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Introduction
MonteGrappa is a code to carry out Monte Carlo simulations of various models of 
polymeric chains, including proteins, DNA, etc. It is thought to be versatile and efficient. 
Versatile means that one is free to use any geometric model and many forms of the 
interaction between monomers to describe the polymeric chain. For example, a protein 
can be described through a Cα model as a chain of spheres, or at full-atom detail, or at 
any intermediate degree of coarse-graining. Efficient means that several elementary 
moves are implemented to allow a fast sampling of conformational space. 
One of the main novelty of the code is the possibility to optimize iteratively the 
interaction potential. This result is achieved performing slight changes in the initial 
interaction potential and retaining only those modifications that lead to a better 
comparison between some thermal averages, computed after the sampling, and 
available experimental data provided by the user.
Moreover, in the code are implemented several algorithms to enhance the sampling and 
fasten the crossing of energy barriers. These are Parallel Tempering (also known as 
Replica Exchange) and Simulated Tempering.

The package contains three programs:  
- MonteGrappa, the Monte Carlo engine;  
- Grappino, a tool to create the input files for MonteGrappa; 
- mhistogram, a data-analysis tool.

Getting started

The code is freely available under the GNU General Public License (http://www.gnu.org/ 
licenses/gpl.html) and is provided as a tar.gz file that must be unpacked.

To extract the archive, just type in your terminal
$ tar xvf montegrappa.tar.gz 
$ cd montegrappa

Quick installation

The easiest way of compiling Montegrappa and Grappino is to execute in their root 
directory

$ make
$ make grappino

A full installation requires both GSL libraries and the MPI environment to perform 
Simulated Tempering and Parallel Tempering simulations.  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If this is what you need, please check these dependencies before installing the 
software; the GSL libraries should be in /opt/local/lib and their headers in /opt/local/ 
include. If they are in a different path, modify the variables LFLAGS and CFLAGS 
accordingly. Then, type in your terminal

$ make all

If the building was successfully performed, the binary files “montegrappa”, 
“montegrappa_mpi”, “grappino” and “mhistogram” can be found in the ./bin/ 
subdirectory.

If you do not have GSL/MPI libraries, skip to the next section for a customised 
installation.

Custom installation

The Monte Carlo code can be compiled without enabling some features. Furthermore, 
tools can be compiled separately from the main software. 

(1) MonteGrappa Single Core, no Simulated Tempering (no Parallel Tempering) 
REQUIREMENTS: none. 

$ make cleanobj  
$ make

The executable “montegrappa” will be created in the ./bin/ subdirectory.

(2) MonteGrappa Single Core with Simulated Tempering (no Parallel Tempering) 
REQUIREMENTS: GSL libraries.

$ make cleanobj  
$ make version=STEMPERING

The executable “montegrappa” will be created in the ./bin/ subdirectory. 

(3) MonteGrappa Multi Core with Parallel Tempering (no Simulated Tempering) 
REQUIREMENTS: MPI environment.

$ make cleanobj  
$ make version=MPI

The executable “montegrappa_mpi” will be created in the ./bin/ subdirectory.
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(4) To compile Grappino and mhistogram,

$ make cleanobj  
$ make grappino  
$ make mhistogram 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The main features of Montegrappa
The Monte Carlo Moves

There is a number of moves implemented in the code to explore the conformational 
space of a polymer or of a set of polymers (cf. Fig. 1).
A flip is the rotation of a backbone atom chosen at random around the axis defined from 
the preceding and the following one. It is efficient because it is local (i.e., it changes only 
the positions of few atoms of the chain). In the case of proteins is not recommended 
(unless strongly constrained by the option a_cloose in the parameter file) because it 
changes the angles associated with the preceding and following atom, something that 
violates the chemistry of the molecule.
A pivot move changes a dihedral at random. This is not effective when sampling among 
compact conformations because it is a non-local move which is likely to produce 
clashes between atoms. However, it only changes dihedrals of the backbone without 
changing bond angles, which is good in the case of proteins.
A multiple pivot move is an extension of pivot moves, which changes at random a set 
of consecutive backbone dihedrals. As illustrated in Shimada, Kussel and Shakhnovich, 
JMB 308, 79 (2001), the combination of such non-local moves has a probability to 
produce a quasi-local move, and the resulting sampling of compact conformations is 
quite efficient.
A loose pivot move is a multiple pivot move such that the backbone atom following that 
which defines the moved dihedral is kept fixed, varying in such a way the bond distance 

flip
pivot

multiple pivot
loose pivot

multiple flip sidechain

centre of mass

Figure 1: the set of allowed moves.
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between the two. This move if exactly local and is reasonable if the variation of bond 
lengths is controlled wither by a steep potential or by a sharp constrain.
A multiple flip consists in choosing two non-consecutive atoms of the backbone and 
moving the backbone atoms in between around the axis defined by the two. As in the 
case of a flip, this changes not only the dihedrals but also the angles involving the two 
atoms chosen.
The local move described in the reference Giorgio Favrin, Anders Irbäck, Fredrik 
Sjunnesson "Monte Carlo Update for Chain Molecules: Biased Gaussian Steps in 
Torsional Space" J. Chem. Phys. 114 (2001) 8154-8158), modified to allow small 
variations in the distance between the last moved atom and the first fixed atom (as in 
the loose-pivot move). 
A sidechain move consists in the random move of a sidechain among the allowed 
rotamers. 
If the system is composed of multiple chain, it is useful to make use of moves which 
affect each chain as a whole.
The centre-of-mass move consists in the rigid translation of a chain or of a set of 
interacting chains.
A rotation move of a chain or a set of interacting chains.

The Optimization of the Potential

This option is meant to optimize iteratively the two-body potential, in order to reproduce 
the experimental values of conformational properties in terms of thermal-averaged 
quantities.
To achieve this goal, a number (the keyword nrun in the parameters file, as explained 
later) of conformational samplings is carried out. During each run, a set of 
conformations is saved; the thermal averages relative to some meaningful quantities are 
then computed from these data. 

