
Crescendo Technical Report Series
No. TR-001

November 2013

Crescendo Tool Support: User Manual
Version 2.0.0

by

Peter Gorm Larsen, Kenneth Lausdahl, Joey Coleman and Sune Wolff
Aarhus University, Department of Engineering
Finlandsgade 22, DK-8200 Aarhus N, Denmark

Christian Kleijn and Frank Groen
Controllab Products B.V.

Hengelosestraat 500, 7521 AN Enschede, The Netherlands

Crescendo – Co-Simulation for Embedded Control Systems

Crescendo Tool Support: User Manual

Document history
Month Year Version Version of Crescendo.exe
December 2012 1 1.1.8 (then called DESTECS)
November 2013 2 2.0.0
January 2014 3 2.0.0 (review by M. Verhoef)

ii

Contents

1 Introduction 1
1.1 What is the Crescendo Tool? . 1
1.2 What was the DESTECS Project? . 1
1.3 What is the Vienna Development Method? . 1
1.4 What are Bond Graphs? . 2
1.5 Related Tools . 3

1.5.1 Overture . 3
1.5.2 Crescendo . 3
1.5.3 Symphony . 3

1.6 Structure of this User Manual . 4

2 Basic Crescendo Concepts 5
2.1 Models . 5
2.2 Simulation . 5
2.3 Co-Simulation . 6
2.4 Contract . 6

3 Getting Hold of the Software 7
3.1 Requirements . 7
3.2 Installation . 7

3.2.1 Combined Installer . 7
3.2.2 Licence . 8
3.2.3 Manuals . 8

3.3 20-sim Standalone . 8

4 Quick Start with Crescendo 11
4.1 Opening Crescendo . 11
4.2 Opening a Project . 12
4.3 Running a Project . 12

5 Editors and Management of Projects 17
5.1 The Crescendo Workbench . 17

5.1.1 Explorer View . 18

iii

Crescendo Tool Support: User Manual

5.1.2 Editor View . 18
5.1.3 Outline View . 19
5.1.4 Simulation Engine View . 19
5.1.5 Console View . 20

5.2 Handling Projects . 21
5.2.1 Creating new Projects . 21
5.2.2 Importing Projects . 21
5.2.3 Exporting Projects . 23

5.3 Managing Contracts . 24
5.3.1 Creating a new Contract File . 24
5.3.2 Contents of a Contract . 25
5.3.3 Error Detection in the Contract/Link File 27
5.3.4 Managing the Link Files . 28
5.3.5 Contract Overview . 30

6 Co-Simulation 31
6.1 Debug Configuration . 31

6.1.1 Creating a New Debug Configuration . 31
6.1.2 Main Tab . 31
6.1.3 Shared Design Parameters Tab . 33
6.1.4 DE Simulator Tab . 33
6.1.5 CT Simulator Tab . 34

6.2 Post-Processing Tab . 35
6.2.1 Advanced Tab . 35
6.2.2 Common Tab . 35

6.3 Scenarios . 36
6.3.1 Creating a New Scenario File . 37
6.3.2 CSL Syntax . 37
6.3.3 CSL Examples . 38

6.4 Logfiles . 39
6.4.1 DE Variables . 40

7 Design Space Exploration 43
7.1 ACA Workflow . 43
7.2 Using the ACA Features . 44

7.2.1 The Main Tab . 44
7.2.2 The Architecture Tab - Deployment Architectures 45
7.2.3 Shared Design Parameters Tab . 45
7.2.4 Scenario Tab . 47
7.2.5 CT Settings Tab . 48
7.2.6 Common Tab . 48

7.3 Repeating a Single Launch Part of an ACA . 48

iv

CONTENTS

7.4 Folder Launch Configuration . 49
7.5 Control Library . 49

7.5.1 Accessing the Control Library . 50
7.5.2 Using the Control Library . 51
7.5.3 Advanced Use . 52
7.5.4 Constructors . 52

7.6 DE Architecture . 54
7.7 Events . 55

7.7.1 Simulation setup . 55
7.7.2 Events in CT . 56
7.7.3 Events in DE . 56

8 Post-Analysis 59
8.1 Octave . 59

8.1.1 Octave use in Crescendo . 59
8.1.2 Show Plot Automatically when Script is Run 59
8.1.3 Invoking Octave from Crescendo . 60
8.1.4 Setting Octave path . 60

8.2 Folder Launch Configuration . 60

A Glossary 65

v

Crescendo Tool Support: User Manual

vi

ABSTRACT

This document is the user manual for the Crescendo Integrated Development Environment (IDE)
version 2.0.0, enabling collaborative analysis of models written in the Discrete Event (DE) formal-
ism VDM and the Continuous Time (CT) formalism bond graphs. The specific dialect of VDM
used is called VDM Real Time (VDM-RT) and it is supported by the Overture tool whereas the
bond graph formalism is supported by the tool 20-sim. Both Crescendo and Overture are built on
top of the Eclipse platform.

Chapter 1

Introduction

1.1 What is the Crescendo Tool?
The Crescendo tool was originally called the DESTECS tool since it was produced in the Euro-
pean Seventh Framework research project called DESTECS (see Section 1.2 below). It supports a
method of collaborative modelling and simulation called co-simulation.

1.2 What was the DESTECS Project?
The DESTECS (Design Support and Tooling for Embedded Control Software)1 project was per-
formed by a consortium of research groups and companies working on the challenge of develop-
ing fault-tolerant embedded systems [BLV+10]. The consortium focussed on developing design
methods and tools that bridge the gap between the disciplines involved in designing an embedded
system: systems, control, mechanical and software engineering, for example. DESTECS aimed
to develop methods and tools that combine Continuous-Time (CT) models with Discrete-Event
(DE) controller models through co-simulation to allow multi-disciplinary modelling, including
modelling of faults and fault tolerance mechanisms. The analysis of these effects at every stage
in a design process will help to build more dependable real-time embedded systems. The DE
modelling is carried out using the Vienna Development Method and its support tool Overture (see
Section 1.3 below). The CT modelling is carried out using bond graphs and its support tool 20-sim
(see Section 1.4 below).

1.3 What is the Vienna Development Method?
The Vienna Development Method (VDM) is one of the oldest established model-oriented formal
methods for the development of computer-based systems and software [BJ78, Jon90, FLV08]. It
consists of a group of mathematically well-founded languages for expressing and analysing system

1See www.destecs.org.

1

www.destecs.org

Crescendo Tool Support: User Manual

models during early design stages, with the aim to reduce developments risks before expensive im-
plementation commitments are made. VDM has a strong record of industrial applications, in many
cases it has been used by practitioners who were not specialists in the underlying formalism or
logic [LH96,CCFJ99,KN09]. Experience with the method suggests that the effort spent on formal
modelling and analysis can be recovered easily in reduced rework costs arising from prevented
design errors.

VDM models are expressed in a specification language (VDM-SL) which supports the descrip-
tion of data and functionality [ISO96, FL98, FL09]. Data is defined by means of abstract data
types built using constructors that define structured data and collections such as sets, sequences
and mappings from basic values such as Booleans, reals, characters and natural numbers. These
types are very abstract, allowing you to add any relevant constraints using data type invariants.
Functionality is defined in terms of operations over these data types. Operations can be defined
implicitly by preconditions and postconditions that characterize their behavior, or explicitly by
means of specific algorithms. An extension of VDM-SL, called VDM++, supports object-oriented
structuring of models and also permits direct modelling of concurrency [FLM+05]. A further
extension to VDM++, called VDM Real Time (VDM-RT2), which includes support for explicit
computing and communication architectures for executing specific deployments of discrete time
models [MBD+00, VLH06]. All three VDM dialects are supported by Overture.

1.4 What are Bond Graphs?

Bond graphs are directed graphs in which the vertices are submodels and the edges, called bonds,
denote the ideal (or idealised) exchange of energy between those submodels. Entry points of
submodels are called ports. The exchange of energy through a port (p) is always described by
two implicit variables, effort (p.e) and flow (p.f). The product of these variables is the amount of
energy that passes through the port. The meaning of these two variables depends on the physical
domain (examples include voltage and current, and force and velocity), which makes the method
ideal for multi-domain modelling.

The 20-sim tool supports the creation and simulation of models that can be represented in a
variety of forms, including basic bond graphs; collections of differential equations describing the
behaviour of nodes; and iconic diagram. Although the 20-sim tool is commercial, all the model
libraries are open source. The package supports mixed-mode integration techniques to allow the
modelling and simulation of computer controlled physical systems that contain Continuous-Time
as well as Discrete-Event elements. The level of complexity of many modern controllers means
that discrete-event elements are better modelled using a rich formalism such as VDM. The 20-sim
package supports the connection of external software both for model construction and simula-
tion (Discrete-Event, Continuous-Time or hybrid), and this connection is exploited in providing
support for co-simulation.

2Originally called VDM In a Constrained Environment (VICE).

2

CHAPTER 1. INTRODUCTION

1.5 Related Tools

The Crescendo tool is one of a family of tools with common shared code.

1.5.1 Overture

The Overture tool (www.overturetool.org) represents the opening of these tools. This tool
is build on top of the Eclipse platform and it support all the VDM dialects: VDM-SL, VDM++
and VDM Real-Time (VDM-RT). Many different features are included but the emphasis is on
validation of VDM models by interpretation of executable subsets. This also includes support for
DE notation VDM-RT used inside the Crescendo tool. Users who are only interested in Discrete
Event (DE) modelling using one or more of the VDM dialects should use this Overture tool.

1.5.2 Crescendo

The Crescendo tool (www.crescendotool.org) is a gradual increase of the Overture tool in
the sense that it has all the support present inside Overture and in addition it supports collaborative
modelling and simulation with a combination of the DE notation VDM-RT and the Continuous
Time (CT) simulation by the 20-sim tool3. This is particular useful for those who are interested in
modelling and validation of embedded control systems including modelling of the physical plants
to be controlled. Users who are interested in both DE and CT modelling in a collaborative fashion
should use this.

