X Semantics in the field of widgets: a case study
in public transportation departure notifications

Alena Kovarova and Lucia Szalayova

Faculty of informatics and information technologies, Slovak University of Technology,
Bratislava, Slovakia

Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Abstract. Widgets are becoming increasingly present in our everyday routines,
which makes their portability and reusability desirable properties. As a particular
example, we consider public transportation passengers who are extensively using
the internet to make their lives simpler. In order to minimize the time spent at the
bus stop, they use to check their bus line departures on the web before they leave
their homes or offices. For this purpose, there exist several internet portals provid-
ing information on local transportation time schedules. This chapter starts by pre-
senting a better way (quicker and easier) of obtaining the same information — us-
ing an adaptive desktop widget with comfortable user interface. The second step is
the utilization of the semantics of considered data in order to make the widget
portable through different data sources of the same domain.

X.1 Introduction

Due to the continually growing volume of information that is made freely
available online, people often find themselves in the inconvenient situation where
they have to invest disproportional effort and time in order to interact with the in-
formation sources they use. Everyone subconsciously or consciously estimates
how long it will take to obtain the desired information and more importantly
whether this information is worth this time and effort.

This process includes for example decisions such as which electronic newspa-
per to read, which sports section to monitor, which broadcast to watch, which web
pages contain relevant information and so on. This is of course a daily struggle;
most of us would appreciate the time-saving and effort-saving option of having
this “personalized” information wait for us somewhere nicely aligned. To come as
close as possible to this vision, we come to the point of choosing a favorite news-
paper, favorite channels and programs, favorite web pages; simply said: favorite

information sources. But this is still not enough; even within these favorite sources
it is still needed to search and to filter. This simply reflects the fact that the major-
ity of the available information sources are built for the masses and therefore do
not have any implemented personalization / personal adaptation features to serve
the needs of each individual person.

The abovementioned quest for information can be divided into three distinct
types, which refer to a case in which someone is searching for:

1. general knowledge (whether in an unknown or a known field)
2. specific information in an unknown field
3. specific information in a known field

In this work we focus on information quests of the third type. This means that
auser is interested in specific information from some known area and that he
knows where to search for it and how to filter the information that is available at
that location; the user already has a favorite source for this information. In other
words, in our case the user is able to formulate his requirements in greater details
and to be explicit. Examples of such requirements could be: “I want to monitor
this specific list of stocks on the stock-market and I have no interest in the fluctua-
tion of other stocks or of the general index.” or “I need to have the current weather
forecast for the city where I live and I prefer to have it in textual and image form.”
While this is a known area and the experienced user knows where and how to find
(manually) the information he is interested in, the problem that remains is how to
transform such a requirement into a computer language so that a computer can
look for the information (automatically) instead of the user.

To understand this problem practically, let’s have a look at a specific case, the
average morning of a “John”. John looks for information on bus departures from
home to work. It takes John a little bit of time till he opens the relative web page
in his web browser — it always takes John a few seconds to perform this task. The
time depends on the degree to which John is capable of customizing the system he
is working with and also on how much different settings will allow him (if they
exist as an option) to speed up obtaining his desired information. Our goal is two-
fold: to minimize this time and to relieve the user from the manual customization
of the information source.

Clearly John's (and also our) requirement can be formulated like this: "I want to
know, when my bus is going from where I am now and in the usual direction." It
is important to notice words "my", "where" and "usual" because these assume an
application is able to estimate the number of his bus, where he is and which direc-
tion he wants to travel. Once an application fulfilling this requirement is devel-
oped, a second question rises: "If John would move, could he still use the applica-
tion?" If the widget worked at a semantic, rather than flat information, level, then
that kind of portability would be possible too, allowing John to continue using the
tool he is accustomed to, even when his own circumstances and context change.
The design and development of such a tool is the objective of this chapter.

