CS372 - Software Engineering

Project Documentation

Registration Assistance Program

R.A.P

Dr. Samira Sadaoui

March 24th, 2014

Group Members:

Anthony Nguyen
Chris Arnold
Nathan Cherwaty
Dawn Buttazoni
Mark Comte

Ian Hauser



© N o

Table of Contents

Problem Definition .......coooiii i e e e e 3
Software Requirement Specification Document
Q. USE CASES cevreieieiteie it ie ittt et ettt s e et e st e s e s n e e e s 5
b. Software QUAalities ........cceeeiiiei e e 13
Design Specification Document
a.  SOftware ArchiteCtUre .......coooeiiii i e e s 15
b. Sequence DIaBrams .......ccccoeiiieerienseeries e e sne s s sn e e enneas 17
C. Class DIAGIaImS w.eeicueiiieiieiiiiie ettt et s e s s s e e e e e e 20
d. Object DIagrams ......cccccemiriinin i s 23
e. Component Diagrams ........cccccerivinininin s 24
f. Deployment Diagram ......ccccooviiriecieinieiinse e 20
UML TOOIS ittt et e en e e sr e sre e sn e snessn e snessnnessnesnrnens 20
Technical Documentation
a. Programming languages .......ccccuueririeiieininiis e e 28
b. Reused algorithms and programs ..........cccocciiiinin e 29
c. Tools, environments, Web SEIVICES, ETC. vuiuurvriiriiiiierrriiiriireeseeesren e eesen 30
d. Database management SYSteIMS .......cccveesirrieiseisinsien s sieeneens 31

OY) D Xo To11 0 7<) 1= Lo [0 ) s PSRN 10



1. Problem Definition

Develop a web based tool for University of Regina Computer Science students
capable of: tracking a student’s progress through their degree, giving a list of courses that
can be taken, and showing which courses are still necessary in order to graduate. The
system accepts completed courses submitted by the user as well as their associated
grades. Combined with a standard framework, the system will return to the user a
graphical representation of their current progress through the degree as well as a list of

required course that still need to be completed.

Functional Requirements:
Two types of Users: Admins and Students
Functional Requirements for Students:
> Sign Up / Create account: A student is prompted to sign up for an account by filling
in appropriate information pertaining to themselves and their education. The
information they enter will be stored and used to identify the student when they
attempt to log in during succeeding sessions.
> Log In: If student has previously signed up and created an account, they can enter
their password and username to access the information they have already supplied
as well as manage course schedule. If they enter the wrong information, display a
warning. If they reach a threshold for failed attempts, lock them out temporarily.
> (Course Selection: A student selects the courses that they have taken (and adds
grades) from a list of courses that the University offers, which are filtered by the
user.
> Search For Courses: students should be able to use simple tools to search the given
list of courses in order to quickly and easily find the course they are looking for.
> Modify Taken Courses: Students should be able to remove their previously added
courses or update their marks for those courses.

> Request Course: If a course that is not among the list of offered courses, students



should be able request that an admin add this course.
Functional Requirements for Admins:

> Log in: An admin responsible for software maintenance can log in using a special
admin account.

> Add Course: add a new course to the system easily.

> Reset Passwords: If a user or other admin has forgotten a password an admin could
resetit.

> Review Requested Course: Admin should be notified in list format when users create
new courses. The admin can then review the information and add a verification
stamp if the course information is correct, edit the submitted course, or delete the
course if the information is incorrect.

> Promote Users: An admin should be able to change the roles of a user from student
to admin or demote an admin to a student.

Qualities Required

> (orrectness: Software produces the correct averages and course information
pertaining to each student. Display prerequisites to the user when adding courses
that require other classes.

> User Friendly: The software displays the information in a logical manner that makes
it easy to read and manage the user’s information. The software must also make it
easy to view and add new courses.

> Robustness: Errors (such as improper login) produce messages to the user and
don’t cause unexpected results. Web based input should be cleaned and trimmed
to accepting erroneous input as valid.

> Scalability: Software must be able to accommodate a large number of users
concurrently.

> Security: User information such as login information is stored safely in a database

that cannot be maliciously accessed.



2. Software Requirement Specification

A. Use Cases

Student Use Case Diagram

Document

< <indude>> ’7

5 |

Student

{{lndude})

%

Administrator

\

View Student Course Page

<: <:extend>

Change Course List

=:<:extend:=:=

<<extend>>

Course Search

v
m <zextend > >
v
3

“<<indude> >

Request Course Addition

System

=:<:extend§:=
Modlfv Course

=

Student

X

Administrator




Administrator Use Case Diagram

System

View Course Overview

< <incude== ’7
4{93('3‘3”5'} Change Course List
View Student Course Page \ﬁ{extend:=:= ey %
<<extend>>
«:ﬂextend#:b
Modify Course Student
% Course Search

«:::mdude::)‘ Add Course
Student \ N
m <<extend>=

B
2
2 Administrator
:
v
§
.
‘\.
-

Administrator \ *fﬁindude:::}
Request Course Addition

1. Use Case: “Modify Course”

Initiating Actor: Student wants to remove class from classes taken list or add a mark
Preconditions: User has already logged in and has previously added classes
Scenario 1: Remove Course

- Student views course page

- List of courses student had previously specified as taken is shown

- Student selects a course from the list of courses they have taken

- Specified course is removed from list of courses taken by student
Scenario 2: Edit Grade

- Student views course page

- List of courses student had previously specified as taken is shown

- Student selects a course from the list of courses they have taken and

enters their grade received



- Specified course is updated to contain the grade entered
Scenario 3: Invalid Grade Entered
- Student views course page
- List of courses student had previously specified as taken is shown
- Student selects a course from the list of courses they have taken and
enters an invalid grade
- Error message is displayed to student requesting appropriate grade
Scenario 4: Student session timed out
- Student is directed to login page
Scenario 5: Student has no courses taken
- No option to modify courses displayed
Postconditions:
- Student removes a course from course taken list
OR
- Student successfully edits grade on a taken course
OR
- Student list of taken classes remains the same

Benefiting Actor: Student; Their course taken page is updated

2. Use Case: “Add Course”

Initiating Actor: Student wants to add a course to taken course list

Preconditions: User has already logged in

Scenario 1: Add Course
- List of courses student has previously specified as taken is shown as well
as courses that are still required, a course search bar is displayed.
- Student specifies search criteria from the corresponding menus
- A list of courses corresponds to the search criteria is populated in the
search sidebar

- Student selects the course from the list of populated courses



- Specified course is verified and added to list of courses taken by student
Scenario 2: Desired Course does not exist

- List of courses student has previously specified as taken is shown as well

as courses that are still required, a course search bar is displayed.

