Design and VLSI Implementation of High Performance

Face Recognition System

A report submitted to department of Electrical & Electronic
Engineering, BRAC University in partial fulfillment of the

requirements for thesis work.

BRAC

UNIVERSITY

XA

Priyanka Das Dewan - 10221078
Tasnim Harun Shamma — 09221032
Afifa Abbas - 10221073

Raktim Kumar Mondol - 09221232

April 2013

Declaration

We do hereby declare that the thesis titled “Design and VLSI Implementation of High
Performance Face Recognition System” is submitted to the Department of Electrical and
Electronics Engineering of BRAC University in partial fulfillment of the Bachelor of Science
in Electronics and Electrical Engineering. This is our original work and was not submitted

elsewhere for the award of any other degree or any other publication.

Date:

Supervisor

Professor Dr. A. B. M Harun- Ur- Rashid

(Priyanka Das Dewan)

Student’s ID: 10221078
priyanka.bracu@gmail.com

(Tasnim Harun Shamma)
Student 1D: 09221032
tasnim.h.shamma@gmail.com

(Afifa Abbas)
Student 1D: 10221073
afifa.abbas118@gmail.com

(Raktim Kumar Mondol)

Student ID: 09221232
raktim.live@gmail.com

Abstract:

In this paper, we have proposed a novel hardware architecture for face-recognition system. In
order to make the system cost effective we have used a simple yet efficient algorithm of face-
recognition system. We have designed, implemented and verified the algorithm in a cyclone
Il Field Programmable Gate Array (FPGA) chip. Altera DEO development board which
contains a cyclone Il chip on it have been used for debugging purpose. We have also ensured
for low power consumption such that the chip could be used universally in a wide range of

security systems.

To develop a simple yet efficient face recognition algorithm (such as PCA, FFT etc.) on
digital hardware, we have researched on various face recognition algorithms using Matlab
codes and studied their detection efficiency under various posture and background and also
the complexity of the algorithm. To save hardware resource and at the same time to obtain an

acceptable level of recognition we have chosen to use Fast Fourier Transform.

The search database is developed by taking pictures of BRAC University students in various
background and postures and used them to evaluate the developed face recognition system.
Images were captured using TRDB_D5M camera module and digital data from the camera
was transferred to the SDRAM of the DEO board using GPIO interface. A NIOS2
microprocessor was synthesized in the cyclone 11 chip which controlled the total recognition
system and the communication between the FFT core, SDRAM and On-chip memory. The

performance of the hardware is now under evaluation.

Keywords:

FFT, FPGA, Face Recognition, Nios2, TRDB_D5M.

Preface:

One of the most important reasons for choosing this task as our undergraduate thesis is that it
gave us the possibility to use the theory and knowledge that we have gained over the years to
make something useful and practical. We also believed that the design task would be good
preparation for the future challenges. We have always been fascinated by electronics and the
wide area of application this technology presents. Since our interest include both VLSI and
working with FPGA, this project became a great opportunity to combine our interest and
education.

The reason behind choosing FPGA is that in our country very few people worked with this
board and we took it as a challenge. This challenge was the most effective way to learn new
things. We have learned a lot about image processing, DEO board, TRDB_D5M camera,
Quartus12.0 and NIOSII. The Altera DEO platform was a very good platform to work with.

Many projects can be implemented using this board.

Acknowledgements:

This thesis is submitted to BRAC University in partial fulfillment of the requirements for the
degree of bachelor in Electrical and Electronic Engineering.

We are thankful to our Almighty Allah for his blessings upon us and bestowing us courage to
go with such task, and also our parents for their support, love and patience.

This project would not have been possible without all the help and the support we have
received. We would like to thank our supervisor, Professor Dr. A. B. M Harun- Ur- Rashid
(Bangladesh University of Engineering and Technology) for all the help, support, fresh
perspectives we have got. We are also thankful to Sir Jahangir Alam , Lecturer of BRAC
University for his constant guidance, when we were stuck. We highly appreciate the
assistance and guidance of Shafiur Rahman, student of BUET and Ahsan Ashfag, an Alumni
of Halmstad University, Sweden, throughout the process.

April 13, 2013.

PN 1] 1 2 1ot 3

i) T PP 4
AcKnowledgement.......ccoeviiiniiiiiniiiiniiiiiniiiiniiiisatcssrcosnsscsenssssneenes 3)
I o] (=00)l OX0] 0] (=] 1 | TP 7
L= o] (=T) 8
FIQUIE LiSTa e neiieiiiieeiieiieeeeeenreneceacensonscsasonsonsssnsonsonscsnsonsssnssnsonas 9

Table of Contents

Chapter 1

INtroduction.....ccieeiiiieiiiieiiiiiniiiieieienteerenscssnsscssasciosenscosensssnnnses 10
L1 BaCKgrOUNG. ... e e 10
1.2 MOtivation aNd ODJECtIVES. ... uu ettt et e e e e 11
L3 RESEAICN GOaLttt 11
1.4 Problem Formulation, 12
Chapter 2

2.1 Algorithms for Face ReCOgNItiON...cieeiieeriieteirernereneceeceenieanncerens 13
2.1.1 Principle Component ANalYSIS(PCA).......ooiiiiieieieiee s 13-22
2.1.2 Linear Discriminant Analysis (LDA) ... 23
2.1.3 Independent Component ANalysiS (ICA)......ociiiiiiiiie e, 23
2.1.4Trace Transtorm.o 23-24
2. 1.5 Neural NEIWOTK.t 24
2.2 Fast Fourier Transform (FFT)......o.oiirii e 25
2.3 HOW d0BS FFT WOTKS. ..o.eeitieei e e 26-29
2.4 FFT @lgorithms. ..ot e 30
2.4.1 FFT Implementation in NIOS Il using Cooley-tukey algorithm........................ 30-31
2.5 ApplYING FFT ON 8N IMAZE.evieit ettt e e aaes 32
2.6 APPHICALIONS. ...ttt 36
2.7 Benefits Of USING FPGA e 37
Chapter 3

MATLAB Implementation........c.ccouieiiieiiniiiiiieiieiiienicnasenscnaacnss 38
3.1 BaSiC APPIOACH.t 38
3.2 Two dimensional FFT On an image.........o.vvuiieiiiiiet et eeeens 41
3.3 Functionsused iNMatlab........ ... 43
Chapter 4

DEO board and TRDB_D5M Specifications........ccccoveiiiiiieeiiinecinrennenns 47
4.1 Introduction t0 FPG A ... e 47
4.2 Cyclone T FPGA: AIChIteCtUIe. ... vttt ettt et e et eeee e 47
4.3 LOQIC EIBMENTS. ...t 48
4.4 Cyclone T FPGA: APPICAtIONS. .. .ttt ettt et et e it et e eeae e vieaenaes 49
4.5 Altera Cyclone 11 3C16 FPGA deviCe........ooviniiniiiiiiiiiiei e, 49
4.6 Camera Module Pixel Array Structure...........oovuiiriitiniiii i aaeaaas 50
L 7 O (0] (o0) PP 51
4.8 Camera Image ACQUISITION SYSteM.........outiniiiitit e eaeaenes 51
A8.LFrame Valid.oiiiiii i 52

A.8.2 LINE VAlIA. ... e 52

4.9 Bayer to RGB conversion in FPGA...... ..ot 53
4.9.1 RGB CONVEISION.ttt et et et et eaea 53
Chapter 5

Hardware Implementation.......ccccoiveiiieiiiniiiniiiieiiieieiiiesatessiessesossssossscsssssnnses 55
5.1 External Bus to Avalon Bridge...........o.ovviiiiiiii e 57
5.2 SDRAM CONtroOlleT. ... et e e e e e e e ae e 59
5.3 Phase LOCKed LOOP (PLL).....uitiiii i e 62
5.4 Scatter Gather DMA (DireCt Memory ACCESS).....oueurinriniariatie et 64
55 VGA CONIOMICT. e 66
5.6 VIide0 DMA CONIOLLET.ttt e 67
5.7 Fast Fourier Transform (FFT) Generated from Mega wizard................................. 69
5.8 Creating FFT DIOCK 1N QSYS. . .iuititiiitii e e e, 70
5.9 On-chip Memory (RAM or ROM)......uiniiiiii e 71

5.10 NIOS T PrOCESSOT . ..ottt e et e et e i 72
5.11 Hardware AbStraction Layer..........c.oouiiniiiiiiiiiii e e 74
(01 0F=10] (-] gl T PP 80

Results and DisCUSSION....ccciiieiiiiiiieiiieiiieeiiiateierteeatesnsesessossscsssssssscssnsssnscsnsne 80
6.1 SO W AT, ...t 80
B.2 HAMOWAIE.t 82
(O 3511 V172140 s TP 83
0.3,] SOt AT e 83
B.3.2 HarOWaIE. ..ot e 83
6.4 FULUIE WOTK. . ..ttt e 83
B.5 CONCIUSION. ...\ e e e e 84

(O T T 0] -] o 85
] (o]] 00T TP 85
(O =T 0] (=] gt < O 87
APDPENAIX e e eeeeenerenarenaeeesaresnsesnsesnsesnsessssesnsesiiossssesnsesnsessssensssanncns 87
BLFFT Matlah Code......ovvniiniii 87
8.2 PCA based Face Recognition Matlab Code...............oiiiiiiiiiiiiiiiiiieeeee e, 88
B3 FPGA COQe. .ttt e 89
8.3.1 Storing Data from Camera Module to SDRAM............civiiiiiiiiiiieieee e 89

8.3.2 Interfacing Qsys Components with FPGA.............cooiiiiiiiii e, 90

8.3.3 Creating SDRAM AOCAtION.ouuiniiiiti e 91
8.4 C0UE TOr SGDMA ettt e e 91

8.5 Code for Recognition in C (NIOS IT).....cuviniiniii e 92

Table List
Table 5.1: Description of SDRAM Parameters
Table 5.2: PLL Calculation
Table 5.3: Function List

Figure List

Figure 2.1: Face Recognition Approaches............c.coevuiiriiiiiiii i 25

Figure 2.2: Time Domain DecompoSition.euiuinireitiiie e 27
Figure 2.3: Rearrangement Pattern Required...............coooiiiiiiiiiiiii e, 27
Figure 2.4: Time domain to frequency domain...............o.eiiiiiiiiiiiiiiiiiiiei e, 28
Figure 2.5: FFT Synthesis Flow Diagram..............c.ccooiiiiiiiiiiiiiiieieeeeee 29
Figure 2.6: Result 0f Co0ley- TUKEY.......ouviriitiiii e 31
Figure 2.7: The Magnitude calculated from the complex result......................ooeneent. 34

Figure 2.8: Magnitude after logarithmic transform..................cocooiiiiiiiiiiii e, 35
Figure 2.9: The Phase of FETo e 35
Figure 2.10: Magnitude and phase of a Fourier image..............ccoviiiiiiiininiinineinn.n. 36
Figure 3.1: Flowchart of FFT based Face Recognition................ccovvvviviiiiiiniinnnn.. 39
Figure 3.2: Train Database.oouiniiniii i 40
Figure 3.3: Test Database IMage.oveuiniiriniit ettt 41
Figure 4.1: Cyclone 111 Device Architecture Over view Floorplan.....................c........ 47

Figure 4.2: Cyclone T FPGA.o 47
Figure 4.3: Cyclone IIT logic elements.c.oouiiiiiiiiiii e 48
Figure 4.4: DEO FPGA SPeCIfications.c.iiuiiritit i 49
Figure 4.5: DEO FPGA COMPONENLS.uinttiniteteniteteieeeteeaeetee e ieeeeeeeen e, 50
Figure 4.6: Pixel Array Description.c.ouviutiniiriit e 51
Figure 4.7: Default Pixel Output Timing...........coovieiiiriitiiiiii e 52
Figure 4.8: Bayer Pattern Filter...........c.oviuiiit i e 53
Figure 4.9: Bayer IMage PiXelS........oiiuiriniiiii e 53

Figure 4.10: RGB Pixel from Bayer Format...............coooiiiiiiiiiiiiiiiieeeean 54

Figure 5.1: Block Diagram of Our Proposed Architecture..............coovvviiiiniinennnnn.. 55

FIQUIE 5.2 RT L VW T . ittt e e e e e aas 57
Figure 5.3: External Bus to Avalon Bridge...........ccoovuviiiiiiiiiiiiiee e, 58
FIgure 5.4: NTOS 11 PrOCESSOT. uiettiti ettt et e 73
Figure 5.5: HAL ArChITECtUIS.ovie i, 74

Figure 5.6: Nios I HAL Project Structure...........coooeiiiiiiiiiiiiieieieeeea 75

Figure 5.7: Flowchart for Nios I Instruction..............ccoooiiiiiiiiiiiiiieieeene, 76

Figure 5.8: QSYS SYSIEM CONTENL.uvtinit ettt ettt et et e et e eereenaieans 77
Figure 5.9: Flowchart for Valid Frame Capture..............coooviiiiiiiiiiiiiieiieeee 78
Figure 6.1: Accuracy rate of Face Recognition for PCA and FFT..................ooiiiinas 80
Figure 6.2: Recognition Result with FFT based Algorithm.....................coooiiiiininin, 81
Figure 6.3: Recognition Result with PCA based Algorithm...................ccoooiiiiins. 82

Chapter 1

Introduction:
1.1 Background

A facial recognition system is a computer application for automatically identifying or
verifying a person from digital image or a video frame from a video source. Therefore there
are two types of approaches for face recognition. One is image based and another one is
video- based. There are more classifications to it now. One is partially automated systems and
the other is fully automates systems.

Face Recognition has become a well-liked and popular area of research in image analysis,
understanding and in computer vision as well. This topic has raised curiosity among
computer science researchers, neurologists and psychologists.

Basically, face recognition in our case is given still images of a person; it can verify and
identify one or more persons using a stored database of faces. For the research help purpose
already many databases have been created. As for example AT&T face database, Yale face
databases etcetera comprising of different poses and illumination conditions. Many
universities and institutions have shown interest in this image processing and recognition
systems from very early time and still aspire to excel in this field.

Recognition algorithms is divided into two main categories or approached in two different
ways. One is geometric another one is photometric. Geometric approach focuses on
distinguished features of a face and photometric approaches statistically, that distils an image
into some values and these values are compared with some templates so that variances are
eliminated.

The researches’ directions include recognition from outdoor images, non-frontal facial
images, increased understanding of the effects of demographic factors on the performance,
develop improved models for predicting identification performance on very large galleries

and many more [1].

10

1.2 Motivation and objectives:

After extensive research in the field of face recognition [35] [36], we discovered that none of
the projects included FFT as a face recognition algorithm. We have designed the hardware
architecture from a new perspective. Most of the available algorithms are implemented in
software .As a result, the recognition speed is not as expected. On the other hand, hardware
implementation has many promises. Therefore, we emphasized on hardware implementation.
The improvement includes robustness of the speed and accuracy of the system. An FPGA can
provide us necessary resources to achieve such improvements in face recognition. The
resources includes built in blocks, various communication interfaces, millions of logic gates,
scopes to run C codes into the digital hardware circuitry, high level design tools,
performance, long term maintenance, reliability etcetera.