1.5.3 Symphony

The Symphony tool (www.symphonytool.org) is an extended musical composition carried
out by a large band (i.e. a System of Systems). This tool is developed in the COMPASS project4

and it supports the COMPASS Modelling Language (CML). Symphony is also an extension of the
Overture tool in the sense that it has all the support present inside Overture. CML is a combination
of VDM and CSP/Circus. This tool provides validation using execution of an executable subset
and test automation using the RT Tester tool as well as formal verification using model checking
(partially supported by the FORMULA model checker) and theorem proving (partially supported
by the Isabelle theorem prover). Users who are interested in modelling and analysis of Systems of
Systems should use this.

3This tool was originally developed in the DESTECS (Design Support and Tooling for Embedded Control Software)
project. This was partially supported by EU as project number 248134 under the embedded system design area.

4This is an acronym for “Comprehensive Modelling for Advanced Systems of Systems” project number 287829 under
the EU FP7 programme.

3

www.overturetool.org
www.crescendotool.org
www.symphonytool.org

Crescendo Tool Support: User Manual

1.6 Structure of this User Manual
This user manual explains how to use the Crescendo IDE for developing collaborating models
(co-models) and analysing them. In essence it is structured in 2 parts: The first part provides
the basics for getting started using the Crescendo tool and the second part acts as a reference
manual for the Crescendo tool. The first part contains Chapter 2 introducing the basic Crescendo
concepts5; Chapter 3 explans how to get hold of the software; and finally Chapter 4 explains how
to quickly get started using the Crescendo tool with existing models that can be imported directly.
Afterwards the second part also contains four chapters explaining the main possibilities in the
Crescendo tool. Chapter 5 explains the different views in the Crescendo tool, its editors and its
way of handling projects. Chapter 6 explains the co-simulation possibilities. This is followed by
Chapter 7 which provides information about how co-simulation can be extended with exploring
the candidate design space. Finally this part is completed in Chapter 8 explaining the post-analysis
possibilities in particular relevant to exploratory situations.

5Appendix A provides a complete list of the Crescendo common concepts.

4

Chapter 2

Basic Crescendo Concepts

The Crescendo tool allows you to define co-models and to perform a co-simulation. To get a
basic understanding of the tool, we first need to define some concepts. We will use use a popular
description of these concepts that might not be completely correct but will, hopefully, enhance the
understanding of users who are new to Crescendo.

2.1 Models

It starts with models. Models are a more or less abstract representation of a system or component
of interest. In Crescendo we use Continuous-Time models (CT models) and Discrete-Event models
(DE models). CT models are models that describe real physical systems. These models describe
the behaviour of physical systems at any desired time. DE models typically describe computer
systems that run at predetermined time steps. Between these time steps nothing happens.

2.2 Simulation

Continuous-Time models can be created and simulated in 20-sim. This tool will simulate CT
models with as many small time steps as required to get accurate results. Sometimes the accuracy
is violated. The tool will then step back and use smaller time steps until the required accuracy
is met. This is called a Continuous-Time simulation. A Continuous-Time simulation is therefore
always characterized by the accuracy of the simulation and the time steps taken. Discrete-Event
models can be created and simulated in Overture/VDM. This tool will simulate Discrete-Event
models with predetermined discrete time steps. This is called a Discrete-Event simulation. There
are no accuracy issues involved and therefore no backstepping is required.

The properties of a model that affects its behaviour, but which remain constant during a simula-
tion are called parameters. Examples of parameters are for example the height of a watertank or
the mass of a car. A variable is a property of a model that may change during a given simulation,
for example the varying waterlevel of a watertank or the varying speed of a car.

5

Crescendo Tool Support: User Manual

2.3 Co-Simulation
A co-simulation is a combined simulation of a Continuous-Time model and a Discrete-Event model
in separate tools. The Crescendo tool allows you to run Discrete-Event models in VDM and
Continuous-Time models in 20-sim and exchange information between VDM and 20-sim during
run time. Because the notion of a model in a co-simulation may lead to misinterpretations, we will
use the following definitions:

constituent model: the CT submodel or the DE submodel of a co-simulation.

co-model: a model comprising two constituent models (a DE submodel and a CT submodel).

2.4 Contract
The description of the communication between the constituent models of a co-model is called the
contract. A contract typically describes the variables that are shared between the Continuous-Time
model and the Discrete-Event model. An example of a shared variable is the waterlevel that
is calculated in the Continuous-Time model and sent to the Discrete-Event model where it is used
to calculate the response of a water level controller.

In most cases a Continuous-Time model and a Discrete-Event model will use similar param-
eters. For the watertank example such a parameter may be the maximum water level. In the
Continuous-Time model this parameter indicates the height at which a sensor is placed and in the
Discrete-Event model this parameter may indicate a property of the water level controller. To pre-
vent different values to be used in the Continuous-Time model and Discrete-Event model, we may
share this parameter in the contract. This is called a shared design parameter.

6

Chapter 3

Getting Hold of the Software

3.1 Requirements
The Crescendo tool suite can be downloaded as a single installation package from the Crescendo
website. The package contains a full installation for Overture/VDM, 20-sim and the Crescendo
tools. Overture/VDM and the Crescendo tools are open source tools and will run on any computer
equipped with a Java virtual machine. However, 20-sim is a commerical tool that will run as a
viewer on any Windows computer. If you want to build your own models in 20-sim and store
them, you will need a license (see Section 3.2). In order to install to package of the Crescendo
package you need to have:

• Windows platform (XP / Vista / 7 / 8)

• At least 256 MB memory

• At least 200 MB free disk space

• An x86 compatible CPU

3.2 Installation

3.2.1 Combined Installer
First-time users are advised to use the combined installer that will install the Crescendo tool and
that will also include the Overture/VDM features and the 20-sim tool on your computer. You can
download the installer from the Crescendo website:

http://www.crescendotool.org

During installation the main installer will pause. A second installer will then guide you through
the installation of 20-sim. Once 20-sim is installed, the Crescendo installer will continue. Both
the Overture/VDM tool as well as the Crescendo tool are released as open source under the GNU
General Public Licence v3.0.

7

http://www.crescendotool.org

Crescendo Tool Support: User Manual

3.2.2 Licence
Both VDM and the Crescendo tools are open source and do not require an additional licence. 20-
sim is a commercial tool that will run in Viewer mode on any computer. This means that you can
only run and edit models! If you want to save changes to your model, you will need a licence. You
can send an email to Controllab mailto://info@controllab.nl to get a trial licence.

3.2.3 Manuals
VDM: To help you work with VDM the VDM language manual [LLB+13] and the Overture user

guide [LLJ+13]1.

20-sim: To help you work with 20-sim, you can visit the website [Con13] or look at the 20-sim
reference manual [Kle09]2.

3.3 20-sim Standalone
The Crescendo installer will install the 20-sim Viewer on your computer. The 20-sim Viewer will
allow you to run and edit all the Crescendo example models, but does not allow you to save them.
When 20-sim is openened, the licence dialog will be opened.

Figure 3.1: Licence for 20-sim.

• You have to click the Close button to continue.
1Both of these and more manuals can be found at http://overturetool.org/?q=Documentation.
2See also http://www.20sim.com/support/movies.html and
http://www.20sim.com/downloads/files/20sim43GettingStartedManual.pdf.

8

mailto://info@controllab.nl
http://overturetool.org/?q=Documentation
http://www.20sim.com/support/movies.html
http://www.20sim.com/downloads/files/20sim43GettingStartedManual.pdf

CHAPTER 3. GETTING HOLD OF THE SOFTWARE

Unless you have purchased a license during model editing and simulation, the 20-sim Viewer
will remind you with a message:

9

Crescendo Tool Support: User Manual

10

Chapter 4

Quick Start with Crescendo

To help you get started with Crescendo this chapter gives you step by step instructions how to
configure the software, get a basic WaterTankPeriodic example running and create your own
simple project.

4.1 Opening Crescendo
• Open Crescendo from the start menu. You will see a splash screen when the program

opens and a dialog prompting you to give a location for the workspace, as in Figure 4.1.

Figure 4.1: The Crescendo Workspace Location Screen.

• Enter a location where you have both read and write access. The program should respond
by opening with a welcome screen as shown in Figure 4.2.

When the welcome screen is closed the standard Crescendo perspective becomes active, as
shown in Figure 5.1 with different views explained further in Chapter 5.

11

Crescendo Tool Support: User Manual

Figure 4.2: The Crescendo Welcome Screen.

4.2 Opening a Project
• From the File menu choose “File” and then “Import”.

• Select “General and Existing Projects into Workspace” and click “Next” and get a window
similar to Figure 4.3.

• Go to Crescendo Examples and select at least the WatertankPeriodic example.

• Click Finish to import the selected project(s).

4.3 Running a Project
Now (at least) the WaterTankPeriodic project should be visible.

• Click on the WaterTankPeriodic project entry to select it.

• Press the Debug button (if you have multiple projects loaded, you have to select the Water-
TankPeriodic project first, by clicking the black triangle at the right of the Debug button)

Now a co-simulation will start. The 20-sim editor (showing the Continuous-Time model) will
be opened as shown in Figure 4.4, the 20-sim Simulator (showing the plot of the Continuous-
Time part of the simulation) will be opened and the 3D animator (showing an animation of the
watertank) will be opened as shown in Figure 4.5. In addition graphs for selected variables during
the simulation are shown as in Figure 4.6.

12

CHAPTER 4. QUICK START WITH CRESCENDO

Figure 4.3: Dialog for Importing Crescendo Examples

13

Crescendo Tool Support: User Manual

Figure 4.4: The 20-sim Editor contains the continuous-time WaterTankPeriodic model.

