
1

Third Misconceptions Seminar Proceedings (1993)
Paper Title: Designing Computer Exploratory Software for Science and

Mathematics
Author: Teodoro, Vitor Duarte

Abstract: The aims of this paper are: 1) to characterize computer exploratory
software; 2) to identify the roots of this kind of software; 3) to present
a model to design computer exploratory environments for science and
mathematics; 4) to discuss some of the basic issues of the model; and
5) to analyze some programs developed in the framework of the
model. The model is based on findings in learning and in recent
developments of computer graphic environments. It assumes that: 1)
learning is a process of enculturation, a process of becoming familiar
with ideas and representations; 2) exploratory software should be
integrated with other resources; 3) exploratory software should allow
direct manipulation of concrete-abstract objects and the exploration of
multiple representations of a phenomenon.

Keywords: science education, mathematics education, computers,
simulations, exploratory environments, learning

General School Subject:
Specific School Subject: science & math
Students: high school

Macintosh File Name: Teodoro - Computer Software
Release Date: 9-15-1994 I

Publisher: Misconceptions Trust
Publisher Location: Ithaca, NY
Volume Name: The Proceedings of the Third International Seminar on

Misconceptions and Educational Strategies in Science and
Mathematics

Publication Year: 1993
Conference Date: August 1-4, 1993
Contact Information (correct as of 12-23-2010):
Web: www.mlrg.org
Email: info@mlrg.org

A Correct Reference Format: Author, Paper Title in The Proceedings of the
Third International Seminar on Misconceptions and Educational
Strategies in Science and Mathematics, Misconceptions Trust: Ithaca,
NY (1993).

Note Bene: This paper is part of a collection that pioneered the electronic
distribution of conference proceedings. Academic livelihood depends

2

upon each person extending integrity beyond self-interest. If you pass
this paper on to a colleague, please make sure you pass it on intact. A
great deal of effort has been invested in bringing you this proceedings,
on the part of the many authors and conference organizers. The
original publication of this proceedings was supported by a grant from
the National Science Foundation, and the transformation of this
collection into a modern format was supported by the Novak-Golton
Fund, which is administered by the Department of Education at
Cornell University. If you have found this collection to be of value in
your work, consider supporting our ability to support you by
purchasing a subscription to the collection or joining the Meaningful
Learning Research Group.

----- -----

3

Designing Computer Exploratory Software for Science
and Mathematics

Vitor Duarte Teodoro
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825

Monte de Caparica, Portugal

Abstract: The aims of this paper are: 1) to characterize computer
exploratory software; 2) to identify the roots of this kind of software; 3) to
present a model to design computer exploratory environments for science
and mathematics; 4) to discuss some of the basic issues of the model; and 5)
to analyze some programs developed in the framework of the model. The
model is based on findings in learning and in recent developments of
computer graphic environments. It assumes that: 1) learning is a process of
enculturation, a process of becoming familiar with ideas and representations;
2) exploratory software should be integrated with other resources; 3)
exploratory software should allow direct manipulation of concrete-abstract
objects and the exploration of multiple representations of a phenomenon.

Keywords: science education; mathematics education; computers;
simulations; exploratory environments; learning.

WHAT IS A COMPUTER EXPLORATORY ENVIRONMENT?

Some ideas are difficult to verbalize. The concept of “computer
exploratory environment” seems to be one of those ideas. As with many
other concepts, to build this one into the cognitive structure each of us needs
to know and, more important, to be familiar with the use of computer
exploratory environment. As one becomes more and more familiar with this
kind of software environments, the concept becomes more precise and
accurate.

