attempt is made to access memory not defined in the agijiens, the MPU

generates a trap exception. Therefore, all memory not fspedn any of the active

regions is inaccessible, protected memory.

The system will mainly be concerned with one set of DPRs arld<CPhe second
set is used to quickly change protection settings for iofrroutines, during kernel
operation etc. This will not require any complex setup of seeond set since no
changes are ever made to this table.

The setup in the first set of DPRs and CPRs is used for standdrdnd blue
tasks. The scheme is possible to implement (although magbamefficiently) on
other types of memory protecting hardware. For simplicigy will refer to the data
regions ad) 4, Dg, D¢c, Dp and the code regions &%, Cjp.

Region Purpose Access

Cx Shared executable code (shared library) Execute
Cp Software component executable code Execute
Dy Global read only (kernel and library data) Read only
Dp Software component read only Read only
D¢ Software component variable data Read/Write
Dp Component red stack or blue task stack Read/Wrjte

Table 9.1 Region setup during execution of red and blue tasks

Table 9.1 shows the setup during execution of red and blks.td$ie red stack
is protected as a single unit and each blue stack separatebe able to detect stack
overflow (or the very uncommon underflow), stack regions areatiowed to be
adjacent to another writeable area. The only such area tatiacarea of the software
component to which the stack belongs. Stack and data mustgaeaded by an area
belonging to another software component or by a small piéeeosed, restricted
memory.
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Section 9.3 stated three active areas for executable coftevgse component,
basic services and kernel services) as well as for read atly. dable 9.1 seems
inadequate. The MPU restriction of only two defined regiarseixecutable code is
solved through the setup in figure 9.2. During execution efréd kernelC' 4 encap-
sulate the red services and the basic services. During gxeaf the blue kernet’ 4
instead provides the basic services and the blue servitessdme setup is applied
for the read only data i 4.

Inaccessible

Accessible
Red services | Red services
Basic services l | Basic services |
Accessible I
Blue services l Blue services \
Inaccessible
Blue kernel setup Red kernel setup

Figure 9.2 The layout of executable code for system services.

Another cause for concern is that the system may want to ggpgbal constants
stored in Flash memory but also updatable read only vasafkeh as the system
clock. This would create a problem since there is only onéalloead only region.
However, most constant data used by the software is corteritle resources. Since
resources are statically assigned to software comportérgsjata will be placed in
the software component read only area. Any additional datddceither be dupli-
cated in the Flash memory in every software components cagpearea or gathered
through system calls that utilize supervisor mode. Theditstnative is preferred as
long as the amount of additionally required memory is aciapt

Table 9.2 shows the updates to the protection scheme thaegueed during
different transitions concerning the red and the blue Herne

Transition Required updates

Change kernel mode CypandDy

Change software component  Cpg, Dp andD¢

Execute blue task Dp

Execute red task Dp if the previous task was not a red task of the

same software component

Table 9.2 Redefinitions of MPU regions due to state transition

The memory protection setup is not automatically overndde the processor
enter supervisor mode due to an interrupt or trap. This ferdifit from many other
designs and may at first appear as a bit strange. A positieetaff that the system
engineer has the choice of preserving the memory restigfituring interrupts that
don not require special memory access. Currently, all gtegks are set as trusted
so this feature is not used. The second set of data memorgcpimt registers and
code memory protection registers are set up statically aed during kernel oper-
ation and execution of green tasks. In its simplest form, data registers and two
code registers would be set up to include all of memory withdccess rights. The
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protection scheme can then be altered by a simple switch ibfradspecial purpose
register.

The code to alter the protection scheme must be available Wieeinterrupt/trap
occur. The Infineon architecture solves this by reservingnallspiece of memory
for executable code within the interrupt/trap table. Inteirupt/trap routines are not
reached through an associative table, they have a well ddboation in memory and
a small section available for performing basic tasks. Qifsar, these kernel routines
could have been included within arég,.

