PMCD
The Parallel Monte
Carlo Driver

Software Manual

(version 1.0)

Bruno Mendes and Antonio Pereira

Dept. of Physics, Stockholm University

Stockholm, September 2007

Work performed as part of the European Atomic Energy Community’s R&T
specific programme "Nuclear fission safety 1994-98"
Area C: 'Radioactive waste management and disposal and decommissioning”

Table of contents.

1. Aims of the code

2. Structure of the program: Overview
2.1 Theinput preparator

2.2 The bayesian layer

2.3 Parallel architecture and algorithms

3. Description of the algorithms

3.1. Inputs required from the user

3.2. The input preparation

3.3. The workload controller

3.4. The bayesian layer

3.5. The interface between the input
preparation and the user code

3.6. The user’s program

3.7. Description of each subroutine (listed in

alphabetical order)

4. Putting the PM C driver together with your
user code
4.1 Machine and environment requirements
4.2 Code installation
4.3 Changes to the user code
4.3.1. Main routine
4.3.2. Input assignment routine
4.3.3. Output routine
4.4 Changesto the PMC driver

5. Practical example 1: Making aparallel run
of aMonte Carlo simulation of asimple one-
-dimensional transport model with retardation

ol

© © 00

13
16
17
17

17
18

18

21
21
22
22
23
23
25
25

27

6. Practical example 2: Making aparallel run of
aMonte Carlo smulation of the GTM1 code 31

7. Things to keep in mind when running the PMC
driver 39

Glossary 41

References 43

1. Aimsof the code

The main purpose of the codeisto drive a user-supplied model in aMonte Carlo
(MC) simulation. The driver has been developed to take advantage of parallel
computation environments (either massively parallel computers or clusters of
computers).

The code was devel oped with three main ams:
* Flexibility

* Portability

» Easeof use

By that we mean that the code should be able to satisfy the user’s needs, it should
run on different computer platforms with aminimal need for change to the code and
the user should be able to understand and use the driver as easily and quickly as
possible.

We use the term ‘Monte Carlo ssmulation’ in the sense that a given user supplied
program will be run a pre-determined number of times using a different set of input
parameters in each run. Our program is able to perform Monte Carlo simulationsin
this sense but can also perform other more elaborate simulations.

So, in addition to preparing a matrix with the input values for each simulation,
the PMC driver allows one to make simulations over arange of different scenarios.
Thiswill make possible the study of model uncertainty in thefield the user is
interested in (for more information on model uncertainty seeref. [1] and the
references mentioned therein)?.

The user is free to choose how many model parameters are to be varied during the
simulation, and there are several possible distributions for the set of its random
values.

When the scenario uncertainty option is on, the driver is capable of doing a
random choice of a scenario from a user defined list of possible scenarios and then
perform aMC simulation of the user model in the chosen scenario.

There is an additional option that is very practical when the user is studying the
model and wants to know how each isolated parameter affects the output. The

! This software was developed in the context of the European Commission funded project GESAMAC. Reading
the project’s final report will be of great help in understanding some of the most innovative features of our code.

program can run a set of simulations where only one user defined parameter is varied
at atimein the user’s model. When each parameter has been varied on its own, the
program can do one last simulation with all the parameters varying.

2. Structure of the program: Overview

This chapter gives ageneral overview of the driver and each subsequent chapter
goes alittle deeper into the detail in describing the program.

In the field of parallel computation, the conceptual model for structuring this code
isusually called Simple Program Multiple Data (SPMD). In plain terms, this means
that each node uses the same program code and just runs it afew thousand times with
different input data (see[4]).

The simplest situation is when the bayesian layer is turned off. In this case, the
input preparator reads a file containing information on the user’s input parameters and
their distributions. It then prepares a matrix of the input values for each run. Once this
is done the PMC driver calls the user program. The latter then runs, each time with a
different set of inputs.

One of the nodes supplies all the others with work as they finish each set of of
work.

Considering the most elaborate situation in which the scenarios option is on, the
program performs the following tasks:

First it chooses a scenario at random from alist of pre-supplied scenarios and
respective probabilities of occurrence (this part of the program we call the Bayesian
Layer).

For each scenario there is a corresponding file that contains information
concerning the input parameters for the user model.

Once the scenario is chosen, the names of the files to which it corresponds are
forwarded to the next level of the program (which we call the Input Preparator)
which basically generates al the input values needed to simulate that particular
scenario.

An additional part of the program controls the workload of each node involved in
the ssmulation in order to keep it as even as possible (we will refer to this asthe
Workload Controller).

When the simulation is over, the program returns to the beginning where the
process of choosing a new scenario will take place and everything will start all over

again.

Figure 1 provides a graphical representation of the program’s structure of four
main blocks.

10

The ensuing description of the code's structure will be divided into three parts:
Firstly we describe the Input Preparator, or the part of the program that is directly
above the User’ s Program. Secondly, we describe the Bayesian Layer which does all
the extra work needed to run a simulation across the different scenarios. Thirdly, we
address the parallel algorithms of the PMC driver and lay out the algorithmic structure
of thedriver.

Workload
Controller

User’s code

N

«

Fig.1 - Layout of the progran’ s components and main routines.

2.1 TheInput Preparator
This part of the program begins by reading two external files.

These files contain information on the parameters of the user model that are to
vary during the MC simulation, what distribution they should have, the total number
of runsto be performed, the maximum number of model parametersthat are to be
varied during the simulation, etc.

Having read these files, the program goes through the list of user parameters that
are to vary and does a sampling of each of the desired distributions. The values
generated are stored both externaly (in afile) and internally (in a matrix).

2.2 The Bayesian L ayer

This part of the code runs optionally.

The bayesian layer is built on top of the input preparator. It chooses one of the
scenarios at random from alist according to its probability of occurrence (both
previously supplied by the user).

Oncethat is done, the bayesian layer just supplies the input preparator with the
input file name corresponding to the chosen scenario so that the latter can prepare the

input for the user model.

The user model is run as many times as the user wants before choosing another
scenario.

2.3 Parallel architecture and algorithms

The most general outline of the program is as follows:

The PMC driver itself is run on one node only (called the master node). This node
prepares a matrix with all the input data needed for the simulation and controls the
size of the next workload (i.e., fraction of the total number of runs to be performed)
and which node should get it.

Each node executes its workload and writes its output to alocal file.

See Figure 2 for a graphical representation of this concept.

Algorithm of the Input Preparator

Increasing alittle the detail of the description, hereis arough listing/fluxogram of
the input preparator (for the sake of smplicity, we assume that there is no simulation
across scenarios — i.e., the bayesian layer isinactive). Please keep in mind that the
PMC driver part of the code is run on one node only.

1. The program reads the name of the file containing all the constant values for
the user model.

2. It makes the same number of copies of that file as there are nodes involved in
that particular job. Each node will access its own copy of the input file during
the MC simulation. (These files and any other files mentioned in this manual
are kept in the same directory as the executables)

12

Node1 Node?2

Fig. 2- Conceptual organisation of a MC ssimulation in a parallel environment.
3. Readsthe file containing the parameters for the distributions of the input
values of the model.