Taylor (1980) suggested that all instructional uses of computers fall
under three modes:

4

Table 1: Taylor´s (1980) modes of instructional uses of computers.
--
tutor the student is taught knowledge by the computer
tool the computer assists the student in the learning process but does

not direct his/her efforts
tutee the student teaches the computer
--

This classification has been used since then by many authors as a basis to
classify the role of different educational software packages. The computer as
tutor can be seen as a transposition of the classic role of the teacher to the
computer. The computer as a tool is a transposition of the role of a pen or a
calculator to the computer. The computer as tutee is a new kind of
educational environment where teaching the computer is seen as a powerful
aim that can allow students to get a deep awareness of how knowledge is
built. Papert (1980) wrote:

«In my vision, the child programs the computer and, in doing so, both
acquires a sense of mastery over a piece of the most modern and powerful
technology and establishes an intimate contact with some of the deepest
ideas from science, from mathematics, and from the art of intellectual model
building.» (p. 5)

A computer exploratory environment combines two of Taylor’s
categories: tool and tutee. It is a tool because it can be used to help students
think about one or more knowledge domains, doing tasks that could not be
done without it or that would take more time than reasonable. It can be used
in a tutee environment, because students can “teach” the computer how to do
things (e.g.: build a mathematical model of an object that falls on the earth
or on any other planet; move an angle that produces a graph; etc.) and then
get feedback about the reasonability of what they have done.

In a computer exploratory environment there are three possible kinds of
objects:

5

Table 2: Kinds of objects in a computer exploratory environment.
--
Type I: real objects objects that represent real objects

(e.g.: a planet; a car; a particle)
with more or less perceptual
fidelity

Type II: conceptual objects objects that are “pure” conceptual
objects (e.g.: a variable; a vector),
that have no perceptual fidelity

Type III: relations between propertiesobjects that represent relations
between properties of other objects
(e.g.: a graph; an equation)

--

Type II objects of a computer exploratory environment acquire a new
status, as compared with traditional modes of concept learning. Hebenstreit
(1987) argues that they are a new genre of objects — concrete-abstract
objects:

«L' “objet” sur lequel l'usager agit pendant une simulation est “concret”
en ce sens qu'il réagit aux actions (par l’intermédiaire du clavier ou d'une
souris) comme le ferait in objet réel, mais cet objet est cependant abstrait car
si son comportement apparait sur l'écran de l'ordinateur, il ne peut cependant
être vu ou touché comme le serait un objet concret.» (p. 1)

These concrete-abstract objects are concrete in the sense that they can be
seen and manipulated as real — on the computer screen — and abstract in
the sense they are physical and mathematical constructs.

One of the most important features of a computer exploratory
environment is that it should allow the user to explore the relations between
the different kinds of objects, in real time or with a different time scale, if
necessary (faster or slower, depending on the nature of the problem under
investigation). The exploration is done under the full user’s control, not the
computer’s. This means that the computer does not behave as a video
projector that presents a previously defined sequence of images but as a
device that is fully manipulable by the user, who must establish strategies to

6

explore what s/he wants to explore, choose what, when, and how to visualize
things.

Another important characteristic of exploratory software is the possibility
of linking multiple representations. This is, perhaps, the characteristic that
most teachers are interested in. Multiple representations can facilitate the
process of creating meaning from representations if we assume that meaning
is created essentially when students relate different representations. We
only understand something if we can establish relations between different
representations of phenomena.

The issue of representations is crucial in science and science education.
Science can even be defined as a means for constructing and improving
representations of the world (Rouse, 1987).

The Educational Technology Center (1988) points out that multiple
representations is one of the most fruitful applications of computer
technology, with particular relevance in science and mathematics, domains
where knowledge has more than one mode of representation1. The
Educational Technology Center presents two reasons for this:

«First, different representations of a complex idea (for example, a ratio,
an algebraic function, or a concept such as heat) emphasize different aspects
of the idea and afford different sorts of analyses. (…) Understanding the
strengths and weaknesses (Bliss. et al., 1992) of various representations and
the relationships among them helps mathematicians and scientists select and
apply them efficiently in solving problems. Second, students differ in their
ability to understand and use particular representations. (…) Thoughtfully
designed computer software can present multiple, dynamically linked
representations in ways that are impossible with static, inert media such as
books and chalkboards.» (p. 10)

For example, if we want students to see, in a reference frame, how does
the coordinates x and y of a moving object change with time when the object

1 Thanks to computers and their powerful graphical capabilities, a new field
of science has emerged in the last two decades: computer visualization or
computer representation. One of the aims of this field is to create graphical
representations of complex features of real phenomena or of complex
mathematical constructs, such as fractals.

