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Abstract: 

In this paper, we have proposed a novel hardware architecture for face-recognition system. In 

order to make the system cost effective we have used a simple yet efficient algorithm of face-

recognition system. We have designed, implemented and verified the algorithm in a cyclone 

III Field Programmable Gate Array (FPGA) chip. Altera DE0 development board which 

contains a cyclone III chip on it have been used for debugging purpose. We have also ensured 

for low power consumption such that the chip could be used universally in a wide range of 

security systems.   

 

To develop a simple yet efficient face recognition algorithm (such as PCA, FFT etc.) on 

digital hardware, we have researched on various face recognition algorithms using Matlab 

codes and  studied their detection efficiency under various posture and background and also 

the complexity of the algorithm. To save hardware resource and at the same time to obtain an 

acceptable level of recognition we have chosen to use Fast Fourier Transform.  

 

The search database is developed by taking pictures of BRAC University students in various 

background and postures and used them to evaluate the developed face recognition system. 

Images were captured using TRDB_D5M camera module and digital data from the camera 

was transferred to the SDRAM of the DE0 board using GPIO interface. A NIOS2 

microprocessor was synthesized in the cyclone III chip which controlled the total recognition 

system and the communication between the FFT core, SDRAM and On-chip memory. The 

performance of the hardware is now under evaluation. 

 

 
Keywords: 
 

FFT, FPGA, Face Recognition, Nios2, TRDB_D5M. 
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Preface:  
 

One of the most important reasons for choosing this task as our undergraduate thesis is that it 

gave us the possibility to use the theory and knowledge that we have gained over the years to 

make something useful and practical. We also believed that the design task would be good 

preparation for the future challenges. We have always been fascinated by electronics and the 

wide area of application this technology presents.  Since our interest include both VLSI and 

working with FPGA, this project became a great opportunity to combine our interest and 

education. 

The reason behind choosing FPGA is that in our country very few people worked with this 

board and we took it as a challenge. This challenge was the most effective way to learn new 

things. We have learned a lot about image processing, DE0 board, TRDB_D5M camera, 

Quartus12.0 and NIOSII. The Altera DE0 platform was a very good platform to work with.  

Many projects can be implemented using this board.  
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Chapter 1  
 

Introduction:  

1.1 Background 

 
A facial recognition system is a computer application for automatically identifying or 

verifying a person from digital image or a video frame from a video source. Therefore there 

are two types of approaches for face recognition. One is image based and another one is 

video- based. There are more classifications to it now. One is partially automated systems and 

the other is fully automates systems. 

Face Recognition has become a well-liked and popular area of research in image analysis, 

understanding and in computer vision as well. This topic has raised curiosity among 

computer science researchers, neurologists and psychologists. 

Basically, face recognition in our case is given still images of a person; it can verify and 

identify one or more persons using a stored database of faces. For the research help purpose 

already many databases have been created. As for example AT&T face database, Yale face 

databases etcetera comprising of different poses and illumination conditions. Many 

universities and institutions have shown interest in this image processing and recognition 

systems from very early time and still aspire to excel in this field. 

Recognition algorithms is divided into two main categories or approached in two different 

ways. One is geometric another one is photometric. Geometric approach focuses on 

distinguished features of a face and photometric approaches statistically, that distils an image 

into some values and these values are compared with some templates so that variances are 

eliminated. 

The researches‘ directions include recognition from outdoor images, non-frontal facial 

images, increased understanding of the effects of demographic factors on the performance, 

develop improved models for predicting identification performance on very large galleries 

and many more [1]. 
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1.2 Motivation and objectives: 
 

After extensive research in the field of face recognition [35] [36], we discovered that none of 

the projects included FFT as a face recognition algorithm. We have designed the hardware 

architecture from a new perspective. Most of the available algorithms are implemented in 

software .As a result, the recognition speed is not as expected. On the other hand, hardware 

implementation has many promises. Therefore, we emphasized on hardware implementation.  

The improvement includes robustness of the speed and accuracy of the system. An FPGA can 

provide us necessary resources to achieve such improvements in face recognition. The 

resources includes built in blocks, various communication interfaces, millions of logic gates, 

scopes to run C codes into the digital hardware circuitry, high level design tools, 

performance, long term maintenance, reliability etcetera.  

 The objective of our project is to work with still image based algorithm and to implement it 

on a cyclone III FPGA chip from Altera Inc. The cyclone chip is relatively cheaper and 

includes ROM. DE0 board has been chosen as a tool for debugging process. We have 

emphasized on using FFT. Since FPGA implementation itself is a huge challenge, we will 

start with a simpler function that is FFT (Fast Fourier Transform). We have used the Cooley-

Tukey algorithm for FFT. In addition, we have gone through for a hardware/software co-

design approach. Our aim was to do the whole recognition in Matlab using FFT and PCA, 

verified that if they had worked properly, then we compared the algorithms. After that we 

focused on implementing FFT first on the board using Nios2 processors, SDRAM, on chip 

memory, DMA blocks etcetera.  

 

 

1.3 Research Goal: 

 
 Our research goal is to get acquainted with FPGA board, to learn how to use it. On the other 

hand, our goal was to enter into the huge area of image processing. Combining these two 

fields together can definitely broaden our knowledge. One of the prime concerns of our 

research is to start with the simpler algorithm, to confirm that it is possible to implement any 

other algorithm using FPGA, so that we can work on it in future. FPGA itself is complex 

device. Therefore we couldn‘t take our goal to the benchmark. Hopefully we will learn from 

mistakes and can go for further algorithms.   
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1.4 Problem Formulation: 

 
The first approach we had was to create our own small database with the images of our 

university students comprising different facial expressions. Then we attempted to apply some 

of the recognized algorithms on our database using MATLAB. Then we used our proposed 

algorithm using Fast Fourier Transform to assess the feasibility of using FFT as a face 

recognition algorithm. We afterwards moved towards hardware part which was our main 

interest. We used the FPGA board with the digital camera that is compatible with the board. 

We took images and stored them in the board‘s SDRAM. We then took these images from 

the memory and applied FFT on them and kept the transformed images to the SDRAM again. 

The next step was to compare between the values of the transformed images to verify if our 

algorithm was working. 
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Chapter 2  
 

2.1 Algorithms for face recognition 

 

2.1.1 Principle component Analysis:  

          
Principle component Analysis (PCA) was invented in 1901 by Karl Pearson. This algorithm 

consists extracting relevant information in a face image which is called the principle 

component and encode that information in a suitable data structure. For recognition it takes 

the sample image and encodes it in the same way and compares it with the set of encoded 

images. In mathematical terms we want to find Eigen vectors and Eigen values of a 

covariance matrix of images, where one image is just a single point in high dimensional space 

[n *n], where n*n are the dimensions of an image. There can be many Eigen vectors for a 

covariance matrix but very few of them are principle one‘s. Each Eigen vector can be used 

for finding different amount of variations among the face image. However we are 

emphasizing only in principle Eigen vectors because these can show account for substantial 

variations among a bunch of images. They can show the most significant relationship 

between the data dimensions. Eigenvectors with highest Eigen values are the principle 

component of the image set. We may lose some information if we ignore components of 

lesser significance. But if the Eigen values are small then we won‘t lose much. Using those 

set of Eigen vectors we can construct Eigen faces. 

The goal of PCA is to reduce the dimensionality of the data while retaining as much as 

possible of the variation present in the original dataset. PCA allows us to compute a linear 

transformation that maps data from high dimensional space to low dimensional sub-space. [1] 

[2]. 
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 Lower dimensionality basis 

 

 Approaximate vectors by finding a basis in an approapriate lower dimensional space. 

 

(1) Higher dimensional space representation: 

 

 
 

(2)Lower dimensional space representation: 
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Example: 
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 Methodology 
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 Linear transformation implied by PCA  

-    The linear transformation R
N

  R
K

 that performs the dimensionality reduction is: 

                                 
  

 Geometric Interpretation: 

- PCA projects the data along the directions where the data varies the most. 

- These directions are determined by the eigenvectors of the covariance 

matrix corresponding to the largest Eigenvalues. 

- The magnitude of the Eigenvalues corresponds to the variance of the data 

along the eigenvector directions.  
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 Main Idea behind Eigenfaces: 
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 Computaion of the eigenfaces: 
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 Representing faces on to this basis 

         
    

 

             

 
 
 
 
 
 
 



22 
 

 Face Recognition Using Eigenfaces 
       

 

 
 

− The distance e
r
 is called distance within the face space (difs) 

− Comment: we can use the common Euclidean distance to compute e
r
, 

however, it has been reported that the Mahalanobis distance performs better: 
                               

 
 

In the recognition phase, a subject face is normalized with respect to the average face and 

then projected onto face space using the eigenvector matrix. Next, the Euclidean distance is 

computed between this projection and all known projections. The minimum value of these 

comparisons is selected ans compared with the threshold calculated during the training phase. 

Based on this, if the value is greater than the threshold, the face is new. Otherwise, it is a 

known face. 
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2.1.2 LDA :  

           Linear discriminant analysis (LDA) is another effective algorithm for face 

recognition. It is closely related to PCA and factor analysis in that they both look for linear 

combination of varaibles whice best explain the data. LDA explicitly attempts to model the 

difference between the classes of data.  PCA on the other hand doesnot take into account any 

difference in class, and factor analysis builds the feature combinations based on differences 

rather than similarities. The face space created in LDA gives higher weight to the variations 

between individuals than those of the same individual. LDA is less sensitive than the phase 

spectrum. Indeed, it is the phase spectrum that contains information which humans use to 

identify faces. [4]. 

2.1.3 ICA:   

As PCA considers the 2
nd

 order moments only it lacks information on higher order statistics. 

The Independent Component Analysis (ICA) accounts for higher order statistics and it 

identifies the independent source components from their linear mixtures. ICA thus provides a 

more powerful data representation than PCA [5] as its goal is that of providing an 

independent image rather than uncorrelated image decomposition and representation. ICA of 

a random vector searches for a linear transformation which minimizes the statistical 

dependence between its components [6]. ICA represents the input as an n-dimensional 

random vector. This random vector is then reduced using PCA, without losing the higher 

order statistics. Then, the ICA algorithm finds the covariance matrix of the result and obtain 

its factorized form. Finally, whitening , rotation and normalization are performed to obtain 

the Independent components that constitute the fce space of the individuals. Since the higher 

order relationships between pixels are used, ICA is robust in the presence of noise. Thus, 

recognition is less sensitive to ―lighting conditions, changes in hair, make-up and facial 

ecxpressions‖ [7]. 

