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Abstract 

A new Petri net library, called PNlib, is presented to 

enable graphical hierarchical modeling, hybrid simu-

lation, and animation of processes in life sciences, 

technical applications, among others. In order to 

model these most different processes, a new power-

ful and universally usable mathematical modeling 

concept – xHPN (extended Hybrid Petri Net) – has 

been established. This formalism is used as specifi-

cation for the PNlib (Petri Net library) realized by 

the object-oriented modeling language Modelica. 

The application of the new environment is demon-

strated by three selected examples. The first example 

demonstrates the representation of functional princi-

ples by a model of a Senseo coffee machine and the 

second one is a model of a printing production pro-

cess. The third example presents the applicability of 

modeling business processes. All models are provid-

ed as application cases in the library. 

Keywords: Petri nets; hybrid modeling; xHPN; pro-

cess modeling 

1 Introduction 

The Petri net formalism was first introduced by Carl 

Adam Petri in 1962 for modeling and visualization 

of concurrency, parallelism, synchronization, re-

source sharing, and non-determinism [1]. A Petri net 

is a graph with two different kinds of nodes, called 

transitions and places; thereby, places and transi-

tions are connected by arcs. Every place in a Petri 

net can contain a non-negative integer number of 

tokens. These tokens initiate transitions to fire ac-

cording to specific conditions. These firings lead to 

changes of the tokens in the places. 

In the recent years, Petri nets with their various 

extensions are becoming increasingly popular. They 

have been proven to be a universal graphical model-

ing concept for representing different systems in 

nearly all degrees of abstraction. They support the 

qualitative modeling approach as well as the quanti-

tative one. Furthermore, the processes can be mod-

eled discretely as well as continuously, refer to [2]. 

In addition, discrete and continuous processes can 

also be combined within a Petri net model to so-

called hybrid Petri nets first introduced by David 

and Alla [3]. The Petri net formalism with all its ex-

tensions is so powerful that nearly all other formal-

isms are included. Hence, only one formalism is 

needed regardless of the approach (qualitative vs. 

quantitative, discrete vs. continuous vs. hybrid, de-

terministic vs. stochastic) which is appropriate for 

the respective system. The Petri net formalism is 

easy to understand for researchers from different dis-

ciplines. It is an ideal way for intuitive representing 

and communicating data and new knowledge of 

mechanisms and processes. Furthermore, Petri nets 

allow hierarchical structuring of models and, there-

fore, offer the possibility of different detailed views 

for every observer of the model. 

 
Figure 1: Relationships between the different formalisms 

There are already three Petri net libraries availa-

ble on the Modelica homepage (www.modelica.org). 

The first was developed by Mosterman et al. and 

enables the modeling of a restricted class of discrete 



Petri nets, called normal Petri nets [4]. The places of 

normal Petri nets can only contain zero or one token. 

Additionally, all arcs have the weight one and exter-

nal signals initiate the firing of transitions. If a con-

flict occurs between two or more transitions, the 

transition with the highest priority fires. Hence, only 

deterministic behavior is represented by this kind of 

Petri net. 

The second Petri net library is an extension of the 

previous one and was developed by Fabricius [5]. 

The places are able to contain a non-negative integer 

number of tokens and can be provided with non-

negative integer minimum and maximum capacities. 

Furthermore, the transitions are timed with fixed or 

stochastic delays. 

The third library, called StateGraph, is based on 

Grafcharts which combines the function chart for-

malism of Grafcet with the hierarchical states of 

Statecharts [6]. The StateGraph library is part of the 

Modelica standard library and was developed by Ot-

ter et al. [7]. 

The relationships between the mentioned con-

cepts are displayed in Figure 1. To enable modeling 

of different systems with Petri nets in Modelica, the 

existing libraries have to be extended by the follow-

ing aspects: 

 Transfer of the discrete Petri net concept to a con-

tinuous one, 

 Support of edges with (functional) weightings, 

 Support of test-, inhibitor, and read arcs, 

 Support of (different) conflict resolutions (ran-

dom decisions), 

 Combination of discrete and continuous Petri net 

elements to hybrid Petri nets. 

