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(57) ABSTRACT 

ACAN microcontroller that supports a plurality of uniquely 
numbered message objects, that includes a processor core 
that runs CAN applications, a plurality of message buffers 
associated With respective ones of the message objects, and 
a CAN/CAL module. The CAN microcontroller further 
includes a plurality of individual message object registers 
associated With each message object, including at least one 
control register that contains an interrupt-enable control bit, 
a receive enable bit, and a transmit enable bit. The CAN 
microcontroller also includes a plurality of global message 
object control registers, including at least one message 
complete status register that contains a plurality of status 
?ag bits for respective ones of the message objects, at least 
one interrupt ?ag register that contains a receive complete 
interrupt ?ag bit and a transmit complete interrupt ?ag bit, 
and a message complete info register that contains a plural 
ity of message object identi?cation bits and a status bit. The 
CAN/CAL module includes a message handling function 
that automatically transfers successive frames of an incom 
ing multi-frame message to the message buffer associated 
With a corresponding message object; an end-of-message 
detection function that detects an end-of-message condition 
Which occurs When the last frame of the accepted incoming 
multi-frame message has been stored in the message buffer 
associated With the corresponding message object; and, an 
end-of-message detection handling and interrupt generation 
function that, in response to the detection of the end-of 
message condition: sets the status ?ag bit contained in the at 
least one message complete status register associated With 
the corresponding message object; sets the receive complete 
interrupt ?ag bit contained in the at least one interrupt ?ag 
register, if the interrupt-enable control bit contained in the at 
least one control register associated With the corresponding 
message object is set; and, sets the status bit contained in the 
message complete info register, if the interrupt-enable con 
trol bit contained in the at least one control register associ 
ated With the corresponding message object is set. 

31 Claims, 7 Drawing Sheets 
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END-OF-MESSAGE HANDLING AND 
INTERRUPT GENERATION IN A CAN 
MODULE PROVIDING HARDWARE 
ASSEMBLY OF MULTI-FRAME CAN 

MESSAGES 

This application claims the full bene?t and priority of 
US. Provisional Application Serial No. 60/154,022, ?led on 
Sep. 15, 1999, the disclosure of Which is fully incorporated 
herein for all purposes. 

BACKGROUND OF THE INVENTION 

The present invention relates generally to the ?eld of data 
communications, and more particularly, to the ?eld of serial 
communications bus controllers and microcontrollers that 
incorporate the same. 

CAN (Control Area Network) is an industry-standard, 
tWo-Wire serial communications bus that is Widely used in 
automotive and industrial control applications, as Well as in 
medical devices, avionics, office automation equipment, 
consumer appliances, and many other products and appli 
cations. CAN controllers are currently available either as 
stand-alone devices adapted to interface With a microcon 
troller or as circuitry integrated into or modules embedded 
in a microcontroller chip. Since 1986, CAN users (softWare 
programmers) have developed numerous high-level CAN 
Application Layers (CALs) Which eXtend the capabilities of 
the CAN While employing the CAN physical layer and the 
CAN frame format, and adhering to the CAN speci?cation. 
CALs have heretofore been implemented primarily in 
softWare, With very little hardWare CAL support. 
Consequently, CALs have heretofore required a great deal of 
host CPU intervention, thereby increasing the processing 
overhead and diminishing the performance of the host CPU. 

Thus, there is a need in the art for a CAN hardWare 
implementation of CAL functions normally implemented in 
softWare in order to offload these tasks from the host CPU 
to the CAN hardWare, thereby enabling a great savings in 
host CPU processing resources and a commensurate 
improvement in host CPU performance. One of the most 
demanding and CPU resource-intensive CAL functions is 
message management, Which entails the handling, storage, 
and processing of incoming CAL/CAN messages received 
over the CAN serial communications bus and/or outgoing 
CAL/CAN messages transmitted over the CAN serial com 
munications bus. CAL protocols, such as DeviceNet, 
CANopen, and OSEK, deliver long messages distributed 
over many CAN frames, Which methodology is sometimes 
referred to as “fragmented” or “segmented” messaging. The 
process of assembling such fragmented, multi-frame mes 
sages has heretofore required a great deal of host CPU 
intervention. In particular, CAL softWare running on the host 
CPU actively monitors and manages the buffering and 
processing of the message data, in order to facilitate the 
assembly of the message fragments or segments into com 
plete messages. 

Based on the above and foregoing, it can be appreciated 
that there presently eXists a need in the art for a hardWare 
implementation of CAL functions normally implemented in 
softWare in order to offload these tasks from the host CPU, 
thereby enabling a great savings in host CPU processing 
resources and a commensurate improvement in host CPU 
performance. 

The assignee of the present invention has recently devel 
oped a neW microcontroller product, designated “XA-C3”, 
that ful?lls this need in the art. The XA-C3 is the neWest 
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2 
member of the Philips XA (eXtended Architecture) family 
of high performance 16-bit single-chip microcontrollers. It 
is believed that the XA-C3 is the ?rst chip that features 
hardWare CAL support. 
The XA-C3 is a CMOS 16-bit CAL/CAN 2.0B micro 

controller that incorporates a number of different inventions, 
including the present invention. These inventions include 
novel techniques and hardWare for ?ltering, buffering, 
handling, and processing CAL/CAN messages, including 
the automatic assembly of multi-frame fragmented mes 
sages With minimal CPU intervention, as Well as for man 
aging the storage and retrieval of the message data, and the 
memory resources utiliZed therefor. In particular, the XA-C3 
CAN module has the unique ability to track and reassemble 
the packets constituting a fragmented message, completely 
in hardWare, only interrupting the CPU (processor core) 
once a complete, multi-frame message is received and 
assembled. This tremendously reduces the processor band 
Width required for message handling, thereby signi?cantly 
increasing available bandWidth for other tasks, so that sys 
tem performance is greatly enhanced. 
The present invention relates to the techniques employed 

by the XA-C3 microcontroller for detecting an end-of 
message condition, for end-of-message handling, and for 
generating the appropriate end-of-message interrupt. 
Fundamentally, the task of responding to the end of a 
message should be very straightforWard. More particularly, 
the ?nal frame of the message should be stored in the buffer, 
an interrupt to the processor should be generated, and the 
softWare should respond by retrieving the message data from 
the buffer. 

HoWever, this seemingly fundamental task is greatly 
complicated in the XA-C3 microcontroller, since the XA-C3 
CAN module can concurrently assemble many (up to 32) 
incoming, fragmented messages of varying lengths, 
Whereby up to 32 completed messages can be staged and 
Waiting by the time the processor responds to the initial 
end-of-message interrupt, i.e., the interrupt issued in 
response to completion of the ?rst received complete mes 
sage. A further complication arises by virtue of the fact that 
it is often appropriate for the softWare to “poll” certain 
categories of messages on an occasional basis rather than 
respond to an end-of-message interrupt at the moment 
messages Within one of these categories completes. This 
implies that some message objects may be set up to generate 
an end-of-message interrupt, While others are not. Either 
Way, the softWare must be able to determine at any time 
Whether a complete message is available for all message 
objects. Further, When an end-of-message interrupt is 
asserted, the processor must be able to determine quickly 
and easily Which message or messages are complete, i.e., 
ready for processing. 

In designing the XA-C3 microcontroller, the present 
inventors contemplated and rejected a number of message 
complete handling schemes, because these schemes Would 
have required extremely cumbersome, inef?cient softWare 
code, and/or Would have added far too much die area. The 
present invention, as described beloW, Was conceived and 
?nally adopted as the optimum approach. 

SUMMARY OF THE INVENTION 

The present invention encompasses a CAN microcontrol 
ler that supports a plurality of uniquely-numbered message 
objects, that includes a processor core that runs CAN 
applications, a plurality of message buffers associated With 
respective ones of the message objects, and a CAN/CAL 
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module. The CAN microcontroller further includes a plu 
rality of individual message object registers associated With 
each message object, including at least one control register 
that contains an interrupt-enable control bit, a receive enable 
bit, and a transmit enable bit. The CAN microcontroller also 
includes a plurality of global message object control 
registers, including at least one message complete status 
register that contains a plurality of status ?ag bits for 
respective ones of the message objects, at least one interrupt 
?ag register that contains a receive complete interrupt ?ag 
bit and a transmit complete interrupt ?ag bit, and a message 
complete info register that contains a plurality of message 
object identi?cation bits and a status bit. 

