
1

CS372	-	Software	Engineering	

Project	Documentation

Registration	Assistance	Program

R.A.P

Dr.	Samira	Sadaoui

March	24th,	2014

Group	Members:

Anthony	Nguyen

Chris	Arnold

Nathan	Cherwaty

Dawn	Buttazoni

Mark	Comte

Ian	Hauser

2

Table	of	Contents	

1. Problem	Definition	…………………………………………………………………………………………… 3	

2. Software	Requirement	Specification	Document

a. Use	Cases	...………………………………………………………………………………….. 5

b. Software	Qualities	……………………………………………………………………….. 13

3. Design	Specification	Document

a. Software	Architecture	…………………………………………………………………... 15

b. Sequence	Diagrams	……………………………………………………………………… 17

c. Class	Diagrams	...…………………………………………………………………………... 20

d. Object	Diagrams	...………………………………………………………………………… 23

e. Component	Diagrams	...………………………………………………………………….	 24

f. Deployment	Diagram	...………………………………………………………………….	 25

4. UML	Tools	……………………………………………………………………………………………………….... 26

5. Technical	Documentation

a. Programming	languages	..………………………………………………………………	 28

b. Reused	algorithms	and	programs	………………………………………………….. 29

c. Tools,	environments,	Web	services,	etc.	…………………………………………... 30

d. Database	management	systems	..…………………………………………………… 31

6. User	Documentation	………………………………………………………………………………………….. 33

7. Software	Testing	……………………………………………………………………………………………….. 42

8. Code	..…….. 47

9. 	Group	Member	Contribution	………………………………………………………………………………. 47

	

3

1.	Problem	Definition

Develop	a	web	based	tool	for	University	of	Regina	Computer	Science	students	

capable	of:	tracking	a	student’s	progress	through	their	degree,	giving	a	list	of	courses	that	

can	be	taken,	and	showing	which	courses	are	still	necessary	in	order	to	graduate.	The	

system	accepts	completed	courses	submitted	by	the	user	as	well	as	their	associated	

grades.	Combined	with	a	standard	framework,	the	system	will	return	to	the	user	a	

graphical	representation	of	their	current	progress	through	the	degree	as	well	as	a	list	of	

required	course	that	still	need	to	be	completed.

Functional	Requirements:

	 Two	types	of	Users:	Admins	and	Students

Functional	Requirements	for	Students:

➢ Sign	Up	/	Create	account:	A	student	is	prompted	to	sign	up	for	an	account	by	filling	

in	appropriate	information	pertaining	to	themselves	and	their	education.	The	

information	they	enter	will	be	stored	and	used	to	identify	the	student	when	they	

attempt	to	log	in	during	succeeding	sessions.

➢ Log	In:	If	student	has	previously	signed	up	and	created	an	account,	they	can	enter	

their	password	and	username	to	access	the	information	they	have	already	supplied	

as	well	as	manage	course	schedule.	If	they	enter	the	wrong	information,	display	a	

warning.	If	they	reach	a	threshold	for	failed	attempts,	lock	them	out	temporarily.

➢ Course	Selection:	A	student	selects	the	courses	that	they	have	taken	(and	adds	

grades)	from	a	list	of	courses	that	the	University	offers,	which	are	filtered	by	the	

user.

➢ Search	For	Courses:	students	should	be	able	to	use	simple	tools	to	search	the	given	

list	of	courses	in	order	to	quickly	and	easily	find	the	course	they	are	looking	for.

➢ Modify	Taken	Courses:	Students	should	be	able	to	remove	their	previously	added	

courses	or	update	their	marks	for	those	courses.

➢ Request	Course:	If	a	course	that	is	not	among	the	list	of	offered	courses,	students	

4

should	be	able	request	that	an	admin	add	this	course.

Functional	Requirements	for	Admins:

➢ Log	in:	An	admin	responsible	for	software	maintenance	can	log	in	using	a	special	

admin	account.

➢ Add	Course:	add	a	new	course	to	the	system	easily.

➢ Reset	Passwords:	If	a	user	or	other	admin	has	forgotten	a	password	an	admin	could	

reset	it.

➢ Review	Requested	Course:	Admin	should	be	notified	in	list	format	when	users	create	

new	courses.	The	admin	can	then	review	the	information	and	add	a	verification	

stamp	if	the	course	information	is	correct,	edit	the	submitted	course,	or	delete	the	

course	if	the	information	is	incorrect.

➢ Promote	Users:	An	admin	should	be	able	to	change	the	roles	of	a	user	from	student	

to	admin	or	demote	an	admin	to	a	student.

Qualities	Required

➢ Correctness:	Software	produces	the	correct	averages	and	course	information	

pertaining	to	each	student.	Display	prerequisites	to	the	user	when	adding	courses	

that	require	other	classes.	

➢ User	Friendly:	The	software	displays	the	information	in	a	logical	manner	that	makes	

it	easy	to	read	and	manage	the	user’s	information.	The	software	must	also	make	it	

easy	to	view	and	add	new	courses.

➢ Robustness:	Errors	(such	as	improper	login)	produce	messages	to	the	user	and	

don’t	cause	unexpected	results.	Web	based	input	should	be	cleaned	and	trimmed	

to	accepting	erroneous	input	as	valid.

➢ Scalability:	Software	must	be	able	to	accommodate	a	large	number	of	users	

concurrently.

