

1

 بسم االله الرحمن الرحیم

In the name of Allah

2

Graphical LCD for beginners and
interfacing with PIC MCU

By

Eng. Mustafa H. Abyad

Cairo, Egypt

March 2009

3Table of contents

Table of contents…………………………………………………………………….…………………3

1. Introduction…………………………………………………………………………………………4

2. The LM12864LFC LCD………………………………………….…………………………………4

2.1 Pin Assignments…………………………………………………..………………………………..5

2.1.1 Power & Setting up pins………………………………………………………….……………..5

2.1.2 Data bus…………………………………………………………………………….…………….6

2.1.3 Control pins………………………………………………………………………..……………..6

3. Writing Data to the Screen…………………………………………………………………………7

3.1 Turning the Display (RAM) On…………………………….…………………………………….7

3.2 Placing data on the screen…………………………………………………………………………7

4. Interfacing with PIC MCU…………………………………….………………………………….10

4.1 Hardware……………………………………………………….…………………………………10

4.2 Software…………………………………………………………..……………………………….11

4.2.1 Assembly………………………………………………………..……………………………….11

4.2.2 Picbasic………………………………………………………….………………………………13

5. Application notes…………………………………………………………………………………..17

6. References………………………………………………………………………………………….17

4

1. Introduction
Really graphical LCDs are widely used in many applications for different fields, such as mobile phones, calculators,
digital oscilloscopes, and in the medical field as ECG, monitors, defibrillators, ventilators …
They are used for displaying data, pictures, shapes, graphs (real time or fixed), trends, tables...
They can be divided into two main categories; two color GLCD and color GLCD, we will deal with the 2 color LCD
through this course.
I have two targets behind writing these papers; 1st to write a basic primer on the operation of any available graphical
LCD in our market and 2nd describe how to drive it using PIC microcontrollers (with assembly and Pic basic
languages) to be easily used by students in their projects.
The graphical LCD type I choose was the TOPWAY LM12864LFC (128 x 64 pixel) graphical display driven by
Samsung KS0108 driver.I choose this type especially for 2 reasons; 1st I searched the Egyptian market and I found
this type in "RAM electronics" with low coast, 2nd the KS0108 driver can be easily used.

2. The LM12864LFC
The LM12864LFC is a 128 x 64 pixel graphical LCD with backlight. It is driven by 2 64 x 64 pixel Samsung
KS0108 drivers as shown in figure 1.

Figure 1: LCD drivers

Figure 2: LM12864LFC LCD

5

2.1 Pin Assignments
The LM12864LFC has 20 pins can be classified into 3 groups: 1- Power related pins, 2- Data bus, and 3- Control pins.
Table 1 contains a detail pin-out of the LCD.

Table 1: a detail pin-out of the LCD

2.1.1 Power & Setting up pins
 The important pins for this section are as follows:

Pin # Symbol Function/Typical Value
2 VDD Supply voltage – connect to 5V
1 VSS(GND) Ground – connect to ground
3 V0 Operating voltage – Connect through pot as is described

below
18 VOUT Negative Voltage output – outputs -5V – connect to pot
19 A Power supply for backlight(+)
20 K Power supply for backlight) -(

Table 2: Power & Setting up pins

6

In order for the LCD to power up, Pin 2 must be connected to + 5V, Pin 1 must be connected to GND. Pin 3 &
Pin 18 must be connected as illustrated in Fig. 2. Pin 18 generates -5V as an output and it must be run through a trim
pot (or voltage divider) and fed into Pin 3. This provides the voltage differential of Vdd-V0 which must be at least
7.5V. Adjusting this value adjusts the contrast but the Pins must be connected in this way in order for the image to be
seen on the screen (if it isn’t there is essentially no contrast and nothing will be displayed.

Figure 3: the connection for contrast adjusting

Pin 19 & 20 connects the power needed for backlight Pin 19 +5V and Pin 20 GND, these pins may be inverted in other
models.
NOTE: /RST Pin must be high in order to be able to write on the LCD because while the /RST is low no instruction can
be accepted i.e. Display off.

2.1.2 Data bus
There are 8 data bits that provide a number of functions in the operation of the LCD. They are the main information
carriers to the LCD or called the Data bus. They are located on Pins 7 - 14 with Pin 7 assigned to Data Bit 0 and Pin 14
assigned to Data Bit 7. Table 3 gives a brief overview of these assignments.

