

EDK II Module Information (INF)
File Specification

March 2015
Revision 1.24 w/Errata B

EDK II INF File Specification

Acknowledgements

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel products
are not intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

A license is hereby granted to copy and reproduce this specification for internal use only.
No other license, express or implied, by estoppel or otherwise, to any other intellectual property rights is granted
herein.
Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in
this specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.
This specification is an intermediate draft for comment only and is subject to change without notice. Readers should
not design products based on this document.

*Other names and brands may be claimed as the property of others.

Copyright © 2007 - 2015 Intel Corporation. All rights reserved.

2 March 2015 Version 1.24B

EDK II INF File Specification

Revision History

Revision Revision History Date

1.0 Initial release. December 2007

1.1 Updated based on errata August 2008

1,2 Updated based on enhancement requests June 2009

1.21 Updated to support UEFI 2.3 and PI 1.2 specifications
• Added new element, UEFI_HII_RESOURCE_SECTION to

[Defines] section
• Added new SMM_CORE module type
Updated for clarification
• Permit NULL values in place of PCD default values
Updated to correct items listed in the errata document
• Permit whitespace characters between token elements
• Fixed BuildOptions separator between Family and the tool

change information to match the “:’ implementation
Changes to appearance for readability
• Moved EDK INF description from sections 2 and 3 to an

Appendix
User feature requests:
• Updated the description of the FeatureFlag Expression for

all occurrences in Chapter 3 to be either a Shell style or a
C style expression.

March 2010

1.22 Grammatical and formatting changes. May 2010

Version 1.24B March 2015 3

EDK II INF File Specification

1.22 w/
Errata A

Updates:
• Updated to support UEFI version 2.3.1 and updated spec

release dates in Introduction
• Clarify UEFI’s PI Distribution Package Specification
• Standardize Common data definitions for all specifications
• Grammatical, formatting and spelling changes
• Replaced “should” with wording saying that it is

“recommended”
• Added PCI_COMPRESS definition in [Defines] section
• Added the DPX_SOURCE statement back into the

[Defines] section
• Added VALID_ARCHITECTURES comment definition

back to the [Defines] section to formalize this comment
which may be used by tools. This had been removed from
the 1.22 spec as it was assumed that tools could
determine valid architectures (other than ALL
architectures) by the use of architectural modifiers in
section tags.

• Removed restriction about comments in the
DPX_SOURCE file - C style comments are allowed

• Updated DEPEX content for USER_DEFINED module
types

• Removed EDK content from EBNF in Chapter 3, as this
chapter only describes the content for EDK II INF files; for
clarity, moved EDK content from descriptions in Chapter 2
to Appendix A

• Added EBNF for <Extension>
• Added rules for how macros can be shared between

sections
• Update the EBNF for paths so that a macro can have a

path that does not end with a file separator; also allow
using a path and filename as a macro value; clarify that
macros are only expanded in the EDK II INF files, never
evaluated during the initial parsing of the file

• Removed duplicate content and added the scoping rules
for Macros, clarified MACRO summary; made the value
optional so that a C flag macro can be specified without a
value; require the “=” in a macro DEFINE statement

• Removed references to system environment variables in
the Macros section and removed table

• Revised EBNF for PCD sections to allow more precise
definitions

• Specify how PCD values are obtained
• Changed definition of a C Array to ensure that an empty

array is not specified
• Allow any non-zero value to be TRUE
• Use separate EBNF for each PCD datum type, also

explain the PCD usages; describe, in section 2, what
sections are valid for binary only modules, and what
sections are prohibited in binary only modules

• Clarify that C data arrays must be byte arrays for PCD
value fields; both C format and registry format GUID
structures are not permitted in VOID* PCD value fields

•

December 2011

4 March 2015 Version 1.24B

EDK II INF File Specification

1.22 with
Errata A
(Cont.)

Updates (cont.d)
• The # character is optional for the header comment block

in EDK INF files
• Prohibit specifying something an a common section and in

an architecturally specific section (something that is
architecture specific cannot be common to all
architectures)

• Removed FFE from entries as they have no meaning,
nothing changes - build does not break if they are there

December 2011

1.22 w/
Errata B

Updates:
• Section 1.3, page 5, Updated specs definition to include

released errata
• Section 3.8, page 67, Removed Value field for DynamicEx

PCDs listed in a generated “As Built” INF file
• Appendix F, page 120, Replaced invalid “FW” with “PE32”

for file type of the binary image
• Section 2.7, pages 25 & 26, Clarified binary file types are

leaf sections, removed LIB, as EDK II build system does
not support distribution of binary libraries

• Section 2.7, page 25, Removed GUID encapsulation
section keyword from the [Binaries] section
<FileType> definition - the binary file must be a leaf file
type

• Section 3.2, page 37, require <Depex> sections for PEIM,
DXE_DRIVER, DXE_RUNTIME_DRIVER,
DXE_SAL_DRIVER and DXE_SMM_DRIVER

• Table 3, page 23 and Section 3.5, page 60, Removed
references to build_rule.txt - this file is used by tools, no
user editing is required

• Section 3.15, page 84 & 85, Separated out the
SUBTYPE_GUID entry in the [Binaries] section
<FileType> definition, as this entry requires a GUID
value - also, added text to only allow unique
SUBTYPE_GUID <GuidValue> pairs per section

• Section 3.2.1, pages 44 & 45, Fixed the DOS <EOL>
character sequence

• Section 3.11, page 76, Clarify what goes into a generated
Binary INF file for Protocols

• Added a generated binary INF in Appendix F
• Cleanup of tables in Appendix G
• Updated Example INF files in Appendix D and Appendix E
• Section 3.4 Added description of ENTRY_POINT and

UNLOAD_IMAGE elements in the [Defines] section

June 2012

Version 1.24B March 2015 5

EDK II INF File Specification

1.22 w/
Errata C

Updates:
• Section 1.3, updated UDP - Errata version of the UEFI/PI

Distribution Package Spec.
• Section 2.7 and 3.15, added a binary file type of
DISPOSABLE which will not be processed by the EDK II
tools.

• Section 3.6, 3.8, clarify that the “As Built” INF file is always
generated by the build system

• Section 3.7, clarify that this section is required to list all
dependent packages for PCDs listed in an “As Built” INF
file

• Section 3.8, clarify the types of PCDs that will be
generated in “As Built” INF files

• Section 3.3 Added Doxygen tags for Binary Header,
Copyright from the Source INF file, containing the date of
the last functional update to the source files is also the
date that should be used for a Binary “As Built” INF file

• Put the BUILD_NUMBER element back into the
[Defines] section; this was inadvertently removed in
Errata A

• Clarify that all entries are required within a Binary Header
section.

• Prohibit FeatureFlagExpressions for PCDs, GUIDs,
Protocols and PPIs in the generated “As Built” INF files.

• Fixed CRLF to be the correct hex bytes.
• Reformatted the Header EBNF
• Removed unused EBNF entry, <ValPcds>
• Added Reference to EDK II Build Specification for PCD

processing rules.
• Remove sentences referring to lengths of PCD VOID*

entries in section 2.14
• Clarify that the Unicode format files are UCS-2LE

encoded.

August 2013

1.22 w/
Errata D

Updates:
• Clarified that only [UserExtensions] sections with a UserId

of TianoCore will be copied into the As Built INF
generated by the EDK II build tools.

• Clarify that [Depex] section tags must be unique.
• Clarify the use of [Depex] sections in library modules.