4. Generates arandom distribution for each variable and stores it both in a matrix
and an externdl file.

5. Generates the output files to which each node will write its output (one file per
node).

6. Informs each node of which runsit should run.

(All nodes execute the next two steps)

7. Calsthe user model and runsit for the specified number of times.
8. Every node writesits output to itsfile.

(Master node takes over again.) Returnsto step 6.

Algorithm of the Bayesian Layer

Now let us see what the bayesian layer does, when activated. (There are some
terms that the reader might not be familiar with, these are explained in ref. [1] and
references therein.)

The bayesian layer is built on top of the input preparator (the code that was
explained in the previous paragraph) and is run only on the root node.

The following is nested in aloop, that runs as many times as the user wishes.

1. Read an input file with information necessary for the bayesian simulation: the
total number of scenarios and the probabilities for each scenario, together with
names for the files with information regarding the input values for each
scenario.

2. Random choice (according to the probabilities specified) of a scenario.

3. Cdl theinput preparator.

4. Return to the beginning of the loop (this time skipping the reading of the
bayesian input file).

14

3. Description of the algorithms

3.1. Inputsrequired from the user

Before compiling the program, the user should supply the following set of
switches, numerical parameters and file names (by writing them in the suitable
parameter declaration files).

In the paragraphs to come we shall describe the contents and the format of the
following files:

e user_parameters bayes.inc
e user_parameters.inc

* mcdinputb.dat

e meddist.dat

Bayesian layer files:

The*“includefile” called user_parameters_bayes.inc contains the definition of the
following variables:

(De)Activation of the bayesian layer: variable sbayes (the value 1 activates the
layer, value O deactivatesiit).

The default name for the files with the constant values for the model and the name
of the file with the distribution parameters for the model should be supplied (by
assigning them to the variables constfile and distrifile, respectively).

Initsfirst ling, the input file for the bayesian layer (mcdinputb.dat) should contain
the total number of micro-scenarios.

Each of the following lines should contain (one line per micro-scenario):

(position 1 in theline) the probability of that specific micro-scenario,

(position 13) the name of the file with the distribution parameters for that micro-
scenario, and

(position 34) the name of the file with the constant values corresponding to that
micro-scenario.

I nput Preparator files.

Theinclude file user_parameters.inc contains the definition of the following
parameters:

The maximum number of parameters (in the user model) that should vary during
the ssimulation. This should be assigned to the variable called ivars.

The total number of runs to be performed on this simulation; thisis assigned to
the variable iruns.

Sometimes the user wants to analyse the behaviour of the model by performing
some runs with only one variable being varied at atime. It is possible to do this with
this driver, the only thing the user hasto do isto set the variable smto 1. The driver
will set up aset of simulations that will develop as explained bel ow.

The program will vary the first variable only in thelist in distrifile for #iruns on
the first simulation, then it will vary the second parameter only in thelist in distrifile,
and so on until it has varied the last parameter given in distrifile.

So the total number of runs actually performed will not be the one stored in iruns,
but: #sim* #iruns.

If the user setsthe variable simto 2, after the single parameter variation
simulations have been completed, the program does afinal simulation with all the
variables being varied simultaneously. If the user isjust interested in this last case, he
should assign 0 to sim.

If the user only wants to perform one run with the code, he should put the varibale
switch to O, otherwise it should be 1.

Sampling method for the random numbers. There are two choices available: a
pseudo-random number generator (set sgenop to 0) or a quasi-random number

generator (Sobol indices) (set sgenop to 1). For more information, see references [1]
and [2].

The switch sinfilemat should be set to 1 if the input preparator isto generate the
numbers for the simulations, or to O if these values are to be loaded from an external
file.

The next program variables that the user has to set deal with correlations.

The variable key should be set to 1 for correlations (O otherwise). The variable
correlat should contain the correlation value (any real number between —1 and 0). The
variables var1 and var2 should contain the numbers of the user parameters to be
correlated.

The file with the distribution parameters (mcddist.dat) should contain the total
number of parameters that are described in the file first, and then the information for
the distributions (one line per parameter):

(position 1) number assigned to the parameter.
(position 4) name of the variable asit is defined in the user model.
(position 64) code name for the distribution.

The user is encouraged to make alist of all the user parameters that might vary in
the course of his simulations. Each parameter should be assigned a number.

Thisway the user can easily add or remove user parameters from the list of
varying parameters from one simulation to another.

See the following list for the distributions supported by the code (version 1.0) and
their respective code names,

uniform- unifm

log-uniform- logun

normal- normi

log-normal- logno

negative exponential- expon

If one wants to temporarily remove one variable from the varying list, this can be
done by using the code word const and writing its value. This procedure should be
avoided if possible. The memory saving alternative is to simply delete its entry from
the distributionsfile.

(position 67) minimum, maximum, average and standard deviation for the
distribution in question. Commas should separate these values.

Thefile with the constant values should be kept exactly as usual when the
user codeisrun only once.

The code can introduce a user-defined correlation between any two model-
parameters. In order to do this, the user should set the variable key to 2, put the
desired correlation value on the correlat variable (this has to be a number between —1
and 0) and tell the program which variables should be correlated (with the values of
var1 and var2). These values should be the numbers previously assigned to each
variable on the file mcddist.dat.

Output data. Sinceit’ s very difficult to predict what the user will want, the PMC
driver does not impose any particular format. The user has to decide what output isto
be written to the file created at the beginning of the Input Preparator routine. The
default name for the output file is medout* (where the wildcard stands for a number
that is the same as the node number to which the file belongs).

The user should keep in mind that the amount of output generated in typical MC
simulations is considerable.

There is an additional set of output files generated by the driver. These contain the
run times for each run and they are called medtimeout* (where the wildcard again
stands for a number equal to the node number).

3.2. Theinput preparation

This part of the code performs several tasks: it makes copies of the files with the
constant parameters for the simulation, produces the output files for each node and
samples the input values for the model parameters chosen by the user.

The routine begins by making the copies of the file with the constant parameters
for the smulation. This should be exactly the same file as the one usually used by the
user's model.

The code generates a different target name for each of the files. Each copy will be
read by just one of the nodes. The names of the files start with the string mcdconst
then have a code specific to each file.

Almost the same procedure is carried out to produce the output files, with the
difference that they are all empty. They are all called mcdout followed by a number to
distinguish between them.

Warning: avoid using any files that contain the string mcdconst or medout, to
avoid possible conflicts with the simulation.

All the nodes open their corresponding file.
From now on, only node O (zero) does all the work.

Two files are opened: the file with the distribution parameters for each of the
model variables (called mcddist.dat) and afile to contain the values generated from
the sampling (called mcdmdist.dat).

If the quasi-random numbers option is chosen, thereis a call to the subroutine that
generates the numbers, in this case aroutine obtained from the NEA (Nuclear Energy
Agency) data bank called Iptau.f (package ID: IAEA1260)/02). This routine uses
Sobol indices to perform the sampling of a quasi-random uniform sequence between 0
and 1. The values are stored in amatrix (matrixIpt) (see[2] and [5]).

The next part isincluded in aloop that runs for #ivars times. The program reads
the file meddist.dat, interprets which distribution is required for each particular model
parameter and uses some sub-routines to sample the required distribution for the
number of times specified in the variable iruns. (See [2] for a description of the
sampling routines).

In the event that the user wishes to do so, the program will then introduce a
correlation between any two input variables (see [6] for details on the method used).

