Freescale Semiconductor
Application Note

AN3518
Rev. 0, 09/2007

Advanced ColdFire TCP/IP

Clients
HTTP, DNS, XML, and RSS R0.9

by: Eric Gregori

1 Introduction

This application note discusses advanced topics in
ColdFire client-side TCP/IP firmware design. Client
designs minimize RAM usage, while optimizing
performance. The HTTP client firmware described in
this document runs on top of the ColdFire TCP/IP stack.
The DNS client included in the stack is also covered. It
is used by the HTTP server for domain name
transalation.

The second portion of this document covers an
interesting use of the HTTP client: a RSS feed reader.
Using the RSS feed reader on top of the HTTP client, you
can read and decode RSS feeds and other XML
documents. The RSS feed reader section also includes a
section on interfacing a parallel LCD to the ColdFire
processor. The RSS feed data can be output to the serial
port or scrolled on the LCD display.

© Freescale Semiconductor, Inc., 2007. All rights reserved.

O~NO A WN =

- = ©
N = O

Contents

Introduction 1
HTTP Protocol. 2
DHCPClient 6
DNSClient. 7
Advanced ColdFire TCP/IP Client Design—Zero Copy. . 9
HTTP Client Firmware. 15
HTTP Client APl 16
Wget Command — Example of Using the HTTP Client 18
Really Simple Syndication (RSS) 22
RSS/XML Feed Reader Embedded Appliance 33
RSS/XML Feed Reader Hardware 34
RSS/XML Feed Reader Firmware. 43

freescale’

semiconductor

2 HTTP Protocol

Hyper-Text Transport Protocol (HTTP) is the communication protocol of the world wide web. HTTP is
used to transfer web pages (Hyper-Text documents) across the internet. An HTTP connection consists of
two parts: the HTTP client (web browser) and the HTTP server. You can use the HTTP client to receive
and view the web page and the HTTP server to store, organize, and transfer the web pages.

Web Browser
(HTTP Client)

HTTP Protocol

A

Figure 1. Basic HTTP Block Diagram

\

HTTP
Server
And
File
System

HTTP is defined by technical specifications RFC2616 (HTTP version 1.1) and RFC1945 (HTTP version
1.0). RFCs are published by the Internet Engineering Task Force (IETF). See http://www.rfc-editor.org for

more information.

HTTP is a request response protocol. The client requests a web page from the server and the server
responds with the web page contents (HTML — Hyper-Text Markup Language). HTTP can be used to
send any type of data, including binary data. The client requests a file using the GET method (HTTP is an
ASCII protocol). The server responds with an HTTP header followed by the file contents. The client can
also send a file using a POST method. Within the request, the HTTP version is embedded in ASCII. This
notifies the server of the limitations of the client.

Web Browser
(HTTP Client)

HTTP Request

GET /filename.htm HTTP/1.1

HTTP Response

\/

A

HTTP/1.1 200 OK

Figure 2. Basic HTTP Request/Response Block Diagram

Advanced ColdFire TCP/IP Clients, Rev. 0

HTTP
Server
And
File
System

Freescale Semiconductor

http://www.rfc-editor.org

2.1 HTTP Request Example

The following is sent from the client (web browser) to the HTTP server:

GET /filename.htm HTTP/1.1
Asks the server to respond with the contents of filename.htm
Tells the server that it supports the HTTP1.1 standard
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/msword
Tells the server that it supports: gif, x-xbitmaps, Jjpeg, and pjpeg images,
and msword documents
Accept-language: en-us
Tells the server that the language is English
Accept-Encoding: gzip, deflate
The gzip and deflate decompression algorithms are available
User-Agent: Mozzilla/4.0 (compatable; MSIE 6.0; Windows NT 5.1)
Tells the server that the browser is running IE6.0 on a Windows computer
Connection: Keep-Alive
Tells the server not to close the connection after the file is sent

2.2 HTTP Methods

The GET method is one method supported by RFC2616. Other methods are listed in Table 1.
Table 1. RFC2616 Methods

Method RFCZ‘.ﬂ 6 Description
Location
Options Section 9.2 |Request for information
Get Section 9.3 |Request a file or data
Head Section 9.4 |ldentical to GET without a message-body
in the response
Post Section 9.5 |Send data
Put Section 9.6 |Send a file
Delete Section 9.7 |Delete a file
Trace Section 9.8 Echo request
Connect Section 9.9 |Reserved for tunneling

2.3 HTTP Response Example

The server responds to the GET method with the following header:

HTTP/1.1 200 OK
Tells the client/browser that HTTP1l.1 is supported, and the 200 status code tells
the client that the file was found
Server: Microsoft-IIS/6.0
Informs the client of the web server type and version
Cache-Control: no-cache
Tells the client to disable cache
Content-Type: text/html
Tells the client the type of data that follows
Content-Encoding: gzip
Tells the client that the following data is encrypted using gzip

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 3

Content-Length: 9062
Tells the client how many bytes are to follow

Followed by data from file, in this case encoded using gzip

2.4 Connection Persistance

Connection persistence, or KEEP ALIVE, is a protocol feature used to increase performance by decreasing
TCP/IP overhead. A normal non-persistent HTTP transaction consists of:

* A TCP/IP connect

* GET method

 File transfer

A TCP/IP close
This process is followed for every file the client needs (often multiple times with a single web page). The
TCP/IP overhead takes a significant amount of time. With a persistent connection, the TCP/IP connect

only occurs before the first file transfer and the TCP/IP connection is not closed after the file transfer.
Instead the server goes into a status to wait for another method (GET).

TCP/IP Connect

GET /filename.htm HTTP/1.1 >

/\

Web Client HTTP/1.1 200 OK HTTP Server

HTTP server sends filename.htm

TCP/IP Close >

Figure 3. Non-Persistant HTTP Transaction

AN

Advanced ColdFire TCP/IP Clients, Rev. 0

4 Freescale Semiconductor

TCP/IP Connect

/\

GET /filename.htm HTTP/1.1

[YAY,

HTTP/1.1 200 OK

HTTP server sends filename.htm

AN

GET /graphic1.jpg HTTP/1.1

\/

HTTP/1.1 200 OK

Web Client HTTP Server

HTTP server sends graphic1.jpg

AN

GET /graphic2.jpg HTTP/1.1

\/

HTTP/1.1 200 OK

HTTP server sends graphic2.jpg

TCP/IP Close

AVAVA

Figure 4. Persistant HTTP Transaction

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor

3 DHCP Client

The Dynamic Host Configuration Protocol acquires network parameters at runtime. The protocol uses the
UDP layer of the stack. The stack must be initialized with a call to ip_startup() before the DHCP client can
be called.

The DHCP protocol is defined in RFC2131 and RFC2132. The stack runs a DHCP client which searches
for a DHCP server (this is referred to as discovery). Packets are transferred using the UDP layer and
BOOTP ports (67 and 68). Since the IP stack does not have an IP address yet, it discovers using broadcast
addresses. Included in the discovery packet is a unique transaction ID (xid). A listening DHCP server
sends an offer message containing the xid sent by the client and the suggested network parameters, again
using broadcast addressing. Also encoded in the offer is a unique server ID. The client uses this server ID
when sending a request packet back to the server indicating that it accepts the network parameters that
were offered. Finally, the server ACKS the client using it’s new IP address.

RFC2132 specifies various options that can be requested by the DHCP client. These options can also report
information to the DHCP server. The options supported by the DHCP client are listed in the dhcpcint.h
module. Two reporting options of special interest are 12 and 15 (DHOP_NAME and DHOP DOMAIN).
These two options are passed to Domain Name Servers (DNS) by most DHCP servers. The DHCP client
is contained in the modules dhcpclint.c, dhepcelnt.h, and dhcsetup.c.

Client

DHC_DISCOVER() Broadcast Discover messg (xid = 12[34)>
DHC_UPCALL() 3
@]dcast Offer messg (xid=1234)

DHC_EXTRACT_OPTS()

Broadcast Request messg (xid = 123[>
DHC_REQUEST()
DHC_SETIP() @]dcast ACK messg (xid=1234)

Figure 5. DHCP Transaction

Server

The netstatic[] structure must be cleared to zero before calling dhc_setup() to start the DHCP transactions.
If not, the DHCP client attempts to renew whatever IP address is in the netstatic[] structure. This is a valid
process only if the IP address in the netstatic[] structure was originally provided by the DHCP server.

Advanced ColdFire TCP/IP Clients, Rev. 0

6 Freescale Semiconductor

3.1 DHCP Client API

void dhc_setup(void)
 Initializes the DHCP client. The client attempts to acquire an IP address for 30 seconds, then fails.
The function does not return until an IP address is acquired (DHCP in the BOUND state) or the
timer times out. The 30 second timeout is specified in the dhc_setup() function in dhcsetup.c. The
timeout is hardcoded in a while loop about % of the way into the function (look for TPS).

— while (((cticks - dhcp_started) < (30*TPS)) &&
— (dhc_alldone() == FALSE))

int dhc_second(void)
» This function is in dhepclnt.c. It must be called once each second to support the DHCP
specification for lease times and IP renews and expirations fully.

4 DNS Client

The DNS client communicates with the DNS (domain name server). The DNS system translates domain
names into [P addresses. The DNS protocol is described in RFC1035. DNS can use UDP or TCP, with port
53. The DNS protocol is stateless. All the information is contained in a single message. This message is

fully documented in RFC1035. Table 2 displays the DNS message.

Table 2. DNS Message

Question The question for the name server

Answer Resource record (RR) answering the question
Authority RR's pointing toward authority

Additional RR's holding additional information

The DNS client is enabled by setting the DNS CLIENT macro to 1 in the ipport.h file. The DNS client is
maintained by calling the dns_check() function every second to keep the DNS cache up to date.

The DNS client must be initialized by filling the dns_servers[] array with the IP addresses of DNS name
servers. The dns_servers array[] is declared globally in dnsclnt.c. Any unused entries should be filled with
ZEros.

To use the DNS client, simply call an API function. The first time a name translation is requested, you must
use the dns_query, dns_query_type, or gethostbyname functions. Each of these functions inserts the name
and returned IP address into a cache. After the query is performed once, the dns_lookup() function can be
used to get the information from the cache.

4.1 DNS Client API

int dns query(char * name, ip addr * ip ptr)
* Requests a host name to IP address translation

* The name parameter is the host name string. The ip_ptr will be filled in with the IP address if
available.