7

falls, exploratory software should enable students to see the following
representations — simultaneously and in real time (Figure 1):

1 the object moving;
2 a stroboscopic representation of the motion;
3 the vertical and the horizontal components of the positional vector of

the object;
4 the graphs of position in the y and in the x axis as a function of time.

Figure 1: Multiple representations of a rectilinear vertical motion of a
particle: stroboscopic representation, vertical and horizontal components of
the positional vector, graph of position in the y and in the x axis as a
function of time. Done with NEWTON (Teodoro, 1992).

Analyzing further the idea of multiple representations, exploratory
software should allow students to start from the graph (for example,
sketching the graph with a mouse) and then obtaining the corresponding
motion (Figure 2). Another possibility of the software is that it should allow
the student to write an equation and then obtain the motion of an object that
behaves according to the equation and, simultaneously, obtain a graph
(Figure 3). Linking equations of motion to graphs, graphs to motion in real

8

time, and motion to equations, can be a powerful process to derive meaning
of each of the representations and of all of the representations of the same
phenomenon.

Position as a function of time Hide

10 20 30 40 50 60

- 100

- 50

0

50

100

150

time (s)

1501401301201101009080706050403020100- 10- 20- 30- 40- 50- 60- 70- 80- 90- 100

Go leftAthlete… FasterSlower

Hide

Rate of change of position Hide

Sketch graph

10 20 30 40 50 60

- 10

- 5

0

5

10

Sketch graph

time (s)

Restart Help Quit

HaltValues

Values

Values

Figure 2: From graph to motion. The graph was sketched with the mouse.
The motion of the athlete can be obtained from the graph of position, or
from the graph of rate of change in position — graph on the right (done with
CHANGE, Teodoro, 1992).

9

Texto

Sistema Janelas Opcoes

Graf 1 X Y Casos

m A M
m

M
A

Casos

Dinamix

1

Rectilinear motion
0 5 5

dx/dt = vx
vx = ?

Caso

t
x
v x
y

y = ?

0
1
5
1

 1
t

 5
x

 26

Graf 3 X Y Casos

m A M
m

M
A

Caso
 1

x
 26

y
 1

Figure 3: After writing an equation (« dx/dt=vx »), the user can move an
object (a stroboscopic representation is shown down right) and see a graph
of position as a function of time (top right). Done with DINAMIX (Lobo,
1991)

ROOTS OF EXPLORATORY SOFTWARE

Papert and LOGO
Since Papert wrote Mindstorms (1980) learning with computer-based

exploratory environments in science and mathematics has become one of the
predominant views of computers in education. Papert was the first to argue
that a computer is a tool that students can use to change the nature of
conceptual objects:

“Stated most simply, my conjecture is that the computer can concretize
(and personalize) the formal. Seen in this light, it is not just another powerful
educational tool. It is unique in providing us with the means for addressing
what Piaget and many others see as the obstacle which is overcome in the

10

passage from child to adult thinking. I believe that it can allow us to shift the
boundary separating concrete and formal. Knowledge that is accessible only
through formal processes can now be approached concretely. And the real
magic comes from the fact that this knowledge includes those elements one
needs to become a formal thinker.” (p. 21)

According to Papert, exploratory computer tools are seen as tools to
overcome the boundary between lower and higher cognitive stages. This can
be done because computers allow users to approach concretely what without
the computer can only be approached in a formal way.

Papert's view is a compromise between the use of a computer as a new
kind of tool in education and a more traditional view of the computer as an
object to be programmed. I see this compromise as rooted in the personal
history of Papert – a mathematician and a computer scientist who after some
work with Piaget, became interested in how students learn.

Papert’s work was based on a computational metaphor — programming
— that is too elementary to allow the exploration of many fields.
Programming, even in a high level language such as LOGO, uses primitives
that are too “primitive” to allow meaningful exploration of most scientific
ideas. With a programming language it is possible to explore most scientific
ideas but the programming language itself behaves as a mediator that does
not have the properties of the scientific ideas that we want to explore. For
example, if we want to explore how velocity of an object changes with time
under certain circumstances, we must have direct access to a representation
of velocity, such as a vector. With LOGO or any other programming
language, that can only be done with a big programming effort, because
programming languages are not domain specific and only have general
primitives and procedures.