9.4 API calls affected by memory protection

This section presents shortly the parts of the current RétRisthat require spe-
cial modifications due to the incorporation of the softwasmponent concept. Some
parts are intentionally left out since the list does notudel precise implementa-
tion aspects. For example, the functigetRedTim@rovides the Red Schedule Timer
value relative to the beginning of the current red schedihés value could be stored
in the red global read area and the function is simply a wrafgreobtaining the
value from the correct address. The call could also run irsiigor mode and fetch
the value from elsewhere. The former should always be pegfen all similar basic
calls.

The list has been derived from a study of the Rubus Refererameul API Ref-
erence[14] for version 3.2 of the operating system.

Basic Timer Control

halBsTimerMainPerforms context switches and must therefore be modified to
handle MPU manipulation.

Rubus OS Control
bsRubuslnitlnitialization routines require a thorough change. Eadtwsoe com-
ponent must have a separate init function and there must keeydonper-
form specific initialization for green tasks.

bsRubusStarRequire a thorough changes. Software components of arcappli
tion distributed over several ECUs should be able to symihectheir exe-
cution.

Common Services

bsResourceNexEhould only handle resources within the calling softwamn-co
ponent.

Basic Message Queue

Should be internal to software components. The trustechgessis can also use these
gueues to communicate with software components.

Since basic queues copy the messages passed through tlyaroutiepotentially
be used to communicate between software components. Téusrently prohibited
since such communication is only allowed to be performedgudistributed commu-
nication which in turn is reserved to signals only.

Basic Memory Pool
Should be internal to software components.
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Basic Mailbox
Should be internal to software components.

Green services

Green threads are incorporated into the kernel. Thus thecesrare added to the
kernels protected domain.

Red Services

Services only available to red tasks are protected by the M red services are
protected together with the basic services while the reddtes active.

redError Red error handling must be altered so that an error in oneamtcom-
ponent does not affect the rest of the system.

redStackUsageThe function works on the stack of the active software compo-
nent. The error code of this function is made obsolete by tamany pro-
tection mechanism.

redSetScheduleimmediafiasks are prohibited to alter the schedule to ensure ap-
plication integrity.

redSetScheduleimmediafieasks are prohibited to alter the schedule to ensure ap-
plication integrity.

redThreadStatusAllows retrieval of information on tasks in the same softevar
component only.

Blue Services

Services only available to blue tasks are protected by the MRe blue services are
protected together with the basic services while the bluedias active.

bluePreemptionLockMust be restricted to only block tasks within the same soft-
ware component.

bluePreemptionUnlockMust be restricted to only block tasks within the same
software component.

blueThreadStatuAllows retrieval of information on tasks in the same softevar
component only.

blueThreadStackUsedllows retrieval of information on tasks in the same soft-
ware component only. The error code of this function is mausolete by
the memory protection mechanism.

Blue Signals

Local to software components but can also be effectivelysignaling from green
tasks. It is recommended is to rename the Signal notion tonAdaThus violating
the POSIX standard but confirming to OSEK and removing theiguitly with the

signals communicated between software compomhents

Blue Message Queue
Should be internal to software components and incorpoiiatedhe blue services.

1The common way of using the term in the automotive industry
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Blue Mutex
Should be internal to software components and incorpoiatedhe blue services.

Blue Semaphore
Should be internal to software components and incorpolatedhe blue services.

9.5 Communicating signals

It has previously concluded that all communication betwgrrected regions is lim-
ited to signals. Note that this refers to signal data comoaiad between software
components and not the type of signals currently defined iouRuThere has also
been a discussion on the feature of feeding input to taskaglgtartup and com-
mitting their updated signals to relevant parts of the sgstéhen the task ends its
execution. This scheme is only possible for red tasks simeg d@re invoked through
a function which returns within the deadline. Blue tasks lsainvoked as a function
that runs indefinitively. Since they never return, they ntelthe kernel to feed them
with information and when their updated signals should barodted.