The remainder of this chapter is structured as follows: Section 2 contains
a brief survey of different solutions for the retrieval of desired information via
browsers and widgets. We point on their pros and cons in view of our purpose.
Section 3 describes our widget starting with possible data sources, through system
overview and widget basic functionality. We also explain widget architecture and
give a closer view at its data model. Section 3 is closed by widget evaluation. Sec-
tion 4 deals with semantics and the corresponding ontology model, which could
make the widget independent on data source. We compare our model with other
ontology models, which belong to the same area, but they are based on different
requirements. Section 6 lists our concluding remarks.

X.2 Related background

Let's have a closer view of the user's possibilities of

searching,

filtering,

retrieving the web data within specific site,
customizing web-application for his own benefit
how to obtain some web page the quickest way

It is the same for any kind of problem of the third type — when the user knows
where to search and how to filter. So our first question is: What is the usual way to
obtain information from Internet? Omitting the highly specialized web-
applications, it is the well-known browsing.

X.2.1 Traditional access to resources on the web using web
browsers

The most used are internet browsers e.g. Microsoft Internet Explorer, Mozilla
Firefox, Safari or Opera. And how can the average internet browser save time?
The user can set up some settings e.g. to save his favorite web page via “Add to
Favorites”, to make some pages as his “home-page”, to “Show the windows and
tabs from the last time” when internet browser starts. Such settings allow the user
to set up different things about web pages but there is no possibility to specify or
to ask for specific information within the web page (if the user wants just a part of
the page). A little improvement brought Microsoft Internet Explorer 8 with Web

Slices, which use simple HTML markup to represent a clipping of a web page,
enabling users to subscribe to content directly within a web page'.

To move closer to user needs, next to generic internet browsers we find site
specific browsers. This type of browser is designed to create a more comfortable
environment for the user, especially when browsing “the favorite” sites e.g. for e-
mails or on different types of social networks. Examples of the site specific
browsers are: Fluid (for Mac OS X), Mozilla Prism, Google Chrome or Bubbles.
They are web-applications, which have the same core as web browsers but from
the outside they look like desktop applications. They offer drag & drop function
and have many other nice features, maybe they have some settings, which can be
manually set up and then the user can obtain his information even quicker as in
web browser, but they still do not guess user’s focus, do not give a chance to filter
(specify which part of which web page) and do not offer the way of presentation.

Apart from bookmarking systems built-in web browsers, users can take advan-
tage of bookmarking web services, such as social bookmarking system Delicious?
(formerly del.icio.us). Such services provide them with the possibility to organize
their bookmarks by using tags and to have their bookmarks available independ-
ently of user’s location and browser.

Another option, which can significantly speed-up user access to relevant infor-
mation are personalized and adaptive web-based systems [2], especially when
combined with site-specific browsers. Appropriately trained personalized web
based system can often display the information the user is looking for directly on
the first page.

X.2.2 Widgets

Without implementing own engine or robust system, a chance for solving our
problem could be found between widgets (sometimes also called gadgets). In our
context, they are not some elements, which help the user to navigate or to orientate
or to pick a choice, but they are single-purpose mini-(web-)applications, which
typically have a minimal size and are dedicated to bring simple solution based ef-
fect while a user is working with a computer. Their functionality is oriented to
one, specific goal — to display very specific information. They can be of two types,
either for the web (web-widgets) or for the desktop (widgets) [3]. The latter one
can be for computer as well as mobile devices [1]. In this work we focus on the
desktop widget for computers, which can be freely located and easily combined
within the desktop. Most often used engines for widgets or gadgets are:

! Internet Explorer 8: Features — Web Slices http:/www.microsoft.com/windows/internet-
explorer/features/easier.aspx

2 Delicious — social bookmarking http://delicious.com/

http://www.microsoft.com/windows/internet
http://delicious.com/

Konfabulator® from Yahoo! for Windows XP+ and MacOS
0 known as Yahoo! widgets*
Windows Sidebar from Microsoft for Windows Vista
0 sidebar with gadgets on Windows Vista desktop
Google Desktop Gadgets® from Google for Windows XP+
0 in a form of Google Desktop
Opera Widgets® from Opera for Beta MacOS 10.5 and Windows XP+
Dashboard’ from Apple for MacOS 10.5
0 as the 2" desktop with widgets
Joost Widgets Joost 1.0 Beta Mac OS 10.5, Windows XP, Windows Vista

Most of them use a kind of API which processes mainly HTML, JavaScript,
XML and CSS files.