Exploratory environments, unlike programming languages, are domain
specific. What a user can do with an exploratory environment depends on
the domain. On the one hand, this gives very powerful primitive actions,
such as showing a velocity vector just by clicking the mouse; on the other
hand, however, it narrows the range of the capabilities of the software. But
this is usually not a real problem because of the domain specificity of each
exploratory environment.

Constructivism

11

Papert’s work and exploratory approaches to software are in accordance
with a major shift on the dominant view of how humans learn. Decades of
work by Piaget and collaborators, and many others (including critics of
Piaget’s work, such as e.g., Novak, 1977), have given clear evidence that
learning is an active and constructive process. The delivery paradigm of
education doesn’t seem to be accepted by educators any longer: it is now
widely recognized that the mental activity of the learner and his/her own
experiences are the major factors that support learning.

How can we characterize a constructivist view of learning? Novak (1990)
claims

“(…) that human beings all have an enormous capacity for meaning
making and the use of language to construct and communicate meanings. I
seek to conflate issues that deal with the nature of knowledge construction
into the issues that deal with the psychology of meaning making. In both
cases, I see human capacity for meaning making and the nature of that
process as the ‘bottom line’. What really counts, in my view, is how to
empower human beings to optimize their phenomenal capacity for meaning
making, including their awareness and confidence in processes that are
involved. This capacity for meaning making is what I refer to as human
constructivism.” (p. 20)

Accordingly to Forman and Pufall (1988) constructivism embodies three
properties: epistemic conflict, self-reflection and self-regulation:

1 Epistemic conflict involves two knowing systems: “These systems
may originate in different individuals, and it may be that in early
development we are more dependent on externally induced conflict than we
are subsequently. Whatever the source of conflicting epistemic stances, if
there is a resolution it is within the individual experiencing the conflict, that
is, it is an individual construction. If the resolution is developmental, in the
strict sense, it means constructing a new way of thinking about reality and is
marked by logical necessity.” (p. 236)

2 Self-reflection is construed as a response to conflict.
3 Self-regulation is the developmental restructuring of thought.

These authors point that the self-organizing properties of the knower
allow him to abstract structure from action, “not necessarily with conscious
processes” (Forman & Pufall, 1988, p. 236).

12

More recently, the educational community is recognizing that the
constructivist view of learning must be combined with the recognition of the
consequences of the fact that learning takes place in social environments,
where the interaction between students, teachers and students, and all other
social actors are crucial in the process of making sense, that is, the process
of generating knowledge. As Brown, Collins and Duguid (1988, p. 7) wrote
“learning is, we believe, a process of enculturation”.

Under a constructivist view of learning, abstracting structure from action
is not necessarily a conscious process. Then, in a certain way, learning can
be viewed as a process by which new knowledge is not necessarily new
explicit knowledge — we can know without knowing. This idea can be re-
stated by defining learning as a process of becoming familiar with
knowledge, not as constructing new explicit knowledge.

Learning most of the scientific and mathematical ideas at secondary
school can then be seen as a process of becoming familiar with them. True
understanding of an idea is most of the times a strong degree of
familiarization with the idea. As Schank (1986, p. 5) pointed out,
understanding «is not an all-or-none affair. People achieve degrees of
understanding in different situations depending upon their level of
familiarity with those situations».

Exploratory software must allow students to get a strong degree of
familiarization with the basic ideas of the domain being explored. With
exploratory software, students can see many situations, explore what
happens in different conditions, discuss what happens if they change
conditions, etc.; i.e., they can become more and more familiar with the ideas,
the consequences of ideas and representations of the world. When they
become more familiar with new ideas and new representations, they can
establish more meaningful relations with ideas they already have.
Exploratory software can be a major way to foster familiarity with new
ideas.