March 2014

1.24 Updates:
• Change revision number of this specification from 1.22 to

1.24
• Update INF_VERSION to 0x00010017
• Added MODULE_UNI_FILE entry to the [Defines]

section; this file must end with an extension of .uni, .UNI
or .Uni

• Added reserved TianoCore user extension for
“ExtraFiles”

• Allow Space and Unicode characters in the directory path
identified by the system environment variable,
WORKSPACE

August 2014

6 March 2015 Version 1.24B

EDK II INF File Specification

1.24 w/
Errata A

Updates:
• Revised ordering of the top level EBNF for an INF file to

match the output of the Intel(R) UEFI Distribution
Packaging Tool at the start of chapter 3.2

• Updated specification dates in section 1.2 and added two
new specs

• Updated INF_VERSION to 0x00010018
• Allow specifying the INF_VERSION value as a decimal

value, such as 1.24.
• Modified Section 2.14, allowing Feature Flag Expressions,

removed expression syntax from the Common EBNF as it
is now covered by its own specification.

December 2014

1.24 w/
Errata B

Updates:
• Update link to the EDK II Specifications, fixed the name of

the Multi-String .UNI File Format Specification
• Update usage, UNDEFINED, in Parameters sections for

Guids, Protocols, PPIs and PCDs in chapter 3
• Add clarification of the Event Types in chapter 3
• Added UEFI PI PEI Boot Mode declarations in 3.2.5 to the

list while keeping the synonyms that were already defined.
Added descriptions as well.

• Adding HOB type, UNUSED from the PI Specification

March 2015

Version 1.24B March 2015 7

EDK II INF File Specification

8 March 2015 Version 1.24B

EDK II INF File Specification

Contents

1

Introduction ...1
1.1 Overview ... 1
1.2 Related Information ... 1
1.3 Terms .. 2
1.4 Target Audience .. 5
1.5 Conventions Used in this Document ..6

1.5.1 Data Structure Descriptions ... 6
1.5.2 Pseudo-Code Conventions ..6
1.5.3 Typographic Conventions ..6

2
INF Overview ..9
2.1 Processing Overview .. 10
2.2 Information File General Rules .. 10

2.2.1 Section Entries ...10
2.2.2 Comments ... 11
2.2.3 Valid Entries .. 12
2.2.4 Naming Conventions ... 12
2.2.5 !include Statements .. 13
2.2.6 Macro Statements .. 13
2.2.7 Conditional Directive Statements (!if...).. 14
2.2.8 Expressions ..15

2.3 EDK II INF Format ... 15
2.4 [Defines] Section ... 15
2.5 [Sources] Section .. 21
2.6 [BuildOptions] Section ... 22
2.7 [Binaries] Section .. 24
2.8 [Includes] Section ... 27
2.9 [Protocols] Section .. 27
2.10 [Ppis] Section .. 27
2.11 [Guids] Section .. 28
2.12 [LibraryClasses] Section ... 28
2.13 [Packages] Section .. 29
2.14 PCD Sections ... 30

2.14.1 FIXED_AT_BUILD ... 31
2.14.2 PATCHABLE_IN_MODULE ..31
2.14.3 FEATURE_FLAG .. 32
2.14.4 DYNAMIC .. 32
2.14.5 DYNAMIC_EX ... 32

2.15 [Depex] Section ... 33
2.16 [UserExtensions] Section ... 34

2.16.1 [UserExtensions.TianoCore."ExtraFiles"] Section .. 34

Version 1.24B March 2015 9

EDK II INF File Specification

3
EDK II INF File Format ...35
3.1 General Rules ... 35

3.1.1 Backslash .. 36
3.1.2 Whitespace characters .. 36
3.1.3 Paths for File Names ... 36

3.2 Component INF Definition .. 36
3.2.1 Common Definitions .. 37
3.2.2 MACRO Statements ...45
3.2.3 Conditional Statements ..47
3.2.4 !include Statement ... 47
3.2.5 Special Comment Blocks ...47

3.3 Header Section.. 49
3.4 [Defines] Section ... 53
3.5 [BuildOptions] Sections ..59
3.6 [LibraryClasses] Sections .. 65
3.7 [Packages] Sections ... 67
3.8 PCD Sections .. 68
3.9 [Sources] Sections .. 73
3.10 [UserExtensions] Sections ... 76

3.10.1 [UserExtensions.TianoCore."ExtraFiles"] Section.. 77
3.11 [Protocols] Sections ... 78
3.12 [Ppis] Sections ... 80
3.13 [Guids] Sections .. 82
3.14 [Depex] Sections ... 85
3.15 [Binaries] Section ... 90

Appendix A
EDK INF File Specification ...95

A.1 Design Discussion .. 95
A.1.1 [defines] Section ..95
A.1.2 [sources] Section ... 100
A.1.3 [libraries] Section ... 101
A.1.4 [includes] Section .. 101
A.1.5 [nmake] Section .. 102

A.2 EDK File Specification... 102
A.2.1 Header Section ... 103
A.2.2 [defines] Section ... 105
A.2.3 [includes] Section .. 107
A.2.4 [libraries] Section ... 108
A.2.5 [nmake] Section ... 109
A.2.6 [sources] Section ... 111

Appendix B
Build Changes and Customizations..113

B.1 Customizing EDK Compilation for a Component ... 113
B.2 Changing Files in an EDK Library ... 113
B.3 Customizing EDK II Compilation for a Module Common Definitions 113

1

March 2015 Version 1.24B

EDK II INF File Specification

Appendix C Symbols .. 115
Appendix D
Sample Driver INF Files ... 119

D.1 DiskIoDxe INF file ... 120
D.2 StatusCodeRuntimeDxe INF file ... 121

Appendix E
Sample Library INF Files .. 125

E.1 PeiServicesTablePointerLib.inf ... 126
E.2 DxeCoreMemoryAllocationLib.inf ..127
E.3 SmmCorePerformanceLib.inf ..128

Appendix F
Sample Binary INF Files .. 131

F.1 FatBinPkg/EnhancedFatDxe/Fat.inf ... 132
F.2 MdeModulePkg/Core/RuntimeDxe.inf .. 133

Appendix G
Module Types ... 139

Version 1.24B March 2015 1

EDK II INF File Specification

12 March 2015 Version 1.24B

EDK II INF File Specification

Tables

Table 1.EDK II [Defines] Section Elements ... 17
Table 2.EDK II [BuildOptions] Section Elements ... 22
Table 3.EDK II [BuildOptions] Variable Descriptions ... 23
Table 4.Macro Usages .. 47
Table 5.Predefined Command Codes ... 64
Table 6.EDK [defines] Section Elements .. 96
Table 7.EDK Component (module) Output File Extensions .. 98
Table 8.Symbol Description... 116
Table 9.EDK II Module Types .. 139
Table 10.Module Type to Component Type Mapping ... 142

Version 1.24B March 2015 xiii

EDK II INF File Specification

14 March 2015 Version 1.24B

EDK II INF File Specification

1
Introduction

This document describes the EDK II build information (INF) file format. This format
supports the new build requirements of build EDK components and EDK II modules
within the EDK II build infrastructure. The EDK II Build Infrastructure supports creation
of binary images that comply with Unified EFI (UEFI) 2.4 and UEFI Platform
Infrastructure (PI) 1.3 specifications.

1.1 Overview

This document describes the format of EDK II INF files that has the following
requirements:
Compatible

Backward compatibility with the existing INF file formats. Changes made to this
specification must not require changes to existing INF files.