There are some differences between different enterprises of widgets and gadg-
ets for desktops. From the user perspective some widgets are represented by views
or icons which are located in a standard sidebar of the desktop and the widget be-
come active only after click initiation where the icon spreads itself to the desktop.
After this the widget can be relocated as wished. On the other hand some gadgets
have almost double sized sidebar wideness as the widgets where gadgets are pro-
viding the service during all the time of activeness. After clicking on it gadget
spreads itself and increases the service quality or quantity whereas relocation is
limited within the sidebar.

From an implementation point of view there are three possibilities for the user
on how to have their own personal widget. The user should first decide which API
he wants to use and if it is not already a part of his system or application, he needs
to install it. Then those three choices are:

1. To find it on the web page with plenty of complete widgets, download it,
manually set up it and use it.

2. To read a tutorial for extending a generic widget and follow simple instructions
to created a specific one.

3. To read a tutorial for developers and program their own widget.

Which of these three will be chosen is highly dependent on the type of informa-
tion, which should be displayed (the way of displaying is not now taken in to ac-
count). Just like the site specific browser, the complete widgets cover the demand
of the majority. Therefore non standard requirements are not covered by the first
choice. If there is already a service as an RSS or a web-service, which can be re-
quested for information, the second choice is sometimes enough. But in case of

3 Konfabulator, Reference manual, Version 4.5 http://manual.widgets.yahoo.com/

4Yahoo! widgets, http://widgets.yahoo.com/win

> Google Desktop, http:/desktop.google.com/index.html

® Dev.Opera,, http://dev.opera.com/articles/view/creating-your-first-opera-widget/

7 Dashboard widgets for Mac OS X Dashboard, http://www.apple.com/downloads/dashboard

http://manual.widgets.yahoo.com/
http://widgets.yahoo.com/win
http://desktop.google.com/index.html
http://dev.opera.com/articles/view/creating-your-first-opera-widget/
http://www.apple.com/downloads/dashboard

non-existent complete widget or service, the only choice is the third. The last one
also gives a space for developer to implement some features, which would offer to
the user some kind of personalization. But generally there is no effort to imple-
ment widgets for one purpose with a broad usage (i.e. independent of information
source); those, which obtain information from Internet, all are exactly one site or
exactly one web-service oriented. It is because there is no standardization for these
sites or services, which would be applied in such widget.

X.3 Public transportation departure widget

Based on the survey presented in the previous section, we can implement
a widget, in order to John’s request: "I want to know, when my bus is going from
where I am now and in the usual direction." Widget technology is suitable for this
purpose, while the request needs a very little space of user's desktop to display
relevant information - the closest departures of chosen (guessed) stop, direction
and line from public city transport. This tiny desktop application is mostly suitable
for laptop owners (where the mobility can increase the need of extensive transpor-
tation) as well as for any computer user who is interested in his/her favorite line
schedules.

Here and in the following section we explain what the needs of our user are,
which the features of the widget fulfilling these needs are and how they work to-
gether. Finally, we tackle the two main related theoretical questions: “Would it be
possible to use metadata describing data semantics in order to make the widget in-
dependent of an information source?” and “What should the ontology model look
like?”

Our first key point was to look for suitable information sources (to show, they
are not good enough and to choose one of them as our data source) and the second
is to gather user’s requirements for the application.

X.3.1 Sources of public city transport departures in Bratislava

There are three well-known web sources of public transport information for
Bratislava. In following lines are shortly described all of them with emphasis on
user possibilities.

The very first source is the web site http:/www.dpb.sk [4]. This web site is
administrated by the public transportation provider for the area of the capital city
Bratislava in Slovakia. Process of reaching information (there are only timetables
with departures) is relatively complicated and there is required a manual action —
there are six steps needed within the browser. Thus, this source is not very favored
between users. More over, it is not possible to personalize these pages.

http://www.dpb.sk

The second solution can be found within the web site http://www.imhd.sk [7]
(imhd). This site is probably the most used. There is for example a useful feature
where the user can search also the stop to stop combination. An attractive service
of the imhd is an email notification possibility - where actual changes, exclusions,
news and useful information can be provided. Personalization possibility is very
limited — thus, searching for relevant information is not brisk.

