
TICAM REPORT 96-09
February 1966

cmdGen 2.5 User Manual

Phillip T. Keenan

cmdGen 2. 5 User Manual

Philip T. Keenan

February 6, 1996

Contents

1 Introd uction
1.1 Copyright and Disclaimer

1
2

2 Command Line Arguments

3 Input Commands
:3.1 kScript Basics .
:3.2 cmdGen Extensions to kScript
:3.3 Specifying Optiona.l Arguments
:L4 Advanced Features ..

3.4.1 Output Fields ..
:3.4.2 Keyword Types .
:3.4.3 Future Features.

4 Sample Input Files
4.1 Primary
4.2 Self-Description

1 Introduction

2

3
;3
4
6
6
I

8
9

9
11
II

This manual describes the user interface to the cmdGen program. The user interface is based
on Philip T. Keenan's kScript pa.ckage, version 2.5, a powerful and flexible application scripting
la.nguage. The user interface was itself created with cmdGen, and builds on the Keenan C++
Foundation Class Library version 2.5.

For a complete introduction to kScript, see the kScr'ipt User Manual[l], or the World Wide Web
page at http://www . ticam. utexas . edu/users/keenan/kScript .html. The A~Script package can
be obtajned from the vVeb site, and llsed as the front end to other applications, but it is subject
to the terms of the kScr'ipt copyright notice provided with the distribution and is not in the public
domain.

The cmdGen program is a "user interfa.ce compiler". It provides an easy way to build l..:Script
user interfaces to application programs. A cmdGen script defines the commands, objects and type
names that will be used in the interface. The cmdGen program converts this script to the C++
source code needed to implement the specified application interface, and also creates a.]bTEX
manual documenting the interface. The program understands very general command and function
descriptions, in which there can be optional arguments or repeated sequences of arguments.

1

1.1 Copyright and Disclaimer

Copyright (C) Philip Thomas Keenan, 1990-1996.
The following terms apply to all printed documents and computer files distributed with the

kScript software package.
The source code and manuals for kScript are COPYRIGHTED, but they may be freely copied

as long as all copyright notices are retained verbatim in all copies. ln addition, if the source code or
deriva.tives of it are incorporated into another software package, the source code, the documentation
and any descriptions of the user interface for that package must contain the acknowledgment "this
soft.ware uses kScript., an application scripting language developed by Philip T. Keenan", and cite
t.he kScript User Manual [TICAM Tech. Report, The University of Texas at Austin, 1996] and the
kScript World Wide Web page [http://www.ticam.utexas.edu/users/keenan/kScript.html]. If the
kScript source code is modified, a disclaimer stating the nature of the modifications must also he
added to both the source code, the documentation and any descriptions of the user interface.

For instance, if your program uses kScript or a derivative of it, then in any formal setting in
which YOIl mention the user interface to your program, yon must a.ckllowledge its use of kScript.
For instance. a press release. conference presentation or paper about your code which mentions
the flexible nature of the user interface as a positive feature of your code MUST CREDIT and
site kScript as the basis for that feature. You MAY NOT cla.im, explicitly or implicitly, that this
flexible scripting language was your invention.

The kScript source code, the manuals, and executable programs incorporating kScript are for
NON-COMMERCIAL USE only and may not be marketed for profit without a prior written licens-
ing agreement from the author. If YOIl would like to Ilse kScript as part of a research project contact
Mary F. Wheeler, Director of the Center for Subsurface Modeling, TICAM, at the University of
Texas at Austin (mfw@ticam.utexas.edu) for distribution and collaboration information.

The author makes NO REPRESENTATIONS OR WARRANTIES about the correctness of
any source code or documentation, nor about the correctness of any executable program or its
suitability for any purpose, and is in no way liable for any damages resulting from its use or misuse.

IN NO EVENT SHALL THE AUTHOR(S) OR. DISTRIBUTOR(S) BE LIABLE TO ANY
PAHTY FOR DIRECT, INDIRECT. SPECIAL, INCIDENTAL. OR CONSEQUENTIAL DAM-
AGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION. OR ANY
DERIVATIVES THEREOF. EVEN IF THE AUTHOR(S) HAVE BEEN ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGE.

THE AUTHOR(S) AND DISTRIBUTOR(S) SPECIFICALLY DISCLAIM ANY WARRANTIES,
lNCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFT-
WARE IS PROVIDED ON AN ,.AS IS" BASIS. AND THE AUTHOR(S) AND DISTRIBUTOR(S)
HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCE-
MENTS, OR IvIODIFICATIONS.