Simplified platform build and configuration
Simplify the build setup and configuration for a given platform. The process of adding EDK
and EDK II firmware components to a firmware volume on any given platform was also
simplified.

Distributing Modules
Enable easy distribution of modules, both in source and binary form. Individual modules
may be compiled and distributed in binary form, which may be integrated into a platform
image, or into an option ROM image.

1.2 Related Information
The following publications and sources of information may be useful to you or are
referred to by this specification:
• Unified Extensible Firmware Interface Specification, Version 2.5, Unified EFI, Inc,

2014, http://www.uefi.org.
• UEFI Platform Initialization Specification, Version 1.4, Unified EFI, Inc., 2013, http:/

/www.uefi.org.
• UEFI Platform Initialization Distribution Package Specification, Version 1.0 with

Errata B, Unified EFI, Inc., 2014, http://www.uefi.org.

• Intel® Platform Innovation Framework for EFI Specifications, Intel, 2007, http://
www.intel.com/technology/framework/.

• https://github.com/tianocore/tianocore.github.io/wiki/EDK-II-Specifications
— EDK II Module Writers Guide, Intel, 2010.
— EDK II User Manual, Intel, 2010.
— EDK II C Coding Standard, Intel, 2014.
— EDK II DSC Specification, Intel, 2015.
— EDK II DEC File Specification, Intel, 2015.
— EDK II FDF Specification, Intel, 2015.

Version 1.24B March 2015 1

http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.intel.com/technology/framework/
http://www.intel.com/technology/framework/
http://www.intel.com/technology/framework/
http://edk2.tianocore.org/Documents%20%26%20files/General%20Documentation
http://edk2.tianocore.org/Documents%20%26%20files/General%20Documentation

EDK II INF File Specification Introduction

— EDK II Build Specification, Intel, 2015.
— Multi-String UNI File Format Specification, Intel, 2014.
— EDK II Expression Syntax Specification, Intel, 2014.
— VFR Programming Language, Intel, 2012.
— EDK II Platform Configuration Database Infrastructure Description, Intel, 2009.

• INI file, Wikipedia, http://en.wikipedia.org/wiki/INI_file.
• C Now - C Programming Information, Langston University, Tulsa Oklahoma, J.H.

Young, 1999-2011, http://c.comsci.us/syntax/expression/ebnf.html.

1.3 Terms

The following terms are used throughout this document to describe varying aspects of
input localization:
BaseTools

The BaseTools are the tools required for an EDK II build.

BDS

BNF

Framework Boot Device Selection phase.

BNF is an acronym for “Backus Naur Form.” John Backus and Peter Naur introduced for the
first time a formal notation to describe the syntax of a given language.

Component
An executable image. Components defined in this specification support one of the defined
module types.

DEC
EDK II Package Declaration File. This file declares information about what is provided in the
package. An EDK II package is a collection of like content.

DEPEX
Module dependency expressions that describe runtime process restrictions.

Dist

DSC

DXE

This refers to a distribution package that conforms to the UEFI Platform Initialization
Distribution Package Specification.

EDK II Platform Description File. This file describes what and how modules, libraries and
components are to be built, as well as defining library instances which will be used when
linking EDK II modules.

Framework Driver Execution Environment phase.

DXE SAL
A special class of DXE module that produces SAL Runtime Services. DXE SAL modules differ
from DXE Runtime modules in that the DXE Runtime modules support Virtual mode OS calls
at OS runtime and DXE SAL modules support intermixing Virtual or Physical mode OS calls.

DXE SMM
A special class of DXE module that is loaded into the System Management Mode memory.

DXE Runtime
Special class of DXE module that provides Runtime Services

Version 1.24B March 2015 1

http://en.wikipedia.org/wiki/INI_file
http://c.comsci.us/syntax/expression/ebnf.html

Introduction EDK II INF File Specification

EBNF
Extended “Backus-Naur Form” meta-syntax notation with the following additional
constructs: square brackets “[…]” surround optional items, suffix “*” for a sequence of zero
or more of an item, suffix “+” for one or more of an item, suffix “?” for zero or one of an
item, curly braces “{…}” enclosing a list of alternatives, and super/subscripts indicating
between n and m occurrences.

EDK

Extensible Firmware Interface Development Kit, the original implementation of the Intel®
Platform Innovation Framework for EFI Specifications developed in 2007.

EDK II
EFI Development Kit, version II that provides updated firmware module layouts and custom
tools, superseding the original EDK.

EDK Compatibility Package (ECP)
The EDK Compatibility Package (ECP) provides libraries that will permit using most existing
EDK drivers with the EDK II build environment and EDK II platforms.

EFI

FDF

Generic term that refers to one of the versions of the EFI specification: EFI 1.02, EFI 1.10
or any of the UEFI specifications.

EDK II Flash definition file. This file is used to define the content and binary image layouts
for firmware images, update capsules and PCI option ROMs.

FLASH
This term is used throughout this document to describe one of the following:

• An image that is loaded into a hardware device on a platform - traditional ROM
image

• An image that is loaded into an Option ROM device on an add-in card
• A bootable image that is installed on removable, bootable media, such as a

Floppy, CD-ROM or USB storage device.
• An image that is contains update information that will be processed by OS

Runtime services to interact with EFI Runtime services to update a traditional
ROM image.

• A UEFI application that can be accessed during boot (at an EFI Shell Prompt),
prior to hand-off to the OS Loader.

Foundation
The set of code and interfaces that holds implementations of EFI together.

Framework
Intel® Platform Innovation Framework for EFI consists of the Foundation, plus other
modular components that characterize the portability surface for modular components
designed to work on any implementation of the Tiano architecture.

GUID
Globally Unique Identifier. A 128-bit value used to name entities uniquely. A unique GUID
can be generated by an individual without the help of a centralized authority. This allows
the generation of names that will never conflict, even among multiple, unrelated parties.
GUID values can be registry format (8-4-4-4-12) or C data structure format.
GUID also refers to an API named by a GUID.

HII
Human Interface Infrastructure. This generally refers to the database that contains string,
font, and IFR information along with other pieces that use one of the database components.

3 March 2015 Version 1.24B

EDK II INF File Specification Introduction

HOB

IFR

INF

Hand-off blocks are key architectural mechanisms that are used to hand off system
information in the early pre-boot stages.

Internal Forms Representation. This is the binary encoding that is used for the
representation of user interface pages.

EDK II Module Information File. This file describes how the module is coded. For EDK, this
file describes how the component or library is coded as well as providing some basic build
information.

Library Class
A library class defines the API or interface set for a library. The consumer of the library is
coded to the library class definition. Library classes are defined via a library class .h file that
is published by a package. See the EDK 2.0 Module Development Environment Library
Specification for some example library classes.

Library Instance
An implementation of one or more library classes. See the EDK 2.0 Module Development
Environment Library Specification for a list of sample library instances.

Module
A module is either an executable image or a library instance. For a list of module types
supported by this package, see module type.

Module Type
All libraries and components belong to one of the following module types: BASE, SEC,
PEI_CORE, PEIM, DXE_CORE, DXE_DRIVER, DXE_RUNTIME_DRIVER, DXE_SMM_DRIVER,
DXE_SAL_DRIVER, UEFI_DRIVER, or UEFI_APPLICATION. These definitions provide a
framework that is consistent with a similar set of requirements. A module that is of module
type BASE, depends only on headers and libraries provided in the MDE, while a module that
is of module type DXE_DRIVER depends on common DXE components. For a definition of
the various module types, see module type. The EDK II build system also permits modules
of type USER_DEFINED. These modules will not be processed by the EDK II Build system.