➢ Security:	User	information	such	as	login	information	is	stored	safely	in	a	database	

that	cannot	be	maliciously	accessed.

5

2.	Software	Requirement	Specification	

Document

A.	Use	Cases

Student	Use	Case	Diagram

	

6

Administrator	Use	Case	Diagram

1.	Use	Case:	“Modify	Course”

Initiating	Actor:		Student	wants	to	remove	class	from	classes	taken	list	or	add	a	mark

Preconditions:	User	has	already	logged	in	and	has	previously	added	classes

Scenario	1:	Remove	Course

-	Student	views	course	page

-	List	of	courses	student	had	previously	specified	as	taken	is	shown

-	Student	selects	a	course	from	the	list	of	courses	they	have	taken

-	Specified	course	is	removed	from	list	of	courses	taken	by	student

Scenario	2:	Edit	Grade

-	Student	views	course	page

-	List	of	courses	student	had	previously	specified	as	taken	is	shown

-	Student	selects	a	course	from	the	list	of	courses	they	have	taken	and	

enters	their	grade	received

7

-	Specified	course	is	updated	to	contain	the	grade	entered

Scenario	3:	Invalid	Grade	Entered

-	Student	views	course	page

-	List	of	courses	student	had	previously	specified	as	taken	is	shown

-	Student	selects	a	course	from	the	list	of	courses	they	have	taken	and	

enters	an	invalid	grade

-	Error	message	is	displayed	to	student	requesting	appropriate	grade

Scenario	4:	Student	session	timed	out

-	Student	is	directed	to	login	page

Scenario	5:	Student	has	no	courses	taken

-	No	option	to	modify	courses	displayed

Postconditions:

-	Student	removes	a	course	from	course	taken	list

OR

-	Student	successfully	edits	grade	on	a	taken	course

OR

-	Student	list	of	taken	classes	remains	the	same

Benefiting	Actor:	Student;	Their	course	taken	page	is	updated

2.	Use	Case:	“Add	Course”

Initiating	Actor:		Student	wants	to	add	a	course	to	taken	course	list

Preconditions:	User	has	already	logged	in

Scenario	1:	Add	Course

-	List	of	courses	student	has	previously	specified	as	taken	is	shown	as	well	

as	courses	that	are	still	required,	a	course	search	bar	is	displayed.

-	Student	specifies	search	criteria	from	the	corresponding	menus

-	A	list	of	courses	corresponds	to	the	search	criteria	is	populated	in	the	

search	sidebar

-	Student	selects	the	course	from	the	list	of	populated	courses

8

-	Specified	course	is	verified	and	added	to	list	of	courses	taken	by	student

Scenario	2:	Desired	Course	does	not	exist

-	List	of	courses	student	has	previously	specified	as	taken	is	shown	as	well	

as	courses	that	are	still	required,	a	course	search	bar	is	displayed.

-	Student	specifies	search	criteria	from	the	corresponding	menus

-	A	list	of	courses	corresponds	to	the	search	criteria	is	populated	in	the	

search	sidebar

-	Course	that	student	is	searching	for	is	absent	from	populated	list

Scenario	3:	Student	session	timed	out

-	Student	is	directed	to	login	page

Postconditions:

-	Users	view	of	courses	taken	includes	newly	added	course

OR

-	Users	view	of	courses	taken	remains	the	same

Benefiting	Actor:	Student;	Their	course	taken	page	is	updated

3.	Use	Case:	“Review	Requested	Course”

Initiating	Actor:	Student	wanting	to	add	a	non-existing	course	to	a	list	of	course	

options

Precondition:	Student	has	already	logged	in

Scenario	1:	Verify	Course	-	Accepted

-	Student	views	Submit	a	course	page

-	Student	enters	course	number,	faculty,	subject,	prerequisites,	and	a	brief	

description	of	the	course

-	Student	presses	submit	and	course	is	added	to	pending	courses

-	Admin	logs	on	and	accesses	verify	course	page	in	which	all	pending	

courses	are	listed

9

-	Admin	selects	a	course	to	verify,	all	information	entered	by	student	is	

displayed

-	Admin	believes	it’s	a	reasonable	course	request	that	is	missing	from	

current	list	of	available	courses,		they	accept	the	request	and	pending	

course	is	added	to	approved	course	database	table

-	Student	logs	on

-	Course	requested	becomes	a	searchable	course

Scenario	2:	Verify	Course	-	Rejected

-	Student	views	course	request	page

-	Student	enters	course	number,	faculty,	subject,	prerequisites,	and	a	brief	

description	of	the	course

-	Student	presses	submit	and	course	is	added	to	pending	courses

-	Admin	logs	on

-	Admin	accesses	verify	course	page	in	which	all	pending	courses	are	listed

-	Admin	selects	a	course	to	verify,	all	information	entered	by	student	is	

displayed

-	Admin	believes	it’s	an	unreasonable	course	request	and	presses	the	deny	

button

Scenario	3:	Verify	Course	-	Accepted	-	Modify	Course	request

-	Student	views	course	request	page

-	Student	enters	course	number,	faculty,	subject,	prerequisites,	and	a	brief	

description	of	the	course

-	Student	presses	submit	and	course	is	added	to	pending	courses

-	Admin	logs	on	and	accesses	verify	course	page	in	which	all	pending	

courses	are	listed

-	Admin	selects	a	course	to	verify,	all	information	entered	by	student	is	

displayed

10

-	Admin	changes	some	of	the	information	entered	by	user

-	Admin	now	believes	it’s	a	reasonable	course	request	that	is	missing	from	

current	list	of	available	courses,		they	accept	the	request	and	pending	

course	is	added	to	approved	course	database	table

-	Student	logs	on

-	Course	requested	becomes	a	searchable	course

Scenario	4:	User	isn’t	logged	in

-	Student	attempts	to	view	course	request	page

-	Redirected	to	login	page	(See	login	use	case)

