
 i

Additional Chapter for

Programming Microcontrollers
using

Assembly Language

by
Chuck Baird

This chapter tells how to use the AVR Butterfly’s DataFlash serial
 memory chip, and develops a general purpose support routine.

Copyright 2006 © by Chuck Baird
All rights reserved

http://www.cbaird.net

 ii

Chapter 15: Jumpin’ Jack DataFlash

The AVR Butterfly has an integrated circuit (IC) chip that is not used by the distributed
application, although that software does contain some rudimentary support routines for it.
It is the Atmel AT45DB041B DataFlash memory chip, a 4 megabit (half a million bytes)
nonvolatile serial memory interfaced via the SPI interface. The device datasheet which
includes all the details that follow (and much more) can be downloaded from the Atmel
website.

The DataFlash can be used to store a wide variety of data, from digital voice to collected
experimental data to program code ready to be written into the main flash memory. The
DataFlash cannot be directly read or written by AVR Studio, although it is accessible to
any SPI compatible device since the SPI pins on the Butterfly are brought out to the J400
connector (see Chapter 11). Of course, the Butterfly’s ATmega 169 can read and write
the DataFlash, and even make it available through the RS-232 port, as we shall see.

Device Architecture

The DataFlash memory array is arranged as 2,048 pages of 264 bytes each, for a total of
4,325,376 bits. In addition, there are two internal SRAM buffers of 264 bytes which
allows for overlapping operations: One buffer may be written to or read from the
DataFlash memory while the other buffer is being filled or emptied by the user.

Pages of memory are grouped into 256 blocks of 8 pages each, and blocks are grouped
into 6 sectors of 1 to 64 blocks each. Most of our operations will happen at the page
level, although there is a command to erase memory at the block level. Sectors are
important in one special case of refreshing memory which we will discuss shortly. A
diagram of the device’s architecture is shown in Figure 15.1 and summarized in Figure
15.2.

 2

Figure 15.1 – DataFlash Memory Array Architecture

Sector Block(s) Pages Bytes
0 0 0 – 7 2,112
1 1 – 31 8 – 255 65,472
2 32 – 63 256 – 511 67,584
3 64 – 127 512 – 1023 135,168
4 128 – 191 1024 – 1535 135,168
5 192 – 255 1536 – 2047 135,168

Each page is 264 bytes long
Each block is 8 pages long (2,112 bytes)

Figure 15.2 – Allocation of the DataFlash Memory

DataFlash Commands

There are 21 different operations we can perform with the DataFlash. For now we will
gloss over the details and look at the big picture, using the command names from the
Atmel datasheet. The pound sign (#) designates a buffer number, 1 or 2.

A) Continuous Array Read – a sequential stream of data is read from a specified
starting address in the main memory. Once the address is set up, any number of
bytes may be read without further addressing. If we reach the end of memory
(page 2047, byte 263), the address wraps back to the beginning (page 0, byte 0).

B) Main Memory Page Read – a sequential stream of data is read from a specified
starting address within a specified page of main memory. Once the address is
set up, any number of bytes may be read without further addressing. At the end

 3

of the page (byte 263) the address wraps back to the beginning of the same page
(byte 0).

C) Buffer # Read – a sequential stream of data is read from a specified starting
address within one of the SRAM buffers. Once the address is set up, any
number of bytes may be read without further addressing. At the end of the
buffer the address wraps back to the beginning of the buffer.

D) Status Register Read – the device status register contents are returned. The
status register contains a device busy bit, a comparison results bit, and bits
which specify the memory size of the device (an arbitrary constant for a
particular device type).

E) Buffer # Write – a sequential stream of data is written to the specified buffer
starting at a specified address. Once the address is set up, any number of bytes
may be written without further addressing. At the end of the buffer the address
wraps back to the beginning of the buffer.

F) Buffer # to Main Memory Page with Erase – the contents of the specified
buffer is written to a page in memory following the erasure of that page. The
status register will indicate the device is busy during this operation.

G) Buffer # to Main Memory Page without Erase – the contents of the specified
buffer is written to a page in memory. The page must have been previously
erased. The status register will indicate the device is busy during this operation.

H) Page Erase – the specified page of main memory is erased. The status register
will indicate the device is busy during this operation.

I) Block Erase – the specified block of 8 pages is erased. The status register will
indicate the device is busy during this operation. When large amounts of data
are written, a block erase can be more efficient than a page by page erase.

J) Main Memory Page Program through Buffer # – this command is a
combination of the Buffer Write and the Buffer to Main Memory Page with
Erase commands. Data is written to the specified buffer, and, when the
command terminates, the target page is erased and the buffer is written to the
specified page. The status register will indicate the device is busy during the
erase and write operations.

K) Main Memory Page to Buffer # Transfer – this reads a page of main memory
into one of the buffers. The status register will indicate the device is busy
during this operation.

L) Main Memory Page to Buffer # Compare – this compares the contents of one
of the buffers with the contents of the specified page. The status register will
indicate the device is busy during this operation. At the end of the operation, the
compare bit of the status register will indicate the results of the compare.

M) Auto Page Rewrite through Buffer # – this is a combination of the Main
Memory Page to Buffer Transfer and the Buffer to Main Memory Page with
Erase commands. A page of main memory is copied into a buffer, that page is
erased, and then the buffer is rewritten to the original page. The status register
will indicate the device is busy during this operation. The purpose of this
command is for sector refreshes, discussed later.

 4

A diagram of the commands and their associated actions may help clarify them. The
command names have also been simplified slightly to make them easier to reference later.
The letter designations (A, B, etc.) are the same as in the above list.

Only one SRAM buffer is shown, although there are two separate and equal buffers,
either of which may be specified for any command which uses a buffer.

Figure 15.3 – DataFlash commands

An erased bit will read as a 1. However, the datasheet specifically notes that changing a
bit from a 1 to a 0 without first erasing is not recommended. Always erase a page prior to
programming it.

The Status Byte

Bit 7 of the status byte is the device busy bit, where a 1 means the device is ready and 0
means the device is busy. Bit 6 is used to test the results of compare operations, where 0
means the contents matched and 1 means the contents differed. Following a compare, we
need to wait until the device is no longer busy before looking at the compare results.

The device memory size (density) is encoded into bits 5 through 2 of the status byte.
This is an arbitrary constant for each device type, and the binary value does not reflect
the size. For the Butterfly’s DataFlash chip, the four bits are 0111.

Sector Refreshes

Sectors are groups of 1 to 64 blocks, where blocks are 8 pages long (see Figure 15.2).
Each page in a sector must be reprogrammed (erased and rewritten) within every 10,000
cumulative page erase/program operations in that sector. The Auto Rewrite command is
designed to simplify this task.

 5

If we are sequentially programming pages within a sector then this problem never arises.
However, if we are randomly updating (reprogramming) pages, then it is necessary to
ensure that we refresh each page in each sector at least once every 10,000 updates of
pages within that sector.

In the worst case a total page by page refresh of one of the larger (512 page) sectors using
the Auto Rewrite command can take over 10 seconds, so this is an issue that might justify
some design creativity to resolve.

The SPI Interface

The Serial Peripheral Interface, or SPI, is a protocol supported by the ATmega 169
hardware and used by the DataFlash chip. In the Butterfly the MCU’s SPI lines are
connected to the DataFlash and brought out to solder pads. Unfortunately, in the
ATmega 169 the SPI pins are also Port B pins 0 – 3. This means that if we use the
DataFlash in one of our programs, we must (for that program) sacrifice the lower four
bits of Port B. Normally this would not be a problem, but in the Butterfly so few I/O pins
are externally available (because of the wealth of other features), it may hamper some
designs.