The CAN/CAL module includes an acceptance ?ltering 
function that performs acceptance ?ltering on each 
incoming, multi-frame message by comparing a screener 
?eld of the incoming, multi-frame message With an accep 
tance ?lter ?eld associated With each message object Which 
has its associated receive enable bit set, Wherein the 
incoming, multi-frame message is accepted if its screener 
?eld matches the acceptance ?lter ?eld of a receive-enabled 
message object; a message handling function that automati 
cally transfers successive frames of an accepted incoming 
multi-frame message to the message buffer associated With 
the matching receive-enabled message object; an end-of 
message detection function that detects an end-of-message 
condition Which occurs When the last ?ame of the accepted 
incoming multi-frame message has been stored in the mes 
sage buffer associated With the matching receive-enabled 
message object; and, an end-of-message detection handling 
and interrupt generation function that, in response to the 
detection of the end-of-message condition: sets the status 
?ag bit contained in the at least one message complete status 
register corresponding to the matching receive-enabled mes 
sage object; sets the receive complete interrupt ?ag bit 
contained in the at least one interrupt ?ag register, if the 
interrupt-enable control bit contained in the at least one 
control register associated With the matching receive 
enabled message object is set; and, sets the status bit 
contained in the message complete info register, if the 
interrupt-enable control bit contained in the at least one 
control register associated With the matching receive 
enabled message object is set. 
A current application running on the processor core can 

check the status of the status ?ag bits contained in the at least 
one message complete status register, at selected times. The 
current application running on the processor core processes 
the completed message corresponding to the message object 
associated With an enabled status ?ag bit that is contained in 
the at least one message complete status register. 
A current application running on the processor core can 

also check the status of the status bit contained in the 
message complete info register to determine Whether or not 
there are any pending completed messages associated With 
a respective interrupt-enabled message object. In response to 
a determination that there is a pending completed message 
based on the status of the status bit contained in the message 
complete info register, the current application running on the 
processor core: processes the completed message corre 
sponding to the loWest-numbered receive-enabled message 
object identi?ed by the message object identi?cation bits 
contained in the message complete info register; clears the 
status ?ag bit contained in the at least one control register 
associated With the loWest-numbered receive-enabled mes 
sage object; checks the status of the status bit contained in 
the message complete info register; and repeats each of the 
above-recited operations if the status bit contained in the 
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message complete info register is enabled, until the status 
?ag bit is no longer enabled. 
The CAN/CAL module generates a message-complete 

interrupt in response to detection of an end-of-message 
condition if the interrupt-enable control bit contained in the 
at least one control register associated With the correspond 
ing receive-enabled message object is enabled. The current 
application running on the processor core processes the 
completed message, in response to the message-complete 
interrupt. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and various other aspects, features, and advantages 
of the present invention Will be readily understood With 
reference to the folloWing detailed description of the inven 
tion read in conjunction With the accompanying draWings, in 
Which: 

FIG. 1 is a diagram illustrating the format of a Standard 
CAN Frame and the format of an Extended CAN Frame; 

FIG. 2 is a diagram illustrating the interleaving of CAN 
Data Frames of different, unrelated messages; 

FIG. 3 is a high-level, functional block diagram of the 
XA-C3 microcontroller; 

FIG. 4 is a table listing all of the Memory Mapped 
Registers (MMRs) provided by the XA-C3 microcontroller; 

FIG. 5 is a diagram illustrating the mapping of the overall 
data memory space of the XA-C3 microcontroller; 

FIG. 6 is a diagram illustrating the MMR space contained 
Within the overall data memory space of the XA-C3 micro 
controller; 

FIG. 7 is a diagram illustrating formation of the base 
address of the on-chip XRAM of the XA-C3 
microcontroller, With an object n message buffer mapped 
into off-chip data memory; 

FIG. 8 is a diagram illustrating formation of the base 
address of the on-chip XRAM of the XA-C3 
microcontroller, With an object n message buffer mapped 
into the on-chip XRAM; 

FIG. 9 is a diagram illustrating the Screener ID Field for 
a Standard CAN Frame; 

FIG. 10 is a diagram illustrating the Screener ID Field for 
an Extended CAN Frame; 

FIG. 11 is a diagram illustrating the message storage 
format for fragmented CAL messages; and, 

FIG. 12 is a diagram illustrating the message storage 
format for fragmented CAN messages. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

The present invention is described beloW in the context of 
a particular implementation thereof, i.e., in the context of the 
XA-C3 microcontroller manufactured by Philips Semicon 
ductors. Of course, it should be clearly understood that the 
present invention is not limited to this particular 
implementation, as any one or more of the various aspects 
and features of the present invention disclosed herein can be 
utiliZed either individually or any combination thereof, and 
in any desired application, e.g., in a stand-alone CAN 
controller device or as part of any other microcontroller or 
system. 
The folloWing terms used herein in the context of describ 

ing the preferred embodiment of the present invention (i.e., 
the XA-C3 microcontroller) are de?ned as folloWs: 
Standard CAN Frame: The format of a Standard CAN Frame 

is depicted in FIG. 1. 
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Extended CAN Frame: The format of an Extended CAN 
Frame is also depicted in FIG. 1. 

Acceptance Filtering: The process a CAN device imple 
ments in order to determine if a CAN frame should be 
accepted or ignored and, if accepted, to store that frame in 
a pre-assigned Message Object. 

Message Object: A Receive RAM buffer of pre-speci?ed 
siZe (up to 256 bytes for CAL messages) and associated 
With a particular Acceptance Filter or, a Transmit RAM 
buffer Which the User preloads With all necessary data to 
transmit a complete CAN Data Frame. AMessage Object 
can be considered to be a communication channel over 

Which a complete message, or a succession of messages, 
can be transmitted. 

CAN Arbitration ID: An 11-bit (Standard CAN 2.0 Frame) 
or 29-bit (Extended CAN 2.0B Frame) identi?er ?eld 
placed in the CAN Frame Header. This ID ?eld is used to 
arbitrate Frame access to the CAN bus. Also used in 
Acceptance Filtering for CAN Frame reception and 
Transmit Pre-Arbitration. 

Screener ID: A 30-bit ?eld extracted from the incoming 
message Which is then used in Acceptance Filtering. The 
Screener ID includes the CAN Arbitration ID and the IDE 
bit, and can include up to 2 Data Bytes. These 30 extracted 
bits are the information quali?ed by Acceptance Filtering. 

Match ID: A 30-bit ?eld pre-speci?ed by the user to Which 
the incoming Screener ID is compared. Individual Match 
IDs for each of 32 Message Objects are programmed by 
the user into designated Memory Mapped Registers 
(MMRs). 

Mask: A 29-bit ?eld pre-speci?ed by the user Which can 
override (Mask) a Match ID comparison at any particular 
bit (or, combination of bits) in an Acceptance Filter. 
Individual Masks, one for each Message Object, are 
programmed by the user in designated MMRs. Individual 
Mask patterns assure that single Receive Objects can 
Screen for multiple acknoWledged CAL/ CAN Frames and 
thus minimiZe the number of Receive Objects that must 
be dedicated to such loWer priority Frames. This ability to 
Mask individual Message Objects is an important neW 
CAL feature. 

CAL: CAN Application Layer. A generic term for any 
high-level protocol Which extends the capabilities of CAN 
While employing the CAN physical layer and the CAN 
frame format, and Which adheres to the CAN speci?ca 
tion. Among other things, CALs permit transmission of 
Messages Which exceed the 8 byte data limit inherent to 
CAN Frames. This is accomplished by dividing each 
message into multiple packets, With each packet being 
transmitted as a single CAN Frame consisting of a maxi 
mum of 8 data bytes. Such messages are commonly 
referred to as “segmented” or “fragmented” messages. 
The individual CAN Frames constituting a complete 
fragmented message are not typically transmitted in a 
contiguous fashion, but rather, the individual CAN 
Frames of different, unrelated messages are interleaved on 
the CAN bus, as is illustrated in FIG. 2 

Fragmented Message: A lengthy message (in excess of 8 
bytes) divided into data packets and transmitted using a 
sequence of individual CAN Frames. The speci?c Ways 
that sequences of CAN Frames construct these lengthy 
messages is de?ned Within the context of a speci?c CAL. 
The XA-C3 microcontroller automatically re-assembles 
these packets into the original, lengthy message in hard 
Ware and reports (via an interrupt) When the completed 
(re-assembled) message is available as an associated 
Receive Message Object. 
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Message Buffer: A block of locations in XA Data memory 

Where incoming (received) messages are stored or Where 
outgoing (transmit) messages are staged. 

