Ball Blasters Redux
Manual and System
Information

Josh Fromm
Vikash Gunreddy



Index

1. Basic System Description (Page 3)

2. User Manual (Page 5)

3. State Machine Diagram (Page 12)

4. State Machine Detailed Description (Page 14)
5. System Hardware Overview (Page 18)

6. Detailed Description of Hardware (Page 19)

7. Place and Route Report (23)



Basic System Description:

The system is a hardware implementation of a single player game of the space
odyssey genre. The game is implemented using a Xilinx Spartan-3E board that
employs a XC3S500E FPGA. The game takes user input using an NES compliant
joystick, an on-board rotary encoder, and four on-board slide switches. The board

outputs visual data through a standard FPGA connection and outputs audio data

through a modified speaker.

SILNIWABLEN]
<o SVXAY,

Image 1: Ball Blasters board with part labelling

Part Number Part Description
1 Power Connector and Power Switch
2 Speed Control Dial




VGA Port

Boot/Music Jumpers

Ball Count Control Switches

JoyStick Connection

N O g oW

Speaker Connection

Game Backstory:

In the near dystopian future, mankind has encountered alien life. Dubbed Balls due
to their ellipsoid physiology and spacecraft design, although there were initial
thrilling space skirmishes between the two, Balls and Humans have improved their
relations immensely in the past several space years. You were charged with
representing humans in the upcoming peace and economic space-summits that are
to be held on the Ball home world Circulon. As your sizeable diplomatic fleet warped
into orbit around Circulon, the Balls revealed that they are as traitorous as they are
round (very). A massive Ball armada was waiting for your arrival! Before you could
organize your fleet, the Ball ships began their linear assault; crashing into and
destroying all ships but your own. Stunned, you survey the debris field that was
once humanities pride. Among the wreckage you see many intact life pods; some of
the crew managed to escape! Before you can start collecting the life pods, the balls
begin a second attack. You'll need to out manoeuvre them using projectile weapons
and your ships ability to turn (technologies far too advanced for the Balls). Your
diplomatic journey has ended. Your new mission is simple: save as many survivors

as possible, and Blast Balls. Good luck Captain.




User Manual:

Before powering on the board, check to be sure the jumpers shown in the image
below are correctly in place. Proper jumper positioning is needed for the game to

properly boot up.

Ghet
i

Jumper Setting
sp1jep1r] Bo1s )T

iiiiil L)
Tt bhebiabrhbrbEAAAMITARAAM
o™

Q
e

s/

Image 2: Proper jumper positioning for booting the game

Next, it is useful to check that all accessory hardware is properly connected. First
make sure that an NES compliant joystick is plugged into the proper general 10 pins
of the board. Also assure that the games speaker is connected to its proper 10 pins.

Both plugins can be seen in the image below.

5



L e — =

INARAARAAAAAAA AR

N

Image 3: proper connections for JoyStick (left) and Speaker (right)

The ball blaster board must be connected to a 5 Volt barrel jack power supply. Once
connected, the board can be turned on by using the power switched shown below.

When powered, the board’s power LED will turn on as shown.



onsi
al

.ath'
)A‘Bcl =] g
guf
88
0-A¥8 15z SVXAL }
Z@EDY MIME A : .
c B 3 J.d\

10
8 gggunr gnz@ezr"

Image 4: Proper power connection

Once powered on, the user will see the introduction screen to the game, which
should read “Ball Blasters Redux”. At this time, if the user would like the game’s
soundtrack to play, they should change the position of the jumpers as shown in the

following image.



1}
:i R . ()

P b L=l .
3 (33080000441 LARALRRAAAARAL) E
- .i:: '!»!!!!!!!!“E“"'-‘n"““‘\e\v\rrt!~*-\ S

P
P
s

Image 5: Proper Jumper Positioning for music to play

Upon removing a jumper, the user should notice a totally jammin’ soundtrack begin

to play. At this point, the user should begin playing the game.