2 Extended Hybrid Petri Nets 

The extended Hybrid Petri Net (xHPN) formalism 

comprises three different processes, called transi-

tions: discrete, stochastic, and continuous transition, 

two different states, called places: discrete and con-

tinuous places, and four different arcs: normal, in-

hibitor, test, and read arcs. The icons of the formal-

ism are shown in Figure 2. 

Discrete places contain a non-negative integer quan-

tity, called tokens or marks, while continuous plac-

es contain a non-negative real quantity. These marks 

initiate transitions to fire according to specific condi-

tions and the firings lead to changes of the marks in 

the connected places. 

Discrete transitions are provided with delays and 

firing conditions and fire first when the associated 

delay is passed and the conditions are fulfilled. The-

se fixed delays can be replaced by exponentially dis-

tributed random variables, then, the corresponding 

transition is called stochastic transition. Thereby, 

the characteristic parameter λ of the exponential dis-

tribution can depend functionally on the markings of 

several places and is recalculated at each point in 

time when the respective transition becomes active 

or when one or more markings of involved places 

change. Based on the characteristic parameter, the 

next putative firing time               of the 

transition can be evaluated and it fires when this 

point in time is reached. 

 

Figure 2: Icons of the xHPN formalism 

Both - discrete and stochastic transitions - fire by 

removing the arc weight from all input places and 

adding the arc weight to all output places. On the 

contrary, the firing of continuous transitions takes 

place as a continuous flow determined by the firing 

speed which can depend functionally on markings 

and/or time.  

Places and transitions are connected by normal 

arcs which are weighted by non-negative integers 

and real numbers, respectively. But also functions 

can be written at the arcs depending on the current 

markings of the places and/or time. Places can also 

be connected to transitions by test, inhibitor, and 

read arcs. Then their markings do not change during 

the firing process. In the case of test and inhibitor 

arcs, the markings are only read to influence the time 

of firing while read arcs only indicate the usage of 

the marking in the transition, e.g. for firing condi-

tions or speed functions. If a place is connected to a 

transition by a test arc, the marking of the place must 

be greater than the arc weight to enable firing. If a 

place is connected to a transition by an inhibitor arc, 

the marking of the place must be less than the arc 

weight to enable firing. In both cases the markings of 

the places are not changed by firing.  

The conversion of a discrete to a continuous 

marking is realized by connecting a discrete transi-

tion to a continuous place and the conversion from a 

continuous to a discrete marking is realized by con-
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necting a continuous place to a discrete transition. 

However, the conversion process is always per-

formed by discrete transitions, discrete places can 

only influence the time when continuous transitions 

fire but their marking cannot be changed during the 

continuous firing process. Figure 3 shows examples 

of these two basic principles:  

 T1 can only fire when P1 has more than zero 

marks and P3 has at least one mark (influence), 

 T2 can only fire when P4 has at least one mark 

and P6 has at least 5.4 marks (influence), 

 T3 fires by removing one mark from P7 and add-

ing 1.8 marks to P8 (conversion), 

 T4 fires by removing 0.8 marks from P9 and add-

ing one mark to P10 (conversion). 

 

 
Figure 3: Basic concepts of hybrid Petri nets and marking 

evolution of places    and    achieved by firing    with 

a delay of 1 of the bottom left Petri net. 

It is important to mention that a discrete transition 

fires always in a discrete manner by removing and 

adding marks after a delay is passed regardless of 

whether a discrete or a continuous place is connected 

to it. However, a continuous transition fires always 

by a continuous flow so that a discrete place can only 

be connected to continuous transition if it is input as 

well as output of the transition with arcs of same 

weight. In this way continuous transitions can only 

be influenced by discrete places but discrete mark-

ings cannot be changed by continuous firing. 

Several conflicts can occur when the places have 

to enable their connected active transitions. Possibly, 

a discrete place or a continuous place connected to 

discrete transitions has not enough marks to enable 

all discrete output transitions simultaneously or can-

not receive marks from all active input transitions 

due to the maximum capacity. Then a conflict arises 

that has to be resolved (type-1-conflict, see Figure 

4). 