- Student specifies search criteria from the corresponding menus

- A list of courses corresponds to the search criteria is populated in the

search sidebar

- Course that student is searching for is absent from populated list
Scenario 3: Student session timed out

- Student is directed to login page
Postconditions:

- Users view of courses taken includes newly added course

OR
- Users view of courses taken remains the same

Benefiting Actor: Student; Their course taken page is updated

"

3. Use Case: “Review Requested Course”
Initiating Actor: Student wanting to add a non-existing course to a list of course
options

Precondition: Student has already logged in

Scenario 1: Verify Course - Accepted
- Student views Submit a course page
- Student enters course number, faculty, subject, prerequisites, and a brief
description of the course
- Student presses submit and course is added to pending courses
- Admin logs on and accesses verify course page in which all pending

courses are listed



- Admin selects a course to verify, all information entered by student is
displayed

- Admin believes it's a reasonable course request that is missing from

current list of available courses, they accept the request and pending

course is added to approved course database table

- Student logs on

- Course requested becomes a searchable course

Scenario 2: Verify Course - Rejected
- Student views course request page
- Student enters course number, faculty, subject, prerequisites, and a brief
description of the course
- Student presses submit and course is added to pending courses
- Admin logs on
- Admin accesses verify course page in which all pending courses are listed
- Admin selects a course to verify, all information entered by student is
displayed
- Admin believes it's an unreasonable course request and presses the deny

button

Scenario 3: Verify Course - Accepted - Modify Course request
- Student views course request page
- Student enters course number, faculty, subject, prerequisites, and a brief
description of the course
- Student presses submit and course is added to pending courses
- Admin logs on and accesses verify course page in which all pending
courses are listed
- Admin selects a course to verify, all information entered by student is

displayed



- Admin changes some of the information entered by user

- Admin now believes it's a reasonable course request that is missing from
current list of available courses, they accept the request and pending
course is added to approved course database table

- Student logs on

- Course requested becomes a searchable course

Scenario 4: User isn’t logged in
- Student attempts to view course request page

- Redirected to login page (See login use case)

Postconditions:
- Course is added to list of courses all Students can choose from
- Course table in database contains new course
- Pending course table contains record of student’s request
OR
- Pending course table contains record of student’s request
OR
- User must login
Benefiting Actor: Students; courses to choose from having taken is now more

accurate

4. Use Case: “View Student Course Page”
- Initiating Actor: Student viewing their course page

- Precondition: Student has already logged in

Scenario 1: View Student Course Page without the Course Search box populated
- Student clicks the button to view their course page
- The web server contacts the database to load the course table of the

student

10



- The business layer checks the students course table against the current

courses required for the degree they have selected
- if a course in the students course table matches a course in the
degree then the course overview table on the students web page is
shown with course as being taken
- if all the courses are checked in the students course table against
the degree and there are unmatched courses in the degree table then
the course overview table on the students web page is show with the
unmatched courses as not taken

- Once all the students courses have been checked the course overview table

on the students web page is updated.

Scenario 2: View Student Course Page with the Course Search box populated
- Student clicks the button to view their course page
- The web server contacts the database to load the course table of the
student
- The business layer checks the students course table against the current
courses required for the degree they have selected
- if a course in the students course table matches a course in the
degree then the course overview table on the students web page is
shown with course as being taken
- if all the courses are checked in the students course table against
the degree and there are unmatched courses in the degree table then
the course overview table on the students web page is show with the
unmatched courses as not taken
- Once all the students courses have been checked the course overview table
on the students web page is updated.
- Student chooses the faculty and subject to search in the search field

- Based on what the student chose as the faculty and subject the web server



12

contacts the database and requests all the courses in the subject selected
- The database sends the information to the web server
- The web server then populates the search table with the courses received
from the database
Postconditions:
- View of courses is up to date
- Student can search for classes

Benefiting Actor: Students; they have a graphical view of their degree



13

B. Software Qualities

Correctness: Our software demonstrates correctness by always displaying proper
information. This means once the user logins in, it produces the correct average
and course information pertaining to that particular student as outlined in our
functional requirements. Also, when the user tries to find courses to take, no

courses are suggested unless the required prerequisites are met.

User Friendliness: The graphical interface of our software has a very clean look
and easy for users to navigate through. A sidebar on the left will be used to
navigate between all possible pages once logged in, so the user will easily be able
to see their options. Course information pertaining to each student is shown upon
login, so the user has an immediate view of what they logged in to see. Adding
courses to a user’s degree is accessible from the same page as the degree
overview, so users can see what classes they need to add as they add them. Our
software also includes search criteria which can be used so that users can

conveniently find a class based on a chosen faculty and subject.

Robustness: Informative error messages are produced when a user tries to submit
a form with invalid information. This is checked on the submit a course, login,
signup, and modify degree forms. If a user tries to go straight to a certain page
without logging in they are redirected to our login page. User requested
information is also checked before it is stored in a database so that no unexpected

outputs occur.

Efficiency: Our software involves simplistic querying of data, so that no
bottlenecking occurs. Also, in an attempt to remove computations, AJAX and
javascript is only used in situations where it is truly needed, like when a form is

submitted. AJAX and javascript is used to minimize database access when incorrect



form information is entered.

Security: User entered information such as login information and grades are
stored safely in a database that cannot be maliciously accessed. Encryption is also

used to make sure that password information is secure.

Scalability: A large number of users accessing our site concurrently is made
possible with minimal data queries in order to reduce time spent accessing the
database. Also, since interaction with the database is minimal, most of the users
time is spent interacting with their own view of the site, thus not tying up server

resources.

14



3. Design Specification Document

A. Software Architecture

System Top Level Architecture

Input from

User
—_—

Presentation Layer

Display Module

v

Input Module

User
information
>

Business Logic Layer

v

[ 3

Presentation Analysis Processing Logic

Module

Data Bank Analysis

Y

Data Bank v

15



Presentation Layer Top Level Architecture

Form
information
from user

Input Module

L]

Intended to receive and pre
process form information

Y

Information Transfer
Module

L]

Intended to take

Display module

e Intended to take

Information
Screen

P

information provided by
the transfer module and
display it to the screen

information from the
presentation layer and
transfer it to the business

logic
t

information
from
Presentation
Layer

[ 3

Business Logic

Business Layer Top Level Architecture

o

Information Transfer
Module

[ ]

Intended to receive
information from the
presentation layer and
transfer information back
up to the presentation layer

Query Module

Intended to take
information from the
processing module and
query the Data Bank and
receive the results of query