SPI works by exchanging data between two devices, one of which is designated the
master and the other is designated the slave. In the Butterfly the DataFlash chip will
always be the slave. The ATmega 169 is capable of assuming either role, and even
switching on the fly. The master sends commands to the slave and provides the clock for
the data exchange. The slave does not initiate communication.

Essentially SPI sets up a pair of registers, one in the master and one in the slave, and
shifts data bits between them. Bits that leave the master end up in the slave’s register,
and bits that leave the slave end up in the master’s register. When the master hardware
sends 8 clock pulses, the two devices exchange a byte.

So we will access the DataFlash by loading an ATmega 169 SPI output register with a
command byte which will then be automatically clocked (shifted) to the slave. We will
usually follow this byte with some addressing bytes. For each byte sent we will also
receive a byte in return, but we will ignore these.

Then, if we expect a response to our command (for example, when we read the
DataFlash), we will send one or more “don’t care” bytes which clock the DataFlash
additional times and allows us to receive the response. The phrase “don’t care” means
the contents is irrelevant; it is the number of bits that counts. The idea of having to send
something to receive something is a little foreign for normal peripheral interactions (like
reading a joystick switch).

Before we can use the SPI we must initialize its hardware by writing to some internal
MCU registers. After initialization, we use the MCU’s SPI registers to send the

 6

DataFlash its expected commands and receive its responses. The commands themselves
are interpreted by the DataFlash. Therefore part of our conversation is with the ATmega
169 SPI hardware, and part of it is with the DataFlash. We could, in a similar manner, set
up two (or more) Butterflies or other SPI capable MCUs to communicate with each other.

For completeness let me point out that it is possible to talk to the DataFlash by emulating
the SPI interface using the Port B I/O pins. In that case we would have to generate each
individual clock pulse and take care of several overhead details. Just like we can design
software RS-232 interfaces, we can do likewise for SPI, but it is much easier and more
reliable to use the USART and SPI hardware that is incorporated in the MCU.

For more information, there is a short discussion of SPI in the ATmega 169 User’s
Manual (page 143), and the datasheet for the AT45DB041B DataFlash memory is
available on the Atmel website.

Designing the DataFlash Access Routines

To come up with a design for support routines for the DataFlash we need to give some
thought to the kinds of things we will likely want to do. Obviously we will need an SPI
initialization routine, or nothing will work. We will also want to look at the interrupt
capabilities of the SPI (if any) and decide whether we want to make use of them. Finally,
there is the question of whether to implement all of the commands the DataFlash knows,
or pick a reasonable subset of them suitable for general use. We may also want to have
additional routines which provide services that do not translate directly to DataFlash
commands.

If we were programming a computer with a large amount of standard memory (SRAM),
designing some of the routines to access the DataFlash would be fairly straight forward.
We could easily allocate one or more buffers (at 264 bytes each) in memory, then write
routines to copy them to and from the DataFlash buffers and/or pages. We could fill or
empty the local buffers at our leisure without worrying much about the DataFlash itself.
However, with only 1K of SRAM to work with in the Butterfly, we may not want to give
up a minimum of over a fourth of it for one or more buffers for use with the DataFlash.

What this means, in practical terms, is that we may want to play some tricks with those
commands that allow us to read or write DataFlash data, whether to its pages or its
internal buffers. Rather than handling all the data at once (which would require us to
have space for it), we may choose instead to break the process into three steps: Open a
channel, read or write the data, and close the channel. We can then take our time with the
second step, perhaps generating the data by sampling the A/D converters, or sending the
data out via the RS-232 line or playing it on the speaker. In this manner our program has
the option of handling the data a byte at a time and does not need a large local storage
capacity.

Doing something like this requires more work on our part as programmers, because we
have to keep track of where we are in the process. If all our data were collected in

 7

SRAM, our Write to DataFlash routine could simply be called with the starting address
of the data and the number of bytes, and that would be it. Using this alternative method,
we will need to call a routine to open the write channel, make some number of calls to a
routine which writes one byte per call, and finally call a third routine which closes the
channel. However, we are relieved of needing temporary SRAM storage in this case,
although we may use it if we wish.

Types of Commands

The Atmel documentation groups the DataFlash’s commands into those that access the
main memory, and those that do not. There are three commands in the second group:
Buffer Read (C), Status Read (D), and Buffer Write (E). These three commands may be
performed in parallel with the commands in the first group, although commands in either
group may not be performed simultaneously with other commands in their group.

This means it is possible to be filling (or emptying) one DataFlash buffer while the other
is being written (or read) to the main memory. The efficiency that may be achieved from
this overlapping of operations is why there are two internal buffers.

Most of the commands that access the main memory cause the device to be busy for some
varying amount of time, up to about 20 milliseconds for the worst case. That may seem
fast (0.02 seconds), but it is enough time for the Butterfly to execute about 160,000
instructions. Obviously we do not want to be storing frequently accessed data in the
DataFlash if we can avoid it. Figure 15.4 shows the relative timing of the commands.

For commands that access the main memory, the DataFlash must be idle (not busy)
before the command can be issued. We will use the Status Read command to determine
if the device is busy, a command that we (fortunately) can send to a busy device.

We can also classify the commands into two other groups. One group is made up of the
commands that just cause something to happen, like erasing a page or copying the
contents of one of the buffers to the main memory. Once we issue the command we do
not need to have further interaction with the DataFlash, although the device may become
busy and temporarily unavailable. The other group consists of those commands
mentioned earlier, that read or write some number of bytes to buffers or memory. Those
are the ones we are going to break into three step processes. We will call these the
streaming commands, and the channel we establish a stream.

Support Routine Summary

We can now state how we would like our set of DataFlash routines to behave, at least in
general terms.

• We will need an SPI initialization routine.
• The command processing routine will have a “busy” (and/or error) return so we

can wait until the device is available or recognize problems.

 8

• For streaming commands we will need three types of operations: Open stream,
read or write stream, and close stream. The actual command, such as Read
Page, will open the stream. Then we will make additional calls to read each
byte, and finally a separate call to close the stream.

• If the SPI is not initialized, or if we call a non-streaming routine while we are
streaming, or if we try to use a closed stream, we will return an error.

• We can use a common entry point (i.e., one subroutine) to handle all commands.

The general flow of the command processing routine is as follows:

Entry: Is the device initialized?
 no – error return
 yes – is there an open stream?
 no – does the command require an open stream?
 yes – error return
 no – does the command require an idle device?
 yes – is the device idle?
 no – busy return
 yes – next step
 no – does command open a stream?
 yes – send command, leave stream open
 normal return
 no – carry out command
 normal return
 yes – does command require an open stream?
 no – error return
 yes – carry out command (read, write, or close stream)
 normal return

This will handle all commands, although we will code Read Status a separate routine.
This is not only because it needs to be called from within this flow (7th line), but also
because it has a different structure (it does not need addressing bytes) than all other
commands. It can be called either separately or through the common entry point.

To implement the above flow, we will summarize what we know about the various
commands, plus three pseudo-commands we will add. The commands are:

A – Continuous Read I – Block Erase
B – Page Read J – Program through Buffer
C – Buffer Read K – Page to Buffer Transfer
D – Status Read L – Page to Buffer Compare
E – Buffer Write M – Auto Rewrite
F – Program with Erase N – Get Byte from Stream
G – Program without Erase O – Put Byte to Stream
H – Page Erase P – Close Stream

 9

Actual DataFlash Commands Pseudo Properties

A B C D E F G H I J K L M N O P
Selects a buffer X X X X X X X X

Uses buffer address X X X X X
Uses page address X X X X X X X X X X

Extra bytes for setup 4 4 1
Causes busy X X X X X X X X

Busy time factor 8
0

5
6

3
2

4
8

8
0

1 1 8
0

Requires idle device X X X X X X X X X X

Opens stream X X X X X
Closes stream X

Requires stream X X X
Stream type R R R W W X

Figure 15.4 – Command properties

This table contains more information than we need, but it is summarized here for
completeness. The first row (Selects a buffer) indicates whether the command acts on
one of the two internal buffers. We will look at the next three rows in a moment when
we see how the addressing for the DataFlash works.

