
Control of a Large Process Using a Small PLC

RAMADAN A. FAN
Systems Engineer

Saudi Aramco
Dhahran, Saudi Arabia

L. CHEDED
Assistant Professor

Systems Engineering Department, KFUPM
Dhahran, Saudi Arabia

ABSTRACT

The objective of this paper is to demonstrate how a programmable logic controller (PLC) with a limited
input/output capability, such as the 12-input/8-output Omron PLC, coupled with a low-complexity interface
circuit can be used to control a large process. The test bed for this process is a traffic light system whose number
of outputs (26) far exceeds the 8 outputs available from the PLC. The key and novel idea behind this successful
PLC-Interface combination resides in the clever coding of the various states that the process under control has to
go through. An illustrative low-cost demonstration system was recently successfully tested at the Systems
Engineering Department. Finally, the coding technique used here can also be extended to other similar large
processes.

1. Introduction
Programmable logic controllers (PLCs) are

becoming more and more popular in industry due to
their flexibility, reliability, and cost-effectiveness.
Their architecture is similar to that of a conventional
digital computer, consisting of a central processing
unit, a memory unit, and a number of input/output
(I/O) terminals. The strength of a PLC, however, lies
in its optimized manipulation of one-bit logic
operations. The program is scanned continuously to
see if certain conditions on the inputs are met so that
appropriate actions on the outputs are taken.

One of the major concerns when selecting a
PLC for an application, besides speed, is the number
of input/output (I/O) connections it can provide.
PLCs come in different sizes and with varying
capabilities, ranging from micro PLCs that have up
to 32 I/O connections and 2K words of memory, to
large ones with an expandable I/O capability of up to
8192 I/O connections and 4M words memory [3].

The choice of a PLC appropriate for a particular
control task is usually determined by analyzing the
process to be controlled, and finding out the number
of I/O connections required for the interface. As
expected, the required number of I/O connections
will increase with the complexity of the control task
at hand, and a bigger PLC will have to be used,
hence raising the cost of the overall system.

A question that naturally arises at this stage is
the following: “Can a PLC with a modest number of
I/O terminals be used to control a relatively
sophisticated process?” An affirmative answer to
such question would certainly be of great
educational and practical benefit. The feasibility of
this idea was tested in a senior-project course in the
Systems Engineering Department at KFUPM, where
the process chosen was a traffic light system
providing both dumb and intelligent control. This
paper presents both the hardware and software
aspects of the successful design and operation of this
PLC-based controller.

1.1 PLC-Process Interface
Usually, the interface between a PLC and a

process begins with an analysis of the number of I/O
connections required. This will determine the size,
type and cost of the controller. But what if we were
restricted to a PLC that has only a limited number of
I/O connections, can we still use it to accomplish the
desired control task? One solution to this problem,
as presented in this paper, would be the introduction
of an intermediate stage which will interface the
PLC to the complex process.

We propose here an encoding/decoding
approach that would expand the fan-in and fan-out
capabilities of the small PLC used. The argument
behind this is that, although PLCs were originally
developed to supplant hard-wired controllers, a
hybrid solution involving a PLC and some hard-

wired interface may entail an increase in complexity
but would, in return, offer a cost saving.

Considering the time frame of our project, only
one part of the problem was investigated, i.e.
extending the fan-out capability of the PLC used. A
digital decoding circuit was designed to interface the
PLC outputs to a traffic light system. We assume
that the same approach can be used to extend the
fan-in capability of the PLC, leading to the design of
an encoding interface circuit between the traffic
lights and the PLC inputs.

1.2 Design of the Experiment
Figure-1 shows the four-way isolated

intersection used in this project. The major road has
separate signals for “straight-forward” and “left-
turning” traffic, whereas the minor road has a
common signal for both. The push buttons represent
pedestrian and vehicle sensors. The result is a total
of 26 lights and 10 push buttons. The PLC used is
the Omron Sysmac C20K, with 12 inputs and 8
outputs [4]. Although the inputs are sufficient for
direct connection with the push buttons, the outputs
are not enough for the traffic lights. Therefore, we
decided to consider the 8 PLC outputs as an 8-bit
code string, that will be decoded by a digital decoder
into the required number of outputs.