Processing module
e Intended to take
information provided by
the transfer module

apply

t

Data Bank

16



B. Sequence Diagrams

Use Case 1 Senario 2

Edit Garde
:Student :Presentation -student
Infromation Layer 7|
In : I
DataBase | |
I ’ Requestusers populate t |
K taken courses degree tab |
showing taken
courses and :
_______ Return coursesl_________> t?:;;;‘:j” |
taken |
|
|
|
I I
I I
I I
' I
|
Student Enters

Mew Grade is stored

_‘—in the Students course ———

infromation

‘7

_ Updated course
taken infromation ==~ 7777 >

display the
table with the

updated grade

anew grade for a course

[onBne diagramming & design] CFeate

17



Student Presentation
T Layer
! I
— Request Class addition —’—
student fills

form with ( _____ load user requests table
necessary
infromation

==‘—

— store request in admin class table —’

with requested courses

Requesttable

f——— ofrequested ———————J
L

class additions

( ------ load requesttable —— ————— -

-------- load request table of requested élass additions

Data Bank

Admin

T
|
|

‘—Requesttable of requested class aditions

Verify a class ofthe requested
class adition table by accepting or denying
the class request

load updated requested

class addition -
table to Student

searchable and
able to be added
to a Studnents

degree

load the updated requested
class addition table add the '
course to the pool of avaible

courses

(_ __ load updated requested class o
table

load updated request

class addition table

=sign] Clreate

18



Lze Case Change taken Course
List: Scenario 2

.course

search
L

display th
students takan

couses as well
as course yetto
be taken and are

required

‘ student searchs for courses by
faculty and subject

————— aviable courses __ _ _ _ _ __ >

search results fax
student to review and

student selects a

course to add to

display

I * in students current degree
]

degree

passing grade, if all

verify the coursd ha
not been taken B
user and that the
grade entered is a

verify student selection
of course based on
student infromation

—

_return List of courses taken __

:student :Student
course Info
page |
1 ]
request list of student 3
current degree status
|

pass add the course
to the students taken
courses list

update students

degreetable —======4

[online diagramming & design] Create

19



20

C. Class Diagrams

Database Analysis

Buns :(Jandopurppyaieann+
(Busg +Asanb)sasino)paisanbaya L ojuTppe+
(EppHamdwoypap+

g54N07 20JUT=54N00-

10553004 dasinon)sanbayes)

saland

(Jupyiyens

(3s.moppasanbay ojurasinod)anhuomalzysieant

(Buns :Ausnb)esunoppaisanbaypale.+

Buis :(351n0ppajsanbay :ojurasino)uandojurppyaiean+

(Bus :Aianb)sasno)o  ojurppe+
(Jspaiiaidwonpatp+

()b opqunzi+

Buing :()lendjasinojpaisanbayeraLiayaleann+

asino)patsanbay :(Buus :Aianb)ojurasino)paisanbayanaliai+

asnopalsanbay :juasInm+

10553001 351N0)MBANSYUNLIDY

10

un-D
[ 0]6ung :(Janbuinyai+ :
£l
-
sauaM aseqeleqis saland
(Buuns +Aynaey ‘Buwns «palgns)Lanhipeasaieant | I
(Jeuayymepsasina)Rb+ F
Buns :eusifnoe)-
Bung :esanpalgns-
salRnd
105530014DJEISASIND) saam)
70 10
(JuBomoala
(Juoissagies+ Gt :(Buwns :jiows 'Gurng :piomssed ‘Buins :aweusssn)laniuasnppyaeant
fung :(JenhAuspsiean+ ()Jssrppes
UDIRULIOUTAILIR
(usgeuk gy BuLg <jieuss-

BuLns :piomssed-
BuLs :aewsssn-

Buing :pJomssed-
BuLig :aliewRsn-

(unupyApsans

Buns :(85.n0) :ppwo [sunadluandojuppyalean+
(Bung :Aianb)sasano)o ojurppe+
(EpHeR|dwo A+

Jossanodguiborsesy

10553004 uonensibaysas)

asInopalsanbay (juesINg+

105530014RS1N0)pPYUNLIDY




Processing

21

(Burns +Aymoey ‘Bung spalgns)hisndip eagaiean+
(Jeuznypewsasinodyebs

Buing euapohyme)-

Buns :(Jusnboprppvaieant
(Buws :Ainb)sesunonpaisanbayo ojuppes

(spjorapdunpatps

(Juwpyigons

(gsun0y :apsinbaseud)eysmbaseidppes

(Buiag *Aymouy)fyroeas-+
1 (Buwns :Jaquinnssep)Jaquinysselass

(BuLng spalans)palgngias+

sajean)

Buins : (3007 :ppyo Lasinoa iandouippyaieanns \.\\\n\n\nw
(Bung :Aianblsasineya ownppes [ ¢ :

(Jsppenaidwonpay+

asIno)pasanbay (opasn0+

10553001RSIN0)PPYUILIPY

[s"0]8sin0) :aysnbaad-

Burng :saquinyssep-

Buing :aj0u-
Buing :Aymaey-

Buung palgns-

351N0)

(Buwns <1ows "Buins :piovssed ‘Buns :auieussnasiba

(hnofoj:
(BuLng :pJomssed)urbor+

Bung yiews-
BuLng :piomssed-
Burs saweusssn-

185
<<PRISTYs>

T (ssunopuase U asinoojaneighypouss (Juborpalas Bung :(Buing :yews ‘Buung :plowssed ‘Buug alwewlasn)antasrppyaEan+
; 0T P TR T Al (JoauBago sesmonypieus (Juoissagias+ Jasrpes
buuns eieppsigee- R ek Bung :(sssn sesrpuaLm)biandsesnoieasieans | |Buus :(lendiuanseans il
10S53001DIERSBSING) I , [ 0lsa5n0) 2 (Buing sAianbjuzye tsasmeniabs (JuoneuuoyApan: Bung :pew-
Buung :puomssed-
) [s"0]8sIn0]uaye :Uaye S85.n0o- Burng :pJomssed- fung ‘auwewsn-
1031 i Buwys :aweusasn-
1 : 10553001glI3}E] SB5IN0) 10552001JuonEsiGayRs
; p 1055300/ duibosasn
(povalaveumrag| I
(Jpaidanoyawnags ;
(Bsmoy sopurasand ‘gsn <Jojeanesino)paisenba+ :
uRa|oog :pajdaoae- b (sa.6aq :aa.Bap)eaibagies+
Jesn Janoidde- (35007 ojjeuLIoju]asn0ajas N isaNbaK
1357) sJojean- : (g5 saye 10 Bsn0d)ssepaye+
o 4 (oo apeBlpoyest ; ; (asnoppatsanbay :Aypojo Lesnon)asmanhpotu+
SO 1oy ,m_uem.Llll.Q : E e (esanonpansanbay :palayo esinoa)as.nodpala+
i L& lasun0uae :u2je sessap- (ssnopypatsanbay :1danawo ) asnoajasinonidane+
\ SO 103pns (3s2n07 :ppyo a5.m00)as.nodppe+
(Juwpyhyians |
(asInoypaisanbay ojurasmoo)uanuomalayaieant Uupyy
(Burs :Asanbjasnopaisanbaypalas | g
BuLng :(ssnogpatsanbay 0jurasInod)IBndoTppYaIRan: §
(Buing :Aanb)sasinago Lojuppes
(SppERdeOpEtD: ' ]380 :paunbaysesingd-
()obiedo ojuruimai+ P Filag
Burs :(Jluantiasnopaisanbayenalaayaleanns ._
asnopaysanbay :(Buias :Lianbojurasinodpaisanbayaraliai: é
BEIN0)PaISENDAY (OJUTESIN0D+ : (Bung :ayou)apoyiass
J0SS0IGRSINOIMNRIARYUIIPY (351007 :aysinbasaid)aysinbRIRIgan0UR
ELETy)