The next two rows are included for your information only and will not be used in our
subroutine. Causes busy indicates whether or not the command will busy the device, and
Busy time factor gives the worst case timing for how long the busy will last. The units
are 250 microseconds each, or about 2,000 MCU instructions.

Requires idle device tells whether the command has to wait until the DataFlash is
available, and the last four rows indicate how the command uses streams. In the Stream
type row an R means we will be reading the stream, and a W means we will be writing the
stream (X means it does not matter).

Communicating with the DataFlash

To send a command to the DataFlash we write the command, a hex operation code (or
opcode, a fancy way of saying a number), to an I/O register in the MCU. The MCU’s
SPI hardware then automatically clocks the bits to the DataFlash. For all but the Read
Status command we then send between 3 and 7 additional bytes. For all of these bytes
we will ignore the return values (remember, the SPI receives data as it sends data).

In the order of transmission, the 3 address bytes consist of 4 “don’t care” bits, 11 bits of
page address (a value of 0 to 2047), and 9 bits of byte address (a value of 0 to 263). A
few commands want either one or four additional bytes of “don’t care” bits for internal
timing considerations, but most do not. That makes each command, other than Read
Status, either 4, 5, or 8 bytes long.

 10

Now the three mystery rows in the table above make sense. Uses buffer address shows
whether we have to have an actual buffer offset in the 9 bits, or whether those are 9
“don’t care” bits. Likewise, Uses page address indicates whether we need an actual 11
bit page address or can use “don’t care” bits. Finally, Extra bytes for setup gives the
number of additional bytes we need to add following the address bytes, if any.

The method we will use to pass arguments to our routines will be to define three
variables, a single byte for the buffer selector, and two word variables for the 9 bit buffer
and 11 bit page addresses. The caller will store values in these variables as appropriate
for the desired command, load a command indicator into a register, and then call the
common entry point. The value in the register will be used to select which command is
desired, and with portions of the above table encoded as flash memory constants, the
appropriate command can be sent to the DataFlash.

The Routines

We can finally get down to the business of writing some code. Start a new project (I
called mine “Jack_Flash” in honor of Mick Jagger pushing 70). Here is the start of the
program:

; File name: Jack_Flash.asm
;
; Program to manipulate the DataFlash

 .nolist
 .include "m169def.inc" ; definitions for the Atmega 169
 .list

; Use these equates in calls to df_command to specify
; the desired command. These values are offsets into
; the "df_def" bytes, plus 1
 .equ df_cont_read = 1 ; (A) continuous read
 .equ df_page_read = 4 ; (B) page read
 .equ df_buf_read = 7 ; (C) buffer read
 .equ df_stat_read = 10 ; (D) status read
 .equ df_buf_write = 13 ; (E) buffer write
 .equ df_prog_erase = 16 ; (F) prog w/ erase
 .equ df_prog = 19 ; (G) prog w/o erase
 .equ df_page_erase = 22 ; (H) page erase
 .equ df_blk_erase = 25 ; (I) block erase
 .equ df_prog_buf = 28 ; (J) prog thru buffer
 .equ df_xfer = 31 ; (K) page to buf xfer
 .equ df_compare = 34 ; (L) page to buf comp
 .equ df_auto = 37 ; (M) auto rewrite
 .equ df_read = 40 ; (N) read stream
 .equ df_write = 43 ; (O) write stream
 .equ df_close = 46 ; (P) close stream

 .dseg
; These three variables will be loaded with appropriate
; values (depending upon the command) prior to calling
; the df_command routine. Notice that we are calling the
; buffers 0 and 1 rather than 1 and 2.
df_paddr: .byte 2 ; page address (0 - 2047, low then high)
df_baddr: .byte 2 ; buffer address (0 - 263, low then high)
df_buf: .byte 1 ; buffer # (even = buffer 1, odd = buffer 2)

 11

; this variable is internal to df_command - do not alter
df_strm: .byte 1 ; stream: 0=closed, 1=output, 2=input

 .cseg ; what follows is flash code
 .org 0x0000
 jmp main ; reset comes here

; This is the encoded table which describes the DataFlash commands.
; Each entry is three bytes long, and they are in the order of the
; equates above. The first byte has bit flags describing the
; characteristics of the command. The second byte is the opcode for
; buffer 1 access, and the third byte is the opcode for buffer 2
; access. For commands which do not use the internal buffers, both
; opcodes will be the same.
;
; byte 0: bit 0-2 number of extra bytes to append to address
; bit 3 if 1, requires idle device
; bit 4 if 1, read stream, otherwise write or no stream
; bit 5 if 1, command closes stream
; bit 6 if 1, command opens stream
; bit 7 if 1, command uses stream

df_def:
 .db 0x5C, 0x68, 0x68, 0x5C, 0x52, 0x52 ; A and B
 .db 0x51, 0x54, 0x56, 0x00, 0x57, 0x57 ; C and D
 .db 0x40, 0x84, 0x87, 0x08, 0x83, 0x86 ; E and F
 .db 0x08, 0x88, 0x89, 0x08, 0x81, 0x81 ; G and H
 .db 0x08, 0x50, 0x50, 0x48, 0x82, 0x85 ; I and J
 .db 0x08, 0x53, 0x55, 0x08, 0x60, 0x61 ; K and L
 .db 0x08, 0x58, 0x59, 0x90, 0x00, 0x00 ; M and N
 .db 0x80, 0x01, 0x01, 0xA0, 0x02, 0x02 ; O and P

main: ldi r16,high(RAMEND) ; set up stack pointer
 out SPH,r16
 ldi r16,low(RAMEND)
 out SPL,r16

This should look pretty familiar by now. We have some equates (.equ directives) which
we will use to identify the DataFlash commands. We will load one of them into R16
prior to calling the df_command routine.

There are then three variables (df_paddr, df_baddr, and df_buf) which are used to
communicate addressing information to df_command. For those commands that require
it (see Figure 15.4), the user will load some or all of these variables with values specific
to the command. For example, Block Erase requires the address of a page within the
block to be erased (there are 8 pages per block), so df_paddr would be loaded with an
appropriate value. Likewise, Program with Erase needs to have a buffer number and a
page address, so df_buf and df_paddr would need to be defined.

For the word variables, the low order byte is stored in the lower address (for example,
df_paddr) and the high order byte is stored in the higher address (df_paddr + 1).

The last variable, df_strm, is used internally by df_command and should not be explicitly
changed by the user. It indicates whether there is an open stream, and, if so, whether it is
an input (read) or output (write) stream.

 12

Next we find 48 bytes in flash at address df_def, three per command, which define the
commands. The first byte has bit flags for the way the command uses streams, whether it
requires an idle device, and how many extra bytes need to follow the addressing bytes.
The second byte is the command opcode if we are using buffer 1, and the third byte is the
opcode if we are using buffer 2.

Notice that 1 and 2 are Atmel’s names for the buffers, but we will select buffer 1 if bit 0
of df_buf is 0, and buffer 2 if bit 0 of df_buf is 1. We could call the buffers Barney and
Wilma if we wished, since all references to them will be through bit 0 of df_buf and it
really does not matter which is which. As long as we are consistent.

