
 1

Table of Contents

1. INTRODUCTION... 3

1.1. PURPOSE .. 3
1.2. APPLICATION DESCRIPTION .. 3
1.3. DESIGN... 3

1.3.1. Interfaces .. 3
1.4. OVERVIEW OF THE FOLLOWING DOCUMENT ... 3

2. PROJECT OVERVIEW .. 4

2.1. PROJECT GOALS.. 4
2.2. PROJECT COMPETITION... 4

2.2.1. Gmail .. 4
2.2.2. mMail.. 4
2.2.3. Mailwithme ... 5
2.2.4. MovaMail ... 5
2.2.5. vimoMail... 5

2.3. HISTORY OF MUJMAIL ... 5
2.4. FUTURE DEVELOPMENT POSSIBILITIES ... 6
2.5. DEVELOPMENT PROGRESS .. 6

3. COMMON FEATURES... 9

3.1. MULTI-LANGUAGE SUPPORT .. 9
3.1.1 Lang class... 9

3.2. EXCEPTION HANDLING ... 10
3.2.1. MyException class .. 10
3.2.2. Exception handler... 11

4. PROJECT SCOPE.. 12

4.1. MOBILE PART ENHANCEMENT .. 12
4.2. SERVER PART IMPLEMENTATION .. 13

5. DATA STORAGE... 15

5.1. OVERVIEW ... 15
5.2. MESSAGE CONTENT STORAGE SYSTEM ... 15

5.2.1. RMSStorage class ... 16
5.2.2. FSStorage class .. 16

5.3. MESSAGE HEADER STORAGE .. 16
5.3.1. Overview... 16
5.3.2. Data format .. 17

5.4. BODYPART HEADER STORAGE .. 19
5.4.1. Overview... 19
5.4.2. Data format .. 19

5.5. MISCELLANEOUS DATA STORAGE... 19

6. CONNECTION INTERFACES .. 21

7. SEARCHING MAILBOXES... 24

7.1. OVERVIEW ... 24
7.2. USER INTERFACE .. 24

7.2.1. Running search ... 25
7.3. SEARCH ALGORITHM .. 25

7.3.1. Full-text search and search modes ... 25
7.3.2. Implementing new full-text search algorithm ... 26

 2

7.4. SEARCHING INTERFACES .. 26

8. USER FOLDERS.. 27

8.1. OVERVIEW ... 27
8.2. MAIL ACCOUNTS .. 27
8.3. IMPLEMENTATION .. 28

9. THREADING MAILS.. 30

9.1. OVERVIEW ... 30
9.2. CONCEPT.. 30
9.3. ALGORITHM ... 30

9.3.1. Input.. 30
9.3.2. An execution cycle .. 30

9.4. IMPLEMENTATION DETAILS .. 31

10. HTML CONTENT DISPLAY .. 33

10.1. OVERVIEW ... 33
10.2. HTML PARSER... 33
10.3. DISPLAYING HTML CONTENT ... 34

11. TASKS... 36

11.1. DEFINING A TASK ... 36
11.2. TASK EXECUTION ... 38

11.2.1. Starting a task .. 38
11.2.2. Observing tasks progress ... 39
11.2.3. Managing tasks .. 40
11.2.4. Running actions on task start or task end .. 40

 3

1. Introduction

1.1. Purpose

This document serves as a foundation for the further development of the MujMail project.

It contains requirements specifications that define the capabilities to be added to the

application. Additionally, the document defines interfaces between individual modules of

the application.

1.2. Application description

Mobile application is the base part of MujMail project. Its goal is to enable a user to

access his/her mail account(s) on a mobile device supporting all the necessary functions,

such as reading mails, writing mails, mail forwarding, polling, mail folders and flags

manipulation, searching mails downloaded to the device, etc.

1.3. Design

This document contains tables describing interfaces. This information will be used during

development, to synchronize between developers.

1.3.1. Interfaces

Each interface table contains methods of one specified class. Description of each method

contains method parameters and its return value type (indicated with a slash before type

name).

1.4. Overview of the following document

Chapter 2 introduces the project: its goals, competition it faces, history of mujMail,

further improvement possibilities and describes the progress of work on the project.

Chapter 3 describes the functionality of mujMail which is common to all parts of the

code, e.g. multiple languages support and exceptions handling. Chapter 4 defines basic

requirements for mujMail mobile and server parts. Next, Chapter 5 defines the

requirements for unified data storage and describes the interfaces. In Chapters 6 and 7,

network and file system communication, and searching mails are defined, respectively.

Chapter 8 deals with user folders. Threading mails is discussed in Chapter 9. Chapter 10

describes the interfaces specified for HTML content display. Finally, Chapter 11

introduces the requirements for tasks definition, execution and management.

 4

2. Project overview

This chapter presents a short introduction to the goals this project is designed to achieve

and gives a quick overview of other solutions which aim to solve the same goals.

2.1. Project goals

With the growing accessibility of mobile devices the need for the software designed for

these devices increases too. Emailing have became a usual way of communication and as

using internet on mobile phones becomes more popular the need for mobile email clients

grows too. However, there is a still small number of email clients designed for mobile

devices. Thus, there is even smaller number of freeware or user-friendly mobile email

clients. Although newer mobile devices have built-in email client applications, they are

not open-source and thus, in case those applications have some errors a user does not

have the possibility to quickly fix it or enhance it.

The most common software platform for mobile devices is J2ME (Java Micro Edition)

from Sun Microsystems. Even the modern PDA devices and smartphones have the

support for Java, thus enabling our mobile application to be used on those devices too.