Red tasks

The properties of red tasks makes it possible to possibledd them with signals
via the stack, as arguments in the function call. We couldhdedired tasks executing
function similar to

Listing 9.1 Task code

void execRedTaskA(Signal a, Signal b)
{

}

The kernel knows the location of the signals in the routiygigthe volcano database
for example) and can execute the task with a call similar to

Listing 9.2 Kernel code

execRedTaskA«£((Signal x) ADDR_SIG_a),
x((Signal x) ADDR_SIG_b));

The call will copy signals andb onto the stack of task making them available as
standard argument variables; the stack acts as the trdamsfer.

We can use a stacked approach also for output data. Once agamplifying
with C code, we’ll have the function return a structure wheeesignals are collected

Listing 9.3 Include file

typdefine structure __return_struct_A
{

Signal c;

Signal d;

Signal e;
} ReturnStructA;
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Listing 9.4 Task code

ReturnStructA execRedTaskA(Signal a, signal b)
{ ReturnStructA returnStruct;

r.é.turnStruct.c =

r.é.turnStruct.d =

r.é.turnStruct.e =

r.e.t.urn returnStruct;
}

The kernel receives the returned structure and updatesatasgpmemory in the rout-
ing layer. The stack again acts as the transfer buffer. Hewav this case we have
an extra buffer in the local structure, returnStruct, witthie execRedTaskA function.
To save precious computing time lost in the extra copyingatdwe could define
the returned variable static or globally instead and retupeinter to this structure.

Listing 9.5 Task code

ReturnStructA returnStructA;
ReturnStructA * execRedTaskA(Signhal a, signal b)
{
r.e.:;[urnStructA.c =
r.é:[urnStructA.d =
r.é:[urnStructA.e =
r.ét.urn &returnStructA;
}

The linker is setup so that the global data is positionediwiifie memory accessible
to task A. The reason we can use a pointer here is of coursehth&ernel will have
access to memory data belonging to task A. There is a passithibugh, that the
programmer creates error-nous code in the following manner

Listing 9.6 Task code

ReturnStructA « execRedTaskA(Signal a, signal b)
{

ReturnStructA returnStruct;

returnStruct.c

returnStruct.d

returnStruct.e

return &returnStruct;
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}

This code is legal and will work in most cases. However, itrieeprone since there
is no guarantee that the stack memory where returnStrutzdeg, is kept consistent.
This is especially a risk in the case of kernel modificatiomere the developer may
be oblivious to this type of code. We could alter the approtcbnly work with

global structures that are known as opposed to communicated

Listing 9.7 Include file

typdefine structure __input_struct_A
{

Signal a;

Signal b;
} InputStructA;
typdefine structure _ return_struct_A
{

Signal c;

Signal d;

Signal e;

} ReturnStructA;

Listing 9.8 Task code

InputStructA inputStructA ;
ReturnStructA returnStructA;

void execRedTaskA ()

{

/./“Use inputStructA
r.é:[urnStructA.c =
r.é:[urnStructA.d =
r.e.z;[urnStructA.e =

}

Listing 9.9 Kernel code

external inputStructA;
external returnStructA;

inputStructA .a
inputStructA .b

= x
= x

((Signal x) ADDR_SIG_a);
((Signal x) ADDR_SIG b);

execRedTaskA ();

«((Signal x) ADDR_SIG_c) = returnStructA .c;
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Such an approach create transfer buffers within the datacdrhe software compo-
nent instead of utilizing the stack. With it, it becomes ploigsto also restrict input
structures to read only, as described in section 6.3.