Graphical and direct manipulation computer interfaces
We can also identify another important root of exploratory software: the

graphical user interface, introduced by Apple in the early 80’s and now used

13

in almost every computer environment such as Windows and OS/2. These
graphic environments allow computer illiterate users to become almost
immediately involved with computer software, by exploring icons, buttons,
pull-down menus and other screen objects. When Taylor (1980) suggested
that all uses of computers in education should be seen either as tutor, or tool
or tutee, it was really difficult to see how the computer could be used as a
tool — most computer tools were so difficult to use that nearly all potential
users were intimidated by them (e.g., word processors and spreadsheets were
still in their infancy). Now, with graphical interfaces, it is possible to have
computer software that almost dispenses with manuals or specific
instructions on how to use it.

Strongly related to graphical user interfaces is the concept of direct
manipulation, proposed by Shneiderman (1983). This concept is based on
the idea that most actions on the screen need not be mediated by any written
language. Screen objects should have properties and reaction similar to those
of real objects. For example, if we want some screen object to change its
position on the screen, we only need to “hold” that object with the mouse
and move it to another position. The concept of direct manipulation is
crucial to the design of exploratory environments but it raises problems
when it refers to “conceptual objects”: if conceptual objects, such as a
vector, are human constructs, what does it mean to directly manipulate
something that does not exist as a real object?
This problem shows that exploratory software can be another source of
misconceptions in science and mathematics. We must, then, be very careful
about the use of direct manipulation in regard to conceptual objects.

A MODEL TO DESIGN EXPLORATORY SOFTWARE

In the above sections I tried to define exploratory software and identify
its roots. I will now try to outline a model for the design of this kind of
software. This model is based on reflections aroused by the development of
a set of titles of exploratory software in the following domains: Newtonian
mechanics, properties of chemical elements, semi-quantitative study of
functions and rates of change, representation of geographical characteristics
of a country, modeling with differential equations, trigonometry and
properties of triangles, electrical fields, descriptive geometry, and heredity.

14

Figure 4 shows the structure of the model. It has two lines of approach,
one of which is methodological and the other theoretical.

Founded on research on concept
formation and on misconceptions

Design of computer exploratory environments

Multidisciplinary team

Integration with other “resources”
(books, peers, teachers)

Balance between exploration and in-
struction

Conceptual progression
Concrete-abstract objects
Multiple representations linking percep-

tual fidelity to conceptual fidelity
Semi-quantitative thinking
Self-explanatory interface

Direct manipulation metaphor

View of learning: process of
becoming familiar with meanings
through social interaction
View of science: process of creating,
testing and communicating
representations of the world

Identifi cation of relevant
learning experiences

METHODOLOGICAL THEORETICAL

Validation in dif ferent learning
settings

Successive improvements

Figure 4: A model to guide the design of computer exploratory
environments.

Along the theoretical line, we have three issues to consider. First, the
design of exploratory software should be based on research on concept
formation and on misconceptions. We have now an enormous body of
literature about concept formation and misconceptions, specially in science
and mathematics. This research can be taken as basic research to identify
relevant learning experiences and sources of difficulties in concept
formation. Second, we pose a specific view on learning. Such a view
assumes that understanding, as a result of learning, is not a “metaconcept”
but a much less ambitious concept. We understand when we are familiar
with ideas and representations shared by members of a community.
Understanding scientific ideas is, I assume, a process of enculturation. This

15

process is facilitated when learning occurs in the zone of proximal
development 2 (Vygotsky, 1978). Third, we also pose a view on science as a
process of creating, testing and communicating representations of the world.

Along the methodological line, we point out five issues. First, the
development of exploratory software is a team project, involving different
specialists: experienced teachers, software designers, programmers, graphic
specialists, cognitive psychologists. Second, exploratory software should be
designed after the identification of the most relevant learning experiences in
a certain domain. A relevant experience is related to the process of concept
formation, either because it gives “anchors” to subsume concepts or because
it shows a conflictual view with naive thinking. Third, as learning takes
place in many different settings, the software should be validated in the
different settings where learning occurs. We shall not claim that exploratory
software should be designed only for classrooms. With the increasing
diffusion of computers, at home, in resource centers, in libraries, etc.,
students can have experiences with exploratory software in many different
places outside classrooms and outside teacher control. Fourth, exploratory
software should be based on graphical and direct manipulation interfaces,
where the user controls his actions directly, not mediated by written
language. Fifth, it is not possible to design good exploratory environments
without successive improvements, based on ecological valid research. This
research on the software developed should be carried out in real schools with
real students and teachers, not in ideal settings.

