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1 Introduction

Recent work on language-driven Design Space Exploration (DSE) ([1], [2], [3], [4], [6], [7], [9],
[11], [12]), uses Architectural Description Languages (ADL) to capture the processor architecture,
generate automatically a software toolkit (including compiler, simulator and assembler) for that
processor, and provide feedback to the designer on the quality of the architecture.

However none of these ADLs have explicit way of describing hazards and interrupts for wide
variety of processors and memory architectures. The nML [6], LISA [5] and RADL [10] proces-
sor description languages are closet to our work. We describe in detail the hazard and interrupt
specification techniques for these languages.

The RADL [10] processor description language supports interrupts and hazards specification.
Hazard/Stall specification is closely tied to the architecture and hence not good candidate for ar-
chitectural exploration. Moreover, the paper does not demonstrate how to apply this technique for
VLIW and Superscalar processors. RADL has one declarative part for interrupt handling. It allows
multiple program counters and could specify the program counter in the pipe-line control section
declaratively. On a given signal, which indicates an interrupt, it fetches using an alternative PC.
However, register file save and restore along with interrupt disable and re-enable was left to be
procedural. Moreover, this language mechanism does not correspond to any hardware implemen-
tation. So while it leads to cycle and phase-accurate instruction behavior, it may not accurately
reflect internal hardware state. The paper does not give any examples of interrupt specification. It
provides example for hazard detection and stalling using the simple DLX pipeline as described in
Hennessey and Patterson [8] figure 3.4. It detects hazard using its load interlock detection logic
and sets the appropriate control signal,load raw (say). The strategy to perform the stall using
load raw is as follows:

load_raw, ID:stall(NOP)

load raw signal decides whether the above strategy is applicable. The second element, ”ID:”,
indicates the pipeline stage involved. The third element, ”stall(NOP)”, indicates that NOP in-
struction will be inserted into the stage just after the ID stage. The ID stage and all other upstream
stages are stalled. The rest of the stages (MEM and WB) will continue to flow smoothly. In RADL,
sometimes ”kill” construct is used to replace an instruction with stalling upstream stages.

The nML processor description language [6] has explicit way of describing interrupts. The
example shown below is given in the paper. The example assumes an interrupt register that may
hold a value of 0 or an interrupt number that serves as index into some vector array stored at
address 256.

mem interrupt_register[1, card(4)] volatile="irq"

op instruction(i:rest_instruction)
action={

i.action;
if interrupt_register != 0
then STORED_PC = PC;

PC=M[interrupt_register << 2+0x100];
interrupt_register = 0;

endif;
}
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The interrupt-register is marked as ”volatile”, i.e. ”changing its value”. If some non-zero value
appears, the PC is stored in some intermediate location (or put on the stack or whatever) and
changed to the address found at the index. Of course, on a real machine much more happens: the
current CPU state is stored, special mode bits are set, interrupts may be masked etc.

LISA [5] Gnatt chart based models to detect structural hazards. In order to detect data and
control hazards and perform pipeline flushes it uses extended Gnatt charts by introducing L-charts
and operation descriptors. The following example shows two instructions producing a hazard:

IF | ID(!w:R0) | IA | IE(w:R0) | % instruction \#1
IF | ID(r:R0) | IA | IE % instruction \#2

Instruction #1 reserves register R0 for writing already during the ID operation by announcing
the write access to register R0 using the resource descriptor !w: and it performs the write during
the IE operation (specified by the w: descriptor). Instruction #2 (shown shifted) attempts to read
register R0 during the decode operation (the r: descriptor is used). Using the supplied information
the data hazard on register R0 can be easily detected and resolved using interlocking, as shown
below. The same mechanism is used to describe control hazards and effects of short circuiting.

IF | ID(!w:R0) | IA | IE(w:R0) |
IF | nop | nop | ID(r:R0) | IA | IE

In order to describe pipeline flushing, LISA permits some of the control instructions to explicitly
change the sequencing mechanism of the generic machine model. It introduced the k: descriptor
for operations (e.g., k:03). The kill descriptor is described in the example given below. The
example is the LISA machine description of TMS320C54x branch conditional (BC) instruction.
The kill descriptor simply overloads the operation in the specified stage with its own operation, in
this case NOP. In this way operation cancellation takes place to stop further propagation (issuing)
of the instructions which are supposed to be flushed due to branch mis-prediction.