Game Rules:

When first turned on, the game will display a simple welcome screen that shows the
message “Ball Blasters Redux”. When the B button is pressed, the game will begin.
The player controls a highly advanced triangular spacecraft that is capable of firing
lasers and warping around the fringes of the screen. Red and green balls will
periodically spawn along the edges of the play zone. One red ball will spawn every 3
seconds and one green ball will spawn every 5 seconds. The balls all have a random

trajectory and will bounce off of the games borders. It is the player’s goal to blast

8



red balls and collect green balls. To blast red balls, the player can fire a laser from
his ship by pressing the A button. The laser will project out of the triangle in the
direction that the ship was last moving and destroy any red balls that it collides
with. Note that the laser will not be destroyed when hitting a red ball; it will
continue to move through space (potentially blasting many balls). The laser will
disappear when it reaches the edge of the screen. Note that only a single laser can
exist at a time and pressing A while a laser is active will do nothing. A blasted red
ball will trigger a popping sound and add one to the players score (which is
displayed at the top of the screen). The player is also encouraged to collect green
balls by piloting his ship and colliding with the green balls. When a green ball is
collected, a collection sound will trigger and a point will be added to the players
score. Note that the laser has no effect on green balls. It is of paramount importance
that the player avoids colliding his spacecraft with a red ball, as this will end the
game. When a red ball collision occurs an explosion noise will be heard and the
game will transition to the game over screen, which shows the players final score. In

order to play again, the player simply presses the B button.



Image 6: Joystick Control Labelling

Controls:
A Button The A button is used to fire lasers.
B Button The B button starts the game
]OyStICk The Joystick controls the

movement of the triangle

10




Ball Control The ball control switches

determine how many balls will be
active on the screen at a time. The
switches represent the number of
the maximum number of a single
colour of balls that will spawn at a
time. The position of the switches
is the binary number of balls that

will spawn minus one.

Speed Dlal The speed dial determines how

fast the player-controlled triangle
will move. The current speed of the
triangle is shown on the board’s

LEDs.

11




Hardware Manual:

The core of the game is the ball_blaster.vhd file. This file contains the main state
machine used to implement Ball Blasters Redux, so it is a useful exercise to first fully
examine its operation before further delving into the peripherals that support it.
Following is a block diagram of the state machines transitions and a tail giving a

detailed explanation of each state.

12



B button pressed

Ball Blasters State Machine Transition Diagram

all pixels set

all characters written

one char written

B Button Pressed

one character written

all characters written

Al pixels set

line drawn

all lines drawn

‘triangle drawn

VGA timer expires

Laser Drawn

all green balls drawn

green ball drawn

all red balls drawn

all characters written

one character written

13



State

Description

Reset

The state machine transitions to this state when the reset
button is pressed. It then transitions to Welcome Screen
state.

Welcome Screen

The state machine waits in this state until all display
pixels are set to Yellow color and then transitions to
Display Welcome Message Start.

Display Welcome Message
Start &
Display Welcome Message

These 2 states form a for-loop. The welcome message is
“Ball Blasters Redux”. Display Welcome Message Start
state is the loop-condition i.e. it checks if number of
characters (char_counter) equals 17.
* IfNO, it pulses the “start” signal of
character generator entity to start drawing the
current character and transitions to Display
Welcome Message state. Once the character is
drawn, character generator pulses its “done”
signal, and state transitions back to Display
Welcome Message Start state after incrementing
char_counter.
* [IfYES, it transitions to Wait state.

Wait

The state machine waits in this state until the user
presses joystick button B. It then transitions to Game
Screen Background state

Game Screen Background

The state machine waits in this state until all display
pixels are set to Black color and then transitions to Draw
Line Start state.

Draw Line Start
&

Draw Line

These 2 states form a for-loop. There are 5 lines, each
identified by line_id. The process for line id is a case
statement which changes line id to the next line that is
to be drawn. Once the final line is drawn, line id is set
to NULL LINE. Draw Line Start state is the loop-
condition i.e. it checks if line id equals NULL LINE.

