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Marcus Bäck (MB) Responsible for docu-

mentation (DOC)
070-6924804 marba751

Victoria Alsén (VA) Chief of tests 073-9409540 vical845
Johan Källström (JK) Chief of design 073-0718371 johka546
Mikael Hammar (MH) Master of SLAM 070-2658294 mikha087
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Invenire Periculosa
balrog-2014@googlegroups.com

Lips
Page IV



Autonomous mine sweeper - Balrog
LiTH

2014-12-11

Document history

Version Date Changes Sign Reviewed

0.1 2014-12-05 First draft IP MB

0.2 2014-12-09 Lots of changes. Updated according
to comments from client and tutor.

IP MB

0.3 2014-12-10 Corrections according to client and
tutor

IP MB

1.0 2014-12-11 Version 0.3 approved by client MS MB

TSRT10
Marcus Bäck
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1 Introduction

Balrog is an ongoing project to construct a mine sweeping crawler robot. It is a joint
project between Saab Bofors Dynamics and Linköping University.

The project was started in the spring of 2009 with the student group O’hara’s. O’hara’s
main focus were specifications, control programs, network communication and navigation
techniques.

In autumn 2009 the group Carpe Locus continued where O’hara’s had left and developed
remote control of the crawler and automatic control for the propulsion. The crawler was
also equipped with GPS.

The next autumn (2010) the group 8Yare continued by mounting an industrial computer
on the crawler and ported the old code to the new computer. The crawler was also
mounted with stereo cameras (model Bumblebee 2).

In 2011 group iMAP focused on using the camera and the crawlers sensors to create a 3D
map of the operating area. In 2012 Minenmarker choose not to continue the work with
the 3D map. Instead they developed the mine sweeping functionality and improved the
crawlers positioning. The main goal of the project in 2012 was to verify that the entire
area had been searched and that all the mines were found. Minenmarker also named the
robot Balrog.

In 2013 the group Ostende Abscondita continued to improve the positioning and search
algorithm. They also integrated a wireless hand controller for manual control of Balrog.

This year, 2014, the main objectives of the project were to continue to develop Balrog’s
positioning. Balrog was equipped with a 360◦ laser scanner and a more powerful industrial
computer.

The technical documentation is a detailed overview of how the system is designed and
implemented. The purpose of this document is to provide the client and customer with a
thorough description of the system that has been implemented. It also serves as a detailed
description of the implementation and what is left, for the future project groups that will
continue the work with Balrog. All the requirements of the functionality of Balrog is
found in the Requirement specification [1].
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2 System overview

The autonomous mine sweeping system consists of three main subsystems; the base sta-
tion, the hand controller and Balrog. Balrog is a tracked vehicle shown in Figure 2.1
which is divided into smaller subsystems, see Section 6. For a schematic overview of the
system see Figure 2.2.

Figure 2.1: The final assembly of Balrog 2014.

Figure 2.2: Illustration of the different parts in the system and how they interact.
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2.1 Coordinate frames

The system uses four different coordinate frames.

2.1.1 Global coordinate frame

The coordinates (xg, yg, zg) are defined in the global coordinate system. The global coor-
dinate system is given according to the RT90 standard which is a geodetic system adapted
for Sweden with origin corresponding to the WGS84-coordinate N0◦0.000′ E0◦0.000′ at
sea level. xg is the longitude, yg is the latitude and zg is the altitude above sea level for
the position (xg, yg).

2.1.2 Local coordinate frame

The coordinates (xl, yl, zl) are defined in the local coordinate frame, a translated and
rotated version of the global frame as shown in Figure 2.3. The origin of the local frame
is always located in the bottom left corner in the area of operation. The local frame is
a right hand system with xl and yl making out the two dimensional internal map in the
system, pointing right and upwards respectively, and zl pointing outwards of the map.

In order to express global coordinates in the local frame we need to know the translation
and rotation. If the global coordinates of the origin of the local system (bottom left corner
of the operational area) (xgbl, y

g
bl) and the global coordinates of the bottom right corner of

the operational area (xgbr, y
g
br) are known, the rotation α and then the transformation can

be computed. Since the z coordinate is not used for our application it will be left out of
the transformation.

α = atan2
(
ygbl − y

g
br, x

g
bl − x

b
br

)
(2.1)

[
xl

yl

]
=

[
cosα sinα
− sinα cosα

] [
xg − xgbl
yg − ygbl

]
(2.2)

x

y

α xg

yg
l

l

x g
bl y g

bl

Figure 2.3: Global and local frame relationship.

2.1.3 Balrog coordinate frame

The coordinates (xb, yb, zb) are defined in the Balrog coordinate frame and are fixed rel-
ative to Balrog. xb points forward, yg to the left and zg upwards. The origin is in the
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center of Balrog. The rotation around the local frame is defined as the angle ψ as is shown
in Figure 2.4.

If the origin of the Balrog frame has the coordinates (xlb0, y
l
b0) in the local frame, the

transformation can be computed as shown in equation 2.3[
xb

yb

]
=

[
cosψ sinψ
− sinψ cosψ

] [
xl − xlb0
yl − ylb0

]
(2.3)

x

y

Ψ xl

yl
b

b

x l
b0 y l

b0

Figure 2.4: Balrog and local frame relationship.

2.1.4 Grid coordinates

The obstacle and probability map uses a gridded coordinates due to the discrete represen-
tation of the map. This coordinate frame is also used by the route planning algorithm. A
grid coordinate is calculated by rounding down a local position coordinate in regard of the
resolution of the grid map. When the map is created the resolution of the grid coordinate
is specified with number of grids per meter. When transforming a grid coordinate to a
local position the resulting position is given in the centre of the grid. See Section 3.7 for
more details.
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3 Implementation

This section contains information about the implementation of the functionality, the de-
velopment and testing environment and the overall program structure and flow.

3.1 Overview

• Programming language: C++11

• Compiler: gcc 4.6.3 [2]

• Target platform: Ubuntu 14.04.1 LTS (Trusty Tahr) [3]

• Makefile generator: qmake 2.01a [4]

• Makefile generator: cmake 2.8.12.2 (used when building third party libraries) [5]

• Makefile generator: autoconf 2.69 (used when building third party libraries) [6]

• Integrated development environment (IDE): Qt Creator 3.1.1 [7]

• Version control: Git [8]

3.2 Dependencies

• Logging library: google-log 0.3.3 [9]

• Testing library: google-test 1.7.0 [10]

• Matrix library: Eigen 3.2.2 [11]

• Threading library: pThreads [7]

• Laser sensor drivers: RPLIDAR development kit 1.0.1 [12]

• Build essentials package for Ubuntu 14.04 [13]

For a step by step user installation guide please see the user manual [14].

3.3 Unit tests

The project has used unit tests during the development. A unit test is a black box test,
where a function is tested whether it returns the expected value when a specific argument
is passed to the function. The unit tests does not have complete coverage, but it is an
easy way of checking if the functionality behaves as intended after a new implementation.
The unit tests were executed when trying to push to the master branch on Git. The
convention that the master branch must build and execute all tests at any time was used.

Two different unit test projects were created. One that was independent of hardware and
another that needed hardware to execute. The automatic build system Travis CI [15]
was used for automatic building and test execution, but since Travis had no access to our
hardware the unit tests requiring hardware could not automatically be tested since they
will always fail if hardware is not present.
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3.4 Projects

The code is split into 7 different units called projects, listed in Table 3.1. Each project
can be compiled individually, but some may depend on headers and lib files produced by
other projects.

Table 3.1: Table of projects.

Project name Type Description Dependencies
common static library Contains implementation shared be-

tween the basestation and Balrog
-

common2013 static library Legacy code from previous years
project

-

balrog static library Code intended to run on Balrog common

basestation executable Basestation software common,
common2013

app balrog executable Application run on Balrog common, balrog
tests executable Contains unit tests for functionality

that does not need hardware
common, balrog

tests hardware executable Contains unit tests for functionality
that uses hardware

common, balrog

3.5 Shared data structure

Shared data structures holds common data in the system. The data is shared between
different subsystems by passing in a reference to the data when the subsystem is instan-
tiated. All data manipulation is implemented to be safe for concurrency, race condition
etc. In practice this mean mutually exclusive locks in pThreads, but the objects using the
shared data structures can be ignorant of this and use them as if all manipulating tasks
were atomic.

3.5.1 Data collection

The DataCollection class contains a collection of elements inheriting from AData. AData
has a field of type TimeStamp that holds the timestamp when the piece of data was created.
Thus DataCollection maintains a sorted collection of data and provides methods for
adding and iterating through the collection. The DataCollection class is for example
used for storing sensor samples and other data associated with a timestamp. See class
DataCollection in [16] for more information.

3.5.2 Serialization

All data structures (DataCollection and AData) inherits from ASerializable, meaning
it is possible to serialize and deserialize the object to and from a stream, this makes it
possible to send them via the data link and to output and read them with standard stream
operators in C++.
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3.5.3 Sensor data logs

All sensor data classes inherit from the DataCollection class and contains private vari-
ables storing the sensor data values. The sensor data are serialized when they are logged
to a file where the format of each sensor sample is of the form timestamp data1 data2

... dataN and each sample is logged on a separate line. A description of each sensor
data can be found below. Note that the laser sensor sample has a variable size as one
sample contains points from one revolution which can be 0 to 360 points depending on
the surroundings. In the following tables (Table 3.2 - 3.5) the serialization of each sensor
data is shown.