Table 3: Data bus
The functions of the data bits will become clearer in later sections of the paper.

2.1.3 Control pins
There are 6 control pins which are used to control the operation of the KS0108 hardware drivers and display data on the
LCD. They are listed in table 4.

Pin# Symbol Function/Typical Value
15 CS1 Chip Select 1 – Selects the left KS0108 driver which is also left

half of the screen
16 CS2 Chip Select 2 – Selects the right KS0108 driver which is also

right half of the screen
17 /RST Reset – set low to reset the display, high otherwise
5 R/W Read/Write – set high to read from the LCD to the MCU, set

low to write from the MCU to the LCD
4 RS (or D/I) Data/Instruction – tells the LCD whether or not data is being

written to the screen or the MCU is using the data bits to
perform an instruction – set high for data transfer and set low
to designate and instruction is being performed

6 E Enable – The enable is used to clock operations to the LCD

Table 4: control pins

Pin # Symbol Function/Typical Value
4 DB0 Data bit 0
5 DB1 Data bit 1
6 DB2 Data bit 2
7 DB3 Data bit 3
8 DB4 Data bit 4
9 DB5 Data bit 5
10 DB6 Data bit 6
11 DB7 Data bit 7

7

R/W and D/I are used to determine the mode of operation that the LCD is in. Table 5 illustrates how these two control
bits are used to control operations.
Enable must be set high and then low in order for an operation to be passed to the LCD.

Table 5: R/W and D/I configurations

3. Writing Data to the Screen
3.1 Turning the Display (RAM) On
First things first, the display needs to be turned on this is done by sending the following instruction to the screen:

Table 6: Display ON instruction

Lets see how to turn on the display using MCU PIC16f877/A by assembly and by Picbasic languages, first the LCD is
connected as shown in figure 7.

Assembly
BCF PORTC,2 ; RC2 = 0 (RS or D/I = 0) Instruction
BCF PORTC,5 ; RC5 = 0 (R/W = 0) is being written
MOVLW 0X3F ; DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
MOVWF PORTD ; 0 0 1 1 1 1 1 1
BSF PORTE,0 ; RE0 = 1 (E = 1) Clock to pass the
BCF PORTE,0 ; RE0 = 0 (E = 0) order to the LCD

PicBasic
PORTC.2 = 0 ; RS or D/I = 0 Instruction
PORTC.5 = 0 ; R/W = 0 is being written
PORTD = $3F ; DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
 ; 0 0 1 1 1 1 1 1
PORTE.0 = 1 ; RE0 = 1 (E = 1) Clock to pass the
PORTE.0 = 0 ; RE0 = 0 (E = 0) order to the LCD

The reason that I drew this example out and included the code (instead of just referring to later sections) is so that it is
clear how to go from the instruction outlined in Table 6 to performing it assembly or Pic basic.

3.2 Placing data on the screen
In order to place any information on the screen, it is important to understand how the bits control what is on the screen.
There are 8192 pixels on a 128 X 64 pixel screen divided into 2 halves left and right, each half is 64 X64 pixel which is
divided into 8 pages (X axis), each page is 8 X 64 pixels divided into 64 column (Y axis). Each column is 8 pixels
vertically from D0 to D7 and so data is entered 8 pixels by 8 pixels. Figure 4 and Figure 5 show how the screen is
broken down into its X and Y axes. Fig 4 shows the left half of the screen (if CS1 is 1 and CS2 is 0). The Y address
refers to which line the pixels should be written to and the X page sets the column to which they will be written to.

Mode R./W D/I
An Instruction is being written (such as clear the
LCD)

0 0

MCU reads the status of the LCD – whether it is
busy or ready for another command

1 0

Data write – data is written to the display ram at
whatever X-Y coordinates have been set

0 1

Data read – the data in the display RAM is read
to the MCU

1 1

Instruction D/I R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Display ON 0 0 0 0 1 1 1 1 1 1

8

Figure 4: show how the screen is broken down into X and Y axes for each of
the 2 halves.

Figure 5: illustrates how the left half (or right half if CS2 = 1 and CS1 = 0) works.