2 Command Line Arguments

To run cmdGen, type

cmdGen cmds.k

where cmds.k is an input script containing commands described in the next section. This will create
seven output files with names based on the project variable. The files proj.h and projPost.C
declare and post to kScript the generated commands. The files projDbjs.h. projDbjs.C, and

2

mailto:mfw@ticam.utexas.edu

projPostObj s. C declare and post the generated objects. proj Details. tex is a IbTEX documen-
tat ion file. Finally the file pro j . C contaills starter code for the generated actions. It is generally
the only file yon will need to edit. It contains C++ code to parse each of the generated commands,
but yon willlleed to add application specific code to each colluuand to actually do something with
the arguments you have parsed. You will want to rename it something like actions. C to avoid
losing your additions if you re-rnn cmdGen to modify the user interface.

The complete syntax for cmdGen is

cmdGen [-usage] [-a] [-d] rfile

The -usage option prints a copyright notice and helpful information about t.he command line
arguments. The -d option is for section debugging use by advanced users. The rfile argument. is
t.he na.me of the input script file to reacl.

The -a option turns on generation of three additional output files: projMain. C, which contains
a sample driver program, projManual. tex, which contains a sample IbTEX manual, and makefile.
which is a. sample makefile. Generally you use the -a option the first time you run cmdGen but. not
subsequently, since you will likely edit these files and do not want them overwritten.

3 Input Commands

3.1 kScript Basics

This manual primarily discusses the extensions to kScript provided by t.he cmdGen program. How-
ever. we begin with a brief summary of the core features of kScript.

The user interface reads commands from a /'Script input file. kScript is a complete program-
ming language with comments, numeric and string variables, looping, branching and user defined
commands. It includes predefined commands for online help, include file handling, arithmetic cal-
culations and string concatenation, and communication with the UNIX shell. Applications can
define additional commands and objects which enrich the vocabulary and power of kScr·ipt. kScr'ipt
is st l'ongly typed and applications can add new data types as well.

For a complete and up-to-date list of commands, functions, types and objects available to the
user interface, run the program to access on-line help. Type

help

to get started.
Commands specific to the cmdGen program are listed below. Each command's name is followed

by a list of arguments. Most arguments consist of a type name and a descriptive name. enclosed
in angled brackets. These represent required arguments that must be of t.he stated type.

Arguments enclosed in square brackets are optional literal strings, typically prepositions. They
can be used to create English sentence-like scripts which are easy to react or they can be omitted
with no change in the meaning of the script. Sometimes several alternatives are listed, separated
by a vertical bar (I). For example, the syntax of the set command is

[set] ~ameExpr nam~ [to I==] <expression exp:r)

Both the name set and the equal sign are optional, so the five commands

set x to 3.14
set x == 3.14

x = 3.14

set x 3.14
x 3.14

all assign the same value to a variable named x, but. t.he first three versions are easier for a human
reader to understand.

The keywords optional and required introduce alternative set.s of arguments. Each set begins
with a string literal which if encount.ered while parsing the cOlllllland signals that. the remainder of
t.ha.t.clause will follow. Multiple cases can be separated by a vert.ical ha.r. In the requirecl case. one
aJt.ernative mnst be selected; in the opt.ional case, zero or one may be chosen.

The sequence keyword introduces an argument pattern which may be repeated multiple times.
A s('<[uence argument can be an empty string ({}), a curly brace delimited list of one 01' more
instances of the pattern. or, a single instance without the surrounding curly braces.

In /':ScTipl. a space-delimited sharp or pOllnd sym hoi (#) conlments out t he rest of t he line
on which it occurs. JvIathematical expressions must be written with no internal spaces. String
literals must be enclosed in curly braces, not quote marks. The curly braces can be nested a.nd
within them only the percent sign (%) is speCial - all other text is recorded verhatim. In all other
contexts. white space (spaces, tahs, Iine breaks. and so on) serves only to delimit commands a.nd
1.1wirarguments.

kScript, like C++, is strongly typed. Users can create new objects, called variahles. of any
huilt-in type, nsing the define command, while programmers can extend the set of built-in types.