All sensor data contain timestamps of when the data is recorded. This timestamp is
divided into two parts, one displaying seconds and another displaying nanoseconds.

Table 3.2: Serialized GPS data

Column Variable Unit Description
1 timestamp second

part
s The part of the timestamp displaying

seconds
2 timestamp

nanosecond part
ns The part of the timestamp displaying

nanoseconds
3 nmea NMEA string The raw NMEA data (GPGGA), con-

taining position and accuracy data
4-6 RT90 RT90 coordi-

nate
The RT90 position’s x,y and z coordi-
nates

The NMEA information is the GPS data in the NMEA format, which is a standard format
for transferring GPS data.

Table 3.3: Serialized IMU data

Column Variable Unit Description
1 timestamp second

part
s The part of the timestamp displaying

seconds
2 timestamp

nanosecond part
ns The part of the timestamp displaying

nanoseconds
3-5 rAcceleration m/s2 Raw acceleration reading
6-9 rAngularVelocity rad/s Raw Angular velocity reading, x,y and

z coordinates
10-12 rMagnetic Gauss Raw magnetic field reading, x,y and z

coordinates
13-15 sAcceleration m/s2 Stabilized acceleration data, x,y and z

coordinates
16-18 sAngularVelocity rad/s Stabilized angular velocity data, x,y

and z coordinates
19-21 sMagnetic Gauss Stabilized magnetic field data, x,y and

z coordinates
22 roll rad roll angle
23 yaw rad yaw angle
24 pitch rad pitch angle
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Table 3.4: Serialized Odometer data

Column Variable Unit Description
1 timestamp second

part
s The part of the timestamp displaying

seconds
2 timestamp

nanosecond part
ns The part of the timestamp displaying

nanoseconds
3 delta distance left m Distance on left track since last read-

ing
4 delta distance right m Distance on right track since last read-

ing
5 velocity left m/s Velocity of left track
6 velocity right m/s Velocity of right track

Table 3.5: Serialized Laser data

Column Variable Unit Description
1 timestamp second

part
s The part of the timestamp displaying

seconds
2 timestamp

nanosecond part
ns The part of the timestamp displaying

nanoseconds
3 Point1 distance m Distance to object
4 Point1 angle degree Angle to object
5 Point1 quality - Quality of measurement
... ... ... ...
k PointN distance m Distance to object
k+1 PointN angle degree Angle to object
k+2 PointN quality - Quality of measurement

3.6 Operating system

Two versions of Ubuntu are used as operating systems in this project. The versions of
Ubuntu that are used are Ubuntu Server 14.04 on Balrog and Ubuntu Desktop 14.04 on
the base station.

3.6.1 USB serial devices

To enable ARM-processor communication, a file with the line "options usbserial

vendor=0x03EB product=0x6125" have to be added to /etc/modprobe.d/ [17]. The
laser sensor works when plugged in and does not require anything special to enable com-
munication.

To enumerate the same USB serial devices to the same devices in /dev/ a UDEV rule
have been used [18]. To set the speed of a specific serial device a similar rule have been
used [19]. To be able to access the serial adapters the user has to be in the dialup group
of the OS. The paths are shown in Table 3.6.

To configure all of the above run installConfigs.sh in the os folder on a newly installed
Ubuntu machine.
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Table 3.6: Device paths

Device Path
IMU /dev/ttyBalrogImu

ARM processor /dev/ttyBalrogArm

GPS /dev/ttyBalrogGps

Ultrasonic sensors /dev/ttyBalrogI2c

Laser sensor /dev/ttyBalrogLaser

Xbox button inputs /dev/input/js0

Xbox rumble /dev/input/event3

3.7 Map structure

This section describes the internal map structure used in the project. The map structure
is used by Balrog and the base station alike.

The map structure consists of two separate maps: the probability map (a ProbabilityMap

class type) and the obstacle map (an ObstacleMap class type). The maps functionality is
in two different classes, ObstacleMap and ProbabilityMap, that inherits from the parent
class Map. Since no object is of class Map, this class holds common functions without
mutex lock or unlock for ObstacleMap and ProbabilityMap. The mutex lock down is
done in the obstacle and probability map instead, to prevent more complex functions to
get stuck in a mutex deadlock.

The purpose of the probability map is to keep track of the probability that Balrog has
visited a specific part of the map while the obstacle map keep track of the lines found by
SLAM, and which part of the map that holds obstacles.

Both maps are represented by a discrete grid, a 2D C-array. The grid size is decided
when the map object is constructed. When constructing the object three arguments are
given: width of the map (in full meters), height of the map (in full meters) and resolution
(in number of grids per meter). If you create a map with the arguments 3, 4 and 2 the
resulting grid map is 6 grids wide and 8 grids high, each grid a square with side length
0.5 m. A typical search area has the parameters of about (10,10,1) or (10,10,2). The
obstacle map and the probability map uses the same basic map functionality, but there
are some specific member functions for the different classes (see classes ObstacleMap and
ProbabilityMap in [16] for further information).

We have not investigated the minimum grid width, but tests have been run with grids
as small as 0.25 m wide, without resulting in any malfunctions. The addLine() function
might get stuck in an infinite loop if the grid is to small and the line to be drawn is to
long. This is due to numerical problems when operating on floats when calculating which
grid positions are part of the obstacle and the free space between Balrog and the obstacle.
See doxygen documentation [16] for ObstacleMap::addLine().

Internal representation of the probability in the probability map is an unsigned int, but
the external representation is a double between 0 and 1. In the obstacle map the status
in each grid is represented by the statuses shown in Table 3.7

The obstacle map receives obstacle line position (in local coordinates) from SLAM and
calculates which grids to be filled. It also fills the grid positions between Balrog and
the obstacle as EMPTY TILE. The probability of those tiles are not changed, so the route
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Table 3.7: The possible statuses in the obstacle map.

Status Numerical value Description
UNEXPLORED TILE 0 The initiated status of all

tiles, if a tile is unexplored
this indicates it

EMPTY TILE 1 The status if a grid position
is regarded as obstacle free

OBSTACLE TILE 2 The status if a grid position
contains an obstacle

planner will still evaluate the probability of those tiles and revisit if the probability is to
low. When the route planner regards an object as closed all the grid position inside the
obstacle is marked as OBSTACLE TILE. The fill uses the flood fill algorithm with 4-way
connectivity.

The mine positions are not represented by a map structure. The position for the mines
that are found is saved in a vector that is drawn in the GUI. Balrog and the route planner
does not take the mines in account at the moment, they are considered as EMPTY TILE.
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4 Base station

The base station consists of an ordinary computer running Ubuntu 14.04 which commu-
nicates with Balrog wireless over WiFi or via Ethernet cable. The main tasks for the
base station are receiving and displaying data from Balrog in the GUI as well as sending
commands to Balrog through a set of commands. The layout of the GUI is shown in
Figure 4.1

The full user interface has been kept from last years project, but only a subset of the
functionality has been ported to work with the new Balrog:

• It is possible to connect to Balrog by choosing File→connect and entering the IP
address of Balrog

• It is possible to disconnect from Balrog by choosing File→disconnect

• It is possible to enter manual mode by clicking the button ”Start manual”

• It is possible to steer Balrog by the arrow keys in manual mode

• It is possible to increase the speed of Balrog with the vertical slider (or by pressing
W) in manual mode

• It is possible to decrease the speed of Balrog with the vertical slider (or by pressing
S) in manual mode

The rest of the buttons and components does not work at the moment since they are not
integrated with the new Balrog software.

Figure 4.1: The graphical user interface
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4.1 Communication

All data sent and received is encapsulated as shown in Table 4.1. There are messages
with no payload, such as manual mode, and there are messages with payload, such as all
sensor data messages were the payload is a serialized version if the sensor data object.
Note that the payload can’t exceed a length of 216 = 65536 characters.

Table 4.1: Data format for a message

ID Payload length Payload
uint16 t id uint16 t len char payload[len]

To receive a data message there are functions in the NetCom class which peaks the TCP
sockets buffer to see if there are a whole message to be received and parsed, and a function
that receives the data and calls the registered decoder of that particular ID. There is also
a legacy implementation in which the id and stream are sent if no id and decoder and/or
encoder pair is registered.

4.1.1 Balrog

On Balrog there is a system where one can register encoders and decoders. Using the
sendDataMessage method in the Communications class the encoder of the data message
is called and a data message is sent. On Balrog there is a communication thread which
peaks and parses messages and after that sends States, Maps and Mines in a fixed tick.

4.1.2 Base station

On the base station the implementation is a bit different although using the same parent
class(NetCom). The parsing is done using the legacy implementation, which is due to the
use of signals. It would not be possible to register a signal if the instantiated objects were
not known. The parsing is done aperiodicly using a socket to signal bridge. The signal is
activated as long as there is data to read in the receive buffer of the socket.