The Y – address determines what Y line the pixels will be placed on, the X page
determines which of the eight vertical 8 pixel strips the pixels will be placed on and
the Data bits of the write data instruction will the be places across the X page on the

specified Y line.

9

There are three basic steps that must be done in order to determine where the pixels will go:
1- Setting the Y address.
2- Setting the X address.
3- Sending data.
Figure 6 gives an example of writing data of 8 pixels on the LCD.

The Y address actually has a counter so it need only be set once and then every time there is a data write it will be
incremented to the next line.

Figure 6: a zoomed in version of Figure 5, it also gives an example of how a pixel is
written. If the Y address is set to 34, X page is set to 0, and a data write instruction
is given with PORTD = 0b10101010, then the pixels in those locations will be dark.

This is the basic idea of placing data on the LCD but how can you implement these 3 steps and how the LCD knows the
Y and X axes you want to write in?
There are special instructions for setting column (Y) address, setting page (X) address and writing data on the display
table 7 shows these instructions.

Instructions R

S
R

/W

D
B7

D

B6

D
B5

D

B4

D
B3

D

B2

D
B1

D

B0

Function

Set column
(Y) address

0 0 0 1 Y address (0 - 63) Set column address into the Y address counter

Set page
(X) address

0 0 1 0 1 1 1 X address
(0–7)

Set page address into the X address register

Write data 1 0 Data 8 pixels Write display data into display data RAM. Then
Y address counter increases by 1 automatically.

Table 7: display control instructions

10

Now I think that our 1st target was verified and the operation of the LCD became clear, the following section will
describes interfacing of the LCD with MCU PIC and how to drive it using PIC.

4. Interfacing with PIC MCU

4.1 Hardware
Figure 7 shows the connection between the LCD and the PIC that we will build on the software programs. This is not a
standard connection, you can make any other one suitable for the requirements of your project.

Figure 7 interfacing schematic

Table 8: interfacing connections

LCD Pins PIC 16F877 Pins
Data bus

DB0
:

DB7

PORTD
RD0

:
RD7

E RC2
R/W RC4
RS RC3

CS1 RC1
CS2 RC0

11

4.2 Software
In this section we will show how to write a software program by assembly and Picbasic languages for
interfacing the GLCD with the PIC.

4.2.1 Assembly
 We want to draw an ellipse as shown in figure 8.

Figure 8: ellipse displayed
on GLCD

First the image must be converted into pixels (128X64 pixels maximum)
I converted it using a program called "Bmp2asm" that covert the image into hex numbers in a text file.
I downloaded the program from the internet.
Second write the program as follows using MPLAB program
Put the data (display data or instruction data) on port D then call each of three subroutines; the first
subroutine for sending command called "S_CMD", CS1 & CS2 are both activated in order not to make
two different subroutines for each side of the GLCD then clock the E pin. The second subroutine for
sending data into 1st half of the LCD and called "S_DATA1" here we activate CS1 and deactivate CS2
then clock the E pin. The third subroutine for sending data into 2st half of the LCD and called
"S_DATA2" and here we activate CS2 and deactivate CS1 then clock the E pin.

Assembly Code

#include<P16F877.inc>
ORG 0X00
GOTO MAIN
ORG 0X05
MAIN

BSF STATUS,RP0
BCF STATUS,RP1 ; BANK 1
CLRF TRISD
CLRF TRISC
BCF STATUS,RP0
BCF STATUS,RP1 ; BANK0

MOVLW 0X3F ;
MOVWF PORTD ; display ON (see 3.1)
CALL S_CMD ;

MOVLW 0X55 ; y address (line) = 21 (0101 0101)
MOVWF PORTD
CALL S_CMD
MOVLW 0XB9 ; x address (page) = 1 (1011 1001)
MOVWF PORTD
CALL S_CMD

MOVLW 0XC0
MOVWF PORTD
CALL S_DATA1
MOVLW 0X20
MOVWF PORTD
CALL S_DATA1
MOVLW 0X20
MOVWF PORTD
CALL S_DATA1

12

MOVLW 0X20
MOVWF PORTD
CALL S_DATA1
MOVLW 0XC0
MOVWF PORTD
CALL S_DATA1

MOVLW 0X53 ; y address (line) = 19 (0101 0011)
MOVWF PORTD
CALL S_CMD
MOVLW 0XBA ; x address (page) = 2 (1011 1010)
MOVWF PORTD
CALL S_CMD

