0

0

ΦΦ

24VDC

Overview

The FA-DUINO is an Arduino-based industrial controller. It has features similar to those found in other Arduino products and can be programmed with the Arduino IDE.

Other Arduino products are not very well suited for fields such as factory automation. The FA-DUINO has been designed to handle signals of higher voltage and current, and remove the burden of external circuit design and fabrication from the user.

The FA-DUINO requires only simple connections to its terminal blocks and headers without the need for external peripherals.

The FA-DUINO-24RA

The FA-DUINO-24RA has a built-in Mega2560 MCU

- Program memory: 256KB
- SRAM: 8KB
- EEPROM: 4KB
- Clock Speed: 16MHz
- 16 24VDC Inputs (pins 30~45)
- 8 10A Relay Outputs (pins 22~29)
- 2 RS-232C Communication Port
- 1 RS-485 Communication Port
- 4 0~10V Analog Inputs
- 4 0~20mA Analog Inputs
- 10-bit ADC (0~1023)
- Powered by 24VDC
- Operating Temperature: 0 ~ 60°C
- Operating Humidity: 35 ~ 85% RH

Programming the FA-DUINO

The FA-DUINO can be programmed using the Arduino IDE available from <u>http://arduino.cc</u>

Arduino IDE

Arduino 1.0.5

Download	Next steps
Arduino 1.0.5 (release notes), hosted by Google Code:	Getting Started
NOTICE: Arduino Drivers have been updated to add support for Windows	Reference
8.1, you can download the updated IDE (version 1.0.5-r2 for Windows) from	Environment
the download links below.	Examples
- Windows Installer, Windows ZIP file (for non-administrator install)	Foundations
- Mac OS X	FAQ

- Linux: 32 bit, 64 bit

Select the Arduino Mega 2

etch_aug19:	Auto Format Ctrl+T Archive Sketch Fix Encoding & Reload Serial Monitor Ctrl+Shift+M		
	Board > Serial Port >		Arduino Uno Arduino Duemilanove w/ ATmega328
	Programmer Burn Bootloader		Arduino Diecimila or Duemilanove w/ ATmega168 Arduino Nano w/ ATmega328 Arduino Nano w/ ATmega168
		•	Arduino Mega 2560 or Mega ADK
			Arduino Mega (ATmega1280) Arduino Leonardo Arduino Esplora Arduino Micro Arduino Mini w/ ATmega328

Select the PC COM port that the FA-DUINO is connected to from the Tools-->Serial Port menu. You can find the COM port number in Windows Device Manager.

Device Manager
<u>File Action V</u> iew <u>H</u> elp
Þ 🔿 🖬 🔽 🖬 💐
Ports (COM & LPT)
USB Serial Port (COM11)
USB Serial Port (COM5)
Processors
Sound, video and game cont
Storage controllers

Vrite your	program,	and	
A-DUINO.			

O POWER O STATUS(13) FA-DUINO-24RA (Mega2560) CE COMFILE OUTPUT 23 25 28 27 00 00 ΦΦ ΦΦ ΦΦ ΦΦ ΦΦ 00 2 0 0

FA-DUINO-24RA User's Manual

000000000000000000

45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30

INPUT (20 ~ 28V DC)

Warning

- 1. For instruments with risk to life or property (e.g. nuclear power control, medical equipment, vehicles, railways, aviation, combustion equipment, recreation equipment, safety devices, etc.), always employ adequate fail-safe mechanisms.
- Risk of fire, personal injury, and/or property damage.
- 2. Always mount to a panel.
- 3. Do not attempt to repair, inspect, or wire while power is applied.
- 4. Do not attempt to alter or repair. Refer to a qualified technician.
- 5. Confirm all electrical connections

Caution

1. Do not use outdoors.

- 2. Always use the product within its specifications and ratings. - Risk of fire and shortening of product's life.
- 3. Do not exceed ratings of relay switching contacts.
- 4. Does not use in environments with flammable or explosive materials, moisture, direct sunlight, radiation, vibration and/or shock.
- 5. Keep product free of dust and debris.
- 6. Make connections correctly and confirm polarity by measuring at the appropriate terminals.