Blue tasks

For blue tasks, it is not possible to use the stack as we diudqudy. The blue tasks
will have to explicitly tell the kernel to transfer data. Weust therefore supply a
signalFetchand asignalCommitfunction. ThesignalFetchcall reads signals into the
software components signal buffer. ThgnalCommitcall sends signals from the
software components buffer. The calls must be supplied wilist signals so that
a task can alter and read only those that are appropriatebdffered signals are
accessed through structures that are global to the softweang@onent, as described
above.

signalFetch Feeds a software component with updated signals relevanbloe
task. The call is supplied an array of ids for signals to ugdahis call must
be atomic and should be called as infrequently as possible.

signalCommitWrites buffered signal values to the routing layer. The saiup-
plied an array of ids for affected signals. This call must bamac and
should be called as infrequently as possible.

Alternative  An alternative to supplying th&ignalFetchandsignalCommimethods

is to not allow external communication within the blue kérfidis would leave it up

to the software developer to handle communication in rekktasd forward data to
relevant blue tasks. As this is a possible solution, an implgation should start with
focusing on red communication.

9.6 Signal routing

In Chapter 7 a signal routing layer was proposed and motivdhandle merging of
applications onto shared ECUs a common resource handlgtgrays important. Not
only to create an abstraction for local hardware transggrbuat also to abstract away
the distributed system and handle concurrency issues.ig assential for creating a
flexible modularized system based on software components.

A routing system can be implemented as a software componiémspecial ac-
cess to hardware /0. Since software components shoulchigrgenot have access to
local I/0, it is a good idea to distinguish the routing systeom other software once
it has been tested and accepted as an intrinsic part of tiensy$his implies the
addition of a newblack task trusted componerdr something similar, which is part
of the operating system. Another motivation for introdgcthe routing system as a
part of the kernels is that it is part of the adaption layer imgsoftware components
distributable. The layer itself may very well be hardwarpetaent.

The OSEK FT COM and OSEK COM specifications[18][17] can beduze a
good basis for implementation. OSEK COM is very closely tedaas it deals with
both local and distributed communication. OSEK FT COM isyofr distributed
communication but adds some additional features spedyfidakigned for a time-
triggered system. Both specifications are independenteofitiual communication
driver and require an underlying communication libraryrsas Volcano.

The previous section on signals (Section 9.5) provides sidews on how the
signals can travel to tasks from the routing layer. A spedtiin of the internals of a
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generic routing layer is out of the scope for this thesishsodetails are left as future
work.

9.7 Initialization

Initialization must be completely revised. From the powerod the microcontroller
to the startup of the system, the following steps are reduire¢he stated order

1. Directly after the system boots, all kernel services aitealized.
2. Green tasks are initialized as part of the kernel.

3. Memory protection is prepared.
4

. Every software component is initialized separately aitth wroper memory
protection enabled.

5. Global time synchronization.
6. The red kernel starts.

Item 4 implies that every software component must be suppmligh an initialization
routine.

initSwC_X Performs initialization of software componeft. This function is
supplied by the user and available to be run by the kernel only

Item 5 requires support for a global time. OSEKtime[19] and ET COM exten-

sion[18] discusses the usage and synchronization of algiofa Since Rubus does
not yet implement such features it is recommended to studyiaa the ideas thought
through in these OSEK specifications. The two API calls mtegiby OSEKtime are

ttSyncTimesProvides the operating system with the current global titris.used
to calculate the difference between global and local tinte@arform syn-
chronization as needed[19].

ttGetOSSyncStatuReturns the synchronization status of the system[19].

The FT COM Time Service provides a number of additional callgproblem is
that thettSyncTimegall is available to all tasks. This is not desired as thewsak
components should share a global time provided by the sy#itewy should never be
concerned with, and hence not allowed to perform, alteriryie time. This means
that the OSEK specification can be used as an implementadigis but may require
some modifications.

Note that item 6 implicitly means that the blue kernel is atarted as it runs in
the idle time of the red kernel.