If a command does not use a buffer then the same opcode is repeated in both the second
and third bytes. This allows us to act as if all commands use buffers, and select the
opcode based on bit 0 of df_buf in all cases. Where the buffer does not matter we get the
same opcode in either case. It simplifies the code a little.

Notice that the equates are merely offsets into the df_def values that locate the first byte
of each command’s set, plus one. We add one to make these offsets nonzero, because our
command processor will return the original offset in case of a busy or error, or zero in
case of success. That allows us to call again without reloading registers if the device is
busy.

Initialization

Now for some initialization of the SPI hardware in the ATmega 169. As usual, we will
put this code into a subroutine and call it, which makes our program easier to read (for
humans) and makes the code liftable (portable) for other projects.

; --
; df_init - initialize DataFlash communication
;
; this sets up the SPI stuff and resets the DataFlash
; note: this is hard coded for the AVR Butterfly

df_init:
 push ZH
 push ZL
 push r16

 sbi ddre,porte7 ; PE7 is an output
 cbi porte,porte7 ; write 0 to reset DataFlash

 sbi ddrb,portb0 ; B0 is an output (~CS)
 sbi ddrb,portb1 ; B1 is an output (SCK)
 sbi ddrb,portb2 ; B2 is an output (MOSI)
 cbi ddrb,portb3 ; B3 is an input (MISO)
 sbi portb,portb0 ; write a 1 to ~CS

 ldi r16,30
df_b: dec r16 ; reset for at least 10 microseconds
 brne df_b
 sbi porte,porte7 ; drop reset pulse

 13

 ldi r16,(1<<spi2x) ; SPI double speed
 out spsr,r16
 ; enable SPI, master, mode 3
 ldi r16,(1<<spe)|(1<<mstr)|(1<<cpha)|(1<<cpol)
 out spcr,r16

 clr ZL
 sts df_strm,ZL ; stream is closed

 ldi ZH,0xb3 ; kill > 20 ms
df_lp: sbiw ZH:ZL,1 ; 45,824 loops
 brne df_lp

 pop r16
 pop ZL
 pop ZH
 ret

As the comments note, this routine is specific to the Butterfly and its wiring. Pin 7 of
Port E is wired to the DataFlash reset line, so we start by initiating a reset pulse. We then
set up the other SPI pins, and write a 1 to the ~CS (Chip Select) line. This is the line we
will use to tell the DataFlash we are talking to it. A high (1) means we are not, and a low
(0) means we are, so the line is said to be active low. The tilde (~, or NOT) is used to
designate CS as an active low line.

We then waste some time to make sure our reset pulse is long enough, and release the
reset line. We set the operational parameters of the SPI in two I/O registers. We set it to
double speed, SPI master, mode 3 (which determines how it interprets data), and enabled.
We will use the enable bit later on to verify that this initialization routine was previously
called.

We mark the data stream as closed (df_strm = 0), and then kill some more time, quite a
lot actually, to let the DataFlash fully wake up from its reset stupor.

Details like these timing considerations are in the DataFlash datasheet. The SPI register
details are in the ATmega User’s Manual in the SPI section.

Sending Commands to the DataFlash

The way we talk to the DataFlash is to bring the ~CS line (Port B, bit 0) from a high to a
low (1 to 0). Then we output bytes to the SPI I/O register SPDR (SPI Data Register),
watching its busy bit to see when it can accept the next byte. When we are done, we
bring the ~CS line back high to signal the end of the communication.

The busy bit just mentioned in conjunction with the SPDR register is not the same as the
busy bit returned from the DataFlash Read Status command. The first tells us whether
the MCU’s SPI hardware is ready to accept another byte to clock out to the SPI slave, and
the second tells us whether the DataFlash is involved with internal reading or writing of
its main memory.

 14

If the command we send does cause the DataFlash to go busy, this happens following the
~CS line being brought back high.

For our stream commands, we will send the command as outlined above, but we leave the
~CS line low. This leaves the DataFlash expecting more data. Then, at our leisure, we
can send/receive additional data with no manipulation of ~CS. Finally, to close the
stream, we bring ~CS high once again, thus terminating the command sequence. The
DataFlash may or may not become busy at that point, depending on the command.

We have a separate routine (df_status) to read the status byte of the DataFlash. It is the
simplest of the commands because it has no addressing bytes. We just send the command
(opcode 0x57), then read the response. Here is the entire routine:

; --
; df_status - read the DataFlash status
;
; returns: R21 - byte received

df_status:
 sbi portb,portb0 ; bring ~CS high (should already be)
 cbi portb,portb0 ; and drop it to start command

 ldi r21,0x57 ; command: read status
 rcall df_send ; send it out
 clr r21 ; not necessary
 rcall df_send ; read the status
 sbi portb,portb0 ; bring ~CS high to end command

 ret

To be safe we bring ~CS high, then take it low to get the high to low transition that the
DataFlash recognizes as the start of a command. We then load R21 with the Read Status
opcode and send it using df_send. Then, to read the status byte we must send an
additional “don’t care” byte via df_send. The byte does not need to be a zero (it can be
anything), but we will zero it anyway due to our OCD (Obsessive Compulsive Disorder).
When we are done, we output a 1 to ~CS to terminate the command.

; --
; df_send - exchange byte with DataFlash
;
; R21 - byte going out and coming in

df_send:
 out spdr,r21 ; going out
df_wt: in r21,spsr ; watch spif flag
 sbrs r21,spif ; 0 means busy
 rjmp df_wt

 in r21,spdr ; grab the incoming byte
 ret

The df_send routine depends on the caller to take care of the ~CS line and any other
details. It simply sends what is in R21 to the DataFlash, and returns the response in R21.
The out instruction copies R21 to the SPI Data Register which causes the hardware to

 15

start clocking the 8 bits to the DataFlash. We then watch the SPIF bit of the SPSR (SPI
Status Register) to see when the process has completed. Once it has, we read the result
from SPDR (the same data register we wrote to) into R21 and we are done.

We could have used interrupts here. It is possible to generate an interrupt when the
SPDR register is able to accept the next character (another way of looking at it is when
the SPDR has received a character). For our routines we will just do polling (the check
and jump loop shown) and hang around like teenagers on a street corner.

The DataFlash Command Performance

The only thing left is the routine that processes the commands.

; --
; df_command - execute DataFlash command
;
; R16 - command indicator (df_cont_read through df_close)
; variables (as needed):
; df_buf - buffer selection in bit 0
; df_paddr - page address
; df_baddr - buffer (byte) address
;
; returns: R16 = 0 if command is successful
; unchanged if device is busy or error occurs
;
; if the call writes or returns data, R21 is used for both

df_command:
 push r17
 push r18
 push r19
 push r20
 push ZH
 push ZL

 in r17,spcr ; see if device is initialized
 sbrs r17,spe ; check the enable bit
 breq df_ertn1 ; if cleared, it's not initialized

The caller will load the equate value corresponding to the desired command into R16,
and may or may not need to put values into the df_buf, df_paddr, and df_baddr variables
(depending on the command). These variables are not modified by df_command. Upon
return R16 will be zero for success, or unchanged if the device were busy or in the case
of some other error. This allows calls to be easily repeated until R16 is returned as zero.

The first test (the last three lines above) is to check to see if the device were properly
initialized. If not, we exit with R16 returned unchanged.

Next (below) we use the R16 value to fetch the command’s three bytes out of the df_def
table. As usual we have to convert the flash (word) address to a byte address, then we
add the offset. Because of the way we are returning either the offset or a zero to indicate
failure or success, we added one to the offsets to make them nonzero. The sbiw
instruction subtracts one to correct the value back to a true offset.