Postconditions:

-	Course	is	added	to	list	of	courses	all	Students	can	choose	from

-	Course	table	in	database	contains	new	course

-	Pending	course	table	contains	record	of	student’s	request

OR

-	Pending	course	table	contains	record	of	student’s	request

OR

-	User	must	login

Benefiting	Actor:	Students;	courses	to	choose	from	having	taken	is	now	more	

accurate

4.	Use	Case:	“View	Student	Course	Page”

-	Initiating	Actor:	Student	viewing	their	course	page

-	Precondition:	Student	has	already	logged	in

Scenario	1:	View	Student	Course	Page	without	the	Course	Search	box	populated

-	Student	clicks	the	button	to	view	their	course	page

-	The	web	server	contacts	the	database	to	load	the	course	table	of	the	

student

11

-	The	business	layer	checks	the	students	course	table	against	the	current	

courses	required	for	the	degree	they	have	selected

-	if	a	course	in	the	students	course	table	matches	a	course	in	the	

degree	then	the	course	overview	table	on	the	students	web	page	is	

shown	with	course	as	being	taken

-	if	all	the	courses	are	checked	in	the	students	course	table	against	

the	degree	and	there	are	unmatched	courses	in	the	degree	table	then	

the	course	overview	table	on	the	students	web	page	is	show	with	the	

unmatched	courses	as	not	taken

-	Once	all	the	students	courses	have	been	checked	the	course	overview	table	

on	the	students	web	page	is	updated.

Scenario	2:	View	Student	Course	Page	with	the	Course	Search	box	populated

-	Student	clicks	the	button	to	view	their	course	page

-	The	web	server	contacts	the	database	to	load	the	course	table	of	the	

student

-	The	business	layer	checks	the	students	course	table	against	the	current	

courses	required	for	the	degree	they	have	selected

-	if	a	course	in	the	students	course	table	matches	a	course	in	the	

degree	then	the	course	overview	table	on	the	students	web	page	is	

shown	with	course	as	being	taken

-	if	all	the	courses	are	checked	in	the	students	course	table	against	

the	degree	and	there	are	unmatched	courses	in	the	degree	table	then	

the	course	overview	table	on	the	students	web	page	is	show	with	the	

unmatched	courses	as	not	taken

-	Once	all	the	students	courses	have	been	checked	the	course	overview	table	

on	the	students	web	page	is	updated.

-	Student	chooses	the	faculty	and	subject	to	search	in	the	search	field

-	Based	on	what	the	student	chose	as	the	faculty	and	subject	the	web	server	

12

contacts	the	database	and	requests	all	the	courses	in	the	subject	selected

-	The	database	sends	the	information	to	the	web	server

-	The	web	server	then	populates	the	search	table	with	the	courses	received	

from	the	database

Postconditions:

-		View	of	courses	is	up	to	date

-	Student	can	search	for	classes

Benefiting	Actor:	Students;	they	have	a	graphical	view	of	their	degree

	

13

B.	Software	Qualities

Correctness:	Our	software	demonstrates	correctness	by	always	displaying	proper	

information.	This	means	once	the	user	logins	in,	it	produces	the	correct	average	

and	course	information	pertaining	to	that	particular	student	as	outlined	in	our	

functional	requirements.	Also,	when	the	user	tries	to	find	courses	to	take,	no	

courses	are	suggested	unless	the	required	prerequisites	are	met.

User	Friendliness:	The	graphical	interface	of	our	software	has	a	very	clean	look	

and	easy	for	users	to	navigate	through.	A	sidebar	on	the	left	will	be	used	to	

navigate	between	all	possible	pages	once	logged	in,	so	the	user	will	easily	be	able	

to	see	their	options.	Course	information	pertaining	to	each	student	is	shown	upon	

login,	so	the	user	has	an	immediate	view	of	what	they	logged	in	to	see.	Adding	

courses	to	a	user’s	degree	is	accessible	from	the	same	page	as	the	degree	

overview,	so	users	can	see	what	classes	they	need	to	add	as	they	add	them.	Our	

software	also	includes	search	criteria	which	can	be	used	so	that	users	can	

conveniently	find	a	class	based	on	a	chosen	faculty	and	subject.

Robustness:	Informative	error	messages	are	produced	when	a	user	tries	to	submit	

a	form	with	invalid	information.	This	is	checked	on	the	submit	a	course,	login,	

signup,	and	modify	degree	forms.	If	a	user	tries	to	go	straight	to	a	certain	page	

without	logging	in	they	are	redirected	to	our	login	page.	User	requested	

information	is	also	checked	before	it	is	stored	in	a	database	so	that	no	unexpected	

outputs	occur.