14

CHAPTER 4. QUICK START WITH CRESCENDO

Figure 4.5: 20-sim can also show simulation results in a 3D animation.

15

Crescendo Tool Support: User Manual

Figure 4.6: The 20-sim Simulator shows the co-simulated plots.

16

Chapter 5

Editors and Management of Projects

5.1 The Crescendo Workbench

Eclipse is an open source platform based around a workbench that provides a common look and feel
to a large collection of extension products. Thus, if a user is familiar with one Eclipse product,
it will generally be easy to start using a different product on the same workbench. The Eclipse
workbench consists of several panels known as views, as shown in Figure 5.1. A collection of
panels is called a perspective. The figure below shows the standard Crescendo perspective. The
Crescendo perspective consists of a set of views for managing Crescendo projects and viewing and
editing files in a project. Different perspectives are available in Crescendo based on the task that
you are doing. In the subsections below the different views of the standard Crescendo perspective
will be presented.

Figure 5.1: Standard Crescendo Perspective.

17

Crescendo Tool Support: User Manual

5.1.1 Explorer View
The Crescendo Explorer view lets you create, select, import, export and delete Crescendo projects
and navigate between the files in these projects. It is also from this view that deleting existing files
and adding new files to existing projects is enabled. In Figure 5.2 the kind of contents inside one
project is illustrated.

Figure 5.2: The Crescendo explorer view.

5.1.2 Editor View
The Crescendo Editor View allows you to edit VDM files, Contracts and Scenarios and it highlights
the different keywords. Figure 5.3 shows how a Crescendo contract looks in the editor (and in a
different pane a VDM-RT file).

Figure 5.3: The Editor View.

18

CHAPTER 5. EDITORS AND MANAGEMENT OF PROJECTS

5.1.3 Outline View

The Crescendo Outline view, on the right hand side of Figure 5.1, presents an outline of the file
selected in the editor. This view displays any declared VDM definitions such as their state com-
ponents, values, types, functions and operations. The type of the definitions are also shown in
the outline view. The Outline view is at the moment only available for the VDM models of the
system. In the case another type of file is selected, the message “An outline is not available” will
be displayed. Figure 5.4 shows an extract of the outline of a class called System.

Figure 5.4: The outline view showing the composition of the System VDM-RT class.

The type of each definition is also shown in the view and the colour of the icons in front of the
names indicates the accessibility of each definition. Red is used for private definitions, yellow for
protected definitions and green for public definitions. Triangles are used for type definitions, small
squares are used for values, state components and instance variables, functions and operations are
represented by larger circles and squares, permission predicates are shown with small lock symbols
and traces are shown with a “T”. Functions have a small “F” superscript over the icons and static
definitions have a small “S” superscript. Record types have a small arrow in front of the icon, and
if that is clicked the fields of the record can be seen. Figure 5.5 illustrates the different outline
icons. At the top of the view there are buttons to filter what is displayed, for instance it is possible
to hide non-public members.

Clicking on the name of a definition in the outline will navigate to the definition and highlight
the name in the Editor view (see Section 5.1.2).

5.1.4 Simulation Engine View

The Crescendo Simulation Engine View, located in the lower left part of the environment is showing
the evolution of a co-simulation. This is done by monitoring the interaction between the VDM-
RT Discrete-Event simulation, the 20-sim Continuous-Time simulation and the engine. This view
has two columns, the first one is specifying the source of the message and the second one the
progress of a co-simulation in seconds and percentages of completion. An extract of this is shown
in Figure 5.6.

19

Crescendo Tool Support: User Manual

Figure 5.5: Icons in the Outline View

Figure 5.6: The Crescendo Simulation Engine view.

5.1.5 Console View

The Crescendo Colsole View, located in the lower right part of the environment is acting as a
console showing any output from the DE-part of the co-simulation. An extract of this is shown in

20

CHAPTER 5. EDITORS AND MANAGEMENT OF PROJECTS

Figure 5.7.

Figure 5.7: The Crescendo Console view.

5.2 Handling Projects
All data that is necessary for a co-simulation (e.g., models, contracts etc.) is stored in a Crescendo
project. This section explains how to use the Crescendo tool to manage projects. Step by step
instructions for importing, exporting and creating projects will be given.

5.2.1 Creating new Projects
Follow these steps in order to create a new Crescendo project:

• Create a new project by choosing File and New and Project and Crescendo project.

• Type in a project name.

• Click the button “Finish” (see Figure 5.8).

You can create projects in the Crescendo tool. The highlighted project is the project that is
currently selected.

5.2.2 Importing Projects
Follow these steps in order to import an already existing Crescendo project.

• Right-click the Explorer View (see Section 5.1.1 above) and select Import.

• Select either the standard Crescendo or the General → Existing Projects into Workspace
part. Using the Crescendo one enables you to import the standard Crescendo examples or
the examples used in the book about this [FLV13]. Using the General entry you can import
anything else that has been produced by someone and exported for your use.

• Click Next to proceed.

21

Crescendo Tool Support: User Manual

Figure 5.8: Create project dialog.

Figure 5.9: Import project dialog.

22

CHAPTER 5. EDITORS AND MANAGEMENT OF PROJECTS

• If one of the Crescendo options is taken, a list of the potential projects to import will appear.
Otherwise if the General one was selected you shall select the the radio button “Select root
directory” if the project is uncompressed. Otherwise select the the radio button “Select
archive file” if the project is contained in a compressed archive file. Afterwards, use the
Browse button to locate the project.

• A compressed archive file may contain multiple projects. Select the projects that you want
to import as shown in Figure 5.10.

• Click the Finish button. The imported project will appear on the Crescendo explorer view.

Figure 5.10: Import projects.

5.2.3 Exporting Projects
Follow these steps in order to export a Crescendo project:

23

Crescendo Tool Support: User Manual

• Right click on the target project and select Export, followed by General and Archive File.
See Figure 5.11 for more details.

• Click Next to proceed.

Figure 5.11: Select an output format for the exporting process.

5.3 Managing Contracts
To connect the Continuous-Time model and Discrete-Event model we have to define a contract.
The contract also needs to be linked into DE and CT elements respectively. In order to show the co-
simulation tool how to link the elements from the contract to the DE and CT models respectively
a link-file must be present for each co-model. This is stored in a vdm.link part.

5.3.1 Creating a new Contract File
Right click on the project that is going to contain the contract file. Select New and Crescendo New
Contract as shown in Figure 5.12.

• A new window will pop up. Choose a contract name and click on the Finish button to
end the process.

After following these steps a new file named contract.csc will appear under the
configuration folder contained in the project tree. The contract can be viewed in the editor
as shown in Figure 5.13.

24

CHAPTER 5. EDITORS AND MANAGEMENT OF PROJECTS

Figure 5.12: Choosing a new Crescendo contract.

Figure 5.13: The Editor with a new contract.

5.3.2 Contents of a Contract
A contract between a CT and a DE model can contain the following kinds of information:

Design parameters: These are typically values which indicate the properties of components (e.g.
size, weight, temperature). A designer would like to explore different values of these param-
eters in order to find an optimal solution to the challenge he is working on. The actual values
for the shared design parameters are set outside the contract in a separate file.

Variables: The variables are the active interface between the CT and DE models so these indicate
the variables that change during one simulation. Variables typically represent sensor readings
and signals to actuators.

Events: Events can be triggered in the CT world. They will stop the simulation before the al-
lowed time slice is completed. The co-simulation engine will then allow the DE simulator to
take action but only until the point where the event has been raised. The events are used in
the contract in order to support event-based triggering and not just time-triggered scheduling.

25

Crescendo Tool Support: User Manual

The syntax for contracts follow the following rules:

〈contract〉 ::= parameters | variables | events;

〈parameters〉 ::= ‘shared design parameter’ type identifier ‘;’ | ‘sdp’ type identifier
‘;’

〈variables〉 ::= kind type identifier ‘;’ | kind ‘matrix’ identifier shape ‘;’

〈shape〉 ::= ‘[’ ‘integer’ ‘,’ ‘integer’)* ‘]’

〈events〉 ::= ‘event’, identifier, ‘;’

〈type〉 ::= ‘real’ | ‘bool’ ;

〈identifier〉 ::= initial letter (following letter)* ;

〈kind〉 ::= ‘monitored’ | ‘controlled’ ;

〈value〉 ::= float | boolean literal ;

〈boolean literal〉 ::= ‘true’ | ‘false’ ;

In the following listing, an extract from the contract file provided with the WaterTank-
Periodic example is shown.

-- Shared design parameters
sdp real maxlevel;
sdp real minlevel;

-- Monitored variables (seen from the DE controller)
monitored real level;

-- Controlled variables (seen from the DE controller)
controlled bool valve;

Matrices

It is also possible to exchange matrices between DE and CT models. To be able to do this, a matrix
needs to be declared in the contract. The adopted syntax is similar to 20-sim, where the shape of
the matrix is indicated by a sequence of integers [m1,...,mn]. For example, to declare a 2x2 matrix
named M which is monitored the following must be added to the contract:

monitored matrix M[2,2];

26

CHAPTER 5. EDITORS AND MANAGEMENT OF PROJECTS

In VDM matrices of “n” dimensions (m1 *... * mn) are represented as (seq of ...
seq of real). So a 2x2 matrix is represented as a (seq of seq of real). The contract
matrix variables are linked in the same manner as any other variable but the target variable needs
to be of the correct type, in our case seq of seq of real. At the VDM level this would
typically be declared as:�
instance variables

M: seq of seq of real := [[0.0,0.0],[0.0,0.0]];
� �
Arrays

Arrays which are limited to one dimension can be declared in the same style:

monitored array position[3];

Arrays are basically matrices limited to one dimension.