The formal argument types in command descriptions generally correspond to C++ class names.
The actual argument must be in the correct format for the specified type. For an explanation of
the syntax for a particular type 'I, use the command describe T. The command

describe types

will list all of the type names for which on-line help is availa.hle. Built in types include numbers
(int. float, double), character strings (string), files (stream), and various keyword types snch
as category. A command like describe category will list the literal names ma.king up a keyword
type.

l\rIany commands take mathematical or string expressions as arguments. Math expressions can
mix numbers, a.rithmetic and logical operators, and symbolic names. String expressions are enclosed
in curly braces and can expand references to other variables' values by preceding their names wit.h
a percent sign. Both math and string expressions have additional features which are described in
complete det.ail in the kScript User Manual.

3.2 cmdGen Extensions to kScript

project
string: You must begin by setting this to a base file name for the project's generated
output files.

verify
int: Set. to zero to turn off warning messages about quotes, less than and greater than
signs in strings.

inc optional {{obj}} <nameExpr name>
Command: Add a C-preprocessor '#include' command to the pl'oj.h header file, or
optionally to the projOhjs.h file. The' .h' is automatically appended to the file name.

cat <nameExpr name> <nameExpr parent> <stringExpr doc>
Conlluand: Begin a new category for subsequently defined commands. functions, and
objects. The parent category can be omitted; it defaults to 'none'. To retUrIl to a
previously defined category, omit both the parent and documentation string.

newType <nameExpr name> <nameExpr cppType> <nameExpr symType> <stringExpr
doc>

Command: Declare a new kScript type na.me and describe it's input syntax for ou-line
help. If missing, the C++ type used to declare global (posted) varia,hles defaults to 'name',
and the C++ symbol entry t.ype used to post posted variables defaults to 'nameEntry'.

post optional {{constant}} <nameExpr type> <nameExpr name> <nameExpr
cppName> <stringExpr doc>

Command: Declare and post a C++ variable as a constant or variable kScript object.
The 'cppType' and 'symType' fields are set based on 'type' and any previous type com-
mands. If omitted, 'cppName' defaults to 'name'. The 'name' expression can include
constructor arguments, which are not included in the 'name' field but are included in the
'constructedName' field. For special types that require extra information, the 'type' ar-
gument can be extended to the form 'type (special Type)'. For instance. to post keyword
variables use:

post keyword(collection) name (literal)

To post arrays, use the form: 'post array(kind) name(cppName)'.

keyword <nameExpr name> <stringExpr doc> sequence { <nameExpr litName>
<nameExpr litCppNarne> <stringExpr litDoc> }

Command: Create a new keyword type and give tile initial list of literal values, which
can be empty.

optionKinds
Keyword Type: Special forms recognized by t.he cmd and fn colllma.nds. Literal values
are:

sugar

introd uces sy ntactic sugar (ignored string literals)

optional

introduced opt.ional clauses, each beginning with a string literal

required

same as optional. except generat.ed code complains if user fails to choose one
of the clauses.

sequence

defines a clause pattern; generated code looks for 0 or more instances of the
pattern, which must be inside curly braces (unless exactly one instance is
supplied)

cmd <nameExpr name> <nameExpr cppName> optional {{syntax}} <stringExpr
syntax> <stringExpr doc> sequence { <nameExpr cppType> <nameExpr argName> }

COlllmaud: Create a new command. giving its name, a.n opt.ional syntax string. an 011-

line Ilelp string, and an argument list. The 'cppName' defaults to 'name' if omit.ted. TIt<,
argument list can contain typed arguments as well as repeat.ed 01' opt.ional argument.s.
Special t.ype names follow t.he same synt.ax used in the post. command; for example, use
'keyword(category) cat' to declare a cat.egory name argument.

fn <nameExpr name> <nameExpr cppName> optional {{syntax}} <stringExpr
syntax> <stringExpr doc> sequence { <nameExpr cppType> <nameExpr argName> }

Command: Create a new function. Sec the 'cmd' command for details.

3.3 Specifying Optional Arguments

The optionKinds keyword type describes special forms which are recognized by the cmd and fn
commands.

sugar introduces syntact.ic sugar (ignored string literals). For example,

sugar {{to}I{=}}

conesponds to the syntax description [to 1=] in which either the word ·'t.o" or an equal sign
is allowed and ignored if encountered.

optional introduces opt.ional clauses. each beginning with a string literal. For inst.ance.

optional {{row} int nRows I {col} int nCols}

required is thc same as optionaL except. that. tlH' generat.ed code complains if user fails to
c.hoose one of the clauses.

sequence defines a clause pattei'll: generated code looks for 0 01' more instances of the pat.t.ern.
\vhich must be inside curly braces (unless exactly one instance is supplied). For inst.ance.

sequence {int x stringExpr s}

would accept any of the following lines as input:

{}

5 word
{ 5 word }
{ 5 word 6 house 7 triangle }

3.4 Advanced Features

]'his section contains advanced information of interest primarily to programmers who wish t.o
customize t.he output of cmdGen.