2.1.4 Trace Transform: 

The Trace transform [8], a generalizarion of the Radon transform, is a new tool for image 

processing which can be used for recognition objects under transformations, rotations, 

translation and scaling. To produce the Trace Transform one computes a functional along 

tracing lines of an image. Each line is characterized by two parameters, namely its distance 
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from the centre of the axes and the orientation.The trace transform is a global transform, 

applicable to full images. If we are going to use it to recognize faces, we must consider the 

local version of it. One of the key properties of the Trace transform is that it can be used to 

construct features invariant to rotation, translation and scaling. We should point out that 

invariance to rotation and scaling is harder to achieve than invariance to translation. It is 

assumed that an object is subjected to linear distortions like rotations,translations, and 

scaling. It is equivalent to saying that the image remains the same but viewed from the 

linearly distorted coordinate system . 

2.1.5 Neural Network:  

A Neural Network is a system of programs and data structures that approximates the 

operation of the human brain. A neural network usually involves a large number of 

processors operating in parallel, each with its small sphere of knowledge and access to data in 

its local memory. Typically, a neural network is initially trained or fed large amounts of data 

and rules according to the data. A program can tell the network how to behave in response to 

an external stimulus or can initiate activity on its own. The main disadvantage of neural 

networks is that there is no clear method to find the initial topologies. The training takes long 

time. For face recognition, a neural network must be trained to recognize an individual. That 

is time consuming and not well suited for real-time applications [9]. 
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                             FIGURE 2.1: Face Recognition approaches 

2.2 FFT: 

 The fasr fourier transform (FFT) is simply a fast (computationally efficient) way to calculate 

the Discrete Fouries Transform.FFT algortithm was first published by Cooley and Tukey in 

1965. This is a clever algorithm which can be used to transform a signal from time domain to 

fequency domain.The FFT greatly reduces the amount of calculation. It also reduces the noise 

of a signal that are present in time domain. 

Functionally, the FFT decomposes the set of data to be transformed into a series of smaller 

data sets to be transformed. Then, it decomposes those smaller sets into even smaller sets. At 

each stage of preocessing, the results of previous stages are combined in special way. Finally, 

it calculates the DFT of each small data set. For example, an FFT of size 32 is broken into 2 
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FFTs of size16, which are broken into broken 4 FFTs of size 8,which are broken into 8 FFTs 

of size 4, which are broken into 16 FFTs of size 2.  [10] 

 The number of complex multiplication and addition operations required by the simple forms 

both the Discrete Fourier Transform (DFT) and Inverse Fourier Transform(IDFT) is of order 

N
2  

as there are N data points to calculate, each of which requires N complex arithmatic 

operations. 

 

            

 For length n input vector x, the DFT is a length n vector X, with n elements: 

         

On the other hand, DFT has algorithm complexity and hence is not a very efficient method. It 

will not be very useful for the majority of practical DSP applications. However, there are 

number of different Fast Fourier Transform (FFT) algorithms that enable the calculation of a 

signal much faster than DFT. 

2.3 How does FFT work:  

  As discussed earlier, the FFT operated by decomposing an N point time domain signal into 

each composed of a single point. The second step is to calculate the N frequency spectra 

corresponding to these N time domain signals. Lastly, the N spectra are synthesized into a 

single frequency spectrum [11]. 
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                   Figure 2.2: Time Domain Decomposition.                    

The above figure shows an example of the time domain decomposition used in the FFT. In 

this example, a 16 point signal is decomposed through four separate stages. The first stage 

breaks the 16 point signal into two signals each consisting of 8 points. The second stage 

decomposes the data into four signals of 4 points. This pattern continues until there are N 

signals composed of a single point. An interlaced decomposition is used each time a signal is 

broken in two, that is, the signal is separated into its even and odd numbered samples.  After 

understanding the structure of decomposition we can say that using it, any N point signal can 

be easily simplified. It is nothing more than a reordering of the samples in the signal.  

                                                                                     

                        Figure 2.3: Rearrangement pattern required. 

The given figure shows the rearrangement pattern required. On the left, the sample numbers 

of the original signal are listed along with their binary equivalents. On the right, the 

rearranged sample numbers are listed, also along with their binary equivalents. The important 

part is that the binary numbers are the reversals of each other. For example, sample 3 (0011) 

is exchanged with sample number 12 (1100). Likewise, sample number 14 (1110) is swapped 

with sample number 7 (0111), and so forth. The FFT time domain decomposition is usually 

carried out by a bit reversal sorting algorithm. This involves rearranging the order of the N 

time domain samples by counting in binary with the bits flipped left-for-right. 

The next step in the FFT algorithm is to find the frequency spectra of the 1 point time domain 

signals. The frequency spectra of the 1 point signal is equal to itself, that means nothing is 
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required to do this step. Now each of the 1 point signals is a frequency spectrum, not a time 

domain signal. 

The last step in the FFT is to combine the N frequency spectra in the exact reverse order that 

the time domain decomposition took place. The algorithm gets messy here. There is no 

shortcut for bit reversal. It is must to go back one stage at a time. In the first stage, 16 

frequency spectra (1 point each) are synthesized into 8 frequency spectra (2 point each). In 

the second stage, the 8 frequency spectra (2 point each) are synthesized into 4 frequency 

spectra (4 point each) and so on. The last stage results the output of the FFT, a 16 point 

frequency spectrum. 

                                   

                   Figure 2.4: Time domain to Frequency domain. 

The figure shows how two frequency spectra, each composed of 4 points, are combined into a 

single frequency spectrum of 8 points. This synthesis must undo the interlaced decomposition 

done in the time domain. In other work=ds, the frequency domain operation must correspond 

to the time domain procedure of combining two 4 point signals by interlacing. Considering 

two time domain signals, abcd and efgh. An 8 point time domain signal can be formed by two 

steps: dilute each 4 point signal with zeroes to make it an 8 point signal and then add the 

signals together. That is abcd becomes a0b0c0d0, and efgh becomes e0f0g0h0. Adding these 

two 8 point signal produces aebfcgdh. Diluting the time domain with zeroes corresponds to 

the duplication of the frequency spectrum. Therefore, the frequency spectra are combined in 

the FFT by duplicating them and then, adding the duplicated spectra together. 
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                                  Figure 2.5: FFT Synthesis flow diagram. 

In order to match up added, the two time domain signals diluted with zeroes in a slightly 

different way. In one signal, the odd points are zero while in the other signal, the even points 

are zero. In other words, one of the time domain signals (0e0f0g0h) is shifted to the right by 

one sample. This time domain shift corresponds to multiplying the spectrum by a sinusoid.  A 

shift in the time domain is equivalent to convolving the signal with a shifted delta function. 

This multiplies the signal‘s spectrum with the spectrum of the shifted delta function. The 

spectrum of a shifted delta function is a sinusoid. This was the basic of FFT. In case of image 

it may work differently, which has discussed later [11]. 

 

2.4 FFT Algorithms:  

As it has been discussed earlier DFT is a complex algorithm and not that efficient. Due to 

slow processing, it is not applicable in real world problems. To make DFT calculation faster 

and efficient there are number of FFT algorithms. Such as Radix-2, Butterfly, Cooley-tukey, 

Prime-factor FFT algorithm, Bruun‘s FFT algorithm, Radar‘s FFT algorithm, Bluestein‘s 

FFT algorithm etc. In our project we have used Cooley-tukey algorithm of FFT for 

recognition. 
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Cooley-tukey algorithm is the most common FFT algorithm. It is named after J.W Cooley 

and John Tukey.  It re-expresses the Discrete Fourier Transform (DFT) of an arbitrary 

composite size N = N1N2 in terms of smaller DFTs of sizes N1 and N2, recursively, in order to 

reduce the computation time to O(NlogN) for highly-composite N.  

The Cooley-Tukey algorithm can be combined arbitrarily with any other algorithm, as it 

breaks the DFT into smaller DFTs [12]. 

2.4.1 FFT implementation in NIOS 2 using Cooley-tukey 

Algorithom: 

We have implemented FFT in NIOS2 using Cooley Tukey Algorithm. To achieve this we 

first created a processor using Qsys. We added various components such as CPU, SDRAM, 

PLL, Tri state bridge, Onchip memory etc. We made connection by connecting master to 

slave, source to sink, assigned base address and connected clock through PLL. After adding 

all the components, it automatically generates a blank code which we will use in our Verilog 

project.  

After that we have written our Verilog code to interface in our FPGA through pin assignment. 

Then we included our SOPC code in Verilog code and interface with our board‘s pin which 

generates the .SOF file. Finally we have completed our hardware configuration. 

Next, we have written our C code for FFT in Eclipse. 

Finally, we wrote code for Cooley–Tukey Algorithm in C and implemented on NIOS 2 

processor. We compiled the code and saw the result in the console pane.          

               

 
 
                            Figure 2.6: Result of Cooley Tukey.  
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If we compare the result with the Matlab‘s result, it matches. Therefore, it can be said that our 

approach is correct. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5 Applying FFT on an image: 

 
Fast Fourier Transform on image is a representation of the image in frequency domain. Its 

function on image is to decompose it into its real and imaginary components. If we take an 

image as an input then the number of frequencies in the frequency domain is equal to the 

number of pixels in the original image [13]. 
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The inverse FFT re-transforms the image from frequency domain to spatial domain or time 

domain. The FFT and its inverse of a 2D image are given by the following equations:                                            

 

Here f (m, n) is the pixel at f (m, n) coordinates, F(x,y) is the value of the image in the 

frequency domain at (x,y) coordinates. M and N are the dimensions of the image. Since 

image is two dimensional, we applied 2D FFT on it. The 2D transform can be done as two 1D 

transforms as shown below (shown only the horizontal direction) –one in the horizontal 

direction followed by the other in the vertical direction on the result of the horizontal 

transform. The end result is equivalent to perform the 2D transform in the frequency space.                                 

 

The FFT that‘s implemented in the application here requires that the dimensions of the image 

are power of two. An interesting property of FFT is that the transform of N points can be 

written as the sum of two N/2 transforms. This is important because some of the 

computations can be reused thus eliminating expensive operations [13]. 

The output of the Fourier Transform is a complex number and has a much greater range than 

the image in the spatial domain. Therefore, to accurately store these values, they are stored as 

floats. Furthermore, the dynamic range of the Fourier coefficient is too large to be displayed 

on the screen and these values are jscaled to bring them within the range of values that can be 

displayed [13]. 
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A modern interpretation of FFT states that, ―any well-behaved function can be represented by 

a superposition (combination or sum) of sinusoidal waves. It can be said that, the frequency 

domain representation is just another way to store and reproduce the spatial domain image 

[14]. 

If we take a single row or column of pixel from any image and graph it, we will find that it 

looks more like a wave. 

                                                    
 
If the fluctuations are more regular in spacing and amplitude, we would get something more 

like a wave pattern. Such as,  

                                                 
 

If we were to add more waves together, we might get a pattern that is closer to the original 

image. 

                                         
 
The superposition of waves or addition ojf waves in much closer, but still does not match the 

image pattern. However we can continue in this manner, adding more waves and adjusting 

them until the resulting composite wave gets closer and closer to the actual profile of the 

original image. Eventually by adding enough waves we can exactly reproduce the original 

image. Therefore, it can be said that images are nothing but the summation of sine and cosine 

waves. 