The objective of our project is to work with still image based algorithm and to implement it
on a cyclone Il FPGA chip from Altera Inc. The cyclone chip is relatively cheaper and
includes ROM. DEO board has been chosen as a tool for debugging process. We have
emphasized on using FFT. Since FPGA implementation itself is a huge challenge, we will
start with a simpler function that is FFT (Fast Fourier Transform). We have used the Cooley-
Tukey algorithm for FFT. In addition, we have gone through for a hardware/software co-
design approach. Our aim was to do the whole recognition in Matlab using FFT and PCA,
verified that if they had worked properly, then we compared the algorithms. After that we
focused on implementing FFT first on the board using Nios2 processors, SDRAM, on chip

memory, DMA blocks etcetera.

1.3 Research Goal:

Our research goal is to get acquainted with FPGA board, to learn how to use it. On the other
hand, our goal was to enter into the huge area of image processing. Combining these two
fields together can definitely broaden our knowledge. One of the prime concerns of our
research is to start with the simpler algorithm, to confirm that it is possible to implement any
other algorithm using FPGA, so that we can work on it in future. FPGA itself is complex
device. Therefore we couldn’t take our goal to the benchmark. Hopefully we will learn from

mistakes and can go for further algorithms.

11

1.4 Problem Formulation:

The first approach we had was to create our own small database with the images of our
university students comprising different facial expressions. Then we attempted to apply some
of the recognized algorithms on our database using MATLAB. Then we used our proposed
algorithm using Fast Fourier Transform to assess the feasibility of using FFT as a face
recognition algorithm. We afterwards moved towards hardware part which was our main
interest. We used the FPGA board with the digital camera that is compatible with the board.
We took images and stored them in the board’s SDRAM. We then took these images from
the memory and applied FFT on them and kept the transformed images to the SDRAM again.
The next step was to compare between the values of the transformed images to verify if our

algorithm was working.

12

Chapter 2

2.1 Algorithms for face recognition

2.1.1 Principle component Analysis:

Principle component Analysis (PCA) was invented in 1901 by Karl Pearson. This algorithm
consists extracting relevant information in a face image which is called the principle
component and encode that information in a suitable data structure. For recognition it takes
the sample image and encodes it in the same way and compares it with the set of encoded
images. In mathematical terms we want to find Eigen vectors and Eigen values of a
covariance matrix of images, where one image is just a single point in high dimensional space
[n *n], where n*n are the dimensions of an image. There can be many Eigen vectors for a
covariance matrix but very few of them are principle one’s. Each Eigen vector can be used
for finding different amount of variations among the face image. However we are
emphasizing only in principle Eigen vectors because these can show account for substantial
variations among a bunch of images. They can show the most significant relationship
between the data dimensions. Eigenvectors with highest Eigen values are the principle
component of the image set. We may lose some information if we ignore components of
lesser significance. But if the Eigen values are small then we won’t lose much. Using those
set of Eigen vectors we can construct Eigen faces.

The goal of PCA is to reduce the dimensionality of the data while retaining as much as
possible of the variation present in the original dataset. PCA allows us to compute a linear
transformation that maps data from high dimensional space to low dimensional sub-space. [1]
[2].

by =) +ipdaa+ . dy

3 = Iapedy Higadat. o Hiaudy

.-'I}F: = ."ﬁ-||.’|'| —+ |rl|‘.{_jf|'2+. .. +"l.|'i'.f__"-.-"'-!-_"'|."

13

Lower dimensionality basis
Approaximate vectors by finding a basis in an approapriate lower dimensional space.
(1) Higher dimensional space representation:
X=@Vy+da Vo + -+ dytvy
V1, V2, ... Vv is a basis of the NV -dimensional space

(2)Lower dimensional space representation:

Y=hp+ bty + -+ brug

Uy, Uy, . My 15 a basis of the K-dimensional space

- Note: i both bases have the same size (N = K. then x = 1)

14

Example.

Ky =
L
L
Koy —

1

L]

L |, vy = | O (standard basis)

3

3 = 3v] 4+ 3vas 4+ 3wy

3

| |

I | 1y = | (=o1mme other ba=sis)
i) L | _J

3

3| = 0w + Oy + 32y

3

thus, x,. = x,,

15

e Methodology

- Suppose X4, X5, ..., Xy are N x 1 vectors

Step 1: §= — ¥ x;
1|'.|!r i=|

Step 2: subtract the mean: @; = x; — ¥

Step 3 form the matrix A = [Dy By - Dyl (NxM matrix), then

compute:

I T
UE¢¢‘“

(sample covariance matrix, Nx /N, characterizes the scatter of the data)
Step 4: compute the eigenvalues of C: A = Ay = -+ = Ay

Step 5: compute the eigenvectors of C: ey, 12, ... 1y

- Sinee C is symmetric,), iy, ..., Uy form a basis, (1e., any vector X or
actually {x =), can be written as a linear combimation of the eigenvectors):

N

Y= =byuy + by +-+- + byuy = X by
i=l

16

Step 60 (dimensionality reduction step) keep only the terms correspond-
ng to the A largest eigenvalues:

K
X=X =Y bu;where K << N

- The representation of ¥ — ¥ into the basis 1., i3, ... iy is thus

'_;"}l_'

J"?_';-

[Dk

e Linear transformation implied by PCA

N K
- The linear transformation R — R that performs the dimensionality reduction is:

[By FH];-_
.l'l}"_:. ”'{ _ T _
=] T lix—x)=0U"{x-x)
hﬁ _HE—_

e Geometric Interpretation:
- PCA projects the data along the directions where the data varies the most.

- These directions are determined by the eigenvectors of the covariance

matrix corresponding to the largest Eigenvalues.

- The magnitude of the Eigenvalues corresponds to the variance of the data

along the eigenvector directions.

17

e Main Idea behind Eigenfaces:
1 ol fz . T r -
- Suppose [is an N7x1 vector, corresponding to an Nx N face image [,
- The idea is to represent I (d=1" - mean face) into a low-dimensional space:

-

" r-\
G — mean = wyu + waliy + - Wity (K<<N<)

18

e Computaion of the eigenfaces:

Step 1: obtain face images /). /5. ... I3 (training faces)

(very important: the face images must be centered and of the same size)

Step 2: represent every image /; as a vector '

Step 3: compute the average face vector ‘F:

Y | MT
_EE ;

Step 40 subtract the mean face:
Step 5: compute the covariance matrix C:
| M
= i Y dl",.,dllj{ = AAT (N?xN? matrix)
- p=]

where 4 =y d, - D] (N?x M matrix)

19

: : N
Step 6: compute the eigenvectors 1 of A4

- : T . :
[he matrix 44" 1s very large --> not practical !!

Step 0.1: consider the matrix AT A (MxM matrix)
. - . _ I
Step 6.2: compute the eigenvectors vy of A4 A
I' 4o — o
A" Avy = pyv;

What is the relationship between tsy and vy

-IT-h'I; = ;v == .-!.-!T_-h'l; = u; Av;
CAvy = py Avyor Cuty = gy where i = Ay

- T T . o
Thus, AA" and A7 A have the same eigenvalues and their elgenvec-
it

tors are related as follows: u; = Av,

r 12 -
Note 11 A4 can have up to N7 eigenvalues and eigenvectors,

T . .
Note 2: A" A can have up to M eigenvalues and eigenvectors,

Note 3: The M eigenvalues of 4™ A (along with their corresponding

.) . . T .
eigenvectors) correspond to the M largest eigenvalues of 447 (along

with their corresponding elgenvectors).

Step 6.3: compute the M best eigenvectors of 44T ;= Av;
(important: normalize #; such that ””.‘" =1)

Step 7: keep onlv K eigenvectors (corresponding to the K largest eigenvalues)

20

e Representing faces on to this basis

- Each face (minus the mean) @; in the training set can be represented as a linear
combination of the best K eigenvectors:

K
b, — 7 =Y w v, =nul
&b, mean—jaujuj. (w;=u;®)

(we call the ;s eigenfaces)

(), = =12 M

21

e Face Recognition Using Eigenfaces

- Given an unknown face image [(centered and of the same size like the training

faces) follow these steps:
Step 1: normalize [=1 -
Step 28 project on the elgenspace
- K -
D=3 vy (wy = ;D)
i=1
Wy
M

<

Step 3: represent @ as: L2 =
Lwi |
Step 4: find €, = min;[[{2 — €Y

Step 5:if e, = 1. then | isrecognized as face { from the training set.
r r = =

— The distance er is called distance within the face space (difs)

— Comment: we can use the common Euclidean distance to compute e,
.

however, it has been reported that the Mahalanobis distance performs better:

Ko o
[2-Qf| =% — = wy
. . != ': . S
(variations along all axes are treated as equally s1gnih cant)

In the recognition phase, a subject face is normalized with respect to the average face and
then projected onto face space using the eigenvector matrix. Next, the Euclidean distance is
computed between this projection and all known projections. The minimum value of these
comparisons is selected ans compared with the threshold calculated during the training phase.
Based on this, if the value is greater than the threshold, the face is new. Otherwise, it is a

known face.

22

2.1.2 LDA:

Linear discriminant analysis (LDA) is another effective algorithm for face
recognition. It is closely related to PCA and factor analysis in that they both look for linear
combination of varaibles whice best explain the data. LDA explicitly attempts to model the
difference between the classes of data. PCA on the other hand doesnot take into account any
difference in class, and factor analysis builds the feature combinations based on differences
rather than similarities. The face space created in LDA gives higher weight to the variations
between individuals than those of the same individual. LDA is less sensitive than the phase
spectrum. Indeed, it is the phase spectrum that contains information which humans use to
identify faces. [4].

2.1.3 ICA:

As PCA considers the 2" order moments only it lacks information on higher order statistics.
The Independent Component Analysis (ICA) accounts for higher order statistics and it
identifies the independent source components from their linear mixtures. ICA thus provides a
more powerful data representation than PCA [5] as its goal is that of providing an
independent image rather than uncorrelated image decomposition and representation. ICA of
a random vector searches for a linear transformation which minimizes the statistical
dependence between its components [6]. ICA represents the input as an n-dimensional
random vector. This random vector is then reduced using PCA, without losing the higher
order statistics. Then, the ICA algorithm finds the covariance matrix of the result and obtain
its factorized form. Finally, whitening , rotation and normalization are performed to obtain
the Independent components that constitute the fce space of the individuals. Since the higher
order relationships between pixels are used, ICA is robust in the presence of noise. Thus,
recognition is less sensitive to “lighting conditions, changes in hair, make-up and facial

ecxpressions” [7].
2.1.4 Trace Transform:

The Trace transform [8], a generalizarion of the Radon transform, is a new tool for image
processing which can be used for recognition objects under transformations, rotations,
translation and scaling. To produce the Trace Transform one computes a functional along

tracing lines of an image. Each line is characterized by two parameters, namely its distance

23

from the centre of the axes and the orientation.The trace transform is a global transform,
applicable to full images. If we are going to use it to recognize faces, we must consider the
local version of it. One of the key properties of the Trace transform is that it can be used to
construct features invariant to rotation, translation and scaling. We should point out that
invariance to rotation and scaling is harder to achieve than invariance to translation. It is
assumed that an object is subjected to linear distortions like rotations,translations, and
scaling. It is equivalent to saying that the image remains the same but viewed from the
linearly distorted coordinate system .

2.1.5 Neural Network:

A Neural Network is a system of programs and data structures that approximates the
operation of the human brain. A neural network usually involves a large number of
processors operating in parallel, each with its small sphere of knowledge and access to data in
its local memory. Typically, a neural network is initially trained or fed large amounts of data
and rules according to the data. A program can tell the network how to behave in response to
an external stimulus or can initiate activity on its own. The main disadvantage of neural
networks is that there is no clear method to find the initial topologies. The training takes long
time. For face recognition, a neural network must be trained to recognize an individual. That

is time consuming and not well suited for real-time applications [9].

24

e Geometric Or * Principal

Template based Component * Adaptive
approaches. Analysis.(PCA) appearance models.
* Discrete Cosine

e Piecemeal Or Transform. . Nt_eural netwr:arks

Wholistic approach. » Linear Discriminant with Gabor Filters.
Analysis.

* Appearance based » Locality Preserving . N.eural networks and
Or Model based Projections. hidden Markov
approaches. * Gabor Wavelet. models.

* [ndependent

e Template Or Component * Fuzzy Neural
Statistical Or Neural Analysis.(ICA) netowks.
network » Kernel PCA.
approaches. * Genetic Algorithms.

» Bayesian Network.

* Bi-dimensional
regression,Ensemble
based and other
Boosting methods.

* Neural Network

FIGURE 2.1: Face Recognition approaches

2.2 FFT:

The fasr fourier transform (FFT) is simply a fast (computationally efficient) way to calculate
the Discrete Fouries Transform.FFT algortithm was first published by Cooley and Tukey in
1965. This is a clever algorithm which can be used to transform a signal from time domain to
fequency domain.The FFT greatly reduces the amount of calculation. It also reduces the noise

of a signal that are present in time domain.

Functionally, the FFT decomposes the set of data to be transformed into a series of smaller
data sets to be transformed. Then, it decomposes those smaller sets into even smaller sets. At
each stage of preocessing, the results of previous stages are combined in special way. Finally,

it calculates the DFT of each small data set. For example, an FFT of size 32 is broken into 2

25

FFTs of sizel6, which are broken into broken 4 FFTs of size 8,which are broken into 8 FFTs
of size 4, which are broken into 16 FFTs of size 2. [10]

The number of complex multiplication and addition operations required by the simple forms

both the Discrete Fourier Transform (DFT) and Inverse Fourier Transform(IDFT) is of order

2
N as there are N data points to calculate, each of which requires N complex arithmatic

operations.

For length n input vector X, the DFT is a length n vector X, with n elements:

fi= Zrke_ﬁﬁi-’anhk j=0,...,n—1.

On the other hand, DFT has algorithm complexity and hence is not a very efficient method. It
will not be very useful for the majority of practical DSP applications. However, there are

number of different Fast Fourier Transform (FFT) algorithms that enable the calculation of a

signal much faster than DFT.

2.3 How does FFT work:

As discussed earlier, the FFT operated by decomposing an N point time domain signal into
each composed of a single point. The second step is to calculate the N frequency spectra
corresponding to these N time domain signals. Lastly, the N spectra are synthesized into a

single frequency spectrum [11].

1 signal of

16 points |Dlz3455?39161112131415|

PR

: roN

é;ﬁﬁf“f | 0246 8101214 [[1 35 7 9 111315|]

S / \ / \

j;1$?:30f |.;.43 1j||2|51f_'l 14||1 5_0.13-||3?‘11 15|
. rf II\'* h-'ll- -\1 Ff‘. 1‘1 "'"IIJ le*

ﬁ;‘f}lﬂ”f B 8||412 2 10 a13||311||7"1“|

i IR Y
Y oy

Fou ri?n

16 signals of
tpomt [O][B][#][2][2

1)"1 .Fi I”’d i"""l

..E.

I-~.
E
»—-

Figure 2.2: Time Domain Decomposition.