22

Interface Analysis

Buins :(Jesinoopajes+
(Buwns :Aynoey ‘Bulng :palgns)sasinooypeas+

(Jsynsayheidsip+

buins :paynoe)-
BuLns :ppidpalgns-
[."0]asn07) SYnsayLIeas-

INDSWEIJIPIEDSISING)

(Jesunoppajsanbayduaps

(JueyeLasinoDanowal+
(Juzye [asinonlodapeiolipol+
(Jusye sasunohe)dsip+

(Jesinoopaisanbayanoidde+

["0]BuLs :usye|sasinoa-

INOBWELJUSHELSBSINOD

(Buis :malnayo 135000 )abedasinoomainayoLobi+

(Jesanonbuipuagpajes+
(Jsasnonbuipuade)dsip+

[«""0]BuLs

as.nodbuipuad-

noswe.psino)bupuag

(asinoopajsanbay :asinobuipuad)asinopaisanbaybuipuagmaint

(@sno) :ppyolaysinbaiaid)aysinbasidppes+ (Jesinoppajsanbayabis (Jesnoppe+ (JesinoDisenba
Ingswelyoseasabedasinoy Ingabedasinoymaiasyupy ngsbedasinoppyupy | | 1n9abedesinoniseanbayiasn
().usyel8sin0oppe+
Ingaweypieagabequapns
(asin0D :anowayo [aysinbauaid)aisisinbasaidanowais
Buins :pjaiduonduasap-
["0]Bugs :spjaidausinbasaid-
BuLng :pjaidhynoey-
BuLys :ppaIdaqunyasIno-
Buins :papalgns-
afiedesino)
<<PRISOY>>
(Jebedasinodisanbayo Lob+
(uoissas :uoissasjua.LIN Jabiedsesinoiuapnis+ < <JopNISUO] > >
Inyebedmainizagiuapnis
(Buws :awewiasn)iasnsiowolds = (JoBeauonesiiayo 106+
\\lllv i Bujusepdeidsip+
(Jesinooppes+ <<PRISqY>> : e

BuLng :ajowoido Liesn-

ngabeduupy

Buins :(asnanoiabis

Buing LssnuaLn-

uoissog

(Buins :pjaiplomssed ‘Buins paHaweulasn)uibop

0 = 1abaqur :sydwsane-
Bulns :pjaidpomssed-
Bulns :pjaideweUIasn-

mgebequibotiasn

(Buwis :pjaidpsomssed ‘Buiis :plaiaueulasn asiba

(ndupabis

Buiyg :pjsidjiewa+
BuLns :pjapiomssed+
BuLns :ppeialRwEsH+

mgabeguonessibayiasn




D. Object Diagrams:

23

Instance of Student registration and
simple Course request+verification

C5372: TakenCourse

grade: 78.0

classMumber: 372

note: =

subject: Computer Science

faculty: Computer Science
prerequisite; {CS5215%

Redqistration1: UserReqistration Processor

username: TheBestStudentEver

ComputerScienceBachelor: Deqree

C5411: RequestedCourse

creator: Studentl
approver. *default*
accepted: false

subject: Computer Science
classMumber: 411

faculty: Computer Science
prerequisite: {C5280, C3301}

coursesRequired:
{C3110, C5115, ENGL100,ENGL150, ...
..C5408 OR CS408 OR CS 415}

passwaord:
email: theBest@uregina.ca

Reqisters

\ 4

RequestFor —

note: ™

ReviewOf
L

A Studentq: Student
Gettin classesTaken: {C5110,C5115,C35201,..
Pa fee .ENGL100,ENGL150,C5215}
Takes degree: ComputerScienceBachelor

Review1: AdminReviewCourseProcessor

courselnfo: C5411

Review1: AdminReviewCourseProcessor

v

courselnfo: C5411

r— Requests J—

Verifies ——

username: TheBestStudentEver
password: #reereee
email: theBest@uregina.ca

Admin1: Admin

username: TheBestAdminEver
passward: e
email: theBesthdmin@uregina.ca

n] Creately com

Instance of Session and *Frame classes

———— PopulateFields —l

C£58411: RequestedCourse

RequestPageOfStudent1: UserRequestCoursePageGUl

creator. Studentt
approver: *default*
accepted: false

subject: Computer Science
classMumber: 411

faculty: Computer Science
prerequisite: {CS280, C5301}
note: =

subjectField: Computer Science
courseMumberField: 411
facultyField: Computer Science
prerequisiteFields: {C5280, CS301}
courseSearch:CourseSearch1

currentUser: Student?

LoginPageOfStudentl: Userl cqinPageGUl

h PartOfDisplay:

CourseSearchOfUsert oursePageSearchFrame

subjectField: ANTH
facultyField: Arts

searchResults: {ANTH100,ANTH101 ANTH120,...
- ANTH407.7, ANTH498, ANTH499}

|~ PartOISessionl

usemameField: TheBesiStudentEver
passwardField: Hsxssss
attempts: 3

currentUser: Student1

OverviewPageOfStudent1: StudentOverviewPageGUI

currentUser: Studentt

Session1: Session

f PartOfSession ————

PartOfSession

currentUser: Student1

Student1: Student

IJ—MLT:»—}

classesTaken: {C5110,C5115,C5201,...

