

INTRODUCTION TO THE STK500
A N I N TR O DU CT I O N TO PR O GR A M M I N G AV R M I C R O CO N TR O L L E R S US I N G TH E S TK 5 0 0

DE V E LO P M E N T B OA R D

SEAN ELLIS
DEC 2001

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
1

TABLE OF CONTENTS
Introduction ...2
Installing AVRstudio and avr-gcc ..2
The STK500 Package..4
Setting Up The STK500...9
Installing AVR Studio ...10
Creating a Project...13
Assembling a Program...16
Running the Program...20

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
2

Introduction

Assumptions
A certain amount of knowledge is assumed, including the ability to launch
programs, navigate the Windows file system, to create folders, and to copy files
from one folder to another. A basic knowledge of PC hardware is also required,
sufficient to connect a cable to a free serial ("COM") port.

Installing AVRstudio and avr-gcc
This page gets us familiar with the STK500 package contents.

What's In The Box?
The first thing to do is to unpack the items from the box, onto a clean, flat work
area.

As you open the box, on top is a list of the contents, which may differ slightly
from those listed here. For example, some distributors may include an additional
sample microcontroller.

The Box and Contents

There should be a user guide booklet, which includes reference information about
the board, as well as its own Getting Started guide (Section 2). This set of
webpages reiterates much of the information in the Getting Started section, so
you can use either this page or the User Guide to get up and running, according
to your own preference.

Under the paperwork is a CD which contains a snapshot of the Atmel website,
including all the information and data sheets for AVR microcontrollers and the
AVR Studio software which you will need later.

Under this is the main board itself, in an anti-static bag. It is important to
remember that modern electronic devices can easily be damaged by static
electricity, so try to ensure that you reduce static whenever you are handling the
board or the AVR chips that fit into it.

Along with the board are some bags containing grey and colored jumper cables
for connecting various parts of the STK500 together. These come in 10 pin, 6 pin,
and 2 pin varieties.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
3

Not shown here are the supplied serial cable, which is about 1.5m long with a 9-
pin connector on each end, and is for connection to the PC. There is also a bare
power cable with a suitable power plug on one end, for use in case your power
supply does not have the correct connector to power the board.

Additional Items
In addition to the contents of the STK500 starter kit itself, you will need a
suitable power supply. This should be able to supply at least 500mA at 10-15v
DC, and be fitted with a 2.5mm power plug. These are commonly available for
powering small electrical items, and you should be able to get one at any
consumer electronics shop. Polarity is not important, since the STK500 is
designed to accept either polarity of connector.

A Typical Power Supply

In later steps we will be connecting the STK500 to a PC, so you should have one
of those as well. The Atmel AVR Studio software requires a PC (Pentium or above
recommended), with at least 16MB of RAM, 7MB of hard drive space free,
Windows 95, 98, NT or 2000, and a free serial (COM) port. This description
covers virtually any new PC-compatible computer bought in the last 5 years or so.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
4

The Board Itself
If you place the board so that the row of pushbutton switches is towards you, and
the power and serial connectors are away from you, we can take a look at the
basic layout of the board.

The STK500 Board

Starting from the bottom, first there is a row of eight pushbutton switches, each
of which has a small LED lamp above it. These can be connected to the
microcontrollers using the array of connectors just above. There is then a large
white area, which is where the AVR chips to be programmed are inserted.
Usually, a STK500 comes with a AT90S8515 (8515 for short) chip mounted in the
large socket on the right.The green area at the top contains the programming
electronics, and the connectors for power and communications.

The STK500 Package
This page gets the STK500 powered up safely, and checks that both it and the
supplied AVR microcontroller are working correctly.

Checking The Board Options
The STK500 is a sophisticated piece of equipment, and as such has several
different modes of operation. These are selected by connecting (or leaving
unconnected) specific sets of pins on the board.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
5

 Jumper Positions

To connect a pair of pins, a small connector is pushed onto them. These
connectors are commonly referred to as "jumpers". A pair of pins is said to be
"closed" when a jumper is pushed on between them, and "open" if not. It is often
common practice to push the jumper onto just one pin for an "open" condition, so
that it doesn't get lost. The picture above shows a typical two-pin jumper in a
closed and open position, and a three-pin jumper closed between pins 1 and 2, or
2 and 3 (three pin jumpers always have pin 1 marked).

The STK500 should come with all its jumpers set up to select a sensible default
set of options, but it is worth checking that they are indeed in this default
configuration before we go any further.