Efficiency:	Our	software	involves	simplistic	querying	of	data,	so	that	no	

bottlenecking	occurs.	Also,	in	an	attempt	to	remove	computations,	AJAX	and	

javascript	is	only	used	in	situations	where	it	is	truly	needed,	like	when	a	form	is	

submitted.		AJAX	and	javascript	is	used	to	minimize	database	access	when	incorrect	

14

form	information	is	entered.

Security:	User	entered	information	such	as	login	information	and	grades	are	

stored	safely	in	a	database	that	cannot	be	maliciously	accessed.	Encryption	is	also	

used	to	make	sure	that	password	information	is	secure.

Scalability:	A	large	number	of	users	accessing	our	site	concurrently	is	made	

possible	with	minimal	data	queries	in	order	to	reduce	time	spent	accessing	the	

database.	Also,	since	interaction	with	the	database	is	minimal,	most	of	the	users	

time	is	spent	interacting	with	their	own	view	of	the	site,	thus	not	tying	up	server	

resources.

15

3.	Design	Specification	Document

A.	Software	Architecture

16

17

B.	Sequence	Diagrams

18

19

20

C.	Class	Diagrams:

Database Analysis

21

Processing

22

Interface Analysis

23

D.	Object	Diagrams:

24

E.	Component	Diagram:

25

F.	Deployment	Diagram:

	

26

4.	UML	Tools

For	our	project	we	used	two	distinct	UML	diagram	tools	-	StarUML	and	Creately.

StarUML:	This	tool	was	used	to	create	our	use	case	diagrams,	and	class	diagrams.	

StarUML	is	a	powerful	and	free	UML	toolset	that	facilitates	the	creation	of	10	different	

types	of	UML	diagrams.	Overall,	we	found	it	to	be	fairly	simple	to	learn,	and	easy	to	use.	

The	tool	allows	for	extensibility	in	the	form	of	plugins,	and	supports	a	Model	Driven	

Architecture	(MDA)	approach	natively.

StarUML	has	a	very	large	problem	for	our	purposes	however	-	the	diagrams	it	generates	

are	not	at	all	visually	appealing.	It	seems	that	emphasis	is	put	completely	on	functionality	

of	this	UML	tool	-	it	has	an	incredible	number	of	options	and	properties	that	can	be	used	

to	create	very	complex	diagrams.	This	comes	at	the	cost	of	visual	fidelity,	since	the	

diagrams	it	produces	are	very	limited	in	terms	of	what	can	be	done	to	make	them	look	

professional.	They	generally	have	a	sharp,	single	colour,	cell	shaded	appearance	that	

makes	the	diagrams	appear	to	have	been	made	in	a	very	old	program.	This	is	why,	for	the	

most	part,	we	chose	to	use	our	second	UML	tool	whenever	possible:

Creately:	This	is	an	online	diagram	creation	application	that	gives	users	the	ability	to	

easily	create	diagrams	(including	UML	diagrams)	in	their	web	browser.	It	contains	many	

templates	for	commonly	used	diagrams	of	different	kinds,	and	has	a	very	intuitive	

interface.	It	can	be	purchased	monthly	if	certain	more	advanced	features	are	needed,	

however	we	chose	to	create	free	accounts	and	utilize	only	the	basic	functionality	that	this	

provides.	This	tool	was	used	to	create	our	sequence	diagrams,	object	diagrams,	

deployment	diagram,	and	component	diagram.

Creately	is	very	simple	-	when	compared	to	StarUML	-	in	terms	of	sophistication.	It	has	

very	limited	choices	of	attributes	that	can	be	set	for	the	different	components	of	diagrams,	

27

and	does	absolutely	no	code	generation	with	the	diagrams	created.	It	is	effectively	a	visual	

tool	only,	but	it	does	very	well	in	this	respect.	The	diagrams	created	in	Creately	can	be	

easily	modified	to	fit	new	themes,	appear	to	be	very	polished	and	professional	visually,	

and	can	be	edited	easily	by	anyone	with	access	to	a	web	browser.	Since	code	generation	

was	not	part	of	our	requirements	when	searching	for	a	UML	tool,	we	opted	to	use	one	

that	would	produce	documents	of	a	higher	aesthetic	quality	than	that	of	StarUML.

Since	the	functionality	of	Creately	is	limited,	certain	parts	of	our	diagrams	to	not	match	up	

with	the	conventions	laid	out	in	class.	This	is	because	the	tool	did	not	allow	us	to	edit	the	

necessary	components	-	they	were	not	programmed	into	the	application	to	begin	with.	

This	can	be	seen	in	our	object	diagrams:

																				

The	requested	format	for	links	in	an	object	diagram	is	the	image	on	the	left.	This	was	not	

possible	with	Creately,	and	so	was	approximated	as	closely	as	possible	(pictured	on	the	

right).	Another	issue	we	had	with	Creately	was	with	the	Component	diagram.	The	graphics	

syntax	taught	in	class	were	different	from	the	ones	used	in	Creately,	so	our	components	

do	not	appear	as	they	should.	

This	shows	how	both	tools	have	usefulness	but	lacked	important	aspects	preventing	us	

from	making	all	of	our	diagrams	using	a	single	tool.