MMR: Memory Mapped Register. An on-chip command/ 
control/status register Whose address is mapped into XA 
Data memory space and is accessed as Data memory by 
the XAprocessor. With the XA-C3 microcontroller, a set 
of eight dedicated MMRs are associated With each Mes 
sage Object. Additionally, there are several MMRs Whose 
bits control global parameters that apply to all Message 
Objects. 
With reference noW to FIG. 3, there can be seen a 

high-level block diagram of the XA-C3 microcontroller 20. 
The XA-C3 microcontroller 20 includes the folloWing func 
tional blocks that are fabricated on a single integrated circuit 
(IC) chip packaged in a 44-pin PLCC or a 44-pin LQFP 
package: 

an XA CPU Core 22, that is currently implemented as a 
16-bit fully static CPU With 24-bit program and data 
address range, that is upWardly compatible With the 
80C51 architecture, and that has an operating fre 
quency of up to 30 MHZ; 

a program or code memory 24 that is currently imple 
mented as a 32K ROM/EPROM, and that is 
bi-directionally coupled to the XA CPU Core 22 via an 
internal Program bus 25. A map of the code memory 
space is depicted in FIG. 4; 

a Data RAM 26 (internal or scratch pad data memory) that 
is currently implemented as a 1024 Byte portion of the 
overall XA-C3 data memory space, and that is 
bi-directionally coupled to the XA CPU Core 22 via an 
internal DATA bus 27; 

an on-chip message buffer RAM or XRAM 28 that is 
currently implemented as a 512 Byte portion of the 
overall XA-C3 data memory space Which may contain 
part or all of the CAN/CAL (Transmit & Receive 
Object) message buffers; 

a Memory Interface (MIF) unit 30 that provides interfaces 
to generic memory devices such as SRAM, DRAM, 
?ash, ROM, and EPROM memory devices via an 
external address/data bus 32, via an internal Core Data 
bus 34, and via an internal MMR bus 36; 

a DMA engine 38 that provides 32 CAL DMA Channels; 
a plurality of on-chip Memory Mapped Registers 
(MMRs) 40 that are mapped to the overall XA-C3 data 
memory space—a 4K Byte portion of the overall 
XA-C3 data memory space is reserved for MMRs. 
These MMRs include 32 (Message) Object or Address 
Pointers and 32 ID Screeners or Match IDs, corre 
sponding to the 32 CAL Message Objects. A complete 
listing of all MMRs is provided in the Table depicted in 
FIG. 5; 

a 2.0B CAN/DLL Core 42 that is the CAN Controller 
Core from the Philips SJA1000 CAN (2.0A/B) Data 
Link Layer (CDLL) device (hereinafter referred to as 
the “CAN Core Block” (CCB)); and, 

an array of standard microcontroller peripherals that are 
bi-directionally coupled to the XA CPU Core 22 via a 
Special Function Register (SFR) bus 43. These stan 
dard microcontroller peripherals include Universal 
Asynchronous Receiver Transmitter (UART) 49, an 
SPI serial interface (port) 51, three standard timers/ 
counters With toggle output capability, namely, Timer 0 
& Timer 1 included in Timer block 53, and Timer 2 
included in Timer block 54, a Watchdog Timer 55, and 
four 8-bit I/O ports, namely, Ports 0—3 included in 
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block 61, each of Which has 4 programmable output 
con?gurations. 

The DMA engine 38, the MMRs 40, and the CCB 42 can 
collectively be considered to constitute a CAN/CAL module 
77, and Will be referred to as such at various times through 
out the following description. Further, the particular logic 
elements Within the CAN/CAL module 77 that perform 
“message management” and “message handling” functions 
Will sometimes be referred to as the “message management 
engine” and the “message handler”, respectively, at various 
times throughout the folloWing description. Other nomen 
clature Will be de?ned as it introduced throughout the 
folloWing description. 
As previously mentioned, the XA-C3 microcontroller 20 

automatically implements, in hardWare, many message man 
agement and other functions that Were previously only 
implemented in softWare running on the host CPU (or not 
implemented at all), including transparent, automatic 
re-assembly of up to 32 concurrent, interleaved, multi 
frame, fragmented CAL messages. For each application that 
is installed to run on the host CPU (i.e., the XA CPU Core 
22), the user (softWare programmer) must set-up the hard 
Ware for performing these functions by programming certain 
ones of the MMRs and SFRs in the manner set forth in the 
XA-C3 Functional Speci?cation and XA-C3 CAN Transport 
Layer Controller User Manual. The register programming 
procedures that are most relevant to an understanding of the 
present invention are described beloW, folloWed by a 
description of the various message management and other 
functions that are automatically performed by the CAL/ 
CAN module 77 during operation of the XA-C3 microcon 
troller 20 after it has been properly set-up by the user. 
Following these sections, a more detailed description of the 
particular invention to Which this application is directed is 
provided. 

Set-up/Programming Procedures 
As an initial matter, the user must map the overall XA-C3 

data memory space, as illustrated in FIG. 5. In particular, 
subject to certain constraints, the user must specify the 
starting or base address of the XRAM 28 and the starting or 
base address of the MMRs 40. The base address of the 
MMRs 40 can be speci?ed by appropriately programming 
Special Function Registers (SFRs) MRBL and MRBH. The 
base address of the XRAM 28 can be speci?ed by appro 
priately programming the MMRs designated MBXSR and 
XRAMB (see FIG. 4). 

The user can place the 4K Byte space reserved for MMRs 
40 anyWhere Within the entire 16 Mbyte data memory space 
supported by the XA architecture, other than at the very 
bottom of the memory space (i.e., the ?rst 1K Byte portion, 
starting address of 000000h), Where it Would con?ict With 
the on-chip Data RAM 26 that serves as the internal or 
scratch-pad memory. The 4K Bytes of MMR space Will 
alWays start at a 4K boundary. The reset values for MRBH 
and MRBL are OFh and FOh, respectively. Therefore, after a 
reset, the MMR space is mapped to the uppermost 4K Bytes 
of Data Segment OFh, but access to the MMRs 40 is 
disabled. The ?rst 512 Bytes (offset 000h—1FFh) of MMR 
space are the Message Object Registers (eight per Message 
Object) for objects n=0—31, as is shoWn in FIG. 6. 

The base address of the XRAM 28 is determined by the 
contents of the MMRs designated MBXSR and XRAMB, as 
is shoWn in FIGS. 7 and 8. As previously mentioned, the 512 
Byte XRAM 28 is Where some (or all) of the 32 (RX/T X) 
message buffers (corresponding to Message Objects 
n=0—31) reside. The message buffers can be eXtended off 
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8 
chip to a maXimum of 8 K Bytes. This off-chip expansion 
capability can accommodate up to thirty-tWo, 256-Byte 
message buffers. Since the uppermost 8 bits of all message 
buffer addresses are formed by the contents of the MBXSR 
register, the XRAM 28 and all 32 message buffers must 
reside in the same 64K Byte data memory segment. Since 
the XA-C3 microcontroller 20 only provides address lines 
A0—A19 for accessing eXternal memory, all eXternal 
memory addresses must be Within the loWest 1MByte of 
address space. Therefore, if there is eXternal memory in the 
system into Which any of the 32 message buffers Will be 
mapped, then all 32 message buffers and the XRAM 28 must 
also be mapped entirely into that same 64K Byte segment, 
Which must be beloW the 1MByte address limit. 

After the memory space has been mapped, the user can 
set-up or de?ne up to 32 separate Message Objects, each of 
Which can be either a Transmit (TX) or a Receive (RX) 
Message Object. A RX Message Object can be associated 
either With a unique CAN ID, or With a set of CAN IDs 
Which share certain ID bit ?elds. As previously mentioned, 
each Message Object has its oWn reserved block of data 
memory space (up to 256 Bytes), Which is referred to as that 
Message Object’s message buffer. As Will be seen, both the 
siZe and the base address of each Message Object’s message 
buffer is programmable. 
As previously mentioned, each Message Object is asso 

ciated With a set of eight MMRs 40 dedicated to that 
Message Object. Some of these registers function differently 
for TX Message Objects than they do for RX Message 
Objects. These eight MMRs 40 are designated “Message 
Object Registers” (see FIG. 4). The names of these eight 
MMRs 40 are: 

1. MnMIDH Message n Match ID High 
2. MnMIDL Message n Match ID LoW 
3. MnMSKH Message n Mask High 
4. MnMSKL Message n Mask LoW 
5. MnCTL Message n Control 
6. MnBLR Message n Buffer Location Register 
7. MnBSZ Message n Buffer Size 
8. MnFCR Message n Fragment Count Register 

Where n ranges from 0 to 31 (i.e., corresponding to 32 
independent Message Objects). 

In general, the user de?nes or sets up a Message Object 
by con?guring (programming) some or all of the eight 
MMRs dedicated to that Message Object, as Will be 
described beloW. Additionally, as Will be described beloW, 
the user must con?gure (program) the global GCTL register, 
Whose bits control global parameters that apply to all 
Message Objects. 

In particular, the user can specify the Match ID value for 
each Message Object to be compared against the Screener 
IDs extracted from incoming CAN Frames for Acceptance 
Filtering. The Match ID value for each Message Object n is 
speci?ed in the MnMIDH and MnMIDL registers associated 
With that Message Object n. The user can mask any Screener 
ID bits Which are not intended to be used in Acceptance 
Filtering, on an object-by-object basis, by Writing a logic ‘1’ 
in the desired (to-be-masked) bit position(s) in the appro 
priate MnMSKH and/or MnMSKL registers associated With 
each particular Message Object n. The user is responsible, 
on set-up, for assigning a unique message buffer location for 
each Message Object n. In particular, the user can specify the 
least signi?cant 16 bits of the base address of the message 
buffer for each particular Message Object n by programming 
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the MnBLR register associated With that Message Object n. 
The upper 8 bits of the 24-bit address, for all Message 
Objects, are speci?ed by the contents of the MBXSR 
register, as previously discussed, so that the message buffers 
for all Message Objects reside Within the same 64 K Byte 
memory segment. The user is also responsible, on set-up, for 
specifying the siZe of the message buffer for each Message 
Object n. In particular, the user can specify the siZe of the 
message buffer for each particular Message Object n by 
programming the MnBSZ register associated With that Mes 
sage Object n. The top location of the message buffer for 
each Message Object n is determined by the siZe of that 
message buffer as speci?ed in the corresponding MnBSZ 
register. 

