PNIlib - An Advanced Petri Net Library
for Hybrid Process Modeling

Sabrina Prof

Bernhard Bachmann

University of Applied Sciences, Department of Engineering and Mathematics
Am Stadtholz 24, 33609 Bielefeld
sabrina.pross@fh-bielefeld.de Bernhard.bachmann@fh-bielefeld.de

Abstract

A new Petri net library, called PNIib, is presented to
enable graphical hierarchical modeling, hybrid simu-
lation, and animation of processes in life sciences,
technical applications, among others. In order to
model these most different processes, a hew power-
ful and universally usable mathematical modeling
concept — xHPN (extended Hybrid Petri Net) — has
been established. This formalism is used as specifi-
cation for the PNIib (Petri Net library) realized by
the object-oriented modeling language Modelica.
The application of the new environment is demon-
strated by three selected examples. The first example
demonstrates the representation of functional princi-
ples by a model of a Senseo coffee machine and the
second one is a model of a printing production pro-
cess. The third example presents the applicability of
modeling business processes. All models are provid-
ed as application cases in the library.

Keywords: Petri nets; hybrid modeling; xHPN; pro-
cess modeling

1 Introduction

The Petri net formalism was first introduced by Carl
Adam Petri in 1962 for modeling and visualization
of concurrency, parallelism, synchronization, re-
source sharing, and non-determinism [1]. A Petri net
is a graph with two different kinds of nodes, called
transitions and places; thereby, places and transi-
tions are connected by arcs. Every place in a Petri
net can contain a non-negative integer number of
tokens. These tokens initiate transitions to fire ac-
cording to specific conditions. These firings lead to
changes of the tokens in the places.

In the recent years, Petri nets with their various
extensions are becoming increasingly popular. They
have been proven to be a universal graphical model-
ing concept for representing different systems in
nearly all degrees of abstraction. They support the

qualitative modeling approach as well as the quanti-
tative one. Furthermore, the processes can be mod-
eled discretely as well as continuously, refer to [2].
In addition, discrete and continuous processes can
also be combined within a Petri net model to so-
called hybrid Petri nets first introduced by David
and Alla [3]. The Petri net formalism with all its ex-
tensions is so powerful that nearly all other formal-
isms are included. Hence, only one formalism is
needed regardless of the approach (qualitative vs.
quantitative, discrete vs. continuous vs. hybrid, de-
terministic vs. stochastic) which is appropriate for
the respective system. The Petri net formalism is
easy to understand for researchers from different dis-
ciplines. It is an ideal way for intuitive representing
and communicating data and new knowledge of
mechanisms and processes. Furthermore, Petri nets
allow hierarchical structuring of models and, there-
fore, offer the possibility of different detailed views
for every observer of the model.

e

capacities, test arcs, inhibitor arcs.

read arcs, functions, delays,
random delays, maximum speeds,
conditions, priorities, probabilities

| State graphs |
(state machines)

O

@qabw pue |eiuaIayld JO WoIsAS

ey

l Grafcet/SFC |

Discrete <
Petri Net

Normal Petri Nets
(3va) suonenby

50
0
/Kﬁ

o
> Continuous
Petri Net

Hybrid Petri Net

hybrid DAE

\ _/

Figure 1: Relationships between the different formalisms

There are already three Petri net libraries availa-
ble on the Modelica homepage (www.modelica.org).
The first was developed by Mosterman et al. and
enables the modeling of a restricted class of discrete

Petri nets, called normal Petri nets [4]. The places of
normal Petri nets can only contain zero or one token.
Additionally, all arcs have the weight one and exter-
nal signals initiate the firing of transitions. If a con-
flict occurs between two or more transitions, the
transition with the highest priority fires. Hence, only
deterministic behavior is represented by this kind of
Petri net.

The second Petri net library is an extension of the
previous one and was developed by Fabricius [5].
The places are able to contain a non-negative integer
number of tokens and can be provided with non-
negative integer minimum and maximum capacities.
Furthermore, the transitions are timed with fixed or
stochastic delays.