In other words, by adding together a sufficient number of sine waves of the right frequency 

and amplitude, any fluctuating pattern can be reproduced. Fourier Transform generally works 

out to find out the waves that comprise an image [14]. 
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The Fast Fourier Transform is an important image processing tool which is used to 

decompose an image into its sine and cosine components or waves. Undoubtedly, the output 

of FFT represents the image in the frequency domain, while the input image is the spatial 

domain or time domain equivalent. In the Fourier domain image, each point represents a 

particular frequency contained the spatial domain image. 

If we want to access the geometric characteristic of a spatial domain image, then FFT can be 

used. Because the image in the Fourier domain is decomposed into its sinusoidal components, 

which is the easy way to examine or process certain frequencies of the image, that influences 

the geometric structure in the spatial domain [14]. 

In most implementations the Fourier image is shifted in such a way that the DC-value or the 

image mean is displayed in the center of the image. The further away from center of an image 

point is, the higher is its corresponding frequency [15] [16]. 

In general if we apply FFT on an image, we get the complex result. The magnitude calculated 

from the complex result is shown in [15] [16]. 

                                                       
 
                   Figure 2.7: The magnitude calculated from the complex result 

 
It is seen that the DC value is by far the largest component of the image. However, the 

intensity values in the Fourier image or the dynamic ranges of the Fourier coefficients is too 

large to be displayed on the screen, therefore all other values appear as black. If we apply 

logarithmic transformation to the image we obtain 
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                      Figure 2.8: Magnitude after logarithmic transform.  
 
We can see that the image contains component of all frequencies, but their magnitude gets 

smaller for higher frequencies. Hence, low frequencies contain more image information than 

the higher ones. The transformed image tells us that there are two dominating directions in 

the Fourier image, one passing vertically and one horizontally through the center. These 

originate from the regular patterns in the background of the original image. 

The phase of the FFT of the same image can be shown as                                                  

                                     
 
                                  Figure 2.9: The phase of FFT 

 
The value of each point determines the phase of the corresponding frequency. As in the 

magnitude image, we can identify the vertical and horizontal lines corresponding to patterns 

in the original image. The phase image does not contain much new information about the 

structures of the spatial domain image. Therefore, we will confine ourselves to displaying 

only the magnitude of the Fourier Transform unless our interest does not belong to 

reconstruct the image [15] [16]. 

On the other hand, if we do not separate the magnitude and phase part of an image, after 

applying FFT on that image we will obtain  
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                     Figure 2.10: Magnitude and Phase of a Fourier image. 

 
The above diagram contains both the magnitude and phase value of a Fourier image. In our 

project we have considered the both parts. 

 

2.6 Applications: 

 
 Face recognition systems have achieved a huge popularity due to wide range of applications. 

It has been an area of research from very beginning. Applications exist in two main 

categories: practical application and research application. 

         From practical standpoint face recognition is extensively used in security systems. The 

FBI is already using it to identify suspects who are caught on surveillance cameras. The 

places like airports, International borders the need is raising for a face recognition system that 

identifies individuals. Face recognition systems can be used in entertainment purpose like 

video games.        

       In research applications, face recognition has paved the way for research in areas like 

image and video processing. Due to the increasing demand of this system into many sectors, 

researchers are working on developing many algorithms of face recognition. Principle 

Component Analysis (PCA and KPCA), Linear Discriminant Analysis (LDA), Independent 

component analysis (ICA), genetic algorithms, neural networks, FFT these are the algorithms 

established so far by the researchers. In our project we will be focusing on implementing FFT 

and PCA on the FPGA board. Then we will compare the results at the end. The FFT is used 

in a wide range of applications, such as image analysis, image filtering, image reconstruction, 

image compression and we used it for image recognition as well. 
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2.7 Benefits of using FPGA-  

 
As it has mentioned earlier that one of the important objectives of our project is to get 

acquainted with FPGA board, since it is a complete new area for us. While researching we 

have known very interesting things about FPGA and had decided to choose our project based 

on this board. 

An FPGA is exactly what the name suggests: a Field Programmable Gate Array. We program 

it as a piece of hardware. The FPGA basically implements look up tables. It is good at doing 

complex logic very fast. Using hardware programming languages such as VHDL and Verilog 

someone can create complex logic structures. Speed is the biggest advantage of FPGA. It is 

reprogrammable. More than one project can be implemented using same FPGA board.  

FPGAs exceed the computing power of digital signal processors by taking the advantage of 

hardware parallelism. It accomplishes more per clock cycle. It has specialized functionality to 

closely match application requirements. It supports long term maintenance. As a product, 

functional enhancement can be made, without spending time on redesigning hardware or 

modifying board layout. However, FPGAs are much expensive than microcontrollers. If our 

design needs greater integration density then FPGAs are appropriate. For smaller projects we 

go for microcontrollers [17]. 
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Chapter 3:  

 
MATLAB Implementation 

 
3.1 Basic Approach 

 
 Before implementing the process in hardware, we verified our project in Matlab first. In our 

project first we have used FFT as a basic algorithm.  

 We have made our own database consisting of Brac University students and used 

them to develop our recognition system. The database that contains the images of 

different expressions of the students is named ―Train Database‖. It has total 20 

images. Here we have considered two different expression of an image.  

 We have used another database which is named the ―Test Database‖. The database 

that contains the image that will be compared with the train database‘s image is 

named the ―Test Database‖. It may contain image inside or outside image of Train 

Database.  

 Firstly we placed the Train Database containing 20 images in a directory using 

Matlab.  

 Then we resized the image into 50:50 to ensure same dimension for every image.  

 For the ease of further processing we converted the RGB data into Gray scale, 

which reduces the matrix dimension. 

 After that we have applied FFT on the entire database using the Matlab function 

FFT2, as images are two dimensional. 

  Next we have computed the mean value of the FFT images using mean2 function. 

We repeated the above steps on test database also.  

 Then we made an array containing the differences of means between test and train 

databases. This is to mention that Test database can contain a single image. 

  We have set a threshold by trial and error method which is 21. 

  If the difference of mean is less than 21, it has been declared that the image is 

matched. For the values that are more than 21, we considered the images are not 

matched. Images that are not included in the Train Database will not match in the 

end.                     
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The whole procedure can be shown in a following flow chart.                                             

                                         

 
                      Figure 3.1: Flowchart of FFT based face recognition.   
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                                              Figure 3.2: Train Database 

                          
In Figure3.2, our Train Database is shown. It is noticeable in the database, that the images we 

have taken are not uniform. One image has the light effect, another may not. One is smiling, 

another is not. It has been done intentionally, so that we can identify the limitations of FFT 

spontaneously. To check, FFT‘s performance whether it can match considering the light 

effect and different expressions. 
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Another Database we have the Test Database it may or may not be from the Train Database. 

It can include only one image. For a while let‘s consider the Test Database has the following 

image. 

                                          
  
                                           Figure 3.3: Test Database Image 

 
Since another two expressions of the above image is present in the Train Database, if we run 

the system the answer will be ―Matched‖. 

 

3.2 Two dimensional FFT on an image: 

 
      In image processing, the 2D FFT allows one to see the frequency spectrum of the data in 

both dimensions and lets one visualize filtering operations more easily. The 2D FFT is simply 

a Fourier transform of one dimension of the data, followed by a Fourier transform over the 

second dimension of the data. In the following example we have performed a 2D FFT on an 

image, switched the magnitude and phase content. Now we would get to see what actually 

happened in Matlab when we applied 2D FFT of an image from our own database. 

Considering the code written below [19]. 

   
close all;  

 

clear all; 

 

img   = imread('Farhan.jpg‘,‘jpg‘); 

imagesc(img) 

img   = fftshift(img(:,:,2)); 

F     = fft2(img); 

 

figure; 
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imagesc(100*log(1+abs(fftshift(F)))); colormap(gray);  

title('magnitude spectrum'); 

 

figure; 

imagesc(angle(F));  colormap(gray); 

title('phase spectrum'); 

                                                                                                                   
Before entering into our main recognition code, using the above code we  applied FFT2 on an 

image to observe the output and it results  

                                                                                                                                                                

                                             The Original Image 

 

                                         
 
                                            Magnitude Spectrum 

 

                                         
 
                                                 Phase Spectrum 
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The 2D FFTs are accomplished using fft2. The image files are imported as unit8, so they 

should be converted to double arrays before doing the FFTs. The FFT of real, non-even data 

is complex, so the magnitude and phase of the 2D FFTs should be displayed. The function 

fftshift is used to shift the quadrant of the FFT around to see the lowest frequencies in the 

center of the plot [18]. 

If we look at the FFT of above image, it can be seen that most of the energy in the Fourier 

domain is present in the center on the image, which corresponds to low frequency data in the 

image domain. This corresponds to many gradual changes in the image. The phase of the FFT 

is hard to interpret and generally looks like noise. However, the phase holds a great deal of 

the information needed to reconstruct the image. To demonstrate the role of the phase of the 

FFT, we switched the magnitude and phase of the image. If we want to reconstruct the image 

it is necessary to show the magnitude and phase part separately. However, our project is not 

concerned with reconstructing the image using inverse 2D FFT; therefore we have considered 

the magnitude and phase part together in a single frame [18]. 

 

3.3 Functions used in Matlab: 

 
In this section we will discuss the functions that have been used in Matlab for recognition and 

the results. 

%Import images 

  sdirectory = 'Train Database'; 

  tifffiles = dir([sdirectory '/*.jpg']); 

  I = cell(1,numel( tifffiles)); 

  for k = 1:length(tifffiles) 

  filename = [sdirectory '/' tifffiles(k).name]; 

  I{k} = imread(filename); 

 
%Resize images 
Rb=imresize(I{k},[50 50]); 

%RGB to Gray images 

  J=rgb2gray(Rb); 

%2D FFT 
fftb=fft2(J); 

%Display images 

figure,imshow(I{k}) 

imshow(Rb) 
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figure, imshow(J) 

 

figure, imshow(uint8(fftb)) 

 
―Imread‖ is used to import the images into Matlab. This function can handle most of the 

standara image file formats, such as bmp, jpg, tiff and png [18]. In our code ―Imshow‖ is usd 

to display the images. ―Imshow‖ is one of several functions that plot images, but this function 

automatically eliminates the axes, displaying image nicely.  

This function works well for original images. When we applied ―Imshow‖ in our original 

image it shows                                       

                                         
                                                 Original Image 

 
After applying RGBtoGray function in the original image we obtained 

 

                                          
                                               Gray scale Image 

 

After turning the original image into gray scale, we performed 2D FFT on the image 

considering both magnitude and the phase, it results 
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                                                                  FFT Image 

 
FFT based face recognition is able to recognize faces with slight change in expression. In 

Test Database we put an image of different expression of one the images of Train Database. 