* Returns 0 on successful translation; otherwise, it returns an error number.

int dns query type(char * name, char type, struct dns querys ** dns ptr)

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 7

* Requests a specified type of data from the name server.
— Types: DNS TYPE QUERY // Type value for question
— DNS TYPE IPADDR // Type value for IPv4 address
— DNS TYPE AUTHNS // Authoritative name server
— DNS TYPE ALIAS // Alias for queried name

void dns_check(void)
» Should be called once a second to support DNS timeouts and retries

int dns lookup(ip_addr * ip, char * name)
* Looks in DNS cache for name-to-I1P address translation.

e If found in cache, returns 0.

struct hostent *gethostbyname (char * name)
+ Standard API for name translation. Returns pointer to hostent structure on success, NULL on
failure. Hostent is defined in dns.h.

4.2 DNS Usage Example

// url is a NULL terminated string containing the complete url
// The host name can be a dot notation ip address, or a Domain name
// example 75.18.69.29/index.html
// or www.emgware.com/index.html
// The parse ipad function returns a 0 if the string contains a ip address in dot notation
cp = parse_ipad(&ipaddr, é&snbits, (char *)url);
// Is it a ip address?
if (cp)
{ // String is not a ip address
// Pre-process string to eliminate any prefix (http://) and anything after domain name
// Copy domain name only to allocated buffer;
temp buffer = (unsigned char *)npalloc(strlen((char *)url)+10);
if (temp buffer)
{
temp buffer (0) = 0; // 1in case

// The preprocess_url function copies only the domain name into temp buffer.
(void)preprocess_url(temp_buffer, url) ;
ipaddr = 0;

// We will make multiple attempts at connecting to the DNS server
for (1i=0; i<EMG _HTTP CLIENT DNS SEARCH TIME SECS; i++)
{

tk_sleep(200);

// Send DNS client only the domain name (www.freescale.com)
test = gethostbyname ((char *)temp buffer);

if (test != NULL)

{
// IP address returned from DNS

ulp = (unsigned long *)test->h addr 1ist([0);
ipaddr = *ulp;
break;

Advanced ColdFire TCP/IP Clients, Rev. 0

8 Freescale Semiconductor

npfree (temp buffer);

if (!ipaddr)
return (EMG_HTTP CLIENT CONNECT ERROR DNS) ;

else
return (EMG HTTP CLIENT CONNECT ERROR ALLOC) ;

5 Advanced ColdFire TCP/IP Client Design—Zero Copy

The ColdFire TCP/IP stack supports two methods of client/server design. The first method uses a BSD
sockets-like interface referred to as mini-IP. Client/server design using the mini-IP API is discussed in
detail in ColdFire TCP/UDP/IP Stack and RTOS, AN3470. AN3470 also covers the complete TCP/IP

stack and how to configure it.

This section covers designing a TCP/IP client using a minimum amount of RAM, while increasing
performance. This is accomplished by using the zero-copy API, which gives you direct access to the
TCP/IP stack.

The tradeoft for the performance and resource advantages is code complexity. Writing clients or servers
using the mini-IP API is easier than using the zero-copy API, especially if you are familiar with BSD
sockets.

5.1 ColdFire TCP/IP Zero-Copy API

PACKET tcp pktalloc(int datasize)

» Allocates a packet buffer by calling pk alloc(datasize+headersize). Headersize is hardcoded to 54
bytes when the mini_ip macro is defined. pk_alloc kicks out a request for a packet bigger then
bigbufsiz, so datasize must be less then (bigbufsiz — 54). The PACKET returned is a pointer to a
structure of type netbuf.

int tcp send (M SOCK so, PACKET pkt)

» Send a packet allocated by tcp _pktalloc. The application should copy its data to *pkt->m_data and
the number of bytes to pkt->m_len. Returns 0 if everything OK, and a error code for failure. Error
codes can be found in msock.h. If a 0 is returned, the stack owns the packet and frees it after
sending. If an error message is returned, the application still owns the packet and must return it.

PACKET tcp recv (M SOCK so)

» Returns the next packet the socket receives. Packet data is pointed to by pkt->m_data, with data
length in pkt->m_len. The application must free the packet after it is done processing the data.
Returns pointer to netbuf structure after packet is received, or null if no packet received and socket
is non-blocking.

void tcp pktfree (PACKET p)
» Frees netbuf pointed to by p.

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 9

M SOCK m_socket
» Allocates a socket structure. The socket defaults to blocking. Returns a MSOCK structure if okay,
null if error.

struct sockaddr in

{

short sin family;
u_short sin port;

struct in_addr sin_ addr;
char sin zero([8);

» The sockaddr in structure is used extensively by the TCP/IP stack API. sin_family must be set to
AF _INET. sin_port is the 16 bit port number. sin_addr is the 32 bit IP address. sin_zero[] is not
used.

int m close (M SOCK so)

* Closes any open connections on the socket, and releases the socket.

int m connect (M SOCK so, struct sockaddr in * sin, M CALLBACK (name))

+ Starts the connection process to a server. The m_connect function attempts to connect to the IP
address and port specified in the sockaddr _in structure. If the socket is flagged as blocking,
m_connect does not
return until a timeout defined by TCPTV_KEEP_INIT (in mtcp.h) which defaults to 75 seconds.
If the socket is flagged as non-blocking by the m_ioctl function then m_connect returns
EINPROGRESS. When the socket is flagged as non-blocking, the M_ CALLBACK parameter is
used to signal a completed connection, by calling the M_ CALLBACK function.

The m_connect function returns the error codes specified in the file msock.h. The MSOCK typedef
is a pointer to a msocket structure:

struct msocket

{

struct msocket * next; // queue link

unshort lport; // IP/port describing connection, local port
unshort fport; // far side's port

ip addr lhost; // local IP address

ip addr fhost; // far side's IP address

struct tcpcbh * tp; // back pointer to tcpcb

struct m_sockbuf sendqg; // packets queued for send, including unacked
struct m_sockbuf rcvdg; // packets received but undelivered to app

struct m sockbuf oosg; // packets received out of sequence

int error; // last error, from BSD list

int state; // bitmask of SS_ values from sockvar.h

int so_options; // bitmask of SO_ options from socket.h

int linger; // linger time if SO LINGER is set

M CALLBACK (callback) ; // socket callback routine

NET ifp; // iface for packets when connected

char t template[40); // tcp header template, pointed to by tp->template
void * app_data; // for use by socket application

Advanced ColdFire TCP/IP Clients, Rev. 0

10 Freescale Semiconductor

5.2 The Callback Function

The stack's TCP state machine contains hooks to call user functions under certain conditions. These hooks
are referred to as callbacks. The callback function provides an asynchronous method of getting
information from the stack, similar in concept to a interrupt.

The callback function is called directly from the TCP state machine, so it is important that the callback
function contains no sleeps or long delays. The callback function should be treated as an interrupt service
routine (ISR), although it is not always called under the context of a interrupt.

The application provides the address for the callback function in the call to m_connect. The address of the
function is stored by the stack in the socket structure. The callback function declaration is shown below.

int wget tcp callback(int code, M SOCK so, void * data)
When the callback function is called, it is passed a code identifying the reason it was called, a socket
handle, and a data pointer. The data pointer is of type void, because it can point to different types of data

depending on the code being reported. Not all codes provide data. The callback function is called under
the conditions shown in Table 3.

Table 3. Callback Function Codes

Code So Data Description
M_CLOSED Handle Null Socket was closed.
M_OPENERR Handle Null Not Used
M_OPENOK Handle Null Connection to foreign host has been made.
M_TXDATA Handle Null Data sent has been ACK'd by remote host.
M_RXDATA Handle Packet Structure |Indicates data received.

5.2.1 The Packet Structure

When a packet is received, the callback function is called with the void data * pointing to a PACKET
structure. The PACKET structure is of type netbuf. Most of the data in the PACKET structure is not needed
by your application. The two key elements are m data and m_len.

* m_data—Points the actual user data in the packet.

* m_len—The length of the data.

typedef struct netbuf * PACKET;
struct netbuf

{

struct netbuf * next; // queue link

char * nb buff; // beginning of raw buffer

unsigned nb blen; // length of raw buffer

char * nb _prot; // beginning of protocol/data
unsigned nb_plen; // length of protocol/data

long nb tstamp; // packet timestamp

struct net * net; // the interface (net) it came in on, 0-n
ip addr fhost; // IP address asociated with packet

unsigned short type; // IP==0800 filled in by recever (rx) or net layer. (tx)
unsigned inuse; // use count, for cloning buffer

unsigned flags; // bitmask of the PKF_ defines

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 11

#ifdef MINI TCP // Mini TCP has no mbuf wrappers, so:
char * m data; // pointer to TCP data in nb buff
unsigned m len; // length of m data
struct netbuf * m_next; // sockbuf que link

#endif /* MINI TCP */

struct ip socopts *soxopts; // socket options

b

5.2.2 Example of Accessing Data from Packet in Callback Function

PACKET pkt; // pkt is a pointer to a netbuf structure

// pkt->m len = Number of Bytes Received
// pkt->m data = Data Buffer
for (i=0; i<pkt->m len; i++)
ns printf(lpio, %c, pkt->m datafli));

5.2.3 Callback Function Return Value

The callback function returns a value of zero or not zero. The stack ignores the callback's return function
in every case except the M_RXDATA code. If the callback function returns a zero, the stack releases the
packet immediately after the callback returns.

This is important because if the stack releases the packet immediately, the packet is no longer available to
be read by a tcp_recv or a m_recv function. If the intent is to process the data directly in the callback, it
returns zero. If the intent is to wake-up another task to process the data with a tcp_recv or m_recv, the
callback must return a non-zero value.

5.2.4 Callback Function Example

//*********************************k***********k*********************************

// int wget tcp_callback(int code, M SOCK so, void * data)

//

// This function is called directly from the TCP state machine.

// The code is set based on the state the TCP stack was in when this function
// was called. Data is cast as void, because it points to different types

// of data depending on the code.

//

// M _CLOSED - Indicates that the socket was closed.

// so = Socket handle

// data points to NULL

//

// M OPENERR - Not Used

//

// M _OPENOK - Indicates a connection to the foreign host has been made
// so = Socket handle

// data points to NULL

//

// M_TXDATA - Indicates Data sent by us has been ACK'd by remote host
// so = Socket handle

// data points to NULL

//

Advanced ColdFire TCP/IP Clients, Rev. 0

12 Freescale Semiconductor

// M_RXDATA - Indicates data received

// so = Socket handle

// data points to PACKET structure

// If 0 is returned, the stack frees the packet.
// If !0 is returned, USER MUST FREE PACKET!!!!!

