
TECHNICAL REPORT IC-PARC-04-02

Global Filtering for the Disjointness
Constraint on Fixed Cardinality Sets

Andrew Sadler and Carmen Gervet

IC-PARC
Centre for Planning and Resource Control
William Penney Laboratory
Imperial College London
London
SW7 2AZ

Global Filtering for the Disjointness Constraint
on Fixed Cardinality Sets

March 2004

Abstract

Finite set constraints represent a natural choice to model configuration de-
sign problems using set cardinality and disjointness, covering or partition con-
straints over (families of) set variables. Such constraints are available in most set-
based constraint languages, often in the form of n-ary decomposable constraints.
The corresponding filtering algorithms make use of local bound consistency tech-
niques. In this paper we show that when the set cardinality constraints are handled
together with the n-ary constraints, and set variable domains are specified by set
intervals, efficient global filtering algorithms can be derived. We consider the par-
ticular case of the n-ary disjoint constraintdisjoint([X1, . . . ,Xn], [c1, . . . ,cn])
for a family of pairwise disjoint setsXi of fixed cardinalityci . We present a set
of conditions and inference rules to infer Bounds Consistency (BC), together with
an efficient global filtering algorithm. We also explain why this level of pruning
cannot be achieved with a common FD formulation based on the alldiff constraint,
enriched with lexicographic ordering constraints; but is actually equivalent to a
dual FD representation based on the Generalized Cardinality Constraint.

1 Introduction and previous work

Finite set constraints solvers have been embedded in a growing number of CP lan-
guages such as Conjunto [7], Ilog Solver [11], MOZART [14], FaCiLe [2], CHOCO
[12] and shown their strengths in modelling configuration design problems such as
matching problems, and handling symmetries with a natural mathematical formulation
[6, 3]. Conjunto and its peers comprise the usual set operation symbols (∩,∪,\), the
set cardinality relation (| |) and the set inclusion relation (⊆). For practical modelling
reasons most languages provide a set ofn-ary constraints which are syntactic abstrac-
tions for a collection of respectively binary and ternary constraints. Set variables range
over set domains (sets of sets) specified by intervals whose lower and upper bounds
are known sets, ordered by set inclusion, e.g.X ∈ [{1},{1,2,3}]. The lower bound,
denotedglb(X), contains the definite elements of the set (1) while the upper bound
lub(X), contains in addition the potential elements (2,3). The constraint reasoning is
based on local bound consistency techniques extended to handle set constraints [8].

2

Previous studies in constraint programming have demonstrated the importance of
designing global filtering algorithms for specific classes of constraints. It has essen-
tially been the realm of Finite Domain (FD) constraints pioneered by [4] and [15]’s
work on thealldiff . We are not aware of any global filtering method for some Fi-
nite Set constraints, except some preliminary results in [17]. In this paper, we show that
when the set cardinality constraints are considered together with n-ary set constraints,
a global filtering can be enforced efficiently.

In this paper, we consider the particular case ofdisjoint([X1, . . . ,Xn], [c1, . . . ,cn])
, an n-ary set constraint of pairwise disjoint sets of fixed cardinalities. Fixed cardinal-
ity sets occur in most configuration design problems and thus cover a large class of
practical problems. However, when the set cardinality is known, the global disjoint
constraint can be formulated by an equivalent FD model: i.e. whereci FD variables
are created to represent each set, with domain the l.u.b. of the corresponding set, and
the alldiff constraint is applied to all variables. Symmetries may be removed by
having a lexicographic ordering constraint between variables representing one set. For
example the constraint system over sets:

X in [{},{1,2,3,4}], Y in [{}, {1,3,4}]
disjoint([X,Y], [2,2])

can be modeled as:

X1,X2 in [1,2,3,4], Y1,Y2 in [1,3,4]
alldiff([X1,X2,Y1,Y2]), X1 < X2, Y1 < Y2

While both models are semantically equivalent, more pruning can be achieved with
the set model than its FD counterpart. The key lies in an inference rule, which we
define, that detects when an elementmustbelong to a specific set (e.g. in the above
example, 2 must belong toX). The FD model can not enforce this addition because
there exist solutions with 2 assigned either toX1 (i.e.X = {2,3} or X = {2,4}) or toX2
(i.e. X = {1,2}). The FD model introduces a disjunction which is not resolved by the
ordering constraints (meant to remove symmetries). The strengths of the set model and
global filtering we propose, come from the fact that 1) we can address the disjointness
together with the set cardinality constraints in a deterministic manner to infer BC, 2)
we do so at a computational cost similar to thealldiff filtering method [15].