After simulation they matched. Though it is not effective as PCA algorithm, yet to some 

extend it works perfectly and we get  

            

                                  
                 85.096% Matched                                       Equivalent Database Image 

 
We experimented taking another image of different expression along with glasses to verify 

whether FFT can recognize it and it showed                                                                                                                                                                           

                          

        78.6761% Matched                                      Equivalent Database Image 
 
Therefore, it can be said undoubtedly that FFT can recognize faces of different expressions 

successfully. 
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On the other hand, if we place the same image to Test Database that is already stored to the 

Train Database, the accuracy is 100%. For example    

                                      
                    100% Matched                                           Equivalent Database Image 

 

This means if we test exactly the same image, this algorithm can identify the same image 

from the train database. 

Therefore, we used the above steps to verify if our proposed algorithm is suitable, and also  

to what extent, as a face recognition algorithm.  
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Chapter 4 

 

4.1 DE0 Board and TRDB_D5M Specifications:  

The field-programmable gate array (FPGA) is a semiconductor device that can be 

programmed after manufacturing. We can use a FPGA to implement any logical function that 

an application-specific integrated circuit (ASIC) could perform. Unlike previous generation 

FPGAs using I/Os with programmable logic and interconnects, today's FPGAs consist of 

various mixes of configurable embedded SRAM, high-speed transceivers, high-speed I/Os, 

logic blocks, and routing. Most importantly, an FPGA contains programmable logic 

components called logic elements (LEs) and a hierarchy of reconfigurable interconnects that 

allow the LEs to be physically connected. We can configure LEs to perform complex 

combinational functions, or merely simple logic gates like AND and XOR. In most FPGAs, 

the logic blocks also include memory elements, which may be simple flipflops or more 

complete blocks of memory. In addition, newer FPGA families are being developed with 

hard embedded processors, transforming the devices into systems on a chip (SoC) [20]. 

Advantages of using FPGAs over ASICs and ASSPs are including: 

 Rapid prototyping 

 Shorter time to market 

 The ability to re-program in the field for debugging 

 Lower NRE costs 

 Long product life cycle to mitigate obsolescence risk 

     4.2 Cyclone III FPGA: Architecture 

 

    

 

 
                    
Figure 4.1 : Cyclone III Device Architecture Overview   Figure 4.2 : Cyclone III FPGA Floorplan 
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Cyclone
®
 III FPGAs has low power, high functionality, and low cost. The 65nm architecture 

consists of up to 120K vertically arranged logic elements (LEs), 4 Mbits of embedded 

memory arranged as 9-Kbit (M9K) blocks, and 200 18x18 embedded multipliers. Cyclone III 

LS FPGAs have a memory-rich and multiplier-rich floor plan consisting of up to 200K logic 

elements, 8.2 Mbits of embedded memory, and 396 embedded multipliers [20]. 

Both architectures include highly efficient interconnect and low-skew clock networks, 

providing connectivity between logic structures for clock and data signals. The logic and 

routing core fabric is surrounded by I/O elements (IOEs) and phase-locked loops (PLLs), as 

shown in Figure 4.2. 

4.3 Logic Elements: 

The logic array consists of LABs, with 16 LEs, LAB control signals, LE carry chains, 

Resister chains and local interconnect in each LAB. LABs are grouped into rows and 

columns across the device. Cyclone III devices range from 5,136 to 119,088 LEs. A LE, is 

compact and provides advanced features with efficient logic utilization. Each LE has four-

input look-up table (LUT), a programmable register, a carry chain connection, a register 

chain connection and support for resister packing and resister feedback. Moreover, it has the 

ability to drive all types of interconnect: local, row, column, resister chain and direct link 

interconnect [20]. 

 

 

 

 

 

 

                        

                                            Figure 4.3: Cyclone III Logic Elements 

       

4.4 Cyclone III FPGA: Applications 
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The Cyclone III FPGAs are the first to implement a complete suite of security features at the 

silicon, software, and IP level on a low-power, high-functionality FPGA platform [20]. 

Cyclone III FPGAs has the following application areas:  

 Automotive 

 Consumer 

 Displays of all sizes 

 Industrial 

 Military 

 Video and image processing 

 Wireless communications 

4.5 Altera Cyclone III 3C16 FPGA device:  
 

The DE0 board has many features that allow the user to implement a wide range of designed 

circuits, from simple circuits to various multimedia projects. DE0 has Altera Cyclone® III 

3C16 FPGA device , Altera Serial Configuration device – EPCS4, USB Blaster, 8-Mbyte 

SDRAM, 4-Mbyte Flash memory, SD Card socket , 3 pushbutton switches, 10 toggle 

switches, 10 green user LEDs,50-MHz oscillator for clock sources , VGA DAC with VGA-

out connector, RS-232 transceiver, PS/2 mouse/keyboard connector, Two 40-pin Expansion 

Headers [20]. 

                     

                                  Figure 4.4:  DE0 FPGA Specifications. 

To provide maximum flexibility for the user, all connections are made through the Cyclone 

IIII FPGA device. Thus, the user can configure the FPGA to implement any system design.  

http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-auto.html
http://www.altera.com/end-markets/consumer/csm-index.html
http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-display.html
http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-ind.html
http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-mil.html
http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-video-image.html
http://www.altera.com/devices/fpga/cyclone3/mkts-apps/cy3-mkts-wireless.html
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                              Figure 4.5: DE0 FPGA Components. 

 

DE0 board has 50 MHz Clock input and Cyclone IIII 3C16 which has 15,408 LEs, 56 M9K 

Embedded Memory Blocks, 504K total RAM bits, 56 embedded multipliers, 4 PLLs, 346 

user I/O pins and FineLine BGA 484-pin package. It has Built-in USB Blaster circuit, 

SDRAM which has one 8-Mbyte Single Data Rate Synchronous Dynamic memory chip and 

Supports 16-bits data bus. In addition it has 4-Mbyte NOR Flash memory which Support 

Byte (8-bits)/Word (16-bits) mode and General User Interfaces which includes 10 Green 

color LEDs (Active high), 4 seven-segment displays (Active low) and 16x2 LCD Interface 

(Not include LCD module). Moreover, it has SD card socket which Provides both SPI and 

SD 1-bit mod SD Card access. Furthermore, it has Pushbutton switches, Slide switches, VGA 

output, Serial ports and two 40-pin expansion headers [20]. 

 

4.6 Camera Module Pixel Array Structure: 

 

TRDB-D5M Camera Module is used to capture the image of a person. The address start from 

(Column 0, Row 0) and it locates at the upper-right corner of the whole region.TRDB-D5M 

pixel array consists of 2,752 column by 2,004 row. However, whole region is not considered 

as an active region. Array consists of a 2,592 column by 1,944 row is considered as an active 

region including boundary region. In addition, boundary region is not used to show pictures 
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to avoid edge effects. Moreover, the black region which is surrounded by the boundary region 

is not used to display any pictures.     

 

 

 

 

 

 

 

 

 

 

                                            

                                                  Figure 4.6:  Pixel Array Description 

Pixels are output in a Bayer pattern format consisting of four ―colors‖—Green1, Green2, 

Red, and Blue (G1,G2, R, B)—representing three filter colors. When no mirror modes are 

enabled, the first row output alternates between G1 and R pixels, and the second row output 

alternates between B and G2 pixels. The Green1 and Green2 pixels have the same color filter, 

but they are treated as separate colors by the data path and analog signal chain. 

 

4.7 I2C Protocol: 

In early 80‘s Philips designed I2C bus. This name is taken from Inter IC and mostly called as 

IIC or I2C [21]. It permits simple communication to achieve data communication between 

components that resides on same circuit board. It is not as famous as USB or Ethernet but 

much of electronic devices depend on I2C protocol. It is unique in the use of special 

combination of signal conditions and changes. It entails only 2 signals or bus lines for serial 

communications, one is clock and other is data, clock is recognized as SCL or SCK (for serial 

clock) and data is known as SDA. I2C protocol uses certain registers for common resolutions, 

their frame rates, LVAL, FVAL, exposure time, green gain, red gain and blue gain.  

 

4.8 Camera Image Acquisition System: 

When FPGA gets power to start, system initializes sensor chip and determines mode of 

operation and certain value of registers in image sensor controls corresponding parameters 
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[22]. From the following figure it can be seen that LVAL is vertical synchronization signal 

and FVAL is horizontal reference signal, PIXCLK represents pixel output synchronization 

signal. When FVAL signal goes high, the system sends out 1280 (number of columns) data 

at the same time, and the LVAL will appear 960 (number of rows) times high during the 

FVAL high. One frame image with resolution 1280*960 is collected completely when the 

next FVAL signal rising edge arrives.       

 

                                  Figure 4.7: Default Pixel Output Timing  

4.8.1 Frame Valid 

This hardware pin is asserted during the total No. of active rows in the image. This pin is also 

responsible for the start and end of the pixel stream in the image. This pin goes high only 

once during each image provided by the camera. In above figure, FVAL goes high when 

camera provides image. 

For a complete configuration, we also need to write the valid values for the various 

configuration registers in the camera. For example we configure the camera when to start row 

and columns and what should be the rate of images provided by the camera. Digital and 

analog gain for the three color components are adjusted to give best performance in specific 

environment. 

 

4.8.2 Line Valid 

This is the hardware pin on the camera which goes high during the valid pixels in a row of 

the image. This pin asserted number of row times in the image. For our configuration, this pin 

is asserted 960 times for one image. Each time ―line valid‖ pin goes high, there are 1280 

pixels transferred by the camera. Each pixel is transferred by triggering the ―pixel clock‖ pin 

in the camera. 
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4.9 Bayer to RGB conversion in FPGA 

Image sensor exports the image in Bayer format and in FPGA a Bayer color filter array 

converts Bayer pattern image into RGB. The pattern of this filter shows that half of its pixels 

are green while quarter of the total number is assigned for red and same for blue color. Odd 

pixel lines in the image sensor contain green and blue components, while the even lines 

contain red and green color components. 

                                                     

                                                 Figure 4.8: Bayer Pattern Filter       

Above figure shows a bayer pattern filter and each pixel shows only one component of each 

primary color. To convert an image from Bayer format to RGB format, each pixel needs to 

have values of all three primary colors. 

 

4.9.1 RGB conversion 

Camera is configured in such a way that a Bayer image is getting 960 rows and 1280 columns 

with 5 frames per second. Camera outputs the data in Bayer pattern with 12 bit on parallel 

bus. In Bayer pattern format, each pixel contains one of three primary colors, which consists 

of four colors: green1, blue, red and green2. The layout is shown in following figure that 

means two of the remaining color components are missing in each pixel of Bayer pattern. 

                                       

                                          Figure 4.9: Bayer image Pixels  
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This bayer pattern data is then passed through a module which converts it into RGB values, 

and utilizes four pixels of Bayer pattern format to construct one pixel of RGB. After applying 

formula, other two component‘s value can be find out. Camera manages green pixels as two 

different colors depending on which line they are coming from. In Bayer format, when 1
st
 

complete row and only first 2 pixels of the second row complete scanning, then filter creates 

the 1
st
 pixel of RGB.  