28

5.	Technical	Documentation

A.	Programming	languages

1.	HTML5

We	used	HTML5	to	create	our	web	pages	that	are	displayed	on	the	students	machine.	HTML5	is	the	

latest	adaptation	of	HTML	making	it	much	more	versatile.	It	enables	cleaner	and	neater	code	from	

being	able	to	use	the	semantic	HTML5	elements.	Since	HTML5	is	being	used	on	more	and	more	

websites	it	creates	consistency	between	sites	allowing	developers	and	programmers	to	understand	

the	code	a	lot	better.	Using	HTML5	helped	us	create	a	more	versatile	website	that	is	consistent,	well	

formatted,	and	easy	to	understand.

2.	JavaScript

We	used	JavaScript	on	our	web	pages	to	make	them	more	functional	in	their	responses	to	the	

students	actions.	Since	JavaScript	is	on	the	client-side	it	can	run	functions	immediately	instead	of	

having	to	contact	the	server	to	run	functions.	JavaScript	is	relatively	simple	to	learn	and	can	be	

easily	implemented.	A	disadvantage	of	JavaScript	are	its	lack	of	security	since	it	is	run	on	the	

student’s	computer.

3.	PHP

We	used	PHP	to	interact	with	our	MySQL	database.	It	enabled	us	to	pass	information	back	and	forth	

between	the	students	browser,	the	web	server	and	the	database	with	relative	ease.	PHP	provides	of	

a	variety	of	security	functions	to	ensure	secure	transfer	of	information.	A	disadvantage	of	PHP	is	

that	it	is	not	object	oriented	meaning	that	the	code	can’t	be	as	organized	as	compared	to	it	being	

object	oriented.

4.	CSS

We	used	CSS	on	the	web	pages	to	create	the	look	and	format	of	them.	It	was	used	to	create	a	

professional	and	clean	looking	website	that	is	well	formatted.	CSS	was	a	good	use	since	it	has	

multiple	libraries	that	can	provide	a	variety	of	designs	and	formats	to	make	a	professional	looking	

website.	Using	CSS	also	provides	cross-browser	functionality	to	ensure	the	design	and	format	of	the	

website	is	available	on	multiple	browsers.	A	drawback	of	using	CSS	is	that	we	are	limited	to	the	

frameworks	and	designs	available	in	it.

29

B.	Reused	algorithms	and	programs

1.	JQuery

JQuery	is	a	JavaScript	library	that	simplifies	the	use	of	JavaScript	code.	It	provides	more	advanced	

and	cross	browser	functions	that	minimize	any	browser	incompatibilities.	We	used	JQuery	on	our	

web	pages	to	minimize	the	amount	of	code	and	to	enhance	the	functionality	of	the	pages.

2.	AJAX

AJAX	enables	the	ability	to	send	and	retrieve	data	from	the	server	without	interfering	the	display	of	

the	current	page.	This	means	that	information	can	be	passed	back	and	forth	in	the	background	to	and	

from	the	server	without	inconvenience	to	the	student.	We	used	AJAX	on	our	web	pages	to	pass	

information	back	and	forth	on	our	web	pages	to	the	server	to	keep	everything	up	to	date	as	the	

student	edits	their	courses	and	degree	information.

3.	PHP	CRYPT

The	PHP	crypt	function	encrypts	a	string	using	DES,	Blowfish,	or	MD5	algorithms.	We	used	the	crypt	

function	to	encrypt	the	passwords	for	students	accounts	when	being	passed	back	and	forth	from	the	

students	browser	to	the	web	server.	The	function	enabled	us	to	keep	the	website	secure	and	safe	for	

all	users.

4.	Reused	Code

We	reused	the	HTML	code	from	the	computer	science	web	page	of	the	bachelor	of	computer	science	

degree.	The	code	was	used	as	the	format	of	the	class	degree	table	on	the	students	degree	overview	

page.

Code	was	taken	from:	http://www.cs.uregina.ca/UndergradProgram/programs/academpro.html

-	JQuery	DataSheet

5.	Mechanize

Mechanize	is	a	cross-platform	library	that	emulates	a	web	browser.	In	our	case	we	used	the	Python	

version	to	scrape	an	initial	course	set	from	the	University	course	catalog	web	pages.	We	then	used	

custom	Python	scripts	to	analyze	the	gathered	data	and	generate	SQL	statements	to	populate	our	

database	with	an	initial	set	of	course	information.

http://www.google.com/url?q=http%3A%2F%2Fwww.cs.uregina.ca%2FUndergradProgram%2Fprograms%2Facadempro.html&sa=D&sntz=1&usg=AFQjCNHLkxFW7W25rSpVkicO0jgtoGGoWQ
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.uregina.ca%2FUndergradProgram%2Fprograms%2Facadempro.html&sa=D&sntz=1&usg=AFQjCNHLkxFW7W25rSpVkicO0jgtoGGoWQ

30

C.	Tools,	environments,	Web	services,	etc.	

System	information	for	the	webserver	and	database	server:

Ubuntu	Server	12.04.4	LTS	64	Bit

1	GB	RAM

21GB	HD

Intel(R)	Core(TM)	i3-3220T	CPU	@	2.80GHz	(One	Thread)

Web	Server:	Apache	2.2.22

Database:	mysql		Ver	14.14	Distrib	5.5.35

1.	WinSCP

We	used	WinSCP	to	connect	to	the	web	server	and	edit	our	HTML,	JavaScript	and	PHP	documents

2.	HeidiSQL

HeidiSQL	was	used	to	connect	to	the	database	and	create	and	edit	the	database	tables

3.	Notepad++

Notepad++	was	used	to	edit	HTML,	JavaScript,	and	PHP	files.