(j

3.4.1 Output Fields

The cmdGen program reads the input file cmdGen.k, which ma.y be in the user's current directory or
in a master location. This file defines a number of st.rings, ca.lled sections, which represent actions
for cmdGen to execute for each output section. Cenerally these actions involve setting the value of
t.hp variable out.

out
string: The contents of this varia.ble is written to the current output file after eva.luating
each section string action.

The following field variables are set by cmdGen prior to executing the section actions. This giws
the action definitions access to the items being defined.

name
string: The name of the thing being defined.

cppName
string: The C++ name for the thing being defined; this defaults t.o 'name' if omittpd.

doc
string: The documentation string the thing being defined.

litName
string: The kScript name for a keyword literal.

litCppName
string: The C++ name for a keyword literal; this defaults to 'litName' if omitted.

litDoc
string: The documentation string for a keyword lit.era.1.

parent
string: The parent category in the 'cat' command; this defaults to 'none' if omitted.

cppType
string: The C++ type for command and function arguments a.nd posted objects.

symType
string: The C++ symbol entry t.ype for posted objects.

ktype
string: The kScript type name for a posted object..

specialType
string: Additional type information for things like keywords a.nd arrays, when posted 01'

when used as command or function arguments.

isSpecial
int: When non-zero, specialType is active.

constructedName
string: The complete 'name (args) , form of an object name, with constructor arguments.
for posting or in command and function argument parsing.

argName
string: The C++ name of an argument in a command and function argument list. without
any constructor list. Note that 'name' and 'cppName' in this context refer to the name of

the command or fu nction, not t he argument.

syntax
st ring: The syntax descri ption of a command for OJlline he! p.

tex

string: The tex description of a command.

action
string: The input action of a command or function.

isConstant
int: This is nonzero wheJl posting a constant.

isRequired
int: This is nonzero inside required options in command or function argument lists.

optKind
string: The option kind in an argument list clause.

3.4.2 Keyword Types

The keyword command can actually generate C++ source code for several different styles of key-
word classes, based on the setting of the keykind kScript string variable at the time the keyword
command is processed. As usual, this behavior can be modified by editing cmdGen. k without
needing to recompile the cmdGen program. Currently we provide three options:

• {plain} The default. The collection name is used as t.he root object name.

• {root} The string _root is appended to the collection name to form the root object. name,
and the plain collection name is typedef'ed to mean keyword.

• {custom} This is like the root case, except that the collection name is assumed to define a.
new class. publicly derived from keyword. ra.ther than being typedef'ed.

After a cnstom keyword commanc!. one can write additional setup comma.nds to the source file.
For instance, in the next section an example cmdGell script creates a. keyword category for cottlpass
directions. The following script could be used instead. to initialize members of a custom dir('ctioll
class contaiBing double x,y members aBd a. set (x,y) member fnnction:

keykind {custom}
keyword direction {Compass directions.}
{

north {This will be (O,i).}
south {This will be (O,-i).}

}

command dir {Initialize a new direction}
name n mathExpr x mathExpr y
{ echo { direction_'l.n.set('l.x,'l.y);}}

outStream = fP
dir north a 1

8

dir south ° -1
outStream = cout

One can also edit the cmdGen.k file or override definitions in it in the input lile; following the
pattern of the keykind option one ca.n add all sorts of IIseful functiolla.lity ill special situations.
without needing source code to cmdCen itself.

3.4.3 Future Features

Someday I may add a few more features to the cmdGen.k file, sllch as ea.sier posting of stream
and array variables. following the pattern of posting keyword variables, with syntax such as
array (double). However. I may not have time to do these things in light of my upcoming career
changes.

4 Sample Input Files

Here is a sample input file illustrating many of the features of cmdGen.

a sample input file for cmdGen

project = {p}
inc header
cat Primary {The primary category for this example.}

keyword direction {Compass directions.}
{

north {This will be (O,l).}
south {This will be (O,-l).}

}

post keyword(direction) defaultDir(north) {The default direction.}*

cmd move {This moves you in the specified direction.}*
{

keyword(direction) dir
sugar {{by} I {for}}
double distance

}

cmd ask {Ask for information}*
{

required {{about} keyword(direction) dir I {all}}
}

Running cmdGenwith the -a option on this file produces several C++ source files, described below,
and a IbTEX manual. which is included at the end of this section.