Our contribution lies in the definition of a global satisfiability condition and two
inference rules, and the proof that they are necessary and sufficient to ensure satis-
fiability and BC for thedisjoint([X1, . . . ,Xn], [c1, . . . ,cn]) constraint over sets of
fixed cardinalities. While implementing the inference rules as such would lead to an
exponential time complexity, we show how the proof procedure can be turned into an
efficient global filtering algorithm which detects satisfiability and infers BC in polyno-
mial O(ncv

√
nc) time, wherev is the size of the union of the set domains upper bounds

andc is the largest cardinality. The proof exploits Hall’s theorem and the application
of packing numbers to partially known sets (specified by set intervals).

We finally show how our algorithm compares with the GCC GAC algorithm[16],
when considering a dual FD representation of the disjoint constraint based on the Gen-
eralized Cardinality Constraint. This dual model holds because of the injective map-
ping between the elements and the sets (each element belongs to atmost 1 set).

3

2 Background

A fair amount of research has been devoted in configuration design to derive counting
functions that determine the maximum number of sets, with a given cardinality, allowed
in a known superset under some constraints [5]. The configurations are referred to
as t-designswhere instances are solutions topartition andatmost constraints
“any two sets have atmost one element in common” (e.g. Steiner triple systems), or
t-packingswhere instances are solutions todisjoint anddistinct constraints
over a family of unknown or partially known sets. The counting functions can be used
successfullyto perform some global reasoning if they can be applied to partially known
sets. We use a counting function that derives thepacking numberwhich (we show) can
be applied when using set intervals to specify partially known sets.

To simplify the proof and discussion we assume from here on that all sets have the
same fixed cardinalityc which we denotedisjoint([X1, . . . ,Xn],c) . This greatly
simplifies the reasoning of the proof without affecting the ability of the algorithm to
work on the original constraint. Indeed any arbitrarydisjoint([X1, . . . ,Xn], [c1, . . . ,cn])
constraint can be transformed into adisjoint([X1, . . . ,Xn],c) constraint. We do so
by simply padding the g.l.b.s of smaller set variables with new and distinct elements
until all sets have the same cardinalityc. The two constraints clearly have exactly the
same solutions modulo the added elements.

2.1 Global disjointness and packing number

Thedisjoint([X1, . . . ,Xn],c) constraint requires any two of the set variables to be
pairwise disjoint and of cardinalityc. A solution to this constraint can be expressed as
a t-packing.

Definition 1 A t− (v,c,λ) packing, or t-packing, is a collection of distinct subsets
(blocks) of a ground set A, where:

• Each block has c elements

• A has v elements, and is called thebase set

• Any set of t elements of A appears in atmostλ blocks

• we have0 < t ≤ c < v,andλ > 0.

A family of disjoint sets of same cardinalityc, subsets of a known setA of sizev,
forms a 1− (v,c,1) packing, since every single element inA should appear in atmost
1 set. This also holds for partially defined sets, whereA is defined as the union of the
set domains l.u.b.’s. Thus we define all solutions to thedisjoint([X1, . . . ,Xn],c)
constraint to be 1− (v,c,1) packings where:

1) A =
⋃

i:1...n lub(Xi) 2) |A|= v
3) ∀i:1...n|Xi |= c 4) 1≤ c < v

For a givent − (v,c,λ) packing, thepacking numberdetermines the maximum
number of sets that can exist in the packing. This number is not known or easily

4

derivable forall t-packings. However, it has been derived for some combinations of
parameters and also many bounds are known. For the disjointness constraint, the pack-
ing number is known and defines the maximum number of disjoint sets of sizec that
we can build from av-element superset. We have:

Definition 2 The packing number of a1− (v,c,1) packing isb v
cc.

It is worth noting that when the packing number (for disjoint sets) is exactlyv
c (ie when

n = v
c), we have a partition since all sets are disjoint and each element of the base set

will belong to exactly one set. This remark is core to our inference rules.