 16

We then load the three bytes for the command from flash memory. R17 gets the flag bits,
and R18 and R19 get the two opcodes. We look at bit 0 of df_buf to decide which opcode
to use, and the winner ends up in R18.

 ldi ZL,low(df_def << 1) ; put address of table (word addr)
 ldi ZH,high(df_def << 1) ; into Z register
 add ZL,r16 ; R16 has byte offset (1, 4, etc.)
 brcc df_1 ; check for overflow
 inc ZH ; carry into high order

df_1: sbiw ZH:ZL,1 ; R16 was one byte too much
 lpm r17,Z+ ; load bit flags for command
 lpm r18,Z+ ; and buffer 1 opcode
 lpm r19,Z ; and buffer 2 opcode
 lds ZL,df_buf ; bit 0 says which opcode to use
 sbrc ZL,0 ; if bit 0 = 0, r18 is good
 mov r18,r19 ; otherwise use buffer 2 (r19)

; At this point, R17 has the bit flags for the command, and
; R18 has the opcode we will use for the DataFlash.

Now we walk through the flowchart mentioned earlier, which is repeated here with line
numbers for reference:

(1) Entry: Is the device initialized?
(2) no – error return
(3) yes – is there an open stream?
(4) no – does the command require an open stream?
(5) yes – error return
(6) no – does the command require an idle device?
(7) yes – is the device idle?
(8) no – busy return
(9) yes – next step
(10) no – does command open a stream?
(11) yes – send command, leave stream open
(12) normal return
(13) no – carry out command
(14) normal return
(15) yes – does command require an open stream?
(16) no – error return
(17) yes – carry out command (read, write, or close stream)
(18) normal return

We are starting at line (3), where we check to see if there is an open stream. The variable
df_strm is 0 if not, or nonzero (1 = output, 2 = input) if so.

 lds r20,df_strm ; check the stream flag
 tst r20 ; set the flags (lds does not)
 breq df_2 ; jump if no open stream

 17

This is line (15). We check to see if this command requires an open stream. Only the
stream read, write and close pseudo-commands do.

 sbrs r17,7 ; command require an open stream?
 rjmp df_ertn ; no - error

This is line (17), where we perform the stream commands. For a close we will bring ~CS
high and zero df_strm:

; ------- we have a stream cmd (read, write, or close)
 sbrs r17,5 ; is the command close stream?
 rjmp df_6 ; jump if not

 sbi portb,portb0 ; yes - bring ~CS high to stop xfer
 clr r17
 sts df_strm,r17 ; stream is now closed
 rjmp df_okrtn

df_ertn1:
 rjmp df_ertn ; relative branch out of reach

df_6: sbrs r17,4 ; check for read or write
 rjmp df_10 ; jump if write

For a Read Stream command we make sure it is an input stream, then read a byte.

 cpi r20,2 ; is it an input stream?
 brne df_ertn ; if not, error
 clr r21 ; not really necessary
 rcall df_send ; read a byte from DataFlash
 rjmp df_okrtn ; and leave

For a Write Stream command we make sure it is an output stream, then write a byte.

df_10: cpi r20,1 ; is it an output stream?
 brne df_ertn ; if not, error
 push r21 ; save their arg
 rcall df_send ; shoot it to DataFlash
 pop r21 ; restore their arg
 rjmp df_okrtn ; and go

This is line (4). We check to see if the command requires a stream and that the DataFlash
not be busy.

; ----------- there is no open stream ----------

df_2: sbrc r17,7 ; command require an open stream?
 rjmp df_ertn ; yes - error

 sbrs r17,3 ; command require idle device?
 rjmp df_3 ; jump if no

This is line (7), where we read the DataFlash status byte and check the busy bit.

 push r21 ; save scratch reg
 rcall df_status ; read device status

 18

 sbrs r21,7 ; bit 7 = 1 means ready
 rjmp df_busy
 pop r21 ; restore scratch reg

These next lines perform a little preparation for line (10) which is not in the flowchart.
Since at this point we know we will be needing to send the addressing bytes, we construct
the 3 bytes that will be sent following the command opcode.

; We will now put the 11 bit page address and 9 bit buffer address
; into R19, ZH, and ZL (R19: 0000pppp ZH: pppppppb ZL: bbbbbbbb)
; Even if our command doesn't use a page and/or buffer address, we still
; have to put out some "don't care" bits in their positions. Since we
; don't care, we can just use whatever was left over from the previous call

df_3: lds ZL,df_baddr ; low order buf/byte addr
 lds ZH,df_baddr + 1 ; high order buf/byte addr
 ror ZH ; shift bit 0 to carry
 lds ZH,df_paddr ; low order page addr
 rol ZH ; carry to bit 0, bit 7 to carry
 lds r19,df_paddr + 1 ; high order page address
 andi r19,0x07 ; keep 3 bits
 rol r19 ; carry to bit 0

This is the real line (10), where we check to see if the command opens a stream:

 sbrc r17,6 ; does the command open a stream?
 rjmp df_4 ; jump if yes

This is line (13), where we execute a command that does not open a stream. First we will
see if the command is Read Status, and, if so, just call df_status to do the work.
Otherwise we call df_doit and then bring ~CS high to terminate the command.

 cpi r16,df_stat_read ; special case
 brne df_9 ; jump if not status read
 rcall df_status ; read the status byte
 rjmp df_okrtn ; normal return

df_9: rcall df_doit ; execute command
 sbi portb,portb0 ; bring ~CS high to terminate command
 rjmp df_okrtn

df_busy: ; device is busy; we need idle
 pop r21 ; restore scratch register
 rjmp df_ertn ; and hightail it (error rtn)

This is line (11), where we execute the command but leave the stream open. We call
df_doit for the command, but then leave ~CS low. We also set df_strm to 1 for an output
stream, or 2 for an input stream.

df_4: rcall df_doit ; execute command w/o termination
 swap r17 ; bit 4 to bit 0 position
 andi r17,0x01 ; keep R/W bit
 inc r17 ; add 1 (so W = 1, R = 2)
 sts df_strm,r17 ; and make it the stream flag

This is the normal return, which sets R16 to zero:

 19

df_okrtn:
 clr r16

This is the error return, which leaves R16 intact:

df_ertn:
 pop ZL
 pop ZH
 pop r20
 pop r19
 pop r18
 pop r17

 ret

That is the end of the df_command routine. We called df_doit to send the actual
command to the DataFlash. It sends out the opcode byte, then the three address bytes we
previously constructed, then optionally 1 or 4 extra bytes needed for internal timing in the
DataFlash.

; --
; df_doit - send the DataFlash a full command (4 - 8 bytes)
;
; initiate command by ~CS transition from hi to low, then
; send out R8, R19, ZH, and ZL and optionally some
; "don't care" bytes (number is in R17, bits 0 - 2).
; leave ~CS in low state.

df_doit:
 push r21

 sbi portb,portb0 ; bring ~CS high (should already be)
 cbi portb,portb0 ; and drop it to start command

 mov r21,r18 ; opcode
 rcall df_send
 mov r21,r19 ; 1st address byte
 rcall df_send
 mov r21,ZH ; 2nd address byte
 rcall df_send
 mov r21,ZL ; 3rd address byte
 rcall df_send

 andi r17,0x07 ; extra byte count
 breq df_20 ; jump if none
 clr r21 ; not necessary
df_21: rcall df_send ; send extra byte
 dec r17 ; decrement byte counter
 brne df_21 ; jump if there are more

df_20: pop r21
 ret

And that is all there is to it. Now for some testing to see if it all works.