The above figure shows an example of the time domain decomposition used in the FFT. In
this example, a 16 point signal is decomposed through four separate stages. The first stage
breaks the 16 point signal into two signals each consisting of 8 points. The second stage
decomposes the data into four signals of 4 points. This pattern continues until there are N
signals composed of a single point. An interlaced decomposition is used each time a signal is
broken in two, that is, the signal is separated into its even and odd numbered samples. After
understanding the structure of decomposition we can say that using it, any N point signal can
be easily simplified. It is nothing more than a reordering of the samples in the signal.

Sample numbers Sample numbers

in normal order after bit reversal

Decimal Binary Decimal Binary
0 Q000 0 Q000
1 0001 8 1000
2 Q010 4 0100
3 o1l 12 1100
4 0100 2 Q010
5 0101 10 1010
6 0110 —> 6 0100
7 0111 14 1110
8 1000 1 Q001
Q 1001 o 1001
10 1010 5 0101
11 1011 13 1101
12 1100 3 0011
13 1101 11 1011
14 1110 7 0111
15 1111 15 1111

Figure 2.3: Rearrangement pattern required.

The given figure shows the rearrangement pattern required. On the left, the sample numbers
of the original signal are listed along with their binary equivalents. On the right, the
rearranged sample numbers are listed, also along with their binary equivalents. The important
part is that the binary numbers are the reversals of each other. For example, sample 3 (0011)
is exchanged with sample number 12 (1100). Likewise, sample number 14 (1110) is swapped
with sample number 7 (0111), and so forth. The FFT time domain decomposition is usually
carried out by a bit reversal sorting algorithm. This involves rearranging the order of the N

time domain samples by counting in binary with the bits flipped left-for-right.

The next step in the FFT algorithm is to find the frequency spectra of the 1 point time domain

signals. The frequency spectra of the 1 point signal is equal to itself, that means nothing is

27

required to do this step. Now each of the 1 point signals is a frequency spectrum, not a time

domain signal.

The last step in the FFT is to combine the N frequency spectra in the exact reverse order that
the time domain decomposition took place. The algorithm gets messy here. There is no
shortcut for bit reversal. It is must to go back one stage at a time. In the first stage, 16
frequency spectra (1 point each) are synthesized into 8 frequency spectra (2 point each). In
the second stage, the 8 frequency spectra (2 point each) are synthesized into 4 frequency

spectra (4 point each) and so on. The last stage results the output of the FFT, a 16 point

frequency spectrum.

Time Domain Frequency Domain
-
aJo[bofcfo]afo] <

[e[f]e]n]
E KK -
\ Y

[eleToTsToT=ToTn] - ElFlclHEIFIcH]

Figure 2.4: Time domain to Frequency domain.

The figure shows how two frequency spectra, each composed of 4 points, are combined into a
single frequency spectrum of 8 points. This synthesis must undo the interlaced decomposition
done in the time domain. In other work=ds, the frequency domain operation must correspond
to the time domain procedure of combining two 4 point signals by interlacing. Considering
two time domain signals, abcd and efgh. An 8 point time domain signal can be formed by two
steps: dilute each 4 point signal with zeroes to make it an 8 point signal and then add the
signals together. That is abcd becomes aOb0c0d0, and efgh becomes e0fOgOh0. Adding these
two 8 point signal produces aebfcgdh. Diluting the time domain with zeroes corresponds to
the duplication of the frequency spectrum. Therefore, the frequency spectra are combined in

the FFT by duplicating them and then, adding the duplicated spectra together.

28

Odd- Four Point Even- Four Point
Freguency Spectrum Freguency Spectrom

FFT synthesis flow diagram. This shows
the method of combining two 4 point
frequency spectra into a single 8 point
frequency spectrum. The %S operation
means that the signal is multiplied by a
sinusoid with an appropriately selected
frequency.

Eight Point Frequency Spectruom

Figure 2.5: FFT Synthesis flow diagram.

In order to match up added, the two time domain signals diluted with zeroes in a slightly
different way. In one signal, the odd points are zero while in the other signal, the even points
are zero. In other words, one of the time domain signals (0e0fOg0h) is shifted to the right by
one sample. This time domain shift corresponds to multiplying the spectrum by a sinusoid. A
shift in the time domain is equivalent to convolving the signal with a shifted delta function.
This multiplies the signal’s spectrum with the spectrum of the shifted delta function. The
spectrum of a shifted delta function is a sinusoid. This was the basic of FFT. In case of image
it may work differently, which has discussed later [11].

2.4 FFT Algorithms:

As it has been discussed earlier DFT is a complex algorithm and not that efficient. Due to
slow processing, it is not applicable in real world problems. To make DFT calculation faster
and efficient there are number of FFT algorithms. Such as Radix-2, Butterfly, Cooley-tukey,
Prime-factor FFT algorithm, Bruun’s FFT algorithm, Radar’s FFT algorithm, Bluestein’s
FFT algorithm etc. In our project we have used Cooley-tukey algorithm of FFT for

recognition.

29

Cooley-tukey algorithm is the most common FFT algorithm. It is named after JW Cooley
and John Tukey. It re-expresses the Discrete Fourier Transform (DFT) of an arbitrary
composite size N = N3N, in terms of smaller DFTs of sizes N1 and Ny, recursively, in order to
reduce the computation time to O(NlogN) for highly-composite N.

The Cooley-Tukey algorithm can be combined arbitrarily with any other algorithm, as it
breaks the DFT into smaller DFTs [12].

24.1 FFT implementation in NIOS 2 using Cooley-tukey
Algorithom:

We have implemented FFT in NIOS2 using Cooley Tukey Algorithm. To achieve this we
first created a processor using Qsys. We added various components such as CPU, SDRAM,
PLL, Tri state bridge, Onchip memory etc. We made connection by connecting master to
slave, source to sink, assigned base address and connected clock through PLL. After adding

all the components, it automatically generates a blank code which we will use in our Verilog

project.

After that we have written our Verilog code to interface in our FPGA through pin assignment.
Then we included our SOPC code in Verilog code and interface with our board’s pin which
generates the .SOF file. Finally we have completed our hardware configuration.

Next, we have written our C code for FFT in Eclipse.

Finally, we wrote code for Cooley-Tukey Algorithm in C and implemented on NIOS 2
processor. We compiled the code and saw the result in the console pane.

{21 Problems | ¥ Tasks El Console| = Properties E"rﬂ Mios I Console &3

newproject Mios II Hardware configuration - cable: USB-Blaster on localhost [USE-0] device ID: 1instance ID: O name: jtag_uart
': '1] EI :I

(1,-2.41421)

{ Elr)]

{1,-0.414214)

{ Elr)]

(1,0.414214)

{ [lf i}

{1,2.41421)

Figure 2.6: Result of Cooley Tukey.

30

If we compare the result with the Matlab’s result, it matches. Therefore, it can be said that our

approach is correct.

2.5 Applying FFT on an image:

Fast Fourier Transform on image is a representation of the image in frequency domain. Its
function on image is to decompose it into its real and imaginary components. If we take an
image as an input then the number of frequencies in the frequency domain is equal to the
number of pixels in the original image [13].

31

The inverse FFT re-transforms the image from frequency domain to spatial domain or time

domain. The FFT and its inverse of a 2D image are given by the following equations:

Al — 2 x k)
Flxy = > Jflme ¥
7=l
sk 2 A
) = =S Foe’ ™
n=

Here f (m, n) is the pixel at f (m, n) coordinates, F(x,y) is the value of the image in the
frequency domain at (x,y) coordinates. M and N are the dimensions of the image. Since
image is two dimensional, we applied 2D FFT on it. The 2D transform can be done as two 1D
transforms as shown below (shown only the horizontal direction) —one in the horizontal
direction followed by the other in the vertical direction on the result of the horizontal

transform. The end result is equivalent to perform the 2D transform in the frequency space.

-1 N1 m, n

—iadm i —+r—
Foy) = SO Flmame T H R
vy oy
1 e F2m(a iy 2
fim,n) = ——> > Floye ¥ F
MN Zes

The FFT that’s implemented in the application here requires that the dimensions of the image
are power of two. An interesting property of FFT is that the transform of N points can be
written as the sum of two N/2 transforms. This is important because some of the

computations can be reused thus eliminating expensive operations [13].

The output of the Fourier Transform is a complex number and has a much greater range than
the image in the spatial domain. Therefore, to accurately store these values, they are stored as
floats. Furthermore, the dynamic range of the Fourier coefficient is too large to be displayed
on the screen and these values are jscaled to bring them within the range of values that can be
displayed [13].

32

A modern interpretation of FFT states that, “any well-behaved function can be represented by
a superposition (combination or sum) of sinusoidal waves. It can be said that, the frequency
domain representation is just another way to store and reproduce the spatial domain image
[14].

If we take a single row or column of pixel from any image and graph it, we will find that it

looks more like a wave.

If the fluctuations are more regular in spacing and amplitude, we would get something more

like a wave pattern. Such as,

BRIV

If we were to add more waves together, we might get a pattern that is closer to the original

image.

ok W e

The superposition of waves or addition ojf waves in much closer, but still does not match the

image pattern. However we can continue in this manner, adding more waves and adjusting
them until the resulting composite wave gets closer and closer to the actual profile of the
original image. Eventually by adding enough waves we can exactly reproduce the original
image. Therefore, it can be said that images are nothing but the summation of sine and cosine
waves.

In other words, by adding together a sufficient number of sine waves of the right frequency
and amplitude, any fluctuating pattern can be reproduced. Fourier Transform generally works

out to find out the waves that comprise an image [14].

33

The Fast Fourier Transform is an important image processing tool which is used to
decompose an image into its sine and cosine components or waves. Undoubtedly, the output
of FFT represents the image in the frequency domain, while the input image is the spatial
domain or time domain equivalent. In the Fourier domain image, each point represents a
particular frequency contained the spatial domain image.

If we want to access the geometric characteristic of a spatial domain image, then FFT can be
used. Because the image in the Fourier domain is decomposed into its sinusoidal components,
which is the easy way to examine or process certain frequencies of the image, that influences
the geometric structure in the spatial domain [14].

In most implementations the Fourier image is shifted in such a way that the DC-value or the
image mean is displayed in the center of the image. The further away from center of an image
point is, the higher is its corresponding frequency [15] [16].

In general if we apply FFT on an image, we get the complex result. The magnitude calculated

from the complex result is shown in [15] [16].

Figure 2.7: The magnitude calculated from the complex result

It is seen that the DC value is by far the largest component of the image. However, the
intensity values in the Fourier image or the dynamic ranges of the Fourier coefficients is too
large to be displayed on the screen, therefore all other values appear as black. If we apply

logarithmic transformation to the image we obtain

34

Figure 2.8: Magnitude after logarithmic transform.

We can see that the image contains component of all frequencies, but their magnitude gets
smaller for higher frequencies. Hence, low frequencies contain more image information than
the higher ones. The transformed image tells us that there are two dominating directions in
the Fourier image, one passing vertically and one horizontally through the center. These
originate from the regular patterns in the background of the original image.

The phase of the FFT of the same image can be shown as

Figure 2.9: The phase of FFT

The value of each point determines the phase of the corresponding frequency. As in the
magnitude image, we can identify the vertical and horizontal lines corresponding to patterns
in the original image. The phase image does not contain much new information about the
structures of the spatial domain image. Therefore, we will confine ourselves to displaying
only the magnitude of the Fourier Transform unless our interest does not belong to
reconstruct the image [15] [16].

On the other hand, if we do not separate the magnitude and phase part of an image, after
applying FFT on that image we will obtain

35

Figure 2.10: Magnitude and Phase of a Fourier image.

The above diagram contains both the magnitude and phase value of a Fourier image. In our

project we have considered the both parts.

2.6 Applications:

Face recognition systems have achieved a huge popularity due to wide range of applications.
It has been an area of research from very beginning. Applications exist in two main
categories: practical application and research application.

From practical standpoint face recognition is extensively used in security systems. The
FBI is already using it to identify suspects who are caught on surveillance cameras. The
places like airports, International borders the need is raising for a face recognition system that
identifies individuals. Face recognition systems can be used in entertainment purpose like
video games.

In research applications, face recognition has paved the way for research in areas like
image and video processing. Due to the increasing demand of this system into many sectors,
researchers are working on developing many algorithms of face recognition. Principle
Component Analysis (PCA and KPCA), Linear Discriminant Analysis (LDA), Independent
component analysis (ICA), genetic algorithms, neural networks, FFT these are the algorithms
established so far by the researchers. In our project we will be focusing on implementing FFT
and PCA on the FPGA board. Then we will compare the results at the end. The FFT is used
in a wide range of applications, such as image analysis, image filtering, image reconstruction,

image compression and we used it for image recognition as well.

36

2.7 Benefits of using FPGA-

As it has mentioned earlier that one of the important objectives of our project is to get
acquainted with FPGA board, since it is a complete new area for us. While researching we
have known very interesting things about FPGA and had decided to choose our project based
on this board.

An FPGA is exactly what the name suggests: a Field Programmable Gate Array. We program
it as a piece of hardware. The FPGA basically implements look up tables. It is good at doing
complex logic very fast. Using hardware programming languages such as VHDL and Verilog
someone can create complex logic structures. Speed is the biggest advantage of FPGA. It is
reprogrammable. More than one project can be implemented using same FPGA board.
FPGAs exceed the computing power of digital signal processors by taking the advantage of
hardware parallelism. It accomplishes more per clock cycle. It has specialized functionality to
closely match application requirements. It supports long term maintenance. As a product,

functional enhancement can be made, without spending time on redesigning hardware or
modifying board layout. However, FPGAs are much expensive than microcontrollers. If our

design needs greater integration density then FPGAs are appropriate. For smaller projects we

go for microcontrollers [17].

37

Chapter 3:

MATLAB Implementation

3.1 Basic Approach

Before implementing the process in hardware, we verified our project in Matlab first. In our

project first we have used FFT as a basic algorithm.

We have made our own database consisting of Brac University students and used
them to develop our recognition system. The database that contains the images of
different expressions of the students is named “Train Database”. It has total 20

images. Here we have considered two different expression of an image.

We have used another database which is named the “Test Database”. The database
that contains the image that will be compared with the train database’s image is
named the “Test Database”. It may contain image inside or outside image of Train

Database.

Firstly we placed the Train Database containing 20 images in a directory using
Matlab.

Then we resized the image into 50:50 to ensure same dimension for every image.
For the ease of further processing we converted the RGB data into Gray scale,
which reduces the matrix dimension.
After that we have applied FFT on the entire database using the Matlab function
FFT2, as images are two dimensional.

Next we have computed the mean value of the FFT images using mean2 function.
We repeated the above steps on test database also.
Then we made an array containing the differences of means between test and train
databases. This is to mention that Test database can contain a single image.

We have set a threshold by trial and error method which is 21.

If the difference of mean is less than 21, it has been declared that the image is
matched. For the values that are more than 21, we considered the images are not

matched. Images that are not included in the Train Database will not match in the
end.

38

The whole procedure can be shown in a following flow chart.

Start

|

Input Image

2 Za—

RGE to Gray

v

FFT

¥

Absolute and Mean

¥

Difference betwean Input
Image and Database Image

¥

(Difference < Threshold)?