2.2 Hall’s theorem [9]

Let us now recall Hall’s theorem since we will make use of it in our proof of satis-
fiability and BC. Given a collection of subsetsX1, . . . ,Xn of a v-set A, a System of
Distinct Representatives (SDR) forX1, . . . ,Xn is a family{e1, . . . ,en} of elements ofA
satisfying the conditions

1) ei ∈ Xi for i = 1. . .n 2) ei 6= ej for i 6= j

The first condition asserts that the elements are representatives of the sets, and the
second that they are distinct.

Hall’s theorem says that a family of finite sets has an SDRiff the union of anyk
of the sets contains at leastk distinct elements. Hall proved that this condition is also
sufficient for the existence of an SDR.

For example, the sets{1,3},{2,4},{1,4},{2,5} possess an SDR since we can se-
lect the family{3,2,1,5} to represent respectively each of the four sets. However, the
sets{1,3},{2,4},{1,4},{1,2},{2,3} do not have an SDR since the five sets have only
4 distinct elements in their union, which is not enough to represent 5 sets.

Notations To simplify the coming discussion we introduce the following conven-
tions. We useS to denote{X1, . . . ,Xn} (all the variables involved in the constraint).
Subsets of the problem variables (when required) will be referred to asU or R. A solu-
tion to a constraint is an assignment of values to variables such that the constraint is sat-
isfied. We denote a solution by the mappingsol : S 7→P(A) whereA =

⋃
X∈Slub(X).

3 Satisfiability

To achieve BC for thedisjoint(S,c) constraint, there must be at least one solu-
tion to the constraint (both theoretically and algorithmically). This section gives nec-
essary and sufficient conditions to determine satisfiability for thedisjoint(S,c)
constraint.

The disjoint(S,c) constraint is set within a finite set constraint system, and
thus prior to satisfiability, the set domain constraints and associated set cardinality
constraints must be locally consistent. We recall such notions, together with the local
satisfiability condition fordisjoint(S,c) , denotedSAT-0 .

5

3.1 Local consistency[8]

The local consistency notions for the basic set domain and cardinality constraints are:

a. X ∈ [glb(X), lub(X)]⇔ glb(X)⊆ X ⊆ lub(X)
b. |glb(X)| ≤ |X| ≤ |lub(X)|

SAT-0 applies to a familySof pairwise disjoint sets. It ensures that definite elements
of a set (in the g.l.b.) are not available to any other set (not in the l.u.b.).

∀X,Y ∈ S,

{
X ⊆ (lub(X)\glb(Y))
Y ⊆ (lub(Y)\glb(X))

The constraintdisjoint(S,c) is locally consistentiff the local consistency no-
tionsa. andb. hold together withSAT-0 .

Consider the system of constraints:

X in [{1},{1,2,3,4,5}], Y in [{2},{1,2,3}],
Z in [{3},{3,4,5}], disjoint({X,Y,Z},2).

Applying SAT-0 prunes 1 and 3 fromlub(Y). This leads to a failure sinceY is forced
to contain only the element 2 (the local consistency notion b. is not satisfied).

3.2 SDR anddisjoint(S,1)

It is hopefully clear that from an SDR{e1 · · ·en} for the family of setslub(X1) · · · lub(Xn)
we can construct a solution to adisjoint({X1, . . . ,Xn},1) constraint provided the
g.l.b. for all variables is empty. And vice-versa.

This statement does not generalize to sets of arbitrary cardinalityc, nor to set vari-
ables with non-empty g.l.b.s. The following global satisfiability condition,SAT-1 ,
addresses these points.

3.3 SAT-1

SAT-1 exploits the packing number and the fact that any subset of a family of disjoint
sets is also a family of disjoint sets. Given a familySof pairwise disjoint sets of sizec,
SAT-1 states that foranycollection of setsU : U ⊆ S, the packing number associated
with the base setA (union of the upper bounds) must be greater than the size ofU :

∀U ⊆ S, A =
⋃

X∈U

lub(X),
|A|
c
≥ |U |

Consider the system of constraints:

X in [{},{1,2,3,4}], Y in [{},{1,2,4,5}],
Z in [{},{1,3,5}], disjoint({X,Y,Z},2).