 20

Test routines

The program to test these routines will likely be more complicated and longer than the
routines being tested. We will make a general purpose front end that uses single
character commands issued by host software via the RS-232 line. Here are the
commands it will recognize (they are case sensitive):

Command Use
a – p execute DataFlash command

x select buffer 1
X select buffer 2
y enter page address
z enter buffer/byte address
w enter write byte value
r enter repeat count

0 – 9 accumulate active numeric value
- zero active numeric value
= display addresses and variables

We have some variables that can be set by the user, the page address, buffer/byte
address, write value, and repeat count. We select which one is active with its command
(y, z, w, or r). Then, as the digits 0 to 9 are received the current value is multiplied by 10
and the new digit is added. The value is kept within its legal range (page addresses from
0 to 2047, buffer addresses from 0 to 263, write value from 0 to 255, and repeat count
from 0 to 255). A minus sign zeroes the active value.

An equals sign causes all the values to be sent to the host (displayed).

The commands a to p execute the corresponding DataFlash commands.

a – Continuous Read i – Block Erase
b – Page Read j – Program through Buffer
c – Buffer Read k – Page to Buffer Transfer
d – Status Read l – Page to Buffer Compare
e – Buffer Write m – Auto Rewrite
f – Program with Erase n – Get Byte from Stream
g – Program without Erase o – Put Byte to Stream
h – Page Erase p – Close Stream

The write value is used for command o, and the repeat count allows automatic multiple
reads and writes for commands n and o. A repeat count of 0 is interpreted as 1.

Each single character sent (by HyperTerminal or other host software) will be echoed.
There may or may not be additional data sent (commands =, n, and d), and then an
exclamation mark (success) or asterisk (failure) and a carriage return/line feed follows.

 21

With this set of commands we can fully test the DataFlash routines, albeit in a slightly
clumsy manner. We will need to remember to close the stream when we open it
(commands a, b, c, e, and j). The d and n commands will echo what was received in
hexadecimal, = in decimal.

Here is a sample dialog:

=0,0,0,0,0! show variables
h! erase page 0
r! set repeat count active
1! repeat count = 1
0! repeat count = 10
=0,0,0,0,10! show variables
a! open continuous read
n<FF><FF><FF><FF><FF><FF><FF><FF><FF><FF>! get stream byte(s)
p! close stream
w! set write value active
1! write value = 1
2! write value = 12
3! write value = 123
=0,0,0,123,10! show variables
e! open buffer write stream
o! write byte(s) to stream
p! close stream
a! open continuous read
n<FF><FF><FF><FF><FF><FF><FF><FF><FF><FF>! get stream byte(s)
p! close stream
f! write buffer to page
a! open continuous read
n<7B><7B><7B><7B><7B><7B><7B><7B><7B><7B>! get stream byte(s)
p! close stream

This starts off by showing the current values of the buffer, page address, buffer address,
write value, and repeat count. We then erase page 0, set the repeat count to 10, and show
the values again. We then open the continuous read stream, read 10 bytes (the repeat
count) and close the stream. We then set the write value to 123 and write it to buffer 1.
We again read 10 bytes, which have not changed. We then write buffer 1 to page 0 with
erase, and read 10 bytes. This time they have changed to decimal 123, or 0x7B.

So it is, as mentioned, clumsy, but it is also sufficient for testing. We will borrow several
of the support routines from other chapters (usart_init, sendchar, byte_2_hex, sendCRLF,
match_jump1, and uword_2_decimal). The entire program follows, minus the borrowed
code which is available from the other projects. The testing program, of course, is
incidental to the DataFlash routines.

; File name: Jack_Flash.asm
;
; Program to manipulate the DataFlash

 .nolist
 .include "m169def.inc" ; definitions for the Atmega 169
 .list

; Use these equates in calls to df_command to specify
; the desired command. These values are offsets into
; the "df_def" bytes, plus 1

 22

 .equ df_cont_read = 1 ; (A) continuous read
 .equ df_page_read = 4 ; (B) page read
 .equ df_buf_read = 7 ; (C) buffer read
 .equ df_stat_read = 10 ; (D) status read
 .equ df_buf_write = 13 ; (E) buffer write
 .equ df_prog_erase = 16 ; (F) prog w/ erase
 .equ df_prog = 19 ; (G) prog w/o erase
 .equ df_page_erase = 22 ; (H) page erase
 .equ df_blk_erase = 25 ; (I) block erase
 .equ df_prog_buf = 28 ; (J) prog thru buffer
 .equ df_xfer = 31 ; (K) page to buf xfer
 .equ df_compare = 34 ; (L) page to buf comp
 .equ df_auto = 37 ; (M) auto rewrite
 .equ df_read = 40 ; (N) read stream
 .equ df_write = 43 ; (O) write stream
 .equ df_close = 46 ; (P) close stream

 .dseg
; These three variables will be loaded with appropriate
; values (depending upon the command) prior to calling
; the df_command routine. Notice that we are calling the
; buffers 0 and 1 rather than 1 and 2.
df_paddr: .byte 2 ; page address (0 - 2047, low then high)
df_baddr: .byte 2 ; buffer address (0 - 263, low then high)
df_buf: .byte 1 ; buffer # (even = buffer 1, odd = buffer 2)

; this variable is internal to df_command - do not alter
df_strm: .byte 1 ; stream: 0=closed, 1=output, 2=input

; these variables are used by the front end
rptcnt: .byte 1 ; repeat count
wrval: .byte 1 ; value to write to stream
bx: .byte 10 ; string buffer

 .cseg ; what follows is flash code
 .org 0x0000
 jmp main ; reset comes here

; This is the encoded table which describes the DataFlash commands.
; Each entry is three bytes long, and they are in the order of the
; equates above. The first byte has bit flags describing the
; characteristics of the command. The second byte is the opcode for
; buffer 1 access, and the third byte is the opcode for buffer 2
; access. For commands which do not use the internal buffers, both
; opcodes will be the same.
;
; byte 0: bit 0-2 number of extra bytes to append to address
; bit 3 if 1, requires idle device
; bit 4 if 1, read stream, otherwise write or no stream
; bit 5 if 1, command closes stream
; bit 6 if 1, command opens stream
; bit 7 if 1, command uses stream

df_def:
 .db 0x5C, 0x68, 0x68, 0x5C, 0x52, 0x52 ; A and B
 .db 0x51, 0x54, 0x56, 0x00, 0x57, 0x57 ; C and D
 .db 0x40, 0x84, 0x87, 0x08, 0x83, 0x86 ; E and F
 .db 0x08, 0x88, 0x89, 0x08, 0x81, 0x81 ; G and H
 .db 0x08, 0x50, 0x50, 0x48, 0x82, 0x85 ; I and J
 .db 0x08, 0x53, 0x55, 0x08, 0x60, 0x61 ; K and L
 .db 0x08, 0x58, 0x59, 0x90, 0x00, 0x00 ; M and N

 23

 .db 0x80, 0x01, 0x01, 0xA0, 0x02, 0x02 ; O and P

main: ldi r16,high(RAMEND) ; set up stack pointer
 out SPH,r16
 ldi r16,low(RAMEND)
 out SPL,r16

 rcall usart_init ; do rs-232 initialialization
 rcall df_init ; and DataFlash initialization

 clr r10
 sts df_buf,r10 ; buffer 1
 sts df_paddr,r10 ; page address = 0
 sts df_paddr+1,r10
 sts df_baddr,r10 ; buffer address = 0
 sts df_baddr+1,r10
 sts rptcnt,r10 ; repeat count = 0 (which is 1)
 sts wrval,r10 ; write value = 0