As “output” of the model, we raise seven relevant issues:

1 Exploratory software by itself has very limited use. Exploratory
software should be considered as a part of “learning packages” to foster
“learning communities”. I think that it is neither possible nor desirable to
build exploratory software that is independent from other learning materials,
such as books. Exploratory software can be very powerful but learners can

2 Vigotsky (1978, p. 86) defines this concept as “the distance between the
actual development level as determined by independent problem solving and
the level of potential developlement as determined through problem solving
under adult guidance or in collaboration with more capable peers”.

16

only explore what they already know, not what they don’t know. Well
written materials, combined with good graphics, still have the most
important characteristics to present lines of argument. Ideally, exploratory
software should serve as a complement to books, allowing students to
explore what they read, giving them the capabilities that no book has, unlike
well-designed software.
As any other educational material, exploratory software is a resource for
learners. Programs are like artist tools: tools can help artists but they don’t
produce art. Only artists do. But exploratory software has a unique
characteristic: when well designed it fosters interactions between learners, in
particular if students work in pairs or in small groups. Exploratory software
can then help the formation of communities of learners that can explore, test
and communicate ideas of science.

2 Balancing exploratory learning and direct instruction is a fundamental
issue in the design of “learning packages” and in the creation of good
learning environments. Research shows that exploratory learning is difficult
(e.g.: Bliss et al. 1992, Njoo & Jong in press, Veenman et. al. in press).
Teachers should always bear in mind that learners cannot explore what they
don’t know already! This statement can be seen as a corollary of Ausubel’s
famous principle: “The most important single factor influencing learning is
what the learner already knows. Ascertain this and teach him accordingly”
(Ausubel et al., 1978, p. iv).
The balance between exploratory learning and direct instruction must be
managed by the teacher and should be one of his concerns. As Chi et. al.
(1981) have shown that novice learners tend to be distracted by surface
features of display presentations. Exploratory software can increase
distraction because surface features of a domain are usually easily
accessible.

3 One way of facilitating the balance between exploratory learning and
instruction is developing software with increasing levels of complexity, such
has NEWTON (Teodoro, 1992) — Figure 5. Progression of complexity is
based on research on concept formation. In each phase of learning, each
learner can have an environment which is as close as possible to his zone of

17

proximal development, so as to avoid one of the most crucial problems in
educational software design, i.e., information overload3.

back to zero

time

replay/pause

stop

forward time

apply a force on this direction
choose the value of force…

friction switch

no strobe/stroboscopic/trajectory…

choose vector
switch vector value
reference frame

zoom out

flash when a particle is out of screen

erase

strat/stop

rewind time

choose vector components

gravity

zoom in

choose wall…
edit particle data…

Figure 5: Control panel of the first level (left) and of the fifth level (right) of
NEWTON. As the level increase, the complexity of the features of the
software increase.

4 Direct manipulation of concrete-abstract objects is, no doubt, a subject
that deserves more research. As argued above, this can be a powerful way to
explore scientific constructs but it can also be a source of misconceptions or
naive epistemologies about them, specially if we take into consideration that
novice learners tend to be distracted by surface features.

5 Multiple representations is one of the most important features of
exploratory software. This feature gives users the possibility to interact with
different coordinated representations of a phenomenon. Multiple
representations can easily lead to information overload in learners — that is

3 Access to different levels is done with passwords. This prevents students
from using capabilities of the software that are too complex for their
conceptual level or for their level of progression in the study of the domain.

18

one of the reasons why exploratory software should have different levels of
complexity.
Until some years ago, exploratory software only had limited capabilities of
multiple representations: it was only possible to change conditions in one of
the representations (e.g.: a parameter on an equation) and then see the
change on the corresponding graph. But now it is possible to fully explore
the capabilities of multiple representations. For example, it is possible to
change a graph with a mouse and see the corresponding change in an
equation. It is even possible to sketch graphs, with a mouse, and then obtain
the corresponding phenomena (see Figure 2 and Figure 6).