Package
A package is a container. It can hold a collection of files for any given set of modules.
Packages may be described as containing zero or more of any of the following:

— source modules, containing all source files and descriptions of a module
— binary modules, containing EFI Sections or a Framework File System and a description

file specific to linking and binary editing of features and attributes specified in a Platform
Configuration Database (PCD,)

— mixed modules, with both binary and source modules
Multiple modules can be combined into a package, and multiple packages can be combined
into a single package.

PCD

PEI
Platform Configuration Database.

Pre-EFI Initialization Phase.

PEIM
An API named by a GUID.

Version 1.24B March 2015 4

Introduction EDK II INF File Specification

PPI

A PEIM-to-PEIM Interface that is named by a GUID.

Protocol
An API named by a GUID.

Runtime Services
Interfaces that provide access to underlying platform-specific hardware that might be
useful during OS runtime, such as time and date services. These services become active
during the boot process but also persist after the OS loader terminates boot services.

SAL

SEC

SKU

SMM

System Abstraction Layer. A firmware interface specification used on Intel® Itanium®
Processor based systems.

Security Phase is the code in the Framework that contains the processor reset vector and
launches PEI. This phase is separate from PEI because some security schemes require
ownership of the reset vector.

Stock Keeping Unit.

System Management Mode. A generic term for the execution mode entered when a CPU
detects an SMI. The firmware, in response to the interrupt type, will gain control in physical
mode. For this document, "SMM" describes the operational regime for IA32 and x64
processors that share the OS-transparent characteristics.

UEFI Application
An application that follows the UEFI specification. The only difference between a UEFI
application and a UEFI driver is that an application is unloaded from memory when it exits
regardless of return status, while a driver that returns a successful return status is not
unloaded when its entry point exits.

UEFI Driver
A driver that follows the UEFI specification.

UEFI Specification Version 2.4
Current UEFI version.

UEFI Platform Initialization Distribution Package Specification Version 1.0
The current version of this specification includes Errata B.

UEFI Platform Initialization Specification 1.3
Current version of the UEFI PI specification.

Unified EFI Forum
A non-profit collaborative trade organization formed to promote and manage the UEFI
standard. For more information, see www.uefi.org.

VFR

VPD

Visual Forms Representation.

Vital Product Data that is read-only binary configuration data, typically located within a
region of a flash part. This data would typically be updated as part of the firmware build,
post firmware build (via patching tools), through automation on a manufacturing line as the
'FLASH' parts are programmed or through special tools.

5 March 2015 Version 1.24B

http://www.uefi.org/

EDK II INF File Specification Introduction

1.4 Target Audience

Those performing UEFI development and support for platforms and distributable
modules.

1.5 Conventions Used in this Document

This document uses typographic and illustrative conventions described below.

1.5.1 Data Structure Descriptions

Intel® processors based on 32 bit Intel® architecture (IA 32) are "little endian"
machines. This distinction means that the low-order byte of a multi byte data item in
memory is at the lowest address, while the high-order byte is at the highest address.
Processors of the Intel® Itanium® processor family may be configured for both "little
endian" and "big endian" operation. All implementations designed to conform to this
specification will use "little endian" operation.
In some memory layout descriptions, certain fields are marked reserved. Software
must initialize such fields to zero and ignore them when read. On an update operation,
software must preserve any reserved field.
The data structures described in this document generally have the following format:

Summary:

A brief description of the data structure.

Prototype:

An EBNF-type declaration for the data structure.

Parameters:
Explanation of some terms used in the prototype.

Example:

Sample data structure using the prototype.

1.5.2 Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the
algorithms in this document are intended to be compiled directly. The code is presented
at a level corresponding to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A
queue is an ordered list of homogeneous objects. Unless otherwise noted, the ordering
is assumed to be FIFO.
Pseudo code is presented in a C-like format, using C conventions where appropriate.
The coding style, particularly the indentation style, is used for readability and does not
necessarily comply with an implementation of the UEFI Specification.

Version 1.24B March 2015 6

Introduction EDK II INF File Specification

1.5.3 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

Typographic
Convention

Typographic convention description

Plain text The normal text typeface is used for the vast majority of the descriptive text in a
specification.

Plain text (blue) Any plain text that is underlined and in blue indicates an active link to the cross-
reference. Click on the word to follow the hyper link.

Bold In text, a Bold typeface identifies a processor register name. In other instances, a
Bold typeface can be used as a running head within a paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new term or to
indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code segments use a
BOLD Monospace typeface with a dark red color. These code listings normally
appear in one or more separate paragraphs, though words or segments can also be
embedded in a normal text paragraph.

Bold Monospace Words in a Bold Monospace typeface that is underlined and in blue indicate
an active hyper link to the code definition for that function or type definition. Click on
the word to follow the hyper link.

$(VAR) This symbol VAR defined by the utility or input files.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder names for
variable information that must be supplied (i.e., arguments).

Note: Due to management and file size considerations, only the first occurrence of the reference on

each page is an active link. Subsequent references on the same page will not be actively linked to
the definition and will use the standard, non underlined BOLD Monospace typeface. Find the
first instance of the name (in the underlined BOLD Monospace typeface) on the page and click
on the word to jump to the function or type definition.

The following typographic conventions are used in this document to illustrate the
Extended Backus-Naur Form.

[item] Square brackets denote the enclosed item is optional.

{item} Curly braces denote a choice or selection item, only one of which may
occur on a given line.

<item> Angle brackets denote a name for an item.

(range-range) Parenthesis with characters and dash characters denote ranges of
values, for example, (a-zA-Z0-9) indicates a single alphanumeric
character, while (0-9) indicates a single digit.

“item” Characters within quotation marks are the exact content of an item, as
they must appear in the output text file.

? The question mark denotes zero or one occurrences of an item.

* The star character denotes zero or more occurrences of an item.

+ The plus character denotes one or more occurrences of an item.

item{n} A superscript number, n, is the number occurrences of the item that
must be used. Example: (0-9)8 indicates that there must be exactly
eight digits, so 01234567 is valid, while 1234567 is not valid.

7 March 2015 Version 1.24B

EDK II INF File Specification Introduction

item{n,} A superscript number, n, within curly braces followed by a comma “,”
indicates the minimum number of occurrences of the item, with no
maximum number of occurrences.

item{,n} A superscript number, n, within curly braces, preceded by a comma
“,”indicates a maximum number of occurrences of the item.

item{n,m} A superscript number, n, followed by a comma “,“ and a number, m,
indicates that the number of occurrences can be from n to m
occurrences of the item, inclusive.