5.3.3 Error Detection in the Contract/Link File

A static error check is performed every time the contract or the link file are saved. This is a cross-
file consistency check which resolves if all the variables and events declared in a contract are also
present in the link and vice-versa. Crescendo will prevent the launch of projects with consistency
errors between the contract and link files but there is the possibility to turn this protection off by un-
checking the referent preference (accessible in the menu “Windows” followed by “Preferences”).
This is illustrated in Figure 5.14.

Figure 5.14: Launching with or without contract or link errors.

27

Crescendo Tool Support: User Manual

5.3.4 Managing the Link Files
The link file is automatically created when you start a new project. You can edit the link file by
selecting the configuration folder in the project tree. Expand the project and configuration folder
and select the file vdm.link.

Figure 5.15: Expand the configuration folder to see the link file.

Figure 5.15 shows the editor with the contents of the link file.

Contents of a link file

The syntax of a link file is a sequence of link definitions (each definition is formed by an interface
type, a qualified name, “=” sign and a qualified name) separated by line breaks. Here all the
design parameters, the variables and the events from the contract must be present on the left-hand-
side of each of these definitions. It is important to note that the link file may contain more links
than required by the contract, this allows a DE model to be reused in different simulations where
different contracts are used. Additionally, links can be made to variables that exist within the model
in order to be able to reference them from a script (the keyword “model” is used for this purpose).
The right-hand-side of all the “=” signs provide the names seen from the DE co-model side, e.g.,
the instance variables inside a system class in the VDM-RT model. The syntax of these definitions
are:

〈vdmlink-file〉 ::= { 〈interface〉, 〈qualified-name〉, ‘=’, 〈qualified-name〉, ‘;’ }

〈interface〉 ::= ‘output’ | ‘input’ | ‘sdp’ | ‘event’ | ‘model’ ;

〈qualified-name〉 ::= 〈identifier〉, [‘.’, 〈identifier〉] ;

〈identifier〉 ::= 〈initial-letter〉, { 〈following-letter〉 } ;

Link File Parts

• input links one monitored variable in the contract with a instance variable in the DE model.
The qualified name must start with the system class name.

28

CHAPTER 5. EDITORS AND MANAGEMENT OF PROJECTS

• output links one controlled variable in the contract with an instance variable in the DE
model. The qualified name must start with the system class name.

• sdp links a shared design parameter in the contract with a value in the DE model. The
qualified name can start with any class name and the referenced value must be a VDM value.

• model links a “name” and a variable in the VDM model. The name can then be used to
reference the variable in scripts. The qualified name must start with the system class name.

The vdm.link file for the WaterTankPeriodic example looks as:

-- connect shared variables to DE model
input level = System.levelSensor.level;
output valve = System.valveActuator.valveState;

-- connect shared design parameters to DE model
sdp maxlevel = Controller.maxLevel;
sdp minlevel = Controller.minLevel;

-- other linked names used in scenarios
model isLevelSensorBroken =

System.levelSensor.isLevelSensorBroken;
model isValveBroken =

System.valveActuator.isValveBroken;

CT Model

On the 20-sim side, a link file is not used, but still, the variables/parameters need to be declared in
a certain way inside the 20-sim model in order to carry out the co-simulation. Variables used in
the co-simulation, need to be in the externals field and marked as global. Depending if they
are used as input or output they need to be marked import or export respectively. Example:

externals
real global export level;
real global import valve;

The parameters to be shared across the two models need to be marked with the keyword shared.
Example:

parameters
real aParam (’shared’) = 5;

29

Crescendo Tool Support: User Manual

Events need to be marked using the event keyword this marks the variable that it used as re-
turn value of the event function to be an event variable. The keywords eventdown and eventup
are used as in standalone 20-sim models. Example:

variables
boolean minLevelReached (’event’);

equations
maxLevelReached = eventup(levelIn-maxlevel);

5.3.5 Contract Overview
An overview of the contract can be seen on the last tab of multi-editor as shown in Figure 5.16.

Figure 5.16: Overview of contract information.

In this view it is possible to see which variable from the DE side is connected to which contract
variable and transitively to which CT variable. The form they are presented is:

VDM variable <-> Contract Variable <-> 20-sim variable

The “not checked” warning appears next to the 20-sim variables because at this moment is not
possible to static check if the variables exist in the 20-sim model.

30

Chapter 6

Co-Simulation

6.1 Debug Configuration
Before starting a co-simulation, a debug configuration must be created if a launch configuration
is not already available. The purpose of this is to define where the Continuous Time and Discrete
Event models are located, as well as the scenario file and the simulation time. In this section we
will go through each pane in the debug configuration.

6.1.1 Creating a New Debug Configuration
• Select the project for which you want to create a Debug Configuration.

• Press the small arrow next to the debug icon at the top of the the Crescendo Tool.

• A drop-down menu will appear, in which the option Debug configuration has to be selected,
and as a consequence a new window will appear as shown in Figure 6.1.

• Select the option Co-Sim Launch and New Configuration

Now a window will show up as Figure 6.2 where you can enter the settings of the debug
configuration. We will describe all the tabs that can be configured before running a co-simulation.

6.1.2 Main Tab
Once the project is found and selected, the paths for both Discrete Event model will be automati-
cally set. Since multiple Continuous Time models could be present the Browse button to select the
one you would like to use.

The Main Tab is where the project to co-simulate is selected. This can be done by pressing
the “Browse...” button. After selecting the wanted project, the DE model path is automatically
filled since it is only possible to have one DE model in the model de folder. Though the CT
model path needs to be selected using the Browse... button. If a scenario should be used (see

31

Crescendo Tool Support: User Manual

Figure 6.1: Select a new debug configuration.

Figure 6.2: The Main tab of the Debug Configuration.

Section6.3 for more information on scenarios), it is possible to select which one in the Simulation
Configuration section. The total simulation time should be a number greater than zero to be able
to run the co-simulation.

32

CHAPTER 6. CO-SIMULATION

6.1.3 Shared Design Parameters Tab
An important feature of the debug configuration is the possibility to view and modify the shared
design parameters of the co-simulation. This is configured in Figure 6.3.

Figure 6.3: The Shared Design Parameters tab of the Debug Configuration.

In the Shared Design Parameters tab, a list of the parameters used in the simulation can be
viewed. For the variables to appear for the first time the button “Synchronize with contract” needs
to be pressed. Every time the shared design parameters are changed in the contract, the button
must be pressed again in order to synchronize the view with the contract.

For the variables present in the table it is possible to decide which values they will have when
the co-simulation starts. Figure 6.3 shows the Shared Design Parameters tab for a project that has
an array[3] as a shared design parameter.

6.1.4 DE Simulator Tab
The DE Simulator tab is the place where runtime options for the DE part of the model can be
activated and deactivated. It is divided in 4 options groups:

Interpreting: These are options related to the interpretation of the DE models. Certain checks
and also the generation of reports such as coverage or the real-time events can be turned
on and off. Usage of these options are further explained in the Overture/VDM user manual
[LLJ+13].

Log: In this group it is possible to select variables from the DE model that should be logged during
the simulation. To find more details about this feature, see Section 6.4.

Faults: In this group it is possible to select a class A to replace a class B before the co-simulation
start. The intention is to experiment with faulty modules that can be substituted by the non-
faulty model. To make sure there will be no run-time exceptions, class B should be subclass

33

Crescendo Tool Support: User Manual

of A. To indicate that class A should be substituted by class B, the following should be
inserted in the text box DE Replace Pattern (A/B). It is possible to make several substitutions
by separating the substitutions with a comma A/B,C/D,....

Architecture: In this area it is possible to select an architecture file that defines the architecture of
the deployment of the DE controller. More information on the architecture file can be seen
in Section 7.6.

Figure 6.4: The DE simulator tab of the Debug Configuration.

6.1.5 CT Simulator Tab
The 20-sim tab contains options related with the execution of the CT model. At first, both ta-
bles (Log and Settings) contain only the previously saved settings, if no settings were previously
selected then the tables will be empty; the tables can be populated by pressing the ”Populate...”
button. The ”Populate...” button launches the model selected in 20-sim model and dynamically
extracts the settings and the variables present in the model. As shown in Figure 6.5 there are two
areas present in the 20-sim options tab:

Log: In this area it is possible to select which CT variables should be logged during the co-
simulation execution.

Settings: The settings are presented in a tree view. In this tree there is two types of nodes, option
nodes and “virtual” nodes which are only there to give the tree structure. If an option node
is selected, the different possibilities will be presented on the right side (“Options” group).

34

CHAPTER 6. CO-SIMULATION

Figure 6.5: The CT simulator tab of the Debug Configuration.

6.2 Post-Processing Tab

The post processing tab shows the options available for the post-processing phase (see Figure 6.6).

Figure 6.6: Post-processing tab for debug configuration.

“Show plot automatically when the script runs” with this option enabled, the Octave script that
is generated after each run will contain the commands to show the plot automatically, i.e., simply
running the script will show the plots. For more information on the use of Octave, please see
Section 8.1.

6.2.1 Advanced Tab

The advanced tab is reserved for developers, extra debug information can be turned on or off in
this tab (see Figure 6.7).

6.2.2 Common Tab

The Common tab is a standard Eclipse tab which, for example, allows users to save the debug
configurations into files so that they can be shared with others. Figure 6.8 shows how to produce a
launch file that can be shared with others.

35

Crescendo Tool Support: User Manual

Figure 6.7: Advanced options tab.

Figure 6.8: This is where launch files can be created.

6.3 Scenarios

Scripts allow users to define condition-action pairs (using a statement called when), which per-
form an action when the condition becomes true during a co-simulation. This script allows these
conditions to reference the current co-simulation time and the state of the co-model, and to com-
bine them with logical operators. Actions can make assignments to selected parts of the co-model
and also provide information back to the user, as well as terminating the simulation.