The third library, called StateGraph, is based on
Grafcharts which combines the function chart for-
malism of Grafcet with the hierarchical states of
Statecharts [6]. The StateGraph library is part of the
Modelica standard library and was developed by Ot-
ter et al. [7].

The relationships between the mentioned con-
cepts are displayed in Figure 1. To enable modeling
of different systems with Petri nets in Modelica, the
existing libraries have to be extended by the follow-
ing aspects:

— Transfer of the discrete Petri net concept to a con-
tinuous one,

— Support of edges with (functional) weightings,

— Support of test-, inhibitor, and read arcs,

— Support of (different) conflict resolutions (ran-
dom decisions),

— Combination of discrete and continuous Petri net
elements to hybrid Petri nets.

2 Extended Hybrid Petri Nets

The extended Hybrid Petri Net (xHPN) formalism
comprises three different processes, called transi-
tions: discrete, stochastic, and continuous transition,
two different states, called places: discrete and con-
tinuous places, and four different arcs: normal, in-
hibitor, test, and read arcs. The icons of the formal-
ism are shown in Figure 2.
Discrete places contain a non-negative integer quan-
tity, called tokens or marks, while continuous plac-
es contain a non-negative real quantity. These marks
initiate transitions to fire according to specific condi-
tions and the firings lead to changes of the marks in
the connected places.

Discrete transitions are provided with delays and
firing conditions and fire first when the associated
delay is passed and the conditions are fulfilled. The-

se fixed delays can be replaced by exponentially dis-
tributed random variables, then, the corresponding
transition is called stochastic transition. Thereby,
the characteristic parameter A of the exponential dis-
tribution can depend functionally on the markings of
several places and is recalculated at each point in
time when the respective transition becomes active
or when one or more markings of involved places
change. Based on the characteristic parameter, the
next putative firing time t = time + Exp(4) of the
transition can be evaluated and it fires when this
point in time is reached.

xHPN: Extended Hybrid Petri Nets
Places

Transitions

(time-)discrete process
(event)

(time-)discrete state
(integer quantity)

H//:\‘ continuous state
N/ (real quantity)

Arcs

stochastic process

(random event)

. ——» ,normal“arc
continuous process T
(flow) ——O inhibitor arc
————% testarc
——e readarc

Figure 2: Icons of the xHPN formalism

Both - discrete and stochastic transitions - fire by
removing the arc weight from all input places and
adding the arc weight to all output places. On the
contrary, the firing of continuous transitions takes
place as a continuous flow determined by the firing
speed which can depend functionally on markings
and/or time.

Places and transitions are connected by normal
arcs which are weighted by non-negative integers
and real numbers, respectively. But also functions
can be written at the arcs depending on the current
markings of the places and/or time. Places can also
be connected to transitions by test, inhibitor, and
read arcs. Then their markings do not change during
the firing process. In the case of test and inhibitor
arcs, the markings are only read to influence the time
of firing while read arcs only indicate the usage of
the marking in the transition, e.g. for firing condi-
tions or speed functions. If a place is connected to a
transition by a test arc, the marking of the place must
be greater than the arc weight to enable firing. If a
place is connected to a transition by an inhibitor arc,
the marking of the place must be less than the arc
weight to enable firing. In both cases the markings of
the places are not changed by firing.

The conversion of a discrete to a continuous
marking is realized by connecting a discrete transi-
tion to a continuous place and the conversion from a
continuous to a discrete marking is realized by con-

necting a continuous place to a discrete transition.

However, the conversion process is always per-

formed by discrete transitions, discrete places can

only influence the time when continuous transitions

fire but their marking cannot be changed during the

continuous firing process. Figure 3 shows examples

of these two basic principles:

e T1 can only fire when P1 has more than zero
marks and P3 has at least one mark (influence),

e T2 can only fire when P4 has at least one mark
and P6 has at least 5.4 marks (influence),

o T3 fires by removing one mark from P7 and add-
ing 1.8 marks to P8 (conversion),

e T4 fires by removing 0.8 marks from P9 and add-
ing one mark to P10 (conversion).