The goal of the project is to enhance MujMail mobile mail client with the features that

give the user the possibility to fully control his email accounts including message flags

and folders manipulation, synchronize his MujMail settings, communicate with wider

range of mail servers through enabling encrypted communications, view his mails as

conversations, search mails in mobile device and many more.

2.2. Project competition

There exist a few mobile mail clients, which perform similar tasks as MujMail. The

overview of these applications is given in this section.

2.2.1. Gmail

Gmail client (www.google.com/mobile/default/mail.html) is developed by Google for

users with Gmail account. It is a user-friendly mail client with very attractive interface. It

supports multiple Gmail accounts, saving mails as drafts to send them later, shortcut

keys, message autorefreshing, autocompleting addresses, attachments viewing and others.

Unfortunately, it has a big con: it is designed only for Gmail accounts. Other mail servers

are not supported.

2.2.2. mMail

 5

Polish email client developed by Xtend new media Sp. z o.o. is called mMail

(www.mmail.pl). It is able to send and receive simple plain-text email messages. HTML-

based emails are converted on the server to plain-text. Images, scripts and attachments

are cut. It supports English, German and Polish languages. Unlike Gmail, mMail supports

multiple accounts. The application is shareware. The main disadvantage of the

application is that it does not support IMAP protocol.

2.2.3. Mailwithme

Mailwithme (www.mailwithme.com) is a mobile email client which supports

POP3/IMAP protocols possibly with SSL encryption. In order to function, Mailwithme

needs to communicate with its server: a user needs to create an account on the application

web. Mailwithme server is used to store mail accounts configuration, to support different

email protocols, to preprocess images in order to reduce GPRS consumption and to

reduce mobile software complexity to allow service on small devices. The disadvantage

of this application is that it does not function without Mailwithme server.

2.2.4. MovaMail

MovaMail (www.movamail.com) is structurally very similar to Mailwithme mail client.

It also needs a server to function. This allows a user to download emails from even

webmail servers like Yahoo and Hotmail for the price of having an intermediate server.

Its key features are support for multiple email accounts, address book integration and

synchronization, full support for image attachments, cameraphone support and support

for multiple languages.

2.2.5. vimoMail

vimoMail mail client (www.vimomail.com) allows access to user accounts using either

POP3 or IMAP protocols. Additionally, it supports SMTP protocol for sending mails,

viewing URLs embedded in emails, and to quickly manage user inbox with just a few key

presses. It has presets for Gmail, Yahoo Mail and AOL mail. vimoMail address book

grows while working with the application, i.e. automatically adds mail addresses to the

book. Also, it is possible to switch mailboxes using IMAP protocol. One of the biggest

disadvantages of the application is the lacking support for attachments, too few settings

entries (i.e. downloading only limited amount of mails), impossibility to stop unread

mails retrieving process.

2.3. History of MujMail

MujMail project have been developed for a long time. Firstly, the project was introduced

as open-source software in 2003 by Peter Spatka. Then, after some time our project

supervisor, Pavel Machek joined the project. The application was designed as a very

simple mobile email client allowed working with emails with POP3 and SMTP protocols.

 6

Later, in 2005, two students of Charles University in Prague, Martin Stefan and Nguyen

Son Tung have joined to the project. They decided to rewrite MujMail and designed it

such way that it complied with their project requirements. Thus, MujMail was rewritten

and very little percent of old code from 2003 was left.

The new version of MujMail developed by this project was based on the latest version

1.07. This document specifies the parts of the application developed by our project. Each

part which was not fully created by our project will be explicitly commented.

2.4. Future development possibilities

Many new functionalities were added during the development of mujMail 1.08, the whole

source code was refactored. All these changes unavoidably increase the size of the

application dramatically. Additionally, large size of the application decreases available

operating memory at runtime. Typically, unpacked class files, stack and heap share one

address space. It makes extending mujMail with a new functionality a really complex

task. Thus each new improvement to mujMail had to be implemented with the size of

available operating memory in mind.

The next versions of mujMail should have full support for touch screen devices in order

to stay up to date. As our project mainly added new features into mujMail, further, the

feature-adding should be stopped for some time and the focus should be shifted to

stability improvement. Because mujMail has quite larger user base it seems to be a

reasonable approach for further development.

Other direction in which the future development can go is to make mujMail even smaller

and faster. There is enough space to solve memory inefficiency and thus to improve

speed and decrease mujMail size.

Much more useful work can be done in the server part, because then it will be possible to

deliver new functions to all users. New version of mujMail can be considered as some

base where new functionality can be added. Attachment conversions from even more file

types can be supported by the server. Additionally, searching mails is possible only

between the mails downloaded to mujMail. But this way only a random subset of the

whole user mailbox can be searched. By moving the mails searching to the server this

shortcoming can be avoided.

Finally, mujMail should be further maintained as it has a big base of users. The users will

be the source of new features. The implementation of mujMail startup lock and basic

touch screen support are the examples of such features, which were added to mujMail

beyond the specification.

2.5. Development progress

 7

The development progress of mujMail 1.08 can be divided into three phases. In each

phase the different tasks are done and the intensity of the work is different too. Shortly

the development progress can be described as: creating the team of developers, studying

how mujMail works, thinking about extension possibilities, implementing individual

features, and last, overall regression testing and writing a documentation.

During the whole development period mujMail user support task was performed and is

still performed. All team members have done user support which was based on monthly

rotations. During the development also the web pages of the application have been

updated, new versions and localizations have been released. Status meetings were held

each week.

