
PNlib - An Advanced Petri Net Library

for Hybrid Process Modeling

Sabrina Proß Bernhard Bachmann

University of Applied Sciences, Department of Engineering and Mathematics

Am Stadtholz 24, 33609 Bielefeld

sabrina.pross@fh-bielefeld.de Bernhard.bachmann@fh-bielefeld.de

Abstract

A new Petri net library, called PNlib, is presented to

enable graphical hierarchical modeling, hybrid simu-

lation, and animation of processes in life sciences,

technical applications, among others. In order to

model these most different processes, a new power-

ful and universally usable mathematical modeling

concept – xHPN (extended Hybrid Petri Net) – has

been established. This formalism is used as specifi-

cation for the PNlib (Petri Net library) realized by

the object-oriented modeling language Modelica.

The application of the new environment is demon-

strated by three selected examples. The first example

demonstrates the representation of functional princi-

ples by a model of a Senseo coffee machine and the

second one is a model of a printing production pro-

cess. The third example presents the applicability of

modeling business processes. All models are provid-

ed as application cases in the library.

Keywords: Petri nets; hybrid modeling; xHPN; pro-

cess modeling

1 Introduction

The Petri net formalism was first introduced by Carl

Adam Petri in 1962 for modeling and visualization

of concurrency, parallelism, synchronization, re-

source sharing, and non-determinism [1]. A Petri net

is a graph with two different kinds of nodes, called

transitions and places; thereby, places and transi-

tions are connected by arcs. Every place in a Petri

net can contain a non-negative integer number of

tokens. These tokens initiate transitions to fire ac-

cording to specific conditions. These firings lead to

changes of the tokens in the places.

In the recent years, Petri nets with their various

extensions are becoming increasingly popular. They

have been proven to be a universal graphical model-

ing concept for representing different systems in

nearly all degrees of abstraction. They support the

qualitative modeling approach as well as the quanti-

tative one. Furthermore, the processes can be mod-

eled discretely as well as continuously, refer to [2].

In addition, discrete and continuous processes can

also be combined within a Petri net model to so-

called hybrid Petri nets first introduced by David

and Alla [3]. The Petri net formalism with all its ex-

tensions is so powerful that nearly all other formal-

isms are included. Hence, only one formalism is

needed regardless of the approach (qualitative vs.

quantitative, discrete vs. continuous vs. hybrid, de-

terministic vs. stochastic) which is appropriate for

the respective system. The Petri net formalism is

easy to understand for researchers from different dis-

ciplines. It is an ideal way for intuitive representing

and communicating data and new knowledge of

mechanisms and processes. Furthermore, Petri nets

allow hierarchical structuring of models and, there-

fore, offer the possibility of different detailed views

for every observer of the model.

Figure 1: Relationships between the different formalisms

There are already three Petri net libraries availa-

ble on the Modelica homepage (www.modelica.org).

The first was developed by Mosterman et al. and

enables the modeling of a restricted class of discrete

Petri nets, called normal Petri nets [4]. The places of

normal Petri nets can only contain zero or one token.

Additionally, all arcs have the weight one and exter-

nal signals initiate the firing of transitions. If a con-

flict occurs between two or more transitions, the

transition with the highest priority fires. Hence, only

deterministic behavior is represented by this kind of

Petri net.

The second Petri net library is an extension of the

previous one and was developed by Fabricius [5].

The places are able to contain a non-negative integer

number of tokens and can be provided with non-

negative integer minimum and maximum capacities.

Furthermore, the transitions are timed with fixed or

stochastic delays.

The third library, called StateGraph, is based on

Grafcharts which combines the function chart for-

malism of Grafcet with the hierarchical states of

Statecharts [6]. The StateGraph library is part of the

Modelica standard library and was developed by Ot-

ter et al. [7].

The relationships between the mentioned con-

cepts are displayed in Figure 1. To enable modeling

of different systems with Petri nets in Modelica, the

existing libraries have to be extended by the follow-

ing aspects:

 Transfer of the discrete Petri net concept to a con-

tinuous one,

 Support of edges with (functional) weightings,

 Support of test-, inhibitor, and read arcs,

 Support of (different) conflict resolutions (ran-

dom decisions),

 Combination of discrete and continuous Petri net

elements to hybrid Petri nets.

2 Extended Hybrid Petri Nets

The extended Hybrid Petri Net (xHPN) formalism

comprises three different processes, called transi-

tions: discrete, stochastic, and continuous transition,

two different states, called places: discrete and con-

tinuous places, and four different arcs: normal, in-

hibitor, test, and read arcs. The icons of the formal-

ism are shown in Figure 2.