Version 1.24B March 2015 8

EDK II INF File Specification

2
INF Overview

This section of the document describes the decisions regarding the format of the EDK II
module INF files. The INF files are used by EDK II utilities that parse build meta-data
files (INF, DEC, DSC and FDF files) to generate AutoGen.c and AutoGen.h and Makefile/
GNU makefile files for the EDK II build infrastructure.
The EDK II INF meta-data file describes properties of a module, how it is coded, what it
provides, what it depends on, architecture specific items, features, etc. regarding the
module. INF files generated during a build (that allow distribution of binary modules)
describe how the module was compiled, linked and what platform configuration
database items (PCDs) are exposed. Binary distribution of EDK II modules allows
original device manufactures (ODMs) to distribute proprietary drivers, without
distributing source code, for inclusion in a firmware image.
EDK II modules may be located in sub-directories of a package (a collection of related
objects.) If a module is "a Library", creating the module directory in the "Library" sub-
directory of a package is strongly recommended. An "Include" package subdirectory
may also be required. Header files for modules that define a library class must be
placed in the Include/Library directory using the Library Class Name for the file name.
The Include directory and sub-directories contain header files that define either a
library class API or pre-defined ("industry standard") data elements. One and only one
header file defines the library class API. Multiple library instances can "produce" the
functionality of a library class. The use of library class API headers allows for platform
integrators to select a library instance that is suitable for their platform. This usage
model frees the driver developer from coding a module to specific library instances.
Libraries are really nothing more than modules with pre-defined APIs.
Each module may have one or more INF files that can be used by tools to generate
images. Specifically, the EDK Compatibility Package will contain two INF files for any
module that contains assembly code. Since the ECP can be used with existing EDK tools
(which is only supported by Microsoft and Intel Windows based tools,) a separate INF
file to support the multiple tool chain capability of the EDK II build system must be
provided for the modules that contain assembly code. The EDK II ECP will use the
basename_edk2.inf for the filename of the EDK II build system compatible INF files for
non-Windows based tool chains, and use just the basename.inf for the filename of EDK
only INF files used by the EDK build system.

Note: Path and Filename elements within the INF are case-sensitive in order to support building on UNIX

style operating systems.

Note: GUID values are used during runtime to uniquely map the C names of PROTOCOLS, PPIS, PCDS

and other variable names.

Note: This document uses a backslash “\” to indicate that a line that cannot be displayed in this

document on a single line. Within the DSC specification, each entry must appear on a single line.

Note: The total path and file name length is limited by the operating system and third party tools. It is

recommended that for EDK II builds that the WORKSPACE directory be either a directory under a

Version 1.24B March 2015 9

EDK II INF File Specification INF Overview

subst drive in Windows (s:/build as an example) or be located in either the /opt directory or in the
user’s /home/username directory for Linux and OS/X.

2.1 Processing Overview

Each module or component INF file is broken out into sections in a manner similar to
the other build meta-data files. However, the intent of a module’s INF file is to define
the source files, libraries, and definitions relevant to building the module, creating
binary files that are either raw binary files or PE32/PE32+/coff format files. The
different sections are described in detail in this chapter. In general, the original EDK
parsing utilities read each line from the [Libraries] or [Components] sections of the
build description (DSC) file, process the INF file on a line to generate a makefile, and
then continued with the next line. EDK II parsing utilities are token based, which
permits an element to span multiple lines. The EDK II utilities check both EDK and EDK
II INF files, and, if required, generate C code files based on the content of the EDK II
INF. Refer to the EDK II Build Specification for more information regarding these auto-
generated files.
One major difference between EDK and EDK II is support for non-Microsoft
development environments. Because modules may be distributed to developers that
use these environments, both source code and the meta-data files need to be UNIX*/
GCC clean. One little known fact regarding the Microsoft tools and operating systems is
their ability to process the forward slash "/" character as a directory separator.
All EDK II INF files MUST use this forward slash character for all directory paths
specified.

2.2 Information File General Rules

This section covers the format for the EDK II module INF files. While the EDK code base
and tools treated libraries completely separate from modules, the EDK II code base and
tools process modules, with libraries being considered a module that produces a library
class.

2.2.1 Section Entries

To simplify parsing, the EDK II meta-data files continue using the INI format. This style
was introduced for EDK meta-data files, when only the Windows tool chains were
supported. It was decided that for compatibility purposes, that INI format would
continue to be used. EDK II formats differ from the defacto format in that the semi-
colon ";" character cannot be used to indicate a comment.
Leading and trailing space/tab characters must be ignored.
Duplicate section names must be merged by tools.
This description file consists of sections delineated by section tags enclosed within
square [] brackets. Section tag entries are case-insensitive. The different sections and
their usage are described below. The text of a given section can be used for multiple
section names by separating the section names with a comma. For example:
[Sources.X64, Sources.IPF]

The content below each section heading is processed by the parsing utilities in the order
that they occur in the file. The precedence for processing these architecture section

Version 1.24B March 2015 10

INF Overview EDK II INF File Specification

tags is from right to left, with sections defining an architecture having a higher
precedence than a section which uses common (or no architecture extension) as the
architecture.

Note: Content within a section IS case sensitive. IA32, Ia32 and ia32 within a section are processed as

separate items. (Refer to Naming Conventions below for more information on directory and/or file
naming.)

Sections are terminated by the start of another section or the end of the file.
Duplicate sections (two sections with identical section tags) will be merged by tools,
with the second section appended to the first.
If architectural modifiers are used in the section tag, the section is merged by tools with
content from common sections (if specified) with the architectural section appended to
the first, into an architectural section. For example, given the following:
[Sources]
ACommonFile.c
[Sources.IA32]
BforIa32.c
[Sources.X64]
CforX64.c

After the first pass of the tools, when building the module for IA32, the source files will
logically be:
[Sources.IA32]
ACommonFile.c
BforIa32.c

When building the module for X64, the source files will logically be:
[Sources.X64]
ACommonFile.c
CforX64.c

The [Defines] section tag prohibits use of architectural modifiers. All other sections
can specify architectural modifiers.

2.2.2 Comments

The hash # character indicates comments in the Module Information (INF) file. In line
comments terminate the processing of a line. In line comments must be placed at the
end of the line, and may not be placed within the section ([,]) tags.
Only gPkgTSGuid.PcdFoo|TRUE|BOOLEAN|0x00000015 in the following example is
processed by tools; the remainder of the line is ignored:
gPkgTSGuid.PcdFoo|TRUE|BOOLEAN|0x00000015 # EFI_FOO_MEMORY

Note: Blank lines and lines that start with the hash # character must be ignored by build tools.

Hash characters appearing within a quoted string are permitted, with the string being
processed as a single entity. The following example must handle the quoted string as
single element by tools.
UI = “# Copyright 2007, No Such, LTD. All rights reserved.”

Comments are terminated by the end of line.

11 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

2.2.3 Valid Entries

Processing of the line is terminated if a comment is encountered.
Processing of a line is terminated by the end of the line.
Items in quotation marks are treated as a single token and have the highest
precedence. All expressions must be written using in-fix notation (operators are written
between the operands). Parenthesis surrounding groups of operands and operators
must be used to determine the order in which operations are to be performed. All other
processing occurs from left to right.
In the following example, B - C is processed first, then result is added to A followed by
adding 2; finally 3 is added to the result.
(A + (B - C) + 2) + 3

In the next example, A + B is processed first, then C + D is processed and finally the
two results are added.
(A + B) + (C + D)

Space and tab characters are permitted around field separators.

2.2.4 Naming Conventions

The EDK II build infrastructure is supported under Microsoft* Windows*, Linux* and
MAC OS/X operating systems. All directory and file names must be treated as case
sensitive because of multiple environment support.
• The use of special characters in directory names and file names is restricted to the

dash, underscore, and period characters, respectively "-", "_", and ".".
• Period characters must not be followed by another period character. File and

Directory names must not start with "./", "." or "..".
• Space characters must never be used in the directory path specified by the system

environment variable, WORKSPACE.
• Directory names and file names within the WORKSPACE directory tree must not

contain space characters.
• Directory Names must only contain alphanumeric, dash, underscore and period

characters (two sequential period characters, ".." are not permitted); it is
recommended that the name start with an alpha character.

• All files (except those listed in the Packages sections) must reside in the directory
containing the INF file or in sub-directories of the directory containing the INF file.