Itisaso possible for the program to read a file with pre-defined values for the
matrix mdist.dat.

The values resulting from the sampling are written to the output file mcdmdist.dat
and in the matrix mdist.

The master node sends the contents of mdist to al the other nodes. At the end of
each simulation, each node writes the output to their local file.

Finaly, al files are closed and asmall UNIX script cleans all temporary files.

3.3. Theworkload controller
Initially the master node assigns a predefined workload to each node.

The master node awaits a call from one of the other nodes to request another
workload and when it finally gets one, it tells that node which run(s) it should run
next (what we call aworkload). As soon as a node has finished its workload it
informs the master node that it needs another workload. Thisis done until all iruns
are completed.

3.4. The bayesian layer
The bayesian layer is run as many times as the user wants.

The routine called bayesis very simple. First it reads a file with the total number
of scenarios, the probability assigned to each of them and the files with the
information to simulate each scenario.

It makes a random selection among the scenarios available, then informs the input
preparator of the selection.

3.5. Theinterface between theinput preparation and the user
code

The input preparator supplies the user model with the following information (the
variable concerned is shown in brackets):

- Number of runsthat each node will run the model (load),

- Total number of model parameters that are going to vary in the smulation
(ivars),

- Total number of runs (iruns),

20

(These last two parameters are only used to define some working matrixes that are
needed during the simulation process),

- A variable that contains the rank of each node (rank),

- A pointer that chooses the right input value for the model whatever the current
status of the simulation (‘only one model parameter varying' or 'all model parameters
varying),

- The FORTRAN unit number of the file containing all the model's constant input
parameters.

3.6. The user's program
Firstly the user must re-define his/her program as a sub-routine called user_mode!.

The most important changes to the user code take place in the subroutine where
all the input parameters are assigned their values for each run.

We assume that there is a single routine in the model that reads the usual input file
(by ‘usual’ we mean the file used by the user’ s before it is coupled to the PMC
driver), and that al the model’ s parameters and program switches are assigned by this
routine.

The original part of the subroutine should be kept intact with afew small changes:

1) there should be afew extra parametersin the call to this routine,

1) the FORTRAN unit number of the input file should be changed to the one
passed by the PMC driver (referred at the end of the section),

iii) any writing to externa files should be commented out,

iv) the original code should be enclosed in an if statement that allows the constant
fileto beread just once per smulation. (If any of the input variablesis re-used
later in the code, then it is safer to re-initialise the values at the beginning of
each run, i.e., one should not enclose the code in this if statement).

At the end of the routine, a small piece of code should be added that assigns the
stochastic values to each of the parameters that are to be varied during the simulation.
See Chapter 4 for more detail on how thisis done.

3.7. Description of each subroutine (in alphabetical order)

distri (iruns, ivars, ndist, IN1, genop, matrixipt, i) —Is called from the input
preparator part of the PMC driver. It reads the input file with the distribution
parameters -IN1- and decides which sampling sub-routines to call to generate the
input matrix. Ndist contains the code name for the chosen distribution (see 3.1).
genop is the option for the type of (pseudo)random number generator. If it isthe
pseudo-random number generator that is chosen, the generated values are stored in

matrixipt. The variablei contains the number of the user parameter that is being
sampled.

expo (dist_min,dist_max,dist_mean) - This subroutineis called from distri and
does the sampling for an exponential distribution. dist_min,dist_max,dist_mean are
the distribution parameters (minimum, maximum and mean, respectively).

iman (iruns,key,correlat,vector 1,vector2) —This is the sub-routine that introduces
acorrelation of correlat between any two variables vector 1 and vector2, if the
variable key is set to 0. The variable irunsis only necessary for the definition of the
Size of the vectors to be correlated.

Iptau (i, ivars, vectorlpt) - Thisis caled from the input preparator. It generates a
vector (vectorlpt) with ivars pseudo random numbers. i is an index number (that
varies between 1 and the total number of runs) needed for the Iptau routine.

ip (distrifile, constfile, ierror, rank, size) - What we call input preparator in this
manual. It is called from the mcd (main) routine. distrifile and constfile are,
respectively, strings that contain the names of the files with the information for the
user parameters that are to vary and the file that contains all the constant parameters
for the user model. ierror is avariable specific to MPI and usually stores the code
number for the errors that occur during the run time. rank is the ranking of the node.
Size isthe total number of nodes involved in the simulations.

MPI_BARRIER (MPI_COMM_WORLD, ierror) - MPI function. Thisis used to
make sure all the nodes are running in the same stage of the program. No node will
continue running until all nodes reach this part of the program.

MPI_BCAST (constfile, 20, MPI_CHAR, 0, MPI_COMM_WORLD) - MPI
function. This”broadcasts’ the name of the file with the constant parameters of the
user model (stored in constfile), 20 is the size of the name and MPI_CHAR denotes
the type of the variable. O meansthat it is the root node (ranked zero) that broadcasts

the message.

MPI_GATHER (vout, index, MPI_INTEGER, mout, index, MPI_INTEGER, O,
MPI_COMM_WORLD, ierror) - MPI function. The root node (rank 0) gathers the
contents of the vector vout (of integers) from all the other nodes and storesiit in
matrix mout. vout which has size index.

MPI_SCATTER (mdist, ncounts, MPI_REAL, vector, ncounts, MPI_REAL, O,
MPI_COMM_WORLD, ierror) - MPI function. The root node (rank 0) distributes
portions of matrix mdist, of size ncounts (of real type), to be stored on each of the
other nodes on the vector vector.

21

22

norm (dist_min, dist_max, dist_mean, dist_stan) - This subroutineis called from
distri and does the sampling for anormal distribution. dist_min,dist_max,dist_mean,
dist_stan are the distribution parameters (minimum, maximum, mean and standard
deviation, respectively).

readb (vect_prob, n_sce, input_filel, input_file2, inl) - Thisroutineiscalled
from routine bayes and it reads the input file with all the information concerning the
bayesian layer (number of scenarios-n_sce -, probabilities for each scenario
-vect_praob -, names for the input files for each scenario -input_filel and input_file2,
etc.).

selection (vect_prob, n_scel, sal, trial) - Called from readb subroutine; it makes
the random selection of the scenario for the simulation.

system ("clean") - Unix system script that cleans all the temporary files created
during the simulation.

system ("spawn") - Unix system script that creates the input file with the constant
parameters for al the nodes.

unif (dist_min, dist_max) - This sub-routineis called from distri and does the
sampling for auniform distribution. dist_min,dist_max, are the distribution
parameters (minimum and maximum, respectively).

user_model (load, ivars, iruns, ncounts, vector, rank, master, nnodes, fot2, index,
vout, mout, switch, in2) - User_model stands for the name of the user program. It is
called from the input preparator.

4. Putting the PMC driver together with the user code

4.1 Machine and environment requirements

So far only aUnix version of the code is available and tested. Such specificity of
working environment only involves two small system scripts. One of these
"multiplies’ the files containing the constant values for the simulation and the other
deletes all the temporary files.

More specifically, the first script reads a temporary file (mcdname) with the name
of the original file that isto be copied, then it copies its contents into a number of files
whose name begins with the string input and then it finishes with a number. The total
number of filesto generate is contained in another temporary file called mednr.