/Pl\ I /PZ\H \/ P4\ 1 1‘></P5\
7 T &Y N
\ / \@/
A&
\/P;\b—l 1.8 /Ps\ /Pg\ 4>=»1—>< P10)
N & &

—P7— —P8
364 em = ———

3.2
2.8
2.4

g L O A B 1

S16
12

0.8 |
0.4 |

00— ————— !

0.0 05 1.0 15 20 25 0
Time

Figure 3: Basic concepts of hybrid Petri nets and marking
evolution of places P7 and P8 achieved by firing T3 with
a delay of 1 of the bottom left Petri net.

It is important to mention that a discrete transition
fires always in a discrete manner by removing and
adding marks after a delay is passed regardless of
whether a discrete or a continuous place is connected
to it. However, a continuous transition fires always
by a continuous flow so that a discrete place can only
be connected to continuous transition if it is input as
well as output of the transition with arcs of same
weight. In this way continuous transitions can only
be influenced by discrete places but discrete mark-
ings cannot be changed by continuous firing.

Several conflicts can occur when the places have
to enable their connected active transitions. Possibly,
a discrete place or a continuous place connected to
discrete transitions has not enough marks to enable
all discrete output transitions simultaneously or can-
not receive marks from all active input transitions
due to the maximum capacity. Then a conflict arises
that has to be resolved (type-1-conflict, see Figure
4).

. A

Figure 4: Example of a type-1-conflict; P1 has not enough
tokens to fire T1 and T2 simultaneously.

This can be either done by providing the transi-
tions with priorities or probabilities. In the first case,
a deterministic process decides which place enables
which transition and in the second case the enabling
is performed at random; thereby transitions assigned
with a high probability are chosen preferentially.

T1 —1—»\\/')1\\
) \\0/\
//PZ\\

\,
T2 I—N \\ //‘Tl34>ﬂ
LS
/V6=2
N Y

&/

<
N
n
N
«n

Figure 5: Example of a type-2-conflict; the input speed of
P2 and P3 is not sufficient to fire T5 and T6 with the de-
termined speed.

Another conflict can occur between a continuous
place and two or more continuous transitions when
the input speed is not sufficient to fire all output
transitions with the respective speed or when the
output speed is not sufficient to fire all input transi-
tions with the respective speed (type-2-conflict, see
Figure 5). This conflict is solved by sharing the
speeds proportional to the assigned maximum speeds

(cf. [8]).
e\ ol)
&;/

T\

Figure 6: Example of a type—3-confllct; at time 0, T1 be-
comes active and fires continuously. At time 2, the delay
of T2 is passed and it becomes firable. At this point in
time, P3 has a conflict because it cannot fire tokens in T1

and T2, simultaneously. Hence, T2 takes priority over T1
and fires.

8.6

If a conflict occurs between a place and continu-
ous as well as discrete/stochastic transitions, the dis-
crete/stochastic transitions take always priority over
the continuous transitions (type-3-conflict, see Fig-

ure 6).
\ / PZ\
&/ /’I\ @&/
N\
P3
2

Figure 7: Example of a type-4-conflict; at time 0, P3 can
either enable T1 or T2 but not both simultaneously. This
conflict can be solved by prioritization of the transitions.

A last conflict can occur when a discrete place
has not enough marks to enable all connected con-
tinuous transitions. This is solved by prioritization of
the involved transitions (type-4-conflict, see Figure
7).

Visitor enters
toilet

Figure 8: Hybrid modeling of a flush toilet with the aid of
XHPN formalism

Figure 8 shows an example of hybrid modeling
by the xHPN formalism. The model represents a
flush toilet. A visitor enters the toilet; thereby, the
time between two visitors is not exactly known so
that it is modeled by a stochastic transition with an
exponentially distributed delay (T'1). The visitor
(P1) pushes (T2) the lever (P2) which lifts the flush

valve flapper (P3). Then the water can flow (T'5)
from the tank (P4) to the bowl (P5) and afterwards
to the sewer (T'6). When the water flows to the bowl,
the float (P6) sinks in the toilet tank. If the float falls
below a specific level (inhibitory arc), the tank fill-
valve (P7) is opened (T7) and new water can flow
(T9) into the tank. This causes also that the float ris-
es and when a specific level is reached (test arc), the
tank fill-valve is closed (T8). If the lever has re-
turned to its starting position, the flush valve flapper
sinks back to the bottom (T'4) and no water can flow
into the bowl anymore.