The last and the most recent source is web site from http://www.cp.sk [5], what
is the National information system of timetables for Slovakia. This web site offer
all kind of timetables for trains, buses, flights and different public city transports
within Slovakia. Taking in to account only public city transport, the user can find
his route by setting the starting stop, the last stop and time of departure or desired
arrival. The connection is found within interchanges, but user can ask also for di-
rect connections only. The other choice is to get the entire timetable for one line at
some stop for set date or to get the schedule for one bus and its route. The only
possible personalization is to save the displayed page as the favorite one.

From previous lines it is clear, that there is no service, which would give us the
required information on demand; there are only different web sites. Since our re-
quirement is so specific, we had to choose the third choice: to program our own
widget. Evaluating the pros and cons of different widgets APIs we have decided to
implement the widget using the Konfabulator and we chose imhd as a data source
for our widget, while it had structured html code good enough to parse it to our
database.

X.3.2 System overview

The idea of widget with line departures shall not substitute any of above men-
tioned information sources. To explain the difference closer, imagine a following
scenario: John is at work. He knows which buses stop next the building and knows
which one is suitable for him. But he does not remember its departures and just
wants to know what the closest time his bus comes is, because he does not want to
stand on that bus stop for ages. Of course, he does not want to browse internet,
where he either has to click many times or has to fill some input boxes always
with the same strings. He used to print out the entire timetable for his bus, but he
always needed to check time and search for relevant value in paper. John is not in-
terested in transfer between lines, he does not search for the quickest or the cheap-
est route. He does not need to know, when he will arrive to his destination.

As we already mentioned, our two goals are to minimize time/effort and man-
ual customization, in other words, we want to fulfill John’s requirement the way,
which would minimize the number of his actions and accelerate the access to the
information. The widget, which can follow this, has to have at first some input and
output. Example of input is when the user chooses a number of a line. This input is
continuously monitored, what enables our widget to adjust to the user. The output

http://www.imhd.sk
http://www.cp.sk

is displayed to the user - view. Our output is desired departures, which are loaded
either from a local database, or downloaded from a web. When downloading is in-
duced, new data are stored in local database. The last case for user is the possibil-
ity to set up predefined locations (Fig. X.1, upper part), that enables the user to ad-
just the widget from the first touch.

Local database
actualization

<<include>>

Online loading

Loading from
local database

Monitor user
choices

Local database
clean up
Auto-actualization
of local DB
Actualization
of displayed data

Figure X.1. Use case diagram of widget system

Time

As departure schedules are from time to time changed, these changes need to
be translated into the local database update to provide the user with the most up to
date information. This updating process can run automatically every week, but the
user can at any time, switch off this updating. There is also case for automatic
clean up to erase data which are not used and are old. And the most important is to
keep fresh data in displayed area — current departures, what is the last case of time

actor (Fig. X.1, lower part).

X.3.3 Widget Basic Functionality

Basic widget functionality is to display the upcoming five departures of se-
lected line from the chosen stop in a set direction (Fig. X.1, case Input choices).
To get this, the user has to go through three steps, which should be done in proper
and intuitive order:

1. Select a line number — from a list within the dropdown-menu (Fig X.2, point 1),
selection is needed only if the user does not want the automatically chosen.

2. Change a direction — simple click (Fig. X.2, point 3), needed only if the widget
wrongly proposed the inverse one

3. Choose a stop — from a list within the dropdown-menu (Fig. X.2, point 2),
shown are only those stops which belong to the previously selected line. This
selection has to be done only if the automatically chosen stop is not the wanted
one. In the case of the first-time line selection, the first stop of selected line is
pre-selected.