To perform the optimization a number of conformational samplings (nrun should be 
larger than 1) is carried out. During each run a set of conformations are saved and on 
these conformations the thermal averages relative to some meaningful quantities are 
computed. These relevant quantities are chosen by the user, they must well describe 
the system and their experimental values must be indicated in the file.op (see the 
section “input file”). Then some elements of the matrix defining the two-body potential 
are varied to optimize the chi squared between such thermal averages and the 
“experimental” values contained in the file.op. The procedure is the one described in 
Norgaard, Ferkinghoff-Borg and Lindorff-Larsen, Biophys. J. 94, 182 (2008).
The iterative procedure ends when the chi squared reached a threshold value defined 
by the user, that is to say when a good agreement between experimental and computed 
values is obtained. If this value is not reached the procedure stops after nrun.
An output file, called restrains_%d.dat, is printed at the end of each optimization. The 
file contains the id of the experimental data, the calculated value, the experimental 
value and the experimental error.
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The Enhanced Sampling Algorithms

Parallel Tempering (or Replica Exchange) is implemented as described in the paper 
Sugita and Okamoto, Chem. Phs. Lett. 314, 141 (1999). With this technique N parallel 
simulations are run at N different temperatures, settable by the user. All the necessary 
keywords to set Parallel Tempering must be put in the file.par as illustrated in the “Input 
files” paragraph.
Simulated tempering is implemented in its standard way (see Marinari and Parisi, 
Europhys. Lett. 19, 451 (1992)) or in its adaptive version (see Tiana and Sutto, Phys. 
Rev. E 84, 061910 (2011)). All the parameters which control the simulated tempering 
must be set in the file.par as illustrated in the “Input files” paragraph.

The Atom-Types

In montegrappa the interaction potential is assigned between pairs of types: these can 
be simply defined as atoms, but they can also be defined as chemical species or in 
other ways. Thus we are in front of a generalization of the Go model, where the 
interaction potential is always defined between pairs of atoms. The user can easily 
choose how to define the types with the keyword atomtypes, that must be set in the 
grappino input file. Setting atomypes to the value go the types are defined as atoms, 
thus reducing the interaction potential to the one of the Go model. On the contrary, one 
can indicate the path of a file.lib containing a specific type-definition for each atom; 
grappino is able to read this file and to create an interaction potential following the given 
instructions. The format of the file.lib must be the following:

itype     a_name    aa_name
12         CA            PHE
13         CB            PHE            
12         CA            LEU

In the first column it is indicated the number identifying the type while in the other two 
columns the names of the atom and of the amino acid are written. In this example the 
same type has been assigned to the atoms CA of Leucine and Phenylalanine, thus 
these atoms will interact with other types in the same way.

In the directory lib of montegrappa four files of this kind are available. These are:

1) atomtypes.1.lib, where each atom of each amino acid is defined as a different type, 
with the exception of equivalent atoms (e.g OD1 and OD2 in aspartate).

2) atomtypes.2.lib, where atoms belonging to the same functional group, in different 
amino acids, are assigned to the same type (e.g all the backbone-N atoms are of the 
same type independently from the amino acid they belong to).

3) atomtypes.3.lib, where a CA model is considered
4) atomtypes.4.lib, where a N-CA-C model is considered
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The user is invited to read (and eventually personalize) these files in order to find and 
specify a definition of types that is proper for the aims of his studies.

Input files
Montegrappa is launched with the command: 

montegrappa file.pol file.pot file.par

where file.pol is the file which contains the geometric information about the topology of 
the chain, about the initial conformation and about the possible rotamers of the side 
chains of the polymer. The file.pot contains everything needed to calculate the energy of 
the polymer, while file.par contains the parameters of the simulation, like the number of 
steps, the temperature, etc.
Additionally the file.op is required when performing the optimization of the potential.

The structure of file.pol and file.pot is Gromacs-like, being divided in various sections 
whose heading is contained in square brackets. Let’s see them in detail.

file.pol

The most important feature, concerning how the polymer is described in the code, is 
that its backbone and its (eventual) sidechains are treated very differently. Here for 
backbone we mean the atoms that are connected consecutively and whose movement 
is the main responsible for conformational sampling. For sidechain we mean any atom 
which does not belong to the backbone (like, for example, the carboxyl oxigen in an 
amino acid).

The first section of a file.pol is the description of the backbone, which looks like:

�12

[ backbone ]

back ia  type  itype aa    iaa  ch  x               y               z      tomove
0    0   N     0     VAL   1    0   22.3547       26.9596        61.6012      0
1    1   CA    1     VAL   1    0   22.6948       27.49676       60.246765    1
2    2   C     2     VAL   1    0   23.556119     26.59827       59.400784    1
3    7   N     7     SER   2    0   23.550922     26.88284       58.134317    0
4    8   CA    8     SER   2    0   24.688176     27.39688       57.288048    1
5    9   C     9     SER   2    0   25.384945     28.35021       58.125661    1
6    13  N     13    GLN   3    0   26.797202     28.52898       58.369247    0
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The first column contains the identifiers (“back”) of the backbone atom. It runs over all 
backbone atoms and must be unique in each separate chain. Within each separate 
chain it starts from zero. The second column (“ia”) contains the atom identifier. It runs 
over all atoms of the system and must be unique, even over different chains. In the 
example, there are same gaps in the numeration of ia because the sidechain atoms are 
listed in another section of the file.pol. While the numeration of the backbone atoms 
must be ordered (i.e., consecutive backbone atoms must have consecutive backbone 
id), this is not necessary for the atom id. The “type” column contains the nomenclature 
of the associated atom and has the only purpose of being able to write pdb files. It is not 
really needed by the Monte Carlo engine. The column “itype” contains a number which 
identifies each atom type in terms of its interaction with other atoms. Pairs of atoms with 
the same value of itype, respectively, interact in the same way. Different atoms can 
share the same itype, and it has nothing to do with the string contained in the column 
“type” (although a correspondence can be useful not to go crazy). The columns “aa” and 
“iaa” contain the name and the number of the amino acid or of the DNA base; as the 
name of the atom type, they are there only to be printed in the pdb file. The “ch” column 
contain the identifier of the chain. There can be more disjoint chains, each with a 
different “ch” identifier and with the “back” id starting from zero, while “ia” and “itype” 
should run over all atoms independently on the chain id. The column “x”, “y” and “z” are 
the cartesian coordinates of the backbone atoms in their initial condition. The last 
column, “tomove” contains a binary variable which indicates if the dihedral and the 
angle of that backbone atom can be moved (1) or must be kept fixed (0). For example, 
in a protein, the omega dihedral, associated to each N atom, must not be moved.