Creation of the team can be considered as a zero phase. It begun with a user support and

looking into mujMail documentation, source comments in order to understand the

mujMail functionality. In this phase the team tried to understand how mujMail works, its

coding style. As all team members were seeing mujMail for the first time the team was

trying it and probing its possibilities. At that time, the web pages were moved to another

location and private SVN repository for the work was created.

First phase of development came after. An official specification was created. The

possible ways of enhancing mujMail were analyzed and the work to be done has been

divided between team members. Each of the developer presented their vision on how to

implement the features assigned to them. Also, the team consulted the specification and

the suggested solutions with the team lead. Users’ needs were taken into consideration

while writing the specification. As many users complained about SSL certificates issue,

this problem has been implemented first.

In that phase also the server part solution was widely discussed. Discussion was whether

to implement a proxy server, which serves as a proxy to mail servers or to implement a

standalone server which would directly contain user mails. The latter solution was chosen

as it reduces the complexity of the server, and eliminates the need for a central proxy

server for all users. The first phase was symbolized by primal eagerness and more

intensive work.

Main attribute of the second phase was the separate development. Regular status

meetings have been held. Each team member presented the work he made. At that time

the problem in team had risen, because one of the team members was leaving the

university. New team member had to be found as the minimum team size is four people.

The labor division had to be remodified. As the new member had less time to do the

work, his tasks were shortened. As soon as the new team member has been found the

project was restarted.

During the second phase file system support was added as first feature. Main challenge

while implementing this feature was in supporting users without file system extension

(JSR75). Because those users cannot simply import these classes, mujMail would not be

able to run on mobiles without JSR75 support and such mobiles are not rare even now

 8

and have to be supported (Nokia 6230) as specified. At that time the team thinks about

using a preprocessor. But the discovery was, that J2ME supports dynamic class loading

and after some testing when the team ensured that this construction works on mobile

phones without file system the team started with the implementation. File system browser

had to be created to be able to select folders and files.

Then, this functionality was used to implement the feature of storing downloaded

attachments into file system. In parallel with storing attachments feature the work started

on saving and restoring configuration. Because the team wanted to store configuration

into a file the same way as on server the team needed to have file system access

implemented.

Sending emails with attachments feature was the next task to implement. Mail sending

routines in client had to be modified in order to be able to generate multipart messages

and read data from file system of the mobile device. Also, the sending form had to be

modified in order to show the attachments and add commands for working with them.

With attachments support the team had to refactor the code which was responsible for

mail databases manipulation in order to be able to use the file system as the same source

of data as RMS databases, i.e. there was the need to have a unified storage interface.

Next, searching mails by given criteria was implemented. In order to preserve a logical

structure of mujMail the team had to update internal structure of mailboxes (Inbox,

OutBox, SentBox and Trash) and implement a new search result windows and user

folders. The team adds Persistent box, where mails are stored in database and

NonPersistent box where a new mail is stored only in memory. The team added the

functionality needed for searching.

And finally the team added a basic support for touch screen devices. Because mujMail

does not use only standard form elements, but uses canvas and paints screen, touch screen

device support could not be easily integrated into mujMail as it, as a standard, works only

with standard elements. The team introduced a simple solution, that screen regions will

be mapped onto keyboard so missing key can be replaced by tapping the screen.

In the third phase the team changed project management. Hard deadlines were

introduced. This was necessary to finish mujMail project in time. This phase is

symbolized by intensive development, on-device testing. Team releases development

versions nearly on weekly basis. The team also updates user manual to correspond with

current version.

The team coded important missing functionalities. As first the team adds compressing

connections to mujMail server, threading, conversions. As last user folders and HTML

support were added. Then the team started intensive testing phase removing bugs not

found by standard testing. During testing the team checks and improves code and

comments quality. Package comments describing how the things work were added.

 9

3. Common features

3.1. Multi-language support

The new version of the application also supports multiple languages and encourages

further translations. All the texts used in the application (user interface, error messages)

are stored in a separate text file, which is embedded in the application JAR. Individual

versions of mobile application with different languages are available on the project web.

This ensures the mobile part of the application to be more compact.

Requirements

ID Description Remark

FR1 Mobile application shall support multiple languages. The

user can download mobile application with the language he

wants from the project web.

Enhanced

3.1.1 Lang class

All the texts used in the application are managed by the Lang class. This class is
responsible for the loading of texts for a given language. It provides static string variables

that contain the actual texts.

The task of our project was the enhancement of this class to return the texts for the

functionality to be implemented by the project.

Interface – Lang

Method Description

Parameters

/ Return value

 10

Interface – Lang

Method Description

Parameters

/ Return value

get Returns the text associated with the

given code
lang_code – lingual

code of the text /
String

The named constants for all the actual texts used in the application are not included in the

previous table.

3.2. Exception handling

3.2.1. MyException class

Individual parts of the application use the exception class MyException derived from

Exception class. This class was not fully developed by our project. The use of this
class was enhanced and the module was modified to achieve the goals of the project.

Interface – MyException

Method Description

Parameters

/ Return value

MyException Constructor which initializes the

error code.

int errorCode

MyException Constructor which initializes the

error code and the details string.

int errorCode, String
details

MyException Constructor which initializes the

error code and the details which is

initialized to given Exception

int code, Exception e

 11

Interface – MyException

Method Description

Parameters

/ Return value

class’ description.

getErrorCode Returns the exception code. / int

getDetails Returns the description of the

exception.

/ String

getDetailsNocode Returns the description of the

exception without prefixed error

code.

/ String

Exception codes are defined for individual types of functionality. The error detail is taken

from Lang class which returns the string in selected language.