J ves
Image Matched

¥
End | =

NO

Do Mot Matched

Figure 3.1: Flowchart of FFT based face recognition.

39

Figure 3.2: Train Database

In Figure3.2, our Train Database is shown. It is noticeable in the database, that the images we
have taken are not uniform. One image has the light effect, another may not. One is smiling,
another is not. It has been done intentionally, so that we can identify the limitations of FFT

spontaneously. To check, FFT’s performance whether it can match considering the light

effect and different expressions.

40

Another Database we have the Test Database it may or may not be from the Train Database.
It can include only one image. For a while let’s consider the Test Database has the following

image.

Figure 3.3: Test Database Image

Since another two expressions of the above image is present in the Train Database, if we run

the system the answer will be “Matched”.

3.2 Two dimensional FFT on an image:

In image processing, the 2D FFT allows one to see the frequency spectrum of the data in
both dimensions and lets one visualize filtering operations more easily. The 2D FFT is simply
a Fourier transform of one dimension of the data, followed by a Fourier transform over the
second dimension of the data. In the following example we have performed a 2D FFT on an
image, switched the magnitude and phase content. Now we would get to see what actually
happened in Matlab when we applied 2D FFT of an image from our own database.

Considering the code written below [19].

close all;

clear all;

img = imread('Farhan.jpg’,’jpg’);
imagesc(img)

img = fftshift(img(:,:,2));

F =fft2(img);

figure;

41

imagesc(100*log(1+abs(fftshift(F)))); colormap(gray);
title('magnitude spectrum);

figure;
imagesc(angle(F)); colormap(gray);
title('phase spectrum);

Before entering into our main recognition code, using the above code we applied FFT2 on an

image to observe the output and it results

100
150

200

N 4 60 80 100 120 140 160 180

The Original Image

magnitude spectrum

50
100
150
200

120 140 160 180

Magnitude Spectrum

Phase Spectrum

42

The 2D FFTs are accomplished using fft2. The image files are imported as unit8, so they
should be converted to double arrays before doing the FFTs. The FFT of real, non-even data
is complex, so the magnitude and phase of the 2D FFTs should be displayed. The function
fftshift is used to shift the quadrant of the FFT around to see the lowest frequencies in the
center of the plot [18].

If we look at the FFT of above image, it can be seen that most of the energy in the Fourier
domain is present in the center on the image, which corresponds to low frequency data in the
image domain. This corresponds to many gradual changes in the image. The phase of the FFT
is hard to interpret and generally looks like noise. However, the phase holds a great deal of
the information needed to reconstruct the image. To demonstrate the role of the phase of the
FFT, we switched the magnitude and phase of the image. If we want to reconstruct the image
it is necessary to show the magnitude and phase part separately. However, our project is not
concerned with reconstructing the image using inverse 2D FFT; therefore we have considered

the magnitude and phase part together in a single frame [18].

3.3 Functions used in Matlab:

In this section we will discuss the functions that have been used in Matlab for recognition and
the results.

% Import images
sdirectory = 'Train Database’;

tifffiles = dir([sdirectory '/*.jpg']);

I = cell(1,numel(tifffiles));

for k = 1:length(tifffiles)

filename = [sdirectory '/" tifffiles(k).name];
I{k} = imread(filename);

%Resize images

Rb=imresize(I{k},[50 50]);

%RGB to Gray images
J=rgb2gray(Rb);

%2D FFT

fftb=fft2(J);

%Display images

figure,imshow(I{k})

imshow(Rb)

43

figure, imshow(J)

figure, imshow(uint8(fftb))

“Imread” is used to import the images into Matlab. This function can handle most of the
standara image file formats, such as bmp, jpg, tiff and png [18]. In our code “Imshow” is usd
to display the images. “Imshow” is one of several functions that plot images, but this function
automatically eliminates the axes, displaying image nicely.

This function works well for original images. When we applied “Imshow” in our original

image it shows

Original Image

After applying RGBtoGray function in the original image we obtained

Gray scale Image

After turning the original image into gray scale, we performed 2D FFT on the image
considering both magnitude and the phase, it results

44

FFT Image

FFT based face recognition is able to recognize faces with slight change in expression. In
Test Database we put an image of different expression of one the images of Train Database.
After simulation they matched. Though it is not effective as PCA algorithm, yet to some

extend it works perfectly and we get

85.096% Matched Equivalent Database Image

We experimented taking another image of different expression along with glasses to verify

whether FFT can recognize it and it showed

Equivalent Database Image
78.6761% Matched

Equivalent Database Image

78.6761% Matched

Therefore, it can be said undoubtedly that FFT can recognize faces of different expressions

successfully.

45

On the other hand, if we place the same image to Test Database that is already stored to the

Train Database, the accuracy is 100%. For example

Equivalent Database Image
100% Matched

100% Matched Equivalent Database Image

This means if we test exactly the same image, this algorithm can identify the same image
from the train database.
Therefore, we used the above steps to verify if our proposed algorithm is suitable, and also

to what extent, as a face recognition algorithm.

46

Chapter 4

4.1 DEO Board and TRDB_D5M Specifications:

The field-programmable gate array (FPGA) is a semiconductor device that can be
programmed after manufacturing. We can use a FPGA to implement any logical function that
an application-specific integrated circuit (ASIC) could perform. Unlike previous generation
FPGAs using 1/0Os with programmable logic and interconnects, today's FPGASs consist of
various mixes of configurable embedded SRAM, high-speed transceivers, high-speed 1/Os,
logic blocks, and routing. Most importantly, an FPGA contains programmable logic
components called logic elements (LEs) and a hierarchy of reconfigurable interconnects that
allow the LEs to be physically connected. We can configure LEs to perform complex
combinational functions, or merely simple logic gates like AND and XOR. In most FPGAs,
the logic blocks also include memory elements, which may be simple flipflops or more
complete blocks of memory. In addition, newer FPGA families are being developed with

hard embedded processors, transforming the devices into systems on a chip (SoC) [20].
Advantages of using FPGAs over ASICs and ASSPs are including:

« Rapid prototyping

e Shorter time to market

o The ability to re-program in the field for debugging
e Lower NRE costs

. Long product life cycle to mitigate obsolescence risk

4.2 Cyclone 111 FPGA: Architecture

+ Stagpered 101 1 L0 I R R B 1 n
[T T TR Bl L L L e oL Phase-Locked Loops
B —] 1 A 1 I
g@ @g] I . - L2 M9K Memory Blocks
o= = [I —=— Logic Array
H He] ! 1 i
it EE Eg 1 T T W & Embedded

by | 1 T T I
EE EE 1 1 - 18-bit x 18-bit
ED __DB_ [r—s 1 [I Il 8 Multipliers

B 1 I 1 I Side /0 Cell
o 'ED =] [I I .
o= E'H-- i] I I I with Support for
s O 7 . 1 H LVDS Signals
EE EE i I up to 875 Mbps
g o] [I T
| - + 1! I
g EE] I 1 I Top and Bottom
Bo =i i T 1 L 110 Cell for Memory
=) | 3 ! 1 1
[B! pEEEmEEEEEE | ... Interfaces Up to
T [| DESEEREEEERE PR gt~ AiReErme, 400 Mbps

Figure 4.1 : Cyclone Ill Device Architecture Overview Figure 4.2 : Cyclone Ill FPGA Floorplan

47

Cyclone® 111 FPGAs has low power, high functionality, and low cost. The 65nm architecture
consists of up to 120K vertically arranged logic elements (LEs), 4 Mbits of embedded
memory arranged as 9-Kbit (M9K) blocks, and 200 18x18 embedded multipliers. Cyclone 11
LS FPGAs have a memory-rich and multiplier-rich floor plan consisting of up to 200K logic
elements, 8.2 Mbits of embedded memory, and 396 embedded multipliers [20].

Both architectures include highly efficient interconnect and low-skew clock networks,
providing connectivity between logic structures for clock and data signals. The logic and
routing core fabric is surrounded by I/O elements (IOEs) and phase-locked loops (PLLs), as

shown in Figure 4.2.
4.3 Logic Elements:

The logic array consists of LABs, with 16 LEs, LAB control signals, LE carry chains,
Resister chains and local interconnect in each LAB. LABs are grouped into rows and
columns across the device. Cyclone 11l devices range from 5,136 to 119,088 LEs. A LE, is
compact and provides advanced features with efficient logic utilization. Each LE has four-
input look-up table (LUT), a programmable register, a carry chain connection, a register
chain connection and support for resister packing and resister feedback. Moreover, it has the
ability to drive all types of interconnect: local, row, column, resister chain and direct link

interconnect [20].

Register Bypass
LAB-Wide v e

Synchronous LAB-Wide ‘ Programmable
Load Synchronous Registar
Clear)
|

LE Carry-In —l

I

Look-Up Table| Carry

ata 3—e————

-

=

(Lum

al
Chain

e gog
\J =
m
0 |
<
ES

T
EN}’\J
LoLRn

[Row, Column,
J—bAnd Direct Link
i Routing

Row, Column,
— And Direct Link

l

Register Feedback

A
LE Carry-Out

Reset
(DEV_CLRN)

labelri

labelr2

Chip-Wide

labelkt——

labelk2——m=

labclkenal—j

4"
labolkenaz—{—»{ |

Clo

Clock &
ck Enable

pa

M

Il
=)

Routing

1 Local
7" Routing

Register Chain
"output

Figure 4.3: Cyclone 111 Logic Elements

4.4 Cyclone 11l FPGA: Applications

48

The Cyclone 111 FPGAs are the first to implement a complete suite of security features at the

silicon, software, and IP level on a low-power, high-functionality FPGA platform [20].
Cyclone 111 FPGAs has the following application areas:

e Automotive

o Consumer

o Displays of all sizes

e Industrial

e Military

e Video and image processing

e Wireless communications

4.5 Altera Cyclone 111 3C16 FPGA device:

The DEO board has many features that allow the user to implement a wide range of designed
circuits, from simple circuits to various multimedia projects. DEO has Altera Cyclone® Il
3C16 FPGA device , Altera Serial Configuration device — EPCS4, USB Blaster, 8-Mbyte
SDRAM, 4-Mbyte Flash memory, SD Card socket , 3 pushbutton switches, 10 toggle
switches, 10 green user LEDs,50-MHz oscillator for clock sources , VGA DAC with VGA-
out connector, RS-232 transceiver, PS/2 mouse/keyboard connector, Two 40-pin Expansion
Headers [20].

Figure 4.4: DEO FPGA Specifications.

To provide maximum flexibility for the user, all connections are made through the Cyclone
I111 FPGA device. Thus, the user can configure the FPGA to implement any system design.

49

http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-auto.html
http://www.altera.com/end-markets/consumer/csm-index.html
http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-display.html
http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-ind.html
http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-mil.html
http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-video-image.html
http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-wireless.html

User LEDs (10) — SDRAM (8 Mbytes)
PushButton Switches (3) T2 Flash (4 Mbytes)
Slide Switches (10) — -

EP3C16F484
Triple 4-bit VGA DAC

SD Card Socket

7-Segment Display (4)

Expansion Headers (2)
16X2 LCD Interface o el

RS-232 Transceiver

EPCS4 T
Ca o E Blaster
Device

—_—

Figure 4.5: DEO FPGA Components.

DEO board has 50 MHz Clock input and Cyclone 1111 3C16 which has 15,408 LEs, 56 M9K
Embedded Memory Blocks, 504K total RAM bits, 56 embedded multipliers, 4 PLLs, 346
user 1/0 pins and FineLine BGA 484-pin package. It has Built-in USB Blaster circuit,
SDRAM which has one 8-Mbyte Single Data Rate Synchronous Dynamic memory chip and
Supports 16-bits data bus. In addition it has 4-Mbyte NOR Flash memory which Support
Byte (8-bits)/Word (16-bits) mode and General User Interfaces which includes 10 Green
color LEDs (Active high), 4 seven-segment displays (Active low) and 16x2 LCD Interface
(Not include LCD module). Moreover, it has SD card socket which Provides both SPI and
SD 1-bit mod SD Card access. Furthermore, it has Pushbutton switches, Slide switches, VGA

output, Serial ports and two 40-pin expansion headers [20].

4.6 Camera Module Pixel Array Structure:

TRDB-D5M Camera Module is used to capture the image of a person. The address start from
(Column 0, Row 0) and it locates at the upper-right corner of the whole region. TRDB-D5M
pixel array consists of 2,752 column by 2,004 row. However, whole region is not considered
as an active region. Array consists of a 2,592 column by 1,944 row is considered as an active

region including boundary region. In addition, boundary region is not used to show pictures

50

to avoid edge effects. Moreover, the black region which is surrounded by the boundary region

is not used to display any pictures.

teDark (134)
_'!_ﬂi‘_ —Active boundary (10 0,00

Dark (50) ZZZ%"Z
Active boundary (4) ¥

Active Image

2592x1944
Pixels

Active boundary (%%
Dark (2) : Dark (10)

=
Active boundary (6)—»!1

Figure 4.6: Pixel Array Description
Pixels are output in a Bayer pattern format consisting of four “colors”—Greenl, Green2,
Red, and Blue (G1,G2, R, B)—representing three filter colors. When no mirror modes are
enabled, the first row output alternates between G1 and R pixels, and the second row output
alternates between B and G2 pixels. The Greenl and Green2 pixels have the same color filter,

but they are treated as separate colors by the data path and analog signal chain.

4.7 12C Protocol:

In early 80’s Philips designed 12C bus. This name is taken from Inter IC and mostly called as
I1IC or 12C [21]. It permits simple communication to achieve data communication between
components that resides on same circuit board. It is not as famous as USB or Ethernet but
much of electronic devices depend on 12C protocol. It is unique in the use of special
combination of signal conditions and changes. It entails only 2 signals or bus lines for serial
communications, one is clock and other is data, clock is recognized as SCL or SCK (for serial
clock) and data is known as SDA. 12C protocol uses certain registers for common resolutions,
their frame rates, LVAL, FVAL, exposure time, green gain, red gain and blue gain.

4.8 Camera Image Acquisition System:

When FPGA gets power to start, system initializes sensor chip and determines mode of

operation and certain value of registers in image sensor controls corresponding parameters

51

[22]. From the following figure it can be seen that LVAL is vertical synchronization signal
and FVAL is horizontal reference signal, PIXCLK represents pixel output synchronization
signal. When FVAL signal goes high, the system sends out 1280 (number of columns) data
at the same time, and the LVAL will appear 960 (number of rows) times high during the
FVAL high. One frame image with resolution 1280*960 is collected completely when the

next FVAL signal rising edge arrives.

PIXCLK

|

: |
| |
FVAL R B N
| I | | | |
- R
D[11:0] R ZZ BRI RN /R Y
| I | | | |
Vertical Blank | Horizontal Blank | Valid Image Data ‘ Horizontal Blank ‘ Vertical Blank

Figure 4.7: Default Pixel Output Timing
4.8.1 Frame Valid

This hardware pin is asserted during the total No. of active rows in the image. This pin is also
responsible for the start and end of the pixel stream in the image. This pin goes high only
once during each image provided by the camera. In above figure, FVAL goes high when
camera provides image.