* IfNO, it pulses the “start” signal of line_plotter
entity to start drawing the current line and
transitions to Display Line state. Once the line is
drawn, line plotter pulses its “done” signal, and
state transitions back to Draw Line Start state
after changing line id.

* IfYES, it transitions to Draw Triangle Select
state.

Draw Triangle Select

This state is used to select triangle object in ObjSys
entity and transitions to Draw Triangle Load.

Draw Triangle Load

In this state, the triangle’s current co-ordinates are
registered in triangle x and triangle y registers (used for

14




scoring), while ObjSys calculates new triangle co-
ordinates. Transitions to Draw Triangle Start state.

Draw Triangle Start

b 13

This state pulses character generator’s “start” signal to
start drawing the triangle and transitions to Draw
Triangle state.

Draw Triangle

Once the triangle is drawn, character generator pulses
its “done” signal, and state transitions to Draw Laser
Select state.

Draw Laser Select

This state is used to select laser object in ObjSys entity
and transitions to Draw Laser Load.

Draw Laser Load

In this state, the laser’s current co-ordinates are
registered in laser x and laser y registers (used for
scoring), while ObjSys calculates new laser co-
ordinates. Transitions to Draw Laser Start state.

Draw Laser Start

This state pulses character generator’s “start” signal to
start drawing the laser and transitions to Draw Laser

state.

Draw Laser

Once the laser is drawn, character generator pulses its
“done” signal, and state transitions to Draw Green
Select state.

Draw Green Select,
Draw Green Load,
Draw Green Ball Start
&

These 4 states form a for-loop. The number of green
balls is given by ball count which is set using slide
switches. Draw Green Select state is the loop-condition
i.e. it checks if number of green balls (char _counter)

Draw Green Ball equals ball_count.

* IfNO, it selects a green ball in ObjSys and
transitions to Draw Green Load state which
reads the green ball’s current co-ordinates for
scoring, while ObjSys calculates new green ball
co-ordinates. Transitions to Draw Green Ball
Start state which pulses character generator’s
“start” signal to start drawing a green ball and
transitions to Draw Green Balls state. Once the
green ball is drawn, character generator pulses
its “done” signal, and state transitions back to
Draw Green Select state after incrementing
char_counter.

* IfYES, it transitions to Draw Red Select state.

While in Draw Green Balls state, score is incremented
based on triangle’s and current green ball’s position i.e.
if triangle captures the green ball (“point” signal is
high).
Draw Red Select, These 4 states form a for-loop. The number of red balls
Draw Red Load, is given by ball count which is set using slide switches.

Draw Red Balls Start
&

Draw Red Select state is the loop-condition i.e. it checks
if number of red balls (char counter) equals ball count.

15




Draw Red Balls

e IfNO, it selects a red ball in ObjSys and
transitions to Draw Red Load state which reads
the red ball’s current co-ordinates for scoring,
while ObjSys calculates new red ball co-
ordinates. Transitions to Draw Red Ball Start
state which pulses character generator’s “start”
signal to start drawing a red ball and transitions
to Draw Red Balls state. Once the red ball is
drawn, character generator pulses its “done”
signal, and state transitions back to Draw Red
Select state after incrementing char _counter.

If however, “impact” signal is high in Draw Red
Balls state i.e. triangle and red ball have collided,
then state transitions to Game Over Background

state.

* IfYES, it transitions to Display Game Info Start
state.

While in Draw Red Balls state, score is incremented
based on laser’s and current red ball’s position i.e. if
laser kills the red ball (“kill” signal is high).

Display Game Info Start
&

These 2 states form a for-loop. The message is “Score
###”. Display Game Info Start state is the loop-

Display Game Info condition i.e. it checks if number of characters
(char_counter) equals 8.
* IfNO, it pulses the “start” signal of
character generator entity to start drawing the
current character and transitions to Display
Game Info state. Once the character is drawn,
character generator pulses its “done” signal, and
state transitions back to Display Game Info Start
state after incrementing char counter.
* [fYES, it transitions to Done state.
Done This state indicates that one frame has been completed.