3.2.2. Exception handler

All modules in the mobile application use common exception handler to handle problems

that the user should be informed of. This handler processes MyException class
defined in this document. It gets the description of the exception and presents the text to

the user. If the application code handles some exceptions internally and it is not a fatal

error, it processes it directly. Exception handling is therefore as follows:

• catch and process all internal exceptions, i.e. exceptions that does not terminate

the user action

• catch all other exceptions aroused during network communication and call

resolveException function; action that caused the exception is terminated

afterwards.

 12

4. Project scope

4.1. Mobile part enhancement

As mentioned above, the basis of the project is the mail-client for mobile devices. It will

allow the user the full capability to work with emails and will communicate with email

servers as well as with server-part of the project. It should be note that the mobile

application will work also without server-part.

Requirements

ID Description Remark

FR2 Mobile application shall allow perform such basic

operations as forward and bounce.

FR3 Mobile part shall support JSR-75 functionality when it is

possible. JSR-75 specifies filesystem support. The required

functionality is the possibility to export emails and their

attachments to a device filesystem and attaching files in the

device FS to outgoing mails.

FR4 The application will also support user folders and

manipulation with them.

FR5 There shall also be the support for manipulation with IMAP

flags, such as setting a flag and removing a flag.

FR6 User-friendly visualization of HTML documents shall be

supported including opening URLs in phone’s native

browser.

FR7 Unsupported attachment formats shall be displayed at least

as plaintext files.

FR8 Support for view of signed emails will be provided.

 13

Requirements

ID Description Remark

FR9 Support of attachments for outgoing emails.

FR10 Mobile application shall also support the threading of

incoming messages. Messages will be displayed as GMail

conversations.

FR11 There shall be support for search in mails stored in

application databases.

FR12 Application shall support backing up and restoring its

whole configuration to ease the transitions to newer

versions of the application by users.

FR13 Mobile application shall support IMAP Push functionality

to immediately download new incoming messages from

mail server.

FR14 It should be possible to modify the size of font of the

mobile application.

FR15 Mobile application will support interrupting feature. It shall

be possible to interrupt longer actions, such as downloading

new emails, synchronization with servers, etc. The

application should also assume limited operating memory.

4.2. Server part implementation

This part will preprocess emails content for more user-friendly displaying in the mobile

device. Additionally, it will allow to backup and restore mobile part configuration for

better transition to newer versions.

 14

Requirements

ID Description Remark

FR16 Emails content processing for better display in the mobile

device.

FR17 Mobile application’s configuration synchronization shall be

supported to ease the transitions to newer versions.

 15

5. Data storage

5.1. Overview

The application stores mails, configurations and attachments. It provides a unified

interface for all classes that need to access stored data. The storage methods are

optimized for speed, while keeping data size limitation in mobile devices in mind.

Message contents in each box (Inbox, Outbox, Drafts, Trash, etc.) are stored in their

respective RMS databases which have the corresponding name.

5.2. Message content storage system

The unified content storage interface, represented by the ContentStorage abstract
class, serves to retrieve message contents stored in the RMS and JAR and store and

retrieve any message contents, attachments contents data saved by the user either in the

RMS or in the mobile device’s filesystem.

A set of high-level functions are available for normal usage, as well as a set of low-level

raw data operations in order to access binary data, such as multimedia attachments and

others.

The storage system is able to handle requests for data from several threads and avoids

race conditions and data corruption.

Requirements

ID Description Remark

FR18 Mobile application shall be able to access data stored in

filesystem or record stores using Record Management

System (RMS).

Enhanced for JSR75

FR19 Mobile application shall be able to add, modify and delete

data stored in the RMS.

Implemented in

previous version

FR20 The storage system shall be able to retrieve all data that was Implemented in

 16

Requirements

ID Description Remark

previously stored by the user. previous version

FR21 The storage system class shall throw an appropriate

exception, in case any error occurs when reading or writing

to the storage.

Enhanced for JSR75

5.2.1. RMSStorage class

RMSStorage class is the part of Bodypart class that stores the information about the

content of bodypart that is stored in internal Java RMS database. In order to be able to

save the bodyparts with alternative sizes, the contents of bodypart can be divided into

several parts.

5.2.2. FSStorage class

This class, being the part of Bodypart class, is used to store the alternative bodyparts to
filesystem of the mobile device if the device allows access to its filesystem. In order to do

this FSStorage uses ConnectionInterface communication interface.

5.3. Message header storage

5.3.1. Overview

The application stores message headers in the RMS. Besides storing standard fields of

message header (From, To, Subject, Cc, Bcc, etc.), it contains a list of bodyparts of the

given message. Additionally, it stores the information from which account it was

downloaded, message attributes (read/unread, replied, deleted, flagged, etc.) and

threading-related fields. The unified storage system is used to store, retrieve and delete

the message headers. All the headers are stored in the RMS database “[BoxName]_H”.

Requirements

ID Description Remark

 17

Requirements

ID Description Remark

FR22 Mobile application shall be able to store message headers.

The project will enhance the message header in order to the

application to be able to work with message flags, and to

display the messages as Gmail conversations.

Enhanced for flags

manipulation and

message threading.

FR23 The storage system shall be able to list all available

message headers and provide means of accessing them

directly.

Implemented by

previous version.

FR24 The mobile application shall be able to search within

message headers by its fields.

Implemented by this

project.