For a complete configuration, we also need to write the valid values for the various
configuration registers in the camera. For example we configure the camera when to start row
and columns and what should be the rate of images provided by the camera. Digital and
analog gain for the three color components are adjusted to give best performance in specific

environment.

4.8.2 Line Valid

This is the hardware pin on the camera which goes high during the valid pixels in a row of
the image. This pin asserted number of row times in the image. For our configuration, this pin
is asserted 960 times for one image. Each time “line valid” pin goes high, there are 1280
pixels transferred by the camera. Each pixel is transferred by triggering the “pixel clock™ pin

in the camera.

52

4.9 Bayer to RGB conversion in FPGA

Image sensor exports the image in Bayer format and in FPGA a Bayer color filter array
converts Bayer pattern image into RGB. The pattern of this filter shows that half of its pixels
are green while quarter of the total number is assigned for red and same for blue color. Odd
pixel lines in the image sensor contain green and blue components, while the even lines

contain red and green color components.

Figure 4.8: Bayer Pattern Filter
Above figure shows a bayer pattern filter and each pixel shows only one component of each
primary color. To convert an image from Bayer format to RGB format, each pixel needs to

have values of all three primary colors.

4.9.1 RGB conversion

Camera is configured in such a way that a Bayer image is getting 960 rows and 1280 columns
with 5 frames per second. Camera outputs the data in Bayer pattern with 12 bit on parallel
bus. In Bayer pattern format, each pixel contains one of three primary colors, which consists
of four colors: greenl, blue, red and green2. The layout is shown in following figure that

means two of the remaining color components are missing in each pixel of Bayer pattern.

column readout direction)
. black pix

G1|R|G1 R |G1| R |G1| R |G1

G1|R|G1 R |G1| R |G1| R |G1

G1|R|G1 R |G1| R |G1| R |G1

row readout direction

Figure 4.9: Bayer image Pixels

53

This bayer pattern data is then passed through a module which converts it into RGB values,
and utilizes four pixels of Bayer pattern format to construct one pixel of RGB. After applying
formula, other two component’s value can be find out. Camera manages green pixels as two
different colors depending on which line they are coming from. In Bayer format, when 1%
complete row and only first 2 pixels of the second row complete scanning, then filter creates
the 1% pixel of RGB.

Blue Greenl

Green2 Red

Figure 4.10: RGB pixel from Bayer format

Above figure shows a RGB pixel format. As the second row out of camera completes
scanning, first complete row of RGB image is created. Similarly with the completion of 3"
and 4™ row of Bayer pattern image a 2" RGB pixel row completed. As the pixels are being
received by the camera, they are simultaneously being transformed into RGB and
simultaneously being sent to the memory module in the FPGA. After that we converted this
RGB pixel into grayscale using the following formula
Grayscale = (Red+ Green+ Blue)/3
This conversion is used to reduce the matrix dimension. Next this memory module stores this

pixel in the external SDRAM through external bus and so on.

54

Chapter 5
Hardware Implementation:

Altera Corporation is the pioneer of programmable logic solutions. And we have used
Altera’s FPGA board to use in our project. Our FPGA board is from the Cyclone III device
family and its model number is DEO [27].In our project we have used ‘Qsys’ extensively.
Qsys is the Altera’s system integrated tool.© Qsys’ system integration tool saves significant
amount of time and effort in the FPGA design process by automatically generating
interconnect logic to connect intellectual property (IP) functions and subsystems. Qsys is the
next-generation SOPC Builder tool that is powered by a new FPGA-optimized network-on-a-
chip (NoC) technology delivering higher performance, enhanced design reuse, and faster
verification compared to SOPC Builder [27].

A block diagram of our problem formulation for the ‘Qsys’ part is given below:

Bayer Color
CMOS Sensor [Pattern to

Data Capture i 30 Bit RGB

RGB

to
GRAY
Conversion

LCD Monitor
12C Sensor

Configaration

VGA
Controller

FFT Image

Scatter Gather FFT Megacore
DMA 1 T o

Figure 5.1: Block diagram of our proposed architecture.

The hardware architecture we proposed is as follows:

An image is captured from the FPGA board compatible camera module TRDB_D5M.

The output pixels or the raw data are in Bayer color Pattern.

Therefore the data is passed through Bayer color pattern to 30 bit RGB (RED, GREEN,
BLUE) module.

55

Once the pixels are in RGB, they are then converted into Grayscale (to reduce down the
number of planes, in this case from 3 planes to 1plane, to reduce the complexity of data
manipulation).

This Grayscale data (or the captured image) is then stored in memory (SDRAM) through the
assistance of the external bridge bus and SDRAM controller.

At this stage, to verify if the data is actually stored in the SDRAM we can include the VGA
controller and the Video In decoder and display the data on a LCD monitor.

Once the data (or the image) is stored in the SDRAM, the data is accessed from the SDRAM
through the Scatter Gather DMA (direct memory access) controller and is passed to the FFT
block (Fast Fourier Transform block).

The output, that is, the data after FFT is again stored in SDRAM, this time at a different
memory location (in order to keep both the stored data). At this stage another DMA controller
is used to transfer these data and access the SDRAM.

Then both sets of data are now available in the SDRAM.

The above steps are followed again, to keep the information of another image (the concept of
creating database).

Then Nios Il carries out further processing of comparison and recognition for both the images
(FFT values are compared).

The data route can be viewed from the RTL viewer to get an idea on the logic gate
implementation for different blocks we have used.

56

To accomplish the above processes we have used some Qsys’ components.
The components that we have considered putting in our system are as follows---

of the components might not be exactly as the following list)

1)
2)
3)
4)
5)
6)
7)
8)
9)

Figure 5.2: RTL Viewer

External Bus to Avalon Bridge.
SDRAM controller.

Avalon ALTPLL.

SG-DMA (scatter-gather) Controllers.
VGA controller.

Video DMA Controller.

FFT block generated from Mega Wizard.
NIOSII Processor.

On-chip Memory (RAM).

(the order

5.1 External Bus to Avalon Bridge: wWe have used this IP core or component to

make an interface with our external camera module to our system. This bridge provides a

57

simple interface for a peripheral device (in our case, the TRDB_D5M) to connect with the
Avalon
Switch Fabric as a master device. The Bridge creates a bus-like interface to which one or

more “master” peripherals can be connected.[34]

Clack
avalon_address Address
- EE—

avalon_writedata WriteData

avalon_read Read
Avalon avalon_write External Bus Write External
Switch - to Avalon - Master
Fabric Bridge Peripheral

avalon_byieenable ByteEnable

avalon_waitrequest Acknowledge

avalon_readdata ReadData

Figure 5.3 : External bus to avalon bridge.

The Bus signals provided are: 1) Address- k bits (up to 32).

2) Read-1 hit.

3) Write- 1 bit.

4) Byte Enable- 16,8,4,2 or 1 bit.

5) Write Data- 128,64,32,16 or 8 bits.

6) Read Data- 128,64,32,16 or 8 bits.

7) Acknowledge- 1 bit.
The bus is synchronous — all bus signals must be read by the master peripheral on the rising
edge of the clock. A bus transfer happens when either Write or Read is high. For our project
we coded in such a way that the bridge does the work of a write command as we want to
write the data from the camera to the SDRAM.

58

Nios Il System

L

Address

Write
Read
External Bus ByteEnable 2 Master

to Avalon Bridge WriteData s Peripheral

Acknowledge
ReadData 1§ _

Figure : External Bus to Avalon Bridge with Nios 1 system

Two parameters are needed to specify in ‘Qsys’ External Bridge to Avalon core:
1) Data Width — the number of data bits involved in a transfer. The Bridge supports
data widths of 8,16,32,64, and128 bits.
2) Address Range — the addressable space supported by the Bridge. It is possible to
specify the address range of 1,
2,4,8,16,32,64,128,256,512,and 1024, in either bytes, kilobytes (kB) or megabytes (MB).

5.2 SDRAM controller: it allows designers to create custom systems in an Altera

device that connect easily to SDRAM chips. This SDRAM controller connects to one or more

SDRAM chips, and handles all SDRAM protocol requirements [23].

Altera FPGA

Clock PLL SDRAM Clock
Source

Yy

| Phase Shift

Controller Clock
SDRAM Controller Core SDRAM Chip
(PC100)

- clk

o - 2 - - cke

clock | & g' > | addr
[< > = ba
Avalon-MM slave address » é > P cs
imeriacg data, control % e > P cas
to 0n-ph|p : é o > | ras
logic waitrequest E g > > we
. = £ |= > —p dq

readdatavalid
> | dgm

SDRAM controller with Avalon Interface block diagram.

59

Avalon MM interface

The Avalon-MM slave port is the user-visible part of the SDRAM controller core. The slave
port presents a flat, contiguous memory space as large as the SDRAM chip(s). The Avalon-
MM interface behaves as a simple memory interface. There are no memory-mapped

configuration registers.

Signal Timing and Electrical Characteristics
The timing and sequencing of signals depends on the arrangement of the core. The hardware
designer configures the core to match the SDRAM chip chosen for the system. The SDRAM
controller Mega Wizard has two pages: Memory Profile and Timing. These can be
configured by using the option ‘Custom’ or we could use any of the several predefined
SDRAM configurations provided if the If the SDRAM subsystem on the target board (DEO
in our case) matches one of the preset configurations. Some of the preset configurations are
for

e Micron MT8LSDT1664HG module

e Four SDR100 8 MByte x 16 chips

e Single Micron MT48LC2M32B2-7 chip

e Single Micron MT48LC4M32B2-7 chip

e Single NEC D4564163-A80 chip (64 MByte x 16)

e Single Alliance AS4LC1M16S1-10 chip

e Single Alliance AS4LC2M8S0-10 chip
But we have configured it for our convenience which was appropriate for our SDRAM
subsystem.
The Memory Profile page allows one to indicate the structure of the SDRAM subsystem
such as address and data bus widths, the number of chip select signals, and the number of

banks.

60

. Allowed Default -
Settings Values Values Description
. 8,186, 32, SDRAM data bus width. This value determines the width of the dg
Data Width 64 32 bus (data) and the dgm bus (byte-enable).
Number of independent chip selects in the SDRAM subsystem. By
Chip Selects 1,2,4,8 1 using multiple chip selects, the SDRAM controller can combine
Architecture multiple SDRAM chips into one memory subsystem.
Settings Number of SDRAM banks. This value determines the width of the
Banks 2.4 4 ba bus (bank address) that connects to the SDRAM. The correct
value is provided in the data sheet for the target SDRAM.
Number of row address bits. This value determines the width of the
Row 11,12,13, 12 addr bus. The Row and Column values depend on the geometry of
14 the chosen SDRAM. For example, an SDRAM organized as 4096
Address (212) rows by 512 columns has a Row value of 12.
Width
Settings == 8, and Number of column address bits. For example, the SDRAM
Column less than 8 organized as 4096 rows by 512 (2%) columns has a Column value
Row value of 9.
When set to No, all pins are dedicated to the SDRAM chip. When
Share pins via tri-state On. Off Off set to Yes, the addr, dg, and dgm pins can be shared with a tristate
bridge dg/dgm/addr 1/0 pins ' bridge in the system. In this case, select the appropriate tristate
bridge from the pull-down menu.
Include a functional When on, SOPC Builder creates a functional simulation model for
neiude a lunclional memory the SDRAM chip. This default memory model accelerates the
model in the system 0On, Off On 3 e
testbench process of creating and ver!fylng systems _tha‘[use ﬂ:IE SDRAM
controller. See “Hardware Simulation Considerations™ on page 2—7.

Table 5.1: Descriptions of SDRAM parameters.
The Timing page allows designers to enter the timing specifications of the SDRAM chip(s)

used. The correct values are available in the manufacturer’s data sheet for the target SDRAM.
For our case it is (1S42516400).

Allowed | Default

Settings Values Value Description
CAS latency 1,2,3 3 Latency (in clock cycles) from a read command to data out.
Initialization refresh cycles 1-8 9 This value specifies how many refresh cycles the SDRAM controller

performs as part of the initialization sequence after reset.

This value specifies how often the SDRAM controller refreshes the
SDRAM. A typical SDRAM requires 4,096 refresh commands every

Issue one refresh

command every o 15.625 pis 64 ms, which can be achieved by issuing one refresh command every
64 ms /4,096 = 15.625 ps.
Delay after power up, — 100 us | The delay from stable clock and power to SDRAM initialization.

before initialization

Duration of refresh

command (_rfc) — 70ns | Auto Refresh period.

Duration of precharge 20 ns
command (t_rp)

ACTIVE to READ or
WRITE delay (t_rcd)

Precharge command period.

— 20ns | ACTIVE to READ or WRITE delay.

Access time (1_ac) — 17 ns | Access time from clock edge. This value may depend on CAS latency.
Write recovery time (_wr, . 14 ns Write recovery if explicit precharge commands are issued. This
No auto precharge) SDRAM controller always issues explicit precharge commands.

Table 5.1: Descroptions of SDRAM parameters.

61

There are issues related to synchronizing signals from the SDRAM controller core with the
clock that drives the SDRAM chip. During SDRAM transactions, the address, data, and
control signals are valid at the SDRAM pins for a small window of time and during this time
the SDRAM clock must toggle to capture the correct values. At slower clock frequencies, the
clock naturally falls within the valid window but at higher frequencies the SDRAM clock
must be compensated to align with the valid window. This is usually done by either

calculating or analyzing the SDRAM pins with an oscilloscope.

5.3 PLL: APLL (Phase Locked Loop) is used to adjust the phase of the SDRAM clock so
that edges occur in the middle of the valid window. Tuning the PLL might require trial-and-
error effort to align the phase shift to the properties of the target board. But usually Phase
shift for 50MHz clock is -3ns and for 100 MHz is -1.5 ns[23][25].
The PLL that we select from ‘Qsys’ depends on the device family. Tor our three kinds are

available. We have chosen ALT PLL for our Cyclone (I11) family.

Example Calculation:

Value (ns) in -7 Speed Grade
Parameter Symbol
Min. Max.

CL=3 tac(a) — 5.5
Access time from
CLK (pos. edge) CL=2 taca _ 8

CL=1 tacn) — 17
Address hold time tan 1 —
Address setup time tas 2 —
CLK high-level width tey 2.75 —
CLK low-level width to, 2.75 —

Timing Parameters for Micron MT48LC4M32B2 SDRAM Device
Table 5.2: PLL calculations.

62

Value (ns) in -7 Speed Grade
Parameter Symbol
Min. Max.
CL=3 teka) 7 —
Clock cycle time CL=2 toki) 10 —
CL=1 tek) 20 —
CKE hold time tokH 1 —
CKE setup time teks 2 —
CS#, RAS#, CAS#, WE#, DQM hold time tomH 1 —
CS#, RAS#, CAS#, WE#, DQM setup time tems 2 —
Data-in hold time toH 1
Data-in setup time tps 2
Data-out CL=3 tzg) 5.3
high-impedance CL=2 thz(2) — 8
time CL=1 bz — 17
Data-out low-impedance time 17 1 —
Data-out hold time ton 2.5
Table 5.2: PLL calculations.
Parameter Symbol Value (ns)
Clock period toik 20
Minimum clock-to-output time too min 2.399
Maximum clock-to-output time tco max 2477
Maximum hold time after clock th max -5.607
Maximum setup time before clock tsy max 5.936

FPGA I/0 Timing Parameters

Table 5.2: PLL calculations.