It waits for the VGA timer (@ 20 Hz) to expire to
transition back to Game Screen Background state to
redraw the frame.

Game Over Background

Draw Red Balls state transitions to this state if “impact”
signal is high. The state machine waits in this state until
all display pixels are set to Yellow color and then
transitions to Display Game Over Message Start state.

Display Game Over Message
Start
&

Display Game Over Message

These 2 states form a for-loop. The message is “Game
Over! \n Score ###”. Display Game Over Message Start
state is the loop-condition i.e. it checks if number of
characters (char_counter) equals 17.
* IfNO, it pulses the “start” signal of
character generator entity to start drawing the

16




current character and transitions to Display
Game Over Message state. Once the character is
drawn, character generator pulses its “done”
signal, and state transitions back to Display
Game Over Message Start state after
incrementing char counter.

* [IfYES, it transitions to End state.

End The state machine waits in this state until the user
presses joystick button B. It then transitions to Reset
state to restart the game.

17




System Hardware Overview:

Now that the state machine has been covered, the purpose of other blocks should be
more clearly apparent. Following is a block diagram showing the hardware

interaction of the entire system.

Ball Blasters Redux Hardware Block Diagram

O Accessory Inputs

timer

X . {Rotary Encoder, Switches
[JAudio Handling Hardware
flash_controller| sigma_delta_dac deb
Flash Memory data access [—> digital to analog Speaker e't uhu_ncert
unit conversion EWiCinpu
handling

vga_pulse_high_low poaicontey [Display Handling Hardware

[ Joystick Input Hardware l

5 N dp_64kx3_ram vga_controller
a Joystick ball_blaster = = 2 "
NES JoyStick aw data handling | data converter Main State Machine Vg;;x:ggurf?;"r / malnr:g(aj\ut?:!pu! [~ >| VGADisplay

vga_pulse_gen

— L [ r

ObjUpdate ObjSys line_plotter
object motion [<«—>| Mega

processing Multiplexer

[ Object Tracking and Update Hardware

——> character_generator —

]

font_rom binary_to_bcd

T

18



Detailed Hardware Description:

Following is a detailed description of each file and how it plays into the system as a

whole.

Binary_to_bcd: This file simply converts an 8 bit binary value to a digit ASCII number
in base 10. This file is needed for converting the players score into the appropriate
numbers to display on the game screen. The raw score data is output from the main
state machine, converted into ASCII BCD and then output to the character_generator

which goes on to display the numbers.

Character_generator: The character generator file is one of two main drawing
modules in the system. Character generator takes an address (of the character to be
displayed) and a position as input and writes that character to the VGA frame
memory. This is done through close interaction with the font rom (which contains
all bit patterns) and binary to bcd (which is used to generate addresses for

numbers).

Line_plotter: The line plotter file implments Bresenham’s algorithm for plotting
straight lines. This file is used to create the border of the game screen and writes

directly to the frame buffer.

Dp_64kx3_ram: This file is designed such that Xilinx will synthesize a large chunk of
memory as easily accessible block RAM. The memory is used as the frame buffer for
the VGA output. As such, displaying an object or character requires a write to the
appropriate address in the RAM and the VGA controller will simply read and output
the entire frame buffer each update. Note that each address space in this ram

corresponds to 3 bits, the RGB value for the associated pixel.

Font_rom: The font rom takes an address as input and outputs an according 8 bit

pattern. Each character or object has an 8 by 8 bit pattern stored on the font rom

19



which can be accessed by incrementing through the address allocated to each
character. These 8 by 8 bit patterns go on to be processed and stored in the frame

buffer for display.

VGA_controller: The VGA controller file accesses the systems frame buffer and
generates the necessary control signals for a 256x256 3 bit color output. This is
done by iterating through the frame buffer and outputting corresponding pixel color

patterns at the times indicated by supporting VGA peripherals.

VGA_counter: This file implements a simple counter that is used to aid the VGA

controller in generating correct control signals.

VGA_pulse_gen: This file generates a high output when the count value in VGA
counter is within a specified range. This pulse is then used to generate control

signals in the VGA controller.