The user can con?gure (program) the MnCTL register 
associated With each particular Message Object n in order to 
enable or disable that Message Object n, in order to de?ne 
or designate that Message Object n as a TX or RX Message 
Object; in order to enable or disable automatic hardWare 
assembly of fragmented RX messages (i.e., automatic frag 
mented message handling) for that Message Object n; in 
order to enable or disable automatic generation of a 
Message-Complete Interrupt for that Message Object n; and, 
in order to enable or not enable that Message Object n for 
Remote Transmit Request (RTR) handling. In CAN open and 
OSEK systems, the user must also initialiZe the MnFCR 
register associated With each Message Object n. 
As previously mentioned, on set-up, the user must con 

?gure (program) the global GCTL register, Whose bits 
control global parameters that apply to all Message Objects. 
In particular, the user can con?gure (program) the GCTL 
register in order to specify the high-level CAL protocol (if 
any) being used (e.g., DeviceNet, CANopen, or OSEK); in 
order to enable or disable automatic acknowledgment of 
CANopen Frames (CANopen auto-acknoWledge); and, in 
order to specify Which of tWo transmit (TX) pre-arbitration 
schemes/policies is to be utiliZed (i.e., either TX pre 
arbitration based on CAN ID, With the object number being 
used as a secondary tie-breaker, or TX pre-arbitration based 
on object number only). 

Receive Message Objects and the Receive Process 

During reception (i.e., When an incoming CAN Frame is 
being received by the XA-C3 microcontroller 20), the CAN / 
CAL module 77 Will store the incoming CAN Frame in a 
temporary (13-Byte) buffer, and determine Whether a 
complete, error-free CAN frame has been successfully 
received. If it is determined that a complete, error-free CAN 
Frame has been successfully received, then the CAN/CAL 
module 77 Will initiate Acceptance Filtering in order to 
determine Whether to accept and store that CAN Frame, or 
to ignore/discard that CAN Frame. 
Acceptance Filtering 

In general, because the XA-C3 microcontroller 20 pro 
vides the user With the ability to program separate Match ID 
and Mask ?elds for each of the 32 independent Message 
Objects, on an object-by-object basis, as described 
previously, the Acceptance Filtering process performed by 
the XA-C3 microcontroller 20 can be characteriZed as a 
“match and mask” technique. The basic objective of this 
Acceptance Filtering process is to determine Whether a 
Screener ID ?eld of the received CAN Frame (eXcluding the 
“don’t care” bits masked by the Mask ?eld for each Message 
Object) matches the Match ID of any enabled one of the 32 
Message Objects that has been designated a Receive Mes 
sage Object. If there is a match betWeen the received CAN 
Frame and more than one Message Object, then the received 

10 

15 

25 

35 

45 

55 

65 

10 
CAN Frame Will be deemed to have matched the Message 

Object With the loWest object number Message Storage: 

Each incoming (received) CAN Frame that passes Accep 
tance Filtering, Will be automatically stored, via the DMA 
engine 38, into the message buffer for the Receive Message 
Object that particular CAN Frame Was found to have 
matched. In an eXemplary implementation, the message 
buffers for all Message Objects are contained in the XRAM 
28. 
Message Assembly: 

In general, the DMA engine 38 Will transfer each accepted 
CAN Frame from the 13-byte pre-buffer to the appropriate 
message buffer (e.g., in the XRAM 28), one Word at a time, 
starting from the address pointed to by the contents of the 
MBXSR and MnBLR registers. Every time the DMA engine 
38 transfers a byte or a Word, it has to request the bus. In this 
regard, the MIF unit 30 arbitrates betWeen accesses from the 
XA CPU Core 22 and from the DMA engine 38. In general, 
bus arbitration is done on an “alternate” policy. After a DMA 
bus access, the XA CPU Core 22 Will be granted bus access, 
if requested. After an XA CPU bus access, the DMA engine 
38 Will be granted bus access, if requested. (HoWever, a 
burst access by the XA CPU Core 22 cannot be interrupted 
by a DMA bus access). 

Once bus access is granted by the MIF unit 30, the DMA 
engine 38 Will Write data from the 13-byte pre-buffer to the 
appropriate message buffer location. The DMA engine 38 
Will keep requesting the bus, Writing message data sequen 
tially to the appropriate message buffer location until the 
Whole accepted CAN Frame is transferred. After the DMA 
engine 38 has successfully transferred an accepted CAN 
Frame to the appropriate message buffer location, the con 
tents of the message buffer Will depend upon Whether the 
message that the CAN Frame belongs to is a non-fragmented 
(single frame) message or a fragmented message. Each case 
is described beloW: 
Non-Fragmented Message Assembly: 

For Message Objects that have been set up With automatic 
fragmented message handling disabled (not enabled—i.e., 
the FRAG bit in the MnCTL register for that Message 
Object is set to ‘0’), the complete CAN ID of the accepted 
CAN Frame (Which is either 11 or 29 bits, depending on 
Whether the accepted CAN Frame is a Standard or EXtended 
CAN Frame) is Written into the MnMIDH and MnMIDL 
registers associated With the Message Object that has been 
deemed to constitute a match, once the DMA engine 38 has 
successfully transferred the accepted CAN Frame to the 
message buffer associated With that Message Object. This 
Will permit the user application to see the eXact CAN ID 
Which resulted in the match, even if a portion of the CAN ID 
Was masked for Acceptance Filtering. As a result of this 
mechanism, the contents of the MnMIDH and MnMIDL 
registers can change every time an incoming CAN Frame is 
accepted. Since the incoming CAN Frame must pass 
through the Acceptance Filter before it can be accepted, only 
the bits that are masked out Will change. Therefore, the 
criteria for match and mask Acceptance Filtering Will not 
change as a result of the contents of the MnMIDH and 
MnMIDL registers being changed in response to an accepted 
incoming CAN Frame being transferred to the appropriate 
message buffer. 
Fragmented Message Assembly: 

For Message Objects that have been set up With automatic 
fragmented message handling enabled (i.e., With the FRAG 
bit in the MnCTL register for that Message Object set to ‘1’), 
masking of the 11/29 bit CAN ID ?eld is disalloWed. As 
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such, the CAN ID of the accepted CAN Frame is known 
unambiguously, and is contained in the MnMIDH and 
MnMIDL registers associated With the Message Object that 
has been deemed to constitute a match. Therefore, there is no 
need to Write the CAN ID of the accepted CAN Frame into 
the MnMIDH and MnMIDL registers associated With the 
Message Object that has been deemed to constitute a match. 
As subsequent CAN Frames of a fragmented message are 

received, the neW data bytes are appended to the end of the 
previously received and stored data bytes. This process 
continues until a complete multi-frame message has been 
received and stored in the appropriate message buffer. 

Under CAL protocols DeviceNet, CANopen, and OSEK, 
if a Message Object is an enabled Receive Message Object, 
and its associated MnCTL register has its FRAG bit set to ‘1’ 
(i.e., automatic fragmented message assembly is enabled for 
that particular Receive Message Object), then the ?rst data 
byte (Data Byte 1) of each received CAN Frame that 
matches that particular Receive Message Object Will be used 
to encode fragmentation information only, and thus, Will not 
be stored in the message buffer for that particular Receive 
Message Object. Thus, message storage for such “FRAG 
enabled” Receive Message Objects Will start With the second 
data byte (Data Byte 2) and proceed in the previously 
described manner until a complete multi-frame message has 
been received and stored in the appropriate message buffer. 
This message storage format is illustrated in FIG. 11. The 
message handler hardWare Will use the fragmentation infor 
mation contained in Data Byte 1 of each CAN Frame to 
facilitate this process. 

Under the CAN protocol, if a Message Object is an 
enabled Receive Message Object, and its associated MnCTL 
register has its FRAG bit set to ‘1’ (i.e., automatic frag 
mented message assembly is enabled for that particular 
Receive Message Object), then the CAN Frames that match 
that particular Receive Message Object Will be stored 
sequentially in the message buffer for that particular Receive 
Message Object using the format shoWn in FIG. 12. 
When Writing message data into a message buffer asso 

ciated With a Message Object n, the DMA engine 38 Will 
generate addresses automatically starting from the base 
address of that message buffer (as speci?ed in the MnBLR 
register associated With that Message Object n). Since the 
siZe of that message buffer is speci?ed in the MnBSZ 
register associated With that Message Object n, the DMA 
engine 38 can determine When it has reached the top location 
of that message buffer. If the DMA engine 38 determines 
that it has reached the top location of that message buffer, 
and that the message being Written into that message buffer 
has not been completely transferred yet, the DMA engine 38 
Will Wrap around by generating addresses starting from the 
base address of that message buffer again. Some time before 
this happens, a Warning interrupt Will be generated so that 
the user application can take the necessary action to prevent 
data loss. 