The second section of file.pol contains the information about the possible rotamers of 
the sidechains. In montegrappa sidechains can only move in a discrete fashion among 
the conformations (called “rotamers”) contained in this section. This is something like:

Here the column “back” contains the backbone id (cf. the first column in [ backbone ]) 
which the sidechain sticks from, and “ch” the associated chain id. “Rot” is the id of the 
rotamer. In the case of the sidechain of the first backbone atom in the example, there 
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[ rotamers ]

back ch rot at   b1  b2   b3    ia type itype   ang         dih       r
  1   0  0  0     2   0   1       4  CB   4     111.626220 -128.612494 1.500833
  1   0  1  0     2   0   1       4  CB   4     111.626220 -128.612494 1.500833
  1   0  2  0     2   0   1       4  CB   4     111.626220 -128.612494 1.500833
  1   0  3  0     2   0   1       4  CB   4     111.626220 -128.612494 1.500833
  1   0  0  1     0   1   4       5 CG1   5     110.267281 -57.012913 1.537856
  1   0  1  1     0   1   4       5 CG1   5     110.000000 175.000000 1.520000
  1   0  2  1     0   1   4       5 CG1   5     110.000000 63.000000 1.520000
  1   0  3  1     0   1   4       5 CG1   5     110.000000 -60.000000 1.520000
  1   0  0  2     0   1   4       6 CG2   6     112.535141 67.213399 1.537856
  1   0  1  2     0   1   4       6 CG2   6     110.000000 -60.000000 1.520000
  1   0  2  2     0   1   4       6 CG2   6     110.000000 -170.000000 1.520000
  1   0  3  2     0   1   4       6 CG2   6     110.000000 -292.000000 1.520000
  2   0  0  0     7   1   2       3   O   3     122.922219 -180.000000 1.229329
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are 4 possible rotamers, that are 4 possible conformations that such a sidechain can 
assume. The backbone atom 2, which is the oxygen of the carboxyl carbon, has a 
single rotamer, this means that its position is univocally determined by the position of 
the associated backbone atom. The fourth column contains the id of the atom within a 
given sidechain. In the example, the sidechain of the first backbone atom has 3 atoms 
(each of them can be in 4 possible rotamers, for a total of 3x4=12 lines in the file). 
The position of each sidechain atom is given in spherical coordinates. The columns 
“b1”, “b2” and “b3” indicate which are the atoms (in terms of the atom identifier “ia”) 
which form the basis set for the spherical coordinates. In the case of the first sidechain 
atom in the example (the CB of the first amino acid), the atoms which build out the basis 
set are b1=2 (that is, the C in the backbone), b2=0 (the N in the backbone) and b3=1 
(the CA in the backbone). Since a basis set can involve also atoms in the sidechain, it is 
necessary that an atom is defined previous than it is used as basis set. The atom id of 
the sidechain is given in the eighth column, followed by the name of the atom (again, 
useful only to write pdb files) and by “itype” which defines the kind of interaction with the 
other atoms. The last three columns indicate the spherical coordinates, in terms of 
angle (i.e., the angle between angles b2, b3 and the sidechain atom to be put), dihedral 
(i.e., the dihedral between b1, b2, b3 and the sidechain atom to be put) and bond 
distance (i.e., between b3 and the sidechain atom to be put).

The last section of file.pol contains the actual rotamer in which the sidechain of a given 
backbone atom is in the initial conformation. For example,

means that the sidechain of the backbone atom 1 of chain 0 currently occupies the 
rotamer number 3 (defined by the set of spherical coordinates listed in the [ rotamers ] 
section).

file.pot

This file contains all the information needed to define the interaction potential between 
atoms. The basic interaction between atoms is a square-well potential of hardcore 
radius rHC and width r, with a depth ε.  Also this file is divided into sections.

The section [ global ] contains settings which affect all atoms. The keywords which can 
be set in the global sections are:
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back    ch      irot
1       0       3
2       0       0
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The most important part of the potential file is the [ pairs ] section, which define specific 
square-well terms in the interaction potential between specific atom types. 

hardcore <double> sets the default hardcore radius between any pair of 
atom; is overridden by the value set in the [pairs] section 
if this follows the global prescription in the file.

imin <int> atoms of the same chain associated to backbone ids i 
and j with |i-j|≤imin never interact according to the 
instructions listed in the [pairs] section, but only with the 
hardcore repulsion defined above.

e_dihram <double> in case of ramachandran dihedral interaction (see 
below), sets the energy scale which multiplies all 
dihedral energies

homopolymeric <double ε 
> <double r>

each pair of atoms interact through identical square 
wells with given values of ε and r. It is overridden by the 
instructions in section [ pairs ] if it follows the global 
prescription in the file. 

angle <double k> <double 
α0>

sets a global harmonic potential in the angles of all 
backbone atoms with harmonic constant k and rest 
angle α0

dihedral1 <double k> 
<double φ0 >

sets a global potential in the dihedrals φ of all backbone 
atoms of the form k[1-cos(φ-φ0)]

dihedral3 <double k> 
<double φ0 >

sets a global potential in the dihedrals φ of all backbone 
atoms of the form k[1-cos(3(φ-φ0))]

splice <double k> <double 
ke> 

splice each square well defined in [pairs] into two parts. 
The first part, between rHC and k*r mantains its depth; 
the energy of the part between k*r and r is multiplied by 
ke. Usually ke <1 to better approximate a Lennard-Jones 
potential.

boxtype [c|s] defined a cubic or a shperical box. Atoms are not 
allowed to exit the box.

boxsize <double> define the radius or the side length of the box.
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The first two columns indicate the atom type (“itype” in the file.pol). The other columns 
indicate, respectively, the energy depth ε of the well, its width r and the width rHC of the 
hardcore part of the well. It overrides the global keywords “hardcore” and “polymeric” if it 
follows the global prescription in the file, but is always overridden by “imin”.