 Default Jumper Positions

The jumpers are located at the top of the white area, on the left, and are labelled
(from the outside in) VTARGET, AREF, RESET, XTAL1, OSCSEL, and BSEL2. These
should be in the state indicated in the picture, and are also printed on the

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
6

underside of the board for easy reference. The defaults are:

• VTARGET closed
• RESET closed
• XTAL1 closed
• OSCSEL closed between pins 1 and 2
• BSEL2 open

One other thing that is worth checking is that the pre-installed AT90S8515
microcontroller is present and inserted the right way round. It should be a large,
40 pin chip in the large socket on the right of the board, with the notched end
toward the row of switches. If you have a brand new STK500, then this is very
unlikely to be missing or misaligned.

 Correct 8515 Orientation

Testing The Board
Before we connect the board to anything else, it is best to test it in isolation. This
will verify that the board is operating correctly.

The installed 8515 comes with a test program already programmed into it, which
is very handy. But before we can run it, we need to connect some of the outputs
from the microcontroller to the LEDs and switches on the board.

On the right hand side, just above the switches, is a group of 10 pins labelled
"LEDS". These need to be connected to the corresponding group of 10 pins just
above and to the left labelled "PORTB". In general, a group of pins arranged in
this way and intended for a cable to plug into them is known as a "header", so
these are the LEDS header and the PORTB header.

On the left are two similar headers labelled PORTD and SWITCHES.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
7

Close up of headers

One thing to notice is that each pin is individually labelled: on the LEDS header
we have LED0 to LED7, GND and VTG for the LEDs, and on PORTB we find PB0 to
PB7, GND and VTG. It is important that we connect the headers up in such a way
that LED0 connects to PB0, LED1 to PB1, and so on. Most particularly we must
ensure that the two GND pins connect, and that the two VTG pins connect, as
these are the pins which carry the main power supply.

Similarly, to connect the switches we should connect SW0 to PB0, SW1 to PB1,
and so on.

It is a good idea to do three things when connecting cables to headers: First,
ensure power is off. You might make a temporary connection due to a shaky
hand, but that will not matter if there is no power going into the board. Second,
check that the cable is connected the right way round. Third, check that the cable
is connected the right way round once again. Whilst you may notice that steps
two and three are very similar, it really does not hurt to be sure!

To connect each set of two headers, use one of the short 10-pin to 10-pin jumper
cables supplied. To ensure that the cables are not twisted (which would connect
the wrong pins), ensure that the red stripe is on the left in both cases.

Connecting the cables

I'll say this one more time: it's very important to ensure that cables are attached
the right way round, as putting them in the wrong way round can damage the
STK500 and/or the microcontroller inserted into it.

As an aside, you may be wondering why we're connecting ports B and D, when
there are ports A, C and E available too. The overriding reason is that the test
program is written to use these ports, which is because they are physically the
easiest ones to connect on the board. They are also present on almost all AVR
devices.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
8

With the switches and LEDs connected (did I mention to double check the
orientation of the connecting cables?), we are ready to power on.

First, ensure that the power switch on the STK500 is off (the toggle should be in
the position farthest from the edge of the board).

Power switch and connections

Plug you power supply into the wall, switch it on (if it has a switch - most wall-
mounted power supplies like mine do not), and connect it to the power socket at
the top left of the board.

Are you sure your cables are all connected the right way round? If so, switch on
the power switch.

With the switch on, three small LEDs should light immediately. The red one next
to the power switch indicates that power is available to the STK500 itself. The
green one at the top left of the central white area indicates that power is getting
to the installed microcontroller, and the green one on the right near the top
indicates that the programming hardware is ready to go.

 LEDs should blink when switch SW0 is pressed

The test program is set to respond to the push button switches at the bottom of
the board. Press switch SW0 (at the right) briefly. If everything is OK, most of the
LEDs should light. This is a good indication. Press and hold SW0 and the LEDs wil
start flashing, with each LED flashing half as quickly as the one on its immediate
right. (This is known as a "counting" pattern.)

Each switch has a different effect on the LED patterns:

• SW0 "counts down".
• SW1 "counts up".
• SW2 moves the current LED pattern right.
• SW3 moves the current LED pattern left.
• SW4 lights every LED which is dark, and vice versa.
• SW5 same as SW4, but only as far as the rightmost dark LED.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
9

• SW6 swaps LED0 with LED4, LED1 with LED5, LED2 with LED6 and LED3
with LED7.

• SW7 does nothing

If everything went well, congratulations! You now have a working and healthy
STK500. The next page will take you through installing the software.