<insn> BC
{

<decode>
{

%ID: (0x7495, 0x0493)
%cond_code: { %OPCODE1 & 0x7F }
%dest_address: { %OPCODE2 }

}

<schedule>
{

BC1(PF, w:ebus_addr, w:pc) |
BC2(PF, w:pc), BC3(IF) |
BC4(ID) |
<if> (condition(cond_code))
{

BC5(AC) |
BC6(PF), BC7(ID), BC8(RE) |
BC9(EX)

}
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<else>
{

k:NOP(IF), BC10(AC, w:pc) |
BC11(PF), BC12(ID), BC13(RE) |
k:NOP(ID), BC14(EX) |
k:NOP(ID), k:NOP(AC) |
k:NOP(AC), k:NOP(RE) |
k:NOP(RB), k:NOP(EX) |
k:NOP(EX)

}
}

<operate>
{

BC1.control: { ebus_addr = pc++ }
BC2.control: { ir = mem[ebus_addr]; pc++ }
BC10.control: { pc = (%OPCODE2) }

}
}

LISA and RADL have similar mechanism for hazard detection and pipeline flushing. These are
very much tied to the architecture. For example, in LISA the L-chart for each operation (e.g., BC)
describes which operations to be killed at which particular pipeline stage. During design space ex-
ploration where designers want to change pipeline stages, parallelism etc. these techniques are not
useful since for every change in the architecture all the operations needs to be re-written. More-
over, the specification technique is not general enough to model hazards or pipeline flushes in
contemporary DSP, VLIW and Superscalar architectures. nML has very primitive interrupt speci-
fication mechanism which is not powerful enough to model the the interrupts, exceptions and their
complex interactions (e.g., handling multiple exceptions) available in contemporary architectures.
In other words, existing hazards and interrupts specification techniques are not good candidates for
design space exploration of wide spectrum of processor-memory architectures.

Section 2 describes how we specify hazards and stalls in EXPRESSION [7]. The explicit spec-
ification of interrupts and exceptions in EXPRESSION is described in Section 3. Section 3 also
includes the examples of interrupts and exceptions for contemporary VLIW and superscalar archi-
tectures.

2 Specification of Hazards and Stalls

There are three classes of hazards:

1. Structural hazardsarise from resource conflicts when the hardware cannot support all pos-
sible combinations of instruction in simultaneous overlapped execution.

2. Data hazardsarise when instructions depend on one another in a way that is exposed by the
overlapping of instructions in the pipeline.

3. Control hazardsarise from dependencies on branches and other instructions that changes the
PC.
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2.1 Data Hazards

We capture the data hazard information of the processor by specifying the functional unit which
detects the hazard. It also captures, whenever possible, the operation which causes the hazard. We
consider three classes of data-dependent hazards, according to various data update patterns: write
after read (WAR) hazards, read after write (RAW) hazards, and write after write (WAW) hazards.
Note that read after read (RAR) does not pose a problem, because nothing is changed. The hazard
problem can be solved by data forwarding (also called bypassing and sometimes short-circuiting)
whenever possible. In general, pipeline gets stalled when a hazard is detected. Stall can be local
where only the instruction is stalled. Now this has different implications in different scenarios. In
case of in-order execution semantics, stalling a operation means stalling everything if the architec-
ture does not have reservation station anywhere. If it has reservation station in units which have
space to accommodate incoming operations then the above scenario would mean stalling that par-
ticular functional unit which detected the hazard. If it has out-of-order execution semantics then it
means only operation stalling. Some hazards may not happen for particular architectural style. For
example, WAW and WAR is not possible when architecture has register renaming. Detection of a
hazard does not mean it would stall operation, functional unit, that particular pipe or the complete
architecture. It may not do anything at all and issue the operation. For example, if a architecture
supports snooping (reading operands using bypass logic in execution unit) then issue unit can issue
the operation evenif one or both of its operands are not ready (RAW hazard).

Based on this discussion we classify the stall, due to data hazard, into the following five cate-
gories. First four of them belongs to local stall category.