 
Figure 4: Example of a type-1-conflict; P1 has not enough 

tokens to fire T1 and T2 simultaneously. 

This can be either done by providing the transi-

tions with priorities or probabilities. In the first case, 

a deterministic process decides which place enables 

which transition and in the second case the enabling 

is performed at random; thereby transitions assigned 

with a high probability are chosen preferentially. 

 
Figure 5: Example of a type-2-conflict; the input speed of 

P2 and P3 is not sufficient to fire T5 and T6 with the de-

termined speed. 

Another conflict can occur between a continuous 

place and two or more continuous transitions when 

the input speed is not sufficient to fire all output 

transitions with the respective speed or when the 

output speed is not sufficient to fire all input transi-

tions with the respective speed (type-2-conflict, see 

Figure 5). This conflict is solved by sharing the 

speeds proportional to the assigned maximum speeds 

(cf. [8]). 

 
Figure 6: Example of a type-3-conflict; at time 0, T1 be-

comes active and fires continuously. At time 2, the delay 

of T2 is passed and it becomes firable. At this point in 

time, P3 has a conflict because it cannot fire tokens in T1 

and T2, simultaneously. Hence, T2 takes priority over T1 

and fires. 
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If a conflict occurs between a place and continu-

ous as well as discrete/stochastic transitions, the dis-

crete/stochastic transitions take always priority over 

the continuous transitions (type-3-conflict, see Fig-

ure 6). 

 
Figure 7: Example of a type-4-conflict; at time 0, P3 can 

either enable T1 or T2 but not both simultaneously. This 

conflict can be solved by prioritization of the transitions. 

A last conflict can occur when a discrete place 

has not enough marks to enable all connected con-

tinuous transitions. This is solved by prioritization of 

the involved transitions (type-4-conflict, see Figure 

7). 
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Figure 8: Hybrid modeling of a flush toilet with the aid of 

xHPN formalism 

Figure 8 shows an example of hybrid modeling 

by the xHPN formalism. The model represents a 

flush toilet. A visitor enters the toilet; thereby, the 

time between two visitors is not exactly known so 

that it is modeled by a stochastic transition with an 

exponentially distributed delay (  ). The visitor 

(  ) pushes (  ) the lever (  ) which lifts the flush 

valve flapper (  ). Then the water can flow (  ) 

from the tank (  ) to the bowl (  ) and afterwards 

to the sewer (  ). When the water flows to the bowl, 

the float (  ) sinks in the toilet tank. If the float falls 

below a specific level (inhibitory arc), the tank fill-

valve (    is opened (  ) and new water can flow 

(  ) into the tank. This causes also that the float ris-

es and when a specific level is reached (test arc), the 

tank fill-valve is closed (  ). If the lever has re-

turned to its starting position, the flush valve flapper 

sinks back to the bottom (  ) and no water can flow 

into the bowl anymore. 

3 PNlib 

The advanced Petri Net library, called PNlib, enables 

the modeling of extended hybrid Petri Nets (xHPN). 

It comprises  

 a discrete (PD) and a continuous place (PC), 

 a discrete (TD), a stochastic (TS), and a continu-

ous transitions (TC), and 

 a test (TA), an inhibitor (IA), and a read arc (RA). 

 
Figure 9: Component icons of the PNlib. 

The main package PNlib is divided into the fol-

lowing sub-packages: 

 Interfaces: contains the connectors of the Petri net 

component models. 

 Blocks: contains blocks with specific procedures 

that are used in the Petri net component models. 

 Functions: contains functions with specific algo-

rithmic procedures which are used in the Petri net 

component models. 

 Constants: contains constants which are used in 

the Petri net component models. 

 Models: contains several examples and offers the 

possibility to structure further Petri net models. 

Additionally, the package contains the component 

settings which enables the setting of global parame-

ters for the display and the animation of Petri net 

models. 
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Places, transitions, and arcs are represented by the 

icons depicted in Figure 9. Thereby, the discrete 

place is represented by a circle and the continuous 

place by a double circle. The transitions are boxes 

which are black for discrete transitions, black with a 

white triangle for stochastic transitions, and white for 

continuous transitions. The test arc is represented by 

a dashed arc, the inhibitor arc by an arc with a white 

circle at its end, and the read arc by an arc with a 

black square at its end. 