//***

int wget tcp callback(int code, M SOCK so, void * data)
{

PACKET pkt;
int i, k;
int e = 0;

switch (code)

{
case M OPENERR:// Not Used
break;

case M OPENOK:// Indicates a connection to the foreign host has been made
break;

case M CLOSED:// Indicates that the socket was closed
sclose = 1;

break;

case M _RXDATA: // Indicates data received
srx = EMG HTTP CLIENT RX TIME SECS;
pkt = (PACKET)data;

// pkt->m len = Number of Bytes Received
// pkt->m data = Data Buffer
// We need to return 0, so stack releases packet
for (i=0; i<pkt->m len; i++)
{

ns printf(lpio, %c, pkt->m datafli));

k = emg content length filter (pkt->m datali),

&filter index, &filter length);
if(k == 3) sclose = 1;
k

if (filter length)
{
filter length--;
if (filter length == 0)

sclose = 1;
}
}

}

break;
case M TXDATA: // Indicates Data sent by us has been ACK'd by remote host

break;
default:
dtrap () ; // not a legal case
return O;

}
USE VOID (data);
return e;

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 13

5.2.5 Connecting to a Remote Server Using the Zero-Copy API

The memory saving when using the zero-copy API is derived from the direct access to the packet buffers
that the API provides. Normally, you would create the data in a buffer, then call the m_send function to
send the data. The m_send function must then copy the data from the user buffer to the packet buffer.
Almost twice the amount of RAM is required to perform the operation.

With the zero-copy API, you must allocate a packet buffer and insert your data directly into the packet.
This eliminates the need for a user buffer when transmitting. The RAM advantage when receiving depends
on the application. The bigger advantage of zero-copy when receiving is in the callback function. By
getting a interrupt after a packet is received, the packet can be processed quickly, and the buffer freed as
soon as possible. The faster packet buffers can be freed, the less that are needed. This results in an indirect
savings in RAM and a direct increase in performance.

Steps required to connect to a remote server:

1. Create a socket by calling m_socket().

emg tcp communication socket= m_socket();
2. [Initialize a sockaddr_in structure with a IP address and port.

// Init a socket structure with server Port Number
emg tcp sin.sin addr.s addr = ipaddr;
emg tcp sin.sin port = port;
3. Callm_connect with the socket, a pointer to the sockaddr_in structure, and a pointer to the callback
function.

// Socket is blocking. The m connect call blocks until it connects.
e = m_connect (emg tcp communication socket, &emg tcp sin, cb);
if(e > 0)
{
e = EMG_HTTP_CLIENT CONNECT ERROR CONNECT;
m close(emg tcp communication socket);

5.2.6 Sending Data Using the Zero-Copy API

The following steps are required to send data using the zero-copy API:

1. Allocate a packet buffer large enough for the data, using the tcp_pktalloc function.

for (i=0; i<EMG HTTP CLIENT PACKET WAIT SEC; i++)
{
pkt = tcp pktalloc(llength);
if (pkt)
break;
tk_sleep (EMG_HTTP CLIENT TK SLEEP SEC);
}
2. Copy user data into the packet buffer

// Point buff to data section of packet
buff = (unsigned char *)pkt->m data;

// Build GET request with url and extension, append the HTTP header
temp = emgstrcpy ((unsigned char *)http get request, buff, &buff[llength));

3. Set length of data in packet buffer

Advanced ColdFire TCP/IP Clients, Rev. 0

14 Freescale Semiconductor

// Set length section of packet to (int) (temp-buff)
pkt->m len = (unsigned int) (temp-buff);

4. Send data using tcp_send function

// Send data
emg = tcp send(emg tcp communication socket, pkt); /* pass packet to tcp layer */

5. Iftcp_send fails, you must free the packet.

// If tcp send returns an error, we need to release the packet.
if (emq)

tcp pktfree (pkt);
return (emg) ;

6 HTTP Client Firmware

The HTTP client is able to read web pages and XML data from the internet using a ColdFire processor.
The HTTP client uses the DHCP client to automatically aquire a IP address and other TCP/IP information
including the IP addresses of any DNS server. Then, the HTTP client uses the DNS client to translate any
user-provided URLs to IP addresses.

The HTTP client uses the GET method to request a page from the server. Along with the GET request is
the HTTP header. The HTTP header is hardcoded in the HTTP client by constant strings declared in the
file emg_http client.c.

6.1 The HTTP GET Request Header

The header is produced by combining the string constants:

const unsigned char http get request[] = “GET” ;

const unsigned char http compatability[] = “HTTP/1l.1\r\nAccept: */*\r\nAccept-Language:
en-us\r\nUser-Agent: Mozilla/4.0\r\n”;

const unsigned char http host[] = “Host:” ;

const unsigned char http keep alive[] = “Connection: Keep-Alive\r\n”;

const unsigned char http done[] = “\r\n”;

http get request[]

— Followed by the filename portion of the requested URL (everything after /).

http compatability/[]

— The compeatibility string tells the HTTP server the language we accept and the browser type we
support.

http host[]

— The host portion of the header is required by the HTTP specification. Most web servers fail if
the host string is not in the header. The Apache server replies with a illegal header error. The
host string must contain the name of the host server the client is connecting to. For example:
www.emgware.com or www.freescale.com.

http keep alivel[]

— The keep-alive string is only sent if the HTTP client wants to keep the TCP/IP connection alive
after the file is received.

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 15

http donel]
— The final line of the HTTP header is a blank line. Indicating to the server that there are no more
fields.

6.2 HTTP Client Files

emg_http client.h
» external function declarations and HTTP client constants.

#define EMG _HTTP CLIENT TK SLEEP_SEC 200
* Number of cticks for a second (defined in main.c)

#define EMG _HTTP CLIENT PACKET WAIT SEC10
* Max number of seconds to wait for packet alloc to complete.

#define EMG HTTP CLIENT DNS SEARCH TIME SECS 10
* Max number of seconds to wait for DNS reply

#define EMG_HTTP CLIENT RX TIME SECS 30
* Max number of seconds to wait for RX data to terminate before closing.

emg http client.c
* The actual HTTP client.

wget byEricGregori.c
* A command line driven example of how to use the http client. The wget command is added to the
TCP/IP stack menu system. This allows you to get web pages directly from the serial port.

7 HTTP Client API

7.1 Function emg_HTTP_client_connect

int emg HTTP client connect (unsigned char *url,
unsigned short port, M SOCK *shandle,
M _CALLBACK (cb)
Where Equals
url Pointer to URL character string
port Remote port number (80 for HTTP)
shandle Socket handle populated by function
cb Pointer to callback function
Returns If
0 Success
Non-zero Error. Codes defined in emg_http_client.h

The HTTP_client_connect function establishes a TCP/IP connection with the remote server. The URL
string can contain an IP address in dot notation 75.18.69.29 or a domain name. The IP address or the
domain name can be followed by a filename after a /. There is no hard limit on url sizes, although the GET
header with URL must fit in a single packet (1536 bytes).

Advanced ColdFire TCP/IP Clients, Rev. 0

16 Freescale Semiconductor

Sample URLs:
+ www.freescale.com
+ 75.18.69.29
* www.emgware.com/appnotes.htm
» 75.18.69.29/appnotes.htm

7.2 Function emg_HTTP_client_close

void emg HTTP client close (
M SOCK emg tcp communication socket)

Where Equals

M_SOCK Socket handle returned by connect

7.3 Function emg_HTTP_client_get

int emg HTTP client get (unsigned char *url,
unsigned char *extension,
M SOCK emg tcp communication socket,
unsigned char keepalive)

Where Equals
url Pointer to URL character string (same as connect)
extension Pointer to a string that is added to the end of the url

M_SOCK Socket handle returned by connect

keepalive 0 to close connection after receiving file
1 to keep connection alive after receiving file
Returns If
0 Success

The HTTP_client get function sends the GET request followed by the HTTP header to the remote server.
The data returned by the server is sent to the user application via the callback function pointed to in the
connect call. Data is sent to the callback one packet at a time, so a typical web page actually gets many
data callbacks.

The extension string is for search strings or any other type of changing data in the URL. This allows you
to specify a constant url and only change the dynamic portion at the end of the URL (for example, search
parameters for a search engine).

The keep-alive flag is zero for normal operation. When it is zero, the HTTP client does not send the

keep-alive request in the HT TP header. This allows the server and the client to close gracefully after a file
is transferred. If the keep-alive flag is set, the keep-alive request is sent to the server, and it does not close
after the file is sent. This allows another file to be downloaded without calling the connect function again.

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 17

7.4 Function emg_content_length_filter

int emg content length filter(unsigned char data,
unsigned int *index, unsigned int *length)

Where Equals
data 1 byte of data from packet
index Pointer to unsigned integer. Set variable (not

pointer) to zero before calling filter the first time

length Pointer to number of bytes to download after
header. Set variable (not pointer) to zero before
calling filter the first time.

Returns If
0 Nothing found yet
1 Length found
2 Terminator found
3 Zero length found

The content length_filter function is a state machine that filters out the content length from a HTTP
header. As the user application receives packets from the server, this function is called for each byte in the
packet (until a two or three is returned). The length variable is populated if a content-length: field is found
in the HTTP header. The length can determine when all the data has been received. No action has to take
place if a one is returned, the length variable is not corrupted.

To filter out the header, send packet bytes to filter while your application ignores these bytes, until the filter
returns a two or three. The filter always returns a two or three, assuming a valid (correctly terminated)
HTTP header. Until the filter sees the terminator, it returns zero (or one after the length variable is
populated).

The index variable is a state variable used by the filter. Your application should not alter the index variable,
other than to initialize it to zero before calling the filter for the first time. The length variable should also
be set to zero before calling the filter the first time.

8 Wget Command — Example of Using the HTTP Client

The wget command is a command often found in Linux distributions that transfers files using the HTTP
protocol. The wget command is a console based HTTP client. Using the menuing system provided by the
ColdFire TCP/IP stack (explained in AN3470) and the HTTP client, wget functionality can be added to
the ColdFire TCP/IP stack.

command:
wget url

Where url is a string containing the domain name (or ip address in dot notation) followed by a /'
and a filename (or any other legal url parameters).

Advanced ColdFire TCP/IP Clients, Rev. 0

18 Freescale Semiconductor

Example url strings:

The link to download the base software for this application note:

— http://www.freescale.com/webapp/sps/download/license.jsp?colCode=AN3470SW &location=
null&fpsp=1

* The link to AN3470
— http://www.freescale.com/files/microcontrollers/doc/app note/AN3470.pdf?fpsp=1
NOTE

The standard menu system command buffer is limited to 32 characters. To
increase the menu systems character buffer, make the following changes:

In the file uart.c set UART RXBUFSIZE to whatever size you want the command buffer to be.