9.8 Shutdown and restart

Only the kernel (and green tasks) should be able to perforomplete system shut-
down. Software components may shutdown themselves. If pledenapplication

wants to shutdown this can be communicated between theidodivcomponents
without kernel intervention. Simply shutting things dowmosld not be a problem.
The following cases though, are examples that require wlaegémination

e An complete ECU restarts while the others keep running
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¢ A single application shuts down and is later restarted

The first question is whether to allow such behavior. Theeecartainly benefits to
restarting applications and ECUs, and for the system to bk falerant and pro-
vide a framework for complete application integrity, itigrinto a requirement. ECU
shutdowns will in many cases affect other ECUs and an ECldntasiquires resyn-
chronization. This area is left for further investigationfuture work.

9.9 Error handling

Error handling is defined for the three kernels (red, greehtdne) separately. Only
the red error handling requires fundamental changes. Tiiagph presented here is
a basic idea on how to isolate error handling to software arapts.

Green

There are two faults defined for green tasks: either the taslbben called two often
or it has run for too long. Since the green tasks are run in ¢nedt domain a green
error is treated as a system error. ThusgleenErrorfunction preempts everything
and stalls the execution of software components until ifnisfied. This may lead to
missed deadlines for red tasks which in turn invokes theardunctions. In reality
the greenErrorfunction only has a few possible solutions to choose frone &imor
could be ignored and the possible affects will traverse &oréd error functions. If
the error is serious the complete system must be eitheretiopprestarted. A reboot
or system halt is then called from within tgesenErrorfunction.

Red

The error handling of the time-triggered tasks must be cetefyl rewritten since
an error in one software component should ideally not aff¢loers. TheredError
function is replaced by a blue thread for each software corapb In case of an error
the red tasks of the component are marked as non executahke ried schedule and
the blue error task started. The priority of the error taslstive higher than any other
blue tasks in the component. This to make sure that no affdites task executes
before the error handler. The error handler is then ablegimasithe other blue tasks
before they have a chance to execute.

When the error task has dealt with the problem it must teltélaekernel to restart
the red tasks of the software component. The red tasks dear bt started right away
or wait until the red schedule reaches its end. This reqaneAPI call in the blue
kernel

enableRedTask&nables the execution of disabled the red tasks of a software
component. The function is supplied a boolean argumentitidatates if
the red tasks should be enabled right away or at the end ofuthent red
schedule cycle.

If the error task returns without calling this function ttesirtasks of the software
component are shutdown. It must be noted that a too exteasigetask may block
blue tasks in other software components. It is recommenaeddble simulation of
errors to make it possible to analyze the system load durirng kandling.

The blue kernel should also support the PORiX call to make it possible for
the error task to wait for blue tasks to shutdown.
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join The calling task waits for another task of the same softwareponent to
exit (return to the suspended state). If the task waiteddsraiready exited,
the function returns immediately.

If the kernel also allows the tasks to be restarted agairerttoe task could shutdown
the whole software component, reinitialize and restargatia.

Blue

Currently theblueError function is executed in the runtime of the failing blue task.
This method is preserved as it makes it possible to handéedyiwrs without affect-
ing the operation of red tasks. Added is the possibility ibtba red error mechanism
to handle errors that affect red tasks. This can also be ossthulate red errors dur-
ing testing.

invokeRedErrorThe red error handler of the software component is invoked.

Error codes

The traps of the Infineon 1765 enables the system to detectgalikt of runtime
faults. Below is a list of potential error constants that na#ectly to traps in the
processor dealing with protection (see [26] for more infation). Rubus constants
are usually prefix with an R B_ or G_to denote the kernel to which they apply. The
fact that this notation is removed here does not imply a mabtw remove it in the
Rubus system. The prefix is remove as this is a more genecaisdisn.

ERROR_MEM_READAttempted to read from read protected memory.
ERROR_MEM_WRITRttempted write to write protected memory.

ERROR_MEM_EXE@®ttempted to execute an instruction from inaccessible mem-
ory.