- source

	2560	option	from	the	Tools	>Board	menu.
--	------	--------	------	-----	-------	--------	-------

click the "Upload" icon to compile the program and upload to the

Using Proximity Sensors

Proximity sensors can be used to detect the existence, movement, and displacement of objects without any physical contact with the object. They are used quite often in the field of automation.

DC 2-Wire Model

Sensor output connected in reverse

DC 3-Wire Model (PNP type)

Sensor output connected in reverse

DC 3-Wire Model (NPN type)

Sensor output connected in reverse

Numbe	er of Inputs
Input \	Voltage Range
Recom	mended Operating
On/Off	Switching Speed
Input I	Impedance
Output	Relay Specificatio
Numbe	er of Outputs
Input \	/oltage Range
Recom	mended Operating
On/Off	frequency
Maxim	um Current

Minimum Current

Analog I/O Specifications

An
Resolution and Error
Input Current Range
Recommended Operating
Туре
Ana
Resolution and Error
Input Voltage Range
Operating Voltage
Туре
Communication Spec

Туре
Flow Control
Maximum Baud Rate
Maximum Distance

Digital I/O Specifications

Input Specifications		
	16	
	20VDC ~ 28VDC	
Voltage	24VDC	
	10ms (Ladder Scan Time is 10ms)	
	2.2kΩ @ 24VDC	

ons

	8
	5 ~ 30VDC / 4 ~ 264VAC
Voltage	6 ~ 27VDC / 6 ~ 240VAC
	10Hz (10 times per second)
	10A per relay
	100mA per relay

alog Current Input (0 ~ 3) Specification		
10-bit, +/- 2%		
	0mA ~ 22mA	
Current	4mA ~ 20mA	
	Non-isolated, Built-in LPF	

log Voltage Input (4 ~ 7) Specifications		
	10-bit, +/- 2%	
	-0.5VDC ~ 10.5VDC Don't connect series resistance	
	0VDC ~ 10VDC	
	Non-isolated, Built-in LPF	

ifications

Communication Port Specifications		
	RS-232 (+/- 10VDC)	
	No RTS Flow Control	
	115200	
	2 meters	

Simple Examples	Example 4 – Analog Input with the Serial Monitor	Interfacing with the UIF
Evenue 4 Electrica the Status LED	<pre>int ADI_Value0; int ADV Value4;</pre>	The UIF-5K is a 5-key chara DUINO to add a simple user
const int StatusLED = 13;	void setup()	
void setup()	{ Serial.begin(9600);	
{ pinMode(StatusLED, OUTPUT); }	yoid loop()	
void loop()	{ ADI_Value0 = analogRead(A0);	
<pre>{ digitalWrite(StatusLED, HIGH); delay(1000); digitalWrite(StatusLED, LOW); delay(1000); }</pre>	<pre>delay(100); ADV_Value4 = analogRead(A4); delay(100); Serial.print(" CH 0 = ");</pre>	
	<pre>Serial.print(ADI_Value0); Serial.print("\n");</pre>	Front View
Example 2 – Toggling a Relay	Serial.print(" CH 4 = "); Serial.print(ADV Value4);	
const int Relay22 = 22;	<pre>Serial.print("\n\n");</pre>	
<pre>void setup() { pinMode(Relay22, OUTPUT);</pre>	<pre>delay(200); }</pre>	
}		
<pre>void loop() { digitalWrite(Relay22, HIGH); delay(1000); digitalWrite(Relay22, LOW); delay(1000); }</pre>		
Frample 3 – Input and Output Control		Rear View
const int StatusLED = 13;		
const int Input_4 = 4;		
<pre>void setup() {</pre>		
<pre>pinMode (StatusLED, OUTPUT); pinMode (Relay22, OUTPUT); pinMode (Input_30, INPUT);</pre>		
void loop()		
<pre>{ if (HIGH==digitalRead(Input_30))</pre>		
<pre>{ digitalWrite(StatusLED, HIGH); digitalWrite(Relay22, HIGH);</pre>		
} else		
<pre>digitalWrite(StatusLED, LOW); digitalWrite(Relay22, LOW); }</pre>		The following shows how to separately with a 9V~24V s
}		

F-5K

racter LCD panel that can be used in conjunction with the FAer interface.