MOVLW 0XF0
MOVWF PORTD
CALL S_DATA1
MOVLW 0X0F
MOVWF PORTD
CALL S_DATA1

MOVLW 0X5A ; y address (line) = 26 (0101 1010)
MOVWF PORTD
CALL S_CMD

MOVLW 0X0F
MOVWF PORTD
CALL S_DATA1
MOVLW 0XF0
MOVWF PORTD
CALL S_DATA1

MOVLW 0X53 ; y address (line) = 19 (0101 0011)
MOVWF PORTD
CALL S_CMD
MOVLW 0XBB ; x address (page) = 3 (1011 1011)
MOVWF PORTD
CALL S_CMD
MOVLW 0X01
MOVWF PORTD
CALL S_DATA1
MOVLW 0X1E
MOVWF PORTD
CALL S_DATA1
MOVLW 0X60
MOVWF PORTD
CALL S_DATA1
MOVLW 0X80
MOVWF PORTD
CALL S_DATA1
MOVLW 0X80
MOVWF PORTD
CALL S_DATA1
MOVLW 0X80
MOVWF PORTD
CALL S_DATA1
MOVLW 0X60
MOVWF PORTD
CALL S_DATA1
MOVLW 0X1E
MOVWF PORTD
CALL S_DATA1
MOVLW 0X01
MOVWF PORTD
CALL S_DATA1

HERE
GOTO HERE

13

SUBROTINES
S_CMD ; FOR instructions CS1&CS2 must be activated
BSF PORTC,0 ;CS1=1
BCF PORTC,1 ;CS2=0
BCF PORTC,3 ;RS=0 (low = instruction data)
BSF PORTC,2

BCF PORTC,2
RETURN

S_DATA1 ; FOR DATA one of CS1&CS2 only must be activated
BSF PORTC,0 ;CS1=1
BCF PORTC,1 ;CS2=0
BSF PORTC,3 ;RS=1 (high = RAM data)
BSF PORTC,2
BCF PORTC,2
RETURN

S_DATA2 ; FOR DATA one of CS1&CS2 only must be activated
BCF PORTC,0 ;CS1=0
BSF PORTC,1 ;CS2=1
BSF PORTC,3 ;RS=1 (high = RAM data)
BSF PORTC,2
BCF PORTC,2
RETURN

END

4.2.2 Picbasic
Let's take the same example of the assembly, we want to draw an ellipse as in figure 8.
First the image must be converted into pixels (128X64 pixels maximum), see section 4.2.1
I made some symbols to facilitate the program as D is a symbol of port D and so on, I also made some
variables as P to put page number into it and L for line number.
Five subroutines are used in this program:
1- "S_CMD" for sending command (instruction), put the instruction into D then call the subroutine.
2- "S_PAGE" for sending page number, put page no. into P then call the subroutine.
3- "S_LINE" for sending line number, put line no. into L then call the subroutine.
4- "S_DATA1" for sending data into 1st half of the LCD, put the instruction into D then call the

subroutine (CS1 is activated and CS2 is deactivated).
5- "S_DATA2" for sending data into 2nd half of the LCD, put the instruction into D then call the

subroutine (CS2 is activated and CS1 is deactivated).
For the subroutines 1&2&3, CS1&CS2 are both activated in order not to make subroutines for each
half of the LCD.
For 2&3 you can put your page no. or line no. directly into P or L (ex: for page no. instruction is 1011
1XXX and page no. is written in the 3 Xs i.e. page 3 instruction = 1011 1011, but here write P=3 only).