Discrete places contain a non-negative integer quan-

tity, called tokens or marks, while continuous plac-

es contain a non-negative real quantity. These marks

initiate transitions to fire according to specific condi-

tions and the firings lead to changes of the marks in

the connected places.

Discrete transitions are provided with delays and

firing conditions and fire first when the associated

delay is passed and the conditions are fulfilled. The-

se fixed delays can be replaced by exponentially dis-

tributed random variables, then, the corresponding

transition is called stochastic transition. Thereby,

the characteristic parameter λ of the exponential dis-

tribution can depend functionally on the markings of

several places and is recalculated at each point in

time when the respective transition becomes active

or when one or more markings of involved places

change. Based on the characteristic parameter, the

next putative firing time of the

transition can be evaluated and it fires when this

point in time is reached.

Figure 2: Icons of the xHPN formalism

Both - discrete and stochastic transitions - fire by

removing the arc weight from all input places and

adding the arc weight to all output places. On the

contrary, the firing of continuous transitions takes

place as a continuous flow determined by the firing

speed which can depend functionally on markings

and/or time.

Places and transitions are connected by normal

arcs which are weighted by non-negative integers

and real numbers, respectively. But also functions

can be written at the arcs depending on the current

markings of the places and/or time. Places can also

be connected to transitions by test, inhibitor, and

read arcs. Then their markings do not change during

the firing process. In the case of test and inhibitor

arcs, the markings are only read to influence the time

of firing while read arcs only indicate the usage of

the marking in the transition, e.g. for firing condi-

tions or speed functions. If a place is connected to a

transition by a test arc, the marking of the place must

be greater than the arc weight to enable firing. If a

place is connected to a transition by an inhibitor arc,

the marking of the place must be less than the arc

weight to enable firing. In both cases the markings of

the places are not changed by firing.

The conversion of a discrete to a continuous

marking is realized by connecting a discrete transi-

tion to a continuous place and the conversion from a

continuous to a discrete marking is realized by con-

(time-)discrete process
(event)

continuous process
(flow)

stochastic process
(random event)

Transitions

Places

Arcs

(time-)discrete state
(integer quantity)

continuous state
(real quantity)

„normal“ arc

inhibitor arc

test arc

read arc

xHPN: Extended Hybrid Petri Nets

necting a continuous place to a discrete transition.

However, the conversion process is always per-

formed by discrete transitions, discrete places can

only influence the time when continuous transitions

fire but their marking cannot be changed during the

continuous firing process. Figure 3 shows examples

of these two basic principles:

 T1 can only fire when P1 has more than zero

marks and P3 has at least one mark (influence),

 T2 can only fire when P4 has at least one mark

and P6 has at least 5.4 marks (influence),

 T3 fires by removing one mark from P7 and add-

ing 1.8 marks to P8 (conversion),

 T4 fires by removing 0.8 marks from P9 and add-

ing one mark to P10 (conversion).

Figure 3: Basic concepts of hybrid Petri nets and marking

evolution of places and achieved by firing with

a delay of 1 of the bottom left Petri net.

It is important to mention that a discrete transition

fires always in a discrete manner by removing and

adding marks after a delay is passed regardless of

whether a discrete or a continuous place is connected

to it. However, a continuous transition fires always

by a continuous flow so that a discrete place can only

be connected to continuous transition if it is input as

well as output of the transition with arcs of same

weight. In this way continuous transitions can only

be influenced by discrete places but discrete mark-

ings cannot be changed by continuous firing.

Several conflicts can occur when the places have

to enable their connected active transitions. Possibly,

a discrete place or a continuous place connected to

discrete transitions has not enough marks to enable

all discrete output transitions simultaneously or can-

not receive marks from all active input transitions

due to the maximum capacity. Then a conflict arises

that has to be resolved (type-1-conflict, see Figure

4).

Figure 4: Example of a type-1-conflict; P1 has not enough

tokens to fire T1 and T2 simultaneously.

This can be either done by providing the transi-

tions with priorities or probabilities. In the first case,

a deterministic process decides which place enables

which transition and in the second case the enabling

is performed at random; thereby transitions assigned

with a high probability are chosen preferentially.

Figure 5: Example of a type-2-conflict; the input speed of

P2 and P3 is not sufficient to fire T5 and T6 with the de-

termined speed.

Another conflict can occur between a continuous

place and two or more continuous transitions when

the input speed is not sufficient to fire all output

transitions with the respective speed or when the

output speed is not sufficient to fire all input transi-

tions with the respective speed (type-2-conflict, see

Figure 5). This conflict is solved by sharing the

speeds proportional to the assigned maximum speeds

(cf. [8]).