ERROR_MEM_PHERSoftware tried to access segment 14 or 15 while running in
User Mode 0. Within the address ranges of these segmente|@dcessor
local and external perpherials, ports, DMA registers, CAddule etc.

ERROR_MEM_NULLMemory operation targets address was 0.

ERROR_GLOBAL_REG_WRITAtempted to modify one of the global registers
while the Global Write Enable bit was 0.

ERROR_INSTR_PRMttempted to execute a privileged instruction in User Mode.

These errors are easily obtained directly as a result of pipeogariate trap being
executed. The trap routines can collect information onrtis&uction being executed
through the return address. For interrupts this addres&ivpaint to the next function
ready to be executed when the interrupt occurred. For ttggusrnits to the instruction
that caused the error. Interpreting the errornous funcieems to be the only way to
gain information on the illegal memory address in memoryeasdaults.

In addition to general memory access it would be preferabisdlate errors to
specifically to the stack. Rubus currently supplies

ERROR_STACK_INCONSISTEMSstack is inconsistent which indicates a stack
overflow (or underflow).

Even though this error code may be a bit misleading (overtindérflow is really the
case) this error code is kept as it is.

The illegal operation must somehow be determined to be & sigeration. For
pushandpop operations this is straight forward but lots of softwareeadll work
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without these operations. In many cases, the stack poieggster can be identified
as a source for the base address of an instruction.

To be able to also detect operations that operate on staclorgemthout any of
the above approaches, the information from the instrudtgeif is not enough. The
linked top and bottom of the stack used in Rubus today is aeenaltive. Another
is to examine the stack pointer of the errornous task andkdhéds out of bounds.
The former is preferred as it is simpler and does not depertiestack handling of
a compiler or programmer. If this approach is used, the isistency part of the error
code is once again motivated (at least to the kernel devglope

Some processors may have hardware detection of stack.drrergch a case, the
hardware should of course be used.
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10. Discussion

10.1 Summary and conclusions

This report has presented memory protection but also adudiudy of integrity is-
sues which are of concern in a multi-application platformrisal-time applications.
A study of Volvos needs and future visions showed that mempooyection is just
a small part in this larger and much more complex issue. Tindyshas lead to a
proposed memory protected system with a time-triggered roaie extended with
an event driven subsystem. Applications are divided intefional parts called soft-
ware components. These are modules which may consist ofttiggered as well
as event-triggered tasks. They are distributable, ECUdedédent units encapsulated
in their own protected memory domains. The operating systeanes its own pro-
tected memory domain with interrupt routines which may hgptiad by application
developers. Such cases must be handled with special care.

The study has shown why the MMU is not the most appropriatevirare for
memory protection. A simpler MPU unit is preferable. Simplyt, the MMU is cre-
ated for more complex memory management which includes meprotection but
also logical address spaces and paging. The MPU is for meprotgction solely
which makes it simpler and more affective in a static system.

To make software components independent of the platformo&mgbplications
sharing the same hardware resources, a communicationgdatier was introduced.
The layer works with atomic communication entities termigghals. A buffered ap-
proach is the preferred way of transporting data to and ftoaréuting service. The
actual data transfers are performed by the operating sydteimg context switches
and by dedicated system tasks in the routing layer. The OSEB®M is an example
of a system that has some of the proposed properties.

The study was initially aimed at the OSEKtime operating exsysspecification
and the OSEK FT COM extension for fault tolerant inter-pggceommunication.
The feature of an event based subsystem also incorpora€aSEK/VDX operating
system specification. However, the current state of theseifsgations does not lend
itself very nicely for proposed system. For this reason thbu? operating system
(already used within Volvo) was also examined and choseheabdst basis for an
example system modification. Except for the above propertiming issues where
also considered in the Rubus modifications.