But the question is how to encode the various
traffic light states. A literature survey on traffic
control schemes [5, 6] showed that there are eight
basic states which the controller has to switch
between. Figure-2 shows these states arbitrarily
numbered from 1 to 8. Based on the fact that there
are extra intermediate states, such as the
green/yellow and the all-red states, between the
above-mentioned eight states, it was decided to use
some additional “control signals” for a proper
sequencing of the traffic lights.

The project was designed to carry out the
control in three different modes: dumb control,
intelligent control, and flashing mode. These three
modes are programmed in the PLC and their
selection is made from a PC which acts as a master
controller. The complete setup is shown in Figure-3,
where the feedback loop connects the ten push-
buttons of the traffic light circuit back to the PLC
input section. The remaining two PLC inputs are
used by the PC for mode selection according to the
following codes:

0 0 Flashing: Used for emergency repairs at the
intersection or for signaling PC breakdowns.

0 1 Dumb Control: Control is done by outputting
pretimed sequences.

1 0 Intelligent Control: Control senses requests
from pedestrians and vehicles which will
interrupt the normal sequence.

1 1 All-Red: Used as an intermediate state for safe
transitions between consecutive modes.

N

E

S

W

RYG

RYG

RYG

R

Y

G

R

G

GR

G

R RG

R

Y

G

RYG

PB1

PB2

PB3

PB5

PB4

PB8

PB6

PB7

PB10

PB9

R

Y

G

RED LIGHT

YELLOW LIGHT

GREEN LIGHT

PUSH BUTTON

Figure-1 The four-way intersection between a major road and a minor road.

1 2 3 4 8765

Figure-2 The eight basic states for traffic light control (arbitrarily numbered).

2. Hardware Design
2.1 PLC Output Interface

The eight PLC outputs, numbered here by their
addresses (100-107), are assigned as follows:

Address Label Meaning
100 VG Vehicle Green Light
101 VY Vehicle Yellow Light
102 PG Pedestrian Green Light
103 E Emergency Signal
104 A
105 B 3-bit State Code
106 C
107 ENB Buffer Enable Signal

The first four outputs are used as control signals
to differentiate between the intermediate states. The
red lights are not included since they are always the
complement of their corresponding green lights. The
next three outputs (A, B, C) are used for addressing
the eight states, and the last output (ENB) is used for
buffering purposes. Each state consists of three

consecutive sub-states: all-red, green, and
green/yellow. The flashing mode has two sub-states:
all-red (for 5 seconds) then flashing. Whenever one
of these states needs to be activated, the PLC
program will output the required sequence of bits.

Figure-4 shows the design of the decoding
circuit used. First, an octal buffer is used to latch and
synchronize the eight PLC outputs. Then, a 3-to-8
decoder is used to decode the 3-bit state code into
one of the eight basic states. The combinational
logic circuit will then turn on only those lights
corresponding to the active state. Finally, the timer
is used to provide the decoding circuit with its
flashing capability.

Several assumptions were made in order to
simplify the design. We assumed that there are no
separate right turn signals in either road. Also, the
minor road has no separate left turn signals. In
effect, states 6 and 8 (of Figure-2) were not used
because they require that the minor road have
separate left turn signals.

One limitation of our decoding circuit is that
some transitions are not possible, for example,
between states 1 and 5. During this transition, the
straightforward signal should stay green while the
left signal changes from green to green/yellow to
red. The way the circuit is built requires that all
green lights go through the intermediate sub-states
before entering the next state. The solution is to
either add these green/yellow sub-states to the eight
basic states and use a larger decoder, or simply
avoid transitions such as 1-5, 3-5, 1-7 and 3-7 in the
control. The latter option was chosen to keep the
overall design simple as it was meant for illustration
purposes.

2.2 PLC Input Interface
The PLC inputs are connected as follows:

Address Label Meaning
000 S0 Mode Selection Bit
001 S1 Mode Selection Bit
002 PB1 East-Straight Vehicle Push-Button
003 PB2 East-Left Vehicle Push-Button
004 PB3 East Pedestrian Push-Button
005 PB4 South Vehicle Push-Button
006 PB5 South Pedestrian Push-Button
007 PB6 West-Straight Vehicle Push-Button
008 PB7 West-Left Vehicle Push-Button
009 PB8 West Pedestrian Push-Button
010 PB9 North Vehicle Push-Button
011 PB10 North Pedestrian Push-Button

The twelve PLC inputs were sufficient for our
application. Recall that two of these were used for
mode selection, and the remaining ten for push-
button connections. But had their been more push-
buttons, a hardware solution could be found by
analyzing the requests and seeing which ones could
be ORed together, or multiplexed by hardware and
then demultiplexed by software, which is the reverse
of what we have done in the output decoding circuit.
The extension of the PLC fan-in capability was not
included in this project.