4.1.3 Messages

In Table 4.2 and 4.3 is a summary of the data sent from Balrog to base station and base
station to Balrog respectively.
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Table 4.2: Messages sent from Balrog to base station

ID Description
NETWORK MESSAGE STATE DATA Sends the latest state periodically
NETWORK MESSAGE WAYPOINTS Sends the complete waypoints

data structure each time it is up-
dated

NETWORK MESSAGE OBSTACLE MAP Sends the complete obstacle each
time it is updated (Note that this
is not working correctly due to
a bug in the serialization of the
map)

NETWORK MESSAGE WHEEL SPEED Sends the current wheelspeed pe-
riodically

NETWORK MESSAGE MINE POSITION Sends the complete mines data
structure each time it is updated

Table 4.3: Messages sent from base station to Balrog

ID Description
NETWORK MESSAGE WAYPOINTS Sends the complete waypoints

data structure
NETWORK MESSAGE WHEEL SPEED Sends the current wheelspeed

when it is changed
NETWORK MESSAGE SET MODE AUTOMATIC Send a message indicating that

autmatic mode is active
NETWORK MESSAGE SET MODE MANUAL Sends a message indicating that

manual mode is active
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5 Hand controller

The hand controller facilitates the control of Balrog when in manual mode. The hand
controller is a Microsoft Wireless Xbox 360 Controller which communicates at the 2.4
GHz band through a USB dongle located on Balrog.

5.1 Functionality

The main functionality of the hand controller is to be able to steer Balrog. This is done by
using the left joystick on the controller. This can be done as long as the automatic mode
has not been started. Several other functions that can be implemented are suggested in
Section 11.

5.2 Implementation of communication

The communication between Balrog and the hand controller is built upon available
Ubuntu drivers in combination with the C libraries linux/input.h and linux/joystick.h.
The classes used for the hand controller communication are mainly HandController in
the code for Balrog and XboxButtonMap in the common code. The same base is used as
for the rest of the system.

When the hand controller connects to Balrog a file is created in the main system on
Balrog. The file created is /dev/input/jsX where X is a number assigned to the hand
controller. The file is interpreted with the C libraries mentioned above and from which
the data can be translated into different commands.

HandController The HandController class handles the communication between hand
controller and Balrog. This communication is handled in a separate thread and has a low
priority, not to disturb other communication lines. The thread listens for communication
from the hand controller by iterating a loop. The first part of this loop is reading the
joystick file, which will block the thread until new data is available. When new data
occurs the thread awakens and the command is interpreted. The information is then sent
through via the shared data structures.

XboxbButtonMap The XboxButtonMap class handles the current configuration of the
hand controller as well as communication regarding button configuration changes.
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Invenire Periculosa
balrog-2014@googlegroups.com

Lips
Page 14



Autonomous mine sweeper - Balrog
LiTH

2014-12-11

6 Balrog

This section focuses on the basic aspects of the crawler subsystem Balrog. It describes
propulsion, the sensors available and the choice of operating system used on the main
processing unit.

6.1 Conceptual overview and definition of terms

This section presents an overview of the implementation of the software running on Balrog.

The key concepts for the implementation is summarised in the following list:

• Each subsystem must be independent of the other subsystems and must be able
to run as a standalone application. All dependencies must be passed in to the
constructor at instantiation. This allows a high degree of decoupling between the
different subsystems and they can be developed in parallel and tested independently
of each other.

• A subsystem is run in its own thread and can either run periodically at a specified
frequency or once when they are called.

• Shared data structures can be shared between subsystems by passing in their refer-
ence. All operations in the shared data structures are implemented as if they were
atomic to avoid concurrency problems and race conditions.

Figure 6.1 shows an overview of the different parts and how they interact.

TSRT10
Marcus Bäck
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Figure 6.1: Illustration of subsystems, shared data structures and hardware. An arrow
pointing from a subsystem to a data structure indicates that the subsystem is writing to
the data structure. An arrow pointing from a data structure to a subsystem indicates that
the subsystem is reading from a data structure. A red box indicates that the subsystem
is not fully integrated.

6.2 Computer

Balrog is equipped with a computer with the following specifications:

• Processor: Intel Core i7 3.4 GHz, quadcore with hyper threading

• Memory: 8 GB DDR3 RAM

• Storage: 250 GB SSD hard drive of which 80GB is used for the Ubuntu partition

• Operating System: Ubuntu 14.04
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6.3 Subsystems

Subsystems inherits from the class ARunnable and are all completely isolated from each
other. As long as they are instantiated with the correct parameters (such as references
to shared data structures and other subsystems), they must be able to run independently
of the other subsystem. This allows a high degree of decoupling between subsystems and
they can easily be tested and developed in parallel.

Each subsystem runs in its own thread. The thread instantiation is taken care of au-
tomatically in the ARunnable class and does not need to be considered when using the
objects. Each subsystem may in turn spawn new internal subsystems based on the same
principle as above.

Subsystems may need references to shared data structures in order to read or manipu-
late them. In addition, subsystems may also need references to other subsystems. For
example the Communication subsystem carries a reference to the controller, making it
possible to pause and resume the controller on command from the user. See the doxygen
documentation for each class [16] for further information.

6.4 Main entry point Balrog

The execution of the Balrog starts in the main method in the app balrog project. The
main method takes responsibility for some global initialization, creation of shared data
structures as well as creating, initializing and starting the high level subsystems. The
subsystems themselves may spawn their own subsystems during execution.

A brief overview of the steps taken in this file can be found in Figure 6.2.

Figure 6.2: Brief overview of main method
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6.5 Propulsion

Balrog is able to navigate by having two tracks equipped with an electrical motor for each
track. There are also two odometers, one for each track, recording the rotation of the
tracks. The communication and control with the motor and odometers is facilitated via
an ARM processor connected to the main control unit via an I2C bus [20].

6.5.1 ARM-processor

An ARM processor is responsible for reading odometer data and setting/retrieving the
current motor output. The code in this ARM processor was not accessible to us and we
therefore needed to use the external interface already provided. This external interface is
very poorly documented from previous projects but it is clear that the ARM is connected
to the main unit via BL233B [21] I2C to PC converter and that a text based protocol
with certain commands [20] is used to communicate with the ARM processor.

6.5.2 ARM-processor commands

The communication protocol is text based. In Table 6.1 the different communication
commands for the ARM-processor are displayed.

Table 6.1: Communication commands for the ARM-processor

command format parameters return
Set velocity sVXXYY XX and YY is velocity in mm/s

(one byte each) for left track and
right track respectively. Last year’s
project only used speeds in the range
of 100 mm/s and 760 mm/s.

sVOK if successful

Get distance upDi Retrieve distance traveled since last
read.

Signed double for each
track in mm*.

Get velocity upVe Retrieve current velocity Signed double for each
track in mm/s*.

* The lack of comments in last year’s code inflicts uncertainty in the interpretation of the format of
the data retrieved from the odometers, using upDi and upVe. In odometers.cpp (from 2013 years
implementation) the raw data from the odometers is divided by the factor 10 000. This finding
together with the fact that the precision of the mark spacing is given in 1

10000 mm makes it probable
that the format of the data returned by upDi and upVe is mm and mm/s respectively.
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6.6 Sensors

The following subsection describes the different sensors mounted on Balrog.

6.6.1 GPS

Balrog has a GPS receiver of the type Ublox-5 [22]. The receiver sends data through a
serial port according to the NMEA-0183 standard which is a text based protocol developed
for navigation equipment. The different NMEA messages used are available on pages 40-
54 in reference document [22]. The information sent contains position data, time of
positioning, number of satellites used for positioning and positioning accuracy.

The positioning data is given as latitude and longitude according to the WGS84 standard.
These coordinates are converted to the RT90 standard, using the algorithms from last year,
before being used for SLAM, since this is the standard used throughout Balrog [20].

6.6.2 Laser sensor

Balrog is equipped with a laser sensor from Robot Peak, RPLIDAR A1M1-R1, displayed
in Figure 6.3. The laser sensor rotates 360◦ in positive θ direction as is shown in Figure
6.5. It samples distance data from obstacles at a distance of up to 6 m. The revolution
frequency of the sensor is adjustable from 1 Hz to 10 Hz. The maximum frequency for
which the sensor collects data samples for every degree (360 samples per revolution) is
5.5 Hz[23].

Figure 6.3: Laser sensor mounted on Balrog.

Connections

The connection between the laser sensor and the main control unit is over a USB cable
through a USB converter (Silicon Labs CP2102) [24]. The USB connection is configured
as a virtual COM port on the main control unit. The USB cable also provides the laser
sensor (5 V) and its motor (3.6 V - 6 V) with power.

Consumption

In Table 6.2, the voltage and current used by the laser sensor is specified [23].
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Table 6.2: Power supply and consumption of the laser sensor.

Item Unit Min Typical Max Comments
Scanner system voltage V 3.6 5 6 Low ripple voltage rec-

ommended
Scanner system current mA TBD 40 70 Sleep mode (5 V input)

TBD 130 200 Work mode (5 V input)
Motor system voltage V 3.6 5 6 Adjust voltage according

to speed
Motor system current mA TBD 100 TBD 5 V input

Messages

The laser sensor has three different message protocols: no-reply, single-reply and multiple-
reply. The no-reply requests are STOP and RESET. The single-reply requests are GET INFO

and GET HEALTH. The multiple-reply requests are START SCAN and FORCE SCAN. See Table
6.3 for details [25].

Table 6.3: Message requests to the laser sensor.

Request name Value Response mode Description
STOP 0x25 No Stops the laser sensor.
RESET 0x40 No Resets the laser sensor core.
GET INFO 0x50 Single Ask for laser sensor information,

(e.g. serial number, hardware ver-
sion).