� NO ACTION

� OPERATION STALL

� UNIT STALL

� PIPE STALL, Stalls only that particular pipe, in case of fragmented pipeline

� GLOBAL STALL

We specify the hazard and stall information in control unit. The syntax of this specification is
shown below:

(Unit Control
(HAZARDS

<hazard_list>
)

)

<hazard_list> := (<hazard type> <hazard_detection_action_list>)
| <hazard_list>
| NULL

<hazard type> := RAW | WAR | WAW
<hazard_detection_action_list>
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:= (<function_unit_name> <operation_name> <action>)
| <hazard_detection_action_list>

<function_unit_name> := /* The unit which handles that hazard */
<operation_name> := /* The operation during which the hazard occurs*/
<action> := "NO ACTION" | "OPERATION STALL" | "UNIT STALL" | "PIPE STALL" | "GLOBAL STALL"

Following example shows the hazard specification for a typical architecture using the above
grammar. Each type of hazard (RAW, WAR, WAW) may occur in more than one place in the
architecture. RAW happens in three issue units, ALU1 and LDST in the example shown below. We
specify during which operation (operation read, operation issue, operation graduation, execution
etc.) does this hazard occur. The last field specifies the necessary action need to be taken when
this hazard is detected.

(Unit Control
(HAZARDS

(RAW (INTISSUE OPREAD "NO ACTION")
(FLTISSUE OPREAD "OPERATION STALL")
(MEMISSUE OPREAD "UNIT STALL")
(ALU1 OPREAD "PIPE STALL")
(LDST OPREAD "GLOBAL STALL")

)
(WAR (DECODE OPISSUE "GLOBAL STALL"))
(WAW(COMPLETION GRADUATE "UNIT STALL"))

)
)

2.2 Control Hazards

Control hazards due to branches can have different outcome depending on how the branch is
handled for that architecture. The actions due to branch mis-prediction can be specified either in
the branch opcode or in the functional unit which handles branch operation. It appears more appro-
priate to specify the actions in the functional unit which handles branch operation. The following
piece of code shows the actions taken during branch mis-prediction for a typical processor.

If (misprediction )
{

updatePC;
updateBTB;
selectiveFlush;

}

UpdatePC and updateBTB are self explanatory. We consider two kinds of flushing here viz.,
selective flushing and complete flushing. In selective flushing all the instructions ahead (in se-
quential order) of mis-predicted branch are allowed to graduate and all the instructions came to
pipeline after the mis-predicted branch are flushed. In complete flushing all the instructions in the
pipeline are flushed.

2.3 Structural Hazards

Structural information are provided using reservation tables. During static scheduling (compile
time) this resource information is used. In execution time structural hazards leads to different kinds
of stalls viz., pipe stall, unit stall, global stall etc. depending on the architecture.
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3 Specification of Interrupts and Exceptions

We classify interrupts into three categories. This classification is motivated from the ease of
specification point of view.

� External interrupts (reset, power on etc.)

� Software/Hardware interrupts related to functional unit (illegal slot exception etc.)

� Software exceptions related to opcodes (like divide by zero, TLB miss etc.)

Figure 1. Different types of interrupts

3.1 Opcode related interrupts

It is appropriate to describe opcode related interrupts and it’s actions inside the opcode specifica-
tion. For example, modified DIV opcode is shown below after adding the exception information.
Please note that the last line is newly added, the remaining three lines exist in the original EX-
PRESSION description.

(OPCODE DIVW
(OP_TYPE DATA_OP)
(OPERANDS (_SOURCE1_ gpr) (_SOURCE_2_ gpr) (_DEST_ gpr))
(BEHAVIOR "_DEST_=SRC1/SRC2")
if (SRC2 == 0) throw D-exception.

)

3.2 Interrupts Related to Functional Units

Functional unit related interrupts should be defined in functional unit specification. For example,
illegal slot instruction can be described in decode unit.

(Unit Decode
(CAPACITY 2)
(TIMING (all 1))
(OPCODES all)
(PORTS Obj3 Obj5 Obj36 Obj2)
if (SLOT4 opcode != LDST_type) throw illegal slot instruction

)
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3.3 External Interrupts

External interrupts can be specified in the control unit.

3.4 Interrupt Handler

Interrupt handler will have a priority table and will be able to acceptn number of excep-
tion/interrupt requests and generate only one interrupt per cycle.

There may not be one interrupt associated with each exception. A class of exceptions may give
rise to one interrupt, in that case architecture implementation should ensure only one exception
from that class happens at a time. If each exception corresponds to a particular interrupt then
actions for each interrupt can be described where exception is described viz., in opcode or in unit.
In general, one interrupt corresponds to more than one exception. We specify the interrupts and
exceptions in control unit. The syntax of this specification is shown below.
(Unit Control

( INTERRUPTS <interrupt_list> )
)

<interrupt_list> := <Interrupt>
| <interrupt_list>
| NULL

<Interrupt> := ( INTERRUPT <interrupt_name>
( EXCEPTIONS <exception_list> )
( OPERANDS <operand_list> )
( BEHAVIOR <behavior of ISR> )

)

<interrupt_name> := /* name of the interrupt */

<exception_list> := /* The list of exceptions which give rise to
that particular interrupt. */

<behavior of ISR> := /* Behavioral description of the interrupt
service routine for the interrupt <interrupt_name> */

For example, interrupt INT1 is described below. INT1 gets generated due to any memory failure
during memory operation e.g, ITLB miss, DTLB miss etc.