3.1 Connectors 

The PNlib contains four different connectors:  

PlaceOut, PlaceIn, TransitionOut, and Tran-

sitionIn. The connectors PlaceOut and PlaceIn 

are part of place models and connect them to output 

and input transitions, respectively. Similar, Transi-

tionOut and TransitionIn are connectors of the 

transition model and connect them to output and in-

put places, respectively. Figure 10 shows which con-

nector belongs to which Petri net component model.  

 
Figure 10: Connectors of the PNlib. 

The connectors of the Petri net component models 

are vectors to enable the connection to an arbitrary 

number of input and output components. Therefore, 

the dimension parameters nIn and nOut are declared 

in the place and transition models with the con-

nectorSizing annotation. 

3.2 Places 

The parameters of places are summarized in Table 1. 

If the type-1-conflict is resolved by priorities, the 

corresponding priorities of the transitions are given 

by the indices of the connections, i.e. the transition 

connected to the place with the index 1 has also the 

priority 1, the transition connected to the place with 

the index 2 has also the priority 2 etc. Otherwise, if 

the probabilistic enabling type is chosen, the corre-

sponding probabilities for the transitions have to be 

entered as a vector. Thereby, the first vector element 

corresponds to the connection with the index 1, the 

second to the connection with the index 2 etc. The 

input of enabling probabilities as vectors in the place 

model, and not at the corresponding arcs, is neces-

sary due to the fact that properties cannot be as-

signed to connections according to the Modelica 

Specification 3.2. 

Table 1: Parameters and modification possibilities of dis-

crete (d) and continuous (c) places 

Name 

Description 
Type Default 

startTokens/ 

startMarks 
Marking at the beginning 

of the simulation 

scalar 0 

minTokens/ 

minMarks  
Minimum capacity 

scalar 0 

maxTokens/ 

maxMarks 
Maximum capacity 

scalar infinite 

enablingType 
Type of enabling if type-

1-conflicts occur; the 

priorities are defined by 

the connection indices 

and the probabilities by 

the variables ena-

blingProbIn/Out 

choice/ 

scalar 

Priority 

enablingProbIn 
Enabling probabilities of 

input transitions 

vector fill(1/nIn,nIn) 

enablingProbOut 
Enabling probabilities of 

output transitions 

vector fill(1/nOut,nOut) 

N 
Amount of levels for sto-

chastic simulation 

scalar settings1.N 

restart 

Condition for resetting 

the marking to  

reStartTokens/Marks 

condition 

expres-

sion 

false 

reStartTokens/ 

reStartMarks 
When the reStart condi-

tion is fulfilled, the mark-

ing is set to reStartTo-

kens/Marks 

scalar 0 

The input of enabling probabilities as vector is 

demonstrated by Figure 11. Place P1 is connected to 

the transitions T1, T2, and T3 and the connection to 

T1 is indexed by 1, the connection to T2 is indexed 

by 2, and the connection to T3 is indexed by 3. Thus, 

the corresponding connect-equations are 

connect(P1.outTransition[1], 
T1.inPlaces[1]); 

connect(P1.outTransition[2], 
T2.inPlaces[1]); 

connect(P1.outTransition[3], 
T3.inPlaces[1]); 

The enabling probabilities 0.3 for T1, 0.25 for T2, 

and 0.45 for T3 have to be entered by the parameter 

vector 
enablingProbOut={0.3,0.25,0.45}. 

PlaceOut

PlaceInTransitionIn

TransitionOut



 
Figure 11: Input of enabling probabilities. 

The main process in the place model is the recal-

culation of the marking after firing a connected tran-

sition. In the case of the discrete place model, this is 

realized by the discrete equation 

when tokeninout or pre(reStart) then 
  t=if tokeninout then pre(t)+ 

      firingSumIn - firingSumOut else 

      reStartTokens; 

end when; 

whereby pre(t) accesses the marking t immediate-

ly before the transitions fire. To this amount, the arc 

weight sum of all firing input transitions is added 

and the arc weight sum of all firing output transitions 

is subtracted from it. Additionally, the tokens are 

reset to reStartTokens when the user-defined 

condition reStart becomes true. 