2.3 PC-PLC Interface
The role of the PC in this project is limited only

to selecting between the three different control
modes. It has no influence whatsoever on the traffic
light control itself. In fact, Figure-3 shows that the
PC is indeed outside the control loop. The PC
merely simulates a remote master controller which
uses the PLC as a slave.

3. Software Design
3.1 Control Logic

The coding of the control logic is accomplished
on two different platforms. The first is the PC which
uses a BASIC program to provide the user interface
and mode selection capability. The other is the PLC
which uses ladder logic to activate the desired
control mode. The communication between the two
programs is done through the S0 and S1 signals.

PC with PCL812
card

PLC
DECODING
CIRCUIT

TRAFFIC LIGHT
CIRCUIT

8 lines 26 lines

10 lines

2 lines

Figure-3 Block diagram of the traffic light control system used in the project.

SSR

SSG

SPG
SPR

SSY

ELR

ELG
ELY

ESR

ESG

EPG
EPR

ESY

WLR

WLG
WLY

WSR

WSG

WPG
WPR

WSY

NSR

NSG

NPG
NPR

NSY

74LS373
BUFFER

555
TIMER

74LS138
DECODER

VG

PG
VY

E

3

5

7

2

4

1A

C
B

ENB

+5V

COMBINATIONAL
CIRCUIT

Figure-4 PLC output interface using a decoding circuit.

START

State 5

State 7

State 4 State 2

PB1,PB5,PB6,PB10 PB3,PB4

PB8,PB9 PB2,PB7

START

PB1,PB5,PB6,PB10

PB2,PB7

PB8,PB9

PB3,PB4

PB2,PB7

PB1,PB5,PB6,PB10

PB8,PB9

PB3,PB4

(a) (b)

Figure-5 State diagram for (a) dumb control (b) intelligent control.

Figure-5 (a) shows the state diagram for the
dumb control mode. The system has to go through a
sequence of four consecutive states: 5-2-7-4, Each
consisting of three sub-states: all-red, green, and
green/yellow. The outputs that should be generated
and their timing sequence are shown in Table-1.
Notice that we gave state 5 the longest total duration
since it corresponds to the major road.

Table-1 also shows the timers that are
associated with each output in the PLC program.
Whenever an output needs to be turned on for the
corresponding duration, a combination of internal
timers and latches are used. For example, the VG
output is to be kept high in state 5 for the duration of
20 secs. (= 15 + 5) and in states 2, 7 and 4 for an
equal duration of 15 secs. (= 10 + 5). Hence for the
VG output alone, four timers are used (TIM0, TIM1,
TIM2 and TIM3), each of which is kept on for the
prescribed duration by its own latch.

Figure-5 (b) shows the state diagram for
intelligent control. In the absence of any interrupts
from the push buttons, the intelligent control mode is
the same as the dumb control mode. This is
indicated by the circular transition lines, which are
similar to those of the dumb control. However, if an
interrupt occurs, the control will activate the
corresponding state. This is indicated on the state
diagram by the added transitions in the middle. The
timing of each state remains the same, but the
sequence of states may be different.

A situation may arise when several interrupts
occur simultaneously. The ideal solution is to
service these interrupts based on a first-come-first-
served basis, or based on the relative importance of
these requests. In this project, however, there are no
priorities defined. The program simply activates
whichever state it scans first in the ladder diagram.

If the flashing mode is selected, then the system
will first stay in the all-red state for 5 seconds (for a
safe transition from a currently active state), then
starts to flash. If the master controller (PC) suddenly
fails, the PLC will automatically turn the flashing
signal on because the S0 and S1 inputs will be low.
The required output sequence is shown below in
Table-2.