The script’ s contents are reproduced here:

#! /bin/tcsh

foreach n ({ cat nr'})
cp "cat name’ input$n
end

Warning: Thefirst line saysthat this script should be run within the tc shell by
stating the path where this shell start up command should be located (/bin/tcsh). This
path might be different from one system to another (/usr/local/bin/tcsh is acommon
alternative).

The second script simply contains the command: rm -f input*.

There’s a version of these srcipts for the bash shell too.

The code has been developed in a parallel machine located at the Royal Institute
of Technology in Stockholm, Sweden. The machineisan IBM SP2, and the nodes
architectures are the normal RS2000-type workstations (see the Internet site
http: //www.pdc.kth.se/compresc/machines/strindberg.html for more details).

The code was tested in a workstation network environment located at Bath
University. The workstations are different models of high-end SUN stations. It was
also used in acluster of Alphaworkstations at the Department of Physics at
Stockholm University.

Using the message-passing model allowed the simulations to be parallelized.

23

This model consistsin expanding the usual serial programs with a collection of
library functions that enable communication to take place between the different
nodes.

We use the international standard library known as the MPI (Message Passing
Interface) and users should have that library installed in their machine (see the
Internet site http://mww.erc.msstate.edu/mpi/ for more detail on MPI). Different
implementations of the MPI standard are available, free of charge, on the Internet.
(See for example,
http://www.psc.edu/gener al/softwar e/packages/mpich/mpich.html.old).

At the head of the PMC driver's code one can see the include statement that |oads
the library mpif.h for Fortran code.

So the basic requirements necessary to run the PMC driver are:
- UNIX based machines,
- MPI implementation.

4.2 Codeinstallation
Install al the programsin a separate, empty directory, along with the user model.

All the output of the PMC driver will be created in the same directory as the one
in which the program is run, no use of local (i.e., local to each node) hard disksis
made.

At the end of the smulation, the PMC driver performs some cleaning up of
temporary files. If for any reason, the smulation is interrupted before its natural end,
then you should remove the following files by hand:

mcdinput*

mceati meout*

mcdout*

mcdname

mednr.

4.3 Changesto the user code

One of the main goalsin developing the PMC driver was that it should require a
minimum of change to the user code. There are some changes that are inevitable,
though, especially when the PMC driver itself is coded in Fortran 77.

Onerulethat isvalid for any of the programsis that almost all the reading
(excluding the reading from the read routine) and all the writing to/from files should
be commented out. The PMC driver should control all these activities with its pre-
defined input and output files.

So one of the main things the user should keep in mind is to be very careful with
external files. This is something that is unavoidable when one tries to use a “’serial”
code in a parallel environment, otherwise all the nodes will try to write to the same
file and the result could be messy!

The PMC driver iswritten in a such away that the user does not have to worry
about the input files (aslong as the original code only uses ONE input file, and as
long asthisisread in asingle routine). All the output to external files, from the
original user code, should be commented out (see the example in Chapter 5), or,
better expressed, be redirected to the output file defined in the driver.

4.3.1. Main routine

Herefollows alist of changes that must be performed on the user’ s main routine.

1- Substitute the program header with "subroutine user_model" and include the
parameters passed to it by the PMC driver (as described in the last chapter).
2- Define al the variables and matrices passed by the PMC driver.
3- Introduce aloop that should go from 1 to load. This loop should enclose al
the code that is to be run during the simulation.
4- Add afew parameters do the subroutine calls to input and output:

» Input: rank of the node (rank), afew switches (master, switch) that avoid
having to read the file with the constant values in every run, and finally the
total number of parameters that are to vary during the simulation (ivars).

* Output: the logical name defined by the PMCD for the output file.

5- At the end, the statement stop should be changed to return.

4.3.2. Assignment (read) routine

The sub-routine that does the initial assignment of the model's parameters should
get some additional parameters when it is called. Most of these have already been
described at the end of the last chapter, they are:

- The vector containing the input values for the model parameters that are going to
vary during the simulation (stored on the vector vector),

- Thetotal size of the vector vector (ncounts),

- The ranking of the current node (rank),

- Master, when the user is doing simulations with a single parameter varying at a
time, it isthis variable that keeps track of which parameter should vary in each
simulation.

- The number of model parameters that are going to vary during the simulation
(ivars),

- Thelogica unit number for the input file (stored in the variable in2).

25

26

Apart from the usual changes to make the extra parameters (in the last list)
available to the routine, one can introduce the following if statement, that should
enclose all of the origina code in the routine:

if (NRUN.eqg.l) then

NRUN stands for the variable that controls the loop described in point 3 in the
previous chapter.

This last change keeps the code from reading the same input file in every run. It
saves some run time, but it should only be used when the user is sure that the values
from the file are not needed in the subsequent runs.

At the end of the routine (and after the end of the if statement just mentioned), the
following code should be added (with some dummy variables):

if (switch.eg.l) then

if (sim.eqg.0.or. (sim.eqg.2.and.master.eqg.ivars+1l)) then
pointer=1

if (check in(1l) .eqv..true.) then
INPUT PARAMETERl=mdist (pointer,nrun+run-1)
pointer=pointer+l
write (fot3, ' (D13.7)") INPUT_PARAMETERl
endif
endif

INPUT_PARAMETERI1 iS adummy variable name that stands for the typical model
parameters that are to be varied during the ssmulation. Master is avariable that keeps
track of which case is being run (as explained in Section 3.1).

The vector check _inisavector that keeps track of which user parameters are
varying in that particular simulation (when the input preparator reads the meddistr.dat
file, it checks which parameters are listed there and which are not).

The user is encouraged to make alist of all the user parameters that might vary in
the course of higher simulations. Each parameter should be assigned a number and
there should be a piece of code (like the one written in yellow above) for each user
parameter. In this way the user can add or remove user parameters from the list of
varying parameters from one simulation to without trouble.

The write statement simply stores the input value in the output file. The user is
free to keep thisline of code or to comment it out.

Itisthis part of the code that actually updates the model parameters from one run
to the next.

4.3.3. Output subroutine

The user should comment out al the original reading/writing from/to external
files. Then he/she should write the values he/she is interested in to the file descriptor
number fot3.

Here is an example:

write (fot3,'(D13.7)"') OUTPUT PARAMETERL

OUTPUT PARAMETERI Stands for a common output variable name.

4.4 Changestothe PMC driver
There are no changes to be made to the code of the PMC driver.

In the input files one must decide between the options of and determine values for
the PMC driver parameters, but this is not specific to the grafting of the PMC driver
to the user model. These are things that are to be when working with the PMC driver.
In Chapter 6 we make alist of the things that must be kept in mind before hitting the
RETURN key on the keyboard.

27

28

5. Practical Example 1. Making a parallel run of a Monte
Carlo simulation of a ssimple one-dimensional transport
model with retardation

Thisisasamplefile for the bayesian input file:

3

0.30 norml.inp const
0.40 norm?2.inp const
0.30 expo.inp const

The first number states the number of micro-scenarios.
The subsequent lines describe the probabilities of each microscenario and give the
names of the input files.

Hereis an example of the file const.dat with all the constant parameters of the
user model:

18
10 43 0231E5 30 30 10

The number on thefirst line denotes the number of space points that isto be
sampled from the solution.

The second line respectively contains: the initial concentration, the dispersion
coefficient, the advective velocity, the retention coefficient, the time at which the
solution is evaluated and the space increment.