5.3.2. Data format

Message header is stored in the corresponding box (Inbox, Outbox, Draft, Trash, etc.). A

message header stored in RMS consists of the following records:

Message header RMS record format

Length Type Description

2 B char Original box where the message was before being deleted

variable String “From:” field

variable String Recipients field

variable String “Subject:” field of the message

variable String Value of the boundary parameter of the Content-Type field

variable String Message ID, a unique primary key that is, among others, used to test

 18

Message header RMS record format

Length Type Description

existence of a mail in the mobile device

variable String Folder name where it is stored in mail server (used for IMAP

protocols)

variable String Account from which the mail was downloaded – must be given for

each mail

1 B byte Indicates message format, whether it has attachments (multipart

message) or no (plain message)

1 B byte Indicates if the message was seen or not

1 B boolean Indicates whether the message was flagged

1 B byte Indicates if the message was already stored

1 B byte Send status of the mail

4 B int Size of the message

8 B long “Date:” field of the message header

variable String “Message ID:” field of the message header, if not found, MujMail

message ID is used

variable String Parent ID – thread parent message ID

4 B int Size of the parent IDs vector. The vector represents the path to the

thread root message

variable String Parent message ID stored in parent IDs vector

… … Remaining message IDs stored in parent IDs vector

1 B byte Number of bodyparts of the message

 19

All the messages’ bodyparts headers are also stored while storing the message header.

5.4. Bodypart header storage

5.4.1. Overview

The application stores bodypart headers in the same RMS database as message headers.

Bodypart header contains info details about each message part. The unified storage

system is used to store, retrieve and delete the bodypart headers. All the headers are

stored in the RMS database “[BoxName]_H”.

5.4.2. Data format

Bodypart headers are stored in the same database as message headers. Bodypart header

format is as follows:

Bodypart header RMS record format

Length Type Description

variable String Bodypart’s name or attachment’s filename

1 B byte Bodypart content type (TYPE_TEXT, TYPE_HTML,

TYPE_MULTIMEDIA, TYPE_APPLICATION, TYPE_OTHER)

1 B byte Character set of the bodypart content (CH_NORMAL (ASCII),

CH_ISO88591, CH_ISO88592, CH_WIN1250, CH_UTF8,

CH_USASCII)

1 B byte Bodypart content encoding (ENC_NORMAL (7 bit), ENC_BASE64,

ENC_QUOTEDPRINTABLE, ENC_8BIT)

5.5. Miscellaneous data storage

Remaining data, such as mobile application configuration, account settings, address book

and others are stored/retrieved using standard Java RMS interface.

 20

Storage interfaces

Class/Method Description

Parameters

/ Return value

Settings /
loadSettings

Used to load the configuration settings from

the Settings database. This method is called

only at the start of the mobile application.

Settings /
saveSettings

Stores the configuration settings to Settings

database. Parameter indicates whether to

setup the settings from Settings form.

boolean init

AccountSettings /
loadAccounts

Loads accounts from persistent Accounts

database. Executed in a separate thread.

AccountSettings /
saveAccount

This method is used to save given new or

edited account from the form to the

recordstore or the account retrieved using

Restore mechanism.

String accountId,
MailAccount
account

AddressBook /
saveContactForm

Saves a contact from the form.

AddressBook /
saveContact

Saves the given contact to the AddressBook

database and containers. Used, e.g. for

restoring the addressbook from either local

or remote source.

Contact contact

 21

6. Connection interfaces

Connections have been refactored in mujMail 1.08. Connections contain (network)

transmission related code, code for connections management, encryption, compression

and buffering. Connections are bidirectional. Connections in mujMail are based on the

two basic interfaces: ConnectionInterface and ConnectorInterface.

ConnectionInterface is an outer interface that uses all other components of

MujMail (mainly, in protocol parsing classes). Creates the illusion of line oriented

buffered input and string accepting output.

Interface – ConnectionInterface

Class/Method Description

Parameters

/ Return value

available Returns true only if the input stream can

be read without blocking, i.e. it contains

non-empty input.

/ boolean

clearInput Skips all data in input stream until the end

of stream.

close Closes the connection with the server.

getLine Gets a line from the input stream. / String

isConnected Checks if the connection was already

opened.

/ boolean

open Creates a new connection to specified

server.

String url,
boolean ssl, byte
sslType

quit Marks the connection as closed but does not

close it. No more data can be read or

written after the call.

 22

Interface – ConnectionInterface

Class/Method Description

Parameters

/ Return value

send Sends the specified data to the server. byte[] command

send Sends (multi-)line data to the server. String command

sendCRLF Sends (multi-)line data to the server with

ending CR/LF.

String command

unGetLine Puts the last read line to the connection

input buffer.

unQuit Reverts the effect of quit method, so the

connection can be used again if it was not

closed before.

ConnectorInterface is an internal interface to be used only in

mujmail.connections package. The interface is intended to create unified vision
on different streams for sending data (into file, over network). It is the most low-level

communication component. Most typically, it is used for communication with mail

servers.

Interface – ConnectionInterface

Class/Method Description

Parameters

/ Return value

available Returns the number of bytes which can be

read from the input stream without

blocking.

/ int

close Ends connection with the server.

 23

Interface – ConnectionInterface

Class/Method Description

Parameters

/ Return value

flush Sends all data in the buffer to the server.

open Creates a new connection to specified

server.

String url,
boolean ssl, byte
sslType

read Reads data from given input stream and fills

given buffer.

byte[] data, int
off, int len

write Sends data to the server from the given

buffer.

byte[] data, int
off, int len

 24

7. Searching mailboxes

7.1. Overview

Search package implements mailbox search capability. It searches for given keyword

among messages downloaded to the mobile device. Classes in this package can be

divided into two groups:

• User interface classes that enable user to enter search settings or display search

results.

• Classes used to find messages that fulfill given criteria.