; Y points to active variable; R21 = 0 if byte, = 1 if word
 ldi yh,high(wrval) ; write value is active
 ldi yl,low(wrval)
 clr r21 ; write value is a byte variable

 ldi zh,high(bx) ; Z will point to string buffer
 ldi zl,low(bx) ; for building output strings

loop: rcall getchar ; see if there's a character coming in
 breq loop ; if zero set, no character

 rcall sendchar ; otherwise, echo it back to them
 mov r16,r1 ; get it for compare immediates
 cpi r16,'a' ; check for command
 brlo nota ; jump if < 'a'
 cpi r16,'p'
 breq cmd ; jump if = 'p'
 brlo cmd ; jump if < 'p'
nota: cpi r16,'0' ; check for digit
 brlo notd ; jump if < '0'
 cpi r16,'9'
 breq digit ; jump if = '9'
 brlo digit ; jump if < '9'

notd: mov r0,r1
 rcall match_jump1 ; do a table lookup
 .dw '~',huh ; no match
 .dw 'x',buf1 ; set buffer 1
 .dw 'X',buf2 ; set buffer 2
 .dw 'y',paddr ; page address is active
 .dw 'z',baddr ; buffer address is active
 .dw 'w',wrtval ; write val is active
 .dw 'r',rptval ; repeat count is active
 .dw '-',zero ; zero active value
 .dw '=',show ; show all values
 .dw 0,0 ; end of list

digit: subi r16,'0' ; convert to decimal
 tst r21 ; whether it's a byte or word
 brne wwd ; jump if word
 rcall fixbyte
 rjmp ok
wwd: rcall fixword
 rjmp ok

 24

cmd: mov r18,r16 ; keep orig
 subi r16,'a' ; convert to 0 - 15
 mov r15,r16 ; save a copy
 lsl r16 ; multiply by 2
 add r16,r15 ; add original for *3
 inc r16 ; turn 'a' -> 1, 'p' -> 46

 cpi r18,'n' ; need special handling?
 breq readstr ; jump if read stream
 cpi r18,'o'
 breq writestr ; jump if write stream
 rcall df_command ; otherwise go do it

 tst r16
 brne ertn ; got a busy/error return
 cpi r18,'d' ; need special handling?
 brne ok ; jump if not status read
 rcall out21 ; put out r21 in hex
 rjmp ok

ertn: ldi r16,'*' ; error return
 rjmp nxlp

readstr: ; read stream, which may be repeated
 mov r18,r16 ; save command offset
 lds r22,rptcnt ; get repeat count
 tst r22 ; check for zero
 brne rj2 ; jump if not
 inc r22 ; 0 defaults to 1
rj2: mov r16,r18 ; restore command offset
 rcall df_command ; do command
 tst r16
 brne ertn ; got a busy/error return
 rcall out21 ; put out r21 in hex
 dec r22 ; repeat count
 brne rj2
 rjmp ok

writestr: ; write stream, which may be repeated
 mov r18,r16 ; save command offset
 lds r22,rptcnt ; get repeat count
 tst r22 ; check for zero
 brne rj1 ; jump if not
 inc r22 ; 0 defaults to 1
rj1: lds r21,wrval ; value to write to stream
 mov r16,r18 ; restore command offset
 rcall df_command ; do command
 tst r16
 brne ertn ; got a busy/error return
 dec r22 ; repeat count
 brne rj1
 rjmp ok

huh: ldi r16,'?' ; unknown character
nxlp: mov r1,r16
 rcall sendchar ; send character to host
 rcall sendcrlf ; followed by CRLF
 rjmp loop ; and back into the loop

buf1: clr r20 ; set buffer 1
buf1a: sts df_buf,r20 ; put buffer choice away
ok: ldi r16,'!' ; good response is '!'

 25

 rjmp nxlp

buf2: clr r20 ; set buffer 2
 inc r20
 rjmp buf1a

paddr: clr r21 ; page address active
 inc r21 ; page address is a word
 ldi yh,high(df_paddr)
 ldi yl,low(df_paddr)
 rjmp ok

baddr: clr r21 ; buffer address active
 inc r21 ; buffer address is a word
 ldi yh,high(df_baddr)
 ldi yl,low(df_baddr)
 rjmp ok

wrtval: clr r21 ; write val active
 ldi yh,high(wrval)
 ldi yl,low(wrval)
 rjmp ok

rptval: clr r21 ; repeat count active
 ldi yh,high(rptcnt)
 ldi yl,low(rptcnt)
 rjmp ok

zero: clr r16 ; zero active value
 st y,r16 ; first byte
 cpse r16,r21 ; skip if not word
 std y+1,r16 ; 2nd byte
 rjmp ok

show: push yl ; show all values
 push yh
 ldi r22,',' ; separator for values

 clr yh ; buffer selection
 lds yl,df_buf
 rcall uword_2_decimal
 rcall str_out
 mov r1,r22
 rcall sendchar

 lds yh,df_paddr+1 ; page address
 lds yl,df_paddr
 rcall uword_2_decimal
 rcall str_out
 mov r1,r22
 rcall sendchar

 lds yh,df_baddr+1 ; buffer address
 lds yl,df_baddr
 rcall uword_2_decimal
 rcall str_out
 mov r1,r22
 rcall sendchar

 clr yh ; write value
 lds yl,wrval
 rcall uword_2_decimal
 rcall str_out

 26

 mov r1,r22
 rcall sendchar

 clr yh ; repeat count
 lds yl,rptcnt
 rcall uword_2_decimal
 rcall str_out

 pop yh
 pop yl
 rjmp ok
; --
out21: mov r0,r21 ; helper routine - put out r21 in hex
 rcall byte_2_hex ; convert to hex number
 ldi r23,'<'
 mov r1,r23
 rcall sendchar ; put out '<'
 rcall str_out ; send string
 ldi r23,'>'
 mov r1,r23
 rcall sendchar ; put out '>'
 ret
; --
fixbyte: ; helper routine - add digit to byte
 ld r2,y ; current value
 ldi r17,10 ; multiply by 10
 mul r2,r17
 add r0,r16 ; add in new digit
 st y,r0 ; keep low order byte
 ret
; --
fixword: ; helper routine - add digit to word
 ldd r2,y+1 ; high byte
 ldi r17,10
 mul r2,r17 ; multiply by 10
 mov r3,r0 ; keep low order of product

 ld r2,y ; low byte
 mul r2,r17 ; multiply by 10
 add r0,r16 ; add in new digit
 brcc fw
 inc r1 ; carry

fw: add r1,r3 ; add low * 10 to high
 st y,r0 ; put low away

; do some crude range restrictions here
 cpi yl,low(df_paddr)
 brne bufa
 ldi r19,0x07 ; all 11 bit values are legal for page addr
 and r1,r19 ; mask high
 rjmp fx

bufa: tst r1 ; only 100000111 and lower is legal for buf
 breq fx
 ldi r19,0x01
 and r1,r19 ; keep 1 high bit
 ldi r19,0x07 ; and 3 low bits
 and r0,r19
 st y,r0

fx: std y+1,r1 ; put high away
 ret

 27

; --
; str_out - send string to USART
;
; Z - point to string to send (preserved)

str_out:
 push zh
 push zl
 push r1

stl: ld r1,Z+
 tst r1
 breq stdne
 rcall sendchar
 rjmp stl

stdne: pop r1
 pop zl
 pop zh
 ret

; --
; df_command - execute DataFlash command
;
; R16 - command indicator (df_cont_read through df_close)
; variables (as needed):
; df_buf - buffer selection in bit 0
; df_paddr - page address
; df_baddr - buffer (byte) address
;
; returns: R16 = 0 if command is successful,
; unchanged if device is busy or error occurs
;
; if the call writes or returns data, R21 is used for both

df_command:
 push r17
 push r18
 push r19
 push r20
 push ZH
 push ZL

 in r17,spcr ; see if device is initialized
 sbrs r17,spe ; check the enable bit
 breq df_ertn1 ; if cleared, it's not initialized

 ldi ZL,low(df_def << 1) ; put address of table (word addr)
 ldi ZH,high(df_def << 1) ; into Z register
 add ZL,r16 ; R16 has byte offset (1, 4, etc.)
 brcc df_1 ; check for overflow
 inc ZH ; carry into high order

df_1: sbiw ZH:ZL,1 ; R16 was one byte too much
 lpm r17,Z+ ; load bit flags for command
 lpm r18,Z+ ; and buffer 1 opcode
 lpm r19,Z ; and buffer 2 opcode
 lds ZL,df_buf ; bit 0 says which opcode to use
 sbrc ZL,0 ; if bit 0 = 0, r18 is good
 mov r18,r19 ; otherwise use buffer 2 (r19)