                                                                 

 
 

Blue 

 
 

Green1 

 
 

Green2 

 
 

Red 

 

                                 Figure 4.10: RGB pixel from Bayer format 

 

Above figure shows a RGB pixel format. As the second row out of camera completes 

scanning, first complete row of RGB image is created. Similarly with the completion of 3
rd

 

and 4
th

 row of Bayer pattern image a 2
nd

 RGB pixel row completed. As the pixels are being 

received by the camera, they are simultaneously being transformed into RGB and 

simultaneously being sent to the memory module in the FPGA. After that we converted this 

RGB pixel into grayscale using the following formula 

                         Grayscale = (Red+ Green+ Blue)/3 

This conversion is used to reduce the matrix dimension. Next this memory module stores this 

pixel in the external SDRAM through external bus and so on. 
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Chapter 5 

Hardware Implementation: 

 
Altera Corporation is the pioneer of programmable logic solutions. And we have used 

Altera‘s FPGA board to use in our project. Our FPGA board is from the Cyclone III device 

family and its model number is DE0 [27].In our project we have used ‗Qsys‘ extensively. 

Qsys is the Altera‘s system integrated tool.‗ Qsys‘ system integration tool saves significant 

amount of time and effort in the FPGA design process by automatically generating 

interconnect logic to connect intellectual property (IP) functions and subsystems. Qsys is the 

next-generation SOPC Builder tool that is powered by a new FPGA-optimized network-on-a-

chip (NoC) technology delivering higher performance, enhanced design reuse, and faster 

verification compared to SOPC Builder [27]. 

A block diagram of our problem formulation for the ‗Qsys‘ part is given below: 

                          

 

                             Figure 5.1: Block diagram of our proposed architecture.                                                      

  

 The hardware architecture we proposed is as follows: 

An image is captured from the FPGA board compatible camera module TRDB_D5M. 

The output pixels or the raw data are in Bayer color Pattern. 

Therefore the data is passed through Bayer color pattern to 30 bit RGB (RED, GREEN, 

BLUE) module.  
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Once the pixels are in RGB, they are then converted into Grayscale (to reduce down the 

number of planes, in this case from 3 planes to 1plane, to reduce the complexity of data 

manipulation). 

This Grayscale data (or the captured image) is then stored in memory (SDRAM) through the 

assistance of the external bridge bus and SDRAM controller. 

At this stage, to verify if the data is actually stored in the SDRAM we can include the VGA 

controller and the Video In decoder and display the data on a LCD monitor. 

Once the data (or the image) is stored in the SDRAM, the data is accessed from the SDRAM 

through the Scatter Gather DMA (direct memory access) controller and is passed to the FFT 

block (Fast Fourier Transform block).  

The output, that is, the data after FFT is again stored in SDRAM, this time at a different 

memory location (in order to keep both the stored data). At this stage another DMA controller 

is used to transfer these data and access the SDRAM. 

Then both sets of data are now available in the SDRAM.  

The above steps are followed again, to keep the information of another image (the concept of 

creating database). 

Then Nios II carries out further processing of comparison and recognition for both the images 

(FFT values are compared). 

The data route can be viewed from the RTL viewer to get an idea on the logic gate 

implementation for different blocks we have used. 
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Figure 5.2: RTL Viewer 

 

To accomplish the above processes we have used some ‘Qsys‘ components. 

 The components that we have considered putting in our system are as follows---   (the order 

of the components might not be exactly as the following list) 

1) External Bus to Avalon Bridge. 

2) SDRAM controller. 

3) Avalon ALTPLL. 

4) SG-DMA (scatter-gather) Controllers. 

5) VGA controller. 

6) Video DMA Controller. 

7) FFT block generated from Mega Wizard. 

8) NIOSII Processor. 

9) On-chip Memory (RAM). 

5.1 External Bus to Avalon Bridge: We have used this IP core or component to 

make an interface with our external camera module to our system. This bridge provides a 
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simple interface for a peripheral device (in our case, the TRDB_D5M) to connect with the 

Avalon 

Switch Fabric as a master device. The Bridge creates a bus-like interface to which one or 

more ―master‖ peripherals can be connected.[34] 

 

 

 

                       Figure 5.3 : External bus to avalon bridge. 

 

The Bus signals provided are: 1) Address- k bits (up to 32). 

    2) Read-1 bit. 

    3) Write- 1 bit. 

    4) Byte Enable- 16,8,4,2 or 1 bit. 

    5) Write Data- 128,64,32,16 or 8 bits. 

    6) Read Data- 128,64,32,16 or 8 bits. 

    7) Acknowledge- 1 bit.     

The bus is synchronous — all bus signals must be read by the master peripheral on the rising 

edge of the clock. A bus transfer happens when either Write or Read is high. For our project 

we coded in such a way that the bridge does the work of a write command as we want to 

write the data from the camera to the SDRAM. 
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                          Figure : External Bus to Avalon Bridge with Nios II system 

 

 Two parameters are needed to specify in ‗Qsys‘ External Bridge to Avalon core: 

1) Data Width — the number of data bits involved in a transfer. The Bridge supports 

data widths of 8,16,32,64, and128 bits. 

2) Address Range — the addressable space supported by the Bridge. It is possible to 

specify the address range of 1, 

2,4,8,16,32,64,128,256,512,and 1024, in either bytes, kilobytes (kB) or megabytes (MB). 

 

5.2 SDRAM controller: it allows designers to create custom systems in an Altera 

device that connect easily to SDRAM chips. This SDRAM controller connects to one or more 

SDRAM chips, and handles all SDRAM protocol requirements [23]. 

 

         SDRAM controller with Avalon Interface block diagram. 
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Avalon MM interface 

The Avalon-MM slave port is the user-visible part of the SDRAM controller core. The slave 

port presents a flat, contiguous memory space as large as the SDRAM chip(s). The Avalon-

MM interface behaves as a simple memory interface. There are no memory-mapped 

configuration registers. 

 

Signal Timing and Electrical Characteristics 

The timing and sequencing of signals depends on the arrangement of the core. The hardware 

designer configures the core to match the SDRAM chip chosen for the system. The SDRAM 

controller Mega Wizard has two pages: Memory Profile and Timing. These can be 

configured by using the option ‗Custom‘ or we could use any of the several predefined 

SDRAM configurations provided if the  If the SDRAM subsystem on the target board (DE0 

in our case) matches one of the preset configurations. Some of the preset configurations are 

for  

  Micron MT8LSDT1664HG module 

  Four SDR100 8 MByte × 16 chips 

  Single Micron MT48LC2M32B2-7 chip 

  Single Micron MT48LC4M32B2-7 chip 

  Single NEC D4564163-A80 chip (64 MByte × 16) 

  Single Alliance AS4LC1M16S1-10 chip 

  Single Alliance AS4LC2M8S0-10 chip 

But we have configured it for our convenience which was appropriate for our SDRAM 

subsystem. 

The Memory Profile page allows one to indicate the structure of the SDRAM subsystem 

such as address and data bus widths, the number of chip select signals, and the number of 

banks. 
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                         Table 5.1: Descriptions of SDRAM parameters. 

 

The Timing page allows designers to enter the timing specifications of the SDRAM chip(s) 

used. The correct values are available in the manufacturer‘s data sheet for the target SDRAM. 

For our case it is (IS42S16400). 

 
    

 
 

                                            Table 5.1: Descroptions of SDRAM parameters. 
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 There are issues related to synchronizing signals from the SDRAM controller core with the 

clock that drives the SDRAM chip. During SDRAM transactions, the address, data, and 

control signals are valid at the SDRAM pins for a small window of time and during this time 

the SDRAM clock must toggle to capture the correct values. At slower clock frequencies, the 

clock naturally falls within the valid window but at higher frequencies the SDRAM clock 

must be compensated to align with the valid window. This is usually done by either 

calculating or analyzing the SDRAM pins with an oscilloscope.  

 

5.3 PLL: A PLL (Phase Locked Loop) is used to adjust the phase of the SDRAM clock so 

that edges occur in the middle of the valid window. Tuning the PLL might require trial-and-

error effort to align the phase shift to the properties of the target board. But usually Phase 

shift for 50MHz clock is -3ns and for 100 MHz is -1.5 ns[23][25].  

The PLL that we select from ‗Qsys‘ depends on the device family. Tor our three kinds are 

available. We have chosen ALT PLL for our Cyclone (III) family. 

 

 Example Calculation: 

 

                           

 

                                         Table 5.2: PLL calculations. 
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                                                 Table 5.2: PLL calculations. 

                                 

 

                                                              

                                                         Table 5.2: PLL calculations.                  

 

The SDRAM clock can lag the controller clock by the lesser of Read Lag or Write Lag: 

Read Lag = tOH(SDRAM) – tH_MAX(FPGA) 

= 2.5 ns – (–5.607 ns) = 8.107 ns 

or 

Write Lag= tCLK – tCO_MAX(FPGA) – tDS(SDRAM) 

= 20 ns – 2.477 ns – 2 ns = 15.523 ns 

The SDRAM clock can lead the controller clock by the lesser of Read Lead or Write Lead: 
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Read Lead= tCO_MIN(FPGA) – tDH(SDRAM) 

= 2.399 ns – 1.0 ns = 1.399 ns 

or 

Write Lead= tCLK – tHZ(3)(SDRAM) – tSU_MAX(FPGA) 

= 20 ns – 5.5 ns – 5.936 ns = 8.564 ns 

Therefore, for this example you can shift the phase of the SDRAM clock from –8.107 ns to 

1.399 ns relative to the controller clock. Choosing a phase shift in the 

Middle of this window results in the value (–8.107 + 1.399)/2 = –3.35 ns. 

 

These values are collected from Datasheets of the corresponding devices. 

To drive the SDRAM we required a PLL (Phase Locked Loop). Cyclone series supports only 

one type of PLL. A phase-locked loop (PLL) is a control system that generates an output 

signal whose phase will be related to the phase of an input "reference" signal.  PLL circuitry 

is an electronic circuit consisting of a phase detector and a variable frequency oscillator. PLL 

measures up the phase of the input signal against the phase of the signal derived from its 

output oscillator and adjust the frequency of its oscillator to keep the phases matched. 

The PLL can be used to generate stable frequencies, recover signals from a noisy 

communication channel, or distribute clock signals throughout the design. 

Usually we chose -3ns for 50 MHz and -1.5ns for 100MHz. 

 

5.4 Scatter Gather DMA (Direct Memory Access): The Scatter-Gather 

Direct Memory Access (SG-DMA) controller core implements high-speed data transfer 

between two components [23]. 

We can use the SG-DMA controller core to transfer data from: 

 Data stream to memory. 

 Memory to data stream. 