The SDRAM clock can lag the controller clock by the lesser of Read Lag or Write Lag:
Read Lag = tOH(SDRAM) —tH_MAX(FPGA)

=2.5ns - (-5.607 ns) = 8.107 ns

or

Write Lag= tCLK — tCO_MAX(FPGA) — tDS(SDRAM)

=20ns—-2.477ns—2ns=15.523 ns

The SDRAM clock can lead the controller clock by the lesser of Read Lead or Write Lead:

63

Read Lead=tCO_MIN(FPGA) — tDH(SDRAM)

=2.399ns—-1.0ns=1.399 ns

or

Write Lead= tCLK — tHZ(3)(SDRAM) — tSU_MAX(FPGA)

=20 ns—-5.5ns—5.936 ns = 8.564 ns

Therefore, for this example you can shift the phase of the SDRAM clock from —8.107 ns to
1.399 ns relative to the controller clock. Choosing a phase shift in the

Middle of this window results in the value (-8.107 + 1.399)/2 = —3.35 ns.

These values are collected from Datasheets of the corresponding devices.

To drive the SDRAM we required a PLL (Phase Locked Loop). Cyclone series supports only
one type of PLL. A phase-locked loop (PLL) is a control system that generates an output
signal whose phase will be related to the phase of an input "reference” signal. PLL circuitry
is an electronic circuit consisting of a phase detector and a variable frequency oscillator. PLL
measures up the phase of the input signal against the phase of the signal derived from its
output oscillator and adjust the frequency of its oscillator to keep the phases matched.

The PLL can be used to generate stable frequencies, recover signals from a noisy
communication channel, or distribute clock signals throughout the design.

Usually we chose -3ns for 50 MHz and -1.5ns for 100MHz.

5.4 Scatter Gather DMA (Direct Memory Access): The Scatter-Gather

Direct Memory Access (SG-DMA) controller core implements high-speed data transfer
between two components [23].
We can use the SG-DMA controller core to transfer data from:
e Data stream to memory.
e Memory to data stream.
e Memory to memory.
For our project to transfer data to the FFT block and to place the output data from the
FFT block we have used the first two of the three processes. Firstly, we used memory
to data stream, to access the data from SDRAM as the streaming input of the FFT
block. Then we used data stream to memory to pass the output of the FFT block to the
SDRAM again.

64

http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/Signal_%28electrical_engineering%29
http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Phase_detector

The SG-DMA controller core transfers and merges non-contiguous memory to a continuous
address space, and vice versa. The core reads a series of descriptors that specify the data to be
transferred. For applications requiring more than one DMA channel, (such as in our case)
multiple instantiations of the core can provide the desired throughput. Each SG-DMA
controller has its own series of descriptors those specify the data transfers. The SG-DMA
controller core is ‘Qsys’ Builder-ready and integrates easily into any ‘Qsys’ Builder-
generated system. The device drivers are provided in the Hardware Abstraction Layer (HAL)
system library, if we want to use NIOS Il processor, SG-DMA can be called from the library
available in NIOS I1.

Since we have used internal memory (SDRAM) here is an example of how SG-DMA

controller core transfers data between an internal and external memory.

Altera FPGA
SOPC Builder System

Scatter Gather DMA Controller Core

DMA Read/
Write
Block

| System Interconnect Fabric |

Avalon-MM Master Port

Avalon-MM Slave Port

10 Breakout

Processor Main Memory

Bus =
Descriptor
Table

SG-DMA Controller Gore with Internal and External Memory

Programming with SG-DMA Controller
The description of the device, descriptor data structures, and the application programming
interface (API) for the SG-DMA controller core are given below.

65

typedef struct alt sgdma dev

alt 1llist llist; // Device linked-list entry
const char *name; // Name of SGDMA in SOPC System
void *base; // Base address of SCDMA

alt u3z *descriptor base; // reserved

alt u3z next index; // reserved

alt u3z num descriptors; // reserved

alt sgdma descriptor *current descriptor; // reserved
alt_sgdma_descriptor *next_descriptor; // reserved

alt_avalon_sgdma_callback callback;
void *callback context; I/
alt_u32 chain_control;

} alt_sgdma_dev;

// Callback routine pointer
Callback context pointer
// Value CR'd into control reg

Fig: Device data structure

typedef struct {

/* Reserved field. Set to 0. */

alt_u32 *read_addr;

alt_u32 read_addr_pad;

alt u32 *write addr;

alt u32 write addr pad;

alt u32 *next;

alt u32 next pad;

alt_ule bytes_to_transfer;

alt_us read_burst;

alt_u8 write_ burst;/* Reserved field. Set to 0. */
alt_ule actual bytes transferred;
alt us8 status;

alt_us contrel;

} alt avalon sgdma packed alt sgdma descriptor;

Fig: Descriptor data structure

Name

Description

alt_avalon sgdma_do async transfer()

Starts a non-blocking transfer of a descriptor chain.

alt_avalon sgdma_do sync_transfer()

Starts a blocking transfer of a descriptor chain. This function
blocks both before transfer if the controller is busy and until the
requested transfer has completed.

alt_avalon sgdma_construct mem to_
mem_desc()

Constructs a single SG-DMA descriptor in the specified memory
for an Avalon-MM to Avalon-MM transfer.

alt avalon sgdma construct stream to mem de

sc()

Constructs a single SG-DMA descriptor in the specified memory
for an Avalon-ST to Avalon-MM transfer. The function
automatically terminates the descriptor chain with a NULL
descriptar.

alt_avalon sgdma_ construct _mem to_
stream desc()

Constructs a single SG-DMA descriptor in the specified memory
for an Avalon-MM to Avalon-ST transfer.

alt_avalon sgdma enable desc_poll ()

Enables descriptor polling mode. To use this feature, you need to
make sure that the hardware supports polling.

alt_avalon sgdma_disable desc poll ()

Disables descriptor polling mode.

alt_avalon sgdma_check descriptor_
status()

Reads the status of a given descriptor.

alt_avalon sgdma register callback()

Associates a user-specific callback routine with the SG-DMA
interrupt handler.

alt avalon sgdma start()

Starts the DMA engine. This is not required when
alt avalon sgdma do async transfer ()and
alt avalon sgdma do sync transfer() are used.

Name

Description

alt avalon sgdma stop()

Stops the DMA engine. This is not required when
alt avalon sgdma do async transfer()and
alt avalon sgdma do sync transfer() are used.

alt avalon sgdma open()

Returns a pointer to the SG-DMA controller with the given name.

Table 5.3: Function List

66

5.5 VGA Controller: The VGA controller IP core generates the timing signals
required by the on-board VGA DAC on the DE-series

boards and Terasic’s LCD with touchscreen daughtercards. In our project we use this
controller IP core to view the data on the LCD monitor for the display and verification. Data
is provided to the VGA Controller via its Avalon Streaming Interface. The controller takes
the incoming data. Then it adds the suitable VGA timing signals and then sends that
information to either the on-board VGA DAC(digital to analog) or the LCD with touchscreen
daughtercard[23][28].

The VGA Controller core generates the timing signals as well as vertical and horizontal
synchronization signals. The timing information generated by the VGA Controller core
produces screen resolutions of 640 X 480, 800 X 480 and 800 X 600 pixels for the VGA
DAC, the LCD with touchscreen (TRDB_LTM) and the 8 inch LCD on the tPad,
respectively.

VGA
clock Reset
From l
Avalon
switch ToVGA
fabric Avalon DAC
streaming VGA ,
sink Controller
port

The parameters to be assigned for the Qsys configuration wizard are:

» DE-Series Board— Specifies the Altera DE-series board that the system is being designed
for. For our project we have used DEO.

* Video Out Device—Specifies the VGA compatible device being used, and by extension the

screen resolution. We have chosen VGA connector to suit our purpose.

5.6 Video DMA Controller: The DMA Controller IP core stores and retrieves

video frames to and from memory. When in the “from stream to memory” mode, the core

stores frames from an incoming stream to an external memory. The core uses its Avalon

67

Memory-mapped (MM) master interface to send the data to the memory. When in the “from
memory to stream” mode, the

DMA controller uses its Avalon memory-mapped master interface to read video frames from
an external memory.

Then, it sends those video frames out by means of its Avalon streaming interface [28].

System
clock Reset
From
Avalon To Avalon
switch switch
fabric Avalon Avalon fabric
.1 . streamlng streaming 1, .
sink source
{optional) (optional)
| DMA [
Avalon _ I Controller |, Avalon
control buffer
slave Avalon Avalon master
memory memory 1 P
? mapped mapped
port port

Block Diagram for DMA controller core.
The DMA controller’s configuration wizard is used to specify the desired characteristics.
Such as-
e Mode
= DMA Direction— specifies whether a video stream is to be stored to or
retrieved from memory.
e Addressing Parameters
= Addressing Mode— specifies the addressing mode.
= Default Buffer Start Address— the start address of the buffer upon
reset.
= Default Back Buffer Start Address—the start address of the back
buffer upon reset (can be equal to the Default Buffer Start Address, if
no back buffer is desired).
o Frame Resolution
= Width (# of pixels) — specifies the incoming stream’s width.

= Height (# of lines) — specifies the incoming stream’s height.

68

o Pixel Format
= Color Bits— specifies he number of bits per color plane.

= Color Planes— specifies the number of color planes

5.7 Fast Fourier transform (FFT) generated from megawizard:

The FFT MegaCore IP (which should be bought or can be used when I licensed version of
Quartus is used) function is a high performance, highly-parameterizable FastFourier
transform (FFT) processor. The FFT MegaCore function implements a complex FFT or
inverse FFT (IFFT) for high-performance applications [29]. The FFT MegaCore function
implements two architectures:

e Fixed transform size architecture.

e Variable streaming architecture.

To use this core installation and licensing procedures must be followed.

The FFT MegaCore function supports the following design flows:

e DSP Builder: Use this flow if you want to create a DSP Builder model that
includes a FFT MegaCore function variation.

e MegaWizard Plug-In Manager: Use this flow if you would like to create a FFT
MegaCore function variation that you can instantiate manually in your design.

In our project we have chosen the Mega Wizard Plug-In Manager.

The MegaWizard Plug-in Manager flow allows you to customize an FFT MegaCore function,
and manually integrate the MegaCore function variation into a Quartus Il design.

The steps are:

1. Create a new project using the New Project Wizard available from the File menu in the
Quiartus Il software.

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option to
create a new custom megafunction variation.

Then we parameterized the core according to our purpose and suitability.

In our project we have chosen Input/output data flow as ‘Streaming’ according to the

suitability of the project.

69

To set up simulation, from the IP tool bench, the Step2: set up simulation and then Generate
Simulation Model is turned on.

The Language we used was Verilog HDL. And then to generate the mega core, we have
selected Generate from the IP tool bench.

A list of files will be generated.

After reviewing the generation report, we have to click YES on the Quartus Il IP files prompt
to add the .qip file to the current

Quartus Il project.

5.8 Creating FFT block in Qsys:

In our project for easier manipulation and interconnectivity we transformed this mega core
function into ‘Qsys’ IP following few steps. Mega core functions can be included as a new
component in the ‘Qsys’ IP library. The Steps are given below.
o MegaCore Function FFT is not supported by Qsys, launched from the Tool menu of
the Quartus 1l MegaWizard Plug-In Manager.
o From MegaWizard Plug-In Manager, a new custom megafunction variation is
selected.
o Megafunction of FFT on the next page is created.
o In MegaCore Function, we clicked Parameterize.
o In Parameters tab, specified the size of the FFT and the Target Device Family.
o In Architecture tab, specified the 1 / O Data Flow. This time we have chosen
Streaming.
o When finished, clicked the Generate screen FFT MegaCore Function.
o MegaCore Function is generated and added to the fft.qip Files of Quartus II.
o In order to capture the ‘Qsys’ the FFT MegaCore Function that is generated by
MegaWizard, a wrapper module is created.
o To be added as a new component of the ‘Qsys’ FFT MegaCore Function, clicked New
Component from the Component Library tab.
o In the HDL Files Tags Component Editor, created in as a Top Level Module, the
wrapper.v is added.
o Signals in the next tab to set the Signal Type and Interface.
o Then opened the Interfaces tab. Error Master has no read or write interface that is

eliminated when we clicked the Remove Interfaces with No Signals button.

70

o Error Interface must have an associated reset; the Associated Reset was resolved by

choosing the appropriate reset signal from the pull-down menu.

o When a component is successfully generated, it is added as a new component to the
Library. We added this FFT to the system.

o Then other connections are given according to our project’s need [31].

5.9 On-chip Memory (RAM or ROM):
Altera FPGAs include on-chip memory blocks that can be used as RAM or ROM in

‘Qsys’ systems. On-chip memory has the following benefits for ‘Qsys’ systems:

On-chip memory has fast access time, compared to off-chip memory.

‘Qsys’ Builder automatically instantiates on-chip memory inside the ‘Qsys’
system, so there is no fuss about making any manual connections.

Certain memory blocks can have initialized contents when the FPGA powers up.
This feature is useful, for example, for storing data constants or processor boot
code.

On-chip memories support dual port accesses, allowing two masters to access the

same memory concurrently [23].

The configuration wizard for the On-chip Memory (RAM or ROM) component has the

following options:

Memory type, Size, and Read latency.

Memory Type

The Memory type options define the structure of the on-chip memory:

RAM (writable)—this setting creates a readable and writable memory.

ROM (read only)—this setting creates a read-only memory.

Dual-port access—this setting creates a memory component with two slaves,
which allows two masters to access the memory simultaneously.

Block type—this setting directs the Quartus Il software to use a specific type of

memory block when fitting the on-chip memory in the FPGA.

Because of the constraints on some memory types, it is frequently best to use the Auto

setting. Auto allows the Quartus Il software to choose a type and the other settings direct the

Quartus Il software to select a particular type.

Size

The Size options define the size and width of the memory.

71

e Data width—this setting determines the data width of the memory. The available
choices are 8, 16, 32, 64, 128, 256, 512, or 1024 bits. Assign Data width to match
the width of the master that accesses this memory the most frequently or has the
most critical throughput requirements. Suppose if we connect the on-chip memory
to the data master of a Nios Il processor, we should set the data width of the on-
chip memory to 32 bits, the same as the data-width of the Nios Il data master.
Otherwise, the access latency could be longer than one cycle because the Avalon
interconnects fabric performs width translation.

e Total memory size—this setting determines the total size of the on-chip memory
block. The total memory size must be less than the available memory in the target
FPGA.

e Minimize memory block usage (may impact fmax)—Minimize memory block
usage (may impact fmax)—this option is only available for devices that include

M4K memory blocks. But we are M9k memory blocks in our system [24].

Read Latency

On-chip memory components use synchronous, pipelined Avalon-MM (Memory Mapped)
slaves.

Non-Default Memory Initialization

For ROM memories, we can specify your own initialization file by selecting Enable non-
default initialization file. This option allows the file you specify to be used to initialize the
ROM in place of the default initialization file created by ‘Qsys’.