Angular potential between specific backbone atoms can be defined in order to keep the 
angles near to their equilibrium positions. It is a sum of harmonic potentials. In the 
file.pot they are defined as:

where the columns are, respectively, the id of the atom (“ia” in the file.pol), the harmonic 
constant and the rest angle in degrees.

Dihedral potential can be of two kinds: periodic or ramachandran.
The periodic potential is in the form:

k1[1-cos(φ-φ01)] + k3[1-cos(3(φ-φ03))]

where the id of the identifier of the atom (“ia”) and the four parameters k1, φ01, k3, φ03 
are defined in the [ dihedral ] section, like:

If this section is present, this kind of dihedral potential is active. 
The Ramachandran dihedral potential is meant to favor alpha/beta secondary structures 
propensities in proteins in an atom-dependent way. For a general dihedral angle φ (that 
can be either the Ramachandran φ or ψ dihedral) the associated potential has the form:

εdih * pαia * fαφ(φ)  +  εdih * pβia * fβφ(φ) 
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 [ global ]
hardcore 2.000000

[ pairs ]
  0     570             -1.000000       4.626141        3.202713
  1     568             -1.000000       4.547186        3.148052
  1     569             -1.000000       4.734172        3.277504
  1     570             -1.000000       4.347808        3.010021
  2     566             -1.000000       4.881537        3.379526
  2     568             -1.000000       4.758506        3.294351

[ angles ]
  ia    k                  alpha0
  1     0.0100             106.452
  2     0.0100             115.721

[ dihedrals ]
  ia    k1      phi01    k3     phi03
  2     0.500   160.000  0.250  160.000
  3     0.500   160.000  0.250  160.000
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where the energy scale εdih is defined among the global parameters by the keyword 
e_dihram. The weights pαia and pβia are the statistical weights indicating the probability 
for the atom with identifier ia to be in alpha or beta conformation. The four functions 
fαφ(φ),  fβφ(φ), fαψ(ψ) ,fβψ(ψ) define the shape of the associated potentials: they are 
gaussians with mean [φ,ψ]_[a,b] and standard deviation dev_ [φ,ψ]_[a,b].
To define this kind of potential, two sections are needed, [ Ramachandran_Dihedrals ] 
and [ Alfa/Beta_propensity ]. They are in the form:

The section [ Ramachandran_Dihedrals ] defines the mean and the standard deviation  
(third and fourth columns) to use for the gaussian potential. These represent the ideal 
phi(=0)/psi(=1) dihedral angle in an alpha(=0)/beta(=1) structured region.
The section [ Alfa/Beta_propensity ] defines the statistical propensities for alpha/beta 
structure of each amino acid iaa. 

Another section that can be defined is [ hydrogen_bonds ], which turns an interaction 
defined in [ pairs] in a directional interaction to mimic hydrogen bonds. It is in the form

Each atom, defined by its identifier ia (first column) can be defined as an acceptor or 
donor in the formation of hydrogen bonds (second column). The third column states to 
which other atom each donor/acceptor is covalently bound (for example, a N in the case 
of HN in a protein). If a pair of atoms defined in [ pairs ] are also defined, respectively, 
as donor and acceptor of hydrogen bonds, the interaction energy defined in [ pairs ] is 
multiplied by

( cos va * cos vd )1/2
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[ Ramachandran_Dihedrals ]
 a/b phi/psi  dev mean
  a      f 25.0   -57  
  a      p 30.0   -47
  b      f 30.0   -129
  b      p 35.0   124

[ Alfa/Beta_propensity]
 iaa a_prop b_prop
  0 0.000000     0.000000
  1 0.007000     0.470000
  2 0.058000     0.639000
  ....

[ hydrogen_bonds ]
 ia kind other_ia
 4 d 3
 27 a 25
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where va and vd are the unitary vectors defined by the acceptor/donor atoms, 
respectively, with the atom covalently bound to them (e.g., the vector HN-N with the 
vector O-C). If the global parameter “splice” is active, the range of the interaction is 
defined only by the inner part of the square well (i.e., ksplice * r).

file.par

This file contains all the directives to carry out a Monte Carlo simulation with the system 
defined by file.pol and file.pot. Additional parameters are required in the cases in which 
the optimization of the potential, simulated tempering or parallel tempering are active.

The general directives (valid in all the cases) are: 
keyword default

nchains <int> compulsory number of disjoint chains in the system

nstep <int> 100000 total number of steps of a run

nrun <int> 1 total number of runs to be done

seed <int> -1 seed of random numbers (-1 means that 
it is taken from the computer clock)

nprinttrj <int> 1000 every how many steps to print the 
trajectory file

nprintlog <int> 1000 every how many steps to print the log file

nprinte <int> 1000 every how many steps to print the energy 
file

traj <string> traj name of the trajectory file

logfile <string> montegrappa.log name of the log file

efile <string> energy name of the energy file

lastp <string> last name of the file.pol to write the last 
conformation. If multiple runs, each final 
conformation is file_%d.pol

procfile <string> proc name of the file relative to a given 
process (MPI)

Temp <double> 1 the temperature of the simulation

debug <int> 0 0=silent, 4=every stupid thing
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flip <int> no try a flip move every <int> steps

pivot <int> no try a pivot move every <int> steps

mpivot <int> no try a multiple-pivot move every <int> 
steps

sidechain <int> no try a sidechain move every <int> steps

lpivot <int> no try a loose-pivot move every <int> steps

mflip <int> no try a multiple-flip move every <int> steps

movebias <int> no try a local move every <int> steps, similar 
to that described by Favrin et al. JCP 114, 
8154 (2001)

movecom <int> no try a center-of-mass move every <int> 
steps

moverot <int> no try a chain-rotation move every <int> 
step.