Hereisatypical file containing the variable distribution parameters for the user’s
program.

5 10 20 30 40 50 60

R R S b e S b S b I S b B S b I S b S S b b S b S I S b e S b e S IR e S b S S Sb I S b S S b S S SR S S S I S
********************INPUT PARAMETERS************************
R R e S I S b S db I ah S S A b B S b S B b S S R S I S b e S b S b e S b I A S S S b S S b S S R S S S I b S

END OF COMMENTS

Number of user parameters that are to vary in the Mc run : 2
1 ALFX GEO : Dispersion coefficient [m]......: unifm 1.,5.
2 RF GEO : Retention coefficient [-].........: expon 2.,10.,0.1

First we have a number to identify the variable, then the variable name, some
comments describing the variable and at the end the code word for the distribution of
its values and the parameters for that distribution.

29

Next we show the main routine of the user code, before (in the column on the | ft)
and after (in the column on the right) being coupled to the PMC driver.

(We have marked the parts that are changed).

program ad

Cc

CODE FOR EVALUATING 1-D DISPERSION

WITH RETARDATION

C
C

DIMENSION C(50)

C
C

C

OO0

200

READ INPUT DATA

OPEN(unit=10,file="ind.dat',status="OLD")
OPEN(unit=11,file="out.dat',status="NEW")

READ(in2,100)NX
WRITE(11,100)NX

READ(in2,110) CO,ALFX VX,RF.TYR,DELX
WRITE(11,110) CO,ALFX,VX,RF,TYR,DELX

WRITE(11,110)
WRITE(11,110)

TSEC=TYR*365.0*86400.0
X=0.0

CALCULATE CONCENTRATIONS
DO 200 I=1,NX

X=X+DELX
C(1)=(CO/2)* ERFC((RF* X -

VX*TSEC)/(2+ SORT(ALFX*VX* TSEC* RF)))
C

C
C

WRITE RESULTS

WRITE(11,120)TYR
WRITE(11,110)(C(1),1=1,NX)

subroutine user_model (mdist,
load,ivars,iruns,check_in,

C

& rank,master,switch,in2,sim,fot3,fot4,run)

CODE FOR EVALUATING 1-D DISPERSION

WITH RETARDATION

Cc
c

O00000

0

[eNeNe]

Integer nrun,j

INTEGER iruns,ivars,rank,master
INTEGER switch,in2,sim,fot3,fot4
INTEGER load,run

Double precision mdist(ivars,iruns)

logical check_in(ivars)
DIMENSION C(50)

index=1
pointer=1
do nrun=1, load

READ INPUT DATA

OPEN(unit=10,file="ind.dat',status="OLD")
OPEN(unit=11,file="out.dat',status="NEW")
if(nrun.eq.1) then

READ(in2,100)NX
WRITE(11,100)NX

READ(in2,110) CO,ALFX,VX,RF,TYR,DELX
WRITE(11,110) CO,ALFX,VX,RF,TYR,DELX
WRITE(11,110)
WRITE(11,110)

end if

if (switch.eg.1) then

if

(sim.eg.1.or.(sim.eq.ivarst+1.and.master.eg.ivars+1)) then

OO0

ALFX= mdist(pointer,nrun+run-1)
pointer=pointer+1
RF= mdist(pointer,nrun+run-1)
pointer=pointer+1
endif
endif

TSEC=TYR*365.0*86400.0
X=0.0
CALCULATE CONCENTRATIONS

DO 200 [=1,NX
X=X+DELX

200 C(l)=(CO/2)* ERFC((RF*X-
VX*TSEC)/(2 SQRT(ALFX*VX*TSEC* RF)))

(@]

C
C
Cc
C

WRITE RESULTS

WRITE(11,120)TYR
WRITE(11,110)(C(1),I=1,NX)

end do

100 FORMAT(I5)

110 FORMAT(6G10.2)

120 FORMAT(F5.0,' YEARS)
return
END

doj=1,NX
write(fot3,'(D13.7)") c(j)
end do

end do

100 FORMAT(I5)

110 FORMAT(6G10.2)

120 FORMAT(F5.0,' YEARS)
return
END

31

32

6. Practical Example 2: Making a parallel run of a Monte
Carlo ssmulation with the GTM 1 code

The reader should be familiar with report [1] if he/she is to understand the detail
of this chapter.

The samplefile for the bayesian input fileis:

6

0.3 distl inputl
0.15 dist2 input?2
0.2 dist3 input3
0.1 dist4 input4
0.15 distb inputb
0.2 disté6 input6

Thefirst number states the number of micro-scenarios.

The subsequent lines respectively describe the probability of each micro-scenario
occurring, and give the name of the input file containing the distribution and the
constant parameter.

Hereis an example of the file mcdconst.dat with all the constant parameters of the
user model.

dkhkkhkkkhkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkk
B R R R R R R R R R R R

* *
* G.T.M - 01 (Geosphere Transport Model - 1) *
* o _____ _ _ _ *

Kk ok ks ks sk ks ko ko ko ko ko ke ke ke ok ke
* *
PEDRO PRADO HERRERO

Centro de Investigaciones Energeticas
Medioambientales y Tecnologicas (CIEMAT)
Instituto de Tecnologia Nuclear (ITN)
Avda. Complutense, 22

- 28040 - Madrid (ESPANA)

KA AR Ak Ak Ak Ak Ak Ak Ak kA Ak Ak Ak, Kk

RUN CASE :
PSACOIN Level E (PSAC User Group - OECD/NEA)

REFERENCES :
1. PSACOIN LEVEL E INTERCOMPARISON
Probabilistic System Assessment Code (PSAC) User Group
NEA/OECD (1989)

X% X X o X o X X X X X X X X X %

*
%k b R b R R b R b R oF R o b 3k ok b b

E R R R R R T R

END OF COMMENTS

O...5....1....5....2....5....3....5....4....5....5....5....6...
FORTRAN NAME ID VARIABLE DESCRIPTION UNITS VALUE

33

34

for max-flux
for space manag.
for time manag.
Option min.spa.poin/ly
min n° space point/lay.
Option for analy. sol.
Highest time step
Trunca. value for conc.
Drinking water require.

Option
Option
Option

Number of nuclides

Name of nuclides

Decay constant
Retardation coefficient
Initial inventory

Dose Conversion factor

Number of nuclides

Name of nuclides

Decay constant
Retardation coefficient
Initial inventory

Dose Conversion factor
Name of nuclides

Decay constant
Retardation coefficient
Initial inventory

Dose Conversion factor
Name of nuclides

Decay constant
Retardation coefficient
Initial inventory

Dose Conversion factor

Molecular diffusion
Dispersion coefficient

Molecular diffusion
Dispersion coefficient

Containment time
Stream flow rate

Geosphere pathway
Interstitial velocity

Geosphere pathway
Interstitial velocity

N° time output selected
Time point selected
Leach rate
* Factor for retention
* Factor for retention

N° time output selected
Time point selected
Time point selected
Time point selected
Leach rate