GET HEALTH 0x51 Single Ask for laser sensors health info.
START SCAN 0x20 Multiple Starts scan by entering the scanning

stage.
FORCE SCAN 0x21 Multiple Starts scan without checking rota-

tion speed.

Returned data

When in scanning mode, the laser sensor returns data after each completed revolution.
The data returned is 40 bits for each sample value. The data contains 6 bits for the
quality, 15 bits for the angle, 16 bits for the distance, 2 bits for start new scan and 1
control bit. The quality bits represents the strength of the returned laser pulse. The
angle (θ) is given in degrees from the forward position and the distance (d) to an object
is given in millimetres. In Figure 6.5 the returned angle and distance is displayed. The
start bit S is sent with a complementary inverted S̄ and the control bit, C, is always 1.
See Figure 6.4 for the bit order. For return data for the other requests (GET INFO and
GET HEALTH), see RPLIDAR Interface Protocol [25]
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Figure 6.4: Returned data from laser sensor for each sample.

Figure 6.5: Graphic display of measured angle and distance by the laser sensor.

Assembly

The laser sensor is mounted above the computer with a safety cover. The cover consist
of four legs/poles and a roof. See Figure 2.1 for an image of the final assembly.

Implementation

The laser sensor API uses RoboPeaks development kit source code as library for the
functionality. The library uses a driver instance, an object that is created and is operated
upon to communicate with the hardware. The driver, after it is connected, uses four main
functions: getHealth(), startScan(), grabScanData() and ascendScanData().

• getHealth() - Check laser sensors health and returns a health code (0 if ok)

• startScan() - Starts the background RPlidar thread for sampling the sensor
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• grabScanData() - Check if laser sensor has new data, returns RP code RESULT OK

if new data is available

• ascendScanData() - Saves the scan data in an array

The function work() in the class LaserSampler samples the laser sensor and saves the
sample in a LaserDataPoint-object. If the quality of the sample is zero, the sample is
discarded and not saved in a LaserDataPoint. A LaserDataPoint is a simple class that
contains fields for distance [m], angle [◦] and quality [−]. All LaserDataPoints from one
revolution is then stored in a LaserSample

Noise model

To make a correct decision based on the information given by the laser sensor, a model
of the noise was developed. This model is to be used in the state space model used for
SLAM to improve the modelled behaviour. Result and further information is found under
the SLAM section, 7.2.3.

6.6.3 IMU

Balrog is equipped with a 3DM-GX1 IMU [26] manufactured by MicroStrain.

The computer on Balrog communicates with the IMU through a USB-connection and can
retrieve the following data from the IMU:

• Raw acceleration data along all three axis (±5 m/s2)

• Raw magnetic field data along all three axis (±1.2 Gauss)

• Raw angular velocity data around all three axis (±300◦/s)

• Stabilized and preprocessed acceleration, magnetic and angular velocity data, along
with estimation of absolute angle

The resolution of each measurement is 16 bits.

According to the previous year, the acceleration data is noisy and biased, and affected
by roll and pitch. The noise is compensated for in the state vector x (see 7.4), where the
bias is modulated, and the effect of gravitation has to be taken into account. The IMU
is also able to give a pre-filtered signal which is less noisy, and could be regarded as an
output option.

The angular velocity of Balrog is estimated using the gyro in the IMU. As the angular
velocity is biased with a non-specific mean (see [20, sec 6.1.3], bias from the output is
modelled.

The magnetic field strength measured by the magnetometer of the IMU is a sum of the
magnetic field of the earth, external fields from the mines and disturbances generated
by the electric motors. Subterranean mines produce clear spikes in the measured field,
thus the magnetic field data can be used for mine detection. Unfortunately, the motor
disturbances are in the same magnitude as the magnetic field of the earth, which makes
it hard to use the magnetometer for the purpose of navigation.
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A specification of the performance of the MicroStrain 3DM-GX1 IMU can be found in
Table 6.4.

Table 6.4: Performance of the MicroStrain 3DM-GX1 IMU

Parameter Value
Non-linearity accelerometer 0.2 %
Bias stability accelerometer 0.010 g
Non-linearity gyro 0.2 %
Bias stability gyro 0.7 ◦/s
Non-linearity magnetometer 0.4 %
Bias stability magnetometer 0.010 Gauss
Resolution orientation < 0.1◦ minimum
Repeatability 0.20 ◦

Accuracy
±0.5 ◦ at static test conditions
±2.0 ◦ at dynamic (periodic) test conditions

A detailed technical specification is available online [27] as well as in the communication
manual [28].

The IMU is suffering from spikey measurements for undisclosed reasons as shown in Figure
6.6.
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Figure 6.6: Registered angular measurements from the IMU

This has to be fixed. Using this data won’t improve the state estimates of the balrog and
will probably just make it worse.
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6.6.4 Odometers

The odometers measure the distances travelled by each track if there were no slip. Each
odometer has 500 marks spaced with 1.0744 mm that are used to estimate the distance
travelled [20].
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7 SLAM

The SLAM subsystem is responsible for estimating the position of the robot, mapping
the environment, identifying objects and associate them with landmarks.

The subsystem is further divided into three additional systems explained below: Position-
ing, Mapping, Obstacle detection.

Figure 7.1: Flowchart of SLAM parts: Obstacle Detection, Positioning and Mapping.

7.1 Obstacle detection

The obstacle detection subsystem is responsible for taking raw measurement values from
the laser sensor and pre-processing them. The processed measurements are then inputs
to the positioning and mapping subsystems.

Pre-processing of the laser scanner includes removing outliers, compensating for mea-
suring while moving and approximating the point cloud with straight lines representing
objects. The compensation for vehicle movement while scanning (unskewing) is done by
calculating an appropriate roto-translation based on the velocity, heading and heading
angular velocity of the vehicle kept during the full scan.

Removal of outliers is done firstly by checking which laser scan points that are too close
to close to the sensor (< 20 cm), which indicates that they are in fact part of the tracked
vehicle. These are removed, along with any points that have their closest distance at a
distance greater than 10 cm. The purpose of this is to avoid disturbances from phantom
points, created by noise or small objects outside, e.g. a tall grass straw.

The point cloud created by the laser sensors consists of 360 angle values and a distance
associated to each of them. Based upon this, a probabilistic sensor model, that connects
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each distance with the probability of it being a correct measurement is calculated, will be
constructed. The noise model is described in Section 6.6.2 on page 22.

7.1.1 Line extraction

In order to separate the different lines to be created, the edges of each line must be
identified. To solve this, the following algorithm , based upon [29, algorithm 4 p.3] has
been implemented:

1. Start iterating through the all available measurements in one laser sample (one laser
scan rotation)

2. When a distance measurement over the threshold ( currently 7.5 cm ) is found,
mark this point as an edge of a line. This is a question of tuning, and it has been
performing well, mainly in outdoor environments.

3. Continue the iteration, if the distance to the next point is greater than the threshold
mark this point as the other edge of the line

4. Start searching for a non-maximum distance measurement again, and repeat 2. - 3.
until the whole lap is completed

5. To be sure of detecting edges immediately in front of the scanner, complete the lap
until you reach the firstly found edge again

This algorithm is further specified with a flow chart in Figure 7.2.

With this method, the line extraction algorithms will have the necessary information to
separate the lines to be created.

RANSAC A RANSAC algorithm [30] has been implemented in order to extract a
suitable line given a region of a laser scan, defined by its two edges.

The RANSAC (RANdom SAmple Consensus) algorithm can perform robust fitting in a
situation where outliers are present. The laser sensor has a risk of producing outliers
when it finds a false point. Given a set of data, it performs the following operations:

1. Randomly select a subset of two points of the data

2. Create a line through these two points

3. Calculate the distance between the remaining points and this line

4. Split the set in inliers and outliers using this distance

5. If the inlier set is sufficiently large, use it to fit a new line and remove the inliers

6. Repeat until max iterations reached or there are too few points left to work with
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This algorithm is further specified with a flow chart in Figure 7.2.

In summary, it tries different combinations of subsets until a consensus is reached con-
cerning which points are inliers and which are outliers by separating the points in different
subsets and comparing them to each other.

The current RANSAC algorithm performs well for straight indoor obstacles (e.g. a shelf
or a box standing on the floor). It has also performed well in detecting obstacle of curved
shapes. However regarding extended walls consisting of more than 50 laser sample points,
the algorithm will sometimes reach max number of iterations and produce a line that is
not very representative of the object. This should not cause any problems, since extended
walls are not really common in outdoors environments.

The lines are sent to the obstacle map in the form of coordinates for the start and ending
position of the line, together with the current relative position of Balrog.

In Figure 7.3 a raw laser scan from the LIDAR can be studied. It is taken in an office

Figure 7.2: Flowchart of algorithms for edge detection and line extraction.
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equipped with three obstacles (two shelves and a cardboard box). The noisy area around
the left hand wall origins from it being equipped with radiators.
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Figure 7.3: A raw laser scan in a room, measured length data represented by red crosses.
Balrog is marked by a blue star and a green circle.

In Figure 7.4 edge detection and RANSAC have been performed, resulting in edges (di-
amonds) and lines (yellow lines). Two of the obstacles are represented by a single line,
while the tilted object resulting in two separate lines. This is a question of tuning, defining
when two objects are separate or not.