4.	Google	Drive

All	of	the	group	documentations	and	files	were	uploaded	or	created	on	Google	Drive	to	a	shared	

folder	between	all	the	group	members.	Group	members	were	able	to	edit,	modify,	and	create	

documents.	Using	Google	Drive	ensured	that	only	one	document	was	created	between	group	

members	and	the	finished	document	was	worked	on	and	built	by	multiple	members.

5.	Eclipse

Eclipse	was	used	to	edit	HTML,	JavaScript	and	PHP	files.

6.	PuTTY

PuTTY	was	used	to	connect	to	the	webserver	and	database	server	to	edit	the	various	files	and	to	test	

PHP	code.

31

7.	MySQL	Workbench

MySQL	Workbench	was	used	to	generate	our	ERD.

8.	Sublime	Text	2

Sublime	Text	2	was	used	to	edit	HTML,	JavaScript	and	PHP	files.

9.	Drupal	Framework

Drupal	is	a	free	open	source	web	based	content	management	system	used	as	a	back	end	framework;	

providing	structure	to	common	web	structures	such	as	menu	and	user	management	tools.	Drupal	is	

coded	with	PHP	ensuring	cross	platform	compatibility.	Drupal	offers	many	features	to	developers	

such	as	code	generation,	automatic	web	page	theming	and	responsive	web	page	structuring.	To	be	

able	to	take	full	advantage	of	the	benefits	of	Drupal	however,	requires	extensive	knowledge	of	

Drupal	syntax	and	file	structure.	Our	team	attempted	to	utilize	Drupal	to	aid	our	development	but	

found	the	learning	curve	too	steep	and	decided	to	abandon	this	tool	early	on.

10.	Google	Chrome

We	used	Google	Chrome	and	the	Google	Chrome	developer	tools	to	view	and	run	the	test	cases	for	

our	implemented	website.	The	developer	tools	made	it	simple	to	check	the	performance	and	

network	activity	of	the	site,	and	to	check	and	debug	the	JavaScript	and	PHP	code.

D.	Database	management	system.	

We	used	MySQL	as	our	database	management	system.	MySQL	is	one	of	the	most	used	database	

management	systems	making	it	a	good	choice.	Since	it’s	so	widely	used	there	are	a	lot	of	tutorials	on	

how	to	use	it	and	there	are	very	few	bugs.	Another	reason	why	we	chose	a	MySQL	database	was	

because	we	already	learnt	how	to	use	it	from	CS215.

32

33

6.	User	Documentation

				R.A.P	or	Registration	Assistance	Program	is	a	degree	tracking	system	is	a	system	

meant	to	aid	University	of	Regina	students	in	tracking	and	calculating	their	degree.	These	

include	tracking	courses	taken,	courses	needed	for	completion	on	the	degree	and	lastly	

course	grades	and	current	GPA.	Users	can	access	R.A.P	at	IP	addresses	

204.83.93.143:10080.	R.A.P	has	three	main	pages	in	which	the	user	can	access	as	well	as	

two	additional	pages	for	administrators.	This	user	manual	will	describe	the	operations	

and	basic	actions	available	on	each	page	such	as

● Regular	Users

A. Logging	in

B. Signing	up

C. Viewing	your	degree

D. Adding	a	course	and/or	grade	to	your	degree

E. Request	a	Course	to	be	added	to	Database

F. Viewing	requested	course	table

G. Logging	out

● Administrators

A. Reviewing	the	requested	course	additions	submitted	by	users

B. Adding	a	course	to	the	database

C. Giving	a	user	administrative	rights

D. Changing	a	users	password

E. Logging	out

34

Regular	Users	actions:

A.	Logging	in

All	users	are	able	to	accesses	rap	through	the	IP	address	of	

http://204.83.93.143:10080.	Users	will	be	brought	to	figure	1	and	are	able	to	sign	in	with	

an	email	indicated	by	the	red	arrow	and	password	specified	by	the	blue	arrow.	Both	email	

and	password	are	consistent	with	the	indicated	email	and	password	combination	specified	

at	the	time	of	signup.		Upon	ensuring	correct	information	and	clicking	the	button	labeled	

“submit,”	the	user	will	be	taken	to	the	home	page.	If	the	information	is	incorrect	error	

messages	will	be	displayed	above	the	field	that	is	incorrect.	If	the	user	is	new	to	R.A.P.,	

they	can	navigate	to	the	sign	up	page	indicated	by	the	green	arrow.

35

	 B.	Sign	Up

Users	can	sign	up	for	R.A.P	by	filling	in	the	information	on	the	sign	up	page	that	can	

be	accessed	through	the	login	page	under	the	sign	up	tab.	Users	must	enter	a	first	name,	

last	name	and	valid	email	address	in	the	input	boxes.	The	user	must	select	a	degree	from	

the	drop	down	box	labeled	degree	type.	They	must	also	enter	their	date	of	birth	by	

selecting	a	month,	day	and	year	from	the	drop	down	boxes	as	well	as	choose	a	password	

that	must	be	at	least	8	characters	long	and	contain	at	least	one	non-letter	character.	Upon	

clicking	the	submit	button	the	user	will	be	redirected	to	the	login	page:	however,	if	any	

information	is	rejected	an	error	message	will	be	displayed	above	the	corresponding	field.