VGA_pulse_high_low: This file implements a simple module to generate a pulse
when a high to low transition occurs on the horizontal sync data line generated by
the VGA pulse gen file. This pulse is then sued to increment the vertical sync counter

in VGA_counter, which is needed for proper VGA control signals.

Debouncer: The debouncer file implements control modules for on board hardware
input. Specifically, a control module is made for the set of 4 slide switches on the
Spartan board and a control module is made for the rotary encoder on the Xilinx
board. The sliding switch control module debounces input data before sending it off
the main state machine, where it is used to control the number of active balls. The
rotary encoder control module implements a simple state machine to determine
which way, if any, the rotary encoder is being turned. When the encoder is rotated,
the module creates a rotation event which is used in the main state machine to

control a counter that is used to set the speed of the player controlled triangle.

20



Flash_controller: The flash controller module implements a state machine that
accesses data from the board’s parallel flash memory, which contains audio data.
The module reads data from two locations; a byte is read from the theme song
memory space and a byte is read from the memory space of an extra sound effect.
The module then determines which sound is to be output based on a select input
line and outputs the appropriate byte to the DAC for enough cycles to give a 44 KHz

sampling frequency.

Sigma_delta_dac: The DAC module implements a simple 8 bit first order sigma delta
DAC. The DAC takes input from the flash controller and outputs directly to the

system’s speaker through general IO.

Joystick: The joystick file implements a state machine which produces the signals
necessary to input data from an NES compliant joystick. The 8 bits of raw data are
latched after finishing a full read. The latched data is used in JoyInterpret to

generate the movement signals needed by the rest of the system.

JoyInterpret: The JoyInterpret file simply converts raw joystick data into more

workable forms.

ObjUpdate: The ObjUpdate file implements each type of object processing element
needed by the game. The types of processing elements are: ball, laser, and triangle.
Each processing element represents a single on screen object. The processing
element is entirely responsible for keeping track of and updating the objects
position, including interactions with boundaries. Inter-object interaction, such as
the collision between a laser and a red ball, is handled by the main state machine.
When one of these events is detected, an object’s processing element can be

accessed with control signals through ObjSys.

21



ObjSys: The purpose of ObjSys is simply to instantiate all the processing elements
needed by the game. ObjSys also implements a large multiplexer for selecting data
from one of the many processing elements and decoder for enabling a single

element to receive control logic.

Timer: The timer file implements a simple variable period timer, which is a useful

thing to have.

For more specific information about how each file works, see the attached folder

which contains all VHDL code.

22



Xilinx Place & Route Report:

Following is the place and route report for the finished Ball Blasters project. This
report gives information about the utilization of the FPGA. Note that the report can
also be found in a more cleanly formatted form in the folder this manual is located

in.

Release 9.2.04i par ].40
Copyright (c) 1995-2007 Xilinx, Inc. All rights reserved.

ECEXILINXVM:: Tue Jun 04 01:31:53 2013
par -w -intstyle ise -ol std -t 1 ball_blaster_map.ncd ball_blaster.ncd

ball_blaster.pcf

Constraints file: ball_blaster.pcf.
Loading device for application Rf_Device from file '3s500e.nph' in environment
C:\Xilinx92i.

"ball_blaster" is an NCD, version 3.1, device xc3s500e, package fg320, speed -4

Initializing temperature to 85.000 Celsius. (default - Range: -40.000 to 100.000

Celsius)

Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.320 Volts)
Device speed data version: "PRODUCTION 1.27 2007-10-19".

Design Summary Report:

23



Number of External I0Bs 69 outof 232 29%

Number of External Input IOBs 21

Number of External Input IBUFs 21

Number of LOCed External Input IBUFs 21 outof21 100%

Number of External Output IOBs 48

Number of External Output IOBs 48
Number of LOCed External Output [OBs 47 outof48 97%

Number of External Bidir [OBs 0

Number of BUFGMUXs loutof24 4%

Number of DCMs loutof4 25%

Number of RAMB16s 12 outof 20 60%

Number of Slices 3133 out of 4656 67%
Number of SLICEMs 76 out of 2328 3%

Overall effort level (-ol): Standard
Placer effort level (-pl): High
Placer cost table entry (-t): 1

Router effort level (-rl): Standard

Starting initial Timing Analysis. REAL time: 4 secs
24



Finished initial Timing Analysis. REAL time: 4 secs

WARNING:Par:288 - The signal sf_sts_IBUF has no load. PAR will not attempt to

route this signal.