 Memory to memory. 

For our project to transfer data to the FFT block and to place the output data from the 

FFT block we have used the first two of the three processes. Firstly, we used memory 

to data stream, to access the data from SDRAM as the streaming input of the FFT 

block. Then we used data stream to memory to pass the output of the FFT block to the 

SDRAM again.   

http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/Signal_%28electrical_engineering%29
http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Phase_detector
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The SG-DMA controller core transfers and merges non-contiguous memory to a continuous 

address space, and vice versa. The core reads a series of descriptors that specify the data to be 

transferred. For applications requiring more than one DMA channel, (such as in our case) 

multiple instantiations of the core can provide the desired throughput. Each SG-DMA 

controller has its own series of descriptors those specify the data transfers. The SG-DMA 

controller core is ‗Qsys‘ Builder-ready and integrates easily into any ‗Qsys‘ Builder-

generated system. The device drivers are provided in the Hardware Abstraction Layer (HAL) 

system library, if we want to use NIOS II processor, SG-DMA can be called from the library 

available in NIOS II.  

Since we have used internal memory (SDRAM) here is an example of how SG-DMA 

controller core transfers data between an internal and external memory. 

                

 

 
                                         

Programming with SG-DMA Controller 

The description of the device, descriptor data structures, and the application programming 

interface (API) for the SG-DMA controller core are given below. 
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Fig: Device data structure 

 
Fig: Descriptor data structure 

 

 

 
                                                     Table 5.3: Function List 
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5.5 VGA Controller: The VGA controller IP core generates the timing signals 

required by the on-board VGA DAC on the DE-series 

boards and Terasic‘s LCD with touchscreen daughtercards. In our project we use this 

controller IP core to view the data on the LCD monitor for the display and verification. Data 

is provided to the VGA Controller via its Avalon Streaming Interface. The controller takes 

the incoming data. Then it adds the suitable VGA timing signals and then sends that 

information to either the on-board VGA DAC(digital to analog) or the LCD with touchscreen 

daughtercard[23][28]. 

The VGA Controller core generates the timing signals as well as vertical and horizontal 

synchronization signals. The timing information generated by the VGA Controller core 

produces screen resolutions of 640 X 480, 800 X 480 and 800 X 600 pixels for the VGA 

DAC, the LCD with touchscreen (TRDB_LTM) and the 8 inch LCD on the tPad, 

respectively.                                             

 

The parameters to be assigned for the Qsys configuration wizard are: 

• DE-Series Board— Specifies the Altera DE-series board that the system is being designed 

for. For our project we have used DE0. 

• Video Out Device—Specifies the VGA compatible device being used, and by extension the 

screen resolution. We have chosen VGA connector to suit our purpose. 

 

5.6 Video DMA Controller: The DMA Controller IP core stores and retrieves 

video frames to and from memory. When in the ―from stream to memory‖ mode, the core 

stores frames from an incoming stream to an external memory. The core uses its Avalon 
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Memory-mapped (MM) master interface to send the data to the memory. When in the ―from 

memory to stream‖ mode, the 

DMA controller uses its Avalon memory-mapped master interface to read video frames from 

an external memory. 

Then, it sends those video frames out by means of its Avalon streaming interface [28]. 

         

                       Block Diagram for DMA controller core. 

The DMA controller‘s configuration wizard is used to specify the desired characteristics. 

Such as-      

 Mode 

 DMA Direction— specifies whether a video stream is to be stored to or 

retrieved from memory. 

 Addressing Parameters 

 Addressing Mode— specifies the addressing mode. 

 Default Buffer Start Address— the start address of the buffer upon 

reset. 

 Default Back Buffer Start Address—the start address of the back 

buffer upon reset (can be equal to the Default Buffer Start Address, if 

no back buffer is desired). 

o Frame Resolution 

 Width (# of pixels) — specifies the incoming stream‘s width. 

 Height (# of lines) — specifies the incoming stream‘s height. 
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o Pixel Format 

 Color Bits— specifies he number of bits per color plane. 

 Color Planes— specifies the number of color planes 

 

5.7 Fast Fourier transform (FFT) generated from megawizard: 

The FFT MegaCore IP (which should be bought or can be used when I licensed version of 

Quartus is used) function is a high performance, highly-parameterizable FastFourier 

transform (FFT) processor. The FFT MegaCore function implements a complex FFT or 

inverse FFT (IFFT) for high-performance applications [29]. The FFT MegaCore function 

implements two architectures: 

 Fixed transform size architecture. 

 Variable streaming architecture. 

To use this core installation and licensing procedures must be followed. 

The FFT MegaCore function supports the following design flows: 

 

 DSP Builder: Use this flow if you want to create a DSP Builder model that 

includes a FFT MegaCore function variation. 

 MegaWizard Plug-In Manager: Use this flow if you would like to create a FFT 

MegaCore function variation that you can instantiate manually in your design. 

In our project we have chosen the Mega Wizard Plug-In Manager. 

 

The MegaWizard Plug-in Manager flow allows you to customize an FFT MegaCore function, 

and manually integrate the MegaCore function variation into a Quartus II design. 

The steps are: 

1. Create a new project using the New Project Wizard available from the File menu in the 

Quartus II software. 

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option to 

create a new custom megafunction variation. 

Then we parameterized the core according to our purpose and suitability. 

In our project we have chosen Input/output data flow as ‘Streaming’ according to the 

suitability of the project. 
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To set up simulation, from the IP tool bench, the Step2: set up simulation and then Generate 

Simulation Model is turned on.  

The Language we used was Verilog HDL. And then to generate the mega core, we have 

selected Generate from the IP tool bench. 

A list of files will be generated. 

After reviewing the generation report, we have to click YES on the Quartus II IP files prompt 

to add the .qip file to the current  

Quartus II project. 

 

 5.8 Creating FFT  block in Qsys: 

In our project for easier manipulation and interconnectivity we transformed this mega core 

function into ‗Qsys‘ IP following few steps. Mega core functions can be included as a new 

component in the ‗Qsys‘ IP library. The Steps are given below. 

o MegaCore Function FFT is not supported by Qsys, launched from the Tool menu of 

the Quartus II MegaWizard Plug-In Manager. 

o From MegaWizard Plug-In Manager, a new custom megafunction variation is 

selected. 

o Megafunction of FFT on the next page is created. 

o In MegaCore Function, we clicked Parameterize. 

o In Parameters tab, specified the size of the FFT and the Target Device Family. 

o In Architecture tab, specified the I / O Data Flow. This time we have chosen 

Streaming. 

o When finished, clicked the Generate screen FFT MegaCore Function. 

o MegaCore Function is generated and added to the fft.qip Files of Quartus II. 

o In order to capture the ‗Qsys‘ the FFT MegaCore Function that is generated by 

MegaWizard, a wrapper module is created. 

o To be added as a new component of the ‗Qsys‘ FFT MegaCore Function, clicked New 

Component from the Component Library tab. 

o In the HDL Files Tags Component Editor, created in as a Top Level Module, the 

wrapper.v is added. 

o Signals in the next tab to set the Signal Type and Interface. 

o Then opened the Interfaces tab. Error Master has no read or write interface that is 

eliminated when we clicked the Remove Interfaces with No Signals button. 
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o Error Interface must have an associated reset; the Associated Reset was resolved by 

choosing the appropriate reset signal from the pull-down menu. 

o When a component is successfully generated, it is added as a new component to the 

Library. We added this FFT to the system. 

o Then other connections are given according to our project‘s need [31]. 

5.9 On-chip Memory (RAM or ROM):  

 Altera FPGAs include on-chip memory blocks that can be used as RAM or ROM in 

‗Qsys‘ systems. On-chip memory has the following benefits for ‗Qsys‘ systems: 

 On-chip memory has fast access time, compared to off-chip memory.  

 ‗Qsys‘ Builder automatically instantiates on-chip memory inside the ‗Qsys‘ 

system, so there is no fuss about making any manual connections. 

 Certain memory blocks can have initialized contents when the FPGA powers up. 

This feature is useful, for example, for storing data constants or processor boot 

code.  

 On-chip memories support dual port accesses, allowing two masters to access the 

same memory concurrently [23]. 

The configuration wizard for the On-chip Memory (RAM or ROM) component has the 

following options:  

Memory type, Size, and Read latency.  

Memory Type 

The Memory type options define the structure of the on-chip memory: 

 RAM (writable)—this setting creates a readable and writable memory.  

 ROM (read only)—this setting creates a read-only memory. 

 Dual-port access—this setting creates a memory component with two slaves, 

which allows two masters to access the memory simultaneously. 

 Block type—this setting directs the Quartus II software to use a specific type of 

memory block when fitting the on-chip memory in the FPGA. 

Because of the constraints on some memory types, it is frequently best to use the Auto 

setting. Auto allows the Quartus II software to choose a type and the other settings direct the 

Quartus II software to select a particular type. 

Size 

The Size options define the size and width of the memory.  
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 Data width—this setting determines the data width of the memory. The available 

choices are 8, 16, 32, 64, 128, 256, 512, or 1024 bits. Assign Data width to match 

the width of the master that accesses this memory the most frequently or has the 

most critical throughput requirements. Suppose if we connect the on-chip memory 

to the data master of a Nios II processor, we should set the data width of the on-

chip memory to 32 bits, the same as the data-width of the Nios II data master. 

Otherwise, the access latency could be longer than one cycle because the Avalon 

interconnects fabric performs width translation. 

 Total memory size—this setting determines the total size of the on-chip memory 

block. The total memory size must be less than the available memory in the target 

FPGA. 

 Minimize memory block usage (may impact fmax)—Minimize memory block 

usage (may impact fmax)—this option is only available for devices that include 

M4K memory blocks. But we are M9k memory blocks in our system [24]. 

Read Latency  

On-chip memory components use synchronous, pipelined Avalon-MM (Memory Mapped) 

slaves. 

Non-Default Memory Initialization 

For ROM memories, we can specify your own initialization file by selecting Enable non-

default initialization file. This option allows the file you specify to be used to initialize the 

ROM in place of the default initialization file created by ‗Qsys‘. 

Enable In-System Memory Content Editor Feature 

Enables a JTAG interface used to read and write to the RAM while it is operating. We can 

use this interface to update or read the contents of the memory from your host PC. That is, 

on-chip memory contents van be viewed from this feature. 

5.10 Nios II (processor): is one of the most resourceful and versatile embedded processors. 

Like any other processor, it interprets program instructions and processes data, makes the 

appropriate services available to other parts of the system, presents user interfaces and 

interprets the user input [26][27].  
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                                             Figure 5.4 : Nios 2 processor 

This processor is the most widely used soft processor in the FPGA industry. The Nios II 

processor delivers unparalleled flexibility and performance in cost-sensitive, real-time, ASIC-

optimized, safety critical and applications processing needs. Nios II comprises three 

configurable cores which we have selected on the basis of individual‘s design needs. 