#ifndef UART RXBUFSIZE
#define UART RXBUFSIZE

256// command buffer is 256 bytes
#endif

8.1 wget Usage Examples

=101

File Edit Setup Cortrol ‘Window Help

rFy
unning GColdFire TCP-/IP-Lite stack 'J

opyright 2006 by Freescale Semiconductor Inc.

gse of this software iz controlled by the agreement
ound in the project LICENSE.H file.

uilt on Jul 22 2087 17:88:55

eap size = 26624 bytes

IP Address a
ateway a
ask a

theraddr = BA:19:B?:55:AC:2F

tarting ints.
alling netmain{>...
InterNiche ColdFireLite ICP/IP for Coldfire,. v3.8

opyright 1997-2806 by InterNiche Technologies. All rights reserved.
reparing device for networking

thernet started,. Iface: @, IF: B.8.8.8

IP address of : B8.8.8.8

cguired IP address via DHCP client for interface:

IP addrezs : 192_168.1.138

ubnet Mask: 255%.255.255.8

ateway : 192.168.1.1 j
INET > bt

Figure 6. Stack Bootup and Command Prompt

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 19

Tera Term - COML ¥T B] |

File Edit Setup Control WWindow Help

eap size = 26624 hytes

IPF Addreszs a
ateway a
ask a
theraddr = BA:19:B?:55%:AC:2F

tarting ints.
alling netmain{>...
InterNiche ColdFireLite TCP-/IP for Coldfire. v3.8

opyright 1997-2886 by InterMiche Technoleogies. All rights reserved.
reparing device for networking

thernet started, Iface: @, IP: B.6.8.8

IF address of : B8.8.8.8

cquired IP address via DHCP client for interface:

IP addres=s = 192.168.1_138

ubnet Mask: 255.255.2%5.8

ateway : 1922.168.1.1

TMET > uwget

*ERROR! Usage: uwget url
INET> B j

Figure 7. wget Usage

I Tera Term - COM1 ¥T =0 x|

Flle Edit Setup Control Window Help

THET > ;I
INET > wget wuww.emgware.comsappnotes.htm

INFO Connecting to Server — connected
HTTF-1.1 288 0K

Date: Tue. 24 Jul 2007 @3:34:19 GHMT

Cerver: Apache-s2.8.47 (Fedoral
Last—Modified: Sat. 38 Jun 28@7 13:25:23 GMT
ETag: "11F699-28Bf-8727h6cB"

Accept—Ranges:- hytes

Content-Length: 655

Connection: close

Content—Type: textshtml; charset=UTF-8

TITLE>Appnotes and white Papers< TITLE>

~+HEAD>

BODY »

CENTER>

FONT size=""+4" color="blue'">Appnotes and White Papers<{ FONI>

~CENTER >

DL>

DI>{a href="+files/pubsAppNotes AN3455.pdf " >ColdFire HTTP Server{/a>{ DT>
gg)ThiS Appnote covers the FreeScale HITP server written by Eric Gregorid~ DD

DI>{a href="+files/pubsAppHNotes - AN3478.pdf ">ColdFire TCP-/UDP-/IP stack and RTOS5<
ar DT>

DD*This appnote covers the ColdFire TCP/IP stack and RTOS.<-DD>

DD>1t covers how the stack works,. how to configure the stack. how to use the st
ack,. </ DD>

DD*and how to port the stack to other ColdFire processors.<-DD>

| g

#DL>

~BODY >

~#HTHL>

INET > El

Figure 8. Successful File Transfer

Advanced ColdFire TCP/IP Clients, Rev. 0

20

Freescale Semiconductor

e
File Edit Setup Control ‘Window Help
Y
INET > wget www.emgware.comsappnotes/index.htm -J
INFOt Connecting to Server — connected
HITF-1.1 484 Wot Found
Date: Tuwe, 24 Jul 2887 B3:31:36 GHMT
Server: Apache-s2.8.47 (Fedora>
Content-Length: 216
Connection: close
Content—-Type: textshtml; charset=iso—8859-1
*DOCTYPE HTML PUBLIC “-~/IETF~~DID HTHML 2_8.--EN'>
htnl><{head>
title>4B4 Mot Found<{-/title>
shead><hody>
hi*Mot Found<{~hl>
p>The requested URL Aappnotessindex.htm was not found on this server.{ p>
sbody><{ html>
IMNET >
IMET >
INET >
IMNET >
IMET > j
INET > hd
Figure 9. 404 File Not Found Example
ol
File Edit Setup Control ‘Window Help
Y
INET > wget http: /A www.enguare.com -J
INFO! Connecting to Server — connected
HTITF-1.1 288 OK
Date: Tue, 24 Jul 2087 BA3:38:18 GMT
Server: Apache~2.8.47 (Fedora’
Last—Modified: Wed. 18 Jul 2887 BB:28:19 GHMT
ETag:= "11f6%a-aa5-ch4aaec@”
Accept—Ranges: hytes
Content-Length: 2725
Connection: close
Content—Type: textshtml; charset=UTF-8
TITLE>Eric’s Software Firmuware webhPage<{- TITLE>
~+HEAD>
BODY >
CENTER>>
a href="/files/pubseng_smac_apps-robosapien">{IMG SRC="jpgl.jpg">< a>
a href="moviel UMU">{IMG SRC="jpgd.jpg"">< a>
#CENTER>
CENTER> hd|

Figure 10. URL With Protocol Type

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 21

=181

File Edit Setup Comtral ‘Window Help

IMET > wget ?5.18_69.2%9-/appnotes_htm

t INFO* Connecting to Server — connected
HTTP-1 .1 288 0K

Date: Twe, 24 Jul 2807 B3:41:53 GMIT

Server: Apache~2.0.47 (Fedora>
Laszt—Modified: Sat,. 38 Jun 2887 13:25:23 GMT
ETag: “11f697-2Bf-8727h6cA"

Accept—Ranges: hytes

Content—-Length: 655

Connection: close

Content-Type: text/html; charset=UTF-8

TITLE>Appnotes and white Papers<{/TITLE>

~HEADZ

BODY >

CENTER>

FONT zize="+4"" color="blue">Appnotes and White Papers

~CENTER>

DL>

DT >{a href="sFiles/pubsAppMotesz -AN3455_pdf'">ColdFire HITPF Server{-a>{-DT>
32>Ihis Appnote covers the FreeScale HITP server uwritten by Eric Gregori<-DD>
D;Z(Srgref="/files/puh/ﬂppNutes/ﬂH34?B.pdf")CnldFiPe TCP-UDP-IP stack and RTOS<
aIs

DD>This appnote covers the ColdFire TCP-/IP stack and RTIO0S5.<{-DD>

DD>It covers how the stack works, how to configure the stack, how to use the st
ack, {-DD>

gg)and how to port the stack to other ColdFire processors.<.DD>

#DL>

~BODY >

#HTHL>

INET> B Z|

Figure 11. Using a Dot Notation IP Address

9 Really Simple Syndication (RSS)

RSS feeds are available everywhere on the internet. They convey information such as local weather, search
engine results, DVD queue information, DVD new releases, headline news, and sports news. The idea
behind the RSS feed is to deliver textual, dynamic information in a standard simple format.

RSS originated in 1999, with the idea to provide content in a simple, easy-to-understand format. Instead
of describing a document in HTML, RSS feeds use XML to describe data. A RSS feed is simply a XML
document containing data. The methods used to convey the data within the XML document are described
in the RSS 2.0 specification. All RSS files must conform to the XML 1.0 specification. RSS feeds
generally use HTTP as the transport mechanism.

9.1 Extensible Markup Language (XML)

XML is a language that describes and parses information and is similar to structures in C. Data is organized
into elements, which are surrounded by a start and end tag. End tag names must be the same as the start
tag names. End tags are identified by the addition of a / before the tag name. The name in the start and end
tags gives the element's type.

The XML 1.0 specification can be found at http://www.w3.org/TR/REC-xml

Advanced ColdFire TCP/IP Clients, Rev. 0

22 Freescale Semiconductor

http://www.w3.org/TR/REC-xml

9.1.1 Tags

An example tag is as shown below.
<TITLE>Advanced ColdFire TCP/IP Clients</TITLE>
TITLE is the element type, <TITLE> is the start tag, and </TITLE> is the end tag. The data is between the

tags. Like a C data structure, the data is associated with the type. The data between the start and end tags
is referred to as the element's content.

Elements can contain other elements, providing a method of grouping data of different type under a single
name. Like a C structure, the particular piece of data is referenced by specifying a path to the data. For
example:
<APPNOTES>
<BYEG>
<AN3455>ColdFire HTTP server</AN3455>
<AN3470>ColdFire TCP/IP Stack</AN3470>
<AN3492>ColdFire USB Stack</AN3492>
</BYEG>

</APPNOTES>

9.1.2 Special Characters and Escape Sequences

The & , <, and > characters are special XML characters. These characters define XML tags and escape
sequences. Escape sequences specifiy a character with a code as opposed to a single symbol. Escape
sequences start with an ampersand and end with a semicolon. To use these characters as an element’s
content, use the following substitutions:

Table 4. Special Characters

Character Escape Sequence
< <
&gat;
& &

9.1.3 CDATA Sections

The CDATA section is the exception to the rule in XML. Any text specified in a CDATA section is ignored
by the XML parser, allowing the use of special characters without being escaped. A CDATA section starts
with a <!ICDATA[string, and is terminated with a))> string. Anything between the brackets is ignored by
XML. For example:

<I[CDATA][character data here is ignored by XML parser))>
<I[CDATA[<THIS IS NOT_ A TAG> <))>

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 23

Because the text between the brackets is ignored by the XML parser, the tag and the escape sequence are
ignored, and are interpreted as text or character data.

9.1.4 Finding the Text or Character Data in a XML Document

From the XML 1.0 specification, all text that is not markup constitutes the character data of the document.
That includes all the text between the brackets in a CDATA section, and any text not between <> brackets
in the main body. Escape sequences in the main body represent a single piece of character data.

To filter the character data from a XML document, remove all the tags and < > brackets. Then, translate
the escape sequences into actual characters.

9.1.5 Sample XML File

In the sample XML document below, data is encapsulated by tags, which describe the data. It resembles a
C structure. To find the desired data in a XML document, look for the start and end tags with the name of
the type of data you want. The actual data associated with the desired type is between the tags.