	Description
1	LED Indicator
2	Character LCD (Characters, Numbers and Symbols)
3	Key Value for RS-232 Communication: F1 – 0x01 (1 byte) F2 – 0x02 (1 byte) F3 – 0x03 (1 byte) F4 – 0x04 (1 byte) F5 – 0x05 (1 byte)

to connect the two together. The UIF-5k must be powered supply.

Example 1

The following source code will output text to the UIF-5K's display.

==== UIF 5K TEST ==== FA-DUINO-24RA **(F5)**

Serial1.begin(115200);	//Baud rate	115200
if clear();	//Clear the	display
lelay(20);		
if_buzzer(1);		
lelay(20);	//buzzer on	
if_locate(0,0);		
Serial1.print("=== UIF 51	K_TEST ==="),	;
lelay(100); uif_locate(2	2,1);	
Serial1.print(" FA-DUINO	-24RA ");	
lelay(100);		

void loop() }

// Clear the display void uif clear()

Serial1.write(0x1b); Serial1.write(0x43);

// Set the cursor the given x & y coordinates void uif locate(unsigned char x, unsigned char y)

Serial1.write(0x1b); Serial1.write(0x4C); Serial1.write(x); Serial1.write(y);

// Turn the buzzer on (1) or off (0) void uif buzzer(unsigned char on off)

Serial1.write(0x1b); Serial1.write(0x5a); Serial1.write(on off); Example 2

The following example will display the result of a button press on the UIF-5K's display.

void setup()

Serial1.begin(115200); // baud rate 115200 uif clear(); // Clear the display delay(20); uif_light(1); delay(20); // backlight on uif buzzer(1); delay(20); // buzzer on delay(100); uif_locate(0,0); Serial1.print("=== UIF 5K TEST ==="); delay(100); uif locate(2,1); Serial1.print("comfiletech.com"); delay(100); uif_locate(2,2); Serial1.print("COUNTER : "); delay(100); uif locate(2,3); Serial1.print("BUTTON : "); delay(100); int cnt = 0;void loop() cnt++; // Increment the counter uif locate(12,2); Serial1.print(cnt, DEC); // Display the count delav(100): serial1Event(); void seriallEvent() $\ensuremath{{//}}$ Display the value of the button pressed while (Serial1.available()) char inChar = (char)Serial1.read(); uif locate(10,3); Serial1.print(inChar, DEC); // Display (1) or hide (0) the cursor void uif csron(unsigned char on off) if(on_off) Serial1.write(0x1b); Serial1.write(0x53); else Serial1.write(0x1b); Serial1.write(0x73);

// Clear the display void uif_clear()

Serial1.write(0x1b); Serial1.write(0x43);

// Turn the backlight on (1) or off (0) void uif light(unsigned char on off)

Serial1.write(0x1b); Serial1.write(0x42); Serial1.write(0x4c); Serial1.write(on off);

// Set the cursor to the given x & y coordinates void uif locate(unsigned char x, unsigned char y)

Serial1.write(0x1b); Serial1.write(0x4C); Serial1.write(x); Serial1.write(y);

// Turn the UIF-5K's LED on (1) or off (0) void uif swled(unsigned char on off)

Serial1.write(0x1b); Serial1.write(0x45); Serial1.write(on off);

// Turn one of the UIF-5K's button's LEDs on (1) or off (0) void uif led(unsigned char number, unsigned char on off)

Serial1.write(0x1b); Serial1.write(0x46); Serial1.write(number); Serial1.write(on off);

// Turn the buzzer on (1) or off (0) void uif_buzzer(unsigned char on_off)

Serial1.write(0x1b); Serial1.write(0x5a); Serial1.write(on_off);

Interfacing to a Character LCD (CLCD)

Connect the FA-DUINO to the CLCD via RS-232 as shown in the image below. Set all the dip switches on the CLCD to the ON position. The baudrate should be 115200.

The CN-RS232485 can be used to convert the FA-DUINO's RS-232 signal to RS-485.

Interfacing to the ML-THRT1

The ML-THRT1 can be used to measure temperatures from -100 $\sim500^\circ\!\!C$ through a PT100 resistance thermometer.

For more information please see the ML-THRT1 user's manual.