Figure 6: Example of a type-3-conflict; at time 0, T1 be-

comes active and fires continuously. At time 2, the delay

of T2 is passed and it becomes firable. At this point in

time, P3 has a conflict because it cannot fire tokens in T1

and T2, simultaneously. Hence, T2 takes priority over T1

and fires.

P4 T2 P5

P6
8.9

P1
8.6

T1
P2
1.8

P3

1 1 1 1

P7 T31

5.45.4

P8
0.0

1.8 P10T40.8
P9
3.4

1

11

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

M
a

rk
s

Time

P7 P8

P1

T1

T2

P2

P3

1

2

1

1

T1

T2

T3

P1
0

P2
0

P3
0

T5

T6

1

1

1

3

1

3

1

v1=3

v2=10.5

v3=11.7

v5=3

v6=2

T4
P4
0

v4=1

1

2

2

T1

T2

T3

P1
0

P2
0

P3
0

T5

T6

1

1

1

3

1

3

1

v1=3

v2=7.5

v3=6

v5=3

v6=2

T4
P4
0

v4=1

1

2

2

P1
8.6

T1
P2
1.8

P3

1 1

11

T21

d2=2

T3
P4
2

T4

T5

1

1

1

d5=1

v3=1

v4=2

If a conflict occurs between a place and continu-

ous as well as discrete/stochastic transitions, the dis-

crete/stochastic transitions take always priority over

the continuous transitions (type-3-conflict, see Fig-

ure 6).

Figure 7: Example of a type-4-conflict; at time 0, P3 can

either enable T1 or T2 but not both simultaneously. This

conflict can be solved by prioritization of the transitions.

A last conflict can occur when a discrete place

has not enough marks to enable all connected con-

tinuous transitions. This is solved by prioritization of

the involved transitions (type-4-conflict, see Figure

7).

Visitor

Push lever

Lever

Lift flapper

Water
flows

Sink
flapper

Tank fill-
valve

o
p

en
cl

o
se

w
at

er

fl
o

w
s

Visitor enters
toilet

Flush valve

flapper
Water in

tank

Level of
float

Sewer

Water in
bowl

T1

T2

T3T4

T5

T6

T7

T8

T9

P1

P2

P3

P4

P5

P6 P7

Figure 8: Hybrid modeling of a flush toilet with the aid of

xHPN formalism

Figure 8 shows an example of hybrid modeling

by the xHPN formalism. The model represents a

flush toilet. A visitor enters the toilet; thereby, the

time between two visitors is not exactly known so

that it is modeled by a stochastic transition with an

exponentially distributed delay (). The visitor

() pushes () the lever () which lifts the flush

valve flapper (). Then the water can flow ()

from the tank () to the bowl () and afterwards

to the sewer (). When the water flows to the bowl,

the float () sinks in the toilet tank. If the float falls

below a specific level (inhibitory arc), the tank fill-

valve (is opened () and new water can flow

() into the tank. This causes also that the float ris-

es and when a specific level is reached (test arc), the

tank fill-valve is closed (). If the lever has re-

turned to its starting position, the flush valve flapper

sinks back to the bottom () and no water can flow

into the bowl anymore.

3 PNlib

The advanced Petri Net library, called PNlib, enables

the modeling of extended hybrid Petri Nets (xHPN).

It comprises

 a discrete (PD) and a continuous place (PC),

 a discrete (TD), a stochastic (TS), and a continu-

ous transitions (TC), and

 a test (TA), an inhibitor (IA), and a read arc (RA).

Figure 9: Component icons of the PNlib.

The main package PNlib is divided into the fol-

lowing sub-packages:

 Interfaces: contains the connectors of the Petri net

component models.

 Blocks: contains blocks with specific procedures

that are used in the Petri net component models.

 Functions: contains functions with specific algo-

rithmic procedures which are used in the Petri net

component models.

 Constants: contains constants which are used in

the Petri net component models.

 Models: contains several examples and offers the

possibility to structure further Petri net models.

Additionally, the package contains the component

settings which enables the setting of global parame-

ters for the display and the animation of Petri net

models.

P1
8.6

T1
P2
1.8

P3

1 1

11

P4
8.6

T2
P5
1.8

1 1

1 1

v1=2

v2=3

Places, transitions, and arcs are represented by the

icons depicted in Figure 9. Thereby, the discrete

place is represented by a circle and the continuous

place by a double circle. The transitions are boxes

which are black for discrete transitions, black with a

white triangle for stochastic transitions, and white for

continuous transitions. The test arc is represented by

a dashed arc, the inhibitor arc by an arc with a white

circle at its end, and the read arc by an arc with a

black square at its end.