Otherwise...

Troubleshooting
Here are a few troubleshooting suggestions.

Nothing Happens When I Switch On
The most obvious thing to check is that the power supply is turned on and giving
power. If you have a voltmeter, check that the voltage coming out of the power
supply is sufficient to drive the STK500 board (10 to 15 volts), and that the
current rating is sufficient (500mA or above).

The Power Lights Are On But Nothing Happens Otherwise
Check that you have connected the LED and Switch jumper cables correctly,
paying attention to the alignment of the pins and the polarity of the cables. Check
that the jumpers on the board are in the default positions. Check that there is
actually a microcontroller installed in the board!

There Are Some LEDs On But They Don't Do What I Expect
The chances are that, if you are not the first user of the STK500, the
microcontroller has been reprogrammed, erasing the test program supplied by
default. In this case, you will have to progress to the next page, install the
programming software and reload the test program.

Setting Up The STK500
AVR Studio is a free suite of Windows software from Atmel that enables you to
create, edit, and assemble programs for the AVR microcontrollers, and then
transfer them to real AVR chips installed in the STK500 board and run them.
This page gets us ready to install the AVR Studio software. It is assumed that you
have set up and checked your STK500 evaluation board as outlined in the
previous page.

Requirements
The Atmel AVR Studio software requires a PC (Pentium or above recommended),
with at least 16MB of RAM, 7MB of hard drive space free, Windows 95, 98, NT or
2000, and a free serial (COM) port. This description covers virtually any new
computer bought in the last 5 years or so.

In order to read or print the user manual, you will also need appropriate Adobe
Acrobat viewer software. This is distributed on the Atmel CD that came with the
STK500, so assuming that your CD-ROM drive is drive D:, you can install it by
running the file D:\adobe\windows\ar40eng.exe (that cryptic filename is short for
"Acrobat Reader 4.0 English").

This version of the software should work fine with the user manual. However, if
you don't have access to the Atmel CD, the latest version of the Acrobat reader is
available for free download from Adobe themselves at their Acrobat Reader
download page. The current version at time of writing is about 8.6 megabytes, or

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
10

just under an hour's download on a typical modem connection.

Obtaining AVR Studio
Atmel are continuously upgrading AVR Studio, so it is a good idea to work with
the latest version. Although there is a version of AVR Studio included on the
Atmel CD that comes with the STK500, it is best to take the time to download the
latest version either from Atmel's website or here on AVRFreaks.net.

On AVRFreaks, the latest version is available in the Tools section of the site. I am
not going to link directly to the downloads, since the download page for AVR
Studio always contains links to the very latest version. You can also find this page
by selecting the Tools tab, then selecting Assembler from the left hand list of tool
categories, then selecting AVR Studio from the resulting list of links.

To begin with, you will want to download two files from the Tools page - the AVR
Studio Install File (astudio3.exe), and the AVR Studio 3 User Guide
(doc1019.pdf).

The AVR Studio install file is about 6 megabytes in size, which translates as about
30 minutes download time on a typical dialup connection. To download, just click
on the link and choose "Save to disk" when prompted. You will need only need
this file disk temporarily, so choose a temporary folder such as C:\Temp to save
it into.

You will also need to download the user guide. This is much smaller, about 173
kilobytes, well under 2 minutes' download time. This you will need to save
somewhere more permanent. I suggest that you navigate to your "My
Documents" folder, and make a new folder under that called "AVR", and save the
user guide in there.

Installing AVR Studio

This page installs the AVR Studio software.

The Installation Process
Find the install file you saved to disk in the previous step, and run it by double-
clicking on it. This starts the install process. (The process itself is quite quick, and
actually takes less time to do than it does to read this guide!)

Unzipping the files

The first stage of the install unpacks all the files from the installer to a temporary
location. The dialog box that appears suggests a temporary folder to use during

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
11

this process, but we'll need to find this folder later so it is easier just to type
C:\Temp as the folder to use. Once this is done, click on the Unzip button to
continue.

Assuming everything went well, a small message box appears, reporting the
successful unpacking of the files to C:\Temp. Click on the OK button to continue.
This takes us back at the unpacking dialog. Click on the Close button to finish this
part of the installation.

This has unpacked all the files we need to install into a new folder under
C:\Temp, called "cdrom". (Presumably because this installation is also destined
for future versions of the Atmel CD.) Select the "cdrom" folder and double-click
on the SETUP.EXE program in order to run it.