7.2. User interface

All user interface functions are accessible using static methods of class

SearchWindows. It provides methods both for displaying dialog where user can enter

search settings and for displaying results of the search. Settings dialog remembers

message parts selected to search in and boxes selected to search in using

SaveableSelectedState and WasSelectedReminder. The results of the

search are displayed using class SearchBox.

Each matched message contains information about occurrences of search phrases found

in the message. This information is accessible via method getSearchResult. This

information can be later used for better display of search results in SearchBox.

Interface – SearchWindows

Method Description

Parameters

/ Return value

SearchWindows Constructor. MujMail mujmail

displaySearchWindow If the search box is not empty, displays

it. If it is empty, displays the search

settings window.

newSearch Displays the dialog window to

configure the search settings and start

 25

Interface – SearchWindows

Method Description

Parameters

/ Return value

the search.

7.2.1. Running search

Searching is initiated by executing method SearchCore.search.

7.3. Search algorithm

Method SearchCore.search enumerates all messages in all boxes contained in

search settings. If the message matches search criteria specified in search settings, it is

added to search box.

The message matches if the date of the message is in interval specified in search settings

and if the message matches given search phrases.

Search phrases are represented by class SearchPhrase. This class provides method

SearchPhrase.findFirstMatch that finds first occurrence of the phrase in given
message. This method lists all message parts that should be searched and looks for the

phrase there.

Message parts that should be searched are represented by class SearchMessagePart.

This class provides method SearchMessagePart.findFirstMatch that finds

first match of given search phrase in this message part. This method is abstract, this
means that every concrete searchable message part must implement searching itself.

7.3.1. Full-text search and search modes

Most of searchable message parts use full-text search in string. Object that provides full-

text searching is accessible by calling method

SearchCore.getFulltextSearcher.

Method FulltextSearcher.searchInString uses instance of class

FulltextSearchAlgorithm for searching the string and

FulltextSearchModes stored in SearchPhrase to check whether the location of

 26

the string matches the FulltextSearchModes. This means that the location of string

meets given condition - for example it is whole word etc.

7.3.2. Implementing new full-text search algorithm

To implement new algorithm for full-text searching, implement the interface

FulltextSearchAlgorithm. To make new search algorithm used while searching,

create instance of class FulltextSearcher with new search algorithm as the

parameter and make method SearchCore.getFulltextSearcher to return this
instance.

7.4. Searching interfaces

All search functions within the message headers are provided by the SearchCore
class.

Interface – SearchCore

Method Description

Parameters

/ Return value

search Returns vector of messages (instances of the class

MessageHeader) that match given search

settings. Search settings, mailbox to search in and

progress painting task are given as input

parameters.

SearchSettings settings,
SearchBox searchBox,
StoppableProgress
progress / Vector
<MessageHeader>

If no message meets given criteria, the method returns zero.

 27

8. User folders

8.1. Overview

User folders serve as new separate storages for emails. User can specify which account to

retrieve into selected user folder. Main part of user folders functionality is implemented

in mailboxes package which currently takes care only about user folders.

8.2. Mail accounts

Mail accounts store user account configuration and information needed for connecting to

them (mail server address, port, login, password, etc.). Mail accounts are stored in

MujMail object and can be retrieved by MujMail.getMailAccounts method. Mail

accounts were implemented by previous version of the application. Our project enhanced

mail accounts functionality to allow accounts synchronization and user folders creation.

There are two types of mail accounts in MujMail: primary and derived. Primary accounts

are stored in RMS database called ACCOUNTS. They are a primary source of

information about accounts. These accounts are visible to user. Derived accounts are used

only by user folders to customize primary account’s behavior and are invisible to user.

Interface – AccountSettings

Method Description

Parameters

/ Return value

AccountSettings Constructor. MujMail mujmail

deleteAccount Removes specified mail account

from ACCOUNTS RMS database

and shows a confirmation dialog if

sure parameter is false.

String accountID,
boolean sure

deleteAll Removes all mail accounts from

ACCOUNTS RMS database and

shows a confirmation dialog if sure

boolean sure

 28

Interface – AccountSettings

Method Description

Parameters

/ Return value

parameter is false.

getNumAccounts Opens ACCOUNTS recordstore and

returns the number of accounts in the

database.

/ int

isBusy Returns true while loading
accounts from database, otherwise

false is returned.

/ boolean

loadAccounts Loads accounts from persistent

Accounts database. Executed in a

separate thread.

saveAccount This method is used to save given

new or edited account from the form

to the recordstore or the account

retrieved using Restore mechanism.

String accountID,
MailAccount account

showAccount Shows a form for editing an account. String accountID

waitForAccountsLoading Blocks a caller until all accounts are

loaded.

8.3. Implementation

Main part of work is performed by BoxList class. BoxList class contains the list of
user boxes. It takes care about basic mailbox operations like creating, loading, removing.

User folders are implemented as InBox class instances. Their names are stored in a

special database. Each user folder has (and also loads and saves) list of accounts to

retrieve.

 29

Interface – BoxList

Method Description

Parameters

/ Return value

BoxList Constructor. MujMail mujmail

createPersistentBox Creates new user folder. Shows

user folders settings form to

customize the mailbox.

deleteAllMailsFromAllUserBoxesAndDB Removes mails from all user

boxes. This function is

intended for clearing databases

and freeing space for new

mails.

editUserMailBoxSettings Shows edit form for user

mailbox. Allows setting user

folder properties like name of

retrieved accounts. Parameter

indicates the index of mailbox

in mailboxes vector.

int index

getBoxList Returns vector of user created

mailboxes.