©202 Ciizski @)
Cilizska -» Rajské ©
202 Rajskd 14:10 (3)
202 Rajska 1422 (15)
202Rajski 1434) O

202 Rajska 14:46 (39)
| 202 Rajska 14:58 (51)

o (g da
e 0

Figure X.2. Widget description

ta copyright

After these three steps, whether they were done automatically or by the user,
the upcoming five departures are displayed (from current time). The widget dis-
plays exactly: line number + direction + departure time + time-left in minutes (Fi-
g. X.2, point 4). To have current data at any time, actualization is performed every
minute.

To alleviate the user from permanent time checking — how many minutes re-
mains to a departure - we implemented also one extra feature — sound. The widget
can announce the time of the next departure e.g., "Next bus arrived at 12:00. That
is in 3 minutes." Of course, this function can be turned off (Fig. X.2, point 5).

Finally, every application should have a Help (Fig. X.2, point 6). Our Help
contains a user manual.

10

To make it more user friendly, we gave the user the possibility to set up his fa-
vorite locations manually (Fig. X.1, case Pre-defined location settings): The user
can for every location choose several lines (with respective stops and directions),
which he usually travels with, for example from school or office. The user can
name it e.g., route “school->home”. The output is the same as within the basic
functionality, only the upcoming five departures differ in line number and name of
stop. Departures are ordered in the usual way — according to time of departure
(Fig. X.3)

doma -> praca
201 Hlavna stanica 08:35
75 Kadnarova 08: 39
202 Raijska 08 : 41
201 Hlavna stanica 08:45
202 Raijska 08 : 51
data copyright

Figure X.3. Widget setup for multiple lines within one route (in Slovak language, translation of
route: Home -> Work)

The last of the basic widget functionalities is widget ability to adjust to the
user's needs. As we do not use any other information sources (e.g. browsing his-
tory) to find out what are user’s usual bus stops and bus lines, the widget has
empty database (except default data) at the beginning. While the user uses the
widget, it monitors his choices and stores number of selection of each choice in
the local database (together with downloaded data). Finally, the most often chosen
option can be pre-selected automatically and thus accelerate the service access.

X.3.4 System architecture

We chose the Konfabulator as an engine for our widget. It means, we used
mainly XML and JavaScript for programming and supported SQLite for our local
database. Our system can be divided in following parts (Fig. X.4):

GUI — Graphics User Interface, which use to send data (user choices) to the
Task manager and according to them can ask the Task manager for new data from
local database. The GUI can also send information about user's choices to User
profiler

The User profiler updates in database the number of user's selections. And re-
member the user's settings including his favorite locations / routes. Anytime the
user chooses a line number, stop or direction, its relevancy raises.

The Task manager

updates GUI (departures) either because of time or user's different choice,
updates the local database (data downloaded from Public transport information
provider, if there was an Internet connection) and

cleans up the local database - due to performance optimization the Task Man-
ager will erase the least selected lines out of the database in certain period

Widget
User profiler
actions

a
T ®
o Q data
e} % Task manager GUI

°

data blic Public transport
Parsers £ -
(HTML) Downloader transport info | | information provider

calendar info

Calendar
provider (holidays)

Fig. X.4 Conceptual architecture of the public transportation departures widget

The Downloader downloads entered web page, therefore it is needed an Inter-
net connection, when user wants to download new time tables or a new calendar.

An input of the Parser is raw data (HTML code of a web page), which is parsed
and stored in respective columns of the local database — wherefrom it will be
loaded for the user as requested.

X.3.5 Data model

To parse one web page takes several seconds, what was contrary to our goal.
Therefore we needed to store the data in our local database. The most important is
to store lines, their stops and departures for terminal stops. While there is a differ-
ence in timetables depending on day type, we enlarged our database with two
small separated tables — public and school holidays (Fig. X.5).

The line table contains data about the line previously loaded by system. By
lines there is a learning ability applied - so one of the attributes is used to specify
the incremental value of line selection count.

The line stops table is loaded by data parsing of the left part of the schedule list.
It contains information about stops of a respective line and time lag between each
two upcoming stops in a route. Here is the learning capacity of the system done by

12

incrementing the station selection count - selection of the station for specific line
and direction.