From: http://www.weather.gov/data/current_obs/KUGN.xml

<?xml version=1.0 encoding=IS0-8859-1 2>

<current observation version=1.0 xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation=http://www.weather.gov/data/current obs/current observation.xsd
>

<credit>NOAA's National Weather Service</credit>

<credit URL>http://weather.gov/</credit URL>



<suggested pickup>15 minutes after the hour</suggested pickup>

<suggested pickup period>60</suggested pickup period>

<location>Chicago / Waukegan, Waukegan Regional Airport, IL</location>
<station 1d>KUGN</station id>

<latitude>42.420</latitude>

<longitude>-87.870</longitude>

<observation time>Last Updated on Jul 28, 10:52 am CDT</observation time>
<observation time rfc822>Sat, 28 Jul 2007 10:52:00 -0500 CDT</observation time rfc822>
<weather>Overcast</weather>

<temperature string>73 F (23 C)</temperature string>

<temp f>73</temp f>

<temp c>23</temp c>

<relative humidity>81</relative humidity>

<wind string>From the Northeast at 13 Gusting to 21 MPH</wind string>
<wind dir>Northeast</wind dir>

<wind degrees>30</wind degrees>

<wind mph>12.65</wind mph>

<wind gust mph>21</wind gust mph>

<pressure string>29.98 (1014.1 mb)</pressure string>

<pressure mb>1014.1</pressure_mb>

<pressure_ in>29.98</pressure_in>

<dewpoint string>67 F (19 C)</dewpoint string>

Advanced ColdFire TCP/IP Clients, Rev. 0

24 Freescale Semiconductor

http://www.weather.gov/data/current_obs/KUGN.xml

<dewpoint f>67</dewpoint f>

<dewpoint c¢>19</dewpoint c>

<heat index string>73 F (23 C)</heat index string>

<heat index f>73</heat index f>

<heat index c>23</heat index c>

<windchill string>NA</windchill string>

<windchill f>NA</windchill f>

<windchill c>NA</windchill c>

<visibility mi>10.00</visibility mi>

<icon url base>http://weather.gov/weather/images/fcicons/</icon url base>
<icon url name>ovc.jpg</icon url name>

<two_day history url>http://www.weather.gov/data/obhistory/KUGN.html</two day history url>
<ob_url>http://www.nws.noaa.gov/data/METAR/KUGN.1.txt</ob url>
<disclaimer url>http://weather.gov/disclaimer.html</disclaimer url>
<copyright url>http://weather.gov/disclaimer.html</copyright url>
<privacy policy url>http://weather.gov/notice.html</privacy policy url>
</current observation>

9.1.6 Problem with XML Documents

The problem with XML documents is the flexibility of the tag names. The creator of the XML document
can use any name to describe the data. A standard is required to standardize the tag names and how data
is associated with type. That standard is the RSS standard.

9.2 RSS Specification

RSS is a dialect of XML. RSS embeds HTML constructs into the XML architecture. RSS also defines a
set group of elements, and a general template using those elements. There are many elements defined in
the specification. This document concentrates on the elements of interest for the RSS appliance.

A typical RSS file is shown below

<channel>
<title>The name of the channel</title>
<1ink>URL to the HTML website corresponding to this channel</link>
<description>Text describing the channel</description>
<item>
< title>Iteml Title</title>
<1ink>URL of item 1</link>
<description>Text for item 1</description>
</item>
<item>
<title>Item2 Title</title>
<1ink>URL of item 2</link>
<description>Text for item 2</description>
</item>
</channel>

The organization of the RSS file can be compared to a newspaper. The channel is the name of the paper,
the items are the articles in the paper, the titles are the article titles, and the descriptions are the article’s
text.

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 25

9.2.1 Sample RSS File

The sample RSS file is the same data as the sample XML file above. The RSS standard defines the title
and description tag names. Those tags contain the data needed. All RSS 2.0 compliant feeds contain title
and description tags.

From: http://www.weather.gov/data/current obs/KUGN.rss

<?xml version=1.0 encoding=IS0-8859-1 2>
<rss version=2.0 xmlns:dc=http://purl.org/dc/elements/1.1/>
<channel>
<title>Weather at Chicago / Waukegan, Waukegan Regional Airport, IL - via NOAA's National
Weather Service</title>
<link>http://www.weather.gov/data/current obs/</link>
<lastBuildDate>Sat, 28 Jul 2007 16:32:11 UT</lastBuildDate>
<ttl>60</ttl>
<description>Weather conditions from NOAA's National Weather Service.</description>
<language>en-us</language>
<managingEditor>robert.bungel@noaa.gov</managingEditor>
<webMaster>w-nws.webmaster@noaa.gov</webMaster>

<item>
<title>Overcast and 73 degrees F at Chicago / Waukegan, Waukegan Regional Airport, IL</title>
<link>http://weather.noaa.gov/weather/current/KUGN.html</1link>
<description>
<! [CDATA[
<img src=http://weather.gov/weather/images/fcicons/ovc.jpg class=noaaWeatherIcon width=55
height=58 alt=Overcast style=float:left; />

))>
Winds are Northeast at 13 Gusting to 21 MPH. The pressure is 29.98 (1014.1 mb) and the humidity
is 81%. The heat index is 73. Last Updated on Jul 28, 10:52 am CDT.
</description>
<guid isPermalLink=false>Sat, 28 Jul 2007 10:52:00 -0500 CDT</guid>
</item>
</channel>
</rss>

9.3 RSS/XML Character Data Filter

To extract the character data (the information you actually want to read) from the RSS stream, all the
metatext must be filtered out. Any HTML that can be processed must be translated and processed. For
instance, a
is HTML for a new line. This would appear as
 in the RSS stream. The filter
must correctly translate
 into a carriage return and line feed. Other HTML tags that are routinely
embedded in character data include paragraph tags <p>and image tags . In the stream these tags
appear as <p> and &It;IMG ...> repectively. The paragraph tab can be translated to a carriage
return and line feed, but the image tag must be ignored unless the embedded system can process images.

Advanced ColdFire TCP/IP Clients, Rev. 0

26 Freescale Semiconductor

http://www.weather.gov/data/current_obs/KUGN.rss

9.3.1 RSS/XML Character Data Filter State Machine

The character data filter is implemented as a finite state machine. The state machine uses only two global
variables, a state variable, and a FILO. The purpose of the FILO is to store previous characters. Each byte
entered into the filter is shifted left into the FILO. The most recent character is at location

filo buff[FILO BUFF_ SIZE-1). The FILO buffer size must be larger then the largest tag name expected.
The FILO buffer size is set with the FILO BUFF_SIZE macro.

#define FILO BUFF SIZE 32

States:

STATE_ZERO

STATE TAGSEARCH
STATE INTAG

STATE PRINT

STATE SKIP
STATE SKIP NON ASCII
STATE SKIP SPACE
STATE CDATA

STATE CDATA PRINT
STATE CDATA SKIP AMP
STATE SKIP_INTAG
STATE IN AMPERSAND

Global Variables:

unsigned char filo buff[FILO BUFF SIZE);
unsigned char state;
unsigned char EMG rss text filter (unsigned char data, unsigned char **tag filter)

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 27

TAGSEARCH

\ Tag found *’

SKIP_INTAG
Tag found >’ |
INTAG]
EndTag found
< &
&
<0x21
NON_ASCII < SKIP alt IN_AMPERSAND \
<0x20
|Z| &
<
<0x20
>0x20 &
&agt;
&agt;
< & SKIP_SPACE
=0x20
CDATA PRINT
‘ >0x20
CDATA_PRINT
>
CDATA

CDATA_SKIP_AMP

Figure 12. Character Data Filter State Machine

Advanced ColdFire TCP/IP Clients, Rev. 0

28

Freescale Semiconductor

The filter takes in a XML or RSS data stream, and a list of tags. It outputs the character data only from the

selected tags. The tag list is a array of pointers to the tag strings the filter should be filtering character data
from.

Normally, the filter returns zero. When the filter processes the > in a tag in the list, the filter returns the
index into the filter array for the tag that it found plus one. For example, after detecting a <title> tag in a

RSS or XML stream the filter returns one. After detecting a <description> tag in a stream, the filter returns
two.

Const unsigned char *tag filter([] =

{
(const unsigned char *)”title”},
(const unsigned char *)”description”},
(const unsigned char *)””}

’

{
{
{
}
Sample tag_filter pointer array

XML or RSS data
stream

l

Character Data filter
TAG_FILTER —0 p
5rrav Finite State Machine

!

Character data
from selected taas

Figure 13. Character Data Filter Usage

9.3.2 Character Data Filter Excercisor PC Application

A PC application is available to assist in verifiying the state machine. The PC application opens the XML

or RSS stream as a file. The stream is passed through the finite state machine filter, and the result is sent
to the console.

// For testing read data from file, and send to filter
EMG init rss text filter;
for(; !feof (input file);)
{
if ((length = fread(temp, 1, PACKET SIZE, input file))==0)
break;
if (ferror(input file))
break;
for (i=0; i<length; i++)
{
ret = EMG rss_text filter(temp[i), (unsigned char **)tag filter);
if(ret) // Print a new line after each tag
printf (\n);

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 29

Using the RSS streams from Section 9.2.1, “Sample RSS File”, the filtered results using the PC excercisor
(filtereing <title> and <description> tags) are shown below.

9.3.3

Command Prompt B] |

D sprojectsheng_rss_parsersDebug>

Inprojectshemy_rss_parsersDebugl
ssnprojectsheng_res_parserslebug>
nprojectshemny_rss_parseprsDebug>
Inprojectshemy_rss_parsersDebugl
ssnprojectsheng_res_parserslebug>
nprojectshemny_rss_parseprsDebug>
snprojectsheng_rss_parsersDebuglemg_rss_parser url kugn.ress

|=a=l1—1—i—l—]—

Hz=z Feed Reader — Uerszion 1.8 i
Written by Eric Gregori

eather at Chicago ~ Waukegan. Waukegan Regional Airport, IL — via NHOAA’=s MNation
al Weather Service

eather conditions from NOAA’s National Weather Serwvice.

NOAA - National Weather Service

Partly Cloudy and 69 degrees F at Chicago ~ Waukegan, Waukegan Regional Airport.,
IL

Winds are Morth at ? Gusting to 17 MPH. The pressure is 30.21 <1822.3 mb> and t
he humidity is 66%. The heat index iz ?5.Last Updated on Jul 28, 18:52 am CDT.
D:sprojectseny_rss_parsersDebugd ﬂ

Figure 14. Filter Results for Kugn.rss Feed

Modified wget Command

The wget command uses the HTTP protocol to get a file from a remote server. In this application, the wget
command has been upgraded to support the character data filter. The new syntax for the wget command is:

wget <tagl><tag2> url

where <tagl> and <tag2> are optional and must be surrounded by <>.

Also, there is no space between tags. The number of accepted tags can be increased using the following

macro:

#define TAG_FILTER SIZE 3

Advanced ColdFire TCP/IP Clients, Rev. 0

30

Freescale Semiconductor

5l Tera Term - COM1 ¥T B] |

File Edit Setup Control WWindow Help

Funning ColdFire TCP<IP-Lite stack ;I

Copyright 2006 bw Fresscale Semiconductor Inc.