(Interrupt INT1
(EXCEPTIONS ITLB_MISS, DTLB_MISS, ....)
(OPERANDS ....)
(BEHAVIOR "SelectiveStall;

Save state;
SetPC(INT1 address);
ExecuteISR1(...); // Updates TLB
Restore state"

)
)

3.5 Multiple Exceptions

As we discussed earlier, interrupt handler is responsible for handling multiple exceptions. Each
exception sets one particular bit of interrupt service register (ISR) in interrupt handler unit. Inter-
rupt handler decides the highest priority interrupt using interrupt priority table. Now the question
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remains how do we specify explicitly, what happens to the remaining interrupts. This is system
specific. In general, external interrupts are serviced one after the other in the priority order (unless
masked by earlier one) before resuming the program execution. The software interrupts caused due
to program execution (which got flushed) can be ignored since they will be generated again once
execution is resumed. Masking information for each interrupt need to be captured explicitly. In
general, interrupts are not allowed to interrupt an interrupt service routine. However, NMI in c6x
is allowed to interrupt the execution of lower priority interrupts. NMI saves the state, completes
execution and then earlier interrupt execution is resumed. The family of PowerPC architectures
execute all the interrupts based on priority and gurranted to report in program order. Only excep-
tion is in the case of multiple synchronous imprecise interrupts where synchronizing event ensures
all previously unreported exceptions are reported. An interrupt of an exception class masks the
interrupts of the classes having equal or lower priority. This may not mean an exception, which
might have caused an interrupt otherwise, is lost. It could be stored in temporary register and later,
when that particular type of interrupt is enabled, might be serviced.

In our scheme we can mask all the equal or lower priority interrupts. Service all the external
interrupts (not generated due to program execution). Enable all the pending interrupts. Now these
pending interrupts were generated due to program execution which are expected to generate while
execution resumes. If they don’t get generated again, have two possibilities, viz.,

� The program code segment which generated this interrupt have been completed successfully.

� The exception is not valid any more. For example., TLB miss processing for one load oper-
ation can suppress the TLB miss exception for the other one.

An synchronizing event should ensure (if necessary) that all the pending interrupts are enabled.

3.6 Example architectures: interrupts and exceptions

3.6.1 PowerPC Family

Table 1 shows all the interrupt and exception category possible in the family of PowerPC architec-
tures. It also shows what category does each exception belong to viz., asynchronous, synchronous
precise, synchronous imprecise. Table also shows the critical interrupts.

We can classify the the exceptions shown in Table 1 in the three major categories mentioned
earlier depending on where we want to capture them in EXPRESSION. It does not have exception
for the opcode category.

� External (describe in Control unit)

1. Critical Input

2. Machine Check

3. External Input

4. Alignment
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5. Decrementer

6. Fixed-interval timer

7. Watchdog timer

8. Debug

� HW/SW exceptions (describe in functional unit)

1. Data Storage

2. Instruction Storage

3. Program

4. FP Unavailable

5. System Call

6. AP Unavailable

7. Data TLB error

8. Instruction TLB error

3.6.2 IA-64 interrupts

1. Machine reset

2. Machine check

3. Initialization interrupt

4. Platform management interrupt

5. External interrupt

6. IR unimplemented data address fault

7. IR data nested TLB fault

8. IR alternate data TLB fault

9. IR VHPT data fault

10. IR data TLB fault

11. IR data page not present fault

12. IR data NaT page consumption fault
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13. IR data key miss fault

14. IR data key permission fault

15. IR data access rights fault

16. IR data access bit fault

17. IR data debug fault

18. IA-32 instruction breakpoint fault

19. IA-32 code fetch fault

20. Alternate instruction TLB fault

21. VHPT instruction fault

22. Instruction TLB fault

23. Instruction page not present fault

24. Instruction NaT page consumption fault

25. Instruction key miss fault

26. Instruction key permission fault

27. Instruction access rights fault

28. Instruction access bit fault

29. Instruction debug fault

30. IA-32 instruction length ¿ 15 bytes

31. IA-32 invalid opcode fault

32. IA-32 instruction intercept fault

33. Illegal operation fault

34. Illegal dependency fault

35. Break instruction fault

36. Privileged operation fault

37. Disabled floating-point register fault
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38. Disabled instruction set transition fault