dw_flip <double> 30 maximum width of a flip move

dw_pivot <double> 10 maximum width of a pivot move

dw_mpivot <double> 1 maximum width of a multiple-pivot move

dw_lpivot <double> 1 maximum width of a loose-pivot move

dw_mflip <double> 30 maximum width of a multiple-flip move

dx_com <double> 1 size of a center-of-mass move

dtheta 1 angular size of the chain-rotation move

nmul_mpivot <int> 3 number of consecutive dihedral to try in a 
multiple-pivot move (a negative number -
n means: try a random number between 1 
and n)

nmul_lpivot <int> 3 number of consecutive dihedral to try in a 
loose-pivot move (a negative number -n 
means: try a random number between 1 
and n)

keyword default
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nmul_mflip <int> 100 number of consecutive dihedral to try in a 
multiple-flip move (a negative number -n 
means: try a random number between 1 
and n)

nmul_local <int> 9 number of consecutive backbone atoms 
to move in local move.

bgs_a 200 amplitude parameter for local move

bgs_b 0.1 bias parameter in the local move

randdw <int> 1=flat distribution of random move, 
2=gaussian distribution with stdev dw_*

r_cloose <double> 0.5 maximum variation of bond length in 
lpivot moves, with respect to initial value

a_cloose <double> -1 maximum variation of angles in flip and 
multiple-flip moves, with respect to initial 
value

d_cloose <double> -1 maximum variation of dihedrals in flip and 
multiple-flip moves, with respect to initial 
value

nosidechain no avoid calculating sidechain energy if 
there are none (to speed up)

noangpot no avoid calculating angular energy if there 
are none (to speed up)

nodihpot no avoid calculating dihedral energy if there 
are none (to speed up)

disentangle no allow moves among conformations with 
overlaps, provided that the number of 
overlap decrease

keyword default
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The number of chains, the temperature and the definition of the moves (flip, pivot, etc.) 
are compulsory.

When performing the optimization of the potential in the file.par you should add the 
instructions:

always_restart no start each run from the conformation read 
from the file.pol (instead than from the 
last conformation of the preceding run)

hb no activate hydrogen bonds

stempering no activate simulated tempering module

shell no activates neighbour lists

nshell <int> 10 re-build neighbour lists every <int> steps

r2shell 6 radius of the shell which defines the 
neighbours.

keyword default
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When the simulations are performed using parallel tempering the following parameters 
must be set:

Finally, when performing the simulated tempering, one should set the following 
keywords:

op_minim <string> none=do not perform any optimization of the potential; 
sample=optimize the potential through a random search

op_file <string> the input file.op

op_deltat <int> how often to record a conformation to evaluate the thermal 
average

op_itermax <int> how many optimization steps on the chi2

op_print <int> how often during optimization to print the status

op_step <double> the energy step of the optimization

op_T <double> the temperature corresponding to the experimental data (it 
can be different from the actual temperature of the 
simulation, since thermal average are calculated a 
posteriori)

op_emin <double> lower limit for any matrix element

op_emax <double upper limit for any matrix element

op_wait <int> discard the first steps and start recording conformations 
later

op_rw default width of energy well (if not defined in file.pot)

op_r0 default hardcore of energy well

record_native activate first conformation (native) recording in simulation

ntemp <int> integer indicating the number of temperatures (=replica) 
used. It must be equal to the number of processes.

temperatures 
<double> 
<double>
...

list of the ntemp temperatures (one for each line, with no 
line-spaces)

step_exchange <int> every how many steps trying an exchange between replica
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st_method <string> stempering= standard simulated tempering, adaptive= 
searches iteratively for the best choice of the temperatures 
and the associated weights

st_nstep <int> how often to attempt a temperature change

st_preamble <int> how many steps perform to equilibrate

st_nprint <int> how often to print the output

st_ntemp <int> the number of different temperatures to be used (for adaptive 
algorithm it is the initial number of temperatures)

st_temperatures
<double> [<double>]
<double> [<double>]
....

The list of temperatures.
For adaptive algorithm, initial temperatures.
For standard simulated tempering, the second [<double>] 
number is the weight associated to that temperature.

st_debug <int> The debug level (1-4)

st_nsadj <int> how often to start the algorithm to readjust temperatures and 
add new temperatures below (must be many times nstep, to 
collect enough statistics)

st_emin <double> the minimum energy of the collected histograms

st_emax <double> the maximum energy of the collected histograms

st_ebin <double> the energy bin of the collected histograms

st_anneal <string> how to add a lower temperature at each attempt. Setting 
<string>=prob it will be used a fixed exchange rate (see 
st_lp_new).
Other features will be included in the next version.

st_lp_new <double> exchange log-probability value (must be <0 !)

st_lpthresh <double> log of minimum probability to remove a temperature; 9 to use 
current probability

st_hthresh <double> threshold on overall probability to keep an histogram (default 
0.7)

st_keepall use all past histograms to calculate thermodynamics

st_sumoldhisto <int> if keepall active, keep only histograms of last %d run

st_ttarget <double> target temperature, it is the temperature at which the system 
is studied
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file.op

This file is not compulsory and is necessary only when using the optimization of the 
potential. Such a file can be in two possible formats. 

The former is:
i j kind value sigma

which means that objects i and j are expected to give rise a thermal average on some 
conformational properties defined by kind, and the experimental value of this thermal 
average which we would like to reproduce is value with a standard deviation of sigma.
The possible choices of kind are:

The other format of the file.op can be:
 i1 j1 i2 j2 kind value sigma
which means that the conformational property to be calculated is between the whole 
segment involving objects from i1 to j1 to the segment involving objects from i2 to j2. 
The possible choice of kind is:

Output files

st_printpdb <int> print the output pdb after passing st_printpdb time at the 
target temperature

st_tfile name for the output temperatures.dat file

st_thefile name for the output thermodyn.dat file

0 i and j are the id of a backbone and value is the contact function between the 
former atom or any sidechain atom belonging to it and the latter, or any 
sidechain atom belonging to it. The contact function takes the value 1 if two 
atoms are in contact according to the two-body interaction defined in 
potential.pot and zero otherwise.