You do not need to edit the generated files, except for p. C, which implements the command
actions. The source files can be compiled using the generated makefile and will build an executa.ble

9

which will parse input, though it won't do anything interesting with it 11II til you edit the command
actions.

Still. it is lIseful to understand wha.t. the other files do. The file p. h includes header. hand
predeclares the command action funct.ions and keyword literals. The file pMain. Ccontains a sample
driver that initializes kScript and your collunands and objects, thell calls the parser and processes
input. The pObj s. hand pObj s. C files specify and implement the objects in the program, namely
a global pointer variable called gptr that points to an object containing all your posted variables,
such as defaultDir. The pPost.C and pPostObjs.C files post the commands and objects to the
kScript symbol table, so that they will be available to users as extensions to kScript.

To make your new commands do interesting things, YOll simply edit the skeleton code provided in
p .C. which contains sample definitions of your commands that read their arguments and then simply
return. You can add code to print the arguments or otherwise make use of them in computations.
For exa.mple. here is an edited versiOll of the p. C file which prillts a message for ea.ch action. Only
the three lines involving outStream were added in the editing step - aU the rest of the code was
generated automatically by cmdGen.

/* p.c */

#include "p.h"
#include "sequence.h"

void moveCmd(cmdlnterpreter& ci)
{

keyword* dir(kType_direction);
ci » dir;
if(ci.err()) return;
ci. optional ("by" , "for") ;
double distance;
ci » distance;
if(ci.err()) return;

outStream « "moving" « dir « " for" « distance « " units." « nl;
}

void askCmd(cmdlnterpreter& ci)
{

if (ci. optional("about"))
{

keyword* dir(kType_direction);
ci » dir;
if(ci.err()) return;

outStream « "asking about" « dir « nl;
}

else if(ci.optional("all"))
{

outStream « "asking about all directions" « nl;
}

10

else SyntaxError(ci) « "required option not found!" « syntax;
if(ci.err()) return;

}

Fina.lly,here is the generated reference manual, formatted by IbTEX,

4.1 Primary

direction
I";:eywordType: Compass directions. Literalvalues are:

north

This will be (0,1).

south

This will be (0,-1).

defaultDir
keyword(direction):The default direction.

move <keyword(direction) dir> [bylforJ <double distance>
Command: This moves you in the specifieddirection.

ask required {{about} <keyword(direction) dir> I {all}}
Command: Ask for information

4.2 Self- Descri ption

The user interface to cmdGen was itselfgenerated by running cmdGen. Excerpts from the input
script are shown below; COlnpare them with the command and variable explanations earlierillthis
manual, which were automatically generated, for further insight.

post string project("") {You must begin by setting this to a base file
name for the project's generated output files.}*

post int verify(l) {Set to zero to turn off warning messages about
quotes, less than and greater than signs in strings.}*

cmd keyword {Create a new keyword type and give the initial list of
literal values, which can be empty.}*
{

nameExpr name
stringExpr doc
sequence {

nameExpr litName
nameExpr litCppName
stringExpr litDoc

}
}

11

keyword optionKinds {Special forms recognized by the cmd and fn
commands.}*
{

sugar {introduces syntactic sugar (ignored string literals)}*
optional {introduced optional clauses, each beginning with a string

literal}*
required {same as optional, except generated code complains if user

fails to choose one of the clauses.}*
sequence {defines a clause pattern; generated code looks for 0 or

more instances of the pattern, which must be inside curly braces
(unless exactly one instance is supplied)}*
}

References

[I] Keenan, P. 'I., kScripl USCI' Manual, VE"I'8ion 2. .5. TICAJvI Tech. Report, The University of
Texas at AustilL Februa.ry L99(j.

L2

	page1
	page2
	titles
	cmdGen 2. 5 User Manual
	Philip T. Keenan
	February 6, 1996
	Contents
	1
	1 Introduction
	1

	page3
	titles
	1.1 Copyright and Disclaimer
	2 Command Line Arguments

	page4
	titles
	3 Input Commands
	3.1 kScript Basics

	page5
	titles
	3.2 cmdGen Extensions to kScript

	page6
	page7
	titles
	3.3 Specifying Optional Arguments
	3.4 Advanced Features

	page8
	page9
	page10
	titles
	4 Sample Input Files
	{
	{

	page11
	titles
	/* p.c */

	page12
	titles
	4.1 Primary
	4.2 Self- Descri ption
	{
	11

	page13
	titles
	}
	References
	L2