C.	Viewing	your	degree:

36

Once	logged	in,	users	will	be	able	to	view	their	main	page.	Users	can	begin	to	add	

courses	to	their	degree	from	this	page.		Courses	taken	will	be	indicated	by	the	green	tint	

within	the	course	cell.	Courses	that	have	yet	to	be	taken	are	indicated	by	red	tint.	

D.	Adding	a	course	to	a	degree

Users will navigate to the side bar indicated by the blue arrow and select one or	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

37

more faculties by clicking and holding the command key this will	 	 	 	 	 	 	 	 	 	 	

populate the subject field with subjects from those faculties.	 	 	 	 	 	 	 	 	

Selecting one or more subjects and clicking the button labeled	 	 	 	 	 	 	 	 	 	

“submit” will then populate the course table with courses of	 	 	 	 	 	 	 	 	 	

the selected subject. From here the user can click the “add”	 	 	 	 	 	 	 	 	 	 	

button indicated by the green arrow and if the course has not	 	 	 	 	 	 	 	 	 	 	 	

yet been taken the course will then be added to the users	 	 	 	 	 	 	 	 	 	 	 	

taken	course	list.	

E.	Request	a	Course	to	be	added	to	Database:

Users	can	navigate	to	the	“request	a	course”	page	through	the	main	page	“Submit	A	

Course”	tab.	This	will	bring	up	a	page	that	will	allow	the	user	to	enter	information	

pertaining	to	each	course.	This	

information	includes	to	which	Faculty	

and	Subject	the	course	belongs,	

including	the	prerequisites	associated	

with	the	course,	the	course	number	and	

a	short	description	of	the	course.	To	add	

prerequisites	to	your	submission	follow	the	same	procedure	for	adding	a	course	to	a	

degree.	Upon	clicking	the	add	button	the	course	will	be	shown	within	the	prerequisite	

area.	Upon	clicking	“submit,”	and	as	long	as	the	information	is	correct,	the	course	will	be	

added	to	a	table	for	an	administrator	to	review.	Users	can	review	their	submissions,	as	

38

well	as	other	users’	pending	requests	in	the	“Review	Submitted	Courses”	link	in	the	

sidebar.	

F.	Review	Submitted	Courses

				Users	can	review	the	status	of	their	request	for	course	addition	by	navigating	to	

the	“Review	Submitted	Courses”	tab.	This	page	consists	of	a	table	of	pending	request	for	

course	additions.	If	a	user’s	course	is	no	longer	listed,	an	admin	has	either	accepted	the	

course	or	rejected	the	course.	In	the	case	that	a	course	is	accepted	it	will	be	added	to	the	

pool	of	valid	courses,	and	will	be	available	to	be	added	to	a	user’s	degree.	In	the	case	a	

course	is	rejected	by	the	admin,	the	course	will	no	longer	be	shown	in	the	request	course	

addition	table	and	will	not	be	available	to	be	added	to	a	degree.

G.	Log	out

				Once	a	user	is	done	using	R.A.P	they	can	log	out	of	their	

39

session	by	navigating	to	the	“log	out”	tab	located	in	the	side	bar	above	the	filter	course	

area.

Administrative	Actions:

Administrators	may	perform	all	the	actions	of	a	regular	user	by	following	the	same	

procedures.	However,	administrators	have	special	rights	while	adding	a	course	to	the	

database,	as	well	as	reviewing	the	requested	course	addition	table.	Administrators	are	

also	able	to	promote	and	demote	users	to	administrators.	Administrators	are	also	able	to	

change	the	password	of	a	user.

A.	Adding	a	Course	to	the	database

				Administrators	follow	the	same	procedure	as	regular	users	when	it	comes	to	

adding	a	course	to	the	database	on	the	“Request	a	Course	Addition”	page.	However,	

instead	of	the	course	being	added	to	the	“request	a	course	addition”	table	it	will	be	added	

straight	to	the	pool	of	available	courses.

B.	Reviewing	requested	Course	Addition	table

				Administrators	will	navigate	to	the	same	“Review	Submitted	Courses”	tab,	in	

which	all	users	are	able	to	see	courses	submitted	for	review.	The	administrator	will	have	

an	additional	table	column	however	with	accept	or	deny	buttons.	If	the	information	is	

correct	the	administrator	can	add	the	course	to	the	pool	of	available	courses	by	clicking	

the	accept	button.	Conversely	if	the	information	is	not	correct	the	administrator	can	reject	

and	delete	the	course	request	by	clicking	the	deny	button.	Or	Administrators	can	click	

40

modify	to	change	the	information	relating	to	the	course.

C.	Giving	a	user	administrative	rights:

				An	administrator	can	grant	user	administrative	rights	by	navigating	to	the	

“Modify	User”	tab	in	the	sidebar.	This	will	load	a	page	that	populates	a	table	full	of	users.	

The	administrator	can	browse	all	of	the	users	and	grant	administrative	rights	to	a	user	by	

clicking	a	“promote”	button	next	to	a	user’s	name.	Administrators	can	also	demote	users	

taking	away	administrative	rights	by	clicking	the	“demote”	button	next	to	their	name.	