SAT-1 holds for all families of sets except one. For the family{X,Y,Z} we have:
A = {1,2,3,4,5}, |A|= 5 and5

2 < 3, so the system is unsatisfiable.

6

Theorem 1 The constraintdisjoint(S,c) , locally consistent in a finite set con-
straint system, is satisfiableiff SAT-1 holds.

Proof⇒Clearly if the constraint is satisfiable then we can buildn disjoint sets of sizec.
Thus∀U ⊆Swe have|A=

⋃
X∈U lub(X)| ≥ |

⋃
X∈U sol(X)|, and also|

⋃
X∈U sol(X)|=

|U | ∗ c since the setssol(X) are all disjoint of sizec. By transitivity we have|A| ≥
|U | ∗c, thusSAT-1 holds.

⇐ Now let us assume thatSAT-1 holds. We will show that it is always possi-
ble to construct a solution satisfying the constraint. We do so by reducing the initial
constraint to an equivalent disjoint constraint overS′ composed of new set variables
of cardinality 1 with empty g.l.b.s and showing that Hall’s theorem can be applied to
these l.u.b.s, to give a solution.

We generate for each setXi ∈ S, c set variablesYi j ∈ [/0, l i j] of cardinality 1, such
that there is one new set for each element inglb(Xi) and the remaining new sets have
the same l.u.b. asXi . We have:

l i j =
{
{x j}, j th element ofglb(Xi)
lub(Xi) otherwise

We will now show that∀U ′ ⊆ S′
(
|A′| ≥ |U ′|

)
whereA′ =

⋃
Yi j∈U ′ lub(Yi j), and hence

by Hall’s theorem that a solution exists. To count the elements inA′ for an arbitrary
subset of variablesU ′, we partitionU ′ into two disjoint setsU ′′ andR′′, and count the
elements in each set separately.

We defineU ′′ as the set of allYi j ∈U ′ created fromglb(Xi) for which there is no
otherYi j ′ ∈U ′ created fromlub(Xi).

FromSAT-0 , the absence of any corresponding upperbound sets and the fact that
the sets are all singletons we get the following equality.|A′|= |U ′′|+ |

⋃
Yi j∈R′′ lub(Yi j)|

Combine this with the following equality based on the definition ofU ′′ andR′′.

|U ′′|= |U ′|− |R′′| to get|A′|= |U ′|+
(
|
⋃

Yi j∈R′′ lub(Yi j)|− |R′′|
)

Now if we can show|
⋃

Yi j∈R′′ lub(Yi j)| ≥ |R′′| then we can conclude that|A′| ≥ |U ′|.
DefineR′ = {Xi Yi j ∈R′′} to be the projection of the variablesR′′ back to the origi-

nal problem variables. By definition ofR′′, we have that
⋃

Yi j∈R′′ lub(Yi j)=
⋃

Xi∈R′ lub(Xi).

HenceSAT-1 gives us that|
⋃

Yi j∈R′′ lub(Yi j)| ≥ c∗ |R′|. Finally, the construction ofS′

(and consequentlyR′′) ensures thatc∗ |R′| ≥ |R′′|. By transitivity of≥ we have shown
|
⋃

Yi j∈R′′ lub(Yi j)| ≥ |R′′|. �

4 BC rules

We now define two global inference rules allowing for the necessary pruning to infer
BC for thedisjoint (S,c) constraint.

Let us recall the definition of BC for our constraint domain[20]. In general terms, a
n-ary FD constraint is BC, if and only if any assignment from a variable’s domain can
be extended to a solution [13]. For finite set constraint systems this corresponds to the
following definition:

7

Definition 3 An n-ary set constraint is BCiff :

1. any element in the l.u.b. of a set variable appears in that set in at least one
solution,

2. any element which appears in the same set in all solutions must be part of the
g.l.b. of that set.

4.1 IR-2

IR-2 allows us to prune elements from the l.u.b. The inference rule says that when a
family of sets,U subset ofS forms a partition of a base setA, all the elements in the
base setA become unavailable to all setsY outsideU (since they m

¯
ust be covered by

one set inU). We define the partition condition for anyU ⊆ Sas follows:

partition(U,A,c)⇔ A =
⋃

X∈U

lub(U), |A|= |U | ∗c

and stateIR-2 to be

∀U ⊆ S,partition(U,A,c)⇒∀Y ∈ S\U, X∩A = /0

Consider the system of constraints:

[X,Y] in [{},{1,2,3,4}],
Z in [{},{3,4,5,6}], disjoint({X,Y,Z},2).