3 PNIlib

The advanced Petri Net library, called PNlib, enables

the modeling of extended hybrid Petri Nets (xXHPN).

It comprises

o adiscrete (PD) and a continuous place (PC),

e adiscrete (TD), a stochastic (TS), and a continu-
ous transitions (TC), and

e atest (TA), an inhibitor (1A), and a read arc (RA).

OO
11

Pr-—-— P PP b——p>

Figure 9: Component icons of the PNIib.

The main package PNIib is divided into the fol-
lowing sub-packages:

o Interfaces: contains the connectors of the Petri net
component models.

e Blocks: contains blocks with specific procedures
that are used in the Petri net component models.

e Functions: contains functions with specific algo-
rithmic procedures which are used in the Petri net
component models.

e Constants: contains constants which are used in
the Petri net component models.

o Models: contains several examples and offers the
possibility to structure further Petri net models.
Additionally, the package contains the component
settings which enables the setting of global parame-
ters for the display and the animation of Petri net

models.

Places, transitions, and arcs are represented by the
icons depicted in Figure 9. Thereby, the discrete
place is represented by a circle and the continuous
place by a double circle. The transitions are boxes
which are black for discrete transitions, black with a
white triangle for stochastic transitions, and white for
continuous transitions. The test arc is represented by
a dashed arc, the inhibitor arc by an arc with a white
circle at its end, and the read arc by an arc with a
black square at its end.

3.1 Connectors

The PNIib contains four different connectors:
PlaceOut,PlaceIn,TransitionOut,andTran—
sitionTIn. The connectors Placeout and PlacelIn
are part of place models and connect them to output
and input transitions, respectively. Similar, Transi-
tionOut and TransitionIn are connectors of the
transition model and connect them to output and in-
put places, respectively. Figure 10 shows which con-
nector belongs to which Petri net component model.

Figure 10: Connectors of the PNlib.

The connectors of the Petri net component models
are vectors to enable the connection to an arbitrary
number of input and output components. Therefore,
the dimension parameters n1n and nout are declared
in the place and transition models with the con-
nectorSizing annotation.

3.2 Places

The parameters of places are summarized in Table 1.
If the type-1-conflict is resolved by priorities, the
corresponding priorities of the transitions are given
by the indices of the connections, i.e. the transition
connected to the place with the index 1 has also the
priority 1, the transition connected to the place with
the index 2 has also the priority 2 etc. Otherwise, if
the probabilistic enabling type is chosen, the corre-
sponding probabilities for the transitions have to be
entered as a vector. Thereby, the first vector element
corresponds to the connection with the index 1, the
second to the connection with the index 2 etc. The
input of enabling probabilities as vectors in the place
model, and not at the corresponding arcs, is neces-
sary due to the fact that properties cannot be as-

signed to connections according to the Modelica
Specification 3.2.

Table 1: Parameters and modification possibilities of dis-
crete (d) and continuous (c) places

Name Default

Description

Type

startTokens/
startMarks

Marking at the beginning
of the simulation

scalar 0

minTokens/
minMarks
Minimum capacity

scalar 0

maxTokens/ scalar infinite
maxMarks

Maximum capacity

choice/
scalar

enablingType

Type of enabling if type-
1-conflicts occur; the
priorities are defined by
the connection indices
and the probabilities by
the variables ena-
blingProbIn/Out

Priority

enablingProblIn
Enabling probabilities of
input transitions

vector fill(1/nin,nln)

enablingProbOut
Enabling probabilities of
output transitions

vector fill(1/nOut,nOut)