Theoretically there should be no problems regarding obstacles that are just a few cen-
timetres from the Balrog. Distances closer than 40 cm have not been thoroughly tested,
but there is no reason that they should not be detectable.
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Figure 7.4: Lines extracted from the laser scan data in Figure 7.3, marked in yellow.
Measured length represented by red crosses. Detected edges are marked by a purple
diamond. Exluded points are marked by an orange ×. Balrog is marked by a blue star
and a green circle.

7.1.2 Landmark model

The landmarks will be stored in a vector when identified. The objects can be regarded
as a state and will therefore be modelled as

mk+1 = mk, (7.1)

where the landmark vector

mk =


m1

m2

...
mj

 (7.2)

, with j being the number of known landmarks.

The landmarks will be stored as lines represented by two coordinates (x, y). Every line
(when seen) will be used for positioning, so lines will not be fused together creating objects
(polygons).

7.2 Positioning

The positioning subsystem is responsible for estimating the position, with regards to
measurements from the IMU, GPS and odometer; output from the obstacle detection
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subsystem; the map from the mapping subsystem and a motion model of Balrog.

The measurements from the IMU, GPS, odometer and ultrasonic sensor are updated with
a frequency of 11 Hz and the laser sensor with a frequency of 5.5 Hz.

7.2.1 Motion model

The dynamics of the Balrog can generally be modelled as

xk+1 = f(xk,uk,wk), (7.3)

where the non-linear function f describes the dynamics of Balrog, with regards to the
process noise wk, the input to the system uk and the state vector xk.

As modelling the acceleration was more challenging than rewarding the decision became to
implement a coordinated turn constant velocity with bias model as described in the next
section because the values from the IMU are biased with a non-specific mean (according
to [20] page 25-27).

Coordinated turn constant velocity with bias model The state matrix xk is now

xk =


xk
yk
ψk
vk
ωk
ωbk

 , (7.4)

where xk and yk is the two dimensional local position of the Balrog, ψk the heading, vk
the speed of the balrog, ωk the turning rate of the balrog and ωbk the bias of the turning
rate.

The dynamics then becomes

xk+1 =


xk + Tvk cos(ψk)
yk + Tvk sin(ψk)

ψk + Tωk
vk
ωk
ωbk

+ wk, (7.5)

with the process noise w (noise in vk, ωk, ω
b
k) affecting the states as

G =



T 2

2
cos(ψk) 0 0

T 2

2
sin(ψk) 0 0

0 T 2

2
0

T 0 0
0 T 0
0 0 T

 , (7.6)
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7.2.2 Measurement model

The measurements will be modeled as,

yk = h(xk,mk) + ek, (7.7)

where h(xk,mk) is a non-linear function dependent on both the state vector xk and the
landmarks mk, and ek is the measurement noise.

Modelled bias As we’re not using any acceleration measurements but are modelling
the bias, we get

yk =



XGPS

YGPS

ωIMU
vr+vl

2
vr−vl
dv

m1
rk

m1
α

...

mj
rk

mj
α


, (7.8)

where XGPS and YGPS are measured using the GPS values. These are updated at a
frequency of 1 Hz. From the IMU we achieve a measurement of the turn rate of Balrog.
From the odometers the speed of Balrog is measured, by taking the mean of left and right.
Also, the turn rate can be approximated calculating vr−vl

dv
, where dv is a virtual width, as

per last year. Both the odometers and IMU is updated with a frequency of 10Hz. With
the laser sensor the distance mi

rk and angle mi
α to each known landmark i = 1, 2, . . . , j is

measured. The laser sensor is updating with a frequency of 5.5 Hz, which corresponds to
half of the other sensors with exception of the GPS.

The measurement function h(xk,mk) is implemented as

h(xk,mk) =



xk
yk

ωk + ωbk
vk
ωk√

(m1
x − xk)2 + (m1

y − yk)2

atan2(m1
y − yk,m1

x − xk)√
(m2

x − xk)2 + (m2
y − yk)2

atan2(m2
y − yk,m2

x − xk)
...√

(mj
x − xk)2 + (mj

y − yk)2
atan2(mj

y − yk,mj
x − xk)



, (7.9)
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where atan2(y, x) corresponds to the function arg(x + iy) with 0 ≤ arg(x + iy) ≤ 2π.
As the IMU gives biased values of the turning rate and the acceleration, these will be
modelled in the measurement model. This is an extension of the measurement function
with the landmarks (both distance and direction) being added to the function h.

The covariance of the measurement noise will vary whether we’re standing still or not. If
we are standing still, the speed measurement will rely heavily on the measurement of the
odometers, and thus neglecting any measurements coming from the gyro. Vice versa if
we’re not standing still (the odometers are unreliable when turning because of slip).

7.2.3 Noise model

Since the laser sensor is new hardware in this project a noise model of will be developed
to increase the performance of the filter used. The noise model will be approximated as
Gaussian for the sake of filtering.

The variance was calculated by letting Balrog collect over 100 revolutions of data. The
surroundings was a rectangle shaped room of approximately 4x5m with a book shelf in
one of the corners. Mean length and mean standard deviance is displayed in Figure 7.5.

The model was chosen to focus on the length measurement noise and does not take into
account the uncertainty of the angle measured. The noise in the laser sensor’s length
measurements are assumed to be white and Gaussian with a mean of zero.
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Figure 7.5: Mean length and mean standard deviation as function of measured angle.

Figure 7.5 displays a small standard deviance and a relation between standard deviation
and length measured is visible. By the corners (at values of about 40, 150, 220, 320
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degrees) the uncertainty of measured length is higher. The angle uncertainty causes the
length to be measured in a small spectrum of true angles, an effect which in corners have
a greater impact because of the sharp variation.

The relation between variance and measured length is further investigated in Figures 7.6
and 7.7 where a linear regression and quadratic regression has been applied respectively.
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Figure 7.6: Linear regression of length/variance dependency.

The linear model in 7.6 is represented by the polynomial f(x) = p1 · x + p2 and has the
following parameters (with 95% confidence bounds):
p1 = 0.00893 (0.007888, 0.009972)
p2 = −12.73 (−14.99,−10.46)

The goodness of fit is
R-square: 0.2938
Adjusted R-square: 0.2928
RMSE: 4.939
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Figure 7.7: Quadratic regression of length/variance dependency.

The quadratic model in Figure 7.7 is instead represented by f(x) = q1 · x2 + q2 · x + q3
and has the following parameters (with 95% confidence bounds):
q1 = −1.531 · 10−7 (−3.35 · 10−6, 3.043 · 10−6)
q2 = 0.009618 (−0.004782, 0.02402)
q3 = −13.48 (−29.33, 2.378)

The goodness of fit is then
R-square: 0.2938
Adjusted R-square: 0.2917
RMSE: 4.943

As seen in Figures 7.6 and 7.7 there is no big difference between the two models when
inspecting the graphs and their fit to data. In fact, the value of R-square is the same
which indicates that the model in this case doesn’t improve when adding complexity to it.
When looking at the parameters it is clear that the parameter q1 does not contribute to the
quadratic model since the value is close to zero and the confidence interval contains zero.
The relation between the length measured and the standard deviation of measurement is
then considered to be linear.

7.2.4 Filter

As there are both linearities and non-linearities in both the motion function f and mea-
surement function h, a marginalized particle filter is implemented.
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Marginalized particle filter To implement the filter, the states are augmented as

zk =
(
(xnk)T (xlk)

T mT
k

)T
(7.10)

where xnk is the non-linear part of the state vector xk, xlk the linear part and mk the
landmarks (which are linear(ised)). The linear Gaussian parts will then be estimated
using a Kalman filter. See [31, eq. 7 p. 2] for a mathematical description.

Augmenting and spacing xk+1 in 7.5 and mk+1 in 7.1 as

zk+1 =



xk+1

yk+1

ψk+1

vk+1

ωk+1

ωbk+1

m1
k+1
...

mj
k+1


=



xk + Tvk cos(ψk)
yk + Tvk sin(ψk)

ψk + Tωk
0
0
0
0
...
0


+



0
0
0
vk
ωk
ωbk
0
...
0


+



0
0
0
0
0
0
m1
k

...

mj
k


+ wk (7.11)

for readability we get

xn
k =

xkyk
ψk


xl
k =

vkωk
ωbk


mk = mk

. (7.12)

To implement the particle filter, we restructure the combination of 7.11, 7.8 and 7.9 as
according to [31, p.2 eq.8]

xn
k+1 = fnk (xn

k) + An
k(x

n
k)x

l
k + Bn

k(x
n
k)v

n
k

xl
k+1 = f lk(x

n
k) + Al

k(x
n
k)x

l
k + Bl

k(x
n
k)v

l
k

mk+1 = mk

y1,k = h1,k(x
n
k) + Ck(x

n
k)x

l
k + e1,k

yj2,k = h2,k(x
n
k) + Cj,k(x

n
k)m

j
k + ej

2,k

, (7.13)

where j = 1, 2, . . . ,Mk are the known landmarks. To get the landmark measurements to
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fit this model, the measurements can be inverted as [32, p.280, eq.30] and thus getting

xn
k+1 =

xkyk
ψk

+

T cosψk 0 0
T sinψk 0 0

0 T 0

vkωk
ωbk

+ wn
k

xl
k+1 = 03x3 +

1 0 0
0 1 0
0 0 1

vkωk
ωbk

+ wl
k

mk+1 = mk

y1,k =


xk
yk
0
0
0

+


0 0 0
0 0 0
0 1 1
1 0 0
0 1 0


vkωk
ωbk

+ e1,k

yj2,k = −R(ψk)