Starting Placer

Phase 1.1
Phase 1.1 (Checksum:994bf6) REAL time: 6 secs

Phase 2.7
WARNING:Place:837 - Partially locked 10 Bus is found.
Following components of the bus are not locked:

Comp: sf A<25>

WARNING:Place:838 - An 10 Bus with more than one 10 standard is found.

Components associated with this bus are as follows:
Comp: sf A<0> IOSTANDARD = LVCMOS33
Comp: sf A<1> IOSTANDARD = LVCMOS33
Comp: sf_ A<2> IOSTANDARD = LVCMOS33
Comp: sf_ A<3> IOSTANDARD = LVCMOS33
Comp: sf_ A<4> IOSTANDARD = LVCMOS33
Comp: sf_ A<5> IOSTANDARD = LVCMOS33
Comp: sf A<6> IOSTANDARD = LVCMOS33
Comp: sf A<7> IOSTANDARD = LVCMOS33
Comp: sf_ A<8> IOSTANDARD = LVCMOS33
Comp: sf A<9> IOSTANDARD = LVCMOS33
Comp: sf A<10> IOSTANDARD = LVCMOS33
Comp: sf A<11> IOSTANDARD = LVCMOS33
Comp: sf_ A<12> I0STANDARD = LVCMOS33
Comp: sf A<13> I0STANDARD = LVCMOS33

25



Comp: sf A<14> IOSTANDARD = LVCMOS33
Comp: sf A<15> IOSTANDARD = LVCMOS33
Comp: sf A<16> IOSTANDARD = LVCMOS33
Comp: sf A<17> IOSTANDARD = LVCMOS33
Comp: sf A<18> IOSTANDARD = LVCMOS33
Comp: sf A<19> IOSTANDARD = LVCMOS33
Comp: sf A<20> IOSTANDARD = LVCMOS33
Comp: sf A<21> IOSTANDARD = LVCMOS33
Comp: sf A<22> IOSTANDARD = LVCMOS33
Comp: sf A<23> IOSTANDARD = LVCMOS33
Comp: sf A<24> IOSTANDARD = LVCMOS33
Comp: sf A<25> IOSTANDARD = LVCMOS25

INFO:Place:834 - Only a subset of 10s are locked. Out of 48 10s, 47 are locked and 1
are not locked. If you would like

to print the names of these 10s, please set the environment variable
XIL_PAR_DESIGN_CHECK_VERBOSE to 1.
Phase 2.7 (Checksum:1312cfe) REAL time: 6 secs