Show

Go leftAthlete… FasterSlower

Show

Rate of change of position Hide

Sketch graph

10 20 30 40 50 60

- 10

- 5

0

5

10

Sketch graph

time (s)

Restart Help Quit

HaltValues

Values

Values

Position as a function of time

Figure 6: Linking multiple representations. The graph of the rate of change
of position (velocity) was sketched with the mouse. The motion of the
athlete and the graph of the position can then be obtained from the graph of
the rate of change in position. Done with CHANGE (Teodoro et al. 1992).

One design hint that I found helpful is the use of a button that «hides»
and «shows» the window with one of the representations. For example,
Figure 6 shows a graph of the rate of change in position of an athlete done
with the mouse. This graph doesn’t have perceptual fidelity. The window

19

that has perceptual fidelity — the top window, where the athlete can “run”
or “walk” — is hidden but it can easily be shown by pressing the button
«Show». The same applies to the left window with the graph of the position
as function of time. Using this button it is possible to foster discussions
about the relations between the rate of change of a function and the value of
the function, about the relations between the graphical representation of a
function and the phenomena that it represents, etc.

6 Another important issue about the design and use of exploratory
software is the relation between semi-quantitative learning and quantitative
learning. Semi-quantitative learning is characterized as non-algorithmic
learning: “I can discuss relations between variables, without the need of
formulae”. Quantitative learning is, on the contrary, algorithmic learning:
“Relations between variables are expressed through symbolic equations”.
Some authors consider semi-quantitative learning as the most important
issue on learning science and mathematics (e.g. Mestre, 1991). Teachers and
researchers are well familiar with students who are almost perfect
algorithmic problem-solvers but do not know anything about the meaning of
the problem, about the plausibility of the solutions, about the validity of their
claims, etc. Well designed exploratory software can bring semi-quantitative
learning to a high level because students can concentrate on meanings not on
rules or algorithms. For example, the situation presented in Figure 6 is
usually discussed only with senior high school students and first year
undergraduates, when they are introduced to calculus (derivatives and
integration). But the computer program CHANGE can be used with young
students (aged 12 or even less), who can then easily discuss powerful
concepts, such as rate of change and function, without using complex formal
mathematics. Older students can also use this program as a foundation to
more formal approaches to the exploitation of those concepts.

7 Finally, exploratory software must have a self-explanatory interface.
Students — as other software users — do not like to read computer manuals.
If a student who has already been introduced to a scientific domain cannot
use an exploratory piece of software about that domain, then the software
cannot be widely used.

Text buttons, icons (if used with parsimony), context-dependent on-
screen help, self-presented examples, etc., are now easily available for
programmers on most computer languages from “resources workshops”;

20

they are essential for the implementation of exploratory software which is
easy to use.

A NOTE AS CONCLUSION

After all that has been written above one could expect exploratory
software to have the potential to radically change science and mathematics
education. This is not true: the power of any computer environment is not on
the computer: it is on the environment — the cluster of systemic relations
among learners, teachers, technology devices such as computers, books, etc.

Naive conceptions of educational change assume that educational change
depends on the change of independent variables, such as method of teaching.
But decades of educational thinking and practice show that there are no such
variables as independent variables. All variables are mutually dependent
when we think of learning environments. To think that computers alone (and
exploratory software in particular) can change education is an expectation
that can block out the most important steps that should be taken to transform
schools into learning communities.4

REFERENCES

Ausubel, D. P., Novak, J. D., Hanesian, H. (1978) Educational Psychology,
A Cognitive View (2nd edition). NY: Holt, Rinehart and Winston.

Bliss, J. et. al. (1992) Summary Report of the Tools for Exploratory
Learning Programme. London: King’s College.

Brown, J. S., Collins, A., Duguid, P. (1988) Situated Cognition and the
Culture of Learning (IRL Report No. IRL 88-0008). Palo Alto: Institute for
Research on Learning.

Chi, M. T. H., Feltovitch, P. J., Glaser, R. (1981) Categorization and
Representation of Physics Problems by Experts and Novices. Cognitive
Science 5, 121-152.

4 This note was inspired in the final talk given by Bob Glaser and in the talk
given by Gavriel Salomon at the NATO-ASI Psychological and Educational
Foundations of Technology-Based Learning Environments held at
Kolimbari, Crete, July 1992.