The departure table, in database, represents departure times out of the base sta-
tion - so the time of arrivals for specific station is calculated using the initial de-
parture time and summary of time lags until the desired station. As departures are
differentiated based on the actual day (working day, weekend, public holiday or
school holiday) this feature is taken into consideration.

lines line stops departure
pk :int pk :int pk : int
number : int . | number : int 1 « | number : int
vehicle type : int ! name : string line stop : string
number of selections : int direction from : string time : date
terminal stop 1 : string time-shift : int special : boolean
terminal stop 2 : string holidays : boolean

weekend : boolean
number of selections : int

school holidays

pub!lc holidays pk - int
pk : m.t date from : int
date: int date to : int

region : string

Fig. X.5 Logical data model of the widget database

Previously mentioned day differentiation is being done by recognizing a week
day (working or not) whereas a special feature for recognition of public or school
holidays is represented within separate tables with these special days. A list con-
taining the school holidays is updated yearly - this list can be gathered in the site
of The Ministry of Education in Slovakia®. Attribute region is necessary, while
school holidays in our country differ on the basis of it.

X.3.6 Evaluation

Evaluation was done among the students of the Faculty of informatics and in-
formation technologies of Slovak University of Technology in Bratislava. Tests
were performed by 10 volunteers who use the computer on a daily basis.

Their task was to download a new line (of public transport) in the application to
display departures for one of its stops. By starting the widget, instruction guide-
lines were displayed, but were usually skipped by the testers. As testers realized
during their first attempts that the widget displays only one default line, guidelines
were used to get the information on how to extend the widget’s functionality.

8 The web site of The Ministry of Education in Slovakia, http:/www.minedu.sk

http://www.minedu.sk

13

Overall, it took generally less than three minutes for users to find the desired link
information. Testers observed the specific feature of the application - due to data
parsing after the URL was set — that it was not possible to influence the widget for
a moment. This feature has been previously well documented also within the
guidelines.

One special feature of the widget is sound — the widget can announce the time
of the next departure. This feature was also tested (the speech was realized by us-
ing the Windows functionality of automatic reading of given text). This voice
functionality was evaluated as being very popular by the users, whereas the widget
was rated in a very positive way as a whole. No negative features were found.
Testers came out with one recommendation: to display departures in centralized
printout within the frame.

The system has been implemented according to its design. During the imple-
mentation several traps occurred. One of the most complicated was not well-
structured HTML code of imhd pages. Pair tag rules were many times broken,
what forces us to deep study of the source code. It was necessary to identify key
points within the HTML code which were used to identify the load sections. This
way is complicated for the implementation and execution as well. Due to this fact
implementation of automatic data updating has not been implemented — to update
database (departures of a few lines) would take several minutes and during this
time widget would be out of order. Due to this fact updating can be done if initi-
ated by user in the same way as adding a new line.

X.4 Extending the widget with semantics

Coming back to question posed earlier in this chapter: "If John would move,
could he still use the application?" It would be suitable, if our widget would work
although it will have different information source with the same type of informa-
tion — line departures. This idea assumes that the provider provides data also with
their semantics. Such providers are very rare as well as widgets working with such
data; more often are web widgets e.g., in project of Eetu Mékeld with colleagues
[6]. But the principle is the same, so we created our own ontology model (Fig.
X.6) to represent the semantics and relations within data we are working with —
parsing, storing and displaying in our widget. This ontology model includes all
three main tables and their attributes from our data model.

14

Departure

Fig. X.6 Ontology model of data from public transportation departures widget

To check the compatibility with provider, let's assume that the provider pro-
vides the same model as presented Junli Wang and his colleagues in their work
[8]. Their model is not meant for widgets, but it also deals with public transporta-
tion. Their purpose is oriented on public transport query as transfer trip scheme,
route query and station query. That is a wider range of public transport domain
than ours, thus also their ontology model is wider (Fig. X.7). Omitting the con-
cepts, we do not use in our model, and leave the same ones out, it is noticeable
only one serious difference: the concept of route with its timetable. We do not
have anything like this in our model, while we can calculate it from departure
from terminal stop plus time-shift to selected stop. Our model expect the timetable
of departures (from terminal) without knowing the last stop, but their always need
to have set the first and final one. This leads us to two conclusions. The first one
is, our widget would not work on their ontology model unless we would reimple-
ment our widget, and the second is that our ontology model is better, since we
used departures, what is semantically lower concept than route — route can be eas-
ily calculated from departures.