This section describes how to create scenario files and introduces a command language for
Crescendo scripts called CSL (Crescendo Scripting Language). The main purpose of CSL is to
allow engineers to simulate user input and activate latent non-normative behaviours during a co-
simulation. The language is designed to be sufficiently rich as to allow engineers to influence a
co-model during co-simulation, without being overly complex. For example, it does not allow
local variables to be defined.

36

CHAPTER 6. CO-SIMULATION

6.3.1 Creating a New Scenario File
Follow these steps in order to create a new scenario file:

• Right-click on the project that is going to contain the contract file. Select “New” and
Crescendo New Scenario.

• A new window will pop up, named Scenario Wizard. Select the current project by clicking
on the “Browse” button. Click on the Finish button to end the process.

After following these steps a new file named Scenario.script2 will be placed under the scenarios
folder.

6.3.2 CSL Syntax
Here we give the syntax of the CSL using standard notation. Note that the definitions of 〈real-literal〉,
〈name〉, and 〈string〉 are not given.

〈script〉 ::= 〈trigger〉 〈script〉 | 〈trigger〉

〈trigger〉 ::= 〈trigger-type〉 〈expression〉 〈duration〉 ‘do’ 〈body〉 〈after〉

〈trigger-type〉 ::= ‘when’ | ‘once’

〈expression〉 ::= ‘time’ | 〈literal〉 | 〈identifier〉 | 〈unary-expression〉 | 〈binary-expresion〉

〈literal〉 ::= 〈boolean-literal〉 | 〈real-literal〉

〈boolean-literal〉 ::= ‘true’ | ‘false’

〈identifier〉 ::= 〈simulator〉 〈type〉 〈name〉

〈simulator〉 ::= ‘de’ | ‘ct’

〈type〉 ::= ‘boolean’ | ‘real’

〈unary-expression〉 ::= 〈unary-operator〉 〈expression〉

〈unary-operator〉 ::= ‘not’ | ‘+’ | ‘-’ | ‘abs’ | ‘floor’ | ‘ceil’

〈binary-expression〉 ::= 〈expression〉 〈binary-operator〉 〈expression〉

〈binary-operator〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘**’ | ‘div’ | ‘mod’ | ‘<’ | ‘<=’ | ‘=’ | ‘>=’ | ‘>’ | ‘<>’
| ‘and’ | ‘or’ | ‘=>’ | ‘<=>’

〈duration〉 ::= 〈empty〉 | ‘for’ 〈real-literal〉 ‘{’ 〈time-unit〉 ‘}’

37

Crescendo Tool Support: User Manual

〈time-unit〉 ::= ‘us’ | ‘ms’ | ‘s’ | ‘m’ | ‘h’

〈body〉 ::= 〈block〉 | 〈statement〉

〈block〉 ::= ‘(’ 〈statement-list〉 ‘)’

〈statement-list〉 ::= 〈statement〉 | 〈statement〉 ‘;’ 〈statement-list〉

〈statement〉 ::= 〈identifier〉 ‘:=’ 〈expression〉
| ‘print’ 〈string〉
| ‘warn’ 〈string〉
| ‘error’ 〈string〉
| ‘quit’

〈after〉 ::= ‘after’ 〈revert-list〉

〈revert-list〉 ::= ‘revert’ 〈identifier〉 | ‘revert’ 〈identifier〉 ‘;’ 〈revert-list〉

6.3.3 CSL Examples
The following introduces a series of simple examples that demonstrate the features of this script
language.

when time = 5 do
(de real x := 10;);

The time keyword yields the current co-simulation time. The de keyword indicates that x
resides (at the top level) in the DE model. Naturally, the ct keyword is used to indicate the CT
model. Comments may also be included:

when time = 5 do
// comment
(ct real y := true;);

Statements can also be grouped in blocks (surrounded by parentheses and separated by semi-
colons. Expressions of time can optionally include a unit (e.g. milliseconds) given in curly braces.
Units are assumed to be in seconds if no unit is given. The engineer may output messages to the
tool (or to a log in batch mode) with the print statement:

when time = 900 {ms} do
(
de real x := 10;
ct real y := true;
print "Co-simulation time reached 900 ms.";

38

CHAPTER 6. CO-SIMULATION

);

Logical operators can be used in expressions. When the condition becomes true, the state-
ment(s) in the do clause will execute.

when time >= 10 and time < 15 do
(print "Co-simulation time reached 10 seconds.";)

If the condition becomes false again, the optional after clause will execute once. Note that
block statements do not permit local variables to be defined. Since this script language does not
allow local variables to be defined, a special statement, revert, may be used in an after clause
to change a value back to what it was when the do clause executed. Note that comments may also
be included:

when time >= 10 and time < 15 do
(// assume x = 5
de real x := 10;

)
after (revert de real x;);

The engineer can reference co-model state in conditions and assignment and revert statements.
The state that can be referred is either for VDM specified with the model keyword in the link
file or for 20-sim marked as global (note 20-sim access is not yet implemented). Additionally all
shared variables can be accessed with the contract name and used in conditions, assignments or
revert statements.

It is also possible to have some statements executed exactly once, on the first time a condition
is detected. This is achieved using the once keyword instead of when.

once de real x >= 500 do
(
// set some flag
de bool flag = true;
print "First time x exceeds 500";
)

6.4 Logfiles
When starting a simulation, it is possible to select a set of variables that are logged during the
co-simulation. At the time this manual was written there is only the possibility of logging DE
variables; support to log CT variables will be added later. The result of this logging is a CSV file
(comma separated values), which can be post processed with regular office tools.

39

Crescendo Tool Support: User Manual

6.4.1 DE Variables
The variables of the DE model to log can be selected in the tab VDM Options presented in Fig-
ure 6.9. If a model does not contain type errors, this tab will display all instance variables that are
accessible from the VDM system class.

Figure 6.9: VDM Options tab permits the selection of variables to log.

Checking the box next to a variable enables the logging of that variable. Currently it is only pos-
sible to log variables with basic types (all types except objects). For the WatertankPeriodic
example, if we use the configuration shown above, a file with the contents as follows is generated:

40

CHAPTER 6. CO-SIMULATION

time,levelSensor.fault,levelSensor.level,valveActuator.valveState
0.0,0,0,0
0.01,0,0.01,0
0.01,0,0.02,0
0.02,0,0.03,0
0.03,0,0.03,0
...

The first column is the simulation time and the following columns contain the value of the
variable at that given moment. A CSV file can be better visualized, for example, in 20-sim, Excel
or other software capable of opening this format. For convenience, the first line of the file provides
the names of the exported variables.

41

Crescendo Tool Support: User Manual

42

Chapter 7

Design Space Exploration

In order to support Design Space Exploration (DSE), the Automated Co-model Analysis (ACA)
feature can automatically running many different co-simulations with minimal user intervention.
The ACA feature enables the user to select different configurations for each individual parts of the
co-model and then runs the co-simulation combining all possible configurations that were selected
by the user.

7.1 ACA Workflow
Figure 7.1 illustrates the steps in the process of the ACA work flow. First, the user provides
configurations for different parts of the co-simulation, then the tool generates different complete
configurations by combining the different configurations parts that were provided by the user.

Figure 7.1: Illustration of the ACA process.

These complete configurations are used to execute co-simulations. Currently, it is only possible
for the user to select different configurations for different parts of the co-simulation, more specifi-
cally, chose different architectures for deployment of the controller (DE side), and select different
starting values for the shared design parameters.

From these partial configurations, it is possible to construct complete configurations by com-
bining each of the different partial configurations. Figure 7.2 together with the following de-
scription helps illustrating the concept. The result of generating complete configurations from the
partial configuration would be 4 different complete configurations: A1-B1-C1; A1-B1-C2; A1-
B2-C1; and A1-B2-C2. The user can easily create many more configurations by adding more
parameters or adding more values to existing parameters, for example, simply adding a A2 value
would result in 4 more different configurations.

43

Crescendo Tool Support: User Manual

Figure 7.2: Illustration of the ACA process.

7.2 Using the ACA Features
Launching an ACA is done through the Debug Configuration menu. Creating a new Debug Con-
figuration of an ACA Launch type will bring up the menu to configure the ACA. The different tabs
in Figure 7.3, will be explained in the following subsections.

Figure 7.3: Creating an ACA debug configuration.

To start an ACA launch, a base configuration needs to be selected. This configuration is a
normal Crescendo launch which will be used as base for the ACA settings. This means that launch
options that are not overwritten in the ACA will use as default the ones present in the base launch
configuration.

7.2.1 The Main Tab
The Main tab is the place where general settings for the ACA launch are set. The Base Configura-
tion is the co-simulation configuration that forms the base for the ACA to work. In addition there
are two choices that can be made as shown in Figure 7.4.

• The first option allows the model designer to use the usual plots shown at the 20-sim side for
each single co-simulation or to not spending time on that.

44

CHAPTER 7. DESIGN SPACE EXPLORATION

• The second option can be ticked if a huge amount of data is expected to be produced. If this
is ticked the data generated are not included in the directory used by the Crescendo tool (in
general Eclipse does not like to have a very high number of files).

Figure 7.4: ACA Launch – Main tab.

By pressing the button Browse it is possible to browse through the Co-Sim Launches present
in the Crescendo Tool and select one. This configuration will be the base configuration for all
the ones generated by the ACA. The ACA will take the base configuration and combine it in all
possible ways depending on what the user set on the other tabs.

7.2.2 The Architecture Tab - Deployment Architectures

It is possible in this tab to select which Controller Architectures will be used in the ACA run, see
Figure 7.5. For more information on how to define Controller Architectures see Section 7.6.

Figure 7.5: ACA Launch – Architecture tab.