Applying IR-2 for the different families of sets we see thatU = {X,Y} forms a parti-
tion of the base setA = {1,2,3,4} (since|A|= |U | ∗2). Thus all the elements must be
covered byX andY, implying that they should be removed fromZ. This leads to the
final system of constraints:

[X,Y] in [{},{1,2,3,4}], Z = {5,6},
disjoint({X,Y,Z},2).

4.2 IR-3

IR-3 also makes use of the partition condition together with an additional condition
to add elements to g.l.b., that is elements that should be part of all solutions.

The basic idea is that if a subsetU of S forms a partition of a base setA, and there
are elementseof A that occur in only one l.u.b. then such elements should be added to
the corresponding g.l.b., since they must belong to the partition and can not belong to
any other set. This is independent of whether such elements belong to l.u.b. outside the
partition or not.

∀U ⊆ S, partition(U,A,c),

∃e∈ A,∃!X ∈U |e∈ lub(X)⇒ e∈ X

Consider a slight change to the previous example:

X in [{},{1,2,3,4}], Y in [{},{1,2,3}],
Z in [{},{3,4,5,6,7}], disjoint({X,Y,Z},2).

8

The setU = {X,Y} still forms a partition of the base setA = {1,2,3,4} (since|A| =
|U | ∗ 2), but 4 occurs only inlub(X). Thus applyingIR-3 leads to adding 4 to X:
X ∈ [{4},{1,2,3,4}]. The system of constraints at fixed point is:

X in [{4},{1,2,3,4}], Y in [{},{1,2,3}],
Z in [{},{5,6,7}], disjoint({X,Y,Z},2).

5 Prelude to BC

In the following section we prove thatIR-2 andIR-3 are necessary and sufficient to
ensure BC for the global constraintdisjoint(S,c) . In order to prove BC we make
use of aswap graphstructure. Despite being defined in terms of the constraint and a
singlesolution,all solutions are contained within and can be generated from it.

Definition 4 Given a constraint C= disjoint(S,c) and a solutionsol to C. We
define A=

⋃
X∈Slub(X), B = A\

⋃
X∈Sglb(X) and D= A\

⋃
X∈Ssol(X). Let α be a

new set variable in[/0,B]. We extendsol for α with sol(α) = D. Theswap graph
SG(C,sol) is the directed labeled graph

• whose node set is S∪{α}

• with edges X
e7→Y where e= sol(X)∩ lub(Y) and e6= /0

It follows that, for a given swap graphSG(C,sol) we have:

glb(X) = elements which appear on the self-edge only (not on any other outgoing
edge)

lub(X) = union of all labels in incoming edges (which terminate atX)

sol(X) = label on the self-edge.

Definition 5 An edge X
e7→Y is validiff there is a solution with at least one element of

e appearing insol(Y).

Theorem 2 If an edge X
e7→ Y is in a cycle, there exists a solution with at least one

element from e appearing insol(Y) (equiv. the edge isvalid).
Proof Follows directly from the fact that a cycle can be seen as a permutation acting
on the current solution to produce a new solution. An edge in a cycle allows for the
rearrangement of the elements fromX toY where none are lost, added or changed (i.e.
permutation). �

Theorem 3 An edge is validiff there is a cycle involving the edge.
Proof⇒ Suppose the edge is valid (i.e. there is a solutionsol′ such that an element
e1 ∈ eappears insol′(Y)). sol′ can be described as a permutation ofsol (since every
solution can be described as a permutation of every other solution). Furthermore since
any permutation can be expressed as a number of simple cycle permutations (see [5])

9

X {1,4}

Y

{1}

α

{1}

{2,3}

{2,3}

{2,3}

Z {5,6}

{5,6} {7}

{7}

Figure 1: Theswap graphof the previous example constraint for the solutionsol(X) =
{1,4}, sol(Y) = {2,3}, sol(Z) = {5,6}.

of the form mentioned above, the permutation mappingsol to sol′ must contain a
cycle with an edge fromX to Y labeled withe1.