21

Educational Technology Center (1988) Making Sense of the Future.
Cambridge, Mass: Harvard Graduate School of Education.

Forman, G., Pufall, P. B. (1988) Constructivism in the Computer Age: A
Reconstructive Epilogue. In G. Forman & P. B. Pufall (eds.)
Constructivism in the Computer Age. Hillsdale, NJ: Erlbaum.

Hebenstreit, J (1987) Simulation et Pédagogie, une Rencontre du Troisiéme
Type. Gyf Sur Yvette: Ecole Superieure d’Electricité (mimeo).

Lobo, M. S., Teodoro, V. D. (1991) DINAMIX, um sistema de modelação
dinâmica: Manual de Utilização. Monte de Caparica: Universidade Nova
de Lisboa (DINAMIX, a dynamic modelling system: User’s Manual) .

Mestre, J. P. (1991) Learning and Instruction in Pre-College Physical
Science. Physics Today, Sep. 56-62.

Njoo, M., Jong, Ton de (in press). Supporting Exploratory Learning by
Offering Structural Overviews of Hypotheses. In Ton de Jong, Hans
Spada, Doug Tawne (eds.), The Use of Computer Models for Explication,
Analysis and Experiential Learning. N.Y.: Springer-Verlag.

Novak, J. D. (1977) An Alternative to Piagetian Psychology for Science and
Mathematics Education. Science Education. 61, 453-477.

Novak, J. D. (1990) Human Constructivism: A Unification of Psychological
and Epistemological Phenomena in Meaning Making. Paper presented at
the Fourth North American Conference on Personal Construct Psychology,
San Antonio, Texas, July 18-21.

Papert, S. (1980) Mindstorms: Children, Computers and Powerful Ideas.
NY: Basic Books.

Reusser, K. (1992) Tutoring Systems and Pedagogical Theory:
Representational Tools for Understanding, Planning, and Reflection in
Problem Solving. In S. Lajoie & S. Derry (eds.) Computers as Cognitive
Tools. Hillsdale, NJ: Erlbaum .

Rouse, J. (1987) Knowledge and Power: Toward a Political Philosophy of
Science. Ithaca, NY: Cornell University Press.

Salomon, G. (in press) Differences and Patterns: Studying Computer
Enhanced Learning Environments. In S. Vosniadou (ed.) Psychological
and Educational Foundations of Technology-Based Learning
Environments. Berlin: Springer-Verlag.

22

Salomon, G. (1991) Transcending the Quantitative/Qualitative Debate: the
Analytical and Systemic Approaches to Educational Research. Educational
Researcher. 20, 10-18.

Schank, R. C. (1986) Explanation Patterns. Hillsdale, NJ: Erlbaum.
Shneiderman, B. (1983) Direct Manipulation: A Step Beyhond

Programming Languages. IEEE Computer. 16, 57-69.
Striley, J. (1988) Physics for the Rest of Us. Educational Researcher Aug-

Sep., 7-19.
Taylor, R. P. (ed.) (1980) The Computer in the School: Tutor, Tool, Tutte.

NY: Teacher’s College Press.
Teodoro, V. D. (1992) Direct Manipulation of Physical Concepts in a

Computerized Exploratory Laboratory. In E. de Corte, M. C. Linn, H.
Mandl, L. Verschaffel (eds) Computer-Based Learning Environments and
Problem Solving. Berlin: Springer.

Teodoro, V. D., Batalha, J. C. (1992) VARIAÇÕES, Investigações sobre
Gráficos e Variações: Manual de Utilização. Monte de Caparica:
Universidade Nova de Lisboa 1992. (CHANGES, Investigations about
Graphs and Changes: User’s Manual).

Veenman, Marcel V. J.; Elshout, Jan. J; Hoeks, J. (in press). Determinants of
Learning in Simulation Environments across Domains. In Ton de Jong,
Hans Spada, Doug Tawne (eds.), The Use of Computer Models for
Explication, Analysis and Experiential Learning. Berlin:Springer.

Vigotsky, L. S. (1978) Mind in Society. Cambridge, Mass: Harvard
University Press.