Picbasic code using "Proton" program

Device 16F877
XTAL 4

TRISC=%00000000
TRISD=%00000000
PORTC=$00
PORTD=$00

Symbol D=PORTD ;D=data
Symbol DI=PORTC.3 ;Data/Instruction (1=data & 0=instruction)
Symbol clk=PORTC.2 ;Enable of GLCD (clock -ve edge)
Symbol CS1=PORTC.1
Symbol CS2=PORTC.0
Dim P As Byte ;page number (0:7)
Dim L As Byte ; Line number (0:63)

14

D = $3f
GoSub S_CMD

P = 1
GoSub S_PAGE
L = 21
GoSub S_LINE
D = 0XC0
GoSub S_DATA1
D = 0X20
GoSub S_DATA1
D = 0X20
GoSub S_DATA1
D = 0X20
GoSub S_DATA1
D = 0XC0
GoSub S_DATA1

P=2
GoSub S_PAGE
L=19
GoSub S_LINE
D=0XF0
GoSub S_DATA1
D=0X0F
GoSub S_DATA1

L=26
GoSub S_LINE
D=$0F
GoSub S_DATA1
D=$F0
GoSub S_DATA1

P=3
GoSub S_PAGE
L=19
GoSub S_LINE
D=0X01
GoSub S_DATA1
D=0X1E
GoSub S_DATA1
D=0X60
GoSub S_DATA1
D=0X80
GoSub S_DATA1
D=0X80
GoSub S_DATA1
D=0X80
GoSub S_DATA1
D=0X60
GoSub S_DATA1
D=0X1E
GoSub S_DATA1
D=0X01
GoSub S_DATA1
Stop

S_DATA1:
CS1=0
CS2=1
DI=1
clk=1
clk=0
Return

S_DATA2:
CS1=1
CS2=0

15DI=1

clk=1
clk=0
Return

S_CMD:
CS1=0
CS2=0
DI=0
clk=1
clk=0
Return

S_PAGE:
CS1=0
CS2=0
D = P + %10111000 ; x address (1011 1XXX) D = P + %10111000
DI=0
clk=1
clk=0
Return

S_LINE:
CS1=0
CS2=0
D = L + %01000000 ; y address (01XX XXXX) D = L + %01000000
DI=0
clk=1
clk=0
Return

There are a number of commands special for the KS0108 driver in the Proton program which can be
used easily, these commands are LINE, LINETO, BOX, CIRCLE, PLOT, UNPLOT (refer to
proton help).

First LCD type must be declared as follows:
LCD_TYPE = GRAPHIC ;Use a Graphic LCD

Then each of the data bus, RS, E, CS1, CS2 and R/W must be declared
LCD_DTPORT = PORTD
LCD_RSPIN = PORTC.3
LCD_ENPIN = PORTC.2
LCD_CS1PIN = PORTC.1
LCD_CS2PIN = PORTC.0

These decelerations must be written before using any of the above commands.
R/W must be connected to the PIC and declared.
You can use a standard interfacing circuit with no need for declarations mentioned above, just file
must be include at the beginning of the program.
INCLUDE "PROTON_G4.INT"

For example
We want to draw this picture shown in figure 9.

Figure 9: picture displayed on GLCD

16

By using interfacing circuit in figure 7.

Code Device 16F877
LCD_TYPE = GRAPHIC
LCD_DTPORT = PORTD
LCD_RSPIN = PORTC.3
LCD_RWPIN = PORTC.4
LCD_ENPIN = PORTC.2
LCD_CS1PIN = PORTC.1
LCD_CS2PIN = PORTC.0

Line 1,0,0,127,63
LineTo 1,0,63
LineTo 1,0,0
Box 1,70,32,30
Circle 1,63,32,20

Stop

By using the standard interfacing circuit in figure 10.

Code Device 16F877

Include "PROTON_G4.INT"

Line 1,0,0,127,63
LineTo 1,0,63
LineTo 1,0,0
Box 1,70,32,30
Circle 1,63,32,20

Stop

Figure 9: standard interfacing circuit

17

5. Application note
There must be a delay of at least 1/ LCD frequency in between operations or commands of the
LCD (i.e. in two places; first place after setting DB0-7, CS, DI and R/W and before toggling enable
high and second place between toggling enable high and toggling it low).
For the LM12864LFC the LCD frequency is not mentioned in datasheet so we can make a delay time
of 1ms or 1.5ms to be in the safe side.
This timing can be one of the most common errors because if it is not delayed properly, a seemingly
good instruction will not provide the desired result. This problem may not be appear in software
simulation (as Proteus) but take care while implementing your hardware from this point.

6. References
[1] Lucas L. Delaney," Design of a Graphical LCD Driver and Educational LCD Primer", Design Project Report.
[2] LM12864LFC LCD user manual.
[3] Proton manual.

 تم بحمد االله

bme_mabyad@yahoo.com