1 i and j are atoms id (ia in the pol file) and value is their distance

2 i and j are atoms id (ia in the pol file) and value is 1/d6, where d is their 
distance.

3 i1, j1, i2 and j2 are the id of a backbone and value is the contact function 
between any atom of the former segment and any atom of the latter segment. 
The contact function takes the value 1 if two atoms are in contact according to 
the two-body interaction defined in potential.pot and zero otherwise.
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The main output files generated by the program are:

When performing the optimization of the potential also these files are generated:

Finally, the files produced in the case of Simulated Tempering are:

montegrappa.log which contains some additional information on the 
development of the simulation, depending on the debug 
level

trajectory_%r_%p.pdb It contains the trajectory, written as a multiple pdb file. 
Each snapshot is separated by “ENDMDL”, in order to 
be compatible with the gromacs tools. One trajectory file 
is produced for each run (and also for each process 
when using parallel tempering).

energy_%r_%p.ene It is a file containing the number of step, the total 
energy, the two-body energy, the angular energy and 
the dihedral energy. One energy file is produced for 
each run (and also for each process when using parallel 
tempering).

last._%r.pol at the end of a simulation (and of each run) it writes a 
pol file containing the last snapshot, in order to be able 
to restart the simulation.

restraints_%r.dat One file for each run. It contains the id of the 
experimental restraints, the calculated value, the 
experimental value and the experimental error.

newpot_%r.dat One file for each run. It contains the data relative to the 
optimized potential, obtained at the end of the run.

chi2.dat Contained the value of chi2 obtained comparing the 
computed averages and the known experimental values 
at the end of each run.
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dumb.dat It contains the average energies as a function of 
temperature.

thermodyn.dat Containing all the fundamental thermodynamic 
quantities, which are: temperature, average energy with 
the relative standard deviation, specific heat, free 
energy and entropy.

temperatures.dat It reports the temperature at each step.

harvest.pdb Contains the conformers saved at the required 
temperature.
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A tool to prepare the input files: Grappino
Grappino is a tool which takes as input a pdb file and generates a pol and a pot file, 
according to the instructions contained in a input-parameter file created for the purpose. 
It is mainly thought for implementing Go models or similar. The command line is

grappino file.in

where the input file file.in contains the following instructions.

General section:

Polymer section:

Potential section:

pdbfile <filename> the name of the input pdb file containing the native protein

polfile <filename> the name of the output pol file (default: polymer.pol)

potfile <filename> the name of the output pot file (default: potential.pot)

contactfile <filename> the name of an output file containing the contacts between 
atoms in the pdb file

debug <int> the debug level (1-4)

hydrogens if defined, keeps the hydrogens present in the pdb file

nosidechain if defined turn off everything related to sidechains (that is, it 
uses a CA model)

rotamers if defined, use rotamers to define sidechains

model <modelname> if defined, turn off the sidechains and it maintains 3 possible 
models: CA, CACB and NCAC

rotfile <filename> the path of the library containing the definition of rotamers

cb_pdb if defined, instead of using the default position of the CB 
atoms (hardcoded), use the position of the pdb

pdb_rot if defined, uses the rotamer position in the pdb file
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backbone_atoms number and name of backbone atoms (eg: 3 N CA C)

locked_atoms locked atomtype in backbone

imin <int> minimum distance between backbone atoms to define a 
native interaction

r_hardcore <double> the hardcore radius of the potential (in A°)

r_native <double> the threshold distance used to define native contacts (in A°)

use_nativedist if defined, set well width to experimental native distance

k_native_r <double> in use_nativedist, multiply the native distance by this factor

k_native_hc <double> in use_nativedist, multiply the hardcore distance by this 
factor

potential [go] initial potential

splice <double k> 
<double ke>

splice each square well into two parts. The first part, 
between rHC and k*r maintains its depth; the energy of the 
part between k*r and r is multiplied by ke. Usually ke <1 to 
better approximate a Lennard-Jones potential.

r_bonded <double> the threshold to define a covalent bond, used to construct 
the protein topology

go-energy <double> the depth of the attractive well

atomtypes <string> if the string is “go”, label each atom with a different type, 
otherwise read the types from the file defined by the string. 
The format of the file is “%d %s %s”, which contains the 
numeric type to be used by grappino, the atom name and 
the amino acid name (e.g. “17 CA GLY” sets the CA of 
glycine to atom type 17)

go_dihedrals define a dihedral potential based on the native conformation

go_angles define an angular potential based on the native conformation

e_dih1 <double> energy factor of the multiplicity-1 go dihedral potential

e_dih3 <double> energy factor of the multiplicity-3 go dihedral potential

e_ang <double> energy factor for the go angular potential

dih_ram define a dihedral potential based on (ideal) Ramachandran 
dihedrals
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Optimization section:

e_dihram <double> energy factor for the Ramachandran dihedral potential

phi_0_a <double> ideal φ angle for α structures (default: -57°)

phi_0_b <double> ideal φ angle for β structures (default: -129°)

psi_0_a <double> ideal ψ angle for α structures (default: -47°)

psi_0_b <double> ideal ψ angle for β structures (default: 124°)

sig_a_phi <double> Standard deviation of φ angle potential for α structures 
(default: 25°)

sig_b_phi <double> Standard deviation of φ angle potential for β structures 
(default: 30°)

sig_a_psi <double> Standard deviation of ψ angle potential for α structures 
(default: 30°)

sig_b_psi <double> Standard deviation of ψ angle potential for β structures 
(default: 35°)

propensity <filename> the file containing the aminoacids α/β propensity (e.g. 
PSIPRED output)

r_homo <double> homopolymeric interaction width of the well (in A°)

e_homo <double> homopolymeric interaction depth of the well (in A°); this is 
anyway overruled by specific pair interactions

cys_e <double> define a special well for cys-cys interaction, with this depth...