⇐ Theorem2 �

Theorem 4 A collection of nodes U⊆ S is unreachable from the rest of the graphiff
U forms a partition of the base set A=

⋃
X∈U lub(X).

Proof Split the nodesS into two setsU andU ′ whereU is unreachable fromU ′. There
can be no edges originating inU ′ and terminating inU , hence all edges which ter-
minate inU must also originate inU . This tells us thatA, the union of all upper-
bounds (A =

⋃
X∈U lub(X)) is equal to the union of the solution values appearing in

the sets (A =
⋃

X∈U sol(X)). By definition |
⋃

X∈U sol(X)| = |U | ∗ c, and so we have
partition(U,A,c) . Similarly any solution to a problem containing a partition
must assign all upperbound elements of the partitionU to the sets inU and hence the
graph would have no incoming arcs from other nodes. �

Corollary 1 The collection of all nodes which are unreachable fromα represents a
partition. This follows as a special case of theorem 4.

Theorem 5 Within a minimal partition (one containing no sub-partitions) there is al-
ways a path from any node to any other node.
Proof Consider a minimal partitionP of the nodesS. Now splitP into two non-empty,
mutually disconnected subsetsU andU ′. By theorem 4 bothU andU ′ must be parti-
tions, but sinceP is a minimal partition this cannot happen. Thus we can conclude that
there can be no mutually disconnected subsets ofP, equivalently there is always a path
between any two nodes. �

10

Corollary 2 Minimal partitions are strongly connected components (SCCs) which are
unreachable fromα. This follows directly from corollary 1 and theorem 5.

6 Key theorem and proof of BC

Theorem 6 A satisfiabledisjoint(S,c) constraint is BCiff IR-2 andIR-3 hold.

The proof is in two parts following our definition of BC for finite set constraint
systems.

The first condition of BC says that for all sets, “any element in the l.u.b. of a set
variable appears in that set in at least one solution”. This is equivalent to saying that
all edges inSG(C,sol) are valid. We now prove that the elements excluded byIR-2
correspond exactly to the invalid edges in the swap graph.
Proof part 1

1. IR-2 seeks all partitionsU and removes elements, covered byU , from l.u.b’s of
sets outsideU . This corresponds to all the elements on edges leaving a partition,
X

e7→Y,X ∈U,Y /∈U .

2. By theorem 4, for all sets of nodesU in SGsuch thatU forms a partition, there
can be no edges enteringU . Thus leaving edges fromU can not be part of any
cycle and are thus invalid (theorem 3).

3. Edges within a partition are necessarily within a minimal partition and by corol-
lary 2 within an SCC, thus in a cycle. By corollary 3 those edges are valid.
ConsequentlyIR-2 removesexactlyall the invalid edges.

The second condition of BC says that for all sets, “any element which appears in
the same set in all solutions must be part of the g.l.b. of that set”.

part 2 We prove that the preconditions ofIR-3 (X belongs to a partition ande
occurs uniquely inlub(X) within the partition) holdiff the elementeappears in the set
X in all solutions (and hence must be added to the g.l.b.).

We do this by splitting the graph into the sub-graphU containing nodes reachable
from α and the sub-graph of nodes which are unreachable.

If X ∈U , theorem 4 tells us thatX is not in a partition (sinceU contains no parti-
tions) and theorem 2 tells us that there is a solution wheree does not appear in any set
in U .

If X /∈ U then by theorem 4,X is in a partition and hencee must appear in one
of the sets in the partition. Now consider thate occurs uniquely inlub(X) within the
partition, clearlyemust appear inX in all solutions, henceIR-3 is necessary. To show
that it is complete, consider the case where there is another setY in the partition s.t.
e∈ lub(Y). By theorem 5 there is a cycle involving the edge, hence by theorem 2 there
is another solution which assignse to Y, henceIR-3 is sufficient. �

11

7 Algorithm

The algorithm works by first creating and then maintaining aswap graphstructure.
In order to create a swap graph we require an initial solution. To ensure satisfiability
(which is equivalent to applyingSAT-1) we explicitly maintain and update a solution.