Phase 3.31
Phase 3.31 (Checksum:1c9c37d) REAL time: 6 secs

Phase 4.2

Phase 4.2 (Checksum:98a2ff) REAL time: 7 secs

Phase 5.30
Phase 5.30 (Checksum:2faf07b) REAL time: 7 secs

Phase 6.3
26



Phase 6.3 (Checksum:39386fa) REAL time: 7 secs

Phase 7.5
Phase 7.5 (Checksum:42c1d79) REAL time: 7 secs

Phase 8.8

Phase 8.8 (Checksum:ffb5df) REAL time: 26 secs

Phase 9.5
Phase 9.5 (Checksum:55d4a77) REAL time: 26 secs

Phase 10.18
Phase 10.18 (Checksum:5f5e0f6) REAL time: 36 secs

Phase 11.5
Phase 11.5 (Checksum:68e7775) REAL time: 36 secs

REAL time consumed by placer: 37 secs

CPU time consumed by placer: 34 secs

Writing design to file ball_blaster.ncd

Total REAL time to Placer completion: 38 secs

Total CPU time to Placer completion: 35 secs

27



Starting Router

Phase 1: 19349 unrouted; REAL time: 40 secs

Phase 2: 17792 unrouted; REAL time: 41 secs

Phase 3: 4572 unrouted; REAL time: 44 secs

Phase 4: 4572 unrouted; (0) REAL time: 44 secs

Phase 5: 4572 unrouted; (0) REAL time: 45 secs

Phase 6: 4572 unrouted; (0) REAL time: 45 secs

Phase 7: 0 unrouted; (0) REAL time: 49 secs

Phase 8: 0 unrouted; (0) REAL time: 50 secs

WARNING:Route:455 - CLK Net:joy_timer/pulse may have excessive skew because

4 CLK pins and 0 NON_CLK pins failed to route using a CLK template.

WARNING:Route:455 - CLK Net:screen_update may have excessive skew because

0 CLK pins and 194 NON_CLK pins failed to route using a CLK template.

Total REAL time to Router completion: 51 secs

Total CPU time to Router completion: 48 secs

Partition Implementation Status

No Partitions were found in this design.

28



Generating "PAR" statistics.

Skokeskok sk ok ok ok ok ok ok sk ok sk ok sk ok sk sk sk sk ok sk sk ko

Generating Clock Report

Skokeskok sk ok ok ok ok ok ok sk ok sk ok sk ok sk sk sk sk sk sk sk ko

e EERE o +-mmee- +-mmm- e e +

| Clock Net | Resource |Locked|Fanout|Net Skew(ns)|Max Delay(ns)|

e EERE o +-mmee- +-mmm- e e +

| clock | BUFGMUX_X1Y11|No |1299| 0.079 | 0.196 |

e EERE o +-mmee- +-mmm- e e +

|  screen_update | Local| | 199] 0.092 | 2.239 |

o oo +emmee- +ommmm- o o +
| joy_timer/pulse | Local| | 16] 1.486 | 3.318 |
o oo +emmee- +ommmm- o o +

* Net Skew is the difference between the minimum and maximum routing
only delays for the net. Note this is different from Clock Skew which
is reported in TRCE timing report. Clock Skew is the difference between

the minimum and maximum path delays which includes logic delays.

The Delay Summary Report

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design is: 0

The AVERAGE CONNECTION DELAY for this design is: 1.125
The MAXIMUM PIN DELAY IS: 7.607

29



The AVERAGE CONNECTION DELAY on the 10 WORST NETS is: 6.153

Listing Pin Delays by value: (nsec)

d<1.00 <d<2.00 <d<3.00 <d<4.00 <d<8.00 d>=8.00

10908 5318 1898 802 417 0

Timing Score: 0

Number of Timing Constraints that were not applied: 1

Asterisk (*) preceding a constraint indicates it was not met.

This may be due to a setup or hold violation.

Constraint | Check | Worst Case | Best Case | Timing | Timing
| | Slack | Achievable | Errors| Score
PERIOD analysis for net "clock_dcm" deriv | SETUP | 22.415ns| 17.585ns| 0|
0

ed from NET "clock_int" PERIOD =20 ns H| HOLD | 0.639ns| | 0]
0

IGH 50% | I |

NET "clock_int" PERIOD = 20 ns HIGH 50% |N/A | N/A| N/A| N/A|
N/A

All constraints were met.

30



INFO:Timing:2761 - N/A entries in the Constraints list may indicate that the

constraint does not cover any paths or that it has no requested value.

Generating Pad Report.

All signals are completely routed.

WARNING:Par:283 - There are 1 loadless signals in this design. This design will

cause Bitgen to issue DRC warnings.

Total REAL time to PAR completion: 53 secs
Total CPU time to PAR completion: 50 secs

Peak Memory Usage: 220 MB
Placement: Completed - No errors found.
Routing: Completed - No errors found.
Timing: Completed - No errors found.
Number of error messages: 0

Number of warning messages: 7

Number of info messages: 1

Writing design to file ball_blaster.ncd

PAR done!

31



32