ENGL100,ENGL150,C5215}
degree: ComputerScienceBachelor
username: TheBestStudentEver
password: wrea
email: theBest@uregina.ca

—Pamisg\agﬁ

CoursesOfUser1: CoursesTakenFrameGUl

coursesTaken:

PartOfDisplay | {CS110,C8115,CS201,... ENGL100,ENGL150,C5215}

CourseSearchOfuser1 2: StudentPageSearchFrameGUl

searchResults:
{C5100,65110,68115,.,C5201,65215,05301,..,C5409)
subjectField: C&

facultyField: Science

sign|] Clreate



24

E. Component Diagram

91Ba.D [ufisap g BunuweiSey

dyd-asinogwgns

E

dyd-asincosiepn

E

e

(3

s[uofep||eALc)

@ dyd'sse|oppe

K

e

s[legyaieas

dyd'sasinogiegyaieas

[E

[ OUTEgUIEES |

E

E

sl8|geLasinoD|lL

E

dydsasinoniab

3

@ sfydnbuis

@ siyuibio|

1

dyd-dnuis

\—'

dyd-uifiol

E

dydapeinabuega

3

5['85IN0)UBYELOLPPE

(3

dydnofol

E

Iv sseqabueys

E

dyd-ssegabueya A|

E

E

"
@Eqamﬁowﬁ
FY
s[Alpop
dyd-fusq Iv @
dyd-ancidde , sHuag
A}

E

s['apeigajepdn

E

E

dyd-xapul

E

AEL
S38IN0OMBIAS)

.v sfarudde

SlE

dyd-ajowap

E

s[ajowap

E

dyd-asinoomainal

E

weibelq jusuodwon

dyd-alowod

W

E

s aloWod

E

|

dyduasnfipow

E




F. Deployment Diagram:

Deployment Diagram

==Devices> <<Devicer>
Vi
Application Server Database S
se Server
login.php E
<<PHP/SQL>> addToCourses.sql E
promote.php {I
modifyUser.php E
submitCourse.php zzDevicess
User's Computer (web browser)
Presentation Module E loginR.js
=—==HTML + TCP/IP== — il
searchBarjs
form\alidation js il
addToTakenCourses.js

[online diagramming & design] CFégarely com



26

4. UML Tools

For our project we used two distinct UML diagram tools - StarUML and Creately.

StarUML: This tool was used to create our use case diagrams, and class diagrams.
StarUML is a powerful and free UML toolset that facilitates the creation of 10 different
types of UML diagrams. Overall, we found it to be fairly simple to learn, and easy to use.
The tool allows for extensibility in the form of plugins, and supports a Model Driven

Architecture (MDA) approach natively.

StarUML has a very large problem for our purposes however - the diagrams it generates
are not at all visually appealing. It seems that emphasis is put completely on functionality
of this UML tool - it has an incredible number of options and properties that can be used
to create very complex diagrams. This comes at the cost of visual fidelity, since the
diagrams it produces are very limited in terms of what can be done to make them look
professional. They generally have a sharp, single colour, cell shaded appearance that
makes the diagrams appear to have been made in a very old program. This is why, for the

most part, we chose to use our second UML tool whenever possible:

Creately: This is an online diagram creation application that gives users the ability to
easily create diagrams (including UML diagrams) in their web browser. It contains many
templates for commonly used diagrams of different kinds, and has a very intuitive
interface. It can be purchased monthly if certain more advanced features are needed,
however we chose to create free accounts and utilize only the basic functionality that this
provides. This tool was used to create our sequence diagrams, object diagrams,

deployment diagram, and component diagram.

Creately is very simple - when compared to StarUML - in terms of sophistication. It has

very limited choices of attributes that can be set for the different components of diagrams,



and does absolutely no code generation with the diagrams created. It is effectively a visual
tool only, but it does very well in this respect. The diagrams created in Creately can be
easily modified to fit new themes, appear to be very polished and professional visually,
and can be edited easily by anyone with access to a web browser. Since code generation
was not part of our requirements when searching for a UML tool, we opted to use one

that would produce documents of a higher aesthetic quality than that of StarUML.

Since the functionality of Creately is limited, certain parts of our diagrams to not match up
with the conventions laid out in class. This is because the tool did not allow us to edit the
necessary components - they were not programmed into the application to begin with.

This can be seen in our object diagrams:

L ) I

-~

Register p

Gettin

The requested format for links in an object diagram is the image on the left. This was not
possible with Creately, and so was approximated as closely as possible (pictured on the
right). Another issue we had with Creately was with the Component diagram. The graphics
syntax taught in class were different from the ones used in Creately, so our components

do not appear as they should.

This shows how both tools have usefulness but lacked important aspects preventing us

from making all of our diagrams using a single tool.

27



5. Technical Documentation

A. Programming languages

1. HTML5

We used HTMLS5 to create our web pages that are displayed on the students machine. HTMLS5 is the
latest adaptation of HTML making it much more versatile. It enables cleaner and neater code from
being able to use the semantic HTML5 elements. Since HTMLS5 is being used on more and more
websites it creates consistency between sites allowing developers and programmers to understand
the code alot better. Using HTML5 helped us create a more versatile website that is consistent, well

formatted, and easy to understand.

2. JavaScript

We used JavaScript on our web pages to make them more functional in their responses to the
students actions. Since JavaScript is on the client-side it can run functions immediately instead of
having to contact the server to run functions. JavaScript is relatively simple to learn and can be
easily implemented. A disadvantage of JavaScript are its lack of security since it is run on the

student’s computer.

3. PHP

We used PHP to interact with our MySQL database. It enabled us to pass information back and forth
between the students browser, the web server and the database with relative ease. PHP provides of
avariety of security functions to ensure secure transfer of information. A disadvantage of PHP is
that it is not object oriented meaning that the code can’t be as organized as compared to it being

object oriented.

4.CSS

We used CSS on the web pages to create the look and format of them. It was used to create a
professional and clean looking website that is well formatted. CSS was a good use since it has
multiple libraries that can provide a variety of designs and formats to make a professional looking
website. Using CSS also provides cross-browser functionality to ensure the design and format of the
website is available on multiple browsers. A drawback of using CSS is that we are limited to the

frameworks and designs available in it.

28



B. Reused algorithms and programs

1.JQuery

JQuery is a JavaScript library that simplifies the use of JavaScript code. It provides more advanced
and cross browser functions that minimize any browser incompatibilities. We used JQuery on our

web pages to minimize the amount of code and to enhance the functionality of the pages.

2.AJAX

AJAX enables the ability to send and retrieve data from the server without interfering the display of
the current page. This means that information can be passed back and forth in the background to and
from the server without inconvenience to the student. We used AJAX on our web pages to pass
information back and forth on our web pages to the server to keep everything up to date as the

student edits their courses and degree information.

3. PHP CRYPT

The PHP crypt function encrypts a string using DES, Blowfish, or MD5 algorithms. We used the crypt
function to encrypt the passwords for students accounts when being passed back and forth from the
students browser to the web server. The function enabled us to keep the website secure and safe for

all users.