To find an initial solution, the problem is decomposed, as per the proof of satis-
fiability into a search for an SDR cast as a bipartite matching problem. The bipar-
tite graph will haven∗ c variable nodes,O(v) value nodes andO(n∗ c∗ v) edges.
We use the maximal matching algorithm of Hopcroft and Karp [10] which runs in
O(|edges|

√
|variable nodes|)≡O(ncv

√
nc) time.

Once we have a solution we build a swap graph from the bipartite graph (containing
the matching) in timeO(n2c) by the algorithm below. The swap graph is stored as an
adjacency matrix.

funct MakeSwapGraph(bipartitegraph,matching)
for i = 1 to n do

for l = 1 to c do
val←− value assigned to variablei + l
for j = 1 to n do

if variable j is reachable fromval
then addval to the edge fromi to j

To achieve BC we compute all SCCs which do not containα (equiv. minimal par-
titions) using Tarjan’s[19] algorithm which runs inO(|edges|+ |nodes|) ≡ O(n2 + n)
time and a breadth first search fromα which runs inO(n2) time. Any edges leaving an
SCC are removed (in constant time each) and the l.u.b. of the corresponding variable
pruned, as perIR-2 . Any singleton elements in an SCC are added to the associated
g.l.b. as perIR-3 again inO(n2c). This procedure we callSCCPruning.

begin
bi←−MakeBipartiteGraph(Sets)
matching←−MaximalMatching(bi,Sets)
sg←−MakeSwapGraph(bi,matching)
SCCPruning(sg)

end

The overall time complexity of this algorithm is thenO(ncv+ ncv
√

nc+ n2c+ n2c).
With the simplifying assumption that the number of elements is always larger than
the number of sets (ie.v≥ n and henceO(n2c) ≡ O(ncv)), we have a complexity of
O(ncv

√
nc).

7.1 Incremental updates

Having achieved a state of BC, we can do better than repeat the above algorithm should
the domains of our variables change. We can incrementally update our swap graph
structure inO(n2v) time for single element domain changes (thus ensuring satisfiabil-
ity) and re-run theSCCPruningprocedure to re-establish BC. The updates are achieved

12

by finding cycles like those used in the proof of BC, and modifying the graph according
to the permutation of the solution which the cycle represents.

8 Models and complexity comparison

Though the discussion focuses on all sets having the same fixed cardinalityc, our
algorithm works unaltered when each set has different (but still fixed) cardinality.

As mentioned earlier in the paper, it is possible to model thedisjoint(S,c)
constraint using FD variables constrained to be different. Assuming such analldiff
constraint is solved using the global filtering algorithm [15] and any intra-set ordering
constraints are solved using standard arc or bound consistency.

1) Both algorithms detect failure in the initial problem with the same time com-
plexity since they use the same bipartite graph modelling.

2) While the two algorithms are similar in time complexity, it is impossible with
the FD model to guarantee BC, as we illustrated in the introduction, since addition of
an element to the g.l.b. of a set variable as part of pruning, can only be approximated
in the FD model.

However, we can model the problem in another way, by having a FD variable cor-
responding to every element of the base set where the value assigned to the variable
indicates the set in which this variable occurs. Using such a model, we can constrain
the number of times a given value (set identifier) appears in the list of variables (set
elements) to be the cardinality of the set. The Global Cardinality Constraint (GCC) of
[16] can be used to enforce GAC on the FD model which corresponds to BC on the
set model. Consider a disjointness constraint on the family of sets{S1,..,Sn} of fixed
cardinalityc. Let A =

⋃
i Si and|A| = m. A dual finite domain representation is such

that:

1. We havem FD variables:∀ j ∈ A,Xj ∈ D = {1, ..,n}.

2. For eachi ∈ D the number of timesi can be assigned to differentXj is c = |Si |.

3. The solution equivalence between the two models is:

Xj = i iff j ∈ Si

The network flow model which forms the basis of the GCC constraint works be-
cause there is an injective mapping between the elements and sets (as thealldiff
constraint has an injective mapping between variables and values). In the more general
case oft− (v,k,λ) packing problems there are no injective mappings, instead there are
surjective mappings. In our work, were unable to construct network flow models for
these surjective problems and so derived our combinatorial counting arguments. We
believe that recent results in combinatorial theory, in particular the generalisation of
Hall’s theorem to arbitrary hypergraphs[1] may lead to proof schemes for these more
general cases which can in turn be converted to effiecient algorithms.