3.2 Ladder Implementation
The implementation of the control logic

described above is accomplished using ladder logic.
The first part of the ladder sets the control in the
desired control mode. This is done by scanning the
PLC inputs 000 and 001. If the dumb or intelligent
modes are chosen, the control will start from state 5
as indicated on the state diagrams of Figure-5. The
program then continues to scan the PLC inputs
during the activated mode in order to detect any
change in the desired mode, or in the case of
intelligent control, detect requests from push
buttons. Based on these inputs, a certain state can be
entered and the corresponding outputs can be
activated.

For example, in order to enter state 5, the
program has to sense either a dumb mode start up,
an intelligent mode start up, a push button
depression, or simply the end of the previous state
(state 4) if it is in normal operation. The first output
to be activated is “C” as indicated in Table-1,
initially for a duration of 5 seconds (TIM18) then for
20 seconds (TIM19). The reason for using two
timers here is that the end of TIM18 is used to send
a signal to two other timers, namely TIM8 (for
activating “PG”) and TIM0 (for activating “VG”).
Similarly, the end of TIM8 sends a signal to TIM4
for activating “VY”.

Table-1 Timing sequence for the PLC outputs in the four states (used in the dumb and intelligent modes).

C B A E PG VY VG
Duration

(sec.)

0 0 0 0 0 0 0 5

0 0 0 1 0 0 0 Indefinite

Table-2 Timing sequence for the PLC outputs in the flashing mode.

An additional timer, TIM23 (not shown on
Table-1), is used for activating the output “ENB” for
a very small duration (0.5 seconds) in order to buffer
the PLC outputs to the decoding circuit whenever
there is a change in the state.

The procedure for encoding state 5 is duplicated
for the remaining possible states of the system, with
the exception of the startup events for both the dumb
and intelligent modes. The complete ladder diagram
was documented as part of the project report.

4. Conclusions
In this paper, the control of a traffic light system

requiring more outputs than can be provided for by
the small PLC used, was illustrated. It was shown
that the solution to this control problem hinged upon
the key idea of using the limited PLC outputs for the
sequencing of the various states of the process to be
controlled rather than for the direct control of the
process outputs themselves.

This entailed the use of a software encoding
scheme, followed by a hardware decoding circuit of
modest complexity. We believe that this encoding/
decoding approach offers a good compromise

between complexity and low cost on the one hand
and design flexibility on the other, and as such,
should therefore be attractive in situations where the
cost of a larger PLC is prohibitive.

Finally, not only can this approach be used to
increase the PLC’s fan-in capability as pointed
earlier, but it is also general in nature and hence, can
be applied to other large processes with suitable
modifications in the interface circuit.

References
 [1] John W. Webb, Programmable Logic Controllers:

Principles and Applications. New York: Macmillan,
1988.

 [2] Ryan G. Rosandich, “What to Know About PLC
Ladder Diagram Programming” EC&M Jun. 1996:
20.

 [3] Kelvin T. Erickson, “Programmable Logic
Controllers” IEEE Potentials Feb./Mar. 1996:14.

 [4] Omron User Manual and Installation Guide, 1989.
 [5] Charles V. Zegeer and Sharon F. Zegeer, Pedestrians

and Traffic-Control Measures. No.139, Washington,
DC: National Research Council, Nov. 1988.

 [6] James H. Kell and Iris J. Fullerton, Manual of Traffic
Signal Design. New Jersey: Prentice-Hall, 1982.

T
IM

 0
T

IM
 1

T
IM

 2
T

IM
 3

T
IM

 4
T

IM
 5

T
IM

 6
T

IM
 7

T
IM

 8
T

IM
 9

T
IM

 10
T

IM
 11

T
IM

 12
T

IM
 13

T
IM

 14
T

IM
 15

T
IM

 16
T

IM
 17

T
IM

 18
T

IM
 19

T
IM

 20
T

IM
 21

State C B A E PG VY VG
Duration

(sec.)

1 0 0 0 0 0 0 5

5 1 0 0 0 1 0 1 15

1 0 0 0 0 1 1 5

0 0 1 0 0 0 0 5

2 0 0 1 0 1 0 1 10

0 0 1 0 0 1 1 5

1 1 0 0 0 0 0 5

7 1 1 0 0 1 0 1 10

1 1 0 0 0 1 1 5

0 1 1 0 0 0 0 5

4 0 1 1 0 1 0 1 10

0 1 1 0 0 1 1 5

	Main Page