N scalar
Amount of levels for sto-

chastic simulation

settings1.N

condition | false
expres-

sion

restart

Condition for resetting
the marking to
reStartTokens/Marks

reStartTokens/
reStartMarks

When the reStart condi-
tion is fulfilled, the mark-
ing is set to reStartTo-

scalar 0

kens/Marks

The input of enabling probabilities as vector is
demonstrated by Figure 11. Place P1 is connected to
the transitions T1, T2, and T3 and the connection to
T1 is indexed by 1, the connection to T2 is indexed
by 2, and the connection to T3 is indexed by 3. Thus,
the corresponding connect-equations are

connect (P1l.outTransition([1],
Tl.inPlaces([1l]);

connect (Pl.outTransition[2],
T2.inPlaces([1l]);

connect (Pl.outTransition[3],
T3.inPlaces([1l]);

The enabling probabilities 0.3 for T1, 0.25 for T2,
and 0.45 for T3 have to be entered by the parameter

vector
enablingProbOut={0.3,0.25,0.45}

N

[1);0.3

|]; :

3);045

-+

Figure 11: Input of enabling probabilities.

The main process in the place model is the recal-
culation of the marking after firing a connected tran-
sition. In the case of the discrete place model, this is
realized by the discrete equation

when tokeninout or pre(reStart) then
t=if tokeninout then pre(t)+
firingSumIn - firingSumOut else
reStartTokens;
end when;

whereby pre (t) accesses the marking t immediate-
ly before the transitions fire. To this amount, the arc
weight sum of all firing input transitions is added
and the arc weight sum of all firing output transitions
is subtracted from it. Additionally, the tokens are
reset to restartTokens Wwhen the user-defined
condition restart becomes true.

The marking of continuous places can change
continuously as well as discretely. This is imple-
mented by the following construct
der (t)=conMarkChange;
when disMarksInOut then

reinit(t, t+disMarkChange) ;
end when;
when reStart then

reinit(t, reStartMarks) ;
end when;
whereby the der-operator access the derivative of
the marking t according to time. The continuous
mark change is performed by a differential equation
while the discrete mark change is performed by the
reinit-operator within a discrete equation. This
operator causes a re-initialization of the continuous
marking every time when a connected discrete tran-
sition fires. Additionally, the marking is re-initialized
by restartMarks when the condition restart
becomes true.

3.3 Transitions

The parameters of transitions are summarized in Ta-
ble 2. Thereby, it has to be distinguished between the
following input types: scalar, vector, scalar function,
vector function, and condition expression. The input
of arc weights as vectors in the transition model and
not at the respective arcs is necessary due to the fact

that connections cannot be provided with properties
according to the Modelica Specification 3.2.

Table 2: Parameters and modification possibilities of dis-
crete (d), stochastic (s), and continuous (c) transitions

Name Type Part |Default
Description of Allowed
delay scalar d 1

Delay _of timed non-negative
transitions real values

h scalaror |s 1

Hazard function | scalar non-negative
to determine the | function real values
characteristic

value of exponen-

tial distribution

maximumSpeed |scalaror |c 1

Maximum speed | scalar non-negative
function real values

arcWeightIn |vectoror |ds.c |1

Weights of input | vector non-negative

arcs function integers (d,s),
non-negative
real values (c)

arcWeightOut |vectoror |d,s,c |1

Weights of output | vector non-negative

arcs function integers (d,s),
non-negative
real values (c)

firingCon condition |d,s,c |true

Firing condition | expression Boolean con-
dition expres-
sion

The input is demonstrated by the following ex-
amples. Figure 12 shows a discrete Petri net. The
indices of the connections are written at the arcs
within square brackets, e.g. the connection (P1 -
T1) has the input index [1] and (T1 — P5) has the
output index [3]. The input of the arc weights dis-
played after the indices to property dialog or as mod-
ification equation is performed by the vector func-
tions

arcWeightIn = {2*P1.t,4} and

arcWeightOut = {2,1,5*P1.t},
whereby the expression p1.t accesses the current
marking of P1. Thus, the weights of the arcs
(P1 - T1) and (T1 — P5) are functions which de-
pend on the marking of P1.