7.2.3 Shared Design Parameters Tab

In the Shared Design Parameters tab, it is possible to make a value “sweep” of the shared design
parameters (see Figure 7.6).

45

Crescendo Tool Support: User Manual

Figure 7.6: ACA Launch – Shared Design Parameters tab.

The incremental Sweep

In the first column, it is possible to select from a drop-down the shared design parameter to sweep
(see Figure 7.7). In the second column (From), it is possible to select the value which the sweep
should start from. The third column (To) indicates where the sweep should end and the forth
column (Increment By) indicates the increment to be used in the sweep.

Figure 7.7: Incremental sweeping.

The value set Sweep

In the first column, it is possible to select from a drop-down the shared design parameter to sweep
(see Figure 7.8). In the second column a list of double values should be introduced, separated by
semicolons.
It is possible to sweep by value set complex variables as shown in Figure 7.9.

46

CHAPTER 7. DESIGN SPACE EXPLORATION

Figure 7.8: Selecting values of SDP variables to sweep over.

Figure 7.9: Sweeping over complex variables.

The behaviour of complex SDPs is a bit different from the atomic SDPs. For example, the con-
figuration on the picture above will generate two ACA runs for the variable “initial Position”.

• First run: initial Position = [-1.448,-1.110]

• Second run: initial Position = [-1.736,X*] — * where X is the value defined in the base
debug configuration for initial Position[2].

The values defined in the value sweep are put together according to the order they appear, if a
value for one of the indexes is missing (like in this case the second value of initial Position[2]),
the value from the original debug configuration will be used.

7.2.4 Scenario Tab

In the scenarios tab, it is possible to select which scenarios will be used in the ACA run (see
Figure 7.10. The scenarios present in the “scenarios” folder in the root of the project will be
presented on the “Scenario selection” table. It is then possible to check which scenarios will be
used in the ACA.

47

Crescendo Tool Support: User Manual

Figure 7.10: Possibility for choosing multiple scenarios for ACA.

7.2.5 CT Settings Tab

The CT side settings works in a similar fashion to the ones in the normal Crescendo launch (see
Figure 7.11). The only difference is that it is possible to select multiple options instead of one.
In the ACA Settings tab it is only possible to select options which have limited alternatives (i.e.,
enumerations).

Figure 7.11: Selecting CT Settings for ACA.

7.2.6 Common Tab

The common tab settings here work much in a similar fashion to the ones in the normal Crescendo
launch (see Figure 7.12).

7.3 Repeating a Single Launch Part of an ACA
After a successful ACA launch, the output folder will contain information regarding what was
run in a specific ACA launch. Each ACA run has generated a file named xxx.dlaunch.

48

CHAPTER 7. DESIGN SPACE EXPLORATION

Figure 7.12: Common tab for ACA.

By right-clicking a “.dlaunch” file and selecting the option Crescendo and then selecting the
Create and Launch option, the single selected run will be launched again (see Figure 7.13). This
single launch configuration is also stored together with the other launch configurations, typically
its name is prefixed by “generated”.

Figure 7.13: Relaunching single ACA experiments.

7.4 Folder Launch Configuration
This is a new way of launching an ACA by selecting a folder containing .launch files. The
user has to produce its own .launch files. The options to select are the project and the folder
containing the launch files. This is shown in Figure 7.14.

7.5 Control Library
In order to help build controllers in VDM that can handle low-level proportional control in addition
to supervisory control, a control library has been included in the Crescendo tool. This library
provides classes that are equivalent to the P, PD, PI and PID blocks of the 20-sim library under
Signal\Control\PID Control\Discrete.

49

Crescendo Tool Support: User Manual

Figure 7.14: Lauching with a Folder of launch files.

7.5.1 Accessing the Control Library

To use the control library, the class definitions must be imported into the project.

• Right-click on the project and select New and Other....

• Under the Crescendo folder, select Add Crescendo Library and click Next.

• Then check the box marked Control Library.

Figure 7.15: Adding Crescendo Control Libraries

Unless you want to edit the class files, leave Use linked libraries option checked (default). The
classes will now be added to your co-model (see Figure 7.15).

50

CHAPTER 7. DESIGN SPACE EXPLORATION

7.5.2 Using the Control Library
Basic Use

To use a class from the library, simply define a variable of the correct type, instantiate it with a
constructor, call “SetSampleTime” and then call “Output” in your control loop. All of the
control library classes have an operation called Output, which takes in an error and returns a
control value, with the following form:�
public Output: real ==> real
Output(err) == ...

class Controller

instance variables

-- controller object
private pid: PID;

-- setpoint
private SP: real;

-- shared variables
private MV: real;
private out: real

operations
-- constructor for Controller
public Controller: () ==> Controller
Controller() == (

pid := new PID(10, 1, 0.1);
pid.SetSampleTime(SAMPLE_TIME)

);

-- control loop
public Step: () ==> ()
Step() == (

dcl err: real := SP - MV;
out := pid.Output(err)

);

-- 100Hz control loop
values SAMPLE_TIME = 0.01;
thread periodic(10E6, 0, 0, 0)(Step);

end Controller
� �
All of the classes have an operation called SetSampleTime, which takes a sample time in seconds:�

51

Crescendo Tool Support: User Manual

public SetSampleTime: real ==> ()
SetSampleTime(s) ==
� �

Unlike 20-sim, VDM does not have a sampletime keyword, so it is necessary to explicitly tell
the object what sample time to use in calculations. Therefore, for all control objects (except P) you
must call SetSampleTime before the ”Output” is used. This only needs to be done once and
it is recommended that it is called immediately after the constructor. If this is not done, then the
co-simulation will fail with a pre-condition violation the first time Output is called.

7.5.3 Advanced Use
All of the controller classes in the library are subclasses of a single class called “DTControl”
(Discrete-Time control). This class contains the definitions for “SetSampleTime” and “Output”
and enforces a consistent interface. It is possible to use the various controller classes without mak-
ing reference to DTControl. However, if it is desirable to test different controllers, variables can
be defined as type DTControl, meaning that only the call to the constructor needs to be changed
in order to use a different controller implementation. This is also useful if control objects are
passed to controllers. In the following example, the Controller class can accept any control
object (P, PID etc.):�
class Controller

instance variables

-- controller object
private ctrl: DTControl;

operations

-- constructor for Controller
public Controller: DTControl ==> Controller
Controller (c) == (

ctrl := c;
ctrl.SetSampleTime(SAMPLE_TIME)

);

...
� �
7.5.4 Constructors
P

The P class has the following constructors:�
52

CHAPTER 7. DESIGN SPACE EXPLORATION

-- set k
public P: real ==> P
P(k) == ...

-- default: k = 0.2
public P: () ==> P
P() == ...
� �
PD

The PD class has the following constructors:�
-- set k, tauD, beta
public PD: real * real * real ==> PD
PD(k, tauD, beta) == ...

-- set k, tauD, beta = 0.1
public PD: real * real ==> PD
PD(k, tauD) == ...

-- default: k = 0.2, tauD = 1.0, beta = 0.1
public PD: () ==> PD
PD() == ...
� �
PI

The PI class has the following constructors:�
-- set k, tauI
public PI: real * real ==> PI
PI(k, tauI) == ...

-- default: k = 0.2, tauI = 0.5
public PI: () ==> PI
PI() == ...
� �
PID

The PID class has the following constructors:�
-- set k, tauI, tauD, beta
public PID: real * real * real * real ==> PID
PID(k, tauI, tauD, beta) == ...

53

Crescendo Tool Support: User Manual

-- set k, tauI, tauD, beta = 0.1
public PID: real * real * real ==> PID
PID(k, tauI, tauD) == ...

-- default: k = 0.2, tauI = 0.5, tauD = 0.5, beta = 0.1
public PID: () ==> PID
PID() == ...
� �

7.6 DE Architecture

This feature allows the selection of the hardware and deployment to be specified in a separate file
from the VDM system class. In order to do this separation, the following steps need to be done:

• The System class must be cleaned of CPU and BUS declarations and deployments of the
objects.

• Annotations need to be added to the system class that indicate where the architecture and
deployment statements should be inserted. The architecture tag must be placed under an
instance variables block:

�
-- ## Architecture ## --
� �

The deployment tab must be placed in the constructor where the deployment normally is spec-
ified:�
-- ## Deployment ## --
� �

Architecture files (.arch), is placed in a folder called ”model de/architectures” in
the project root. The architecture files should have the following form:�
-- ## Architecture ## --
instance variables

cpu1: CPU := new CPU(<FCFS>, 1000000 /* Hz */);
cpu2: CPU := new CPU(<FCFS>, 1000000 /* Hz */);
cpu3: CPU := new CPU(<FCFS>, 1000000 /* Hz */);
bus1: BUS := new BUS(<FCFS>, 1000 /* bits/s */,{cpu1,cpu2,cpu3});

-- ## Deployment ## --
cpu1.deploy(mmi);
cpu3.deploy(navigation);
cpu2.deploy(radio);
� �

54

CHAPTER 7. DESIGN SPACE EXPLORATION

When an architecture file like this is selected, the architecture and deployment declaration is
inserted in the “right” place (under the tags in the system file), creating a “complete” system just
before the co-simulation starts.

7.7 Events

Events can be triggered in the CT world. They will stop the simulation before the allowed time
slice is completed. The co-simulation engine will then allow the DE simulator to take action but
only until the point where the event has been raised. The events are used in the contract in order to
support event-based triggering and not just time-triggered scheduling.

7.7.1 Simulation setup

Events in the contract

For events to be considered during a simulation the event must be defined in Section 5.3:

〈events〉 ::= ‘event’, 〈identifier〉, ‘;’

Events in the link file

Events must be connected to a public async operation in VDM. This is done by linking the
event name specified in the contract to the fully qualified operation name in VDM in the link file:

〈events〉 ::= ’event’, 〈identifier〉 = ’System’, ’.’, 〈identifier〉, (’.’, 〈identifier〉)+

An example of this could be:

event event1=System.eventHandler.event1;

where:

• “event1” is the event name from the contract.