/ Vector<InBox>

loadBoxes Loads all mails stored in

persistent storage into user

folders.

removeUserMailBox Remove mailbox from system.

Remove also all its databases.

int index

sort Sorts user folders by their

names for displaying purposes.

spaceOccupied Returns the space occupied by

all user folders databases.

/ int

 30

9. Threading mails

9.1. Overview

MujMail application supports the basic type of threading that is equivalent to Gmail

conversations. Mails threading can be viewed as a special type of sorting emails where

mails which are logically relevant are grouped together.

The goal of mails threading, shortly, threading is ordering mails to groups, which are

logically dependent. Two mails should be in one group if the second one was the reply

for the first one, i.e. if it is possible to interconnect them into logical chain (in which

some mails can be missing).

9.2. Concept

Threading is based on message headers, which typically contain Message-ID and, in case

the message is a reply to an email, the message header also contains fields In-reply-to,

which indicates to what mail this message is replying and a list of references containing

the whole chain (history of replies).

9.3. Algorithm

9.3.1. Input

Input to the threading algorithm is a list of mails to be threaded, which is represented in

MujMail as Vector<MessageHeader> structure. While retrieving mails it is

controlled, whether a given email contains Message-ID field and in case, it does not

contain the field a unique message ID is generated for this email, which guarantees that

the emails not containing Message-ID won’t be grouped together to a thread.

9.3.2. An execution cycle

Threading algorithm takes the messages sequentially and does not assume any ordering

of input mails. Internally, the algorithm creates a map of IDs of messages (keys)

containing a list of messages with the same ID. The situation when several messages

have the same Message-ID can occur, e.g. when a mail is sent to several recipients and in

MujMail the accounts are created for these recipients and when the mails from these

accounts are retrieved the sent mail will occur twice in InBox with same MessageID.

An execution cycle is as follows:

 31

• Get a message from input and check if there is already a mail with this ID in the

map.

• If not, then the message is added to the map as root message for a thread when

parent ID field does not exist in the message header otherwise a thread is created

with empty root and the message is added to this thread.

• Otherwise (the case when some messages already exist for given ID), we differ

two possibilities:

o If the message is a root for some thread then map contains this thread with

empty root – add the message as root.

o Otherwise a message is added to an existing thread as a new message for

the thread.

At the end of the algorithm execution a structure of threaded emails is returned as the

instance of the class ThreadedEmails.

Interface – Algorithm

Method Description

Parameters

/ Return value

getAlgorithm Returns the instance of Algorithm
class.

/ Algorithm

invoke Executes a threading algorithm on the

input Vector<MessageHeader>.

Vector<MessageHeader>
/ ThreadedEmails

9.4. Implementation details

In general, mails dependency creates a tree data structure, but for the project it was

decided not to show the whole structure that could be rather deep. Instead, mails are

displayed only with 1 level of depth. This decision is reasonable for the mobile devices as

their display can be rather small and thus often the whole tree structure cannot be

displayed in the device. In order to implement mail threading runtime mail storing system

had to be refactored.

MujMail 1.07 uses Vector<MessageHeader> structure which contains the mails

stored in given mailbox. Thus, it does not count with mails threading. In order to be able

to thread the mails in given mailbox the new interface IStorage had to be introduced.

 32

This interface is created in order to be able to sort only given set of mailboxes. Such

mailboxes as Draft, Trash, etc. are not threaded. Class ThreadedEmails implements

this interface in order to provide the tree structure of threads.

Interface – IStorage

Method Description

Parameters

/ Return value

addMessage Adds the given message header to the

storage.

MessageHeader
messageheader

getEnumeration Returns all the message headers in the

storage as an enumeration.

/ Enumeration

getMessageAt Returns the message in storage with

the given index.

int index /
MessageHeader

getSize Returns the number of message

headers in the storage.

/ int

isEmpty Returns true only if the storage is
empty.

/ boolean

removeAllMessages Removes all messages from the

storage.

removeMessage Removes first occurrence of given

message header from the storage.

MessageHeader
messageheader

removeMessageAt Removes the message in storage with

the given index.

int index

sort Sorts messages in the storage in the

order defined by given comparator.

Comparator
comparator

 33

10. HTML content display

10.1. Overview

The mobile application is able to display an HTML bodypart. Parsing is implemented

directly in the application in order to simplify the display procedure and speed up the

overall HTML visualization process.

10.2. HTML parser

Parser class is responsible for parsing HTML stream. There are some requirements for

Parser functionality:

• It should be the as simple as possible in meaning of robustness - we do not require

handling of each error in HTML stream (like missing closing tag, incorrectly

paired tags). Parser is not validating the input, just wants to highlight some subset

of HTML tags.

• Parser has to process incomplete HTML source. It's possible in mujMail to limit

the number of downloaded bytes/lines of e-mail so generally we cannot expect

correctly paired tags not even closed (HTML can end, e.g. with "<b" and we do

not know if that had to be or
 tag).

When stream is parsed, vector of elements is returned.

Interface – Parser

Method Description

Parameters

/ Return value

Parser Constructor, which creates a new

instance of parser with HTML

content to be parsed.

String html

parse Parses the HTML source passed in

the constructor and returns parsed

/ Vector

 34

Interface – Parser

Method Description

Parameters

/ Return value

elements.

10.3. Displaying HTML content

Browser class is responsible to displaying the vector of elements returned by the parser.

For drawing of these elements instance of the Browser class calls a draw method on

those elements as it assumes that the vector of elements is a vector of instances

implementing Drawable interface.

Interface – Browser

Method Description

Parameters

/ Return value

Browser Constructor, which takes as input a

vector of objects of class Drawable.