4. Reused Code

We reused the HTML code from the computer science web page of the bachelor of computer science
degree. The code was used as the format of the class degree table on the students degree overview
page.

Code was taken from: http: //www.cs.uregina.ca/UndergradProgram/programs/academpro.html

- JQuery DataSheet

5. Mechanize

Mechanize is a cross-platform library that emulates a web browser. In our case we used the Python
version to scrape an initial course set from the University course catalog web pages. We then used
custom Python scripts to analyze the gathered data and generate SQL statements to populate our

database with an initial set of course information.

29


http://www.google.com/url?q=http%3A%2F%2Fwww.cs.uregina.ca%2FUndergradProgram%2Fprograms%2Facadempro.html&sa=D&sntz=1&usg=AFQjCNHLkxFW7W25rSpVkicO0jgtoGGoWQ
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.uregina.ca%2FUndergradProgram%2Fprograms%2Facadempro.html&sa=D&sntz=1&usg=AFQjCNHLkxFW7W25rSpVkicO0jgtoGGoWQ

C. Tools, environments, Web services, etc.

System information for the webserver and database server:
Ubuntu Server 12.04.4 LTS 64 Bit

1 GB RAM

21GBHD

Intel(R) Core(TM) i3-3220T CPU @ 2.80GHz (One Thread)

Web Server: Apache 2.2.22

Database: mysql Ver 14.14 Distrib 5.5.35

1. WinSCP
We used WinSCP to connect to the web server and edit our HTML, JavaScript and PHP documents

2. HeidiSQL

HeidiSQL was used to connect to the database and create and edit the database tables

3. Notepad++
Notepad++ was used to edit HTML, JavaScript, and PHP files.

4. Google Drive

All of the group documentations and files were uploaded or created on Google Drive to a shared
folder between all the group members. Group members were able to edit, modify, and create
documents. Using Google Drive ensured that only one document was created between group

members and the finished document was worked on and built by multiple members.

5. Eclipse
Eclipse was used to edit HTML, JavaScript and PHP files.

6. PuTtY
PuTTY was used to connect to the webserver and database server to edit the various files and to test

PHP code.

30



31

7. MySQL Workbench
MySQL Workbench was used to generate our ERD.

8.Sublime Text 2
Sublime Text 2 was used to edit HTML, JavaScript and PHP files.

9. Drupal Framework

Drupal is a free open source web based content management system used as a back end framework;
providing structure to common web structures such as menu and user management tools. Drupal is
coded with PHP ensuring cross platform compatibility. Drupal offers many features to developers
such as code generation, automatic web page theming and responsive web page structuring. To be
able to take full advantage of the benefits of Drupal however, requires extensive knowledge of
Drupal syntax and file structure. Our team attempted to utilize Drupal to aid our development but

found the learning curve too steep and decided to abandon this tool early on.

10. Google Chrome
We used Google Chrome and the Google Chrome developer tools to view and run the test cases for
our implemented website. The developer tools made it simple to check the performance and

network activity of the site, and to check and debug the JavaScript and PHP code.

D. Database management system.

We used MySQL as our database management system. MySQL is one of the most used database
management systems making it a good choice. Since it’s so widely used there are a lot of tutorials on
how to use it and there are very few bugs. Another reason why we chose a MySQL database was

because we already learnt how to use it from CS215.



£P 20483.93.143 - PuTTY =

:| prerequisites v

1 :| grade_requirement ¥
prereq_id INT(10} - N grade_id INT(10)
. . . o0
P c,o- @ course_jd INT{10) = & prereq_id INT{10)
g ¥ pren [
7 <= ¥ prereq_course_id INT(10) min_grade TINYINT(4)
s . .
isRequired TINYINT(3
| courses v . /;jfr - : )
optional_no TINYINT(3
| course_id INT(10) 1‘& pHons. (3)
course_no VARCHAR(S) L
o
¥ subject VARCHAR(4) '] —_
shart_description VARCHAR(250) | | T —— . | subjects v .
| T —
long_description VARCHAR(500) \ = | subject VARCHAR(4) —
note VARCHAR(S00) lll. Faculty VARCHAR(30) :
i :l request_course_prereq ¥ arts_elective BIT(1) |
\ = o . |
\ | % request_id INT(10) - fine_arts_elective BIT(1) [
oo . X
¥ prereq_course_id INT(10) ] science_slective BIT(1) I
|||I natural_science_elective BIT(1) | |
\ !
] |
| |
V 1
| |
_| courses_taken ¥ | users v | I
1 1 \
user_id INT(10) —_— | user_id INT(10) —-—
) b T 1 :l request_course v :
course_id INT(10) ol first_name VARCHAR(S0) —— i
— = ! request_id INT(10) |
grade TINYINT(3) last_name VARCHAR(50) ~—— ® 1
T e G user_jd INT(10) '
email VARCHAR(50) @
# subject VARCHAR(4) -
password VARCHAR{128)
course_no VARCHAR(S)
isAdmin BIT{1)
short_description VARCHAR{250)
added_date TIMESTAMP

long_description VARCHAR(S00)
niote VARCHAR(500)
isApproved BIT(1)

request_date TIMESTAMP



6. User Documentation

R.A.P or Registration Assistance Program is a degree tracking system is a system
meant to aid University of Regina students in tracking and calculating their degree. These
include tracking courses taken, courses needed for completion on the degree and lastly
course grades and current GPA. Users can access R.A.P at [P addresses
204.83.93.143:10080. R.A.P has three main pages in which the user can access as well as
two additional pages for administrators. This user manual will describe the operations
and basic actions available on each page such as

e Regular Users

A. Logging in

B. Signing up

C. Viewing your degree

D. Adding a course and/or grade to your degree
E. Requesta Course to be added to Database

F. Viewing requested course table

G. Logging out

e Administrators

A. Reviewing the requested course additions submitted by users
B. Adding a course to the database

C. Giving a user administrative rights

D. Changing a users password

E. Logging out

33



Regular Users actions:

A. Logging in

All users are able to accesses rap through the IP address of
http://204.83.93.143:10080. Users will be brought to figure 1 and are able to sign in with
an email indicated by the red arrow and password specified by the blue arrow. Both email
and password are consistent with the indicated email and password combination specified
at the time of signup. Upon ensuring correct information and clicking the button labeled
“submit,” the user will be taken to the home page. If the information is incorrect error
messages will be displayed above the field that is incorrect. If the user is new to RA.P,,

they can navigate to the sign up page indicated by the green arrow.