39. IA-32 device not available fault

40. IA-32 FP error fault

41. Register NaT consumption fault

42. Reserved register/field fault

43. Unimplemented data address fault

44. Privileged register fault

45. Speculative operation fault

46. IA-32 stack exception

47. IA-32 general protection fault

48. Data nested TLB fault

49. Alternate data TLB fault

50. VHPT data fault

51. Data TLB fault

52. Data page not present fault

53. Data NaT page consumption fault

54. Data key miss fault

55. Data key permission fault

56. Data access rights fault

57. Data dirty bit fault

58. Data access bit fault

59. Data debug fault

60. Unaligned data reference fault

61. IA-32 alignment check fault

62. IA-32 locked data reference fault
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63. IA-32 segment not present fault

64. IA-32 divide y zero fault

65. IA-32 bound fault

66. IA-32 streaming SIMD extension numeric error fault

67. Unsupported data reference fault

68. Floating point fault

69. Unimplemented instruction address trap

70. Floating-point trap

71. Lower-privilege transfer trap

72. Taken branch trap

73. Single step trap

74. IA-32 system flag intercept trap

75. IA-32 gate intercept trap

76. IA-32 INTO trap

77. IA-32 breakpoint trap

78. IA-32 software interrupt trap

79. IA-32 data breakpoint trap

80. IA-32 taken branch trap

81. IA-32 single step trap

3.6.3 TI C6x interrupts

1. Reset, highest priority

2. NMI

3. INT4

4. INT5

5. INT6
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6. INT7

7. INT8

8. INT9

9. INT10

10. INT11

11. INT12

12. INT13

13. INT14

14. INT15, lowest priority

Reset is used to halt the CPU and return it to a known state. Non-maskable interrupt (NMI)
is used to alert the CPU of a serious hardware problem such as imminent power failure. The
remaining twelve interrupts viz., INT4 to INT15, can be associated with external devices, on-chip
peripherals, software control, or not be available.

C6x programmer guide explains how to interrupt a function always or a particular number of
times by using the pragma in C program as shown below.

#pragma FUNC_INTERRUPT_THRESHOLD(func, 1); // Always
#pragma FUNC_INTERRUPT_THRESHOLD(func, threshold);

To generate interrupt service routine (ISR) theInterrupt keyword should be used. Alternatively
to define a existing function as an ISR pragma can be used as shown below.

Interrupt void int_handler() OR #pragma INTERRUPT(func)
{

unsigned int flags;
....

}

Enabling and disabling interrupts is done through control status register (CSR).

3.6.4 R10K interrupts

The priority of the exceptions are shown below. Each exception is handled (”processed”) by hard-
ware and then serviced by software.

1. Cold reset (highest priority)

2. Soft reset

3. Non-maskable interrupt (NMI)
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4. Cache error - instruction cache

5. Cache error - data cache

6. Cache error - secondary cache

7. Cache error - system interface

8. Address error - instruction fetch

9. TLB refill - instruction fetch

10. TLB invalid - instruction fetch

11. Bus error - instruction fetch

12. Integer overflow, trap, system call, breakpoint, reserved instruction,

13. unusable, floating-point exception

14. Address error - data access

15. TLB refill - data access

16. TLB invalid - Data access

17. TLB modified - data write

18. Watch

19. Bus error - data access

20. Interrupt (lowest priority)
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Table 1. Interrupts and exceptions for the family of PowerPC architecture

Interrupt Exception Type
Async Sync Sync Critical

precise Imprecise
Critical Input Critical Input x x

Machine Check Machine Check x
Data Storage Read access control x

Write access control x
Byte ordering x
Cache locking x

Storage synchronization x
Instruction Storage Execute access control x

Byte ordering x
External Input External input x

Alignment Alignment x
Program Enabled x x

Illegal instruction x
Privileged instruction x

Trap x
Unimplemented operation x

FP Unavailable FP unavailable x
System Call System Call x

AP Unavailable AP unavailable x
Decrementer x

Fixed-interval timer x
Watchdog timer x x
Data TLB error TLB Miss x

Large address error x
Instruction TLB error TLB Miss x

Large address error x
Debug Trap x x x

Inst Addr Compare x x x
Data Addr compare x x x
Instruction complete x x

Branch taken x x
Return from interrupt x x

Interrupt taken x x
Uncond debug event x x
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