3.1 Connectors

The PNlib contains four different connectors:

PlaceOut, PlaceIn, TransitionOut, and Tran-

sitionIn. The connectors PlaceOut and PlaceIn

are part of place models and connect them to output

and input transitions, respectively. Similar, Transi-

tionOut and TransitionIn are connectors of the

transition model and connect them to output and in-

put places, respectively. Figure 10 shows which con-

nector belongs to which Petri net component model.

Figure 10: Connectors of the PNlib.

The connectors of the Petri net component models

are vectors to enable the connection to an arbitrary

number of input and output components. Therefore,

the dimension parameters nIn and nOut are declared

in the place and transition models with the con-

nectorSizing annotation.

3.2 Places

The parameters of places are summarized in Table 1.

If the type-1-conflict is resolved by priorities, the

corresponding priorities of the transitions are given

by the indices of the connections, i.e. the transition

connected to the place with the index 1 has also the

priority 1, the transition connected to the place with

the index 2 has also the priority 2 etc. Otherwise, if

the probabilistic enabling type is chosen, the corre-

sponding probabilities for the transitions have to be

entered as a vector. Thereby, the first vector element

corresponds to the connection with the index 1, the

second to the connection with the index 2 etc. The

input of enabling probabilities as vectors in the place

model, and not at the corresponding arcs, is neces-

sary due to the fact that properties cannot be as-

signed to connections according to the Modelica

Specification 3.2.

Table 1: Parameters and modification possibilities of dis-

crete (d) and continuous (c) places

Name

Description
Type Default

startTokens/

startMarks
Marking at the beginning

of the simulation

scalar 0

minTokens/

minMarks
Minimum capacity

scalar 0

maxTokens/

maxMarks
Maximum capacity

scalar infinite

enablingType
Type of enabling if type-

1-conflicts occur; the

priorities are defined by

the connection indices

and the probabilities by

the variables ena-

blingProbIn/Out

choice/

scalar

Priority

enablingProbIn
Enabling probabilities of

input transitions

vector fill(1/nIn,nIn)

enablingProbOut
Enabling probabilities of

output transitions

vector fill(1/nOut,nOut)

N
Amount of levels for sto-

chastic simulation

scalar settings1.N

restart

Condition for resetting

the marking to

reStartTokens/Marks

condition

expres-

sion

false

reStartTokens/

reStartMarks
When the reStart condi-

tion is fulfilled, the mark-

ing is set to reStartTo-

kens/Marks

scalar 0

The input of enabling probabilities as vector is

demonstrated by Figure 11. Place P1 is connected to

the transitions T1, T2, and T3 and the connection to

T1 is indexed by 1, the connection to T2 is indexed

by 2, and the connection to T3 is indexed by 3. Thus,

the corresponding connect-equations are

connect(P1.outTransition[1],
T1.inPlaces[1]);

connect(P1.outTransition[2],
T2.inPlaces[1]);

connect(P1.outTransition[3],
T3.inPlaces[1]);

The enabling probabilities 0.3 for T1, 0.25 for T2,

and 0.45 for T3 have to be entered by the parameter

vector
enablingProbOut={0.3,0.25,0.45}.

PlaceOut

PlaceInTransitionIn

TransitionOut

Figure 11: Input of enabling probabilities.

The main process in the place model is the recal-

culation of the marking after firing a connected tran-

sition. In the case of the discrete place model, this is

realized by the discrete equation

when tokeninout or pre(reStart) then
 t=if tokeninout then pre(t)+

 firingSumIn - firingSumOut else

 reStartTokens;

end when;

whereby pre(t) accesses the marking t immediate-

ly before the transitions fire. To this amount, the arc

weight sum of all firing input transitions is added

and the arc weight sum of all firing output transitions

is subtracted from it. Additionally, the tokens are

reset to reStartTokens when the user-defined

condition reStart becomes true.

The marking of continuous places can change

continuously as well as discretely. This is imple-

mented by the following construct

der(t)=conMarkChange;
when disMarksInOut then
 reinit(t,t+disMarkChange);
end when;
when reStart then
 reinit(t,reStartMarks);
end when;

whereby the der-operator access the derivative of

the marking t according to time. The continuous

mark change is performed by a differential equation

while the discrete mark change is performed by the

reinit-operator within a discrete equation. This

operator causes a re-initialization of the continuous

marking every time when a connected discrete tran-

sition fires. Additionally, the marking is re-initialized

by reStartMarks when the condition reStart

becomes true.