The message handler Will keep track of the current 
address location of the message buffer being Written to by 
the DMA engine 38, and the number of bytes of each CAL 
message as it is being assembled in the designated message 
buffer. After an “End of Message” for a CAL message is 
decoded, the message handler Will ?nish moving the com 
plete CAL message and the Byte Count into the designated 
message buffer via the DMA engine 38, and then generate an 
interrupt to the XA CPU Core 22 indicating that a complete 
message has been received. 

Since Data Byte 1 of each CAN Frame contains the 
fragmentation information, it Will never be stored in the 
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designated message buffer for that CAN Frame. Thus, up to 
seven data bytes of each CAN Frame Will be stored. After 
the entire message has been stored, the designated message 
buffer Will contain all of the actual informational data bytes 
received (exclusive of fragmentation information bytes) plus 
the Byte Count at location 00 Which Will contain the total 
number of informational data bytes stored. 

It is noted that there are several speci?c user set-up/ 
programming procedures that must be folloWed When invok 
ing automatic hardWare assembly of fragmented OSEK and 
CANopen messages. These and other particulars can be 
found in the XA-C3 CAN Transport Layer Controller User 
Manual that is part of the parent Provisional Application 
Serial No. 60/154,022, the disclosure of Which has been 
fully incorporated herein for all purposes. 

Transmit Message Objects and the Transmit 
Process 

In order to transmit a message, the XA application pro 
gram must ?rst assemble the complete message and store it 
in the designated message buffer for the appropriate Trans 
mit Message Object n. The message header (CAN ID and 
Frame Information) must be Written into the MnMIDH, 
MnMIDL, and MnMSKH registers associated With that 
Transmit Message Object n. After these steps are completed, 
the XA application is ready to transmit the message. To 
initiate a transmission, the object enable bit (OBJiEN bit) 
of the MnCTL register associated With that Transmit Mes 
sage Object n must be set, eXcept When transmitting an 
Auto-AcknoWledge Frame in CAN open. This Will alloW this 
ready-to-transmit message to participate in the pre 
arbitration process. In this connection, if more than one 
message is ready to be transmitted (i.e., if more than one 
Transmit Message Object is enabled), a TX Pre-Arbitration 
process Will be performed to determine Which enabled 
Transmit Message Object Will be selected for transmission. 
There are tWo TX Pre-Arbitration policies Which the user can 
choose betWeen by setting or clearing the PreiArb bit in the 
GCTL register. 

After a TX Message Complete interrupt is generated in 
response to a determination being made by the message 
handler that a completed message has been successfully 
transmitted, the TX Pre-Arbitration process is “reset”, and 
begins again. Also, if the “Winning” Transmit Message 
Object subsequently loses arbitration on the CAN bus, the 
TX Pre-Arbitration process gets reset and begins again. If 
there is only one Transmit Message Object Whose OBJiEN 
bit is set, it Will be selected regardless of the TX Pre 
Arbitration policy selected. 

Once an enabled Transmit Message Object has been 
selected for transmission, the DMA engine 38 Will begin 
retrieving the transmit message data from the message buffer 
associated With that Transmit Message Object, and Will 
begin transferring the retrieved transmit message data to the 
CCB 42 for transmission. The same DMA engine and 
address pointer logic is used for message retrieval of trans 
mit messages as is used for message storage of receive 
messages, as described previously. Further, message buffer 
location and siZe information is speci?ed in the same Way, 
as described previously. In short, When a transmit message 
is retrieved, it Will be Written by the DMA engine 38 to the 
CCB 42 sequentially. During this process, the DMA engine 
38 Will keep requesting the bus; When bus access is granted, 
the DMA engine 38 Will sequentially read the transmit 
message data from the location in the message buffer cur 
rently pointed to by the address pointer logic; and, the DMA 
engine 38 Will sequentially Write the retrieved transmit 
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message data to the CCB 42. It is noted that When preparing 
a message for transmission, the user application must not 
include the CAN ID and Frame Information ?elds in the 
transmit message data Written into the designated message 
buffer, since the Transmit (TX) logic Will retrieve this 
information directly from the appropriate MnMIDH, 
MnMIDL, and MnMSKH registers. 

The XA-C3 microcontroller 20 does not handle the trans 
mission of fragmented messages in hardWare. It is the user’s 
responsibility to Write each CAN Frame of a fragmented 
message to the appropriate message buffer, enable the asso 
ciated Transmit Message Object for transmission, and Wait 
for a completion before Writing the neXt CAN Frame of that 
fragmented message to the appropriate message buffer. The 
user application must therefore transmit multiple CAN 
Frames one at a time until the Whole multi-frame, frag 
mented transmit message is successfully transmitted. 
HoWever, by using multiple Transmit Message Objects 
Whose object numbers increase sequentially, and Whose 
CAN IDs have been con?gured identically, several CAN 
Frames of a fragmented transmit message can be queued up 
and enabled, and then transmitted in order. 

To avoid data corruption When transmitting messages, 
there are three possible approaches: 

1. If the TX Message Complete interrupt is enabled for the 
transmit message, the user application Would Write the 
neXt transmit message to the designated transmit mes 
sage buffer upon receipt of the TX Message Complete 
interrupt. Once the interrupt ?ag is set, it is knoWn for 
certain that the pending transmit message has already 
been transmitted. 

2. Wait until the OBJiEN bit of the MnCTL register of 
the associated Transmit Message Object clears before 
Writing to the associated transmit message buffer. This 
can be accomplished by polling the OBJiEN bit of the 
MnCTL register of the associated Transmit Message 
Object. 

3. Clear the OBJiEN bit of the MnCTL register of the 
associated Transmit Message Object While that Trans 
mit Message Object is still in TX Pre-Arbitration. 

In the ?rst tWo cases above, the pending transmit message 
Will be transmitted completely before the neXt transmit 
message gets transmitted. For the third case above, the 
transmit message Will not be transmitted. Instead, a transmit 
message With neW content Will enter TX Pre-Arbitration. 

There is an additional mechanism that prevents corruption 
of a message that is being transmitted. In particular, if a 
transmission is ongoing for a Transmit Message Object, the 
user Will be prevented from clearing the OBJiEN bit in the 
MnCTL register associated With that particular Transmit 
Message Object. 

CAN/CAL RELATED INTERRUPTS 

The CAN/CAL module 77 of the XA-C3 microcontroller 
20 is presently con?gured to generate the folloWing ?ve 
different Event interrupts to the XA CPU Core 22: 

1. RX Message Complete 
2. TX Message Complete 
3. RX Buffer Full 

4. Message Error 
5. Frame Error 
For single-frame messages, the “Message Complete” con 

dition occurs at the end of the single frame. For multi-frame 
(fragmented) messages, the “Message Complete” condition 
occurs after the last frame is received and stored. Since the 
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XA-C3 microcontroller 20 hardWare does not recogniZe or 
handle fragmentation for transmit messages, the TX Message 
Complete condition Will alWays be generated at the end of 
each successfully transmitted frame. 
As previously mentioned, there is a control bit associated 

With each Message Object indicating Whether a Message 
Complete condition should generate an interrupt, or just set 
a “Message Complete Status Flag” (for polling) Without 
generating an interrupt. This is the INTiEN bit in the 
MnCTL register associated With each Message Object n. 

There are tWo 16-bit MMRs 40, MCPLH and MCPLL, 
Which contain the Message Complete Status Flags for all 32 
Message Objects. When a Message Complete (TX or RX) 
condition is detected for a particular Message Object, the 
corresponding bit in the MCPLH or MCPLL register Will be 
set. This Will occur regardless of Whether the INTiEN bit 
is set for that particular Message Object (in its associated 
MnCTL register), or Whether Message Complete Status 
Flags have already been set for any other Message Objects. 

In addition to these 32 Message Complete Status Flags, 
there is a TX Message Complete Interrupt Flag and an RX 
Message Complete Interrupt Flag, corresponding to bits [1] 
and [0], respectively, of an MMR 40 designated 
CANINTFLG, Which Will generate the actual Event inter 
rupt requests to the XA CPU Core 22. When an End-of 
Message condition occurs, at the same moment that the 
Message Complete Status Flag is set, the appropriate TX or 
RX Message Complete Interrupt ?ip-?op Will be set pro 
vided that INTiEN=1 for the associated Message Object, 
and provided that the interrupt is not already set and pend 
mg. 