(
xk
yk

)
+ R(ψk)m

j
k + e2,k

. (7.14)

To solve the MPF-SLAM problem, equation [31, algorithm 1 p.3] is used. As each particle
is independent from other particles, parallel programming allows full use of the CPU.
Most of the steps in marginalized particle filter are parallelised with help of OpenMP. The
section of code that is to be run in parallel is marked with a preprocessor directive(pragma)
that will cause new worker threads to spawn. This statement will also tell OpenMP how
shared variables will be treated. For example the private directive tells OpenMP a given
variable isn’t shared between threads even if they share the same context(curly brackets).
The firstprivate directive tells OpenMP to copy the given variable to the context
opposed to private that only allocates the memory but leaves the variable uninitiated.
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Invenire Periculosa
balrog-2014@googlegroups.com

Lips
Page 36



Autonomous mine sweeper - Balrog
LiTH

2014-12-11

Example on a OpenMP loop parallelisation of a Kalman filter measurement
update

1void MarginalizedParticleFilter :: kalmanFilterMeasurementUpdate(Eigen::

MatrixXd y_ktmp)

2{

3Eigen:: MatrixXd x_tmp = Eigen :: MatrixXd(nrStates ,1);

4Eigen:: MatrixXd htmp(nrMeasurements ,1);

5Eigen:: MatrixXd C_k_t = C_k.transpose ();

6

7#pragma omp parallel for firstprivate(x_tmp , htmp , y_ktmp)

8for(int i = 0; i < N; i++)

9{

10// Get the states

11x_tmp = xi_k.col(i);

12

13// Calculate current function values for the measurement model and

its jacobian

14measureModel.updateMeasureFunction(x_tmp , htmp);

15Eigen:: MatrixXd htmp2 = htmp;

16RemoveRows(htmp2 ,inactiveMeasurements);

17

18// Calculate innovation

19Eigen:: MatrixXd epsilon_k;

20epsilon_k = y_ktmp - htmp2;

21

22// Create a modified R_k matrix with removed columns and rows

23Eigen:: MatrixXd R_prim = R_k;

24RemoveRowsAndColumns(R_prim , inactiveMeasurements);

25

26// Calculate innovation covariance

27Eigen:: MatrixXd S_k;

28S_k = C_k*pi_k[i]* C_k_t + R_prim;

29

30// Calculate Kalman gain

31Eigen:: MatrixXd K_k;

32K_k = pi_k[i]* C_k_t*S_k.inverse ();

33

34// Calculate current state

35Eigen:: MatrixXd stateFeedback = K_k*epsilon_k;

36xlfi_k1.col(i) = xlfi_k.col(i) + stateFeedback;

37

38// Calculate current covariance

39Eigen:: MatrixXd covarianceFeedback = K_k*S_k*K_k.transpose ();

40pi_k1[i] = pi_k[i] - covarianceFeedback;

41}

42}

The pragma statement tells OpenMP to parallelise the loop and share the update steps
between the threads, each thread is given it’s own context(between the curly brackets)
together with the variables explicitly defined in the private and firstprivate directive. All
other variables is shared between the threads so extra caution have to be given so a
variable isn’t changed by multiple threads. The loop variable i is private for all threads
as this variable is used to split the work between threads. So thread one might update all
even indexes and thread two all odd. There are also extra directives such as scheduling,
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but we expect each update takes roughly the same time thus the scheduling only introduce
extra overhead. The number of threads spawned is automatically handled by OpenMP.
Note that Eigen has OpenMP parallelisation built in, this has to be disabled when using
OpenMP to parallelise Eigen calculations as we have done. OpenMP parallelisation is
only relevant for larger matrices so there isn’t any loss in our case.

To future optimise the calculations one possibility might be to use Intel’s Math Kernel
Library which will optimise the matrix calculations for every specific Intel processor.
Eigen has the ability to link against this library thus there isn’t any need to rewrite any
code.

It should be noted we did not have time to implement positioning with regards to the
laser scanner, but the skeleton from [31, p. 3, algorithm 1] is implemented as C++ code.
Time didn’t allow us to locate with regards to GPS-measurements. A code skeleton for
this sensor is included. A distribution of this sensor is included from previous year but is
not translated to our code standard.

The tuning parameters of this filter are the number of particles, the covariance matrix and
the measurement noise. The first two are tuned in MarginalizedParticleFilter.cpp

and the last is tuned in MeasureModelNbaa.cpp.

Issues and ways forward The filter is sensitive and will diverge if the matrices are not
tuned carefully. Part of the problem is the numerical issues of the covariance matrix. If
this gets too small, inverting results in nan (not a number). As for numerical stabilization,
we recommend implementing the square root algorithm for the Kalman steps. This should
improve the stability of the covariance matrix greatly taking both the eigenvalues and the
symmetry into account. Another improvement could be scaling the states or using a solver
instead of inverting a matrix.

We believe the filter will be more stable when more measurements are available. The
filter is heavily affected by drift now as there is no measurement correcting displacement
in position. This will handled mainly by the laser sensor, as detecting and associating
objects will give a measurement of the position and also by the GPS-sensor.

7.3 Mapping

This part is only theoretical and is not implemented on the balrog.

The mapping subsystem is responsible to create a map of the surroundings of Balrog. It
is also responsible to determine the probability that the whole area has been visited. Its
task is to map the search area and to identify and classify objects from the point cloud.

The subsystem takes state estimates of the position from the positioning subsystem and
information of detected obstacles from the obstacle detection subsystem as input. With
this information the subsystem will create a probability map and also a map of the search
area containing all obstacles.

7.3.1 Obstacle map

The obstacle map is an object containing information of were all detected obstacles are
positioned. This map is dynamic and will come to change when new information is added
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from the other subsystems.

The obstacles will be represented in a grid, with a resolution which is high enough. The
grid will contain information whether a specific cell is unsearched, free or occupied with
obstacle.

The grid will be updated when obstacles (lines) are discovered.

7.3.2 Probability map

The concept of the probability map is to give each square in the grid a probability that
the square has been explored. The path finding subsystem needs this map to determine if
a square needs to be revisited, that is whether the probability for the square having been
explored is too low. The probability that a square (i, j) has been explored is updated
accordingly to

p1:k(i, j) = 1− (1− pk(i, j))(1− p1:k−1(i, j))
pk(i, j) = p(|x− r(i, j)| < L)

(7.15)

where p1:k(i, j) is the probability that the square (i, j) has been explored up to time
update k, pk(i, j) is the probability that Balrog is sufficiently close to the center of the
square at the given time sample, pk(i, j) is the probability that the square was explored
up to the previous time sample and r(i, j) is the position of the center of square (i, j).
The probability density function is computed as

fX,Y (xpos) =
∑
i

πiδ(xpos − xi) (7.16)

The probability is updated for the squares (i, j) which are in the perimeter of Balrog and
is determined by the grid size. The probability is finally given by summing the weight of
each particle within a circle, with radius L, around each square center, described as

∑
k

Πk
1 :
∣∣xk − r (i, j)

∣∣ ≤ L (7.17)

This model assumes that the current position is independent of previous measurements
which is a false assumption, but will work as an approximation.
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8 Route Planning

The task of the route planning subsystem is to provide waypoints to the automatic control
subsystem. The provided waypoints ensures that the whole searchable area is explored
and mapped. The control subsystem marks waypoints as reached by signaling the route
planning. The active waypoint can be modified by the route planing subsystem as the
control subsystem will fetch the active waypoint each iteration in the control loop. All the
calculations like ObstacleInFront and FullyDiscovered will happen in the route planing
thread. The NewCellsDiscovered calculation will be done by checking if the discrete map
data structure have a changed time stamp since last time there was a discovery.

8.1 Search algorithm

The search algorithm is the same as last years with the exceptions of a finer grid system
as specified in [1] and a different obstacle following algorithm, see section 8.2.

The A*-algorithm is used to find the optimal path and it consists mainly of two parts.
The goal function calculate the cost from balrog current position to the goal and the value
is the euclidian distance between the two points. The path-cost function is determined
by several things. The cost depends on the previously path-cost, if Balrog has to make
turns, if cells are adjacent to obstacles and if a point is on a straight line between the
start and goal position. The optimal path is the one with lowest total cost.

When the robot is initiated there will not be any initial waypoints until the operator
inputs a search area. When this is done, a list of waypoints are generated so the whole
area can be explored. This will be accomplished by placing the waypoints in a zig-zag
pattern. Since the squares in the grid are smaller than Balrog, waypoints will be placed
with sufficiently intermediate spacing. See Figure 8.1. The flow is described below and
in Figure 8.2.

1. Obstacle in front? If yes go to Obstacle following mode (see Section 8.2), if no go
to 2.

2. Reached final way point? If yes, Balrog will revisit squares that are unlikely to have
been searched according to the probability map, see section 7.3.2, using the A*
algorithm and then stop at the final position. This will also set the route planning
in a mode waiting for new user interaction. If we have not reached the final waypoint
go to 1.
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B

Figure 8.1: Zig-zag search pattern. Green dots are waypoints, blue lines are reference
route for Balrog to follow
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Figure 8.2: Program flow of the route planning sub system
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Invenire Periculosa
balrog-2014@googlegroups.com

Lips
Page 42



Autonomous mine sweeper - Balrog
LiTH

2014-12-11

8.2 Obstacles

To navigate around the obstacles, the route planning system will create waypoints for
the automatic control system to follow. Waypoints are updated when the route planning
notes that there is a obstacle in front of the robot if the robot is in waypoint mode and
when new cell (parts of obstacles in their discrete form) is updated if we are in the obstacle
following mode.