• Additionally, all EDK II directories that are architecturally dependent must use a
name with only the first character capitalized. Ia32, Ipf, X64 and Ebc are valid
architectural directory names. IA32, IPF and EBC are not acceptable directory
names, and may cause build breaks. From a build tools perspective, IA32 is not
equivalent to Ia32 or ia32.

• Absolute paths are not permitted in EDK II INF files. All paths specified are relative
to the WORKSPACE system environment variable, relative to an EDK II package
directory (defined as a directory containing a DEC file) or relative to the directory
containing the INF file.

The build tools must be able to process the tool definitions file: tools_def.txt
(describing the location and flags for compiler and user defined tools), which may
contain space characters in paths on Windows* systems.

Version 1.24B March 2015 12

INF Overview EDK II INF File Specification

Note: The tools_def.txt file and [BuildOptions] sections are the places that permit the use of space

characters in a directory path.

The EDK II Coding Style specification covers naming conventions for use within C Code
files, and as well as specifying the rules for directory and file names. This section is
meant to highlight those rules as they apply to the content of the INF files.
Architecture keywords (IA32, IPF, X64 and EBC) are used by build tools and in meta-
data files for describing alternate threads for processing of files. These keywords must
not be used for describing directory paths. Additionally, directory names with
architectural names (Ia32, Ipf, X64 and Ebc) do not automatically cause the build tools
or meta-data files to follow these alternate paths. Directories and Architectural
Keywords are similar in name only.
All directory paths within EDK II INF files must use the forward slash "/" character to
separate directories as well as directories from filenames. Example:
C:/Work/Edk2/edksetup.bat

File names must also follow the same naming convention required for directories. No
space characters are permitted. The special characters permitted in directory names
are the only special characters permitted in file names.

2.2.5 !include Statements

The !include statement are NOT permitted in the INF files.

2.2.6 Macro Statements

Use of MACRO statements in the EDK II INF files is limited to local usage only; global or
external macros are not permitted. This decision was made in order to support UEFI’s
PI Distribution Package Specification requirements.
Macro statements are permitted in the EDK II INF files. Macro statements assign a
Value to a Variable Name, and are only valid during the processing of the INF specifying
the value. If a value is not specified, then the MACRO has a value of zero.
Token names (reserved words defined in the EDK II meta-data file specifications)
cannot be used as macro names. As an example, using PLATFORM_NAME as a macro
name is not permitted, as it is a token defined in the DSC file’s [Defines] section.
Any defined MACRO definitions will be expanded by tools when they encounter the
entry in the section except when the macro is within double quotation marks in build
options sections. The expectation is that these macros will be expanded by scripting
tools such as make or nmake.
Macros can be used to define a path, a filename, any combination of path and file
names or content that will appear in the right side of a statement in the
[BuildOptions] section. Macros for paths and files can be defined and used in
[Defines], [LibraryClasses], [Sources], [Binaries] and [Packages] sections.
Macro Definition statements that appear within a section of the file (other than the
[Defines] section) are scoped to the section they are defined in. If the Macro
statement is within the [Defines] section, then the Macro is common to the entire file,
with local definitions taking precedence (if the same MACRO name is redefined in
subsequent sections, then the MACRO value is local to only that section.)
In the following example, the MACRO, IFMP is used to fit a long directory/filename pair
on to a single line.:

13 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

DEFINE IFMP = IntelFrameworkModulePackage

Using the macro, for example, in a [Packages] section, looks like:
$(IFMP)/IntelFrameworkModulePackage.dec

Macros are evaluated where they are used in statements, not where they are defined. It
is recommended that tools break the build and report an error if an expression cannot
be evaluated.
Macros used in build flags (in [BuildOptions] sections) that are encapsulated by
quotation marks are not expanded by tools, and do not need to be local to the INF file.
The expectation is that macros in the quoted values will be expanded by external build
scripting tools, such as nmake or gmake; they will not be expanded by the build tools.
The macro statements are positional, in that only statements following a macro
definition are permitted to use the macro – a macro cannot be used before it has been
defined.
Macros defined in common sections may be used in the architecturally modified
sections of the same section type. Macros defined in architectural sections cannot be
used in other architectural sections, nor can they be used in the common section.
Section modifiers in addition to the architectural modifier follow the same rules as
architectural modifiers.
Within the EDK II INF File, macros are expanded (except within quotes), not evaluated,
during the parsing of the file.

Example
[LibraryClasses.common]
DEFINE MDE = MdePkg/Library
BaseLib|$(MDE)/BaseLib.inf

[LibraryClasses.X64, LibraryClasses.IA32]
Can use $(MDE), cannot use $(MDEMEM)
DEFINE PERF = PerformancePkg/Library
TimerLib|$(PERF)/DxeTscTimerLib/DxeTscTimerLib.inf

[LibraryClasses.X64.PEIM]
Can use $(MDE) and $(PERF)
DEFINE MDEMEM = $(MDE)/PeiMemoryAllocationLib
MemoryAllocationLib|$(MDEMEM)/PeiMemoryAllocationLib.inf

[LibraryClasses.IPF]
Cannot use $(PERF) or $(MDEMEM)
Can use $(MDE) from the common section
PalLib|$(MDE)/UefiPalLib/UefiPalLib.inf
TimerLib|$(MDE)/BaseTimerLibNullTemplate/BaseTimerLibNullTemplate.inf
In the previous example, the directory and filename for a library
instance is the recommended instance and may not be the actual library
linked to the module, as the platform integrator may choose a different
library instance to satisfy a library class dependency.

2.2.7 Conditional Directive Statements (!if...)

Conditional statements are NOT permitted in the EDK II INF files.

Version 1.24B March 2015 14

INF Overview EDK II INF File Specification

2.2.8 Expressions

Expressions are supported in specific statements within the EDK II INF files. The
expression syntax is defined in the EDK II Expression Syntax Specification.

2.3 EDK II INF Format

The remainder of this chapter describes the EDK II INF file format.

Note: EDK II accommodates distribution of binary modules, so in addition to handling standard module

builds, the INF can also specify information about a binary module.

EDK II INF files may be created by package installation tools using the UEFI Distribution
Package description files that accompany a distribution package.
All content (except section tag names) within the EDK II INF file is case-sensitive. All
newly created EDK II INF files must be written to be case-sensitive.

2.4 [Defines] Section

This is a required section.
The [Defines] section of EDK II INF files is used to define variable assignments that
can be used in later build steps. The parsing utilities process any local symbol
assignments defined in this section. The EDK II parsing utilities will use some of this
section's information for generating AutoGen.c and AutoGen.h files. Note that the
sections are processed in the order listed in the INF file, and later assignments of these
local symbols override previous assignments.
[Defines]

The format for entries in this section is:
Name = Value

The following is an example of a driver's [Defines] section.
[Defines]

INF_VERSION = 0x00010018
BASE_NAME = DxeIpl
FILE_GUID = 86D70125-BAA3-4296-A62F-602BEBBB9081
VERSION_STRING = 1.0
MODULE_TYPE = PEIM
ENTRY_POINT = PeimInitializeDxeIpl
MODULE_UNI_FILE = DxeIpl.uni

The following is an example of a library's [Defines] section.
[Defines]

INF_VERSION = 0x00010018
BASE_NAME = BaseMemoryLib
FILE_GUID = fd44e603-002a-4b29-9f5f-529e815b6165
MODULE_TYPE = BASE
VERSION_STRING = 1.0
LIBRARY_CLASS = BaseMemoryLib

Drivers may expose library functionality, such as a DXE_CORE module that may
implement functions that satisfy the BaseMemoryAllocation library class. In this
instance, the driver module would also specify the LIBRARY_CLASS in the [Defines]

15 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

section. Other DXE drivers that would require a library instance for the
BaseMemoryAllocation class could specify the DXE_CORE INF file as the recommended
instance for satisfying the required library class instance.
Appendix G lists the available MODULE_TYPE values supported by EDK II INF files.
The EDK II [Defines] section is common to all architectures and does not permit using
architectural modifiers in the section tag name.
The following table shows EDK II unique elements of a defines section that may be
required for generating the AutoGen.c and AutoGen.h files. Library modules must never
specify driver elements.