Further details regarding the generation of interrupts and 
the associated registers can be found in the XA-C3 Func 
tional Speci?cation and in the XA-C3 CAN Transport Layer 
Controller User Manual, both of Which are part of the parent 
Provisional Application Serial No. 60/154,022, the disclo 
sure of Which has been fully incorporated herein for all 
purposes. 

MESSAGE BUFFERS 

As Was previously described in detail hereinabove, the 
XA-C3 microcontroller 20 supports up to 32 separate and 
independent Message Objects, each of Which is set-up or 
de?ned by virtue of the user (programmer) con?guring 
(programming) some or all of the eight MMRs 40 dedicated 
to that Message Object. In the XA-C3 microcontroller 20, 
each of the 32 Message Objects is assigned its oWn block of 
address space in data memory, Which serves as its message 
buffer for data storage. The siZe and location of each 
message buffer is programmable, and thus, recon?gurable 
“on the ?y” by the user/programmer. The message buffers 
can be positioned in any desired location Within the overall 
data memory space addressable by the XA-C3 microcon 
troller 20, Which is presently con?gured to be a 16 Mbyte 
overall memory space. These message buffers can be located 
in the XRAM 28 and/or in any off-chip portion of the overall 
data memory space. 
The location of the message buffer associated With each 

Message Object n is established by programming the MMR 
40 designated MnBLR associated With that Message Object, 
i.e., by programming the Message n Buffer Location Reg 
ister. The siZe of the message buffer associated With each 
Message Object is established by programming the MMR 40 
designated MnBSZ associated With that Message Object, 
i.e., by programming the Message n Buffer SiZe Register. In 
the XA-C3 microcontroller 20, alloWable buffer siZes are 2, 
4, 8, 16, 32, 64, 128, or 256 bytes. Users can select the siZe 
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of each message buffer based on the anticipated length of the 
incoming message, or they can conserve memory by delib 
erately specifying smaller buffers at the expense of increased 
processor intervention to handle more frequent buffer-full 
conditions. In the XA-C3 microcontroller 20, Direct 
Memory Access (DMA) (i.e., the DMA engine 38) is used 
to enable the XA-C3 CAN/CAL module 77 to directly 
access the 32 message buffers Without interrupting the 
XA-C3 processor (CPU) core 22. 

The XA-C3 CAN/CAL module 77 uses the values pro 
grammed into the buffer siZe registers MnBSZ to reserve the 
designated number of bytes of storage for each Message 
Object n. For Receive Message Objects, this ?eld is also 
used by logic in the XA-C3 CAN/CAL module 77 to 
calculate the total number of bytes that have actually been 
stored in the message buffers, and to identify When a 
buffer-full condition is reached. Each time a byte of data is 
stored in a message buffer associated With a Message Object 
n, the XA-C3 CAN/CAL module 77 concurrently accesses 
the MnBSZ and MnBLR registers associated With that 
Message Object. Logic incorporated Within the XA-C3 
CAN/CAL module 77 decodes the buffer siZe for that 
Message Object and compares the decoded buffer siZe to the 
address pointer to determine current byte count and avail 
able space left in that Message Object’s message buffer. 

The present implementation of the XA-C3 microcontrol 
ler 20 requires that all of the 32 message buffers reside 
Within the same 64 Kbyte memory segment (or “page”). The 
user may position the message buffers Within any of the 256 
pages in the overall XA-C3 data memory space (i.e., 256x64 
Kbytes=16 M bytes). Programming the locations of the 
message buffers is accomplished in tWo steps. 

The ?rst step is to program the page number in Which all 
of the message buffers reside into the MMR 40 designated 
as the MBXSR register, Which is one of the CCB Registers 
depicted in FIG. 4. As Was previously described, the con 
tents of this register are subsequently used as the eight MSBs 
of address for all DMA accesses to any of the message 
buffers. This register also establishes the memory page in 
Which the XRAM 28 resides. 

The second step is to program the base address (16 bits) 
for each individual message buffer into the MnBLR asso 
ciated With that message buffer. These 16-bit address values 
initially speci?ed by the user/programmer constitute the 
base addresses of the 32 respective message buffers Within 
the 64 Kbyte memory page speci?ed in the MBXSR register 
for all message buffers. It should be noted that the message 
buffers can be placed apart from one another, as there is no 
requirement that the message buffer space be continuous 
(i.e., that the message buffers reside in physically contiguous 
locations Within the data memory space). Further, it should 
also be noted that some or all of the message buffers can be 
placed in off-chip memory, and others in the on-chip XRAM 
28. In the XA-C3 microcontroller 20, it is required that each 
message buffer start at a binary boundary for its siZe (i.e., the 
8 LSBs must be Zero for a 256-byte message buffer, the 7 
LSBs must be Zero for a 128-byte message buffer, etc.). 
DMA access to each of the message buffers is achieved by 

using the 8 bits stored in the MBXSR register as the 8 MSBs 
of the address of that message buffer, and the 16 bits stored 
in the MnBLR register for that message buffer as the 16 
LSBs of the address of that message buffer. The base address 
initially programmed by the user into the MnBLR register 
for that message buffer is the address of the ?rst (bottom) 
location of that message buffer. When the ?rst frame of a 
neW receive message arrives, the CAN/CAL module 77 
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hardWare Writes a semaphore code into this bottom location 
before beginning to store actual data bytes, starting at the 
neXt location in that message buffer. At the end of the neW 
receive message (or When a buffer-full condition is 
detected), the CAN/CAL module 77 hardWare computes the 
total number of bytes actually stored in that message buffer, 
and Writes this value into the bottom location of that 
message buffer. The processor (i.e., the XA CPU Core 22) 
can then read this value and determine precisely hoW many 
additional bytes must be read and processed. 
Each time a neW byte of data must be Written to (for 

receive messages) or retrieve from (for transmit messages) 
a message buffer, the DMA engine 38 reads the MnBLR 
register for that message buffer in order to retrieve the 
current address pointer for the associated Message Object. 
The DMA engine 38 concatenates the 8 MSBs stored in the 
global Message Buffer Segment Register (i.e., the MBXSR 
register) and the 16 LSBs stored in the MnBLR register for 
that message buffer to form a complete 24-bit message 
buffer address. The DMA engine 38 then passes this address 
to the Memory Interface (MIF) unit 30, along With a ?ag 
indicating that the DMA engine 38 requires access to the 
memory. As soon as the current set of XA-C3 processor 
memory accesses are completed, the MIF unit 30 Will 
initiate a memory read or Write to the address provided by 
the DMA engine 38, and then permit the DMA engine 38 to 
perform the required data transfer to/from the desired mes 
sage buffer. DMA accesses are typically done tWo bytes at 
a time (i.e., as a 16-bit operation). HoWever, 8-bit operations 
are employed When there is only a single byte to be 
transferred. 
As soon as the requested DMA operation is completed, 

the DMA engine 38 increments the 16-bit address value 
stored in the MnBLR register associated With that message 
buffer (by one or tWo, depending upon Whether a one byte 
or tWo byte access Was performed), and Writes this value 
back into the MnBLR register for that message buffer. Thus, 
the MnBLR registers, along With the associated increment 
logic Within the DMA engine 38, effectively function as a set 
of 32 binary “counters”. Thus, at any given time, each 
MnBLR register contains the address Which Will be used for 
the neXt data access to the message buffer associated With 
the Message Object n. In this manner, the MnBLR register 
for each message buffer serves as an address-pointer. These 
address-pointer ?elds are also readable at any time by the 
processor under softWare control. 

The above-described approach to message storage also 
provides an extremely quick and ef?cient means of freeing 
up a message buffer When a message completes or When a 
message buffer is full. The softWare can respond to a 
message-complete interrupt or a buffer-full interrupt by 
simply repositioning the message-buffer space for that par 
ticular Message Object to someWhere else in the message 
buffer memory space. This is accomplished by performing a 
single Write operation to modify the buffer base-address 
speci?ed in the appropriate MnBLR register (i.e., “address 
pointer”). This is essentially the eXtent of a very short 
interrupt handling routine. These interrupts must be handled 
quickly because the message buffer must be freed-up for 
subsequent message reception. Interrupt response is particu 
larly critical if many completed messages are stacked up and 
need to be dealt With at once. Once this buffer repositioning 
is accomplished, the hardWare is immediately ready to 
receive a neW message over that Message Object “channel” 
(or, the continuation of the current message, in the case of a 
buffer-full interrupt). The memory space that Was previously 
designated as the message buffer for that Message Object n 
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still contains the previously-received message data, but this 
space noW becomes just part of the long-term data memory 
space. The message information stored in this long-term data 
memory space can then be processed by the softWare at its 
leisure. 