The marking of continuous places can change 

continuously as well as discretely. This is imple-

mented by the following construct 

der(t)=conMarkChange; 
when disMarksInOut then 
   reinit(t,t+disMarkChange); 
end when; 
when reStart then 
   reinit(t,reStartMarks); 
end when; 

whereby the der-operator access the derivative of 

the marking t  according to time. The continuous 

mark change is performed by a differential equation 

while the discrete mark change is performed by the 

reinit-operator within a discrete equation. This 

operator causes a re-initialization of the continuous 

marking every time when a connected discrete tran-

sition fires. Additionally, the marking is re-initialized 

by reStartMarks when the condition reStart 

becomes true. 

3.3 Transitions 

The parameters of transitions are summarized in Ta-

ble 2. Thereby, it has to be distinguished between the 

following input types: scalar, vector, scalar function, 

vector function, and condition expression. The input 

of arc weights as vectors in the transition model and 

not at the respective arcs is necessary due to the fact 

that connections cannot be provided with properties 

according to the Modelica Specification 3.2. 

Table 2: Parameters and modification possibilities of dis-

crete (d), stochastic (s), and continuous (c) transitions 

Name 

Description 

Type Part 

of 

Default 

Allowed 
delay 

Delay of timed 

transitions 

scalar d 1 

non-negative 

real values 
h 

Hazard function 

to determine the 

characteristic 

value of exponen-

tial distribution 

scalar or 

scalar 

function 

s 1 

non-negative 

real values 

maximumSpeed 

Maximum speed 
scalar or 

scalar 

function 

c 1 

non-negative 

real values 
arcWeightIn 

Weights of input 

arcs 

vector or 

vector 

function 

d,s,c 1 

non-negative 

integers (d,s), 
non-negative 

real values (c) 
arcWeightOut 

Weights of output 

arcs 

vector or 

vector 

function 

d,s,c 1 

non-negative 

integers (d,s), 
non-negative 

real values (c) 
firingCon 

Firing condition 
condition 

expression 

d,s,c true 

Boolean con-

dition expres-

sion 

The input is demonstrated by the following ex-

amples. Figure 12 shows a discrete Petri net. The 

indices of the connections are written at the arcs 

within square brackets, e.g. the connection     

    has the input index [1] and         has the 

output index [3]. The input of the arc weights dis-

played after the indices to property dialog or as mod-

ification equation is performed by the vector func-

tions  

arcWeightIn = {2*P1.t,4} and  

arcWeightOut = {2,1,5*P1.t},  

whereby the expression P1.t  accesses the current 

marking of P1. Thus, the weights of the arcs 

        and         are functions which de-

pend on the marking of P1. 

 
Figure 12: Input of arc weights. 
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Transitions can also be provided with additional 

conditions that have to be satisfied to permit the ac-

tivation. The condition 
firingCon = time>9.7  

causes that the transition cannot be activated as long 

as time is less than 9.7.  

Figure 13 shows two continuous Petri nets. Transi-

tion T1 has a maximum speed function which de-

pends on the makings of P1 and P2. The input of this 

function to the property dialog or as modification 

equation is performed by the expression 

maximumSpeed = 0.75*P1.t*P2.t, 

whereby P1.t and P2.t accesses the marks of P1 

and P2, respectively. Transition T2 has a maximum 

speed function that depends on time and can be en-

tered by the expression  

maximumSpeed = if time<=6.5 then 2.6 
               else 1.7. 

 
Figure 13: Input of maximum speed functions. 

Based on the current markings of the places, it is 

checked in the transition model by an algorithmic 

procedure if the transition can become active. Dis-

crete transitions wait then as long as the delay is 

passed and stochastic transitions wait till the next 

putative firing time is reached. Based on this infor-

mation, the places enable some of the active transi-

tion to fire. At this point, several conflicts can occur 

which have to be resolved appropriately by the 

methods mentioned in [8] to get a successful and 

reliable simulation. When a transition is enabled by 

all its connected places, it is firable and reports this 

via the connector variable fire to the connected plac-

es. The places recalculate then their markings based 

on this information. 