Enable In-System Memory Content Editor Feature

Enables a JTAG interface used to read and write to the RAM while it is operating. We can
use this interface to update or read the contents of the memory from your host PC. That is,
on-chip memory contents van be viewed from this feature.

5.10 Nios Il (processor): is one of the most resourceful and versatile embedded processors.
Like any other processor, it interprets program instructions and processes data, makes the
appropriate services available to other parts of the system, presents user interfaces and

interprets the user input [26][27].

72

CUSTOM
TCM TCM
Tl | MEM INSTR IF D-MEM ==

-
— IS Nios'll (g D5 g
INT EXP
CNTRL MMU MPU - RegrRlL

Debug

JTAG HW |1&D TRCE
G CEEUG BP TRCE PORT =

Figure 5.4 : Nios 2 processor

This processor is the most widely used soft processor in the FPGA industry. The Nios Il
processor delivers unparalleled flexibility and performance in cost-sensitive, real-time, ASIC-
optimized, safety critical and applications processing needs. Nios Il comprises three
configurable cores which we have selected on the basis of individual’s design needs.
Nios IlI/f—The Nios II/f “fast” processor is designed for superior performance while
presenting the majority configuration options which are unavailable in the other Nios Il
processors.

e Nios Il/s—The Nios II/s “standard” processor is designed for small size while

maintaining fair performance.
e Nios Il/e—The Nios IlI/e “economy” processor is designed for the smallest

possible processor size while providing sufficient performance.
A Summary of Features Supported by the Nios Il processor is listed below.

¢ MMU (memory management unit).

e Memory protection unit (MPU).

e External Vector Interrupt Controller with up to 32 interrupts per controller.
e Advanced exception support.

e Separate instruction and data caches (configurable from 512 bytes to 64 KB).

73

e Access to up to 2 GB of external address space.

e Optional tightly-coupled memory for instructions and data.

e Up to six-stage pipeline to achieve maximum MIPS* (*Dhrystones 2.1
benchmark) per MHz.

e Single-cycle hardware multiplies and barrel shifter.

e Hardware divides option.

e Dynamic branch prediction.

e Up to 256 custom instructions and unlimited hardware accelerators.
e Configurable JTAG debug module.

e Optional JTAG debug module enhancements, including hardware breakpoints,

data triggers, and real-time trace.

5.11 Hardware Abstraction Layer:

The HAL serves as a device driver package for Nios Il processor systems. The HAL is a
lightweight embedded runtime environment that provides a simple device driver interface for
programs to connect to the underlying hardware. Moreover, HAL device driver abstraction
provides a clear distinction between application and device driver software. The HAL
application program interface (API) is integrated with the ANSI C standard library. The
HALAPI allows us to access devices and files using familiar C library functions. The Nios Il
software development tools extract system information from our SOPC Information File
(.sopcinfo). Most noteworthy thing is that we need not to write low-level routines to establish
basic communication with the hardware. Therefore, Application programmers call the ANSI
C or HAL API to access hardware, rather than calling your driver routines directly. HAL
does not support MPU (Memory Protection Unit) and MMU (Memory Management Unit)
hardware [30].

HAL Architecture:

User Program

C Standard Library

HAL API

Device Device Device
Driver Driver - Driver

Nios Il Processor System Hardware

Figure 5.5: HAL (Hardware Abstraction Layer) Architecture

74

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/devices/processor/nios2/benefits/performance/ni2-acceleration.html
http://www.altera.com/devices/processor/nios2/benefits/ni2-jtag-debug.html

The HAL provides the following services:

e Integration with the newlib ANSI C standard library—provides the familiar C
standard library functions.

e Device drivers—provide access to each device in the system.

e The HAL APIl—provides a consistent, standard interface to HAL services, such as
device access, interrupt handling, and alarm facilities.

e System initialization—Performs initialization tasks for the processor and the
runtime environment before main ().

e Device initialization—Instantiates and initializes each device in the system before

main () runs.

-_—_——— — —_— — —_— — — — — —_— — —_— — — — — — — 4

Nios Il Program
Based on HAL

Application Project

HAaL BSP Project

Hardware System

Figure 5.6: Nios Il HAL Project Structure

Every HAL-based Nios Il program consists of two Nios Il projects. One is the user
application project and another one is HAL BSP Project. The HAL drivers relevant to your
hardware system are incorporated in the BSP project. The BSP project depends on the

hardware system, defined by a SOPC Information File (.sopcinfo).

75

The procedure we have followed with the assistance of the HAL library is given as a flow

chart below:

—

Open Scatter- Gather

DMA Initialization

h
Adding Pointer to
Input and Output
Memory

i

Rearrange
Memory Bytes
Construct
Ve L J Descriptor
f/ Memory to Stream Descriptor
+

Stream to Memory Descriptor

v

Start Asynchronous Data Transfer

!

Start Asynchronous Data Receiver

l

Apply Recognition Algorithom
Using C Language

l

___.--"";Display whether Matched or
Unmatched

Figure 5.7: Flowchart for Nios Il Instruction.

76

Our initial task was to read image from SD ram and after that to store the fast fourier
transformed (FFT) image in another place of the SD ram so that it does not overlap. SD ram
is connected to Scatter Gather DMA for asynchronous data transfer. Since SD ram has no
software-configurable settings and no memory-mapped registers we have programmed
SGDMA using it’s built in library routine. For this, we have first opened SGDMA and added
pointer to input output memory as part of the initialization. Before construct descriptor it was
necessary to rearrange memory blocks. Then we called the two built in function and passed
the required parameters to that function.

alt_avalon_sgdma_construct_ mem_to_stream_desc()
alt_avalon_sgdma_construct_stream_to_mem_desc()

After that it was ready for asynchronous transfer and receiver. When transmission and receive
was complete we used this value to compare it with existing database for recognition.

After configuring and adding all the components we finally get a ‘Qsys’ system content

output. The connections to the components are given as per our project’s requirements.

77

The image is given below:

Name Description
B Main_Clock Clock Source
O ckin Clock Input
s ck_in_reset Reset Input
< ck Clock Output
ck_reset Reset Output
B bridge_0 External Bus to Avalon Bri...
clock_reset Clock Input
> clock_reset_reset |Reset Input
< avalon_master Avalon Memory Mapped M...
O external_interface |Conduit
B onchip_memory On-Chip Memory (RAM or ...
— cki Clock Input
4 s1 \Avalon Memory Mapped S...
reset1 Reset Input
B cpu Nios I Processor
ck Clock Input
reset_n Reset Input
data_master Avalon Memory Mapped M....
> i ion_master |Avalon Memory Mapped I...
[> fag_debug_module... [Reset Output
fag_debug_module |Avalon Memory Mapped S...
custom_i ion_...|Custom Master
B sdram_0 SDRAM Controller
ck Clock Input
[og reset Reset Input
s1 \Avalon Memory Mapped S...
- wire Condutt
B sgdma_0 Scatter-Gather DMA Contr...
ck Clock Input
> reset Reset input
csr Avalon Memory Mapped S...
descriptor_read Avalon Memory Mapped M...
descriptor_write Avalon Memory Mapped M...
> m_read Avalon Memory Mapped M...
r out Avalon Streaming Source
B Input_RAM On-Chip Memory (RAM or ...
ck1 Clock Input
e st \Avalon Memory Mapped S...
> reset! Reset Input
B sgdma_1 Scatter-Gather DMA Contr...
ck Clock Input
? reset Reset Input
> csr Avalon Memory Mapped S...
descriptor_read Avalon Memory Mapped M...
descriptor_write Avalon Memory Mapped M...
—l m_write Avalon Memory Mapped M...
— in Avalon Streaming Sink
B Output_RAM On-Chip Memory (RAM or ...
> cki Clock Input
st Avalon Memory Mapped S...
= > reset! Reset input
2 pll Avalon ALTPLL
> inck_interface Clock Input
inck_interface_reset |Reset input
-> pl_slave Avalon Memory Mapped S...
— c0 Clock Output
- areset_condutt Condutt
- locked_conduit Conduit
- phasedone_condut |Conduit
B fft_avalon_wrapper |fft_avalon_wraper
> clock Clock input
reset Reset Input
> avalon_slave_0 Avalon Memory Mapped S...
N > avalon_streaming_s... | Avalon Streaming Sink
— avalon_streaming_s... Avalon Streaming Source

78

Export

clk

fifo_bridge

Clock

Main_Clock

Main_Clock
[clock_reset]
[clock_reset]

pli_c0
[ck1]
[ck1]

Main_Clock
[ck]
[ck]
[ck]
[ck]
[ck]

pll_c0
[ck]
[k

pll_c0
[ck)
[cK)
[ck]
[ck)
[ck]
[cK)

pll_c0
[ck1]
[ck1]

pll_c0
[ck]
[ck)
[cK]
[ck]
[ck)
[ck]

pll_c0

[cki]
[ck1]

Main_Clock

[inck_interfa...
[inck_interfa...

pl_c0

Main_Clock
[clock]
[clock]
[clock]
[clock]

Figure 5.8: Qsys system content

Base

o

0x00002000

IR0 0

0x00004800

0x00000000

0x00005000

0x00800000

0x00005040

0x00800000

0x00800000

End

0x00003£££

IRQ 31

0x00004£££

0x007££££E

0x0000503£

0x00800£££

0x0000507£

0x00800£££

0x00800000

RQ

—x

After the connections were made, Verilog codes had to be written in order for the parameters
of some of the components work.

That Is the HDL example generated from these ‘Qsys’ system output, these had to be
assigned input and output signals.

As for example we had to write codes for the External bus to Avalon bridge work.

The logic we have created is shown by the help of a Flow chart below:

e

N

Streaming Input

button_ pressed==0

inside__active_ frame==1 No— |

No—— |

Yes

write<=1

No—— |

NoO——— |

Yes

write<=0

B

Figure 5.9: Flowchart for valid frame capture

79

The logic we proposed was when the button for capturing the image is pressed; a frame from
the streaming data will be captured.

First we checked if the current frame, just when the button is pressed, meets the ‘inside active
frame’ conditions. That is if the frame has a dimension of an active image (1944X 2592), it
must be starting from x=0 and y=0, till the end of an active image frame. If this condition is
satisfied, then this data will be transferred during the immediate next Odval (rising edge of
the driving clock).This condition is defined by the ‘new pixel’ block. This will make the
‘write’ signal high. After writing the whole frame to SDRAM ‘inside active frame’ will be 0
and this will generate an ‘Acknowledge’ from the external bus. When Acknowledge is high
(1), the write signal is made (0) to stop the writing process as we have successfully collected
one frame, that is, the data of an image.

By following the above steps we tried to implement our proposed architecture in hardware.

80

Chapter 6

Results and Discussion:
6.1 Software:

Principal component analysis decomposes the covariance structure of the dependent variables
into orthogonal components by calculating the eigenvalues and eigenvectors of the data
covariance matrix. Eigenvalues assist in making decisions about the number of orthogonal
components that will be used in further analysis, while eigenvectors assist in determining the
relationship between the original variables and these new components. Eigenvalues and
eigenvectors transform the original variable space into a ‘new’ set of variables, called
principal components (PCs). [32] The First Fourier Transform (FFT) is the most common
method of face recognition with respect to frequency spectrum. The FFT variables are ranked
according to their variance, thereby reflecting a decreasing importance as to their ability to
capture the whole information content of the original data-set for signal reconstruction
purposes. By virtue of its ability to reduce the complexity of the resulting feature space, the
PCA is widely used in a number of pattern recognition applications. [33]

Two face recognition strategies i.e. PCA (Principal Component Analysis) and FFT (Fast
Fourier Transform) were implemented in our project. If we want to recognize the same image
of a student with FFT algorithm the accuracy is 100% and if we take a slight changed
expression of the same person the accuracy is 40%, where the PCA gives 70% accuracy in

changed expressions.

80

Accuracy {In Percentage)

70

60

50

40

30

20 -

10 +

0

FFT PCA

Figure 6.1: Accuracy rate of Face Recognition for PCA and FFT

81

Principal Component Analysis gave better results for varying poses. Fast Fourier Transform
can recognize faces but if any person smiles and if that images contains too much light are

taken into account. The results are pretty good for the test samples that we have considered.

Figure 6.2: Recognition result with FFT based algorithm

82

Figure 6.3: Recognition result with PCA based algorithm
6.2Hardware:

Individually we could verify many components of our proposed architecture like
o VGA display
e We have the grayscale data into the SDRAM.

e Using DMA1 we could call the stored image and put it in the FFT work by curetting a
code in NIOS2

e Using DMAZ2 we stored the FFT image into the SDRAM again.

e We have prepared an approximate code for final recognition, in NIOS2,

83

6.3 Limitation:
6.3.1 Software:

The FFT is a complicated and non-effective algorithm still we tried to implement it to FPGA
board as our topic contains two huge areas that is image processing and implanting it on the
FPGA board. Since FPGA implementation is our priority, we started it with an easier
algorithm using FFT. FFT may not be as perfect as other algorithms, however to reduce noise

we are emphasizing on converting the image into frequency domain.

6.3.2 Hardware:

After we generate an IP for FFT from mega wizard .sof is not generated. We are assuming
that this problem is due to the unavailability of the licensed version. Therefore we could not
verify our proposed architecture. But individually we could verify many components of our
proposed architecture as for example, if the data could be saved in the SD-RAM and FFT

core is working.
6.4 Future Work:

As future improvements PCA algorithm could be implemented on FPGA. This algorithm
must be implemented directly on the FPGA, to accelerate the encoding process and not
overload the processor. This hardware implementation lead to a higher frame rate encoding,
less data per frame, consequently less bandwidth used, and offer a wider range of choices for
compression methods. It is also possible to implement several vision detection algorithms in
software. Itis possible to use already implemented algorithms, cross-compile them to
this TERASIC (TRDB_D5M) camera. Other hardware or software applications can be
implemented on this system, since the hardware present on the FPGA can be changed
or increased with HDL modules, and the operating system allows easy software
development (taking into account system constraints).

Another way in which the present implementation can be improved is by changing the input
output process. The input output block remains idle when processing is going on. We cannot
enter new sets of data as long as the entered set has been completely computed. The new
proposed architectural modification takes care of the fact that when computation of one is
going on, input and output blocks are not staying idle. This will lead to kind of pipelined

input output architecture for the whole block.

84

6.5 Conclusion:

Face recognition is biometric identification by scanning a person’s face and matching it
against a library of known faces. The end result of this project focuses on developing a Face
recognition system on FPGA. An advantage of developing this system on a FPGA was the
ability to update the functionalities or correct any error by re-programming the FPGA with a
system’s new version. This system is targeted for access control, face databases, face
identification, human computer interaction, law enforcement, smart cards, featuring
important characteristics to achieve this goal.

Hardware development was done using an Altera DEO development board with a Cyclone 11l
FPGA, which was found to be appropriate for multimedia projects. The CMOS sensor from
TERASIC (TRDB-D5M) with 5 megapixel resolution is from the same vendor and was
specially made to use with DEO board. This development kit includes Verilog HDL
examples for the image acquisition, conversion and image storage. Some of them were
used with a couple of changes to meet project’s needs.