This same buffer repositioning technique can be 
employed for Transmit Messages to facilitate fragmentation. 
Unlike the receive case, the XA-C3 CAN/CAL Module 77 
does not automatically assemble fragmented outgoing mes 
sages. It is incumbent upon the softWare to “load” a neW 
message frame each time the previous frame is transmitted. 
Using the XA-C3 microcontroller 20 message storage 
scheme, hoWever, the softWare can construct an entire 
fragmented message prior to enabling transmission. As each 
frame is transmitted, the processor (XA CPU Core 22) only 
needs to reposition the buffer (again, using a single Write 
operation) to point to the location of the neXt frame. This is 
much faster than competing devices, Which require the 
processor to move up to 13 bytes of data from memory to a 
dedicated transmit buffer. 

It Will be appreciated that With the above-described mes 
sage buffer scheme of the present invention, each message 
buffer can be regarded as a separate FIFO having an inde 
pendently programmable buffer length, Which provides a 
revolutionary approach to storing sequential messages of 
varying lengths Without any CPU intervention. 

THE PRESENT INVENTION 

As described hereinabove, each incoming (received) 
CAN Frame that passes Acceptance Filtering Will be auto 
matically stored, via the DMA engine 38, into the message 
buffer for the Receive Message Object that particular CAN 
Frame Was found to have matched, Without interrupting the 
XA CPU Core 22. Under the CAN protocol, if a Message 
Object is an enabled Receive Message Object, and its 
associated MnCTL register has its FRAG bit set to ‘1’ (i.e., 
automatic fragmented message assembly is enabled for that 
particular Receive Message Object), then the CAN Frames 
that match that particular Receive Message Object Will be 
stored sequentially in the message buffer for that particular 
Receive Message Object using the format shoWn in FIG. 12. 
When Writing message data into a message buffer asso 

ciated With a Message Object n, the DMA engine 38 Will 
generate addresses automatically starting from the base 
address of that message buffer (as speci?ed in the MnBLR 
register associated With that Message Object n). Since the 
siZe of that message buffer is speci?ed in the MnBSZ 
register associated With that Message Object n, the DMA 
engine 38 can determine When it has reached the top location 
of that message buffer. If the DMA engine 38 determines 
that it has reached the top location of that message buffer, 
and that the message being Written into that message buffer 
has not been completely transferred yet, the DMA engine 38 
Will Wrap around by generating addresses starting from the 
base address of that message buffer again. Some time before 
this happens, a Warning interrupt Will be generated so that 
the user application can take the necessary action to prevent 
data loss. 

For single-frame messages, the “Message Complete” con 
dition occurs at the end of the single frame. For multi-frame 
(fragmented) messages, the “Message Complete” condition 
occurs after the last frame is received and stored. Since the 
XA-C3 microcontroller 20 hardWare does not recogniZe or 
handle fragmentation for transmit messages, the TX Message 
Complete condition Will alWays be generated at the end of 
each successfully transmitted frame. 
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As previously mentioned, there is a control bit associated 

With each Message Object indicating Whether a Message 
Complete condition should generate an interrupt, or just set 
a “Message Complete Status Flag” (for polling) Without 
generating an interrupt. This is the INTiEN bit in the 
MnCTL register associated With each Message Object n. 

There are tWo 16-bit MMRs 40, MCPLH and MCPLL, 
Which contain the Message Complete Status Flags for all 32 
Message Objects. When a Message Complete (TX or RX) 
condition is detected for a particular Message Object, the 
corresponding bit in the MCPLH or MCPLL register Will be 
set. This Will occur regardless of Whether the INTiEN bit 
is set for that particular Message Object (in its associated 
MnCTL register), or Whether Message Complete Status 
Flags have already been set for any other Message Objects. 
These tWo status registers (MCPLH and MCPLL) are read 
able at any time by the XA CPU Core 22, thus providing a 
“polling” capability. Each bit in these registers can be 
cleared by the softWare once the corresponding message has 
been processed. 

In addition to these 32 Message Complete Status Flags, 
there is a TX Message Complete Interrupt Flag and an RX 
Message Complete Interrupt Flag, corresponding to bits [1] 
and [0], respectively, of an MMR 40 designated 
CANINTFLG, Which Will generate the actual Event inter 
rupt requests to the XA CPU Core 22. When an End-of 
Message condition occurs, at the same moment that the 
Message Complete Status Flag is set, the appropriate TX or 
RX Message Complete Interrupt ?ip-?op Will be set pro 
vided that INTiEN=1 for the associated Message Object, 
and provided that the interrupt is not already set and pend 
ing. 

Further, the MMR 40 designated MCIR (Message 
Complete Info Register) in FIG. 4, contains siX bits, includ 
ing ?ve bits that identify the loWest-numbered interrupt 
enabled Message Object for Which an End-of-Message 
condition eXists, and one bit that indicates Whether an 
End-of-Message condition eXists for any interrupt-enabled 
Message Object. The Message Complete Info Register 
alloWs the XA CPU Core 22 to directly read Which object(s) 
currently have a message-complete interrupt pending. This 
register (MCIR) is updated on every clock edge, so that it 
continuously identi?es the number of the loWest-numbered, 
interrupt-enabled Message Object for Which an End-of 
Message condition eXists. 

In further accordance With the present invention, the 
message handler logic Within the CAN/CAL module 77 
constantly (every clock cycle) monitors the output of the 
Message Complete Status Flag Registers (MCPLH and 
MCPLL), along With the 32 interrupt-enable bits from the 32 
Message Object Control Registers (MnCTL), in order to 
identify the loWest-numbered, interrupt-enabled Message 
Object for Which an End-of-Message condition eXists. Every 
clock cycle, this object number is loaded into the Message 
Complete Info Register (MCIR). Thus, any changes in the 
Status Flags, e.g., due to a neW message completing, or due 
to a bit being cleared by softWare, is immediately re?ected 
in the Message Complete Info Register. 

If the XA CPU Core 22 is able to respond to a Message 
Complete Interrupt right aWay, there should be only one 
completed message pending (eXcluding any messages for 
Which interrupt generation has been disabled). The softWare 
can read the Message Complete Info Register to determine 
Which Message Object has a completed message, process 
that message, clear the appropriate Status Flag Within the 
Message Complete Status Flag Registers (MCPLH and 



US 6,647,440 B1 
19 

MCPLL), clear the RX Message Complete Interrupt Flag 
corresponding to bit [0] of the MMR 40 designated 
CANINTFLG, and then return to its previous state. 

In further accordance With the present invention, When the 
XA CPU Core 22 is interrupted by a TX or RX message 
complete event, it Will ?rst read the Message Complete Info 
Register to determine Which Message Object has a com 
pleted message. It Will then process that message and then 
clear the Message-Complete Status Flag corresponding to 
that Message Object. At this point, the XA-C3 CPU Core 22 
Will again read the Message Complete Info Register to 
determine Whether there are any additional, interrupt 
enabled Message Object for Which an End-of-Message 
condition eXists. 

If the XA CPU Core 22 Was able to respond to the 
Message-Complete Interrupt right aWay and process it 
quickly, there are unlikely to be any additional Message 
Complete Interrupts pending. In this case, the XACPU Core 
22 can clear the RX Message Complete Interrupt Flag, and 
return to its previous state. 

If, on the other hand, the XA CPU Core 22 took a While 
to handle the ?rst Message-Complete Interrupt, additional 
messages may very Well have completed in the meantime. In 
this case, a neW message-completed Message Object Will 
have “popped” to the top as soon as the softWare cleared the 
Message-Complete Status Flag corresponding to the ?rst 
message-completed Message Object. The number of this 
Message Object Will noW appear in the Message Complete 
Info Register. The softWare Will then process this neWly 
completed message, clear the appropriate Message 
Complete Status Flag, and once again read the Message 
Complete Info Register to determine Whether there are any 
additional completed messages Which require processing. Of 
course, this process Will be repeated until there are no more 
completed messages remaining to be processed. At this 
point, the softWare can clear the RX Message-Complete 
Interrupt Flag and return to its previous state. 

It Will be appreciated by those skilled in the pertinent art 
that the reason the Message Complete Info Register is so 
important is that it Would be an extremely cumbersome and 
time-consuming task for the softWare to isolate the ?rst bit 
set in the 32-bit status ?eld and translate this into a Message 
Object number for processing. The Message Complete Info 
Register alloWs the softWare to read this value directly, and 
process each completed message sequentially. The 32 bits 
constituting the Message-Complete Status Flags are still 
readable by the XA CPU Core 22 for polling purposes. Thus, 
if the softWare simply Wants to determine Whether a par 
ticular Message Object has a completed message, it is a very 
simple task to just test the appropriate one of the Message 
Complete Status Flags. 

The speci?c implementation of the controlling logic 
Within the XA-C3 microcontroller 20 is as folloWs. The 
Message Management engine Within the CAN/CAL module 
77 provides the folloWing signals to a CAN Interrupt logic 
module Within the Message Handling engine of the CAN/ 
CAL module: 

1. 5 -bit RXiObjectiNumber: Indicates the number of the 
current Receive Message Object. 

2. 5 -bit TXiObjectiNumber: Indicates the number of the 
current Transmit Message Object. 