10.2 Future work

It is clear that some areas must be further examined and apmablbefore a sys-
tem based on the concept of distributable, memory protestiffdiare components is
ready for serious evaluation. Here follows a descriptiosarhe areas which require
attention in future work.

Synchronization

Synchronization is a serious area of concern. A simple naeiiosynchronous start
up was proposed through the introduction of a global timeraomto all ECUs. Fur-
ther work must be conducted to construct a framework foargat) single ECUs or
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applications without affecting uncoupled parts of the sysand with resynchroniza-
tion of the restarted components. In todays system (witHbd per application) an
errornous application often restarts the ECU through itkdog timer. The restart
must be fast enough to not affect other ECUs in a critical Baigh a simple approach
does not work with shared ECUs.

Routing layer

A common communication framework for hardware abstracigsomecessary for the
concept of distributable software components. This is ¢éegysupplied API used
to communicate any data to parts external to a componenhalbles transparent
communication making software components indifferent keethier the information
travels locally on the ECU or over a network to another ECUsTihcludes com-
municating with other software component as well as readimg) writing data to
hardware 1/0O. The component on one end is indifferent to émeler or receiver on
the other end.

The framework must not only include a programmers API fotvgafe develop-
ment but must also define a common way of handling timing caims. Software
developers and system coordinators must communicateciageand jitters on com-
mon terms in a well defined manner.

Work methodology

The new system will require changes and additions to the wathodology of the
vehicle manufacturer and its suppliers. Current tools roashodified to the changes
or new ones constructed. Examples are the timing analydiseafouting layer, the
specification of memory layout and protected regions, tiséridution of software
components etc.

Test implementation

The proposal in this thesis can be used to construct a te&nnemtation of a simple
version of the desired system. Advanced routing and synitation is not required
for this purpose. Work methodology and advanced fault hagdaian be completely
left out. Ideas for the latter two are typically given a go@dis during this phase.
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Definitions and abbreviations

APl [Application Programmers Interface] A set of commonly ufgactions made
available to the application programmer.

Application Engineer The person writing designing the application and software
component structure. He is employed by the sub contractor.

CAN [Controller Area Network] A data bus commonly used in auttimgindustry.
Also referred to as the ISO 11898 standard.

CAN frame The data entity communicated over a CAN bus.
Context Switch The transition of execution between two tasks.

CPR [Code Protection Registers] A set of registers in the Infim&s65 MPU defin-
ing an upper and a lower bound for instruction memory access.

DPR [Data Protection Registers] A set of registers in the Infin&d65 MPU defin-
ing an upper and a lower bound for data memory access.

ECU [Electronic Control Unit] Embedded computer system cdigisof at least
one processing unit. The ECU only covers the electronicsraide and plat-
form software such as RTOSes, drivers etc. An ECU is a phiyaitiele, which
may exist in variants[22].

EDF [Earliest Deadline First] A dynamic scheduling technigqoe greemptive sys-
tems with non-blocking periodic threads. Uses task deasllizis a dynamic
priority.

EEPROM [Electrically-Erasable Programmable Read-Only Memoryjok-volatile
storage chip used in computers and other devices. It candgggmmed and
erased multiple times electrically (although to a limitedieat). It can be read
an unlimited number of times.

Embedded systemAn embedded system is a small computer system that is gener-
ally hidden inside an equipment [machine, electrical apue or electronic
gadget] to increase the value of the equipment for betterave refficient func-
tionality[22].

External fragmentation When memory is wasted due to holes in memory external
to all assigned partitions. This only happens when progrants associated
data is swapped in and out of memory. Without compactionnigcies, mem-
ory becomes more and more fragmented as the unassignedahelest large
enough to hold programs and data.

Flash Memory A form of EEPROM that allows multiple memory locations to be
erased or written in one programming operation.

GUI [Graphical User Interface]

ICC [Inter Component Communication] Communication betweefiv&re Com-
ponents.