• System is the system class.

• eventHandler is the class holding the public async operation to execute.

• “event1” (the last event1) is the async operation which to execute when the event occurs.

55

Crescendo Tool Support: User Manual

7.7.2 Events in CT

Events need to be marked in 20-sim using the keyword event, this marks the variable that it
used as return value of the event function to be an event variable. The keywords eventdown and
eventup are used as in standalone 20-sim models. Example:

variables
boolean minLevelReached (’event’);

equations
maxLevelReached = eventup(levelIn-maxlevel);

7.7.3 Events in DE

The scheduler in VDM does not schedule events in the same way as for instance a microcontroller
would do where the current executing job is suspended in favour of the interrupt routine. However,
it is possible to get similar behaviour by creating and deploying an object to a CPU that contains the
job to run when an interrupt occurs and then call this from the async operation which is triggered
when event occurs. It is just important that no objects having a periodic threads are deployed to the
same CPU since this will delay the event by exactly one periodic loop. Events are linked to VDM
through async operations and made accessable through the system class.�
system System
instance variables

eventHandler: EventHandler;
end System
� �

The async operation must be specified in a class that is not deployed to a CPU. This makes
the evaluation instant. This means that the event operation it self does not take any time to run.�
class EventHandler

operations

public async event1: () ==> ()
event1()== skip;

end EventHandler
� �
Note about the VDM scheduler: The VDM scheduler uses priorities to select which thread

should run, each thread is then executed with a limited allowed number of expressions/statements
it can execute before another thread has to be schedulled and executed. The priority defined
how many expressions/statements a thread can execute at a time. A thread will always continue

56

CHAPTER 7. DESIGN SPACE EXPLORATION

executing until it is blocked or finished the allowed number of expressions/statements.

57

Crescendo Tool Support: User Manual

58

Chapter 8

Post-Analysis

8.1 Octave
GNU Octave is an open source and high-level interpreted language, primarily intended for nu-
merical computations. It provides capabilities for the numerical solution of linear and non-linear
problems, and for performing other numerical experiments. It also provides extensive graphics ca-
pabilities for data visualization and manipulation. Octave is normally used through its interactive
command line interface, but it can also be used to write non-interactive (batch oriented) programs.
The Octave language is quite similar to Matlab so that most programs are easily portable. See for
more details http://www.gnu.org/software/octave/

The Octave project on Source Forge provides an easy installable Windows installer for Octave:
http://octave.sourceforge.net/. Furthermore a Octave GUI is provided by http:
//www.gnu.org/software/octave/ which provides a workspace and editor that can be
used to assist the user of Crescendo in creating custom scripts.

8.1.1 Octave use in Crescendo
After each co-simulation run, an Octave script is automatically generated in the output dir. The
script contains Octave code that reads the variable logs produced by both VDM and 20-sim during
the simulation run.

8.1.2 Show Plot Automatically when Script is Run
The Octave script will contain the necessary code to interpret the logged variables and functions
to generate a plot. However, it will not contain the command to display the plot. This setting will
insert the plot commend in the script and automatically show a plot when executed by Ocatve. If
the script is to be included in a custom script written by the user simply as data access this option
should be disabled.

The option is available in the debug configuration that affects the script. This option appears in
two places both in the normal Crescendo run and in ACA. If enabled, when the script is executed,

59

http://www.gnu.org/software/octave/
http://octave.sourceforge.net/
http://www.gnu.org/software/octave/
http://www.gnu.org/software/octave/

Crescendo Tool Support: User Manual

a plot (or several, depending on the amount of variables selected) will be drawn automatically. In
the case of an ACA run being executed, for the same variable, the several runs will juxtaposed in
the same graphic, so the results are easy to compare and inspect visually. Figure 8.1 shows where
to find this option for a normal run (Post-Processing tab). and in the ACA launch (Main Tab, see
Figure 8.2).

Figure 8.1: Normal Octave Selection.

Figure 8.2 shows the ACA launch (Main Tab)

Figure 8.2: Octave with use of ACA.

8.1.3 Invoking Octave from Crescendo
It is possible to invoke Octave from the Crescendo IDE. Right-clicking on an Octave (.m) file
reveals the option “Run Octave”. If you want to use this command, be sure to tick the “Show
plot automatically when the script runs” box to get the result shown in Figure 8.3.

If the option to show plot automatically was chosen, a plot will be drawn and shown in a
window like in Figure 8.4.

8.1.4 Setting Octave path
If your Octave installation was not made in the default installer path, the path to Octave must be
corrected in the Crescendo settings for the feature mentioned above to work. The settings below
can be found by navigating to the Window→ Preferences menu as shown in Figure 8.5.

8.2 Folder Launch Configuration
This is a new way of launching an ACA by selecting a folder containing .launch files. The
user has to produce its own .launch files. The options to select are the project and the folder
containing the launch files.

60

CHAPTER 8. POST-ANALYSIS

Figure 8.3: Octave in action.

Figure 8.4: Octave plotting in seperate window.

61

Crescendo Tool Support: User Manual

Figure 8.5: The Octave path settings in the Preferences dialog

Figure 8.6: Launching several configurations from a single directory

62

Bibliography

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic
Concepts and Taxonomy of Dependable and Secure Computing. IEEE Transactions
on Dependable and Secure Computing, 1:11–33, 2004.

[BJ78] D. Bjørner and C.B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of Lecture Notes in Computer Science. Springer-Verlag, 1978.

[BLV+10] J. F. Broenink, P. G. Larsen, M. Verhoef, C. Kleijn, D. Jovanovic, K. Pierce, and
Wouters F. Design Support and Tooling for Dependable Embedded Control Software.
In Proceedings of Serene 2010 International Workshop on Software Engineering for
Resilient Systems, pages 77–82. ACM, April 2010.

[CCFJ99] Tim Clement, Ian Cottam, Peter Froome, and Claire Jones. The Development of a
Commercial “Shrink-Wrapped Application” to Safety Integrity Level 2: the DUST-
EXPERT Story. In Safecomp’99, Toulouse, France, September 1999. Springer Verlag.
LNCS 1698, ISBN 3-540-66488-2.

[Con13] Controllab products. http://www.20sim.com/, January 2013. 20-Sim official website.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and
Techniques in Software Development. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[FL09] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and
Techniques in Software Development. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, Second edition, 2009. ISBN 0-521-62348-0.

[FLM+05] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Verhoef.
Validated Designs for Object–oriented Systems. Springer, New York, 2005.

[FLV08] J. S. Fitzgerald, P. G. Larsen, and M. Verhoef. Vienna Development Method. Wiley
Encyclopedia of Computer Science and Engineering, 2008. edited by Benjamin Wah,
John Wiley & Sons, Inc.

[FLV13] John Fitzgerald, Peter Gorm Larsen, and Marcel Verhoef, editors. Collaborative De-
sign for Embedded Systems – Co-modelling and Co-simulation. Springer, 2013.

63

Crescendo Tool Support: User Manual

[IEE00] IEEE 100 The Authoritative Dictionary of IEEE Standards Terms Seventh Edition.
IEEE Std 100-2000, 2000.

[ISO96] Information technology – Programming languages, their environments and system
software interfaces – Vienna Development Method – Specification Language – Part 1:
Base language, December 1996.

[Jon90] Cliff B. Jones. Systematic Software Development Using VDM. Prentice-Hall Interna-
tional, Englewood Cliffs, New Jersey, second edition, 1990. ISBN 0-13-880733-7.

[Kle09] C. Kleijn. 20-sim 4.1 Reference Manual. Controllab Products B.V., Enschede, First
edition, 2009. ISBN 978-90-79499-05-2.

[KN09] T. Kurita and Y. Nakatsugawa. The Application of VDM++ to the Development of
Firmware for a Smart Card IC Chip. Intl. Journal of Software and Informatics, 3(2-
3):343–355, October 2009.

[LH96] Peter Gorm Larsen and Bo Stig Hansen. Semantics for underdetermined expressions.
Formal Aspects of Computing, 8(1):47–66, January 1996.

[LLB+13] Peter Gorm Larsen, Kenneth Lausdahl, Nick Battle, John Fitzgerald, Sune Wolff, and
Shin Sahara. VDM-10 Language Manual. Technical Report TR-001, The Overture
Initiative, www.overturetool.org, April 2013.

[LLJ+13] Peter Gorm Larsen, Kenneth Lausdahl, Peter Jørgensen, Joey Coleman, Sune Wolff,
and Nick Battle. Overture VDM-10 Tool Support: User Guide. Technical Report
TR-2010-02, The Overture Initiative, www.overturetool.org, April 2013.

[MBD+00] Paul Mukherjee, Fabien Bousquet, Jérôme Delabre, Stephen Paynter, and Peter Gorm
Larsen. Exploring Timing Properties Using VDM++ on an Industrial Application. In
J.C. Bicarregui and J.S. Fitzgerald, editors, Proceedings of the Second VDM Work-
shop, September 2000. Available at www.vdmportal.org.

[Rob04] Stewart Robinson. Simulation: The Practice of Model Development and Use. John
Wiley & Sons, 2004.

[VLH06] Marcel Verhoef, Peter Gorm Larsen, and Jozef Hooman. Modeling and Validating
Distributed Embedded Real-Time Systems with VDM++. In Jayadev Misra, Tobias
Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods, Lecture Notes in
Computer Science 4085, pages 147–162. Springer-Verlag, 2006.