In waypoint mode the route planing subsystem is sleeping waiting for obstacles to be in
front of the robot, then checks the gridded obstacle map if it has been updated. If so,
the route planing subsystem changes to Obstacle following mode. The system flow of the
Obstacle following mode is described below.

1. Generate waypoints to the closest undiscovered part of the obstacle by using the
A* algorithm. If multiple undiscovered points with the same straight line cost is
found, the A* algorithm is run multiple times. If there are no undiscovered cells
around the obstacle, generate a new path using A* algorithm to the original (the
initial goal before there was a obstacle in front of the robot) waypoint

2. Wait for new cells to be discovered. When new cells have been discovered go to 1

The grid have a greater resolution than previous year to make it possible to navigate
around the irregular obstacles smoothly. The A*-algorithm will take this into account
when calculating the path around an obstacle. If the a grid is smaller than 50cm, then a
penalty is added to grids adjacent to obstacles. Hence, the A*-algorithm will not choose
these grids in the path and the balrog will not collide with obstacles.

Note: If the grid size is smaller than 20 cm this will have to be taken into account and
the algorithm has to be modified. Adding penalty cost to more grids than just the ones
adjacent to obstacles.

The mapping subsystem in SLAM contains and generates the gridded map including
margins, see Section 7.3.1.
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9 Mine detection

The mine detection subsystem is responsible for detecting the mines surrounding Balrog.
The mines are represented as magnets and are detected using a magnetometer, which is
inside the IMU. The algorithms and implementation of the mine detection will not be
changed from last year’s project and will run in a separate thread. This means that a
mine is detected if the magnetometer is saturated, which occurs at 1.2 Gauss. This value
should be set in comparison to Earth’s magnetic field strength at 0.5 Gauss.

The mine is considered new if the distances between Balrog and already explored mines
are sufficiently large. If a new mine is detected, the position of the mine is set to the
estimated position of Balrog. Balrog is able to detect mines in a radius of approximately
0.5 meters and has no information regarding what direction from Balrogs view point the
mine is placed. Either we need to implement a search algorithm to estimate the position
better or use multiple magnetometers to triangulate the position. But as this is outside
the scope for this project, we have decided to leave the implementation used last year.
The mine detection is implemented, however it is not tested if it operates as desired.
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10 Automatic control

The controller part will be mostly unmodified from last year’s project [20]. The controller
will aim to go straight to the next waypoint, with help of the waypoint list created by the
route planner and the position and bearing estimate provided by the SLAM algorithm.
It will do so by trying to minimize the difference between the actual bearing ψk and the
bearing ψ∗k required to reach the next waypoint. A flow chart of the control algorithm
when close to a waypoint is shown in Figure 10.1 and described further in Section 10.1.
The variables used is shown in Table 10.2.

Figure 10.1: Flow of control algorithm.

10.1 Control equations

The controller consists of two parts, vk and vcorr. Here, vk is the desired speed and vcorr
is the PD controller according to

vcorr = Kεk +
Td
Ts

(εk − εk−1). (10.1)
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Table 10.2: Description of control variables.

Variable Description
xk,w x coordinate of next waypoint at time instant k (comes from route plan-

ner)
yk,w y coordinate of next waypoint at time instant k (comes from route plan-

ner)
xk x coordinate of estimated position of Balrog at time instant k (comes

from SLAM)
yk y coordinate of estimated position of Balrog at time instant k (comes

from SLAM)
ψk Estimated bearing at time instant k (comes from SLAM)
ψ∗k Bearing required to reach the waypoint from current position at time

instant k
εk Bearing error at time instant k
d Distance between Balrog and the next waypoint at time instant k
Vmax Maximum allowed speed
Vmin Minimal allowed speed
dlim The radius around a waypoint where Balrog moves slowly and more ac-

curate
dreached How close Balrog must be to a waypoint for it to be considered reached
εk,max Maximal allowed bearing error
K Proportional gain constant
Td Derivative time
Kd Derivative gain constant
α Scaling factor
vcorr PD controller
vk Desired speed
vl,k Speed of left tack
vr,k Speed of right track
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Figure 10.2: Angle error

The bearing error εk can be calculated as

∆xk = xk,w − xk,
∆yk = yk,w − yk,
d =

√
∆x2k + ∆y2k,

ψ∗k = atan2(∆xk,∆yk),
εk = ψ∗k − ψk,

(10.2)

and the connection between the variables can be seen in Figure 10.2. vk is given by

vk =


0 if εk ≥ εk,max,

min(Vmax

1.2
, Kdd+ Vmin) if d ≤ dlim and εk < εk,max or

α(Vmax − |Vcorr|) if d > dlim and εk < εk,max,

(10.3)

and as shown, calculated differently depending on how close to the waypoint the Balrog
is and how big the angle error is. α is a scaling factor that can be used to reduce the
speed.

In Figure 10.3 a flow chart for choosing vk is shown.

TSRT10
Marcus Bäck
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Figure 10.3: How to choose correct vk.

The speed for the left track, vl,k and right track vr,k is computed by subtracting vcorr from
the left track and adding it to the right, according to

vl,k = vk − vcorr
vr,k = vk + vcorr

(10.4)

with a rotation as a result. Notice that |vl,k| and |vr,k| must be in the range [Vmin, Vmax]
for Balrog to move at all.

A waypoint is considered reached if d < dreached. In that case the waypoint is removed
and the next waypoint is used instead.

10.2 Proposed values of constants

Table 10.3 lists last project’s references of constants and limits [20]. They have not been
validated but should be a good starting point.

Table 10.3: Table of constants and limits.

Constant Proposed value
Vmax 760 mm/s
Vmin 100 mm/s
dlim 1 m
dreached 0.3 m
εk,max 20o

α 1 (new this year)
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11 Further Development

Since Invenire Periculosa did not quite reach the goal of having a fully operational system,
this section describes what is left for completing the implementation, and our idea of how
the complete product should be assembled. The following subsections describe a problem,
what the current status is and (if we have an idea of implementation) what measures that
should be taken for fixing the problems. There are also some minor todo:s left in the
doxygen comments [16] that should be taken care of by the next group that develop the
Balrog further.

11.1 Interaction between route planner and waypoints

At the moment both the controller and route planner has access to the shared data
structure called waypoints. Waypoints holds waypoints that describes the route Balrog
is supposed to take. When the controller reaches a waypoint it removes it from the shared
waypoints structure.

When the route planner runs it sets a variable called waitForWaypoints in waypoints.
The route planner then rearranges the waypoints and assumes that nobody else reads or
writes to waypoints during this. In other words waitForWaypoints has the semantic
meaning of a mutex, but since it s a boolean this is not enforced. If the current structure
where the routeplanner ”locks” the waypoints structure it should be implemented using
a real mutex rather than a boolean flag.

Another way to see it is that waypoints always contains a list of active updated way-
points, when a new obstacle is detected, the routeplanner can remove all waypoints from
waypoints (since they are no longer valid). It then calculates new waypoints and add them
back to waypoints. This way there is no risk that other subsystems access waypoints

and retrieves invalid waypoints (since they will see an empty waypoints structure).

The route planner also adds waypoints from the back. The reason for this is that the
A*-algorithm needs to search down a node-tree to find the best path. Hence, it cannot
start placing waypoints before it has found the last node in the tree. It is also more
convenient to add items to the back of a vector instead of in the front.

11.2 Interactions between threads

All sharing of data between threads (subsystems) are currently implemented using shared
data structures and mutually exclusive locks. Some communication might benefit from
other constructs such as conditional variables or some message passing structure between
threads.

Currently there is no way for a thread to be notified if a change in a shared data structure
occurs, a message passing setup would eliminate the overhead of threads periodically
checking if the shared data structure has changed.
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11.3 Integration of basestation with new Balrog

Currently a very limited set of commands in the basestation are actually fully imple-
mented. See section 4 for a list of what is implemented. There is also a need for integrating
the new implementation to the GUI. At the moment the basics are roughly implemented
in the GUI. We recommend that next year’s project should focus on ”Extreme GUI
makeover”TM to create a simpler source code for the GUI so future implementations can
be more easily integrated.

11.4 Route planner

Currently the route planning subsystem and related thread is not executed in the main
file on the Balrog. The reason for this is that the Large loop is not fully implemented
and tested. In the file RoutePlanner.cpp ”@todos” are found which show what is needed
to implement to make the subsystem work. Since not everything is finished, an unit test
have to be made to check if everything work as intended. To fully understand how the
route planning works, check the flow chart in Figure 8.2. The route planning subsystem
operates mainly on the obstacle and probability map and is highly dependent on that
these maps are fairly accurate.

11.5 Mine detection

The mine detection is implemented and works theoretically. Due to lack of time, this
functionality has not been tested in practice with real mines (magnets). This should be
tested and evaluated to ensure good performance.

11.6 SLAM

Localization To locate we use three measurements: angular velocity from the IMU and
speed and turning rate from the odometers (corresponds to the last three equations in
7.8. A GPS measurement is ready to be used and is a mere calculation of the weight
to be implemented. The GPS isn’t accurate, so implementing this sensor wasn’t of high
priority when time was running out. It should be accurate enough to compensate long
time drift.