3.3 Transitions

The parameters of transitions are summarized in Ta-

ble 2. Thereby, it has to be distinguished between the

following input types: scalar, vector, scalar function,

vector function, and condition expression. The input

of arc weights as vectors in the transition model and

not at the respective arcs is necessary due to the fact

that connections cannot be provided with properties

according to the Modelica Specification 3.2.

Table 2: Parameters and modification possibilities of dis-

crete (d), stochastic (s), and continuous (c) transitions

Name

Description

Type Part

of

Default

Allowed
delay

Delay of timed

transitions

scalar d 1

non-negative

real values
h

Hazard function

to determine the

characteristic

value of exponen-

tial distribution

scalar or

scalar

function

s 1

non-negative

real values

maximumSpeed

Maximum speed
scalar or

scalar

function

c 1

non-negative

real values
arcWeightIn

Weights of input

arcs

vector or

vector

function

d,s,c 1

non-negative

integers (d,s),
non-negative

real values (c)
arcWeightOut

Weights of output

arcs

vector or

vector

function

d,s,c 1

non-negative

integers (d,s),
non-negative

real values (c)
firingCon

Firing condition
condition

expression

d,s,c true

Boolean con-

dition expres-

sion

The input is demonstrated by the following ex-

amples. Figure 12 shows a discrete Petri net. The

indices of the connections are written at the arcs

within square brackets, e.g. the connection

 has the input index [1] and has the

output index [3]. The input of the arc weights dis-

played after the indices to property dialog or as mod-

ification equation is performed by the vector func-

tions

arcWeightIn = {2*P1.t,4} and

arcWeightOut = {2,1,5*P1.t},

whereby the expression P1.t accesses the current

marking of P1. Thus, the weights of the arcs

 and are functions which de-

pend on the marking of P1.

Figure 12: Input of arc weights.

P1

T1

T2

T3

[1]; 0.3

[2]; 0.25

[3]; 0.45

T1

P1

P2

P3

P4

P5

[1]; 2∙m(P1)

[2]; 4

[1]; 2

[2]; 1

[3]; 5∙m(P1)

Transitions can also be provided with additional

conditions that have to be satisfied to permit the ac-

tivation. The condition
firingCon = time>9.7

causes that the transition cannot be activated as long

as time is less than 9.7.

Figure 13 shows two continuous Petri nets. Transi-

tion T1 has a maximum speed function which de-

pends on the makings of P1 and P2. The input of this

function to the property dialog or as modification

equation is performed by the expression

maximumSpeed = 0.75*P1.t*P2.t,

whereby P1.t and P2.t accesses the marks of P1

and P2, respectively. Transition T2 has a maximum

speed function that depends on time and can be en-

tered by the expression

maximumSpeed = if time<=6.5 then 2.6
 else 1.7.

Figure 13: Input of maximum speed functions.

Based on the current markings of the places, it is

checked in the transition model by an algorithmic

procedure if the transition can become active. Dis-

crete transitions wait then as long as the delay is

passed and stochastic transitions wait till the next

putative firing time is reached. Based on this infor-

mation, the places enable some of the active transi-

tion to fire. At this point, several conflicts can occur

which have to be resolved appropriately by the

methods mentioned in [8] to get a successful and

reliable simulation. When a transition is enabled by

all its connected places, it is firable and reports this

via the connector variable fire to the connected plac-

es. The places recalculate then their markings based

on this information.

3.4 Arcs

xHPNs comprise four different kinds of arcs: normal,

test, inhibitor, and read arc. The Modelica language

do not support the assignment of properties to arcs

that are generated by connect equations. Due to that

fact, test, inhibitor, and read arcs are realized by

component models which are interposed between

places and transitions (see Figure 14); the normal arc

is simply generated by the connect equation. Test

and inhibitor arc can be normal arcs simultaneously.

Figure 14: Modeling of normal (top left), test (bottom

left), inhibitor (top right), and read arcs (bottom right)

with the PNlib.