Installation splash screen

You will be presented with the installer's introduction screen. This advises you to
close all other Windows programs before continuing with the installation, and so
this is definitely a good idea. Once the installer is the only thing running, click on
the Next button.

The next step is the lawyer's favorite dialog box - the one that contains the
software license. I am not a lawyer, and so cannot advise you on whether this
license suits you or not, but the bottom line is that if you don't click the Yes
button to accept the terms of the license, you don't get to play with the software.
Let's assume you click "Yes" and carry on to the next screen...

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
12

Choose destination folder

The next dialog in the sequence suggests a default folder in which to install AVR
Studio. The suggestion seems like the right place to put it to me, but if you
disagree you have the chance to change the folder by clicking on the Browse
button. Once you are happy, click Next to continue.

(Nearly there.) The next screen asks for the name of the folder which will appear
in the start menu. You have the chance to edit this name if you don't like the
default. Once you are happy, click Next.

At this point, the actual installation of the files into their final locations takes
place, which may take a few seconds.

The final screen asks for permission to restart the machine. In general, I am very
forgetful, so I always give my permission to restart immediately. Otherwise, I run
the risk of forgetting to do so and getting problems because of it. If you choose
the Restart Now option, clicking Finish will restart your computer and finish the
installation. If you choose the Restart Later option, clicking Finish will mean that
the final finishing touches to the installation will only happen next time you
restart, so you will have to restart manually before proceeding to the next step.

Running AVR Studio
If everything has gone well with the install (remember to restart the computer if
you haven't already), you should have a new folder in your Start menu, which if
you accepted the default name will be called "Atmel AVR Tools". Inside this is a
shortcut to the AVR Studio program. Click it to start AVR Studio.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
13

AVR Studio Running

The initial splash acreen will appear and the AVR Studio development
environment is presented. This is a bit bare to start with since we haven't created
anything yet. Almost all the icons in the toolbars are greyed out, since they have
no effect until we load or create a project to edit.

Creating a Project

This page gets us started with the AVR Studio software, creating a very simple
example project.

The Program
The simplest AVR program which has a visible output just lights one of the LEDs
on the STK500 board. The example program here lights LED0, the rightmost in
the row of eight LEDs above the pushbuttons on the near end of the board, and
then halts.

A closeup of LED0

The actual detail of how the program works is not particularly relevant at this
stage - like the program already loaded into the AVR in a new STK500, it is used
to demonstrate the process of creating a program.

We cannot easily write the program directly in a form which is downloadable onto
the chip. Why not? Because programs written directly for the chip itself are the
next best thing to incomprehensible. For example, here is the actual code we are
going to download onto the chip.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
14

 B89A C098 FFCF

Each 4-digit code represents a single instruction that the AVR can carry out. This
is easy for simple computers to deal with, but a nightmare for humans.

Obviously, we need a better way of dealing with this. A program which converts a
more readable form of each instruction into these numeric codes is known as an
assembler, and the AVRAsm assembler is included with AVRStudio.

Our assembler listing is pretty small - only 5 lines long, and only 3 of those
actually translate into instructions. Here it is:

 .include "8515def.inc"
 .org 0

 sbi DDRB,0
 cbi PORTB,0

 halt: rjmp halt

We will go through this program in more detail in the basic assembly language
tutorial later on. For now, we can treat it as a "black box" that stands in place of
any assembly language program.

Creating the Projects Folder
AVR Studio organises all the files and settings for a single program as a "project",
which resides in its own folder on your hard drive. AVR Studio itself will create a
new folder for each project, but will not create the folder that the project folders
themselves are stored in. (For example, if you want to put your project in
C:\Projects\LED0, then AVR Studio will quite happily create the LED0 folder, but
only if the folder C:\Projects already exists.)

If you do not have an existing folder to put all your projects in, create one called
"C:\Projects" .

Creating the Project
Our ultimate goal is to type the program into the computer, feed it through the
assembler, and download it to the chip on the STK500. To do this, we will create
a new project in AVR Studio. With the housekeeping out of the way, now we can
start the AVR Studio software.

Once the splash screen has disappeared, you should be left with a blank work
area and a set of menus and toolbars along the top, much as you would expect
from a Windows application.

To create a new project, pull down the Projects menu and select New... The
Select New Project dialog box will appear. It is here that we get to set some of
the most basic options for our project.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
15

The Select New Project dialog box

For this project, we will set its name to "LED0", and where it is to be stored will
be "C:\projects\led0". We also need to indicate what type of project it is. In this
case, we have a choice of "AVR Assembler" or "Generic 3rd Party C Compiler".
Since this, and all the other projects later in this series, are assembler projects,
we should select "AVR Assembler" for this one. When all is correct, click OK and
the project will be created.