=& of this software is_controlled by the agreement
found in the project LICEHSE.H file.

Euilt on Jul 22 2887 I7:@@:E5

Heap size = 28624 butes

IP Address = @
5t eway = a

Mazk a
etheraddr = BB:19:B9:E51AC: 2F

Starting ints
Calling netmainil.
Interiche ColdFirelive TCR-IF for Coldfire, vwE.@

Copyright 1997-2086 bw InterMiche Technologies. ALl rights reserved.
Freparing device for networking
Ethernet started Iface: A, IP: B8.68.8.8
IF address of
ncqulred IF address wia OHCP client for interface:
IP address @ 192.168.1, 167
Gubnet Mask: £58.255. ZEE. &
Gateway 132, 1e2.1.1
IHET: waet httD.//wwu weather.gowsdatacurrent_obs KUGH. uml

tINFO* Connecting to Server — connected
£Puml wersion="1.8" encodin I50-8859-1"72
<current_obseruat ion Wers o
mlnginsd="http: W, wE. oro EEE] o HHLSchena”
Hmlnsinsi=""http: < www. w2, org 2081 -HMLSchema-instance™
wsLinoNamespacetchenalocat ion="http: < W, weather. gov-dat ascurrent_obss
current_pbseryat Lon, ned”
“ZoreditsMOARY s Mational leather SEPULCE(/Cr§d1t>

foredit_URL>http: ~“weather. gous{ credit_URL
£ images”

Lurlrhttp: ~oweather.gows inages daml_logo.gif{-url:
{titlesH0BR’ s Mational Weather Serviced~titlies
X <link*httprsrweather.gowd s Link>
{4 image
<{suggested _pickup>lE minytes after the hourd{ssugaested_pickup?
ssuggester ELCkUD Derlod>68</suggested_ﬁlckun period
% locat ion3Ch icago «~ Waykegan, Waukegan
fetat ton_ idXKUGHI “stat lon
latituderdz, 420 latitude
4 longitude>—87¢, 878 longitudeX
sobservation_timelLast dated_on Jul_28, 2
X {abseruat Lon_t ime_rfoB22¥5at, 28 Jul 2887 1
n_t ime_rfocS22 >
JweatheriFair{ weather>
<temperature strln§>?6 F 124 Cl{stemperature_stringl
Ltemp_f i reds”
<tenp c>24</temp_c>
{relative_humidity}F2< relative_humidi E
fwind_stringsFrom the Mortheast™at 12 MPHY-wind_string:
“wind_dir>Morthesst{ wind_dir>
AWwind_degrees>3BC /wind_degress
“Wind_mpl >11.5</ulnd*m h
4w ind_aust_mph »HA< /ulnd_gus mph
4DrESSUre_SErings2d, 98kguoty (1@14.1 mbl<{ pressure_stringr
Jpressure_mbriBlg, 1</Dressure mb >
Lpressyre_in 29,99 Eressure in
<dewpoint_string>6s C1T dewpoint_stringk
<dewpoint_ F>66</deupolnt F)
fdewpaint_cx19< dewpoint .
fheat_inder_string:ra T26 Cl4-heat_indeu_strings
Lheat” inden_ F>?8</heat index_+3>
sheat” inder_c 264 heat_ inden o>
swindchill stang>Nn</wLndchllL string?
<windchi F>Hn</ulndchlll F>
<uLndchLLl c}HH</uLndch Ll
<UL§lblLLtg Lr18, e ULSLELlLt ix
< locon_ur L ase)http Srweather. gou/ueather/tnages/Fclcons/(/tcon url_baze

=gional Hirport, IL{-locationX

o COT<sobservat ion_time:

52
152rB0 -B568 COT< - obseTwvat (o

A

¥
<lcon url_nameiskc. {gﬁ(/tcon_url_name> .
. o £ anTFlstory_ur tEp: AWl Weather. govsdat a~<obh istory ~KUGH. htm L€ < tw
o_day_hiztory
ob_ url>httD.//uuu NWS. N033,. gou/data/ﬂETﬁR/KUGN lotrtdrob_urly
disclaimer_urlshttp: ~rweather.gov-disclaimer,html<-disclaimer_url>
soopyright_yrlshttpy - weather.gov-disclaimer.htmlsscopyright_uTl>
{privacy_policy_url*httprssweather.gou not ice html< privacy_policy_url>
<~ current_obsertat ion

IMET>

-

Figure 15. Using wget to Read Un-Filtered RSS

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor

31

File Edit Setup Control Window Help

=101 x|

tINFO* Connecting to Server — connected

LMl wersion="1.0" encoding=""I150-2859-1""7>
<current_observat ion weTsion="1.&"
TaminsiREg=Th TR A W, WE, org 286] KNl Schena™
amlnsigs i="http: < www, w2, 0ra-208 1 wMLEchema-instance™
#=LinoMamespaceSchemalocat 1on="httpi - www. weather., gow data current_obss
current_obseryat ion, z=d”
T{eredit:HOAA" s Mational Weather Servicedrsoredit>
§¢redl§_URL>httD://ueather.gou/{/credlt LURL >
image
Lurlrhttp: Aoweather. gons inages anl_logo.alf< yrl>
SritlesHDAA* s Matlonal Weather Serviced-titlied
i <link*httpe //weather goud Sl ink >
</ image

<euggested_pickup*1S minutes after the hourd-suggested_pickupX
LEMaIEste ﬁlckup perLod>68</suggested_ﬁlckup _pEr lod > .
4 Locat Lon egional Alrport, IL<~slocation?

Leago -~ Waykegan, Waukegan
{etat lon_id:ELG </statlon id%

5 lat ituderdz, 4264 lat itude’

<Lonthude> 27, 8?B</Lon itude

Lobgervat ion_timerlast gdated on Jul 28, 2:

. observation_t ime_rfcB22>5at, 28 Jul 2667 13

n_t ine_rfcB22%
iweather XFaird{ weather?
<tehnerature strlng>?6 F (24 Cl<-temperature_string?
Lhemp_f prEsS
<temn c>24</temn_ 2
drelat ive_humidity 724 relat ive_| hudeL E X i
wind_stringsFrom the Mortheast at MPH< #wind_string>
fwind_diriMortheast{ wind_dirx
<Win de rees}SB{/ulnchegrees)

S2_pm COT<-obgervat ion_time>
:52:898 -@588 COT< - obseruwatio

LWin F1.5{ swind _rph

LWin gus riph Hn</ulnd_g mph .
LPressure_ strln?>29.98 quot' Triel4. 1 mbl<{spressure_string>
spressure_mbrlold, 1< pressure_mb>

Lpressyre_in 229,984 ressure in

“dewpolnt_stringr6h (19 Cl¥ dewpoint_stringlk

<dewpoint_f 664 “dewpoint_ F)
Ldewpoint c>19</deu?01n .
theat_indes_stringsra T26 Cl<{<heat_inder_strina®
<heat” inder_f »78< heat_index_§7
sheat_ inden_ c>26</heat index_ck
swindchill_s Lng>Hﬁ</wLndchLlL stringr
swindchill F)HH</w1ndchLlL fr
<windchil [ZeXHA< windch il _c¥
(Ulslbllltg miylB,aad uisiBility_mis
5 “icon_url_Baserhttprsrweather. gou/ueather/lmages/Fctcons/(/Lcon url_base
icon_url_namerskc. fEﬁ</lcon_url_name> .

a hi Ewo aayTﬁLstory W TEp A uW . weather. govsdatasobh istory AKUGH. htm L tw
o_daw_histor
<ob url)http SN NWE . Noas. gov-dat a-METARSKUGH. 1. t=t<~ob_url>

fdisclaimer_url *http: A~ ueather.gow disclaimer, html{/dlsclalmer url>

Loopyright_| url*http:Arweather. gov-disclaimer htmli copyright_u

<privacy_policy_urlrhttprsrweather. gou-not ice.htm - privacy_| Dollcy url»
< ourrent_observat Lon s

INET?> waet <observation_time? http: s www.weather.gow-datascurrent_obs KUEN.uml

IMFO Connecting to Serwver — connected

Last Updated on Jul 28, 2:52 pm COT

Sat, 28 Jul 2667 14:52:88 -65688 COT

INET) w3st {tenperature_stringd httpl wWww.weather.govsdata-current_obs KUGM. uml
tINFOY Connecting to Server - connected

=)

E (24 C1
IMET? waet <wind_dirr<wind_mph? httpi< wwW.weather.gow datascurrent_obs KUGH. uml

tINFO* Connecting to Server — connected

5

Mo
11.
IHET> W

=

Figure 16. Using wget and Filter to Parse XML Tags

Advanced ColdFire TCP/IP Clients, Rev. 0

32

Freescale Semiconductor

Tera Term - COML ¥T o] B |

Fle Edit Setup ©Contral “Window Help

THET

IHET >
IHET >
INET >
INET
INET »
INET

wget http: /~www.weather.gouwrdata“current_obs-KUGH.rs=

tIMNFO* Connecting to Server — connected
<Taml wversion="1.8" encoding="I150-2859-1"7>

“rss gegslonT;Z 8" wmlnsido="http: ~purl.orgsdeselementss1.1-" »
channe
<t it leXeather at Chicago # Waukegan, Waukegan Regional Rirport, IL — wia HOAR'=
Mational Weather Seruicedstitlel
<link:http: < Wuw. Wweather. gov-datascureent obs o |
Eég?gg%éldD?ge>Sat. S Jul 2887 28132013 UT</lastBuleDate>
t<de§crLDtLon>weather conditions from HORA"s Mational Weather Service. <sdes
cripE Lon
< languageren—uss - langua e X X
<managingEditorirobert, ge@noaa.gov(fmanaglngEstor>
webMaster w—nws. uebmaster noaa. goud “webMaster

ghtta S WL Weath e, gous inages-yml_ logo.aifi urls
AR~ Hational Weather Servicel titles
nk *httpt Wi, weather. gowsdat a<current_obs-{s L ink >

L1
air and 76 degrees F at Chicago - Waukegan, Waukegan Regional Airport, I

o e
Py

L
i
ki:httpssweather.noaa. govsweather-curcent KUGH. html{sLink »

CDﬂTE[(lM src:"httE Soweather, E ouSWweathers images foloons sk, JDE" class=""noa
Weather Ioon Wwidth="5E" height="58" alt="Fair" stule="float: left;® #2{br ~#>11x

Winds are Mortheast at 12 MPH. The pressure is 29.93%quot; (16814.1 mb) and the
humidity is 724,

The hest index is 78.
Last Updated on Jul 28, 2:52 pm COT.
Lodescript lonx .
égu1d ;s ermal ink="false">5at, 28 Jul 2007 14:52:00 -8508 COT{ quid:
Sliten
<schannel’
LALESR

wget <titleX{description? http: - ~www.weather.gow data-current_obs- KUGH.rss

tINFOt Connecting to Server - connected

Weather at Chicago - Wawkegan, Wawkegan Regional Airport, IL — wia HOAR"= Mation
El eather Seruice
Weather conditions from HOAR's Mational Weather Seruvice.