Table 3: Parameters and modification possibilities of test

and inhibitor arcs (read arcs have no parameters)

Name

Description

Type Default

Allowed
testValue

The marking of the place

must be greater to enable

firing of transitions (test

arc);

the marking of the place

must be smaller to enable

firing (inhibitor arc).

scalar 1

non-negative inte-

gers if connected

to discrete places,

non-negative real

values otherwise

normalArc

If yes is chosen, then the

arc is also a normal arc to

change the marking by

firing (called double

arc).

choice/

scalar

no

no or yes

4 Animation and Connection to

Matlab/Simulink

A possibility to represent the simulation results of an

xHPN model is an animation. Thereby, several set-

tings can be made in the property dialog of the set-

tings-box. These settings are global and, thus, affect

all components of the Petri net model. By using the

prefixes inner and outer, it is achieved that the set-

tings are common to all Petri net components of a

model. An animation offers a way to analyze the

marking evolutions of large and complex xHPNs.

Figure 15 shows four selected points in time of the

animation of an xHPN example. All display and an-

imation options are realized with the DynamicSe-

lect annotation.

To simulate the established xHPN model several

times with different parameter settings and use the

arising simulation results for parameter estimation,

sensitivity analysis, deterministic and stochastic hy-

brid simulation, or process optimization [8], the

Modelica models in Dymola are connected to

P1

T1

P3

P4P2

P5

T2

P7

P8P6

   1 0 75 1 2v . m P m P  

2 6 time 6 5
2

1 7 time 6 5

. .
v

. .


 



T2P3 P4

T3P5 P6

T4P7 P8

T1P1 P2

Matlab/Simulink. This is realized with the aid of a

Dymola interface in Simulink and a set of Matlab m-

files utilities [9].

3

P1

4

P2

d=1.8

T1

2.0

11.43

P3

14.34

P4

0.0

P5

1.0

4.30

T2

1.20

T3

4.98

P6

14.23

P7
SETTINGS

d=5.5

T4

P1_t

P3_t

P6_t

P5_t

Time = 1

2

P1

4

P2

d=1.8

T1

2.0

3.83

P3

3.34

P4

0.0

P5

1.0

4.30

T2

1.20

T3

8.16

P6

29.08

P7
SETTINGS

d=5.5

T4

P1_t

P3_t

P6_t

P5_t

Time = 3

1

P1

4

P2

d=1.8

T1

2.0

2.22

P3

0.0

P4

0.0

P5

1.0

4.30

T2

1.20

T3

8.23

P6

29.94

P7
SETTINGS

d=5.5

T4

P1_t

P3_t

P6_t

P5_t

Time = 4

0

P1

4

P2

d=1.8

T1

2.0

3.22

P3

0.0

P4

1.0

P5

1.0

4.30

T2

1.20

T3

8.23

P6

29.94

P7
SETTINGS

d=5.5

T4

P1_t

P3_t

P6_t

P5_t

Time = 6

Figure 15: Animation of an xHPN model.

All markings which should be available in Matlab

have to be declared with the prefix output on the

highest level. This is achieved by creating a connect-

or of the output connector at the top of the place

icon. In the case of discrete places it is an orange

IntegerOutput connector and in the case of con-

tinuous places it is a blue RealOutput connector. In

Figure 15 the markings of , , , and are

available in Matlab.

5 Application

The PNlib is so powerful but also so universal and

generic that it is an ideal all-round-tool for model-

ing and simulation of nearly all kinds of processes,

such as business processes, production processes,

logistic processes, work flows, traffic flows, data

flows, multi-processor systems, communication pro-

tocols, and functional principals. This section gives

an overview of the different application fields using

the PNlib. Three selected examples

 Modeling a Senseo coffee machine,

 Modeling a printing process, and

 Modeling a business process

are part of the PNlib and should demonstrate the

huge application field. Additionally, the application

of the PNlib for modeling biological processes is

shown in [10].

Figure 16: Hierarchical model of a Senseo coffee machine and simulation results.