3.4 Arcs 

xHPNs comprise four different kinds of arcs: normal, 

test, inhibitor, and read arc. The Modelica language 

do not support the assignment of properties to arcs 

that are generated by connect equations. Due to that 

fact, test, inhibitor, and read arcs are realized by 

component models which are interposed between 

places and transitions (see Figure 14); the normal arc 

is simply generated by the connect equation. Test 

and inhibitor arc can be normal arcs simultaneously.  

 

Figure 14: Modeling of normal (top left), test (bottom 

left), inhibitor (top right), and read arcs (bottom right) 

with the PNlib. 

Table 3: Parameters and modification possibilities of test 

and inhibitor arcs (read arcs have no parameters) 

Name 

Description 

Type Default 

Allowed 
testValue 

The marking of the place 

must be greater to enable 

firing of transitions (test 

arc); 

the marking of the place 

must be smaller to enable 

firing (inhibitor arc). 

scalar 1 

non-negative inte-

gers if connected 

to discrete places, 

non-negative real 

values otherwise 

normalArc 

If yes is chosen, then the 

arc is also a normal arc to 

change the marking by 

firing (called double 

arc). 

choice/ 

scalar 

no 

no or yes 

4 Animation and Connection to 

Matlab/Simulink 

A possibility to represent the simulation results of an 

xHPN model is an animation. Thereby, several set-

tings can be made in the property dialog of the set-

tings-box. These settings are global and, thus, affect 

all components of the Petri net model. By using the 

prefixes inner and outer, it is achieved that the set-

tings are common to all Petri net components of a 

model. An animation offers a way to analyze the 

marking evolutions of large and complex xHPNs. 

Figure 15 shows four selected points in time of the 

animation of an xHPN example. All display and an-

imation options are realized with the DynamicSe-

lect annotation. 

To simulate the established xHPN model several 

times with different parameter settings and use the 

arising simulation results for parameter estimation, 

sensitivity analysis, deterministic and stochastic hy-

brid simulation, or process optimization [8], the 

Modelica models in Dymola are connected to 
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Matlab/Simulink. This is realized with the aid of a 

Dymola interface in Simulink and a set of Matlab m-

files utilities [9]. 
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Figure 15: Animation of an xHPN model. 

All markings which should be available in Matlab 

have to be declared with the prefix output on the 

highest level. This is achieved by creating a connect-

or of the output connector at the top of the place 

icon. In the case of discrete places it is an orange 

IntegerOutput connector and in the case of con-

tinuous places it is a blue RealOutput connector. In 

Figure 15 the markings of   ,   ,   , and    are 

available in Matlab. 

5 Application 

The PNlib is so powerful but also so universal and 

generic that it is an ideal all-round-tool for model-

ing and simulation of nearly all kinds of processes, 

such as business processes, production processes, 

logistic processes, work flows, traffic flows, data 

flows, multi-processor systems, communication pro-

tocols, and functional principals. This section gives 

an overview of the different application fields using 

the PNlib. Three selected examples 

 Modeling a Senseo coffee machine, 

 Modeling a printing process, and 

 Modeling a business process 

are part of the PNlib and should demonstrate the 

huge application field. Additionally, the application 

of the PNlib for modeling biological processes is 

shown in [10]. 

 

 

 

 

Figure 16: Hierarchical model of a Senseo coffee machine and simulation results. 