3. RXiComplete Flag: Indicates a message-complete 
(End-of-Message) condition for the current Receive 
Message Object. 

4. TXiComplete Flag: Indicates a message-complete 
(End-of-Message) condition for the current Transmit 
Message Object. 
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5. RXiObjectiEna: Single-bit ?ag indicating Whether 

the current Receive Message Object is enabled to 
generated End-of-Message Interrupts. 

6. TXiObjectiEna: Single-bit ?ag indicating Whether the 
current Transmit Message Object is enabled to gener 
ated End-of-Message Interrupts. 

7. 32 Individual Object Interpt-Ena bits directly from the 
respective individual Message Object Control Regis 
ters (MnCTLs). 

The CAN Interrupt module processes these signals as 
folloWs: 
The RXiComplete Flag and the TXiComplete Flag are 

used to control a 5-input, 2:1 multiplexer Which selects 
betWeen either the RXiObjectiNumber of the 
TXiObjectiNumber, depending upon Which type of mes 
sage has completed. This value goes through a 5:32 decoder, 
the outputs of Which are routed to the ‘D’ inputs of the tWo 
16-bit Message Complete Status Flag Registers (MCPLH 
and MCPLL). These registers are enabled to be updated 
Whenever either the RXiComplete Flag or the 
TXiComplete Flag is active. Again, these ?ags indicate 
Whether any message has been completed, regardless of 
Whether the corresponding Message Object has been 
interrupt-enabled. 
The RXiComplete and TXiComplete Interrupt Flags are 

generated Whenever the corresponding RXiComplete Flag 
or TXiComplete Flag is active and the appropriate Objecti 
Ena bit is high. Since RXiObjectiEna and TXiObjecti 
Ena are single bits re?ecting the interrupt-enabled/disabled 
status for the particular Message Object being processed at 
the time the Interrupt Flag gets set, the only logic required 
for generating the RXiComplete and TXiComplete Inter 
rupt Flags is a simple AND gate. 

Each of the 32 output bits of the 32 Message Complete 
Status Flag Registers (MCPLH and MCPLL) is logically 
AND’ed With the Intrpt-Ena bit for the corresponding Mes 
sage Object. The outputs of these 32 AND gates (logic AND 
operations) are routed to a priority encoder that determines 
the ?rst one in the sequence to exhibit a logic “1” state, and 
then encodes the Object Number corresponding to that bit. 
This Object Number is loaded into the Message Complete 
Info Register on the neXt clock edge. The logical OR of these 
32 AND gates is loaded into the 6th bit position of the 
Message Complete Info Register to indicated Whether there 
are any interrupt-enabled Message Objects for Which an 
End-of-Message condition exists that have not yet been 
processed. 

Although the present invention has been described in 
detail hereinabove in the conteXt of a speci?c preferred 
embodiment/implementation, it should be clearly under 
stood that many variations, modi?cations, and/or alternative 
embodiments/implementations of the basic inventive con 
cepts taught herein Which may appear to those skilled in the 
pertinent art Will still fall Within the spirit and scope of the 
present invention, as de?ned in the appended claims. 
What is claimed is: 
1. A CAN microcontroller that supports a plurality of 

uniquely-numbered message objects, comprising: 
a processor core that runs CAN applications; 

a plurality of message buffers associated With respective 
ones of the message objects; 

a plurality of individual message object registers associ 
ated With each message object, including at least one 
control register that contains an interrupt-enable con 
trol bit, a receive enable bit, and a transmit enable bit; 

a plurality of global message object control registers, 
including: 
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at least one message complete status register that 
contains a plurality of status ?ag bits for respective 
ones of the message objects; 

at least one interrupt ?ag register that contains a receive 
complete interrupt ?ag bit and a transmit complete 
interrupt ?ag bit; and, 

a message complete info register that contains a plu 
rality of message object identi?cation bits and a 
status bit; 

a CAN/CAL module that automatically assembles 
fragmented, multi-frame messages, Wherein the CAN/ 
CAL module includes: 
an acceptance ?ltering function that performs accep 

tance ?ltering on each incoming, multi-frame mes 
sage by comparing a screener ?eld of the incoming, 
multi-frame message With an acceptance ?lter ?eld 
associated With each message object Which has its 
associated receive enable bit set, Wherein the 
incoming, multi-frame message is accepted if its 
screener ?eld matches the acceptance ?lter ?eld of a 
receive-enabled message object; 

a message handling function that automatically trans 
fers successive frames of an accepted incoming 
multi-frame message to the message buffer associ 
ated With the matching receive-enabled message 
object; 

an end-of-message detection function that detects an 
end-of-message condition Which occurs When the 
last frame of the accepted incoming multi-frame 
message has been stored in the message buffer 
associated With the matching receive-enabled mes 
sage object; and, 

an end-of-message detection handling and interrupt 
generation function that, in response to the detection 
of the end-of-message condition: 
sets the status ?ag bit contained in the at least one 

message complete status register corresponding to 
the matching receive-enabled message object; 

sets the receive complete interrupt ?ag bit contained 
in the at least one interrupt ?ag register, if the 
interrupt-enable control bit contained in the at 
least one control register associated With the 
matching receive-enabled message object is set; 
and, 

sets the status bit contained in the message complete 
info register, if the interrupt-enable control bit 
contained in the at least one control register asso 
ciated With the matching receive-enabled message 
object is set. 

2. The CAN microcontroller as set forth in claim 1, further 
comprising a data memory space, the plurality of message 
buffers being located in the data memory space. 

3. The CAN microcontroller as set forth in claim 1, 
Wherein the CAN/CAL module includes a DMA engine that 
facilitates direct transfers of message data to the message 
buffers Without interrupting the processor core. 

4. The CAN microcontroller as set forth in claim 1, 
Wherein the individual message object registers and the 
global message object control registers comprise memory 
mapped registers. 

5. The CAN microcontroller as set forth in claim 1, further 
comprising: 

a data memory space; and, 
Wherein the individual message object registers and the 

global message object control registers comprise 
memory-mapped registers that are mapped to a respec 
tive portion of the data memory space. 
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6. The CAN microcontroller as set forth in claim 1, 

Wherein the plurality of message buffers are located in the 
data memory space. 

7. The CAN microcontroller as set forth in claim 1, 
Wherein the at least one control register associated With each 
message buffer is programmable for the purpose of enabling 
or disabling the interrupt-enable control bit, the receive 
enable bit, and the transmit enable bit. 

8. The CAN microcontroller as set forth in claim 1, 
Wherein the end-of-message detection handling and inter 
rupt generation function: 

monitors the status of the status ?ag bits contained in the 
at least one global message object control register, and 
the status of the interrupt-enable control bits contained 
in the individual message object registers, in order to 
identify the loWest-numbered interrupt-enabled mes 
sage object Whose associated status ?ag bit is set; and, 

sets the plurality of message object identi?cation bits 
contained in the message complete info register to 
re?ect the object number of the loWest-numbered 
interrupt-enabled message object Whose associated sta 
tus ?ag bit is set. 

9. The CAN microcontroller as set forth in claim 1, 
Wherein the end-of-message detection handling and inter 
rupt generation function monitors the status of the status ?ag 
bits contained in the at least one global message object 
control register, and the status of the interrupt-enable control 
bits contained in the individual message object registers, 
every clock cycle of a system clock. 

10. The CAN microcontroller as set forth in claim 1, 
Wherein a current application running on the processor core 
checks the status of the status ?ag bits contained in the at 
least one message complete status register, at selected times. 

11. The CAN microcontroller as set forth in claim 1, 
Wherein a current application running on the processor core 
checks the status of the status bit contained in the message 
complete info register to determine Whether or not there are 
any pending completed messages associated With a respec 
tive interrupt-enabled message object. 

12. The CAN microcontroller as set forth in claim 11, 
Wherein, in response to a determination that there is a 
pending completed message based on the status of the status 
bit contained in the message complete info register, the 
current application running on the processor core: 

processes the completed message corresponding to the 
loWest-numbered receive-enabled message object iden 
ti?ed by the message object identi?cation bits con 
tained in the message complete info register; 

clears the status ?ag bit contained in the at least one 
control register associated With the loWest-numbered 
receive-enabled message object; 

checks the status of the status bit contained in the message 
complete info register; and, 

repeats each of the above-recited operations if the status 
bit contained in the message complete info register is 
enabled, until the status ?ag bit is no longer enabled. 

13. The CAN microcontroller as set forth in claim 1, 
Wherein the CAN/CAL module generates a message 
complete interrupt in response to detection of an end-of 
message condition if the interrupt-enable control bit con 
tained in the at least one control register associated With the 
matching receive-enabled message object is enabled. 

14. The CAN microcontroller as set forth in claim 10, 
Wherein the current application running on the processor 
core processes the completed message corresponding to the 
message object associated With an enabled status ?ag bit that 
is contained in the at least one message complete status 
register. 