A model of a Senseo coffee machine is presented. The

main feature of a Senseo coffee machine is that the coffee

is placed in the machine in a pre-portioned form by so-

called coffee pads. One pad is generally used to make one

cup of coffee (125°ml) and two pads reach for two cups at

125 ml or one big cup at 250 ml. After a warm-up time of

about 60 seconds and the insertion of a coffee pad, the

coffee can be made. In this warm-up phase, the water is

heated at 90°C and then pressed with a pressure of about

1.4 bar within 40 seconds through the pad. In contrast to a

normal coffee machine that boils the water continuously

and transports it by its own buoyancy (hot bubbles) up

into the filter, the Senseo machine heats a portion of water

completely in a heating chamber and pumps it then

through the pad. To ensure that the heating chamber in the

machine is always filled with water, a float is placed in the

USER INSERT PAD

REFILL WATER WATER TANK

SENSEO MACHINE

heating

20

TWpumping

cooling

d=1

stop_or_next

0.25water_hc

d=0T2

0

 decision1

d=1

T3

d=1

T4

0

one_cup

0

two_cups

d=1

T5

d=1

T6

scalding

coffee_cup

0

ready

d=0counting

amount_cups

0

amount

0

on
0

pad_in

0

0

Water Tank

Cups Total

11

Start

Refill Stop/Next

Refill Water

Insert Pad

Coffee Cup

Temperature

77

s
ta

rt
in

g

0

s
ta

rt

1

 s
to

p
d

=
1

T
8

d
=

1

T
7

0

n
e

x
t_

c
o

ff
e

e
d

=
1

T
9

0

d
e

c
is

io
n

2

0
d

=
1

T
1

d=30

refilling2

0

pufferd=1

refilling1

0.5

water_tank

inserting

0

puffer

0.00E0 2.50E3 5.00E3 7.50E3 1.00E4 1.25E4 1.50E4 1.75E4
0

4

8

12

16

20

24

28

32

36

40

A
m

o
u

n
t
o

f
C

o
ff
e

e
 C

u
p

s

Time [s]

0.00E0 2.50E3 5.00E3 7.50E3 1.00E4 1.25E4 1.50E4 1.75E4
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

W
a

te
r

in
 T

a
n

k
 [
l]

Time [s]

0.00E0 2.50E3 5.00E3 7.50E3 1.00E4 1.25E4 1.50E4 1.75E4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

C
o

ff
e

e
 i
n

 C
u

p
 [
l]

Time [s]
0.00E0 2.50E3 5.00E3 7.50E3 1.00E4 1.25E4 1.50E4 1.75E4
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

W
a

te
r

T
e

m
p

e
ra

tu
re

 i
n

 H
e

a
ti
n

g
 C

a
m

b
e

r
[°

C
]

Time [s]

1.33E4 1.34E4 1.35E4 1.36E4 1.37E4 1.38E4 1.39E4 1.40E4 1.41E4
15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

W
a
te

r
T

e
m

p
e
ra

tu
re

 i
n
 H

e
a
ti
n
g
 C

a
m

b
e
r

[°
C

]

Time [s]

5750 6000 6250 6500 6750
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

W
a
te

r
in

 T
a
n
k
 [
l]

Time [s]

7000 7025 7050 7075 7100 7125 7150
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

C
o
ff
e
e
 i
n
 C

u
p
 [
l]

Time [s]

removable water tank which allows measuring the mini-

mal capacity. If the minimum level is exceeded, the heater

is turned off. If there is sufficient water level, the next

portion of water is heated directly after the scalding and

filling. These functional principles are represented by the

hierarchically structured model shown in

Figure 16 and also some simulation results. Addi-

tionally, a detailed description of the model can be

found in the PNlib.

The applicability of the PNlib for modeling pro-

duction processes is shown by a model of a printing

process. It is also modeled hierarchically to provide a

compact and clear view on the highest level contain-

ing all important facts (see Figure 17). The process

starts with paper on a role and ends with printed leaf-

lets for supermarkets. During the process, misprints,

also called maculation, could occur due to several

reasons. If the worker at the printing machine detects

these misprints, he presses a button and all incorrect

exemplars are transferred outward. When the macu-

lation is over, he presses the button again and the

process is continued. With the help of this model

several new insights can be detected, e.g.

 How and when maculation occurs? What are the

causes and how can maculation be prevented?

 How much paper is need for the particular order?

 How long does the order take? …

Orders

2

Exemplars

31887

Maculation

9623

Paper

49812

Duration

7223

Stop/Start

Maculation Press

maculation

2706

exemplars

21045

orders

2

meters on role

11045

 paper

28500

duration

5651

Figure 17: Model of a printing process on the highest lev-

el.

The PNlib can also be used for modeling and simu-

lating business processes. A business processes de-

scribes a sequence of activities or tasks which have

to be carry out in order to achieve a particular busi-

ness goal e.g. a service or product for a particular

customer. Figure 18 shows a small part of a business

process model. The major advantages of this ap-

proach are (1) the hierarchical structure, which pro-

vides a compact and clear view of the processes on

the highest level, and (2) the simulation and anima-

tion option which enable analyzing and optimizing

of the processes. A possible question may arise in

this juncture is, how much employees are needed to

accomplish the requests and orders of the customers

or simple how the profit can be maximized. All ques-

tions of this kind can be answered by simulating the

model with different parameter settings.

h=1.00
pt=206.53

raise request

request offer

0
request

↓

offer
5

offer

↓

order

203
162

d=8

offer to customer

offer at customer

waiting for response

waiting time

over

responsing?

response

no response

calling?

resulting?

no order

order

d=0

T1

Waiting

d=40
XOR

0.8

0.2

XOR
0.5

0.5

XOR
0.2

0.8

d=0

T1

d=0

T2P1d=0

T3

order complete

14

14

...