Version 1.24B March 2015 16

INF Overview EDK II INF File Specification

Note: Any lines not starting with one of the tag names defined in the table below are added to the top of

the INF’s generated makefile exactly as typed on the line in the INF file.

Note: COMBINED_PEIM_DRIVER is a driver that may be dispatched by either the PEI Core or the Dxe

Core. EDK II only references the first possible dispatch instance.

Table 1. EDK II [Defines] Section Elements

Tag Required Value Notes

INF_VERSION REQUIRED 0x00010018 This identifies the INF spec. version.
Tools use this value to handle
parsing of previous releases of the
specification if there are
incompatible changes.

BASE_NAME REQUIRED A single
word

This is a single word identifier that
will be used for the component
name.

EDK_RELEASE_VERSION Not
required

Hex Double
Word

The minimum revision value across
the module and all its dependent
libraries. If a revision value is not
declared in the module or any of the
dependent libraries, then the tool
may use the value of 0, which
disables checking.

PI_SPECIFICATION_VERSIO
N

Not
required

Decimal or
special
format of
hex

The minimum revision value across
the module and all its dependent
libraries. If a revision value is not
declared in the module or any of the
dependent libraries, then tools may
use the value of 0, which disables
checking.
The
PI_SPECIFICATION_VERSION
must only be set in the INF file if the
module depends on services or
system table fields or PI core
behaviors that are not present in the
PI 1.0 version.
For example, if a module depends on
definitions in PI 1.1 that are not in PI
1.0, then
PI_SPECIFICATION_VERSION
must be 0x0001000A

17 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

Tag Required Value Notes

UEFI_SPECIFICATION_VERS
ION

Not
required

Decimal or
special
format of
hex

The minimum revision value across
the module and all its dependent
libraries. If a revision value is not
declared in the module or any of the
dependent libraries, then tools may
use the value of 0, which disables
checking.
The
UEFI_SPECIFICATION_VERSI
ON must only be set in the INF file if
the module depends on UEFI Boot
Services or UEFI Runtime Services or
UEFI System Table fields or UEFI
core behaviors that are not present
in the UEFI 2.1 version.
For example, if a module depends on
definitions in UEFI 2.2 that are not in
UEFI 2.1, then
UEFI_SPECIFICATION_VERSI
ON must be 0x00020014

FILE_GUID REQUIRED GUID Value Registry (8-4-4-4-12) Format
This value is required for all EDK II
format INF files, required for EDK
driver INF files, not required for EDK
libraries

MODULE_TYPE REQUIRED This is the type of module. One of
the EDK II Module Types. For Library
Modules, the MODULE_TYPE must
specify the MODULE_TYPE of the
module that will use the driver.

BUILD_NUMBER Optional UINT16
Value

This optional element, if present (or
set in the DSC file), is used during
the creation of the
EFI_VERSION_SECTION for this
module; if it is not present, then the
BuildNumber field of the
EFI_VERSION_SECTION will be
set to 0.

VERSION_STRING REQUIRED String If present, this value will be used to
generate the UCS-2LE encoded file
for the VERSION section of the FFS
unless a ver or ver_ui file has been
specified in the [Binaries]
section.

MODULE_UNI_FILE Optional Filename A UCS-2LE encoded file containing
localization strings; the file path (if
present) is relative to the directory
containing the INF file.

Version 1.24B March 2015 18

INF Overview EDK II INF File Specification

Tag Required Value Notes

LIBRARY_CLASS Typically
not
specified
for a
Driver;
REQUIRED
for a
Library
Only
Module.

Word | List
[“|” Word |
List]*

One Library Class that is satisfied by
this Library Instance; one or more
LIBRARY_CLASS lines may be
specified by a module.
The reserved keyword, NULL, must
be listed for library class instances
that do NOT support a library class
keyword.

PCD_IS_DRIVER Not
required –
Driver Only

PEI_PCD_DR
IVER or
DXE_PCD_D
RIVER

Only required for the two
(PEI_PCD_DRIVER or
DXE_PCD_DRIVER) PCD Driver
modules.

ENTRY_POINT Not
required –
Driver Only

CName This is the name of the driver’s entry
point function.

UNLOAD_IMAGE Not
required –
Driver Only

CName If a driver chooses to be unloadable,
then this is the name of the module’s
function registered in the Loaded
Image Protocol. It is called if the
UEFI Boot Service UnloadImage() is
called for the module, which then
executes the Unload function,
disconnecting itself from handles in
the database as well as uninstalling
any protocols that were installed in
the driver entry point. The CName is
the name of this module’s unload
function.

CONSTRUCTOR Not
required -
Library
Only

CName This only applies to components that
are libraries. It is required for EDK II
libraries if the module’s INF contains
a Constructor element.
This value is used to call the
specified function before calling into
the library itself.

DESTRUCTOR Not
required –
Library
Only

CName This only applies to components that
are libraries.
This value is used to call the
specified function before calling into
the library itself.

SHADOW Not
required –
SEC, PEIM
and
PEI_CORE
Driver
modules
only

TRUE |
FALSE

This boolean operator is used by
SEC, PEI_CORE and PEIM
modules to indicate if the module
was coded to use
REGISTER_FOR_SHADOW.
If the value is TRUE, the .reloc
section of the PE32 image is not
removed, otherwise, the .reloc
section is stripped to conserve space
in the final binary images.
The default value is FALSE.

19 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

Tag Required Value Notes

PCI_DEVICE_ID Not
required -
Required
for UEFI
PCI Option
ROMs

Hex Number The PCI Device Id for this device.

PCI_VENDOR_ID Not
required -
Required
for UEFI
PCI Option
ROMs

Hex Number The PCI Vendor Id for this device

PCI_CLASS_CODE Not
required -
Required
for UEFI
PCI Option
ROMs

Hex Number The PCI Class Code for this device

PCI_COMPRESS Not
required
UEFI PCI
Option
ROMs

TRUE |
FALSE

This flag is used by tools to compress
a PCI Option ROM image file, the
default (if not specified) is FALSE

UEFI_HII_RESOURCE_SECTI
ON

Not
required -
Driver Only

TRUE |
FALSE

This boolean operator is used to
indicate that the module will require
a separate HII resource section in
the efi image file.

DEFINE Not
required

Name =
Value

The value must be a directory name,
and the name can be used with $(
and) character sets. This allows
shortening of lines typed by users.

SPEC Not
required

CName =
Value

A User-specified #define CName
Value pair that will be included in the
AutoGen.h file.