MOAA - Mational Weather Service

Fair and 76 degrees F at Chicago_o Waukegan, Waukeoan Reaional Rirport, IL X
Winds_ape Mortheast at 12 MPH. The pressure is 29,92 (1814.1 mbl _and the humidi

%hE+§ ZX. The heat inden is 78.Last Updated on Jul 28, Z:E2 pm COT.

IMET »

IMET >

INETS -
IMET> W

Figure 17. Using wget and Filter on a RSS Feed (Top Unfiltered, Bottom Filtered)

10 RSS/XML Feed Reader Embedded Appliance

The RSS/XML feed reader is an embedded appliance that allows you to display and hear real-time content
from the World Wide Web. The embedded appliance provides instant real-time information without
booting a PC. This appliance connects to the web, gets the desired feed, and parses the text information or
character data from the feed. That data is displayed on the LCD, the serial port, and spoken through the
text to speech processor.

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 33

World Wide Web

Text-to-speech voice synthesizer

!

ColdFire

Ethernet

[
Y

ColdFire TCP/IP
HTTP client
RSS/XML parser

r

Serial LCD
Figure 18. RSS/XML Feed Reader Block Diagram

11

RSS/XML Feed Reader Hardware

7
.~

; &5?233DEM0 aC

Figure 19. RSS/XML Feed Reader Hardware

11.1 M52233DEMO Board from Freescale Semiconductor

The M52233DEMO board is a reference board that evaluates the ColdFire MCF52233 processor. The

demo board includes a serial port, USB BDM debug port, and an Ethernet port. The board along with the
free (up to 128 KB of flash) CodeWarrior tools are all you need to begin working on your Ethernet projects.

Advanced ColdFire TCP/IP Clients, Rev. 0
34

Freescale Semiconductor

This document runs Freescale’s free public-source TCP/IP stack (available at http://www.freescale.com)
on the demo board. The ColdFire TCP/IP stack is documented thoroughly in ColdFire TCP/UDP/IP Stack
and RTOS, AN3470.

The demo board includes a 40-pin header connector to access most of the signals from the ColdFire
microcontroller. The board also includes a three-axis accelerometer connected to three of the
microcontroller’s analog ports, a potentiometer, and two user buttons.

11.2 Interfacing to a Parallel LCD

The parallel LCD is a 4 x 20 character display that uses the standard Hitachi instruction set. The LCD is
used in four-bit mode, requiring only six connections to the microcontroller: four-bit data bus, a clock
signal (E), and a register select line (RS). The read/write line (RW) is tied to ground for write-only (there
is no reason to read from the display). The display chosen for this document only requires one E clock.
Some larger displays require two.

The LCD used is a 5 V display. Because the microcontroller is 3.3 V, some level shifting is required. This
is accomplished using a simple transistor switch circuit, as shown in Figure 20. Unfortunately, this circuit
is also an inverter. The software must use inverted logic when communicating with the LCD.

+5V

4.7k

5V out
4.7k
3.3Vin

Figure 20. Simple 3.3 V to 5 V Signal Converter

11.2.1 ColdFire to 5 Volt LCD Interface
Table 5. ColdFire Demo Board to LCD Connection Table

LCD Pin LCD Signal ColdFire Pin g(;:‘i: ;;ac:: Power
1 Vss GND 3 GND
2 Vee No connect No connect 5 Volts
3 Vee No connect No connect Variable
4 RS GPT2 30 —
5 R/W GND 3 —
6 E GPT3 32 —
7 DBO No connect No connect —
8 DB1 No connect No connect —
9 DB2 No connect No connect —

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor

35

http://www.freescale.com

Table 5. ColdFire Demo Board to LCD Connection Table (continued)

LCD Pin LCD Signal | ColdFire Pin ‘[')Z::: ;;a‘:: Power
10 DB3 No connect No connect —
11 DB4 Tin0 34 —
12 DB5 Tin 1 36 —
13 DB6 Tin2 38 —
14 DB7 Tin 3 40 —
15 LED+ No connect No connect 4.2 Volts
16 LED- GND 3 —

11.2.2 LCD Interface Board Schematic

DEMO BOARD connector

2o 10]
R i
6o 501

701

10 90+

12Q 1104
149 1304
16Q_ 159+
180 170+
209 190
22Q 210+
4Q 2304
26Q 250
28Q 270

380\290-
SEKSIO'
340\330-
36\350—
38&370‘
48\390-

9 Volts in
J

El——l Lo | ColdFire LCD Interface
by Eric Gregori

Rev 1.8
v 7/,28/,2007 Page 171

Figure 21. LCD Interface Schematic

Advanced ColdFire TCP/IP Clients, Rev. 0

36 Freescale Semiconductor

11.2.3 LCD Interface Firmware

The heart of the LCD driver is the WriteToLCD function. This function sends character data or control
data to the LCD over the GPIO bus. The data to write to the LCD is put on the bus, along with a signal
(RS) indicating if the data is a character to be displayed or a control character. Then the E clock signal is
pulsed to latch the data into the LCD controller. This must be done twice to load a full byte, upper nibble
first, and then lower nibble.

The WriteToLCD function loads a single nibble each call. The function takes two arguments: the data
nibble to send to the display (lower nibble) and whether the data is control or character data.

//***

//* Function: void WriteToLCD (unsigned char data, unsigned char rs)
//***

//* Author: Eric Gregori - Freescale FAE (Chicago)

//*

//* Perform LCD initialization sequence

//*

//* Rev # Date Who Comments

//* __
//* 1.0 23-Jun-07 E.Gregori Initial code release

//**************k**k***********k*k*k**
*
void WriteToLCD (unsigned char data, unsigned char rs)

{

volatile unsigned longdelay;

// Write data to bus
board led display(~data);

for (delay=LCD SHORT DELAY; delay; delay--);

// bring E clock high, set RS if requested
if (rs)

board gpt display(LCD RS HIGH E HIGH);
else

board gpt display(LCD E HIGH);

// E clock high delay
for (delay=LCD SHORT DELAY; delay; delay--);

// bring E clock low
if(rs)

board gpt display(LCD RS HIGH);
else

board gpt display(LCD _E LOW) ;

// Data latches on falling edge of E clock,
for (delay=LCD SHORT DELAY; delay; delay--);

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 37

All other LCD functions sit on top of this low-level driver. The LCD firmware is a driver stack with the
low-level hardware control at the bottom and the higher level function on top.

Application Code

LCD_Clear LCD_String LCD_Display LCD_print_char
LCD_Init
LCD_Write
WriteToLCD

LCD Hardware
Figure 22. LCD Driver Stack

11.2.4 LCD Driver API

11.2.4.1 Function LCD_Init
Void LCD Init (Void)

Initializes the hardware to communicate with the LCD. Must be called before calling any other function
in the driver.

11.2.4.2 Function LCD_Clear

Void LCD Clear (Void)

Clears the entire screen and set the cursor to line 4 (the bottom display line).

11.2.4.3 Function LCD_String

Void LCD String (unsigned char *string,
unsigned char line)

Where Equals
string A pointer to a NULL terminated string
line The line on the LCD to send the string to

e Line 1 is at the top of the display
e Line 4 is at the bottom of the display

Displays a NULL terminated string on the display line specified in parameter 2.

Advanced ColdFire TCP/IP Clients, Rev. 0

38 Freescale Semiconductor

11.2.4.4 Function LCD_Display

Void LCD Display(unsigned char *string,
unsigned char line,
unsigned char length)

Where Equals
string A pointer to a string of characters
line The line on the LCD to send the string to

e Line 1 is at the top of the display
e Line 4 is at the bottom of the display

length The number of bytes to display

Display a string of characters, on the specified line. The string of characters does not have to be
null-terminated.

11.2.4.5 Function lcd_print_char

Void lcd print char (unsigned char data)

Where Equals

data character to add to the display

Displays data from left to right on the bottom line of the display. Lines scroll up when the bottom line is
full, giving the appearance of a scrolling display. LCD_Clear must be called before sending the first byte
of data. This function is useful for displaying a large stream of data.

11.3 Interfacing to a RCSystems V-Stamp Voice Synthesizer

The RCSystems V-Stamp Voice Synthesizer is an easy-to-use text-to-speech processor. The V-Stamp is a
fully self-contained module, requiring only power, a speaker, a resistor, two capacitors, and a serial
connection to an embedded system. The V-Stamp communicates with the embedded system using a
UART. The module automatically sets its baudrate to that of the embedded system. From a hardware and
firmware point of view, there is little work required to add the V-Stamp module to the RSS Feed Reader.

11.3.1 Voice Synthesizer Hardware

The V-Stamp requires two capacitors, a resistor, and a speaker of course. The sample application in the
V-Stamp user manual was used as the voice synthesizer hardware circuit. The V-Stamp is powered by a
external 3.3 volt power supply.

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 39

o
O
o
O
O
O
o]
O
o
O
o
O

000000000000
283748383357

Figure 23. V-Stamp Module Pinout

TOHOST _
MICRO

Figure 24. V-Stamp Typical Application Circuit

The UTXDO line from the ColdFire is connected to the RXD line (pin 20) on the V-Stamp. The rest is up
to software.

Advanced ColdFire TCP/IP Clients, Rev. 0

40 Freescale Semiconductor

",JD U2 JAPAN

RO e R

é "r.'f(){)TCH‘J 03

Figure 25. V-Stamp Hardware

11.3.2 Controlling the Text-to-Speech Processor

Out of reset, the V-Stamp starts converting text to speech. For this project, the default speech configuration
is modified. There are many commands available to configure the V-Stamp, and all are covered in detail
in the RC8660 User Manual.

Configuration commands start with a CTRL-A (0x01) followed by an ASCII sequence. Immediate
commands use a single CTRL character: CTRL-P (0x10), CTRL-R (0x12), and CTRL-S (0x13). These
commands can be intermixed with the text to convert. The next section discusses the configuration
parameters changed from default.

11.3.3 Changing the Voice

The RC8660 supports 11 standard voices. Unfortunately, there is no good way to describe the different
voices other then hearing them. Precise Pete sounds very clear. Robo Robert sounds very much like HAL
from 2001: A Space Odyssey. The Vader voice sounds exactly as the name implies (without the breathing).
The O command is used to change voices. The O is preceded with a number from 0 to 10 to select the
voice. All configuration commands start with a CTRL-A (0x01).