] Address
2 T Vehicle T Trolley Road
Number 1 No.
Subway — > Company
Route 1Kl E—
Ferry ——{> Speed 1
Driver Name
Organization Property
Name Beginning
Termination
Transfer trip scheme Property
s Address —
tart. . Location 1 » Location
Destination :
Plan sets Longitude
€ Latitude
Station
n
Location :
] Alias
Alias &
2 Station name

Up Route > Route

- 1 y Timetable
Stations passed -
Down Route Timetable [F!rst
Ticket Price Final
Interval

—-D Subclass ®—® Semantic implication H Relations

Fig. X.7. Urban public transport ontology [8]

X.5 Conclusions

It was already well known that it is possible to implement a widget (as a client),
which downloads and parses data from some web source (server side). Moreover,
such a widget can be personalized, because it can adjust itself to best serve the
user, thus making the retrieving of information more comfortable and quick. This
accommodation is achieved by monitoring the user's choices and storing the num-
ber of selection for each choice in the local database. The only one disadvantage is
that such widget is totally dependent on the data source. In this chapter, in order to
make such widgets portable through different web sources in the same domain, we
proposed the creation of an ontology model which can reflect data semantics.

We created such a model and compared it with an other one from the same do-
main but with a different purpose. The comparison showed that the two ontologi-
cal models differed in the main concept. This conclusion implies that although it is
useful to use semantics in the widget (as in any other client application), it will
work only if the server provides data with the same semantics.

Regarding further applications of the work presented herein, the widget could
take a benefit of such semantic model which could be applied also in other kinds

16

of systems with regular departures e.g., logistics or catering. In the same time, our
ontology model can be extended so it would serve also for other purposes e.g.,
route planning.

Acknowledgement: This work was partially supported by the Scientific Grant Agency of Slovak
Republic under the contract No. VG 1/0848/08.

References

[1] Bostrom, F., Nurmi, P., Floréen, P., Liu, T., Oikarinen, T., Vetek, A., and Boda, P. Capricorn
- an intelligent user interface for mobile widgets. In: Proceedings of the 10th international
Conference on Human Computer interaction with Mobile Devices and Services. MobileHCI
'08. ACM, New York, NY, pp 327-330. (2008)

[2] Brusilovsky, P., Millan, E.: User Models for Adaptive Hypermedia and Adaptive Educational
Systems. In: P. Brusilovsky P, Kobsa A, Nejdl W (Eds) The Adaptive Web, LNSC 4321
Springer (2007)

[3] Caceres, M. Widgets 1.0: The Widget Landscape. W3C. http://www.w3.org/TR/widgets-
land/ (2008) Accessed 17 September 2009

[4] Dopravny podnik Bratislava, a.s (company, provider), Public transportation for the area of the
capital city Bratislava (web site), http://www.dpb.sk Accessed 17 September 2009

[5] INPROP, s. r. 0 (company, provider), National information system of timetables for Slovakia
(web site), http://www.cp.sk/ Accessed 17 September 2009

[6] Mékeld, E. Enabling the Semantic Web with Ready-to-Use Web Widgets Export. In: Lyndon
J. B. Nixon, Roberta Cuel, Claudio Bergamini (Eds) Proc. of the First Industrial Results of
Semantic Technologies Workshop (FIRST'07). pp. 56-69. (2007)

[7] mhd.sk (citizen union, provider), imhd.sk (web site of public transportation for the area of the
capital city Bratislava), http://www.imhd.sk Accessed 17 September 2009

[8] Wang, J, Ding, Z., Jiang, Ch.: An Ontology-based Public Transport Query System. In: Pro-
ceedings of the First International Conference on Semantics, Knowledge and Grid table of
contents. IEEE Computer Society. pp 62-64 (2005)

http://www.w3.org/TR/widgets
http://www.dpb.sk
http://www.cp.sk/
http://www.imhd.sk