G [1];°2-m(P1)

et
[2]; 4
G [3]; 5-m(P1)

Figure 12: Input of arc weights.

oY

96

Transitions can also be provided with additional
conditions that have to be satisfied to permit the ac-
tivation. The condition
firingCon = time>9.7
causes that the transition cannot be activated as long
as time is less than 9.7.

Figure 13 shows two continuous Petri nets. Transi-
tion T1 has a maximum speed function which de-
pends on the makings of P1 and P2. The input of this
function to the property dialog or as modification
equation is performed by the expression
maximumSpeed = 0.75*P1.t*P2.t,

whereby p1.t and p2.t accesses the marks of P1
and P2, respectively. Transition T2 has a maximum
speed function that depends on time and can be en-
tered by the expression

if time<=6.5 then 2.6
else 1.7.

maximumSpeed =

26 time<65
V2= .
1.7 time>6.5 -

Figure 13: Input of maximum speed functions.

Based on the current markings of the places, it is
checked in the transition model by an algorithmic
procedure if the transition can become active. Dis-
crete transitions wait then as long as the delay is
passed and stochastic transitions wait till the next
putative firing time is reached. Based on this infor-
mation, the places enable some of the active transi-
tion to fire. At this point, several conflicts can occur
which have to be resolved appropriately by the
methods mentioned in [8] to get a successful and
reliable simulation. When a transition is enabled by
all its connected places, it is firable and reports this
via the connector variable fire to the connected plac-
es. The places recalculate then their markings based
on this information.

3.4 Arcs

XHPNs comprise four different kinds of arcs: normal,
test, inhibitor, and read arc. The Modelica language
do not support the assignment of properties to arcs

that are generated by connect equations. Due to that
fact, test, inhibitor, and read arcs are realized by
component models which are interposed between
places and transitions (see Figure 14); the normal arc
is simply generated by the connect equation. Test
and inhibitor arc can be normal arcs simultaneously.

> °>E- °>
> >

Figure 14: Modeling of normal (top left), test (bottom
left), inhibitor (top right), and read arcs (bottom right)
with the PNlib.

Table 3: Parameters and modification possibilities of test
and inhibitor arcs (read arcs have no parameters)

Name Type Default
Description Allowed
testValue scalar 1

The marking of the place non-negative inte-
must be greater to enable gers if connected
firing of transitions (test to discrete places,
arc); non-negative real
the marking of the place values otherwise
must be smaller to enable

firing (inhibitor arc).

normalArc choice/ |no

If yes is chosen, then the |scalar no or yes

arc is also a normal arc to

change the marking by

firing (called double

arc).

4 Animation and Connection to
Matlab/Simulink

A possibility to represent the simulation results of an
XHPN model is an animation. Thereby, several set-
tings can be made in the property dialog of the set-
tings-box. These settings are global and, thus, affect
all components of the Petri net model. By using the
prefixes inner and outer, it is achieved that the set-
tings are common to all Petri net components of a
model. An animation offers a way to analyze the
marking evolutions of large and complex xHPNs.
Figure 15 shows four selected points in time of the
animation of an xHPN example. All display and an-
imation options are realized with the Dynamicse-
lect annotation.

To simulate the established xHPN model several
times with different parameter settings and use the
arising simulation results for parameter estimation,
sensitivity analysis, deterministic and stochastic hy-
brid simulation, or process optimization [8], the
Modelica models in Dymola are connected to

Matlab/Simulink. This is realized with the aid of a
Dymola interface in Simulink and a set of Matlab m-
files utilities [9].

Time=1 Time=3

Figure 15: Animation of an xHPN model.

All markings which should be available in Matlab
have to be declared with the prefix output on the
highest level. This is achieved by creating a connect-
or of the output connector at the top of the place
icon. In the case of discrete places it is an orange
IntegerOutput connector and in the case of con-
tinuous places it is a blue Real1output connector. In

USER INSERT PAD

Figure 15 the markings of P1, P3, P5, and P6 are
available in Matlab.