Don't have an acoount?

s Welcome to R.A.P:

34



B.Sign Up

Users can sign up for R.A.P by filling in the information on the sign up page that can
be accessed through the login page under the sign up tab. Users must enter a first name,
last name and valid email address in the input boxes. The user must select a degree from
the drop down box labeled degree type. They must also enter their date of birth by
selecting a month, day and year from the drop down boxes as well as choose a password
that must be at least 8 characters long and contain at least one non-letter character. Upon

clicking the submit button the user will be redirected to the login page: however, if any

information is rejected an error message will be displayed above the corresponding field.

Features of RA.P:

- Track your degree Please fill out the following infermation to sign up!
progress
First Name:

-Manageyour marks and
averages

LastName:
- View classes still required

fordegree

Email Address:

Degree Type

B.Sc. Major in Computer Science
Date of Birth: Month:  January Day: 1 Year: 2012

Password:

Re-Type Password:

C. Viewing your degree:

35



Once logged in, users will be able to view their main page. Users can begin to add
courses to their degree from this page. Courses taken will be indicated by the green tint

within the course cell. Courses that have yet to be taken are indicated by red tint.

hﬂj‘ DE'EI'E'E'

testing
Modify Degree

Credit BSc with major in Computer Sclence, GPA

Submilt A Course hours reqguired courses

30 CS 110 - Programming and Problem ==
Review Submitted Sohing
Coamrses

30 C5 115 - m=x
Modify User 34 CS 201 - Introduction to Digital Systems =z

30 L5 210 - Data Structures and Abstractions ==
Lo oul 30 LS 215 - Wab Oriented Programiming =

30 LS 2580 - Risk and Reward in the informaticn ==

5

Science 34 i
Arts 3.0 e
Fine Arts

310 =i
Ed

30 £

30 C5 335 - Computer Hetworks =

3.0 L5 340 - Advanced Data Structures and ==

Algorithm Destan

30 C5 350 - Programming Languags Conoapts =

3.0 LS 372 - Seftware Engineering Methodolomy ==

3.0 CS 375 - Database and infermaticn Retrieval e

Class Murnber
3.0 [900-lewel CS course ==
L5 110 - Pregramming and
30 [H00-level TS oourse £
Problem Sohing -
30 MATH 105 r 110 £
30 MATH 111 =

- L] P

D. Adding a course to a degree

Users will navigate to the side bar indicated by the blue arrow and select one or



37

more faculties by clicking and holding the command key this will

populate the subject field with subjects from those faculties.

Science
Arts
Fine Arts

Selecting one or more subjects and clicking the button labeled
“submit” will then populate the course table with courses of

the selected subject. From here the user can click the “add”

button indicated by the green arrow and if the course has not

Class Number

yet been taken the course will then be added to the users

CS 110 - Programming and

. Problem Solving
taken course list.

E. Request a Course to be added to Database:

Users can navigate to the “request a course” page through the main page “Submit A
Course” tab. This will bring up a page that will allow the user to enter information
pertaining to each course. This

My Degree information includes to which Faculty

and Subject the course belongs,

Hodily Degree

including the prerequisites associated

Subsmit A Course

testing with the course, the course number and

a short description of the course. To add
prerequisites to your submission follow the same procedure for adding a course to a
degree. Upon clicking the add button the course will be shown within the prerequisite
area. Upon clicking “submit,” and as long as the information is correct, the course will be

added to a table for an administrator to review. Users can review their submissions, as



38

well as other users’ pending requests in the “Review Submitted Courses” link in the

sidebar.

Submit a Course

A e N S L . A f 1Y A :

A course you've already taken is missing from our list? Add it here
e Please select the course faculty:

Science
Review Submitted Arts

Fine Arts
Courses Ed

Madify User Please select the course subject:

Math
Stat
ENCL
Chem

Prerequisites: [Dynamically odded from selections]

Science

Course Number:

Please enter a brief description of the class

F. Review Submitted Courses

Users can review the status of their request for course addition by navigating to
the “Review Submitted Courses” tab. This page consists of a table of pending request for
course additions. If a user’s course is no longer listed, an admin has either accepted the
course or rejected the course. In the case that a course is accepted it will be added to the
pool of valid courses, and will be available to be added to a user’s degree. In the case a
course is rejected by the admin, the course will no longer be shown in the request course
addition table and will not be available to be added to a degree.

G.Log out

Once a user is done using R.A.P they can log out of their



39

session by navigating to the “log out” tab located in the side bar above the filter course

area.

Administrative Actions:

Administrators may perform all the actions of a regular user by following the same
procedures. However, administrators have special rights while adding a course to the
database, as well as reviewing the requested course addition table. Administrators are
also able to promote and demote users to administrators. Administrators are also able to

change the password of a user.

A. Adding a Course to the database

Administrators follow the same procedure as regular users when it comes to
adding a course to the database on the “Request a Course Addition” page. However,
instead of the course being added to the “request a course addition” table it will be added

straight to the pool of available courses.

B. Reviewing requested Course Addition table

Administrators will navigate to the same “Review Submitted Courses” tab, in
which all users are able to see courses submitted for review. The administrator will have
an additional table column however with accept or deny buttons. If the information is
correct the administrator can add the course to the pool of available courses by clicking
the accept button. Conversely if the information is not correct the administrator can reject

and delete the course request by clicking the deny button. Or Administrators can click



modify to change the information relating to the course.

Courses reguested by all users. Admin view.

40

Faculty Subject Course Description MNote
Number
Business BUS 132ad blah blah
ladmin
Business BUS 132ad blah blah
ldmin
Business BUS 132ad blah blah
ldmin
Business BUS 132ad blah blah
lndmin
Business BUS 132ad blah blah
Iadmin

C. Giving a user administrative rights:

An administrator can grant user administrative rights by navigating to the

“Modify User” tab in the sidebar. This will load a page that populates a table full of users.

The administrator can browse all of the users and grant administrative rights to a user by

clicking a “promote” button next to a user’s name. Administrators can also demote users

taking away administrative rights by clicking the “demote” button next to their name.

Promote a User

modify users permissions

Madify user

First Name Last Name Email Admin Status
[Tester McTesterson secretl2i@test.com ]
Phil Collins mustardtigerl@test.com 1
[Test Me clephantl@test.com 0
Mathan Cherwaty nathancherwaty@gmail.ca 1
Dawn Buttazoni testing@testing.com 1




A. Changing a users password

Administrators can also change a users password on the same webpage “modify
User” by clicking “changePass” button next to the users name and entering the a new

password in the pop-up box.

A. Logging out
Administrators can log out the same way regular users log out, by navigating to

and clicking the “log out” tab.