MXFL Cp
SPACTL CPp
TIMCTL CP
minpxx cp
minnpx cp
NAO Cp
DTHGST CPp
CTRUN CP
DRINKR BIO
----> CHAIN NUMBER 1
NEL (1) GTM
BNAME (I -129) GTM
ALAMB (I -129) GTM
RET (I) GEO
co (I -129) NFL
DOSECF (I -129) BIO
--—-> CHAIN NUMBER 2
NEL (2) GTM
BNAME (NP-237) GTM
ALAMB (NP-237) GTM
RET (Np) GEO
co (NP-237) NFL
DOSECF (NP-237) BIO
BNAME (U -233) GTM
ALAMB (U -233) GTM
RET (U) GEO
co (U -233) NFL
DOSECF (U -233) BIO
BNAME (TH-229) GTM
ALAMB (TH-229) GTM
RET (Th) GEO
co (TH-229) NFL
DOSECF (TH-229) BIO
-—-—-> LAYER 1

DIFFM (1) GEO
DISPC (1) GEO
----> LAYER 2

DIFFM (2) GEO
DISPC (2) GEO
*******>> DATA RUN_l <<~k~k~k~k~k~k~k~k~k~k~k~k
CONTIM NFL :
STREAM BIO
-—-—--> LAYER 1

XPATH (1) GEO
VREAL (1) GEO
----> LAYER 2

XPATH (2) GEO
VREAL (2) GEO
————————— > CHAIN 1

NOUT GEO
TOUT (1) GEO
RLEACH NFL
FACM (1) GEO
FACM (2) GEO
————————— > CHAIN 2

NOUT GEO
TOUT (1) GEO
TOUT (2) GEO
TOUT (3) GEO
RLEACH NFL
FACM (1) GEO

Hereisatypical file showing the distribution parameters for the user program’s

* Factor for retention

parameters that are to vary during the simulation.

vr]
mols]
m**3/yr]

[

[

[

[
[mols]
[Sv/mol]
[-]
[1/yr]

[-]
[mols]
[Sv/mol]
[-]
[1/yr]

[-]
[mols]
[Sv/mol]

[m**2/yr]
[m]

[m**2/yr]
[m]

ly]
[m**3/yr]

[m]
[m/yr]

.TRUE.
.FALSE.
.FALSE.
.true.
5
2
70000.
1.0E-10
0.73E+0

1

I -129
4.41E-8
1.
100.
5.60E+1

3
NP-237
3.24E-7
100.
1000.
6.80E+3
U -233
4.37E-6
10.
100.
5.90E+3
TH-229
9.44E-5
100.
1000.
1.80E+6

0.
10.

0.
5.

100.
3.0E+5

100.
1.0E-1

50.
1.0E-1

1
9.55E+2
1.0E-2
1.
1.

3
5.24E+4
6.63E+4
3.07E+5

1.0E-5

3.

hhkkhhhkhkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkk
‘k*******************INPUT PARAMETERS*‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*****
khkkhkkhkkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkkkk

END OF COMMENTS

5 10 20 30 40 50 60
NUMDET Of FUNS .t ittt ittt ittt ettt et it e e (I2): 10
Number of variablesS. ...ttt ettt e ettt (I2): 10
Number of constants.........oiiuiiiiiiiiiiiiininnennnn (I2): 53

CONTIM NFL : Containment time [yl..ooo..t norml
0.,1000.,500.,200.

RLEACH (1) NFL : Iodine leach rate [1/yr] norml
0.00075,0.0125,0.005,0.0025

RLEACH (2) NFL : Chain leach rate [1/yr]...: norm
0.0000075,0.000125,0.00005,0.000025

VREAL (1) GEO Interstitial velocity [m/yr]l...: norml
0.0075,0.125,0.05,0.025

XPATH (1) GEO Geosphere pathway [m]......: norml 0.,600.,300.,100.

RET (I) GEO Retardation coefficient [= 1....: norml 0.,9.,3.,1.

FACM(2,1) GEO Factor for retention [=1......: norml
0.,34.,16.5,6.75

VREAL (2) GEO : Interstitial velocity [m/yr] norml
0.0075,0.125,0.05,0.025

XPATH (2) GEO Geosphere pathway [m]......: norml 0.,250.,125.,37.5

STREAM BIO Stream flow rate [m**3/yr]: norml

0.,2000000.,1000000.,500000.

Next we show the main routine of the user code, before (the column on the | eft)
and after (the column on the right) being coupled to the MC driver. Those parts that

are changed are highlighted).

PROGRAM GTM

INCLUDE 'CPARAM.INC'
C
INCLUDE 'COTISP.INC'
INCLUDE 'CNUCNA.INC'
INCLUDE 'CNUCLI.INC'
INCLUDE 'CNARFL.INC'
INCLUDE 'CFARFL.INC'
INCLUDE 'CBIOSP.INC'
INCLUDE 'COUTPS.INC'
C
CHARACTER TIM*8
C
LOGICAL START
LOGICAL TIMCTL
LOGICAL SPACTL
C
START = .TRUE
C
C..... run loop
C
DO 10 NRUN = 1,MXNRUN
C
Covivnnn chain loop
C
DO 20 NCHAIN = 1,MXNCHN
C
Covivnnnnnn read input values
C

CALL R EAD
(NRUN, NCHAIN, NOUT, MXFL, DTHGST,
START,NAO, CTRUN, SPACTL, TI
MCTL)

subroutine

user model (mdist, load,ivars,iruns,c
heck in,

rank,master, switch,in2,sim, fot3, fot

4,run)
C
INCLUDE 'CPARAM.INC'
C
INCLUDE 'COTISP.INC'
INCLUDE 'CNUCNA.INC'
INCLUDE 'CNUCLI.INC'
INCLUDE 'CNARFL.INC'
INCLUDE 'CFARFL.INC'
INCLUDE 'CBIOSP.INC'
INCLUDE 'COUTPS.INC'
C

CHARACTER TIM*8

LOGICAL START
LOGICAL TIMCTL
LOGICAL SPACTL

INTEGER iruns, ivars,
,rank,master
INTEGER fot3,fot4,switch
Double precision
mdist (ivars, iruns)
integer load,in2,sim, run
logical check in(ivars)

C
START = .TRUE.
C
C.ovnn run loop
C
DO 10 NRUN = 1,load
C
Covivnnnn chain loop
C

DO 20 NCHAIN = 1,MXNCHN

DO 20 NCHAIN = 1,MXNCHN
Covivnnnnnnn read input values

CALL R E A D
(NRUN, NCHAIN, NOUT, MXFL, DTHGST,
START, NAO, CTRUN, SPACTL, TIMCTL,
mdist,check in,rank,master,switch,i
vars,iruns,in2, sim, fot3, run)

35

36

Covivnnnnn compute space step
C

CALL S PACS E (SPACTL)
C
Covinnneienn compute time series
C

CALL TIMESE

(NCHAIN,NOUT, DTHGST, TIMCTL)
C
Covinnnenenn compute fluxes from
the near field
C

CALL N E A R F (NCHAIN, nao)
C
Covivnnnnnn compute fluxes from
the far field
C

CALL G T M 1
(NCHAIN, CTRUN, MXFL, NOUT)

C
Covivnnnnnn compute analytical
solution
C
CALL ANASOTL
(NAO, NCHAIN, NOUT)
C
Covivnnnnnn compute maximum dose
C
CALL B I O S (NCHAIN)
C
Cuoviinnnnn print outputs
C
CALL OuUTPUT
(NCHAIN, NOUT, MXFL)
C
Covivnnn end of chain loop
C
20 CONTINUE
C
C..... end of run loop
C