We should now have a view of the project in the Project window. This window has
two folders in it, labelled "Assembler files" and "Other files". Both of these folders
are empty at the moment, because we haven't actually created any files to go
into them yet - this is just a view onto the project folder.

The Project window

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
16

Assembling a Program
This page explains the various steps in editing and assembling a simple program.

Creating the Program File
To create a new file, pull down the File menu and select New Text File... The
Create New File dialog will appear, prompting for the name of the file to create.

The Create New File dialog box

The name we want is "led0.asm", with the .asm extension signifying that it is
going to be an ASseMbler file. The location field should already be set to the
current project folder, "C:\Projects\led0". The "Add to project" check box should
be checked, since we do want to add this new file to the project. Once all this is
correct, click OK.

A new, empty window opens, entitled led0.asm, displaying the contents of the
new file. It is blank, since we haven't written anything into it yet. (You may also
notice that a new item has appeared in the Projects window, also entitled
led0.asm.) Into the new window, we need to type (or cut-and-paste) the
assembly language program we wrote above.

The led0.asm file window

The editor software within AVR Studio recognises the .asm extension on the file,
and realises that this is an assembly language program. In this case, it will
highlight particular things within the program using different colors. This is

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
17

perfectly normal and is designed to give additional cues to the user while writing
programs.

Here is the program again (in black and white) for cut-and-paste purposes:

 .include "8515def.inc"
 .org 0

 sbi DDRB,0
 cbi PORTB,0

 halt: rjmp halt
Always save work regularly. To save the file, pull down the File menu and select
Save. This will save the file to the disk.

Assembling the Program
Let us now try assembling the program. To do this, either pull down the Project
menu and select Assemble, or press key F7. This submits the program we just
wrote to the assembler, which tries to interpret it and convert it to raw machine
instructions.

The assembler itself opens a new window to inform you of what happened. In this
case, it is not good news. The assembly process failed. The last line shows a
summary of what happened, and as it says there was 1 error.

So, am I presenting a faulty program? Have I just been stringing you along all
this time? Not quite. We will have to read through the rest of the output to
understand why.

The Project Output window

The first two lines are just the copyright information for the assembler software
itself. Then there is a line of information telling us what the assembler is doing,
assembling our file, c:\projects\led0\led0.asm. However, the next line is the
informative one. Again, it tells us which file was being assembled when it found
the error - c:\projects\led0\led0.asm, and it also includes the line number it was
assembling in brackets. Here, it is (1), indicating that the error is in the very first
line of our program.

The rest of the line details the error, and indicates that it is not our program that
is at fault, but the assembler cannot find the file called "8515def.inc" file which
was specified on the first line. This file (as well as corresponding files for all the
different AVRs) is included with the assembler, but since it's not actually in our
project, the assembler does not know where to find it. We must copy it into our
project folder.

Close the Project Output window, since it won't be needed for a while.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
18

All of the .inc files for all of the possible AVR devices are initially installed with
AVR Studio, into the folder C:\Program Files\Atmel\AVR Studio\Appnotes. Using
Windows Explorer, or by exploring from My Computer, copy the file 8515def.inc
from this folder to our project folder, C:\Projects\LED0.

Back in AVR Studio, we must add this file to our project. It's not an assembler file
per se so we will add it to the "Other Files" group. In the project window, right-
click on Other Files and select Add File... from the pop-up menu.

Adding a file

Select 8515def.inc from the file selection dialog and click Open. If you cannot see
it, choose "All files" from the "Files of type" dropdown first.

8515def.inc should now be visible under the "Other Files" group. Notice that when
we created the original led0.asm file, it was not placed under the "Assembler
Files" group by default, so while we are assigning things to groups we can do it
now. Simply drag-and-drop the file into the "Assembler Files" group.

Drag and drop led0.asm

Let us check if this actually worked. Assemble the project again using the menu
(Project, Assemble) or press F7. The Project Output window reappears, and with
a bit of luck this time the bottom line has a very happy message indeed -
"Assembly complete with no errors". We have just successfully assembled our
first program.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
19

Assembly successful

(If it does not say this, recheck that led0.asm is exactly as printed above, and
that 8515def.inc is indeed in the right folder.)

Before we can run the file, there is one final adjustment that needs to be made to
the project. By default, the assembler is set up to output instructions in a form
that AVR Studio's built-in AVR simulator software can deal with. If, as we do, we
want to run the program on a real AVR, we must change the output format for
the assembler.