The command sequence is: CTRL-A (0x01) nO, where n = 0-10.

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 41

Table 6. Voice Options

Command

Voice Name

CTRL-A (0x01) 00

Perfect Paul (default)

CTRL-A (0x01) 10

Vader

CTRL-A (0x01) 20

Big Bob

CTRL-A (0x01) 30

Precise Pete

CTRL-A (0x01) 40

Ricochet Randy

CTRL-A (0x01) 50 Biff
CTRL-A (0x01) 60 Skip
CTRL-A (0x01) 70 Robo Robert
CTRL-A (0x01) 80 Goliath
CTRL-A (0x01) 90 Alvin
CTRL-A (0x01) 100 Gretchen

11.3.4 Changing the Speed

The speech rate can be adjusted in 14 steps. Zero is the slowest, and thirteen is the fastest. The default is
five. This application note slows the speech down to two. The S command adjusts the speech rate. The S
is preceded with a number from 0 — 13 to select the rate. All configuration commands start with a
CTRL-A (0x01).

The command sequence is: CTRL-A (0x01) nS, where n = 0 — 13 (zero is the slowest, and thirteen is the
fastest).

11.3.5 Changing the Volume

The speech volume can be controlled by software. It is useful to quiet down the speech processor while
the ColdFire TCP/IP stacks dumps all of its diagnostic data coming out of reset. The volume can be
adjusted from 0 — 9. The default volume is 5. The V command is used to adjust the volume. The V is
preceded with a number from 0 — 9, with nine being the loudest. All configuration commands start with a
CTRL-A (0x01).

The command sequence is: CTRL-A (0x01) nV, where n = 0-9 (0 is lowest, 9 is highest).

11.3.6 Flushing the Text Buffer

The RC8660 has a large UART/text buffer (8 KByte). This allows the text-to-speech processor to work
without interfereing with the operation of the embedded system. Most of the time the embedded system
does not have to be concerned with overflowing the RC8660's UART buffer. The CTRL-X command
flushes the buffer. Use this command to flush out all the ColdFire TCP/IP stack reset diagnostic data text
from the RC8660's 8-KByte buffer. CTRL-A is not used with this command. This command is a single
byte with no parameters.

The command sequence is: CTRL-X (0x18)

Advanced ColdFire TCP/IP Clients, Rev. 0

42 Freescale Semiconductor

11.3.7 Voice Synthesizer Configuration Firmware

void emg rss reader init(void)

{
LCD Init;
LCD String((unsigned char *)RSS FEED READER , 1);
LCD String((unsigned char *)By , 2);
LCD String((unsigned char *)Eric Gregori , 3);
LCD_String((unsigned char *)www.emgware.com , 4);
printf (\x18); // Stop/Flush Talker
tk sleep(200);
printf (\x01);// CTRL-A

printf (30); // Select voice
printf (\x01);// CTRL-A

printf (2S); // Slow down voice
printf (\x01);// CTRL-A

printf (5V) ; // 5 volume

tk sleep(2*200);

printf (RSS feed reader by Eric Gregori\n)
printf (RSS feed reader by Eric Gregori\n)
tk sleep(10*200);

’
’

12 RSS/XML Feed Reader Firmware

The RSS/XML feed reader firmware builds on top of all the other firmware described so far in this
application note, as shown in Figure 26. The HTTP client is used, along with the DNS client to get the RSS
or XML data. The data is passed through the callback to EMG rss_text filter that parses out the tags
defined in the tag_filter array.

For the RSS reader, the tags are hardcoded to <title> and <description>. The big difference between the
feed reader and the wget implementation described above is what happens to the data after it is filtered. In
the wget implementation, the data was sent directly to the serial port. The RSS/XML reader sends the
filtered character data to a character buffer array.

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 43

lcd_print_char printf

rss_tcp_callback

A A
A
C
H
A
R Y
A emg_content_length_filter
void emg_rss_reader_task (void) < C
T
A A E
R Y
EMG_rss_text_filter
Y B
emg_HTTP_client_connect F
F
E Y
R output_rss_text
Y <

emg_HTTP_client_get

Figure 26. In the Module RSS_reader_byEricGregori.c

12.1 Character_buffer

All the filtered data is sent to the character buffer, including any additional newlines between tags. This
buffering is necessary to keep the LCD display readable. If the data to the LCD is not slowed down, it
scrolls too fast to read. The same applies to the speech synthesizer. The output rss_text function call
originates from the rss_tcp_callback function. The callback is called directly from the TCP/IP stack and
must be treated as an interrupt. You do not want to delay or sleep in a callback function, or any function
called from a callback function.

For this reason, the data from the filter is stored in the character buffer. Then, the emg rss_reader task can
slowly feed the data from the buffer to the LCD and speech synthesizer without interfering with the
callback timeing (and ultimately the TCP/IP stacks).

Putting filtered data into the character buffer:

//***

// output rss text - Written By Eric Gregori

// eric.gregori@freescale.com
//

// Called by emg rss_text filter

//

//***

void output rss text (unsigned char data)

{
if (character buffer index < RSS CHARACTER BUFF SIZE)

{

character buffer[character buffer index++) = data;

}

Advanced ColdFire TCP/IP Clients, Rev. 0

44 Freescale Semiconductor

Displaying and printing data from the character buffer:

emg HTTP client close(shandle);

if (character buffer index)
{
for (e=0; e<character buffer index; e++)
{
// Display Data from buffer
lcd print char(character buffer(e));
printf ($c, character buffer(e));
if (character buffer[e) == 0x0d)
tk sleep(50);

12.2 Using the RSS/XML Feed Reader

Using the RSS/XML feed reader firmware is easy:
1. Set the url variable to the URL or the desired RSS or XML server.

static const unsigned char url[] = “http://www.weather.gov/data/current obs/KUGN.rss”;

2. Set the tag_filter() to the type of data you want to display.
— For RSS feeds, <title> and <description> would be a first choice.

— For XML feeds, this could be any tag name depending on the desired information.

const unsigned char *tag filter() =

{
{ (const unsigned char *)”title”},
{ (const unsigned char *)”description”},
{ (const unsigned char *)””}

}i

3. Set the character buffer size big enough to collect your filtered data.
#define RSS CHARACTER BUFF SIZE 2048

4. Compile the project and flash it to the board.
After the TCP/IP stack comes up, the following occurs:
1. The DHCP client automatically aquires a IP address and DNS IP addresses.
A title screen is displayed and spoken.
The firmware connects to the server specified in the URL.
The status of the connection is displayed and spoken.
The file is downloaded from the server using the HTTP client.
The file is displayed and spoken after the connection closes.
The RSS/XML feed reader sleeps waiting for SW1 or SW2 to be pushed.

After SW1 or SW2 is pushed, a connection to the server specified in the URL is initiated and the
process repeats.

© Nk WD

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor 45

12.3 XML Streams

For XML streams, the EMG rss_text filter return value determines which tag the data is from. This allows
another const array containing more descriptive names to describe the data from the tag. Use the

EMG rss_text filter return value minus one to index into a descriptive name array and send the indexed
string into the character buffer before leaving the RSS callback function. The XML filter then places the
data from the tag in the character filter directly after the descriptive name.

Advanced ColdFire TCP/IP Clients, Rev. 0

46 Freescale Semiconductor

THIS PAGE IS INTENTIONALLY BLANK

Advanced ColdFire TCP/IP Clients, Rev. 0

Freescale Semiconductor

47

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Document Number: AN3518
Rev. 0
09/2007

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.

freescale"

semiconductor

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 HTTP Protocol
	2.1 HTTP Request Example
	2.2 HTTP Methods
	2.3 HTTP Response Example
	2.4 Connection Persistance

	3 DHCP Client
	3.1 DHCP Client API

	4 DNS Client
	4.1 DNS Client API
	4.2 DNS Usage Example

	5 Advanced ColdFire TCP/IP Client Design-Zero Copy
	5.1 ColdFire TCP/IP Zero-Copy API
	5.2 The Callback Function
	5.2.1 The Packet Structure
	5.2.2 Example of Accessing Data from Packet in Callback Function
	5.2.3 Callback Function Return Value
	5.2.4 Callback Function Example
	5.2.5 Connecting to a Remote Server Using the Zero-Copy API
	5.2.6 Sending Data Using the Zero-Copy API

	6 HTTP Client Firmware
	6.1 The HTTP GET Request Header
	6.2 HTTP Client Files

	7 HTTP Client API
	7.1 Function emg_HTTP_client_connect
	7.2 Function emg_HTTP_client_close
	7.3 Function emg_HTTP_client_get
	7.4 Function emg_content_length_filter

	8 Wget Command - Example of Using the HTTP Client
	8.1 wget Usage Examples

	9 Really Simple Syndication (RSS)
	9.1 Extensible Markup Language (XML)
	9.1.1 Tags
	9.1.2 Special Characters and Escape Sequences
	9.1.3 CDATA Sections
	9.1.4 Finding the Text or Character Data in a XML Document
	9.1.5 Sample XML File
	9.1.6 Problem with XML Documents

	9.2 RSS Specification
	9.2.1 Sample RSS File

	9.3 RSS/XML Character Data Filter
	9.3.1 RSS/XML Character Data Filter State Machine
	9.3.2 Character Data Filter Excercisor PC Application
	9.3.3 Modified wget Command

	10 RSS/XML Feed Reader Embedded Appliance
	11 RSS/XML Feed Reader Hardware
	11.1 M52233DEMO Board from Freescale Semiconductor
	11.2 Interfacing to a Parallel LCD
	11.2.1 ColdFire to 5 Volt LCD Interface
	11.2.2 LCD Interface Board Schematic
	11.2.3 LCD Interface Firmware
	11.2.4 LCD Driver API
	11.2.4.1 Function LCD_Init
	11.2.4.2 Function LCD_Clear
	11.2.4.3 Function LCD_String
	11.2.4.4 Function LCD_Display
	11.2.4.5 Function lcd_print_char

	11.3 Interfacing to a RCSystems V-Stamp Voice Synthesizer
	11.3.1 Voice Synthesizer Hardware
	11.3.2 Controlling the Text-to-Speech Processor
	11.3.3 Changing the Voice
	11.3.4 Changing the Speed
	11.3.5 Changing the Volume
	11.3.6 Flushing the Text Buffer
	11.3.7 Voice Synthesizer Configuration Firmware

	12 RSS/XML Feed Reader Firmware
	12.1 Character_buffer
	12.2 Using the RSS/XML Feed Reader
	12.3 XML Streams