5 Application

The PNIib is so powerful but also so universal and
generic that it is an ideal all-round-tool for model-
ing and simulation of nearly all kinds of processes,
such as business processes, production processes,
logistic processes, work flows, traffic flows, data
flows, multi-processor systems, communication pro-
tocols, and functional principals. This section gives
an overview of the different application fields using
the PNIib. Three selected examples

e Modeling a Senseo coffee machine,

e Modeling a printing process, and

e Modeling a business process

are part of the PNIib and should demonstrate the
huge application field. Additionally, the application
of the PNIib for modeling biological processes is
shown in [10].

SENSEO MACHINE

p— &>

l inserting

lm Water
-

water_tank

REFILL WATER

WATER TANK

Figure 16: Hierarchical model of a Senseo coffee machine and simulation results

A model of a Senseo coffee machine is presented. The
main feature of a Senseo coffee machine is that the coffee
is placed in the machine in a pre-portioned form by so-
called coffee pads. One pad is generally used to make one
cup of coffee (125°ml) and two pads reach for two cups at
125 ml or one big cup at 250 ml. After a warm-up time of
about 60 seconds and the insertion of a coffee pad, the
coffee can be made. In this warm-up phase, the water is

heated at 90°C and then pressed with a pressure of about
1.4 bar within 40 seconds through the pad. In contrast to a
normal coffee machine that boils the water continuously
and transports it by its own buoyancy (hot bubbles) up
into the filter, the Senseo machine heats a portion of water
completely in a heating chamber and pumps it then
through the pad. To ensure that the heating chamber in the
machine is always filled with water, a float is placed in the

removable water tank which allows measuring the mini-
mal capacity. If the minimum level is exceeded, the heater
is turned off. If there is sufficient water level, the next
portion of water is heated directly after the scalding and
filling. These functional principles are represented by the
hierarchically structured model shown in

Figure 16 and also some simulation results. Addi-
tionally, a detailed description of the model can be
found in the PNlib.

The applicability of the PNIib for modeling pro-
duction processes is shown by a model of a printing
process. It is also modeled hierarchically to provide a
compact and clear view on the highest level contain-
ing all important facts (see Figure 17). The process
starts with paper on a role and ends with printed leaf-
lets for supermarkets. During the process, misprints,
also called maculation, could occur due to several
reasons. If the worker at the printing machine detects
these misprints, he presses a button and all incorrect
exemplars are transferred outward. When the macu-
lation is over, he presses the button again and the
process is continued. With the help of this model
several new insights can be detected, e.g.

e How and when maculation occurs? What are the
causes and how can maculation be prevented?

e How much paper is need for the particular order?

e How long does the order take? ...

Orders Exemplars Maculation Paper Duration

2 31887 9623

orders duration
Stop/Start >

49812 7223

meters on role

1045

[E]

2

S
Q

aculation

2706

Maculation Press

Figure 17: Model of a printing process on the highest lev-
el.

The PNIib can also be used for modeling and simu-
lating business processes. A business processes de-
scribes a sequence of activities or tasks which have
to be carry out in order to achieve a particular busi-
ness goal e.g. a service or product for a particular
customer. Figure 18 shows a small part of a business
process model. The major advantages of this ap-
proach are (1) the hierarchical structure, which pro-

vides a compact and clear view of the processes on
the highest level, and (2) the simulation and anima-
tion option which enable analyzing and optimizing
of the processes. A possible question may arise in
this juncture is, how much employees are needed to
accomplish the requests and orders of the customers
or simple how the profit can be maximized. All ques-
tions of this kind can be answered by simulating the

model with different parameter settings.
[

Consultants
2
&) =] [
raise request
(. -

Teduest N
i—-{ 0o p— | 5
offer A\
request offer -

Figure 18: Part of a business process model.