Using SOPC Builder or QSYS it was possible to implement a Nios Il soft-core processor
with all necessary options enabled. A Nios Il system includes a processor core, an UART
peripheral, an interval timer, input/output components, a SDRAM memory controller,a LCD
module, an Ethernet interface, a SD/MMC card interface, and a CMOS slave
controller. All of these modules use an Avalon Memory-Mapped interface and are connected
using system interconnect fabric. The gate ware design was implemented with Verilog HDL
using Quartus 11 12.0 Web Edition.

This Face Recognition System can be used in any application purpose, but it is
optimized for security issue. The fact that this system was developed in FPGA and with an
open-source operating system, allows any developer to continue this project and implement

more features.

85

Chapter 7

References:

1. Face Recognition , Editors: Kresimir Delac, Mislav Grgic and Marian Stewart
Bartlett.
IN- TECH, Vienna, Austria, 2008.

2. M. Turk, A. Pentland, “Eigenfaces for Recognition”, Journal of Cognitive
Neuroscience, 3(1), pp. 71-86, 1991.

3. D. Swets, J. Weng, “Using Discrminant Eigenfeatures for Image Retrieval”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(8), pp. 831-836,1996.

4. P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman, “Eigenfaces vs. Fisherfaces:

Recognition using class specific linear projection.” IEEE Trans. Pattern Anal.
Machine Intell., vol. 19, pp. 711-720, May 1997.

5. J. Karhunen, E. Oja, L. Wang, R. Vigario, and J. Joutesensalo. A class of neural
netowrks for independent component analysis. IEEE Trans. On Neural Networks,
8(3): 486-504, 1997.

6. P. Comon. Independent Component Analysis, a new concept, Signal Processing,
36:287-314,
1994.

7. M.S. Bartlett, J.R. Movellan, T.J. Sejnowski, “Face Recognition by Independent
Component Analysis”, IEEE Trans. On Neural Networks, Vol. 13, No. 6, November
2002, pp. 1450-1464.

8. A. Kadyrov and M. Petrou, “ The Trace Transform and Its Applications,” IEEE
Transactions on, Pattern Analysis and Machine Intelligence, Vol. 23, No. 8, pp. 811-
828, August 2001.

9. http://www.authorstream.com/Presentation/gaurav22788-300314-face-recognition-
using-neural-networks-final-present-2-science-technology-ppt-powerpoint /

10. dspGuru by Lowegian International , Digital Signal Processing Central, Fast Fourier
Transform, (FFT) FAQ, http://www.dspguru.com/dsp/fags/fft

11.The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith.
Chap-12, Fast Fourier Transform.

12. James W. Cooley and John W. Tukey. “ An algorithm for the machine calculation of
complex Fourier series, “Math, Comput 19, 297-301 (1965).

13. Raghu Muthyalam, Implementation of Fast Fourier Transform for Image Processing
in DirectX- 10.

14.ImageMagick V6 Examples- Fourier Transforms.
http://www.imagemagick.org/Usage/fourier/

86

http://www.authorstream.com/Presentation/gaurav22788-300314-face-recognition-using-neural-networks-final-present-2-science-technology-ppt-powerpoint/
http://www.dspguru.com/dsp/faqs/fft
http://www.imagemagick.org/Usage/fourier/

15. R. Gonzales, R. Woods Digital Image Processing, Addison- Wesley Publishing
Company, 1992, pp 81-125.

16. A. Jain Fundamentals of Digital Image Processing, Prentice Hall 1989, pp 15-20.

17. http://answers.yahoo.com/question/index?qid=1005120802386

18. How to do a 2D Fourier Transform In matlab by Eric Verner, Matlab Geek,
http://matlabgeeks.com/tips-tutorials/how-to-do-a-2-d-fourier- transform-in-matlab/

19. How to plot 2D FFT in Matlab : stackoverflow,
http://stackoverflow.com/questions/13549186/how-to-plot-a-2d-fft-in-matlab

20. Terasic Technologies. (2011). DEO User Manual .

21. http://www.i2c-bus.org/i2c-Interface
22. Terasic TRDB-D5M Hardware specification. 2010. www.terasic.com

23.http://Iwww.altera.com/literature/ug/ug_embedded ip.pdf

24 .http://www.altera.com/literature/ug/ug sopc builder.pdf

25.http://www.altera.com/literature/ug/altera pll.pdf

26.http://www.altera.com/literature/ds/ds nios2 perf.pdf

27 www.altera.com

28.ftp://ftp.altera.com/up/pub/Altera Material/9.1/University Program IP Cores/Audio Vid
eo/Video.pdf

29.http://www.altera.com/literature/ug/ug fft.pdf

30.Altera Corporation. (2011, May). Nios IT Software Developer’s HandBook. U.S.A.
31.http://blog.goo.ne.jp.

32. Srinivasulu Asadi, Dr.Ch.D.V.Subba Rao and V. Saikrishna, November, 2010; A
Comparative Study of Face Recognition with Principal Component Analysis and Cross-
Correlation Technique. International Journal of Computer Applications, 10-8, 0975-
8887.

33. Abhishek Kesh, Rachit Gupta, Siddharth S. Seth and T. Anish, August, 2004-05;
Implement of Fast Fourier Transform (FFT) on FPGA using Verilog HDL. An Advanced
VLSI-Design-Lab Term-Project, AVDL”76, Kharagpur India.

34. external_bus_to_avalon_bridge.pdf

35. Face Recognition On FPGA (Final year project).

36. Eigenfaces for recognition (MIT).

87

http://answers.yahoo.com/question/index?qid=1005120802386
http://matlabgeeks.com/tips-tutorials/how-to-do-a-2-d-fourier-%20transform-in-matlab/
http://stackoverflow.com/questions/13549186/how-to-plot-a-2d-fft-in-matlab
http://www.i2c-bus.org/i2c-Interface
http://www.terasic.com/
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/ug/altera_pll.pdf
http://www.altera.com/literature/ds/ds_nios2_perf.pdf
http://www.altera.com/
ftp://ftp.altera.com/up/pub/Altera_Material/9.1/University_Program_IP_Cores/Audio_Video/Video.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/9.1/University_Program_IP_Cores/Audio_Video/Video.pdf
http://www.altera.com/literature/ug/ug_fft.pdf

Chapter 8
Appendix
8.1 FFT Matlab code:

clc
clear all
sdirectory = "Train Database’;
tifffiles = dir([sdirectory '/*.jpg']);
%length(tifffiles)
I = cell(1,numel(tifffiles));
for k = 1:length(tifffiles)
filename = [sdirectory '/" tifffiles(k).name];
I{k} = imread(filename);
Rb=imresize(I{k},[50,50]);
J=rgh2gray(Rb);
fftb=fft2(J);
figure,imshow(I{k})
imshow(Rb)
figure, imshow(J)
figure, imshow(uint8(fftb))
Absolutevalue_train{k}=abs(fftb);
mean_train{k}=mean2(Absolutevalue_train{k});
end
sdirectoryl = 'Test Database’;
tifffiles1= dir([sdirectoryl ‘/*.jpg]);
%length(tifffilesl)
Q = cell(1,numel(tifffiles1));
for R = 1:length(tifffilesl)
filenamel = [sdirectoryl '/ tifffiles1(R).name];
Q{R} = imread(filenamel);
Rbl=imresize(Q{R},[50,50]);
J1=rgb2gray(Rbl);
fftb1=fft2(J1);
figure,imshow(Q{R})
imshow(Rb1)
figure, imshow(J1);
figure, imshow(uint8(fftb1))
Absolutevalue_test{R}=abs(fftb1);
mean_test{R}=mean2(Absolutevalue_test{R});
end
for i= 1:1:length(tifffiles)
j=1;
difference(i)= mean_train{i}- mean_test{j};
axxx(i)= abs(difference(i));
end
t=min(axxx);
% to show the equvalent image
for us= 1:1:length(tifffiles)

88

post=min(axxx);
compare=axxx(us);
if post==compare
counter=us;

else

end

end

if t<21 %threshold level
disp(‘Matched";
percentage=(((21-t)/21)*100);
figure,imshow(Q{R})
title([num2str(percentage),' % Matched");
figure,imshow(I{counter});
title('Equivalent Database Image’);

else

disp('Not Matched'’)
percentage=(((t-21)/t)*100);
figure,imshow(Q{R})
title([num2str(percentage),'% Deviated Not Matched?);
end

8.2 PCA based Face Recognition Matlab code: (Collected)

% A sample script, which shows the usage of functions, included in

% PCA-based face recognition system (Eigenface method)

%

% See also: CREATEDATABASE, EIGENFACECORE, RECOGNITION

clear all

clc

close all

% You can customize and fix initial directory paths

TrainDatabasePath = uigetdir('D:\Program Files\MATLAB\R2006a\work’, 'Select training
database path');

TestDatabasePath = uigetdir('D:\Program Files\MATLAB\R2006a\work’, 'Select test
database path’);

prompt = {'Enter test image name (a number between 1 to 10):'};

dlg_title = 'Input of PCA-Based Face Recognition System’;

num_lines=1;

def ={'1'};

Testimage =inputdlg(prompt,dlg_title,num_lines,def);

Testlmage = strcat(TestDatabasePath,’\',char(TestImage),".jpg");

im = imread(TestImage);

%Time counting

start_time=cputime;

T = CreateDatabase(TrainDatabasePath);

[m, A, Eigenfaces] = EigenfaceCore(T);OutputName = Recognition(Testimage, m, A,
Eigenfaces);

SelectedIimage = strcat(TrainDatabasePath,'\',OutputName);

89

SelectedImage = imread(SelectedImage);

%Time resutl

Time=cputime-start_time;

imshow(im)

title("Test Image");
figure,imshow(SelectedImage);
title(Equivalent Image");

str = strcat(‘Matched image is : ',OutputName);
disp(str)

8.3 FPGA Code:

8.3.1 Storing data from camera module to SDRAM
always @(posedge CLOCK 50 or negedge DLY _RST 2)

begin
if ~DLY_RST_2)
begin
write<= 0;
end
else
begin
if(write)
begin
if(acknowledge)
begin
write<= 0;
end
end
else
begin
if(button_pressed==0) //used twice
begin
if(inside_active_frame)
begin
if(new_pixel)
begin
write<=1;
end
end
end
end
end
end

always @(posedge CLOCK_50 or negedge DLY_RST_2)
begin

90

if (~DLY_RST_2)
begin
inside_active_frame<=0;
end
else if(X_Cont == 0 &&Y_Cont == 0)//when the inside a frame
begin
inside_active_frame<=1;

end
else if(X_Cont == 2047 &&Y _Cont == 1943 &&inside_active_frame)
begin
inside_active_frame<=0;
end

end

regprev_odval;

wirebusodval,

assignbusodval=sCCD_DVAL,

always @(posedge CLOCK 50 or negedge DLY_RST 2)
begin

if (~-DLY_RST_2)

begin
if({prev_odval,busodval} == 2'b01)
begin
new_pixel<=1,;
prev_odval<= busodval,
end
if(write && acknowledge)
begin
new_pixel<=0;
end
end
end

8.3.2 Interfacing Qsys Component with FPGA board
Jan_18th u0 (
.clk_clk(CLOCK_50), // clk.clk
fifo_bridge_write(write), // .write
fifo_bridge_write_data(grayscale), //.write_data
fifo_bridge_acknowledge (acknowledge), //.acknowledge
.sdram_clk_clk (CLOCK 50 2), /[sdram_clk.clk

.video_vga_controller_0_external_interface_ CLK (CLOCK _50),
.video_vga_controller_0_external_interface.CLK
.video_vga_controller_0_external_interface_ HS (VGA_HS),
.video_vga_controller_0_external_interface_VS (VGA_VS),
.video_vga_controller_0_external_interface. R (VGA_R),

91

.video_vga_controller_0_external_interface_ G (VGA_G),
.video_vga_controller_0_external_interface B (VGA_B)

);

8.3.3 Creating SDRAM allocation
always@ (posedgesCCD_DVAL)

begin

if(address_count<5038848)
begin

address_count<=address_count+1;
end

else

begin

address_count<=0;

end

end

assignaddress_line=address_count;

8.4 Code for SGDMA:
/*

Code for SGDMA

*/

#include <stdio.h>

#include "altera_avalon_sgdma.h"

#include "altera_avalon_sgdma_descriptor.h™"
#include "altera_avalon_sgdma_regs.h"

int main()

{

/linitialize scatter-gather dma

//Memory To Stream
alt_sgdma_descriptor *desc; //1
alt_sgdma_descriptor *next; //2
alt_u32 *read_addr;//3
alt_ul6 length; //leangth//4
intread_fixed;//5
intgenerate_sop;//6
intgenerate_eop;//7
alt_u8 atlantic_channel;//8
voidalt_avalon_sgdma_construct_mem_to_stream_desc(,

)i

92

alt_sgdma_dev *dev;
alt_avalon_sgdma_start(*dev);

I/ Stream To Memory

alt_sgdma_descriptor *desc;//1

alt_sgdma_descriptor *next;//4 This does not need to be a complete or functional

[[descriptor, but must be properly allocated.
intwrite_fixed; //3
alt_u32 *write_addr; //
alt_ul6 length_or_eop;//5
voidalt_avalon_sgdma_construct_stream_to_mem_desc(,
T
/[stop scatter gather dma
alt_sgdma_dev *dev;
voidalt_avalon_sgdma_stop();

return O;

}
8.5 Code for recognition in C (NIOS I1)

#include<stdio.h>
#include<math.h>
#include<algorithm>

float mean(int m, int a[]) { //mean fuction
int sum=0, i;

for(i=0; i<m; i++)

sum+=a[i];

return((float)sum/m);

void main(){
intn,i,max,min;
intabsvalue[4][8];
float mean(int,int[]);
intmeancalc[4];
int temp[8];
int diff[4];
int threshold =10;

intfft_value[4][8] = {{90,42,21,5,-43,-9,-34,2},

2,4,32,100,-90,-2,-24,56Y}, {45,4,21,5,-43,45,-34,-23}}:

for (int i=0;i<4;i++){
for (int p=0;p<8;p++){
absvalue[i][p] = abs(fft_value[i][p]);
printf("abs_value=%d\n",absvalue[i][p]);

93

{2,42,21,12,-43,-2,-34,2}, {-

¥

for (int i=0;i<4;i++){
for (int p=0;p<8;p++){
temp[p]=absvalue[i][p];
I printf("temp_value=%d\n",temp[p]);
}
meancalc[i] = mean(8,temp);
printf("meancalc=%d\n",meancalc[i]);

¥

for (int g=0; g<4; g++){

diff [g]= meancalc[0] - meancalc[g];
printf("diff=%d\n",diff[g]);
}

max=abs(diff[1]);
min=abs(diff[1]);
for(int t=2;t<4;t++)

{
if(max<abs(diff[t]))
max=abs(diff[t]);
if(min>abs(diff[t]))
min=abs(diff[t]);

}

printf("min=%d\n",min);
if (min<threshold){
printf("Image is matched.");

¥

else {
printf("Image DO NOT Matched");

ks
ks

94

95

96