When the landmarks are associated the measurements from the laser sensor should help
cancelling the drift substantially. Computing well thought landmarks and extracting them
with a good algorithm takes time so a big focus should be put here (see 7.1 for ways to
do this).

Filter A marginalized particle filter has been implemented (see 7.2.4) to fuse the sensor
measurements. The part that is left is the landmark measurement update and estimation
[31, step 5 algorithm 1 p. 3]. A code snippet for [31, eq. 22-23 p.4] is written but untested
and unvalidated. Consideration has to be taken on how to model the landmarks. There are
also some numerical issues which should be taken care of. Again, see 7.2.4 for suggestions.
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Obstacle detection The algorithm implemented in 7.1.1 discovers edge points between
objects, but not from angles within the same region. To detect angles, a similar analysis to
the algorithm used in 7.1.1 can be used, but instead of checking to differences in distances
from the laser sensor, checking the derivate in the differences in the distances from the
laser sensor.

Landmark association Associating landmarks isn’t implemented and has to be done
from scratch. Ideas and algorithms on how this could be done can be found here.

The lines could be matched to each other using an ICP-algorithm. The ICP (Iterative
Closest Point)-algorithm compares a given point cloud (source) to a reference point cloud.
It finds the closest corresponding point between the two clouds, then it estimates a trans-
formation consisting of rotation and translation. This transformation is the one that
optimally aligns the points according to their mean square error. The source is then
transformed, and the procedure is iterated. The output is the transformation matrix. It
finds the closest points matching between model and data. Singular Value Decomposition
(SVD) is used to determine the optimal transformation.

There are two possible techniques, point-to-line and point-to-point matching.

To perform the point-to-point matching [33, Algorithm 1] could be implemented.

To perform point-to-line matching the algorithm needs two different laser scan rotations
at nearby times (model and data), together with an initial guess of the transformation
matrix describing the distortion. Lines are extracted by using RANSAC or split-and-
merge (see 7.1.1). A skeleton in pseudo code for this algorithm already exists in the
obstacle detection class. A version of the algorithm is described in [34, fig 5]. An
example of an implementation can also be found in [35].

The unmatched points are then used to create lines using RANSAC or split-and-merge
(see 7.1.1), RANSAC being already implented in our code.

Mapping The mapping part of SLAM is not implemented, section 7.3 describes how
this should be done.

11.7 Hand controller

The hand controller’s main purpose is to enable manual control of Balrog. However there
are several additional functions the hand controller could be equipped with to increase
the usability. Function that could be implemented in the hand controller are for instance:

• Set Balrog to automatic mode

• Set Balrog to manual mode

• Start search

• Stop Balrog (Emergency break)

• Reset search

• Set the origin to Balrog’s current GPS coordinates
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In addition to this, it could be interesting to make the hand controller vibrate when Balrog
locates a mine.
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Invenire Periculosa
balrog-2014@googlegroups.com

Lips
Page A

http://www.isy.liu.se/edu/projekt/tsrt10/2014/bandvagn/Documents/Requirement_specification_v1.0.pdf
http://www.isy.liu.se/edu/projekt/tsrt10/2014/bandvagn/Documents/Requirement_specification_v1.0.pdf
http://www.isy.liu.se/edu/projekt/tsrt10/2014/bandvagn/Documents/Requirement_specification_v1.0.pdf
https://gcc.gnu.org/onlinedocs/4.6.3/
https://gcc.gnu.org/onlinedocs/4.6.3/
http://releases.ubuntu.com/14.04/
http://releases.ubuntu.com/14.04/
http://qt-project.org/doc/qt-4.8/qmake-manual.html
http://qt-project.org/doc/qt-4.8/qmake-manual.html
http://www.cmake.org/
https://www.gnu.org/software/autoconf/
http://qt-project.org/downloads
http://git-scm.com/book/en/v1/Getting-Started
https://code.google.com/p/google-glog/
https://code.google.com/p/google-glog/
https://code.google.com/p/googletest/
https://code.google.com/p/googletest/
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://rplidar.robopeak.com/download.html
http://rplidar.robopeak.com/download.html
http://packages.ubuntu.com/trusty/build-essential
http://packages.ubuntu.com/trusty/build-essential
http://www.isy.liu.se/edu/projekt/tsrt10/2014/bandvagn/Documents/user_manual_v1.1.pdf
http://www.isy.liu.se/edu/projekt/tsrt10/2014/bandvagn/Documents/user_manual_v1.1.pdf
https://travis-ci.com/
http://www.isy.liu.se/edu/projekt/tsrt10/2014/bandvagn/doxygen/index.html
http://www.isy.liu.se/edu/projekt/tsrt10/2014/bandvagn/doxygen/index.html
http://www.schimmelnetz.de/projekte/iTU4l/usb.html
http://www.schimmelnetz.de/projekte/iTU4l/usb.html
http://hintshop.ludvig.co.nz/show/persistent-names-usb-serial-devices/
http://hintshop.ludvig.co.nz/show/persistent-names-usb-serial-devices/


Autonomous mine sweeper - Balrog
LiTH

2014-12-11

[19] Best way to set serial port speeds on boot? http://unix.stackexchange.com/

questions/91458/best-way-to-set-serial-port-speeds-on-boot.

[20] Emmeline Kemperyd. Teknisk Dokumentation Minröjningsbandvagn, December
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Appendices

A Coding standard

The goal of coding standards is to increase the business value of the code. The most
obvious (and indeed most important) way to do this is to make the code robust and
correct. Equally important, but more subtle goals include reducing coder friction and
maintainability.

The aim of this coding standard document is to keep it short and simple, therefore it
might not cover all possible situations. If an undocumented situation appears, bring it
up for discussion and add it to the standards!

Good code is

• Straightforward, not clever

• Understandable to somebody who has not seen the code before

• Consistent

• Well documented

General rules

• Eliminate duplicate code - Any code that is used twice must be refactored out
and put in a common class

• Choose great names for your classes, methods and variables - they should be self
descriptive rather than short

• Comment the what and why rather than the how, the code in itself should be
self explanatory, comments should not duplicate what the code says

• Declare variables in the most limited scope possible

• Prefer small and focused functions

• Prefer function overloading rather than default arguments

• Always include curly braces on conditional and loop statements

• Use explicit constructor

• No compiler errors or warnings from the final code

Namespace

• Wrap all classes and objects in the namespace Balrog

• Do not use using namespace anywhere, it pollutes the global space.

TSRT10
Marcus Bäck
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Header files

Header files ends in .h and is named after the class or data structure inside it, for example
ClassName.h and are placed in an include directory.

All header files must avoid header collision by wrapping the code in the header file

1#ifndef BALROG_CLASS_NAME_H

2#define BALROG_CLASS_NAME_H

3

4...

5

6#endif // BALROG_CLASS_NAME_H

Declaration order within a class

• Public before private,

• Methods before data members (variables), etc.

Class definitions must start with its public section, followed by its protected section and
then its private section. If any of these sections are empty, omit them.

Within each section, the declarations must be in the following order:

• Typedefs and Enums

• Constants (static const data members)

• Constructors

• Destructor

• Methods, including static methods

• Data members (except static const data members)

Source files

All source files ends with .cpp and are placed in a src directory.

Naming formats

• Classes: Camelcase, i.e. ClassName

• Abstract classes: Prefix classname with A, i.e. AClassName

• Interfaces: Prefix classname with I, i.e. IClassName

• Variables: Lower camel case, i.e. myVariable
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• Member functions: Lower camel case, i.e. myFunctionName()

• Constants: Upper case and underscores, i.e. I AM GLOBAL

• Getters and setters: Lower camel case with get/set prefix, i.e. getMyVariable

• Private variables: Postfix underscore, i.e. myPrivateMember

Initialize variables upon creation

1int i=10; // This is correct

2

3int i;

4i=10; // This is wrong

Use of const

• All member functions not altering the state of the object must be marked const

• All member variables that do not change during the lifetime of the object must be
marked const

• All method parameters not modified in the method must be marked const

Memory semantics

The use of pointers and references is sometimes error prone. Who is responsible of cleaning
up and freeing memory?

• Passing a pointer to an object or method means that this object is responsible for
cleaning it up

• Passing a reference means that the caller retains ownership

Inheritance

Classes should extend from at most one class that is not abstract or an interface. There
might be exceptions to this rule, but think carefully. Twice.

Globals

Never use globals. There might be exceptions to this rule, but think carefully. Twice.
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Comments

Comments are written in Doxygen javadoc style. All classes and methods MUST be doc-
umented. All high level comments are kept in the header files. Only short implementation
specific comments are in the cpp files.

Classes

Include at least a general description of the class and its purpose.

Methods

At least the purpose of the method along with input and output must be documented,
also include information about exception and error handling.

Automatically generated constructors and operators

Remove copy constructors and copy operators if they are automatically generated but
render unexpected behaviour. Always implement them if it makes sense.

Source format

• Use tabs, 2 spaces wide

• Namespaces do not add an extra line of indentation

• Line width: 80

Conditionals

1if(condition)

2{ // spaces inside parentheses - rare

3...

4}

5else

6{

7...

8}

Loops

1for(int i = 0; i < kSomeNumber; ++i)

2{

3printf("i");

4}
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