; At this point, R17 has the bit flags for the command, and
; R18 has the opcode we will use for the DataFlash.

 28

 lds r20,df_strm ; check the stream flag
 tst r20 ; set the flags (lds does not)
 breq df_2 ; jump if no open stream

 sbrs r17,7 ; command require an open stream?
 rjmp df_ertn ; no - error

; ------- we have a stream cmd (read, write, or close)
 sbrs r17,5 ; is the command close stream?
 rjmp df_6 ; jump if not

 sbi portb,portb0 ; yes - bring ~CS high to stop xfer
 clr r17
 sts df_strm,r17 ; stream is now closed
 rjmp df_okrtn

df_ertn1:
 rjmp df_ertn ; relative branch out of reach

df_6: sbrs r17,4 ; check for read or write
 rjmp df_10 ; jump if write
 cpi r20,2 ; is it an input stream?
 brne df_ertn ; if not, error
 clr r21 ; not really necessary
 rcall df_send ; read a byte from DataFlash
 rjmp df_okrtn ; and leave

df_10: cpi r20,1 ; is it an output stream?
 brne df_ertn ; if not, error
 push r21 ; save their arg
 rcall df_send ; shoot it to DataFlash
 pop r21 ; restore their arg
 rjmp df_okrtn ; and go

; ----------- there is no open stream ----------

df_2: sbrc r17,7 ; command require an open stream?
 rjmp df_ertn ; yes - error

 sbrs r17,3 ; command require idle device?
 rjmp df_3 ; jump if no

 push r21 ; save scratch reg
 rcall df_status ; read device status
 sbrs r21,7 ; bit 7 = 1 means ready
 rjmp df_busy
 pop r21 ; restore scratch reg

; We will now put the 11 bit page address and 9 bit buffer address
; into R19, ZH, and ZL (R19: 0000pppp ZH: pppppppb ZL: bbbbbbbb)
; Even if our command doesn't use a page and/or buffer address, we still
; have to put out some "don't care" bits in their positions. Since we
; don't care, we can just use whatever was left over from the previous call

df_3: lds ZL,df_baddr ; low order buf/byte addr
 lds ZH,df_baddr + 1 ; high order buf/byte addr
 ror ZH ; shift bit 0 to carry
 lds ZH,df_paddr ; low order page addr
 rol ZH ; carry to bit 0, bit 7 to carry
 lds r19,df_paddr + 1 ; high order page address
 andi r19,0x07 ; keep 3 bits
 rol r19 ; carry to bit 0

 29

 sbrc r17,6 ; does the command open a stream?
 rjmp df_4 ; jump if yes

 cpi r16,df_stat_read ; special case
 brne df_9 ; jump if not status read
 rcall df_status ; read the status byte
 rjmp df_okrtn ; normal return

df_9: rcall df_doit ; execute command
 sbi portb,portb0 ; bring ~CS high to terminate command
 rjmp df_okrtn

df_busy: ; device is busy; we need idle
 pop r21 ; restore scratch register
 rjmp df_ertn ; and hightail it (error rtn)

df_4: rcall df_doit ; execute command w/o termination
 swap r17 ; bit 4 to bit 0 position
 andi r17,0x01 ; keep R/W bit
 inc r17 ; add 1 (so W = 1, R = 2)
 sts df_strm,r17 ; and make it the stream flag
df_okrtn:
 clr r16
df_ertn:
 pop ZL
 pop ZH
 pop r20
 pop r19
 pop r18
 pop r17

 ret

; --
; df_doit - send the DataFlash a full command (4 - 8 bytes)
;
; initiate command by ~CS transition from hi to low, then
; send out R8, R19, ZH, and ZL and optionally some
; "don't care" bytes (number is in R17, bits 0 - 2).
; leave ~CS in low state.

df_doit:
 push r17
 push r21

 sbi portb,portb0 ; bring ~CS high (should already be)
 cbi portb,portb0 ; and drop it to start command

 mov r21,r18 ; opcode
 rcall df_send
 mov r21,r19 ; 1st address byte
 rcall df_send
 mov r21,ZH ; 2nd address byte
 rcall df_send
 mov r21,ZL ; 3rd address byte
 rcall df_send

 andi r17,0x07 ; extra byte count
 breq df_20 ; jump if none
 clr r21 ; not necessary
df_21: rcall df_send ; send extra byte
 dec r17 ; decrement byte counter

 30

 brne df_21 ; jump if there are more

df_20: pop r21
 pop r17
 ret

; --
; df_status - read the DataFlash status
;
; returns: R21 - byte received

df_status:
 sbi portb,portb0 ; bring ~CS high (should already be)
 cbi portb,portb0 ; and drop it to start command

 ldi r21,0x57 ; command: read status
 rcall df_send ; send it out
 clr r21 ; not necessary
 rcall df_send ; read the status
 sbi portb,portb0 ; bring ~CS high to end command

 ret

; --
; df_send - exchange byte with DataFlash
;
; R21 - byte going out and coming in

df_send:
 out spdr,r21 ; going out
df_wt: in r21,spsr ; watch spif flag
 sbrs r21,spif ; 0 means busy
 rjmp df_wt

 in r21,spdr ; grab the incoming byte
 ret

; --
; df_init - initialize DataFlash communication
;
; this sets up the SPI stuff and resets the DataFlash
; note: this is hard coded for the AVR Butterfly

df_init:
 push ZH
 push ZL
 push r16

 sbi ddre,porte7 ; PE7 is an output
 cbi porte,porte7 ; write 0 to reset DataFlash

 sbi ddrb,portb0 ; B0 is an output (~CS)
 sbi ddrb,portb1 ; B1 is an output (SCK)
 sbi ddrb,portb2 ; B2 is an output (MOSI)
 cbi ddrb,portb3 ; B3 is an input (MISO)
 sbi portb,portb0 ; write a 1 to ~CS

 ldi r16,30
df_b: dec r16 ; reset for at least 10 microseconds
 brne df_b
 sbi porte,porte7 ; drop reset pulse

 ldi r16,(1<<spi2x) ; SPI double speed

 31

 out spsr,r16
 ; enable SPI, master, mode 3
 ldi r16,(1<<spe)|(1<<mstr)|(1<<cpha)|(1<<cpol)
 out spcr,r16

 clr ZL
 sts df_strm,ZL ; stream is closed

 ldi ZH,0xb3 ; kill > 20 ms
df_lp: sbiw ZH:ZL,1 ; 45,824 loops
 brne df_lp

 pop r16
 pop ZL
 pop ZH
 ret