10 CONTINUE

STOP
END

c
Covvvvnnnn compute space step
C

CALL S PACSE (SPACTL)
C
Covivnnnnnnn compute time series
C

CALL TIMESE
(NCHAIN, NOUT, DTHGST, TIMCTL)

Covivnnnnnnn compute fluxes from the
near field
C

CALL N E A R F (NCHAIN,nao)

Covivnnnnnnn compute fluxes from the
far field

C

CALLGTM1
(NCHAIN, CTRUN, MXFL,NOUT)

Coviiinenenn compute analytical
solution
C
CALL ANA S O
L (NAO, NCHAIN, NOUT)

C
Covivnnnnnn compute maximun dose
C
CALL B I O S (NCHAIN)
C
Cuoveeeeie print outputs
C

CALL OUTPUT
(NCHAIN,NOUT, MXFL, fot3)

C
Civivnnnn end of chain loop
C
20 CONTINUE
C
C..... end of run loop
C

10 CONTINUE
FORMAT (E13.5)
C STOP

RETURN
END

Now we will show the READ routine before and after it is adapted to the PMC
driver. Again, those parts that are changed are shown in colour.

SUBROUTINE READ
(NRUN, NCHAIN,NOUT, MXFL, DTHGST,
START,NAO, CTRUN, SPACTL, TIMCTL) C---

INCLUDE 'CPARAM.INC'
C

INCLUDE 'CNUCNA.INC'
INCLUDE 'CNUCLI.INC'
INCLUDE 'CNARFL.INC'
INCLUDE 'CFARFL.INC'

SUBROUTINE READ

(NRUN, NCHAIN,NOUT, MXFL, DTHGST,
START,NAO, CTRUN, SPACTL, TIMCTL
,mdist,check in,rank,master,switch
,ivars,iruns, in2, sim, fot3, run)

INCLUDE 'CPARAM.INC'
C

INCLUDE 'CNUCNA.INC'
INCLUDE 'CNUCLI.INC'
INCLUDE 'CNARFL.INC'
INCLUDE 'CFARFL.INC'

INCLUDE 'CBIOSP.INC'
INCLUDE 'COUTPS.INC'
C

DIMENSION RRR (MXNCHN, MXNELM)
C

CHARACTER A*80
CHARACTER B*20
CHARACTER C*40
CHARACTER D*60
C

LOGICAL START
LOGICAL MXFL
LOGICAL SPACTL
LOGICAL TIMCTL

NLY = MXNLYS

C

Coon.. START = .true. is used to
write the initial comment lines
(G founded on the top of the
input file describing the run case
C..... and other run-independent
parameter values

C

IF (START) THEN

10 READ(5,1000) A

IF (A .NE. 'END OF COMMENTS') THEN

WRITE (6,1000) A
GOTO 10

ENDIF

C

READ (5,1010)
READ (5,1000)A

Covivnnnn write the PARAMETER
values selected for dimmension
C

DO 60 J = 1,NOUT
READ (50,1050) B, D, TOUT (J)
WRITE (6,1050)B, D, TOUT (J)
60 CONTINUE

WRITE (6,2010)

C.u... read/write RLEACH, FACM and

READ(5,1050) B, D, RLEACH (NCHAIN)
WRITE (6,1050)B, D, RLEACH (NCHAIN)

DO 70 J = 1 , NLY
READ (5,1040) B, D, FACM (J)
WRITE (6,1040)B, D, FACM (J)

DO 80 JJ = 1,NEL(NCHAIN)
RET (NCHAIN, JJ,J) = FACM(J) *
RRR (NCHAIN, JJ)

INCLUDE 'CBIOSP.INC'

INCLUDE 'COUTPS.INC'

C

DIMENSION RRR (MXNCHN, MXNELM)
C

CHARACTER A*80
CHARACTER B*20
CHARACTER C*40
CHARACTER D*60
C

LOGICAL START
LOGICAL MXFL
LOGICAL SPACTL
LOGICAL TIMCTL

integer rank,master,switch,ivars

integerc in2,sim, fot3, run,pointer
double precision

mdist (ivars, iruns)

logical check in(ivars),readfile

C

C Introduced by B.M. 97-4-15

C

if (NRUN.eg.1l) then

NLY = MXNLYS

C

C.oonn. START = .true. 1is used to
write the initial comment lines
Covun founded on the top of the
input file describing the run case
C.o.... and other run-independent
parameter values

C

IF (START) THEN

10 READ(50,1000) A

IF (A .NE. '"END OF COMMENTS') THEN
C WRITE (6,1000) A

GOTO 10

ENDIF

C

READ(50,1010)

READ (50, 1000)A

C

Covinnn write the PARAMETER
values selected for

C

if (nout.ne.0.) then

DO 60 J = 1,NOUT

READ (50,1050)B, D, TOUT (J)

C WRITE(6,1050)B,D,TOUT (J)

60 CONTINUE

endif

o] WRITE (6,2010)

C

Covunn read/write RLEACH, FACM and
RET

C

READ (50,1050) B, D, RLEACH (NCHAIN)
C WRITE (6,1050) B,D,RLEACH (NCHAIN)

DO 70 J = 1 , NLY
READ (50,1040) B, D, FACM (J)
o WRITE (6,1040) B,D,FACM(J)

DO 80 JJ = 1,NEL (NCHAIN)

RET (NCHAIN, JJ,J) = FACM(J) *
RRR (NCHAIN, JJ)

37

38

WRITE (6,2070)RET (NCHAIN, JJ, J)

80 CONTINUE
WRITE (6,2010)
70 CONTINUE

WRITE (6,2080)NCHAIN, NRUN
WRITE (6,2010)

RETURN
END

C WRITE(6,2070) RET (NCHAIN,JJ,J)
80 CONTINUE

c WRITE (6,2010)

70 CONTINUE

C WRITE (6,2080) NCHAIN,NRUN
C WRITE (6,2010)

C Ends 1f condition in the
beginning of the subroutine

end if

if (switch.eqg.l) then

if

(sim.eg.l.or. (sim.eq.ivars+l.and.
master.eq.ivars+l)) then
pointer=1

if (check in(l) .eqgv..true.) then

CONTIM=deSt(pointer,nrun+runfl)
pointer=pointer+l

write (fot3,'(D13.7)"') contim
endif
if (check in(2).eqv..true.) then

RLEACH (1, 1)=mdist (pointer,nrun+run
-1)

if (nelnch.gt.l) then
rleach(1l,2)=rleach(1l,1)
rleach(1l,3)=rleach(1,1)

endif

pointer=pointer+l

write (fot3,'(D13.7)"') rleach(l,1)
endif

end if

end if

RETURN
END

And finally hereisthe OUTPUT routine before and after the changes.
Here the parts that do not get commented out are in colour.