cys_r <double> ... and this width
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op_file <filename> name of the output file containing native restrains for the 
purpose of optimizing potential

op_kind <string> “GO_DIST_CA”=put a restraint on each pair of CA atoms 
that are distant more than imin in the chain
“GO_DIST_ALLATOM”=consider, for each amino acid, the 
CA atom and the last atom of the sidechain (the one with the 
last id for the amino acid in the pdb file, excluding the carbon 
C). The algorithm put a restraint on each pair of atoms 
belonging to the selection, which are distant more than imin 
in the chain. To reduce the huge amount of restraints 
produced, the pairs are considered only if both the atoms 
belong to an amino acid with even index (or if both belong to 
an “odd” amino acid).
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Tutorials
1. Plain MC sampling with given potential

In this short tutorial MonteGrappa is used to make unfold and refold a small peptide of 
64 aminoacids, namely a small domain of chymotrypsin inhibitor 2.

MonteGrappa needs three input files: 
- a .pol file, which contains the topology of the polymer
- a .pot file, which contains the details of the potential
- a .par file, which contains all the other parameters

In this directory two .par files and are present, while the files .pol and .pot must be 
created using the utility Grappino. Grappino needs a single input file (.in) and a 
reference structure (.pdb): you can find both them in this same directory. 
Now have a look at 1YPC-CA.in, the input file for Grappino: it tells to use the 1YPC.pdb 
file as input in order to produce 1YPC-CA.pol and 1YPC-CA.pot (keywords pdbfile, 
polfile and potfile, respectively). Then take a look also to the other parameters. With the 
help of the Manual and the README.txt you will be able to understand that the peptide 
is studied with a simple CA-model, in presence of a go-like interaction potential and with 
an additional potential on the dihedrals. 
Now run Grappino with the syntax:
$GrappinoPath/grappino 1YPC-CA.in

You should see 1YPC-CA.pol and 1YPC-CA.pot in this directory.
Now open 1YPC-CA.unf.par: you can see that we are simulating a protein for 5000000 
MonteCarlo steps at a temperature of 1.6. Note that in MonteGrappa fictitious 
temperatures are not easily referable to the real ones. Here, the values of the potential 
are tuned in order to let the protein be stable at T=1 and unfold at T=1.6. 

Run MonteGrappa (the single-core, not-stempering version!) typing:
$MontegrappaPath/montegrappa 1YPC-CA.pol 1YPC-CA.pot 1YPC-CA.par 

with all the arguments in this exact order. After 5 millions MC steps, you should have in 
your directory the following files: 
- traj.pdb is the trajectory in the common .pdb format. It can be visualized by using 
software like VMD.
- last.pol is the last-known conformation, in MonteGrappa format: it can be used as an 
input for other simulations. In this version of the code, the last conformation is saved 
only in .pol format, thus if you really need to visualize it via VMD you should refer to the 
last frame of the trajectory.
- energy.ene contains total and partial energies for every MC step you chose to print at.
- montegrappa.log contains some information about the simulated system, the energy at 
chosen MC steps and the acceptance of the move.
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Using gnuplot to see the energy vs time in energy.ene file with:
gnuplot> plot “energy.ene” u 1:2
you can easily check that energy indeed increases during the simulation. Furthermore, 
you can calculate the rmsd between the whole .pdb trajectory and the reference 
structure contained in the .pdb file.

NB: if you want to perform such a test, use the first frame of .pdb file as reference's file, 
not the original .pdb structure file (here 1YPC.pdb). This is mandatory, because in 
the .pdb trajectory atoms are sorted and renouned in a particular way, while some of the 
originally-present atoms in the starting .pdb are missing (e.g. nitrogen or oxygen, this 
depending on the particular model used in the simulation). 

You can find in the subdirectory "results" the output of Gromacs 4.5.5 routine:
echo 3 3 | g_rms -f traj.pdb -s check.pdb -o unfolded.xvg 
where check.pdb is exactly the first frame of traj.pdb, cut and pasted in a new file.

Finally, run 
$MontegrappaPath/montegrappa last.pol 1YPC-CA.pot 1YPC-CA.fold.par

to take the last, unfolded conformation of the polymer (output of a simulation at T=1.6) 
and make it fold with T=1 (see 1YPC-CA.fold.par). You can check that the energy.ene 
file now contains much lower energies, while the rmsd, calculated with the very same 
file check.pdb used before, now starts from high values but soon decreases to some 
few Angstroms.

2. Optimization of the potential with plain MC

In this tutorial you will try to optimize a given starting potential for a simple test case.
Only two files are present in the directory: the file expdata.dat, containing data of the 
kind obtained from a 5C/highC experiment, and a script, called generate_5C.sh, that will 
help you in generating the files necessary to use montegrappa starting from 
expdata.dat.

The file expdata.dat is in the format:
bead1 bead2 average_count stdev_count

To generate the file.pol, file.pot and a typical file.par execute:

./generate_5C.sh

answering to the questions it puts similarly to this:

Filename of the 5C/HiC data?
expdata.dat
Number of beads?
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20
Normalization constant?
100
Rootname for output files?
test
Energy scale for initial interaction matrix (in temperature units)?
0.2
Interaction range (in units of interbeads distance)?
1.5
Hardcore radius  (in units of interbeads distance)?
0.6

It will generate four files, namely test.pol, test.pot, test.par and test.op (and an additional 
file tmp.op with the list of bead pairs).