A model of a Senseo coffee machine is presented. The 

main feature of a Senseo coffee machine is that the coffee 

is placed in the machine in a pre-portioned form by so-

called coffee pads. One pad is generally used to make one 

cup of coffee (125°ml) and two pads reach for two cups at 

125 ml or one big cup at 250 ml. After a warm-up time of 

about 60 seconds and the insertion of a coffee pad, the 

coffee can be made. In this warm-up phase, the water is 

heated at 90°C and then pressed with a pressure of about 

1.4 bar within 40 seconds through the pad. In contrast to a 

normal coffee machine that boils the water continuously 

and transports it by its own buoyancy (hot bubbles) up 

into the filter, the Senseo machine heats a portion of water 

completely in a heating chamber and pumps it then 

through the pad. To ensure that the heating chamber in the 

machine is always filled with water, a float is placed in the 
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removable water tank which allows measuring the mini-

mal capacity. If the minimum level is exceeded, the heater 

is turned off. If there is sufficient water level, the next 

portion of water is heated directly after the scalding and 

filling. These functional principles are represented by the 

hierarchically structured model shown in  

Figure 16 and also some simulation results. Addi-

tionally, a detailed description of the model can be 

found in the PNlib. 

The applicability of the PNlib for modeling pro-

duction processes is shown by a model of a printing 

process. It is also modeled hierarchically to provide a 

compact and clear view on the highest level contain-

ing all important facts (see Figure 17). The process 

starts with paper on a role and ends with printed leaf-

lets for supermarkets. During the process, misprints, 

also called maculation, could occur due to several 

reasons. If the worker at the printing machine detects 

these misprints, he presses a button and all incorrect 

exemplars are transferred outward. When the macu-

lation is over, he presses the button again and the 

process is continued. With the help of this model 

several new insights can be detected, e.g. 

 How and when maculation occurs? What are the 

causes and how can maculation be prevented? 

 How much paper is need for the particular order? 

 How long does the order take? … 
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Figure 17: Model of a printing process on the highest lev-

el. 

The PNlib can also be used for modeling and simu-

lating business processes. A business processes de-

scribes a sequence of activities or tasks which have 

to be carry out in order to achieve a particular busi-

ness goal e.g. a service or product for a particular 

customer. Figure 18 shows a small part of a business 

process model. The major advantages of this ap-

proach are (1) the hierarchical structure, which pro-

vides a compact and clear view of the processes on 

the highest level, and (2) the simulation and anima-

tion option which enable analyzing and optimizing 

of the processes. A possible question may arise in 

this juncture is, how much employees are needed to 

accomplish the requests and orders of the customers 

or simple how the profit can be maximized. All ques-

tions of this kind can be answered by simulating the 

model with different parameter settings. 
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Figure 18: Part of a business process model. 

6 Conclusions 

A powerful Petri net environment has been devel-

oped for graphical hierarchical modeling and hybrid 

simulation as well as animation of processes from 

most different application fields. Thereby, the math-

ematical modeling concept xHPN serves as specifi-

cation for performing a hybrid simulation. The 

xHPN elements are modeled object-oriented by dis-

crete, differential, and algebraic equations in the 

Modelica language. This allows an easy way to 

maintain, extend, and modify the components. 

Moreover, the connection to Matlab/Simulink of-

fers the whole Matlab power for post-processing the 

simulation results of Modelica models. The Matlab-

based tool AMMod (Analysis of Modelica Models) 

provides already several mathematical methods for 

data pre-processing, relationship analysis, parameter 

estimation, sensitivity analysis, deterministic and 

stochastic hybrid simulation, and process optimiza-

tion [10]. 

The application of the new Petri net simulation 

environment has been demonstrated by a model of a 

Senseo coffee machine, a model of a printing pro-

cess, and a model of a business process. All models 

show the applicability of the xHPN formalism as 

well as graphical hierarchical modeling and hybrid 

simulation with the PNlib.  

A future goal is to provide an open source Petri-

net simulation tool. This demands a further devel-

opment of the open source Modelica-tool OpenMod-



elica to get the PNlib work with it because some 

Modelica features are not supported so far. 

Moreover, the xHPN formalism as well as the 

PNlib will be extended by fuzzy logic (e.g. [11]) and 

the color concept (e.g. [12]) to enhance the range of 

application fields further. 

Furthermore, the PNlib is already connected to 

VANESA, an open source tool for visualization and 

analysis of networks, in order to enable modeling, 

editing, visualization, and animation of xHPN mod-

els by an easy-to-use interface [13]. This connection 

will be further improved. 
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