41

A. Changing	a	users	password

Administrators	can	also	change	a	users	password	on	the	same	webpage	“modify	

User”	by	clicking	“changePass”	button	next	to	the	users	name	and	entering	the	a	new	

password	in	the	pop-up	box.

A. Logging	out

Administrators	can	log	out	the	same	way	regular	users	log	out,	by	navigating	to	

and	clicking	the	“log	out”	tab.

42

7.	Software	Testing

Software	Test	Cases:

(a)	Correctness	testing	with	some	data	tests	(at	least	5	test	cases).

1. A	required	class	when	added	should	appear	on	main	screen	with	correct	color

2. An	added	elective	should	appear	in	the	correct	spot	on	the	main	screen

3. The	same	course	should	not	appear	more	than	once	on	a	degree	listing

4. Overall	average	should	be	correctly	computed	and	displayed

5. Search	menu	should	correctly	filter	and	display	courses

(b)	Robustness	testing	with	some	incorrect	data	(at	least	5	test	cases).

1. Try	to	login	with	incorrect	password

2. Try	to	login	with	incorrect	username

3. Try	to	enter	invalid	grade

4. Request	a	missing	course	that	already	exists

5. Request	a	missing	course	with	incorrect	data	(Admin	Rejection)

(c)	Performance	testing	with	some	benchmarks	(at	least	5	test	cases).

1. Handle	2	number	of	simultaneous	users.

2. Pages	should	load	in	at	least	2	seconds

3. Search	menu	should	be	fast	and	responsive

4. Database	should	be	able	to	respond	and	load	requests	from	the	web	server	in	at	least	2	

seconds

Test
Case

Input Data Output Data Correct Behaviour

a1 Add CS 110 CS 110 Changes from red to
green

Yes

a2 Add ASTR 101 ASTR 101 appears as Natural
Science elective

Yes

a3 Add	CS	110	twice It	only	shows	up	as	CS	110	
and	not	as	an	elective	as	well.

Yes

a4 Input	class	grades Computed	average	displayed Yes

a5 Click	Science	faculty.	Then	 Class	number	only	shows	CS	 Yes

43

CS. classes

Test	
Case

Input	Data Output	Data Correct	
Behaviour

b1 Enter	incorrect	
password	and	try	to	
login

Re-direct	to	home	page	and	display	
incorrect	login	message

Yes

b2 Enter	incorrect	
username	and	try	to	
login

Re-direct	to	home	page	and	display	
incorrect	login	message

Yes

b3 Try	to	enter	grade	less	
than	50	or	a	string

Display	incorrect	grade	error	message Yes

b4 Submit	a	missing	course	
using	the	missing	course	
page(Correct	data)

Page	submits	and	is	added	to	the	
administrators	add	course	queue.	
Admin	then	accepts	valid	request	and	
it	appears	as	an	addible	course

Yes

b5 Submit	a	missing	course	
using	the	missing	course	
page(Incorrect	data)

Page	submits	and	is	added	to	the	
administrators	add	course	queue.	
Admin	then	rejects	invalid	request	and	
it	is	not	added	as	an	addible	course

Yes

Test	
Case

Input	Data Output	Data Correct	
Behaviour

c1 2	users	logged	in	at	the	
same	time.

Each	user	should	have	full	access	to	
the	site	and	not	notice	diminished	
performance

Yes

c2 Web	page	is	requested. Page	completely	loads	in	under	2	
seconds

Yes

c3 Click	a	faculty	and	
subject	and	the	
appropriate	menu.

The	menu	appropriately	loads	the	list	
boxes	in	real	time

Yes

c4 Fill	in	a	submit	a	course	
web	page

After	the	submit	button	the	next	page	
should	load	in	under	2	seconds

Yes

44

An	extra	testing	method	was	used	for	the	efficiency	and	organization	of	our	code.	This	

was	done	through	Google	Developper’s	“PageSpeed	Insights”,	giving	us	an	overall	rating	

of	83/100,	and	showing	the	access	speeds	for	the	different	pages	of	our	system:

45

46

47

8	+	9.	Group	Member	Contributions

(8.	All	code	should	be	handed	in	on	a	flash	drive,	see	User	Documentation	for	instructions	

to	access	the	website.)

Chris:	Database	Management,	Database	Diagrams+documentation,	Implementation,	

debugging,	Technical	Documentation,	Project	Proposal,	Software	Testing.

Nathan:	Basically	everything.	Implementation,	debugging,	Sequence	Diagrams,	Technical	

Documentation,	Project	Proposal,	Component	Diagram,	User	Documentation,	Software	

Architecture.

Mark:	Sequence	Diagrams,	Technical	Documentation,	Project	Proposal,	Component	

Diagram.

Anthony:	Class	Diagrams,	Technical	Documentation,	Implementation,	debugging,	Project	

Proposal,	compiling	final	project	document.

Dawn:	Implementation,	debugging,	Use	Case	Diagrams,	Use	Case	Specifications,	Technical	

Documentation,	Project	Proposal,	Component	Diagram,	Software	Qualities.

Ian:	Object	diagrams,	Use	Case	Diagrams,	UML	tools	documentation,	Technical	

Documentation,	Project	Proposal,	Deployment	Diagram,	compiling	final	project	document.