Consultants

2

Figure 18: Part of a business process model.

6 Conclusions

A powerful Petri net environment has been devel-

oped for graphical hierarchical modeling and hybrid

simulation as well as animation of processes from

most different application fields. Thereby, the math-

ematical modeling concept xHPN serves as specifi-

cation for performing a hybrid simulation. The

xHPN elements are modeled object-oriented by dis-

crete, differential, and algebraic equations in the

Modelica language. This allows an easy way to

maintain, extend, and modify the components.

Moreover, the connection to Matlab/Simulink of-

fers the whole Matlab power for post-processing the

simulation results of Modelica models. The Matlab-

based tool AMMod (Analysis of Modelica Models)

provides already several mathematical methods for

data pre-processing, relationship analysis, parameter

estimation, sensitivity analysis, deterministic and

stochastic hybrid simulation, and process optimiza-

tion [10].

The application of the new Petri net simulation

environment has been demonstrated by a model of a

Senseo coffee machine, a model of a printing pro-

cess, and a model of a business process. All models

show the applicability of the xHPN formalism as

well as graphical hierarchical modeling and hybrid

simulation with the PNlib.

A future goal is to provide an open source Petri-

net simulation tool. This demands a further devel-

opment of the open source Modelica-tool OpenMod-

elica to get the PNlib work with it because some

Modelica features are not supported so far.

Moreover, the xHPN formalism as well as the

PNlib will be extended by fuzzy logic (e.g. [11]) and

the color concept (e.g. [12]) to enhance the range of

application fields further.

Furthermore, the PNlib is already connected to

VANESA, an open source tool for visualization and

analysis of networks, in order to enable modeling,

editing, visualization, and animation of xHPN mod-

els by an easy-to-use interface [13]. This connection

will be further improved.

References

[1] Petri C.A. Kommunikation mit Automaten.

PhD thesis, Rheinisch-Westfälisches Institut

für Instrumentelle Mathematik, Bonn, Ger-

many, 1962.

[2] David R., Alla H. Continuous petri nets. Pro-

ceedings of 8th European Workshop on Ap-

plication and Theory of Petri nets:275-294,

1987.

[3] David R., Alla H. On Hybrid Petri Nets. Dis-

crete Event Dynamic Systems: Theory and

Applications(11): 9–40, 2001.

[4] Mosterman P.J., Otter M., Elmqvist H. Mod-

eling Petri nets as local constraint equations

for hybrid systems using Modelica. Proceed-

ings of SCS Summer Simulation Confer-

ence:314–319, 1998.

[5] Fabricius S.M. Extensions to the Petri Net

Library in Modelica. ETH Zurich, Switzer-

land, 2001

[6] Johnsson C., Årzén K.-E., Grafchart and

grafcet: A comparison between two graphical

languages aimed for sequential control appli-

cations, Preprints 14th World Congress of

IFAC(A): 19-24, 1999.

[7] Otter M., Årzén K.E., Dressler I. StateGraph-

a Modelica library for hierarchical state ma-

chines. Proceedings of 4th International

Modelica Conference:21-33, 2005

[8] Proß S. Hybrid Modeling and Optimization

of Biological Processes. Bielefeld, Germany,

PhD thesis (in preparation), Faculty of Tech-

nology, Bielefeld University, Germany,

2012.

[9] Dynasim AB Dymola-Dynamic Modeling

Laboratory-User Manual Volume 2, Lund,

Sweden, 2010

[10] Proß S., Bachmann B. Hybrid Modelling and

Process Optimization of Biological Systems,

MATHMOD Conference, Wien, Austria

2012.

[11] Chen S, Ke J, Chang J Knowledge represen-

tation using fuzzy Petri nets. Knowledge and

Data Engineering, IEEE Transactions on

2(3):311–319, 1990

[12] Jensen K Coloured petri nets. Petri nets: cen-

tral models and their properties: 248–299,

Springer Verlag, Berlin Heidelberg, 1987

[13] Proß S., Janowski S. J., Bachmann B., Kalt-

schmidt C., Kaltschmidt B. PNlib - A Model-

ica Library for Simulation of Biological Sys-

tems based on Extended Hybrid Petri Nets,

3rd International Workshop on Biological

Processes & Petri Nets (accepted), Hamburg,

Germany, 2012.