Vector<Drawable>

getActualBrowser Returns the current browser. / Browser

getActiveLink Returns the selected hyperlink index. / int

setLink Sets the selected hyperlink. String link

increaseLinksNumber Increases hyperlinks number on the

page. Returns the amount of all links

after the operation.

/ int

 35

Interface – Drawable

Method Description

Parameters

/ Return value

draw Draws the element on given position.

The returned position should be the

position where the next element can

be drawn.

Graphics g, int x,
int y / Point

 36

11. Tasks

Package mujmail.tasks provides classes and interfaces for creating, running and
managing tasks. Basically, a task is an action that is executed in a new thread and that is

registered before execution and unregistered after the execution is done. This enables

various management possibilities of such tasks. Tasks also support displaying a progress

of the action to user. User can cancel the displaying of this progress by pressing Back

button. User can also see all running tasks and their progresses in Tasks manager. If the

task is descendant of StoppableBackgroundTask, progress contains Stop button
that allows stopping the task.

The classes ProgressManager and StoppableProgressManager provide the

user interface for displaying of the progress of BackgroundTask and

StoppableBackgroundTask, respectively.

11.1. Defining a task

In order to define a new task, new class has to be created that inherits either from

BackgroundTask or StoppableBackgroundTask if the task should be
stoppable. Then the action that should be performed in the task has to be defined in the

method BackgroundTask.doWork that is abstract in parent class.

It is not possible to stop a task preemptively in J2ME. That is why cooperative

multitasking must be used. If the task is the descendant of

StoppableBackgroundTask, it must control whether it should terminate.

StoppableBackgroundTask implements interface StoppableProgress that

contains method StoppableProgress.stopped. If this method returns true, the
task should terminate.

While running the method BackgroundTask.doWork, it is possible to display

progress of the action to user. Methods of interface Progress that

StoppableBackgroundTask implements can be used to do this.

It is also possible to disable displaying progress of task to user by calling method

BackgroundTask.disableDisplayingProgress before starting the task.

 37

Interface – BackgroundTask

Method Description

Parameters

/ Return value

BackgroundTask Constructor, input is task name. String taskName

cancelStartingTask If this task is waiting to start,

cancels starting the task.

disableCheckBeforeStarting Disables the check if the limit of

the same type of tasks is reached. It

means that the task will start

immediately.

disableDisplayingProgress Disables displaying progress after

start of the task.

doWork This method defines the

background task.

showProgress Shows progress of the task. If the

task is not running, shows next

screen.

isRunning Returns true only if the task is
still running.

setTitle Sets the title of the progress bar

which is associated with this task.

String title

start Starts the background task in new

thread and displays progress bar.

start Starts the background task in new

thread and displays progress bar.

When the task is finished the

screen will be switched to the input

parameter.

Displayable
nextScreen

 38

Interface – BackgroundTask

Method Description

Parameters

/ Return value

start Starts the background task and

shows the progress bar. When the

task is minimized the screen will

be switched to prevScreen
parameter. When the task is

finished the screen will be

switched to the nextScreen
parameter.

Displayable
nextScreen,
Displayable
prevScreen

updateProgress Updates progress of the progress

bar associated with this task.

int total, int
actual

Interface – StoppableBackgroundTask

Method Description

Parameters

/ Return value

StoppableBackgroundTask Constructor. String taskName

stopped Returns true only if Stop button
was pressed.

boolean

stopTask Sets the state of the task to

stopped.

11.2. Task execution

11.2.1. Starting a task

 39

Method start has to be called in order to start the task. Before the task is started, it is
checked whether number of running tasks of the same class is less than given limit. If it is

not possible to start the task immediately, the dialog where user can cancel running the

task is displayed. It is possible to disable displaying this dialog by calling method

BackgroundTask.disableDisplayingUserActionRunnerUI before
starting the task. The task is placed between waiting tasks and it is started when the

number of tasks of the same class is less than limit.

To start the task immediately, without the check if there are less tasks of the same class

than given limit started, call method

BackgroundTask.disableCheckBeforeStarting before starting the task.

11.2.2. Observing tasks progress

It is possible to register to receive notifications every time the progress of the given task

is changed. The list of events that are received is described in enumeration class

TaskEvents. Classes BackgroundTask and StoppableBackgroundTask are

descendants of class Observable that provides methods for registering and

unregistering objects that want to listen to these events.

Interface – Progress

Method Description

Parameters

/ Return value

getActual Returns the value of current

progress of the progress bar.

/ int

getTitle Returns the title of the progress

bar.

/ String

getTotal Returns the value of the whole

progress.

/ int

incActual Increments current progress of the

progress bar.

int increment

isDisplayed Returns true only if the progress
bar is currently displayed.

/ boolean

 40

setTitle Sets the title of the progress bar. String title

updateProgress Updates the progress bar. int total, int
actual

Interface – StoppableProgress

Method Description

Parameters

/ Return value

stopped Returns true only if the Stop
button was pressed.

/ boolen

11.2.3. Managing tasks

There is a class TasksManager for managing the tasks. Class TasksManagerUI
provides user interface for some task management features such as displaying a list of

running or waiting tasks or displaying progress of running tasks.

11.2.4. Running actions on task start or task end

It is possible to receive notifications every time some task starts or terminates. To register

for receiving such events there are methods

TasksManager.addEndTaskObserver and

TasksManager.addStartTaskObserver. Then it is possible to check given
condition every time some task starts or terminates and if it is true, run given action using

class ConditionalActionRunner. For displaying user interface to users in case

that it is possible to use class ConditionalActionRunnerUI.