The file test.par contains typical parameters for the simulation, and can be edited 
manually according to the needs. To launch the optimization just execute:

nohup $MontegrappaPath/montegrappa test.pol test.pot test.par >& log &

You can follow the simulation inspecting the file log (e.g. tail -f log). After each iteration a 
file restraints_%d.dat is generated, containing a comparison between the input and the 
back-calculated data. They can be visualized, for example with gnuplot, executing:

gnuplot>  plot 'restraints_0.dat' u 2:3

The value of the back-calculated contact probability for each pair of beads can be listed 
using:

paste tmp.op restraints_0.dat | awk '{ print $1,$2,$7; }' > prob.dat

You can repeat these operations with all the restraints_%d.dat file, generated after each 
iteration, and see how the results change! At the end, compare your files with the ones 
that you can find in the results directory.

3. Replica exchange with given potential

Now we will use the MPI version of MonteGrappa to run a short parallel tempering 
simulation of a small hairpin, namely residues 41-56 of protein G (1PGB.pdb), and to 
calculate its specific heat as a function of temperature. After having a look to the file 
hairpin.in, run:

$GrappinoPath/grappino hairpin.in

to create hairpin.pol and hairpin.pot. Then run montegrappa_mpi typing:
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mpirun -np 8 $MontegrappaPath/montegrappa_mpi hairpin.pol hairpin.pot hairpin.par 

Take a look at the file hairpin.par to see how many and which temperatures we are 
using! At the end of the simulation, you should have lots of files in your directory: 
- energy_procN.ene
- last_procN.ene
- traj_procN.ene
where N is the index of the replica (0-7 in this tutorial). To know what these files are we 
refer to the Manual. To calculate the specific heat of our hairpin, we need to use the 
energies of each replica. Then, have a look at the energies, e.g. with gnuplot:

gnuplot> p "energy_proc0.ene" w l, "energy_proc3.ene" w l, "energy_proc7.ene" w l

To make sure we will use equilibrium energies, we choose to cut out the first 10% of the 
results, namely 100 entries out of 1000. You can do this with:

sed -e '1,100d' energy_proc0.ene > energy_cut0.ene

this having to be made for each replica. Now there should be 8 new files in this 
directory, 
energy_cut0.ene
energy_cut1.ene
..
energy_cut7.ene
Finally we can run the routine mhistogram (the help of mhistogram can be obtain simply 
digiting ./mhistogram without any parameter) using the input file cv.mhist:

$MhistogramPath/mhistogram cv.mhist

Have a look at the results exployting again gnuplot. Use:
gnuplot> p "results.dat" w l, "dumb_e.dat" w lp

to visually check the fit of energies vs temperature with a sigma function; then:
gnuplot> p "results.dat" u 1:4 w l

to visualize also the specific heat.

4. Optimization of the potential with replica exchange

Now we will learn how to optimize a potential using the parallel tempering technique on 
a polyalanine helix made of 15 residues.  

Before running:
$GrappinoPath/grappino polyala.in
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have a look at the input file. We are defining "pdb_rot" in order to use the rotamers of 
the .pdb structure file. Note that the “atomtypes" keywords now links to a library used to 
deal with atoms in a slightly different way than a classical GO model: modify properly 
the path to let grappino find this library.

To optimize the potential, we need to calculate some restraints. There are a couple of 
possible choices about the kind of restraint we can impose; now we use the option 
“GO_DIST_CA” to consider only the distances between CA atoms. These restraints will 
be written in "op_file". 

After the creation of polyala.pol, polyala.pot and polyala.op, open the file polyala.par, we 
will perform 5 runs of optimization, 3 millions MC steps each, with the following 
parameters: 

op_file         polyala.op is the path of the restraints file
op_T            1.0 the temperature we want to optimize at
op_wait         200000 neglect the first 200000 MC steps

(for the other parameters, please refer to the manual).
Now run
mpirun -np 8 $MontegrappaPath/montegrappa_mpi polyala.pol polyala.pot polyala.par 

At the end of the simulation, you should have lots of files in your directory:
- energy_runM_procN.ene
- last_runM_procN.pol
- traj_runM_procN.pdb
where M is the number of the run and N is the index of the replica. 

Now let's visualize with gnuplot the chi2 to check that it is actually decreasing: 
gnuplot> p "chi2.dat" w l

Finally, to calculate the rmsd with respect to the .pdb structure create the .pdb reference 
file typing:
sed -n -e '1,77p' traj_run4_procN.pdb > check.pdb

and do
echo 3 3 | g_rms -f traj_run4_procN.pdb -s check.pdb -o rmsd_procN.xvg 

for each replica. The output files should be equal to those stored in the subdirectory 
"results".
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5. Adaptive simulated tempering with given potential

In this short tutorial we will use MonteGrappa to study thermodynamics of a small 
random energy polymer of 20 atoms.
The three input files needed by MonteGrappa, which are random_polymer.pol/.pot/.par, 
are already available. Please take a look to random_polymer.par to have an idea of 
what is going to happen during the simulation. To have more information about contents 
of these files, please refer to the manual.
Now run MonteGrappa (the single-core, stempering version!):

$MontegrappaPath/montegrappa random_polymer.pol random_polymer.pot 
random_polymer.par

with all the arguments in this exact order. After 1 billions MC steps, you should have in 
your directory some files, among which dumb.dat and thermdodyn.dat. You can use 
gnuplot to see the energy vs temperature behaviour:
gnuplot> p "dumb.dat" u 1:2, “thermdodyn.dat” u 1:2 wl

While to see how the specific heat varies with the temperature plot:
gnuplot> p "thermdodyn.dat" u 1:4 wl

6. Optimization of the potential with adaptive simulated tempering

In this short tutorial we will use MonteGrappa to find the interaction matrix of 4 types of 
atoms in order to have the correct end to end contact probability. The system is a 
segment (20 bases) of DNA.

The three input files needed by MonteGrappa dna.pol/.pot/.par are already available in 
this directory (please take a look to the file dna.par). Further you can find a file named 
dna.op containing the restrain for the optimization process. Now run MonteGrappa (the 
single-core, stempering version!) 
$MontegrappaPath/montegrappa dna.pol dna.pot dna.par 

with all the arguments in this exact order. After 2 MC runs, you should have in your 
directory some files. To see the effect of the minimization, plot the trend of the chi2 
using:
gnuplot> p "chi2.dat" u 1:2 wl
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