6 Conclusions

A powerful Petri net environment has been devel-
oped for graphical hierarchical modeling and hybrid
simulation as well as animation of processes from
most different application fields. Thereby, the math-
ematical modeling concept XHPN serves as specifi-
cation for performing a hybrid simulation. The
XHPN elements are modeled object-oriented by dis-
crete, differential, and algebraic equations in the
Modelica language. This allows an easy way to
maintain, extend, and modify the components.

Moreover, the connection to Matlab/Simulink of-
fers the whole Matlab power for post-processing the
simulation results of Modelica models. The Matlab-
based tool AMMod (Analysis of Modelica Models)
provides already several mathematical methods for
data pre-processing, relationship analysis, parameter
estimation, sensitivity analysis, deterministic and
stochastic hybrid simulation, and process optimiza-
tion [10].

The application of the new Petri net simulation
environment has been demonstrated by a model of a
Senseo coffee machine, a model of a printing pro-
cess, and a model of a business process. All models
show the applicability of the xHPN formalism as
well as graphical hierarchical modeling and hybrid
simulation with the PNIib.

A future goal is to provide an open source Petri-
net simulation tool. This demands a further devel-
opment of the open source Modelica-tool OpenMod-

elica to get the PNIib work with it because some
Modelica features are not supported so far.

Moreover, the xHPN formalism as well as the
PNIib will be extended by fuzzy logic (e.g. [11]) and
the color concept (e.g. [12]) to enhance the range of
application fields further.

Furthermore, the PNIib is already connected to
VANESA, an open source tool for visualization and
analysis of networks, in order to enable modeling,
editing, visualization, and animation of xHPN mod-
els by an easy-to-use interface [13]. This connection
will be further improved.

References

[1] Petri C.A. Kommunikation mit Automaten.
PhD thesis, Rheinisch-Westfalisches Institut
fir Instrumentelle Mathematik, Bonn, Ger-
many, 1962.

[2] David R., Alla H. Continuous petri nets. Pro-
ceedings of 8th European Workshop on Ap-
plication and Theory of Petri nets:275-294,
1987.

[3] David R., Alla H. On Hybrid Petri Nets. Dis-
crete Event Dynamic Systems: Theory and
Applications(11): 940, 2001.

[4] Mosterman P.J., Otter M., EImqvist H. Mod-
eling Petri nets as local constraint equations
for hybrid systems using Modelica. Proceed-
ings of SCS Summer Simulation Confer-
ence:314-319, 1998.

[5] Fabricius S.M. Extensions to the Petri Net
Library in Modelica. ETH Zurich, Switzer-
land, 2001

[6] Johnsson C., Arzén K.-E., Grafchart and
grafcet: A comparison between two graphical
languages aimed for sequential control appli-
cations, Preprints 14th World Congress of
IFAC(A): 19-24, 1999.

[7] Otter M., Arzén K.E., Dressler |. StateGraph-
a Modelica library for hierarchical state ma-
chines. Proceedings of 4th International
Modelica Conference:21-33, 2005

[8] ProfR S. Hybrid Modeling and Optimization
of Biological Processes. Bielefeld, Germany,
PhD thesis (in preparation), Faculty of Tech-
nology, Bielefeld University, Germany,
2012.

[91 Dynasim AB Dymola-Dynamic Modeling
Laboratory-User Manual Volume 2, Lund,
Sweden, 2010

[10]

[11]

[12]

[13]

ProR S., Bachmann B. Hybrid Modelling and
Process Optimization of Biological Systems,
MATHMOD Conference, Wien, Austria
2012.

Chen S, Ke J, Chang J Knowledge represen-
tation using fuzzy Petri nets. Knowledge and
Data Engineering, IEEE Transactions on
2(3):311-319, 1990

Jensen K Coloured petri nets. Petri nets: cen-

tral models and their properties: 248-299,
Springer Verlag, Berlin Heidelberg, 1987

ProR S., Janowski S. J., Bachmann B., Kalt-
schmidt C., Kaltschmidt B. PNlib - A Model-
ica Library for Simulation of Biological Sys-
tems based on Extended Hybrid Petri Nets,
3rd International Workshop on Biological
Processes & Petri Nets (accepted), Hamburg,
Germany, 2012.