Nios II/f—The Nios II/f ―fast‖ processor is designed for superior performance while 

presenting the majority configuration options which are unavailable in the other Nios II 

processors. 

 Nios II/s—The Nios II/s ―standard‖ processor is designed for small size while 

maintaining fair performance. 

 Nios II/e—The Nios II/e ―economy‖ processor is designed for the smallest 

possible processor size while providing sufficient performance. 

A Summary of Features Supported by the Nios II processor is listed below. 

 MMU (memory management unit). 

 Memory protection unit (MPU). 

 External Vector Interrupt Controller with up to 32 interrupts per controller. 

 Advanced exception support. 

 Separate instruction and data caches (configurable from 512 bytes to 64 KB). 



74 
 

 Access to up to 2 GB of external address space. 

 Optional tightly-coupled memory for instructions and data. 

 Up to six-stage pipeline to achieve maximum MIPS* (*Dhrystones 2.1 

benchmark) per MHz. 

 Single-cycle hardware multiplies and barrel shifter. 

 Hardware divides option. 

 Dynamic branch prediction. 

 Up to 256 custom instructions and unlimited hardware accelerators.  

 Configurable JTAG debug module. 

 Optional JTAG debug module enhancements, including hardware breakpoints, 

data triggers, and real-time trace. 

5.11 Hardware Abstraction Layer: 

The HAL serves as a device driver package for Nios II processor systems. The HAL is a 

lightweight embedded runtime environment that provides a simple device driver interface for 

programs to connect to the underlying hardware. Moreover, HAL device driver abstraction 

provides a clear distinction between application and device driver software. The HAL 

application program interface (API) is integrated with the ANSI C standard library. The 

HALAPI allows us to access devices and files using familiar C library functions. The Nios II 

software development tools extract system information from our SOPC Information File 

(.sopcinfo). Most noteworthy thing is that we need not to write low-level routines to establish 

basic communication with the hardware. Therefore, Application programmers call the ANSI 

C or HAL API to access hardware, rather than calling your driver routines directly. HAL 

does not support MPU (Memory Protection Unit) and MMU (Memory Management Unit) 

hardware [30]. 

HAL Architecture:  

 
Figure 5.5: HAL (Hardware Abstraction Layer) Architecture 

http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf
http://www.altera.com/devices/processor/nios2/benefits/performance/ni2-acceleration.html
http://www.altera.com/devices/processor/nios2/benefits/ni2-jtag-debug.html
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The HAL provides the following services: 

 Integration with the newlib ANSI C standard library—provides the familiar C 

standard library functions. 

 Device drivers—provide access to each device in the system. 

 The HAL API—provides a consistent, standard interface to HAL services, such as 

device access, interrupt handling, and alarm facilities. 

 System initialization—Performs initialization tasks for the processor and the 

runtime environment before main (). 

 Device initialization—Instantiates and initializes each device in the system before 

main () runs. 

 

 

 

 

  

 

 

    

 

 

 

 

 

Figure 5.6: Nios II HAL Project Structure 

 

Every HAL-based Nios II program consists of two Nios II projects. One is the user 

application project and another one is HAL BSP Project. The HAL drivers relevant to your 

hardware system are incorporated in the BSP project. The BSP project depends on the 

hardware system, defined by a SOPC Information File (.sopcinfo). 
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The procedure we have followed with the assistance of the HAL library is given as a flow 

chart below: 

        

                  Figure 5.7: Flowchart for Nios II Instruction. 
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Our initial task was to read image from SD ram and after that to store the fast fourier 

transformed (FFT) image in another place of the SD ram so that it does not overlap. SD ram 

is connected to Scatter Gather DMA for asynchronous data transfer. Since SD ram has no 

software-configurable settings and no memory-mapped registers we have programmed 

SGDMA using it‘s built in library routine. For this, we have first opened SGDMA and added 

pointer to input output memory as part of the initialization. Before construct descriptor it was 

necessary to rearrange memory blocks. Then we called the two built in function and passed 

the required parameters to that function. 

alt_avalon_sgdma_construct_mem_to_stream_desc() 

alt_avalon_sgdma_construct_stream_to_mem_desc() 

After that it was ready for asynchronous transfer and receiver. When transmission and receive 

was complete we used this value to compare it with existing database for recognition.   

After configuring and adding all the components we finally get a ‗Qsys‘ system content 

output. The connections to the components are given as per our project‘s requirements.  
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The image is given below: 

 

                  

 
  

                                                 Figure 5.8: Qsys system content 
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After the connections were made, Verilog codes had to be written in order for the parameters 

of some of the components work. 

That Is the HDL example generated from these ‗Qsys‘ system output, these had to be 

assigned input and output signals. 

As for example we had to write codes for the External bus to Avalon bridge work. 

The logic we have created is shown by the help of a Flow chart below: 

Start

Streaming Input

button_pressed==0 

inside_active_frame==1

new_pixel==1

write<=1

Yes

Yes

inside_active_frame==0

acknowledge<=1

Yes

Yes

acknowledge==1

write<=0

Yes

END

No

No

No

Yes

No

 

Figure 5.9: Flowchart for valid frame capture 
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The logic we proposed was when the button for capturing the image is pressed; a frame from 

the streaming data will be captured. 

First we checked if the current frame, just when the button is pressed, meets the ‗inside active 

frame‘ conditions. That is if the frame has a dimension of an active image (1944X 2592), it 

must be starting from x=0 and y=0, till the end of an active image frame. If this condition is 

satisfied, then this data will be transferred during the immediate next Odval (rising edge of 

the driving clock).This condition is defined by the ‗new pixel‘ block. This will make the 

‗write‘ signal high. After writing the whole frame to SDRAM ‗inside active frame‘ will be 0 

and this will generate an ‗Acknowledge‘ from the external bus. When Acknowledge is high 

(1), the write signal is made (0) to stop the writing process as we have successfully collected 

one frame, that is, the data of an image.   

By following the above steps we tried to implement our proposed architecture in hardware. 
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Chapter 6 

 

Results and Discussion: 

6.1 Software: 

 

Principal component analysis decomposes the covariance structure of the dependent variables 

into orthogonal components by calculating the eigenvalues and eigenvectors of the data 

covariance matrix. Eigenvalues assist in making decisions about the number of orthogonal 

components that will be used in further analysis, while eigenvectors assist in determining the 

relationship between the original variables and these new components. Eigenvalues and 

eigenvectors transform the original variable space into a ‗new‘ set of variables, called 

principal components (PCs). [32] The First Fourier Transform (FFT) is the most common 

method of face recognition with respect to frequency spectrum. The FFT variables are ranked 

according to their variance, thereby reflecting a decreasing importance as to their ability to 

capture the whole information content of the original data-set for signal reconstruction 

purposes. By virtue of its ability to reduce the complexity of the resulting feature space, the 

PCA is widely used in a number of pattern recognition applications. [33] 

Two face recognition strategies i.e. PCA (Principal Component Analysis) and FFT (Fast 

Fourier Transform) were implemented in our project. If we want to recognize the same image 

of a student with FFT algorithm the accuracy is 100% and if we take a slight changed 

expression of the same person the accuracy is 40%, where the PCA gives 70% accuracy in 

changed expressions.  

                                                   

              Figure 6.1: Accuracy rate of Face Recognition for PCA and FFT 
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Principal Component Analysis gave better results for varying poses. Fast Fourier Transform 

can recognize faces but if any person smiles and if that images contains too much light are 

taken into account. The results are pretty good for the test samples that we have considered. 

                       

 

 

                                     
              

                                        
 

                                                     
 

  

                    Figure 6.2: Recognition result with FFT based algorithm  
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                      Figure 6.3: Recognition result with PCA based algorithm 

6.2Hardware: 

Individually we could verify many components of our proposed architecture like 

 VGA display 

 We have the grayscale data into the SDRAM. 

 Using DMA1 we could call the stored image and put it in the FFT work by curetting a 

code in NIOS2 

 Using DMA2 we stored the FFT image into the SDRAM again. 

 We have prepared an approximate code for final recognition, in NIOS2. 
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6.3 Limitation: 

6.3.1 Software: 

The FFT is a complicated and non-effective algorithm still we tried to implement it to FPGA 

board as our topic contains two huge areas that is image processing and implanting it on the 

FPGA board. Since FPGA implementation is our priority, we started it with an easier 

algorithm using FFT. FFT may not be as perfect as other algorithms, however to reduce noise 

we are emphasizing on converting the image into frequency domain.  

 

6.3.2 Hardware: 

After we generate an IP for FFT from mega wizard .sof is not generated. We are assuming 

that this problem is due to the unavailability of the licensed version. Therefore we could not 

verify our proposed architecture. But individually we could verify many components of our 

proposed architecture as for example, if the data could be saved in the SD-RAM and FFT 

core is working. 

6.4 Future Work: 

As future improvements PCA algorithm could be implemented on FPGA. This algorithm 

must be implemented directly on the FPGA, to accelerate the encoding process and not 

overload the processor.  This hardware implementation lead to a higher frame rate encoding, 

less data per frame, consequently less bandwidth used, and offer a wider range of choices for 

compression methods. It is also possible to implement several vision detection algorithms in 

software.  It is  possible  to  use  already  implemented  algorithms,  cross-compile  them  to  

this TERASIC (TRDB_D5M) camera. Other  hardware  or  software  applications  can  be  

implemented  on  this  system, since  the  hardware  present  on  the  FPGA  can  be  changed  

or  increased  with  HDL modules,  and  the  operating  system  allows  easy  software  

development  (taking  into account system constraints). 

Another way in which the present implementation can be improved is by changing the input 

output process. The input output block remains idle when processing is going on. We cannot 

enter new sets of data as long as the entered set has been completely computed. The new 

proposed architectural modification takes care of the fact that when computation of one is 

going on, input and output blocks are not staying idle. This will lead to kind of pipelined 

input output architecture for the whole block. 
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6.5 Conclusion: 

Face recognition is biometric identification by scanning a person‘s face and matching it 

against a library of known faces. The end result of this project focuses on developing a Face 

recognition system on FPGA. An advantage of developing this system on a FPGA was the 

ability to update the functionalities or correct any error by re-programming the FPGA with a 

system‘s new version. This system is targeted for access control, face databases, face 

identification, human computer interaction, law enforcement, smart cards, featuring 

important characteristics to achieve this goal. 

Hardware development was done using an Altera DE0 development board with a Cyclone III 

FPGA, which was found to be appropriate for multimedia projects. The CMOS sensor from 

TERASIC (TRDB-D5M) with 5 megapixel resolution is from the same vendor  and  was  

specially  made  to  use  with  DE0  board. This  development  kit includes  Verilog  HDL  

examples  for  the  image  acquisition,  conversion  and  image storage. Some of them were 

used with a couple of changes to meet project‘s needs. 