SUBROUTINE OUTPUT

1 (NCHAIN, NOUT, MXFL)
C _______________________________
C
INCLUDE 'CPARAM.INC'
c
INCLUDE 'COTISP.INC'
INCLUDE 'CNUCNA.INC'
INCLUDE 'CNUCLI.INC'
INCLUDE 'CBIOSP.INC'
INCLUDE 'COUTPS.INC'
¢
LOGICAL MXFL
C
NLY=MXNLYS
NELCHN=NEL (NCHAIN)
c
Covun write maximun flux at the
end of each one of the geosphere
C....layers for each nuclide and

time associated (if MXFL = 1)
C
IF (MXFL) THEN

SUBROUTINE OUTPUT

1 (NCHAIN, NOUT, MXFL, fot3)
C ____________________________________
c
INCLUDE 'CPARAM.INC'
C
INCLUDE 'COTISP.INC'
INCLUDE 'CNUCNA.INC'
INCLUDE 'CNUCLI.INC'
INCLUDE 'CBIOSP.INC'
INCLUDE 'COUTPS.INC'
C
LOGICAL MXFL
integer fot3
c
NLY=MXNLYS
NELCHN=NEL (NCHAIN)
C
Covunn write maximum flux at the end
of each one of the geosphere
Covnn layers for each nuclide and

time associated (if MXFL = 1
C
IF (MXFL) THEN

1

DO 10 LY = 1,NLY

W
W

RITE (6,2000)
RITE (6,2010)

DO 20 I = 1,NELCHN

WRITE (6,2020)

LY, BNAME (NCHAIN, I),

CMXX (I, LY), TMXX (I,LY)

IF (LY .EQ. NLY) THEN
WRITE (6,2030)
DOSEA (I)
ENDIF
20 CONTINUE
10 CONTINUE
ENDIF

DO 10 LY = 1,NLY
c WRITE (6,2000)
C WRITE (6,2010)

DO 20 I = 1,NELCHN
write (fot3,'(D13.7)"') cmxx(i,ly)

C WRITE(6,2020) LY, BNAME (NCHAIN,I),
1 CMXX (I,LY), TMXX (I,LY)

IF (LY .EQ. NLY) THEN

C WRITE (6,2030) DOSEA (I)
C ENDIF

20 CONTINUE

10 CONTINUE

39

40

7. List of thingsto keep in mind when running the PM C
driver

Checklist:

Set total number of variables (ivar).

Set number of runs (iruns).

Set the variable sim to the type of simulations you want.

Set the correct values for the switches switch and sgenop for

single or multiple runs and for the type of random number

generator, respectively).

5. If the program isto load the matrix with the input values,
check check the valueisright for sinfilemat.

6. Check the values for the correlation procedure:

» key activates or deactivates the correlation;

AW PE

» varl andvar2, the user parameters to be correlated; and

« correlat should contain the correlation value.

7. Check the variables connected with the bayesian layer: sbayes,

nsche, distrifile and constfile.
8. Delete the temporary variables in the event that the program

stops abnormally (mcdname, mednr, mcdconst* , medtimeout*,

mcdout*).

41

42

Glossary

Bayesian Layer - Part of the PMC driver that selects the scenario to simulate. It
enables the uncertainty analysis to be made as described in reference [1].

Case - Thisisto enable a user to perform several MC simulations, each with a
different variable varying on its own. Each simulation is referred to as a case. At the
end, the PMC driver performs a simulation with al variables varying. The latter is
referred to as an additional case.

Distribution parameters - Usual values that characterise a particular probability
distribution: maximum, minimum, mean and standard deviation.

Input Preparator - Part of the PMC driver that samples the random values to
obtain the input values for the user model. It performs other tasks, like synchronising
all the nodes that are to work in paralld.

Macroscenario - A few general, distinct Situations that are intrinsic to the study
of the model. See a practical implementation of this concept in [1].

Master node - the node, in a parallel machine, that is assigned the rank number O
(zero). In our implementation, the root node is the node that runs the entire PMC
driver and takes care of spawning/collecting the input/output values for/from the rest
of the nodes involved in the calculation.

Message Passing Interface (MPI) - Thisisalibrary of standard subroutines for
sending and receiving messages and performing collective operations.

Microscenario - Within each macroscenario there should be a few scenarios that
still correspond to different situations. The microscenarios should be grouped under
each of the more general macroscenarios. On the other hand, each microscenario
should contain a detailed description of the situation, meaning that it should contain a
complete set of inputs for the user model. See [1] for amore detailed description of a
particular implementation.

Monte Carlo Simulation, see simulation.

43

44

Node - Component of amassive parallel machine consisting of a processor, a hard
disk and alocal memory system (usually thisis simply aworkstation or equivalent
computer).

Parallel environment - System of computers that, through the use of an
appropriate software package, can work collectively on the solution of a numerical
problem.

Pseudo-random number generator - Set of numerical algorithms that generates
a stream of numbers that can perform the role of an ideal random stream of numbers.

Quasi-random number generator - Set of numerical algorithms that generates a
stream of numbers that are carefully selected to cover the space of input parameters
relevant to a particular model, in an efficient way.

Scenarios - Set of input values (for the user model) that describes a distinct real
situation that the user model isto simulate.

Simulation, Monte Carlo - Stochastic run of auser model with different input
values for its parameters in each run. The input values are usually sampled from
probability distributions that describe the probability of occurrence of each input
value. The number of runs should be high to obtain statistical significance (with the
use of parallel computers, one can easily attain hundreds of thousands of runsfor a
simple user model). The usual output is another distribution built from the different
outputs generated during the runs.

Sobol indices— A particular algorithm that implement the concept of a quasi-
random number generator.

User program - Genera denomination for the computer code that is to be
attached to the PMC driver. It would usually be a numerical implementation of a
mathematical model of a system.

User (model) parameters- The input parameters that the user program needsin
order to run.

References

[1] GESAMAC First Year Report, CIEMAT/IMA/550/55d18/38/96, December
1996 and references therein.

[2] Press, W., Flannery, B., Teukolsky, S., and Vetterling, W., Numerical Recipes,
Cambridge Press, 1986.

[3] Prado, P., User’s manual for the GTM-1 computer code, EUR 13925 EN,
ISSN 08-5593.

[4] Foster, 1., Designing and building parallel programs, Addison Wesley, 1995.

[5] Sobal, I. M., Turchaninov, V. I., Levitan, Yu. L., and Shukman, B. V.,
Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Quasirandom
Sequence Generators, Moscow, 1992, IPM Zak., No.30.

[6] Pereira, A., and Sundstrém, B., A Method to Induce Correlations between
Distributions of Input Variables for Monte Carlo Smulations. (submitted for
publication)

45

	Table of contents.
	1. Aims of the code
	2. Structure of the program: Overview
	2.1 The Input Preparator
	2.2 The Bayesian Layer
	2.3 Parallel architecture and algorithms

	3. Description of the algorithms
	3.1. Inputs required from the user
	3.2. The input preparation
	3.3. The workload controller
	3.4. The bayesian layer
	3.5. The interface between the input preparation and the usercode
	3.6. The user's program
	3.7. Description of each subroutine (in alphabetical order)

	4. Putting the PMC driver together with the user code
	4.1 Machine and environment requirements
	4.2 Code installation
	4.3 Changes to the user code
	4.3.1. Main routine
	4.3.2. Assignment (read) routine
	4.3.3. Output subroutine

	4.4 Changes to the PMC driver

	5. Practical Example 1: Making a parallel run of a MonteCarlo simulation of a simple one-dimensional transportmodel with retardation
	6. Practical Example 2: Making a parallel run of a MonteCarlo simulation with the GTM1 code
	7. List of things to keep in mind when running the PMCdriver
	Glossary
	References