Internal fragmentation When memory is wasted due to the fact that the block of
data loaded is smaller than the assigned partition (in tmsaxt, segments and
pages are also partitions).

IPC [Inter-Process Communication] Communication betweecgsses.
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Kernel The fundamental part of an operating system typically resjxe for schedul-
ing (sharing the central processor) and handling of othareshresources.

LIN [Local Interconnect Network] Serial bus used in automaoiaistry for sensors
and actuators.

Logical addressing When an address does not refer directly to the a physicaéasddr
in memory (or rather, in the address range of a micro procgskological
addressing, the processor transparently convert usee dpgical addresses
into addresses that map to the physical address range afcbessor.

MessageA message is a group of data values that must be exchangeti¢oge
typical reason for grouping data is the temporal consisteridifferent data
values: a control algorithm may require, for example, thattemperature and
the pressure are measured at the same time[22].

MMU [Memory Management Unit] Protection mechanism implenmgntnemory
protection and virtual memory (paging).

MPU [Memory Protection Unit] Protection mechanism implemegtmemory pro-
tection.

OS [Operating System] The system software typically resgweadior direct control
and management of hardware and basic system operationg|laswunning
application software. The operating system is the firswwgt layer, that all
other software depends on for various common core services.

OSEK [Offene Systeme und deren Schnittstellen fur die ElekkamKraftfahrzeu-
gen] An open Real-time Operating System standard for thenzative industry
developed by a consortium of mostly german vehicle manufest

OSEKtime Time triggered extension for the OSEK standard.

Paging A memory management technique where memory is partitiongdrela-
tively small chunks (usually fixed-sized) called pages.a€Raaye assigned to a
process when needed and are not required to be placed amrlpin mem-
ory. Logical addressing is always used and the memory look8raous to the
process.

Partitioning Simple memory management technique where all parts of agmrog
(instructions, data, stack) are assigned to a single agmtismregion of memory.

PLD Programmable Logic Device. An electronic device used tddbdigital cur-
cuits.

Port A part of a component’s interface that manages a specifiopobti.e. sends
and receives messages according to the protocol. The suthpafres define
the total interface of the component[22].

POSIX [Portable Operating System Interface] IEEE 1003. A stashdiar operating
system interfaces based on the UNIX operating system.

Race condition A race condition is an undesirable situation that occursnadee-
vice or system attempts to perform two or more operationkeasame time,
but because of the nature of the device or system, the opesatiust be done
in the proper sequence in order to be done correctly. (densaaild direkt
fran google)
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RAM [Random Access Memory] A type of computer storage whoseetisitcan
be access in any order. It is usually implied that RAM can beh beritten to
and read from, and the memory is often a primary storage rabiiito power
loss.

RTOS [Real-time Operating System]
Rubus Real-time operating system from Arcticus systems.

Segmentation A memory management technique where a program and its associ
ated data are divided into a number of segments. The segeantse of vary-
ing length and occupy different memory partitions.

Signal A signal is a data value that needs to be communicated. Sigaalbe logical
(sent in messages) or hardwired. A signal may carry infaonauch as speed
or steering angle. Additionally, signals may have atteisuie.g. freshness, data
type, number of bits etc.).

System coordinator The person deploying the software components delivered by
the sub contractors on suitable ECUs. He is also in chargeha&fdsiling and
resource management.

Task A small unit of executable code with a known interface. Thek$aare the
entities scheduled by the kernel.

Thread See definition of Task
TLB [Translation Look-aside Buffer] A cache within the MMU.
Trap A trap is an interrupt which is not possible to disable.

UNIX A portable, multi-task and multi-user computer operatiggtam originally
developed by a group of AT&T Bell Labs employees.

Volcano Volvo CAN based distributed real time Operative environiénsoftware
module used in ECUs by Volvo for CAN communication.

WCET [Worst Case Execution Time]

SwC [Software Component] Memory container used to separatkcapipns.
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