Using SOPC Builder or QSYS it was possible to implement a Nios II soft-core processor 

with all necessary options enabled. A Nios II system includes a processor core, an UART 

peripheral, an interval timer, input/output components, a SDRAM memory controller, a  LCD 

module,  an  Ethernet  interface,  a  SD/MMC  card  interface,  and  a  CMOS  slave 

controller. All of these modules use an Avalon Memory-Mapped interface and are connected 

using system interconnect fabric. The gate ware design was implemented with Verilog HDL 

using Quartus II 12.0 Web Edition. 

This Face Recognition System can  be  used  in  any  application  purpose,  but  it  is  

optimized  for security issue. The fact that this system was developed in FPGA and with an 

open-source operating system, allows any developer to continue this project and implement 

more features. 
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Chapter 8 

Appendix 

8.1 FFT Matlab code: 

clc 

clear all 

sdirectory = 'Train Database'; 

tifffiles = dir([sdirectory '/*.jpg']); 

 %length(tifffiles) 

 I = cell(1,numel( tifffiles)); 

for k = 1:length(tifffiles) 

filename = [sdirectory '/' tifffiles(k).name]; 

I{k} = imread(filename); 

Rb=imresize(I{k},[50,50]); 

  J=rgb2gray(Rb); 

fftb=fft2(J); 

figure,imshow(I{k}) 

imshow(Rb) 

figure, imshow(J) 

figure, imshow(uint8(fftb)) 

Absolutevalue_train{k}=abs(fftb); 

mean_train{k}=mean2(Absolutevalue_train{k}); 

end 

sdirectory1 = 'Test Database'; 

 tifffiles1= dir([sdirectory1 '/*.jpg']); 

 %length(tifffiles1) 

 Q = cell(1,numel( tifffiles1)); 

for R = 1:length(tifffiles1) 

  filename1 = [sdirectory1 '/' tifffiles1(R).name]; 

  Q{R} = imread(filename1); 

  Rb1=imresize(Q{R},[50,50]); 

  J1=rgb2gray(Rb1); 

  fftb1=fft2(J1); 

figure,imshow(Q{R}) 

imshow(Rb1) 

figure, imshow(J1); 

figure, imshow(uint8(fftb1)) 

Absolutevalue_test{R}=abs(fftb1); 

mean_test{R}=mean2(Absolutevalue_test{R}); 

end 

for i= 1:1:length(tifffiles) 

    j=1; 

difference(i)= mean_train{i}- mean_test{j}; 

axxx(i)= abs(difference(i)); 

end 

 t=min(axxx); 

% to show the equvalent image 

for us= 1:1:length(tifffiles) 
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post=min(axxx); 

compare=axxx(us); 

if post==compare 

counter=us;         

else 

end 

end 

 

if  t<21     %threshold level 

disp('Matched'); 

percentage=(((21-t)/21)*100); 

figure,imshow(Q{R})  

title([num2str(percentage),'%  Matched']); 

figure,imshow(I{counter});     

title('Equivalent Database Image'); 

else 

disp('Not Matched') 

percentage=(((t-21)/t)*100); 

figure,imshow(Q{R}) 

title([num2str(percentage),'% Deviated   Not Matched']); 

end 

 

8.2 PCA based Face Recognition Matlab code: (Collected) 

% A sample script, which shows the usage of functions, included in 

% PCA-based face recognition system (Eigenface method) 

% 

% See also: CREATEDATABASE, EIGENFACECORE, RECOGNITION 

clear all 

clc 

close all 

% You can customize and fix initial directory paths 

TrainDatabasePath = uigetdir('D:\Program Files\MATLAB\R2006a\work', 'Select training 

database path' ); 

TestDatabasePath = uigetdir('D:\Program Files\MATLAB\R2006a\work', 'Select test 

database path'); 

prompt = {'Enter test image name (a number between 1 to 10):'}; 

dlg_title = 'Input of PCA-Based Face Recognition System'; 

num_lines= 1; 

def = {'1'}; 

TestImage  =inputdlg(prompt,dlg_title,num_lines,def); 

TestImage = strcat(TestDatabasePath,'\',char(TestImage),'.jpg'); 

im = imread(TestImage); 

%Time counting 

start_time=cputime; 

T = CreateDatabase(TrainDatabasePath); 

[m, A, Eigenfaces] = EigenfaceCore(T);OutputName = Recognition(TestImage, m, A, 

Eigenfaces); 

SelectedImage = strcat(TrainDatabasePath,'\',OutputName); 
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SelectedImage = imread(SelectedImage); 

 

%Time resutl 

Time=cputime-start_time; 

imshow(im) 

title('Test Image'); 

figure,imshow(SelectedImage); 

title('Equivalent Image'); 

str = strcat('Matched image is :  ',OutputName); 

disp(str)            

 

 

8.3 FPGA Code:  

8.3.1 Storing data from camera module to SDRAM 

always @(posedge CLOCK_50 or negedge DLY_RST_2) 

begin 

if (~DLY_RST_2) 

 begin 

 write<= 0; 

 end 

else 

begin 

 if(write) 

 begin 

  if(acknowledge) 

begin 

  write<= 0; 

end 

 end 

 else 

 begin 

 if(button_pressed==0) //used twice 

 begin 

  if(inside_active_frame) 

  begin 

  if(new_pixel) 

begin 

   write<=1; 

  end 

end 

end 

end 

end 

end 

 

always @( posedge CLOCK_50 or negedge DLY_RST_2) 

begin 
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if (~DLY_RST_2) 

begin 

 inside_active_frame<= 0; 

end 

else if(X_Cont == 0 &&Y_Cont == 0)//when the inside a frame 

begin 

 inside_active_frame<= 1; 

 end 

 else if(X_Cont == 2047 &&Y_Cont == 1943 &&inside_active_frame) 

 begin 

   inside_active_frame<=0; 

  

 end 

end 

  

regprev_odval; 

wirebusodval; 

assignbusodval=sCCD_DVAL; 

always @( posedge CLOCK_50 or negedge DLY_RST_2) 

begin 

if (~DLY_RST_2) 

begin 

 

 if({prev_odval,busodval} == 2'b01)  

 begin 

  new_pixel<=1; 

 prev_odval<= busodval; 

 end 

 if(write && acknowledge) 

 begin 

  new_pixel<= 0; 

  end 

end 

 end  

 

 

8.3.2 Interfacing Qsys Component with FPGA board 
Jan_18th u0 ( 

        .clk_clk(CLOCK_50), // clk.clk 

       .fifo_bridge_write(write), // .write 

       .fifo_bridge_write_data(grayscale),  //.write_data 

   .fifo_bridge_acknowledge  (acknowledge),  //.acknowledge 

       .sdram_clk_clk            (CLOCK_50_2),             //   sdram_clk.clk 

   

.video_vga_controller_0_external_interface_CLK (CLOCK_50),               .         

.video_vga_controller_0_external_interface.CLK 

.video_vga_controller_0_external_interface_HS  (VGA_HS),                                          . 

.video_vga_controller_0_external_interface_VS  (VGA_VS),                                          

.video_vga_controller_0_external_interface_R   (VGA_R),                                             
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        .video_vga_controller_0_external_interface_G   (VGA_G),    

        .video_vga_controller_0_external_interface_B   (VGA_B)                                            

    ); 

 

8.3.3 Creating SDRAM allocation 
always@ (posedgesCCD_DVAL) 

begin 

if(address_count<5038848) 

 begin 

address_count<=address_count+1; 

 end 

else 

begin 

address_count<=0; 

end 

end 

assignaddress_line=address_count; 

 

 

 

 

8.4 Code for SGDMA: 
/* 

Code for SGDMA 

 */ 

 

#include <stdio.h> 

#include "altera_avalon_sgdma.h" 

#include "altera_avalon_sgdma_descriptor.h" 

#include "altera_avalon_sgdma_regs.h" 

 

int main() 

{ 

 //initialize scatter-gather dma 

  

   //Memory To Stream 

alt_sgdma_descriptor *desc;  //1 

alt_sgdma_descriptor *next; //2 

    alt_u32 *read_addr;//3 

alt_u16 length; //leangth//4 

intread_fixed;//5 

intgenerate_sop;//6 

intgenerate_eop;//7 

    alt_u8 atlantic_channel;//8 

voidalt_avalon_sgdma_construct_mem_to_stream_desc(, 

       , , , , , 

       , );  
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alt_sgdma_dev *dev; 

alt_avalon_sgdma_start(*dev); 

 

 

 // Stream To Memory 

 

alt_sgdma_descriptor *desc;//1 

alt_sgdma_descriptor *next;//4 This does not need to be a complete or functional 

    //descriptor, but must be properly allocated. 

intwrite_fixed;   //3 

    alt_u32 *write_addr; // 

    alt_u16 length_or_eop;//5 

voidalt_avalon_sgdma_construct_stream_to_mem_desc(, 

    , , , ); 

    //stop scatter gather dma 

alt_sgdma_dev *dev; 

voidalt_avalon_sgdma_stop(); 

 

return 0; 

} 

 

8.5 Code for recognition in C (NIOS II) 
 

#include<stdio.h> 

#include<math.h> 

#include<algorithm> 

 

float mean(int m, int a[]) {   //mean fuction 

int sum=0, i; 

for(i=0; i<m; i++) 

sum+=a[i]; 

return((float)sum/m); 

} 

 

void main(){ 

 intn,i,max,min; 

 intabsvalue[4][8]; 

float mean(int,int[]); 

 intmeancalc[4]; 

 int temp[8]; 

 int diff[4]; 

 int threshold =10;  

 

 intfft_value[4][8] = {{90,42,21,5,-43,-9,-34,2}, {2,42,21,12,-43,-2,-34,2}, {-

2,4,32,100,-90,-2,-24,56}, {45,4,21,5,-43,45,-34,-23}}; 

 

for (int i=0;i<4;i++){ 

  for (int p=0;p<8;p++){ 

  absvalue[i][p] = abs(fft_value[i][p]); 

 printf("abs_value=%d\n",absvalue[i][p]); 



94 
 

  } 

 } 

 

 for (int i=0;i<4;i++){ 

  for (int p=0;p<8;p++){ 

   temp[p]=absvalue[i][p]; 

  // printf("temp_value=%d\n",temp[p]); 

  } 

  meancalc[i] = mean(8,temp); 

  printf("meancalc=%d\n",meancalc[i]); 

 } 

  

 for (int g=0; g<4; g++){ 

  diff [g]= meancalc[0] - meancalc[g]; 

 printf("diff=%d\n",diff[g]); 

 } 

 

max=abs(diff[1]); 

min=abs(diff[1]); 

for(int t=2;t<4;t++) 

{ 

if(max<abs(diff[t])) 

max=abs(diff[t]); 

if(min>abs(diff[t])) 

min=abs(diff[t]); 

} 

printf("min=%d\n",min); 

 

if (min<threshold){ 

 

printf("Image is matched."); 

} 

else { 

printf("Image DO NOT Matched"); 

} 

 

} 
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