64

Appendix A

Glossary

As might be expected in interdisciplinary projects, terms and concepts that are well known in one
discipline may be unknown or understood quite differently in another. This appendix therefore
contains common descriptions of core concepts that are used with the Crescendo technology.

abstract class (in object oriented programming) a class where one or more methods are defined
abstractly using the text is subclass responsibility as their body.

actuator a component that produces a physical output in response to a signal [IEE00].

aggregate (in object oriented programming) the act of bringing together several objects into a
single whole.

automated co-model analysis tool support for the selection of a single design from a set of design
alternatives (including definition of scenarios, execution of co-simulations, and visualisation
and analysis of co-simulation results).

automated co-model execution as automated co-model analysis except that is does not perform
any analysis of the test results produced by the simulations

bond (in bond graphs) a directed point-to-point connection between power ports on submodels.
Represents the sharing of both flow and effort by those ports.

bond graph a domain independent idealised physical model based on the representing energy and
its exchange between submodels.

causality (in bond graphs) dictates which variable of a power port is the input (cause) for sub-
model’s equations and which is the output (effect).

class (in object oriented programming) the definition of the data field and methods an object of
that class will contain.

65

Crescendo Tool Support: User Manual

code generation the process of implementing a system controller by automatically translating a
model into a representation (in some programming language) which can then be executed on
the real hardware of the system.

co-model a model comprising two constituent models (a DE submodel and a CT submodel) and
a contract describing the communication between them.

consistency a co-model is consistent if the constituent models are both syntactically and semanti-
cally consistent.

constituent model one of the two submodels in a co-model.

continuous-time simulation a form of simulation where “the state of the system changes contin-
uously through time” [Rob04, p. 15].

contract a description of the communication between the constituent models of a co-model, given
in terms of shared design parameters, shared variables, and common events.

controlled variable a variable that a controller changes in order to perform control actions.

controller the part of the system that controls the plant.

controller architecture the allocation of software processes to CPUs and the configuration of
those CPUs over a communications infrastructure.

co-sim launch the type of debug configuration used in the Crescendo tool to define and launch a
single scenario.

co-simulation baseline the set of elements (co-model, scenario, test results etc.) required to re-
produce a specific co-simulation.

co-simulation engine a program that supervises a co-simulation.

co-simulation the simulation of a co-model.

cost function a function which calculates the “cost” of a design.

debug config (Eclipse term) the place in Eclipse where a simulation scenario is defined.

design alternatives where two or more co-models represent different possible solutions to the
same problem.

design parameter a property of a model that affects its behaviour, but which remains constant
during a given simulation.

design space exploration the (iterative) process of constructing co-models, performing co-simulations
and evaluating the results in order to select co-models for the next iteration.

66

APPENDIX A. GLOSSARY

design step a co-model which is considered to be a significant evolution of a previous co-model.

discrete-event simulation a form of simulation where “only the points in time at which the state
of the system changes are represented” [Rob04, p. 15].

disturbance a stimulus that tends to deflect the plant from desired behaviour.

edges (in bond graphs) see bond.

effort (in bond graphs) one of the variables exposed by a power port. Represents physical concepts
such as electrical voltage, mechanical force or hydraulic pressure.

environment everything that is outside of a given system.

error part of the system state that may lead to a failure [ALRL04].

event an action that is initiated in one constituent model of a co-model, which leads to an action
in the other constituent model.

executable model a model that can be simulated.

failure a system’s delivered service deviates from specification [ALRL04].

fault injection the act of triggering faulty behaviour during simulation.

fault modelling the act of extending a model to encompass faulty behaviours.

fault the adjudged or hypothesized cause of an error [ALRL04].

fault behaviour a model of a component’s behaviour when a fault has been triggered and emerges
as a failure to adhere to the component’s specification.

fault-like phenomena any behaviour that can be modelled like a fault (e.g. disturbance).

flow (in bond graphs) one of the variables exposed by a power port. Represents physical concepts
such as electrical current, mechanical velocity, fluid flow.

ideal behaviour a model of a component that does not account for disturbances.

inheritance (in object oriented programming) the mechanism by which a subclass contains all
public and protected data fields and methods of its superclass.

input a signal provided to a model.

interface (in object oriented programming) a class which defines the signatures of but no bodies
for any of its methods. Should not be instantiated.

junction (in bond graphs) a point in a bond graph where the sum of flow (1-junction) or effort
(0-junction) of all bonds to that point is zero.

67

Crescendo Tool Support: User Manual

log data written to a file during a simulation.

metadata information that is associated with, and gives information about, a piece of data.

model base the collection of artefacts gathered during a development (including various models
and co-models; scenarios and test results; and documentation).

model management the activity of organizing co-models within a model base.

model structuring the activity of organizing elements within a model.

model synthesis see code generation.

model a more or less abstract representation of a system or component of interest.

modelling the activity of creating models.

modularisation construction of self-contained units (modules) that can be combined to form
larger models.

monitored variable a variable that a controller observes in order to inform control actions.

object (in object oriented programming) an instantiation of a class, contains data fields and meth-
ods.

objective function see cost function.

ontology a structure that defines the relationships between concepts.

operation (in object oriented programming) defines an operation that an object may perform on
some data. Operations may be private, public or protected.

output the states of a model as observed during (and after) simulation.

non-normative behaviour behaviour that is judged to deviate from specification.

physical concept (in bond graphs) a class of component or phenomena that could exist or be
observed in the real world, e.g. an electrical resistor or mechanical friction.

plant the part of the system which is to be controlled [IEE00].

power port (in bond graphs) the port type connected in a bond graph. Contains two variables,
effort and flow. A power port exchanges energy with its connected models.

private (in object oriented programming, VDM) the method or data field may only be accessed
from within the containing class.

protected (in object oriented programming, VDM) the method or data field may only be accessed
by its containing class or any of its subclasses.

68

APPENDIX A. GLOSSARY

public (in object oriented programming, VDM) the method or data field may be accessed by any
other class.

ranking function a function that assigns a value to a design based on its ability to meet require-
ments defined by the engineer.

realistic behaviour a model of a component which includes disturbances defined by the toler-
ances associated with that component.

repository a shared store of data or files.

response a change in the state of a system as a consequence of a stimulus.

revision control the activity of managing changes (revisions) to computer data or files.

scenario test of a co-model.

signal domain where models share a single value or array at each port and where those ports are
uni-directional, unlike bond graphs where the ports are bi-directional.

sensor a component whose input is a physical phenomenon and whose output is a quantitative
measure of the phenomenon.

shared design parameter a design parameter that appears in both constituent models of a co-
model.

shared variable a variable that appears in and can be accessed from both constituent models of a
co-model.

simulation symbolic execution of a model.

semantically consistent the state when the constituent models of a co-model agree on the seman-
tics of the varaibles, parameters and events they share. The nature of these semantics is not
yet described.

static analysis a method for checking some property of a model without executing that model.

state event an event triggered by a change within a model.

stimulus a phenomenon that effects a change in the state of a system.

subclass (in object oriented programming) a class that is defined as extending another class. The
other class becomes its superclass. The subclass inherits all non private data fields and
methods.

submodel a distinct part of a larger model.

superclass (in object oriented programming) the class from which a subclass is defined.

69

Crescendo Tool Support: User Manual

syntactically consistent the state when the constituent models of a co-model agree on the identi-
ties and data types of all shared variables, parameters and events.

system boundary the common frontier between a system and its environment.

system under test (SUT) the part of a model that represents the system we wish to build, as op-
posed to parts of the model which are not part of this system.

system an entity that interacts with other entities, including hardware, software, humans and the
physical world [ALRL04].

tag to associate metadata with a piece of data.

test result a record of the output from a simulation of a model (see also log).

time event an expected event that occurs at a predetermined time.

variable part of a model that may change during a given simulation.

vertices (in bond graphs) the joining points of bonds. May be manifested as either a junction or a
submodel.

70

	Introduction
	What is the Crescendo Tool?
	What was the DESTECS Project?
	What is the Vienna Development Method?
	What are Bond Graphs?
	Related Tools
	Overture
	Crescendo
	Symphony

	Structure of this User Manual

	Basic Crescendo Concepts
	Models
	Simulation
	Co-Simulation
	Contract

	Getting Hold of the Software
	Requirements
	Installation
	Combined Installer
	Licence
	Manuals

	20-sim Standalone

	Quick Start with Crescendo
	Opening Crescendo
	Opening a Project
	Running a Project

	Editors and Management of Projects
	The Crescendo Workbench
	Explorer View
	Editor View
	Outline View
	Simulation Engine View
	Console View

	Handling Projects
	Creating new Projects
	Importing Projects
	Exporting Projects

	Managing Contracts
	Creating a new Contract File
	Contents of a Contract
	Error Detection in the Contract/Link File
	Managing the Link Files
	Contract Overview

	Co-Simulation
	Debug Configuration
	Creating a New Debug Configuration
	Main Tab
	Shared Design Parameters Tab
	DE Simulator Tab
	CT Simulator Tab

	Post-Processing Tab
	Advanced Tab
	Common Tab

	Scenarios
	Creating a New Scenario File
	CSL Syntax
	CSL Examples

	Logfiles
	DE Variables

	Design Space Exploration
	ACA Workflow
	Using the ACA Features
	The Main Tab
	The Architecture Tab - Deployment Architectures
	Shared Design Parameters Tab
	Scenario Tab
	CT Settings Tab
	Common Tab

	Repeating a Single Launch Part of an ACA
	Folder Launch Configuration
	Control Library
	Accessing the Control Library
	Using the Control Library
	Advanced Use
	Constructors

	DE Architecture
	Events
	Simulation setup
	Events in CT
	Events in DE

	Post-Analysis
	Octave
	Octave use in Crescendo
	Show Plot Automatically when Script is Run
	Invoking Octave from Crescendo
	Setting Octave path

	Folder Launch Configuration

	Glossary