From the Project menu, select Project Settings... The Project Settings dialog box
appears. From the Output File Format drop-down, select the option labelled "Intel
Intellec 8/MDS (Intel HEX)". This is the name of the file format that the STK500
programming software understands (known for short as "hex" format). Click OK.

Project settings

Re-assemble the program by pressing F7. The output window should appear with
no errors as before. We now have an assembled file ready for transfer into the
AVR on the STK500.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
20

Running the Program
This page shows how to download a program to the STK500 and run it.

Downloading the Program
In order to run the program, we need to transfer it to the STK500, and to do that
we need to connect the programming electronics to the AVR on board. First,
ensure power to the STK500 is off.

We are going to use the simplest form of programming, serial programming, so
we must connect the appropriate serial programming headers together. First, find
the two 6 pin headers near the rear end of the 8515 chip, on the right, labelled
ISP6PIN and SPROG3. SPROG3 is connected to the appropriate pins on the 8515,
which is why it has a red background and so does the 8515 socket.

Using the 6 pin cable that came with the STK500, connect these two headers
together, ensuring that the cable is not twisted.

Connections for downloading

Next, using the serial cable supplied, connect the leftmost serial connector
(labelled RS232 CONTROL) to a spare serial port on your PC. Most PCs have at
least one suitable 9-pin serial port on the back panel, often labelled COM1 or
COM2.

Once this is connected, switch on the STK500 and we are ready to attempt a
programming session.

Back in AVR Studio, click on the AVR chip on the toolbar to start the programming
software.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
21

Programmer icon

The STK500 dialog box appears. In the text area at the bottom you should see a
message indicating that your STK500 has been detected, and showing what
revisions of hardware and software are present. If not, ensure that the power to
the STK500 is on, and that the serial cable is connected to the correct port both
on the STK500 and the computer, and then close the dialog and try again.

Assuming the STK500 is detected, the first thing we need to do here is to tell the
programming software what device it is going to be programming. Select
AT90S8515 from the Device drop-down.

Choose your device

Before programming, it is a good idea to erase any program already in the
device. Click the Erase Device button. If everything is OK, then the text area at
the bottom of the dialog should indicate that everything is OK. If not, dismiss any
error dialogs and double-check your wiring again.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
22

Communications problem? Double-check wiring.

To program the device, we must tell the software which file to send to it. To find
the file, click the "..." browse button in the "Flash" area, to the right of the "Input
Hex File" space. (The program is stored on the chip in so-called flash memory.)

A file dialog appears which should be in the project folder, showing the file
led0.hex. Select this file and click Open to open it.

Now, the moment of truth. Still in the Flash area of the dialog box, click the
Program button.

Program the device

You may notice some activity on the leftmost LEDs while the AVR is being
programmed - this is normal and is due to the signals for programming being
carried on pins PB5, PB6 and PB7, which we have connected to the LEDs. Once
this settles down, and the programming is finished, the actual program will start
and light the rightmost LED. You can now close the programming dialog.

The text area at the bottom of the programming dialog should also indicate that
everything worked correctly.

AN INTRODUCTION TO PROGRAMMING AVR MCUS USING THE STK500 DEV. BOARD, SEAN ELLIS - AVRFREAKS.NET
23

Programming succeeded

Running the Program
If LED0 is lit, then the program was downloaded and run successfully.

The light of achievement

Further Qualification
The two lines containing the constant value 0 can be changed, to use any value
from 0 to 7 (although both lines must use the same value). For each value from 0
to 7, the corresponding LED will then be lit. For example, the following will light
LED4 instead of LED0:

 .include "8515def.inc"
 .org 0

 sbi DDRB,4
 cbi PORTB,4

 halt: rjmp halt
Try editing the program to light different LEDs, to get familiar with the sequence
of events. (To re-open a file which has been closed, double-click on it in the
project view.) A reminder: after editing the program, you will need to save it, re-
assemble it, and download it to the board again.

Recap
You should now know how to use the AVR Studio software to create simple AVR
projects, edit assembly language, assemble programs, and download them to the
STK500.

Useful resources for next steps include:

• The AT90S8515 data sheet
(http://www.atmel.com/atmel/acrobat/doc0841.pdf), which is a
comprehensive reference to the architecture of the 8515.

• The AVR Instruction Set Reference
(http://www.avrfreaks.net/Tools/showtools.php?ToolID=127), which as it
suggests is the definitive reference for assembly language.