13

9 Acknowledgements

A shorter version of this paper was submitted to AAAI-04. The authors would like to
thank one reviewer in particular for his thorough review and comparison with the GCC
algorithm.

10 Conclusion and future work

This paper showed that it is possible to efficiently enforce global consistency on n-
ary set constraints. While Hall’s theorem forms the theoretical basis for important
global FD constraints, we showed that it can be extended to n-ary set constraints using
packing numbers. We described a global filtering approach to detect satisfiability and
ensure BC for thedisjoint([X1, . . . ,Xn], [c1, . . . ,cn]) constraint. From our global
satisfiability condition, inference rules and proof, we gave an efficient polynomial time
algorithm to achieve and incrementally maintain BC, which is not be possible using
the most obvious FD formulation, though is possible for the dual model using the GCC
constraint.

We implemented the constraint in the ECLiPSe system, building on theic_sets
library [18]. Preliminary experimental results indicate that the algorithm performs well
compared to local propagation and demonstrates the expected benefits of maintaining a
level of consistency which is independent of the search strategy. Future work comprises
further experimental studies including a combination of global constraints with sym-
metry breaking for problems modelled with sets. We are also interested in identifying
which level of consistency can be achieved when dealing with bounded cardinalities
and a generalization of the inference rules to anyt− (v,c,λ) packing problem.

References

[1] Ron Aharoni and Penny Haxell. Hall’s theorem for hypergraphs.Journal of
Graph Theory, 35(2):83–85, 2000.

[2] N. Barnier and P. Brisset. Facile : A functional constraint library. InCI-
CLOPS’01, 2001.

[3] N. Barnier and P. Brisset. Solving the Kirkman’s Schoolgirl Problem in a Few
Seconds. InProc. CP-02, 2002.

[4] N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP. In
Elsevier Science, editor,Mathematical Computation Modelling, volume 20(12).
1994.

[5] C. Berge.Principle of combinatorics. Academic Press, 1971.

[6] Torsten Fahle, Stefan Schamberger, and Meinholf Sellman. Symmetry breaking.
In Proc. CP-01, pages 93–107, 2001.

14

[7] Carmen Gervet. Conjunto: constraint logic programming with finite set domains.
In Proc. ILPS-94, 1994.

[8] Carmen Gervet. Interval Propagation to Reason about Sets: Definition and Im-
plementation of a Practical Language.CONSTRAINTS journal, 1(3):191–244,
1997.

[9] P. Hall. On Representatives of Subsets.J. of London Math. Soc., 10:26–30, 1935.

[10] J E Hopcroft and R M Karp. Ann5/2 algorithm for maximum matchings in
bipartite graphs.SIAM Journal on Computing, 2(4), 1973.

[11] ILOG Inc. ILOG Solver, User Manual, 1997.

[12] Francois Laburthe. Choco: implementing a cp kernel. http://www.choco-
constraints.net/, September 2000. In TRICS CP-00.

[13] A. Mackworth. On reading sketch maps. InIJCAI’77, pages 598–606, 1977.

[14] Tobias M̈uller. Solving set partitioning problems with constraint programming.
In Proc. PAPPACT’98, March 1998.

[15] Jean-Charles Regin. A filtering algorithm for constraints of difference in csps. In
Proc. AAAI-94, 1994.

[16] Jean-Charles Regin. Generalized arc consistency for global cardinality constraint.
In Proc. AAAI-96, 1996.

[17] Andrew Sadler and Carmen Gervet. Global reasoning on sets. InFORMUL’01
worshop in conjunction with CP-01, 2001.

[18] Joachim Schimpf, Andrew M Cheadle, Warwick Harvey, Andrew Sadler, Kish
Shen, and Mark Wallace. ECLiPSe. Technical Report 03-1, IC-Parc, Imperial
College London, 2003.

[19] R E Tarjan. Depth-first search and linear graph algorithms.SIAM Journal on
Computing, 1(2):146–160, 1972.

[20] Toby Walsh. Consistency and propagation with multiset constraints: A formal
viewpoint. InProc. CP-2003, 2003.

15