41



7. Software Testing

Software Test Cases:
(a) Correctness testing with some data tests (at least 5 test cases).
1. Arequired class when added should appear on main screen with correct color
An added elective should appear in the correct spot on the main screen
The same course should not appear more than once on a degree listing
Overall average should be correctly computed and displayed
Search menu should correctly filter and display courses

AR

(b) Robustness testing with some incorrect data (at least 5 test cases).
1. Try to login with incorrect password

Try to login with incorrect username

Try to enter invalid grade

Request a missing course that already exists

Request a missing course with incorrect data (Admin Rejection)

g1 N

(c) Performance testing with some benchmarks (at least 5 test cases).
1. Handle 2 number of simultaneous users.
2. Pagesshould load in at least 2 seconds
3. Search menu should be fast and responsive
4. Database should be able to respond and load requests from the web server in at least 2

seconds

Test Input Data Output Data Correct Behaviour

Case

al Add CS 110 CS 110 Changes from red to Yes
green

a2 Add ASTR 101 ASTR 101 appears as Natural | Yes
Science elective

a3 Add CS 110 twice It only shows up as CS 110 Yes
and not as an elective as well.

a4 Input class grades Computed average displayed | Yes

a5 Click Science faculty. Then | Class number only shows CS | Yes




CS. classes
Test Input Data Output Data Correct
Case Behaviour
bl Enter incorrect Re-direct to home page and display Yes
password and try to incorrect login message
login
b2 Enter incorrect Re-direct to home page and display Yes
username and try to incorrect login message
login
b3 Try to enter grade less Display incorrect grade error message | Yes
than 50 or a string
b4 Submit a missing course | Page submits and is added to the Yes
using the missing course | administrators add course queue.
page(Correct data) Admin then accepts valid request and
it appears as an addible course
b5 Submit a missing course | Page submits and is added to the Yes
using the missing course | administrators add course queue.
page(Incorrect data) Admin then rejects invalid request and
itis not added as an addible course
Test | InputData Output Data Correct
Case Behaviour
cl 2 users logged in at the Each user should have full access to Yes
same time. the site and not notice diminished
performance
c2 Web page is requested. Page completely loads in under 2 Yes
seconds
c3 Click a faculty and The menu appropriately loads the list | Yes
subject and the boxes in real time
appropriate menu.
c4 Fill in a submit a course | After the submit button the next page | Yes

web page

should load in under 2 seconds

43



An extra testing method was used for the efficiency and organization of our code. This
was done through Google Developper’s “PageSpeed Insights”, giving us an overall rating
of 83/100, and showing the access speeds for the different pages of our system:

44



45

® O ¥ = (] Preservelog
Name Status ry Size Time o
Method Type Initiator Timeline
Path Text 50 Content Latency | 200ms| 300ms | 400ms | 500ms | 600 ms |
index.php 200 32KB B4 ms
—
Jtest ) oK oalala i 1L.4KR 39ms —
css?family=Source +5ans +Pro:400,400it... . 200 Fa P’ he) Oms -
fonts.googleapis.com oK AL CE AR Oms ©
jquery.min.js 304 St Oms v
GET lication... f h [
Jtest/js Not Modified el A Gtk 0Oms °
skel.min.js s 304 e : he) 0Oms s
Jtest/js Not Modifieg PP oM e oms b
..unm skel-panels.min_js o 304 4 . he) Oms e
= [testfjs Not Modified  2PP"<2HOM- o cache 0Oms °
init.js 304 Oms
CET lication... fi he! 0 0
Jtestfjs Not Modified i (g tiche) Oms -y
style.css GET 200 ey ﬁ he) Oms
ext/css rom cache
jtestfcss OK Oms
style-desktop.css 200 Oms .
GET text fi h @
Jtest/css OK sl Script {Fosmcxchie) Oms @
mmw style-wide.css o 200 e skel.min.js:12 r he) Oms B
= [test[css OK et ca ks Oms i
jquery.min.js 304 Oms :
CET text, f h g
ajax.googleapis.com/ajax/libs/jquery/1.1 Not Modified ext s (o cache) Oms o
fillCourseTable.js i 304 ] pr he) Oms
application... rom cache
Jtest/js Not Modified 7 0Oms
addToTakenCourses.js s 304 e =. he) Oms .
Jtest/js Not Modifieg 2P C2HOM-- e oms @
..unm UpdateCrade.js o 304 4 . he) Oms
== jtestfjs Not Modified el i Oms
searchbar.js 304 Oms
CET lication... fi he! £
== Jtestfjs Not Modified i (g tiche) Oms °
D jquery.min.map - 304 - 1648 57ms ~
ajax.googleapis.com;ajax/libs/jquery/1.1( Not Modified AR e 137KB 53ms od
j getcourses.php 200 4318 24ms .
tract Inhn Eﬂ ny nan.nw._n_..-.__ 18 7 mc (.-._
17 requests | 3.8 KB transferred | 529 ms (load: 630 ms, DOMContentLoaded: 533 ms)




46

.\. RAP % C5 372 Project - Google [ % | [E] Software Testing - Google \{ {Vpagespeed Insights % /,,l,.__
€& - C G hitps://developers.google.com/speed/pagespeed/insights /?url=http%3A%2F%2F204.83.93.143%3A10080%2F&tab=desktop Lo I y Tmu L%, nn_. @ J =
=% Apps ‘._._ Learn Python - Free | | SGI Employee Login D HTPC n Battlestation | | A naive simulater o E Clone a Hard Drive . Flightradar24.com | Mutella-Stuffed Bro m Rotini @ Area 52 - »

Home Products Conferences Showcase Live Groups

PageSpeed Insights 2+ 14

http://204.83.93.143:10080/ E

m Mobile ER Desktop

Suggestions Summary

Consider Fixing:

Eliminate render-blocking JavaScript and CSS in above-the-fold R el i ELT:
content
r Show how to fix

Leverage browser caching
» Show how to fix

Optimize images
+ Show how to fix

Minify CSS

+ Show how to fix

ﬂ 6 Passed Rules

+ Show details




8 + 9. Group Member Contributions

(8. All code should be handed in on a flash drive, see User Documentation for instructions

to access the website.)

Chris: Database Management, Database Diagrams+documentation, Implementation,
debugging, Technical Documentation, Project Proposal, Software Testing.

Nathan: Basically everything. Implementation, debugging, Sequence Diagrams, Technical
Documentation, Project Proposal, Component Diagram, User Documentation, Software
Architecture.

Mark: Sequence Diagrams, Technical Documentation, Project Proposal, Component
Diagram.

Anthony: Class Diagrams, Technical Documentation, Implementation, debugging, Project
Proposal, compiling final project document.

Dawn: Implementation, debugging, Use Case Diagrams, Use Case Specifications, Technical
Documentation, Project Proposal, Component Diagram, Software Qualities.

Ian: Object diagrams, Use Case Diagrams, UML tools documentation, Technical

Documentation, Project Proposal, Deployment Diagram, compiling final project document.

47