CUSTOM_MAKEFILE Not
required

Family | File A user written makefile that will be
used, the INF file will not be parsed.
The Family is one of MSFT or GCC
followed by a field separator “|”
character, then the filename of the
makefile in the same directory as the
INF file.
To keep GCC compatibility, the user
must generate two Makefiles, one for
MSFT, such as makefile and another
for GCC, such as GNUmakefile

DPX_SOURCE Not
Required -
Driver Only

Filename If present, the file must contain all
DEPEX statements (as defined in the
UEFI PI specification), as the tools
will process the file, ignoring any
content in [Depex] sections in this
file AND all inherited dependencies
from libraries. This allows the
module owner to force a Depex
independently. Use of this option is
not recommended for normal use.

Version 1.24B March 2015 20

INF Overview EDK II INF File Specification

2.5 [Sources] Section
The [Sources] section is used to specify the files that make up the component.
Directories names are required for files existing in subdirectories of the component. All
directory names are relative to the location of the INF file. Each file is added to the
macro of $(INC_DEPS), which can be used in a makefile dependency expression.
Binary files must not be listed in this section. EDK II INF files may have a [Binaries]
section defined that must be used to define the type and name of the binary files
provided by a module.
This section is optional. If it is present, and files are listed in this section, then the build
tools must process the files for AutoGen as well as Makefile generation. If this section is
not present, then the build tools may assume that the binary files listed in the
[Binaries] section have already been processed by the first build step - no AutoGen or
Makefiles need to be generated.
If both [Sources] and [Binaries] sections are specified, the build tools assume that
the code provided in the sources section must be built, and that the binary files
provided are also required for the final image generation process steps.
Files listed in architectural specific sections must not be listed in common architecture
[Sources] sections. The architectural modifier is used to specify additional files that
are required over and above the non-architectural specific content. During builds, files
are grouped by tools using the common and architecturally specified sections.
This section will typically use one of the following section definitions:
[Sources] [Sources.common] [Sources.IA32] [Sources.X64] [Sources.IPF]
[Sources.EBC]

The formats for entries in this section are:
Relative/path/and/filename.ext
Filename.ext

The following is an example for sources sections.
[Sources.common]
DxeIpl.dxs
DxeIpl.h
DxeLoad.c

[Sources.Ia32]
Ia32/VirtualMemory.h
Ia32/VirtualMemory.c
Ia32/DxeLoadFunc.c
Ia32/ImageRead.c

[Sources.X64]

X64/DxeLoadFunc.c

[Sources.IPF]
Ipf/DxeLoadFunc.c
Ipf/ImageRead.c

All UCS-2LE encoded files must be listed in the source section. If a UCS-2LE encoded
file, A.uni, has the statement: #include B.uni, and B.uni has a statement: #include
C.uni, both files must be listed in the INF [Sources] section.

21 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

Specifying a file in an architectural section and in the common architecture section is
prohibited (a file cannot be specific to a single architecture and also be general for all
architectures).

2.6 [BuildOptions] Section

Content in the [BuildOptions] section defines module specific tool chain flags that
must be used as the default flags for a module. These flags are appended to any
standard flags that are defined by the build process. In order to replace the standard
flags that are defined by the build process, an alternate assignment operator must be
used; "==" is used for replacement, while "=" is used to append the flag lines. Flags
specified in this section can either be appended to the standard flags (defined in the
Conf/tools_def.txt) or replace the standard flags. In addition to flags, other tool
attributes may have the item either appended or replaced.
The left side content of a statement may appear in both common and architectural
sections. For example, MSFT:DEBUG_*_*_CC_FLAGS may be listed in a common section,
while MSFT:DEBUG_*_IA32_CC_FLAGS may be listed in the architectural section. If the
operator is a single “=” character, the flags from the architectural section are appended
to the flags from the common section. Using this section may limit the ability of a
module to be compiled with different tool chains or with different build systems and is
therefore, discouraged.
Valid content is within this section is limited to the following description.

Table 2. EDK II [BuildOptions] Section Elements

Tag Value Notes

${FAMILY}:${TARGET}_${TAGNAME}_
${ARCH}_${TOOLCODE}_FLAGS

Flags for
specific tool
codes for
this module

Used to specify module specific flags
of the module that will use the
driver.

${FAMILY}:${TARGET}_${TAGNAME}_
${ARCH}_${TOOLCODE}_PATH

The fully
qualified
path an
executable

Used to replace a specific command,
such as forcing the ASL to be iasl,
instead of asl.

${FAMILY}:${TARGET}_${TAGNAME}_
${ARCH}_${TOOLCODE}_DPATH

A fully
qualified
path

A path that will be added to the
system Environment’s PATH variable
prior to executing a command

${FAMILY}:${TARGET}_${TAGNAME}_
${ARCH}_${TOOLCODE}_${ATTRIBUTE
}

Attribute
specific
string

This permits overriding other
attributes if required.

In this section, the following table describes each of the variables that are shown
above.

Version 1.24B March 2015 22

INF Overview EDK II INF File Specification

Table 3. EDK II [BuildOptions] Variable Descriptions

Variable Required Wildcard Source

FAMILY NO No Conf/tools_def.txt defines the FAMILY values,
for example: MSFT, INTEL or GCC. Typically,
this field is used to help the build tools
determine whether the line is used for Microsoft
style Makefiles or the GNU style Makefiles.
By not specifying the FAMILY, the tools
assume the flags are applicable to all families.

TARGET YES Yes = * Conf/tools_def.txt file defines two values:
DEBUG and RELEASE. Developers may define
additional targets.

TAGNAME YES Yes = * Conf/tools_def.txt file defines several different
tag names – these are defined by developers;
the default tag name, MYTOOLS, is provided in
the template for tools_def.txt and set in the
Conf/target.txt file.

ARCH YES Yes = * Conf/tools_def.txt defines at least four
architectures: IA32, X64, IPF and EBC. This
tag must use all capital letters for the tag.
Additional Architectures, such as PPC or ARM
may be added as support becomes available.

TOOLCODE YES NO The tool code must be one of the defined tool
codes in the Conf/tools_def.txt file. The flags
defined in this section are appended to flags
defined in the tools_def.txt file for individual
tools.
EXCEPTION: If the INF MODULE_TYPE,
defined in the [Defines] section is
USER_DEFINED, then the flags listed in this
section are the only flags used for the
TOOLCODE command specified in Conf/
tools_def.txt.

ATTRIBUTE YES NO The attribute must be specific to the tool code
and must be a valid attribute handled by the
build system.

Note: Regarding the EDK and EDK II distinctions in the table: Many EDK INF files must be processed by

the EDK II build system, but no EDK INF specification exists. Therefore, items of this kind are
listed in Appendix A for completeness. This limits what can be in an EDK INF file as well.

Developers should use extreme caution when specifying items in this section. The EDK
II build is designed to support multiple compilers and tool chains, expecting that code is
written in ANSI C. If custom tool flags are required by a module, developers must make
sure that all consumers of the module are aware of the specific tools and tag names
required.

23 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

Note: The lines are shown with the backslash "\" character to indicate a line continuation, they are not

allowed in the actual INF file.

[BuildOptions.common]
MSFT:DEBUG_*_IA32_DLINK_FLAGS = /out:"$(BIN_DIR)\SecMain.exe" \

/base:0x10000000 /pdb:"$(BIN_DIR)\SecMain.pdb" \
/LIBPATH:"$(VCINSTALLDIR)\Lib" \
/LIBPATH:"$(VCINSTALLDIR)\PlatformSdk\Lib" \
/NOLOGO /SUBSYSTEM:CONSOLE /NODEFAULTLIB /IGNORE:4086 \
/MAP /OPT:REF /DEBUG /MACHINE:I386
/LTCG Kernel32.lib MSVCRTD.lib Gdi32.lib User32.lib \
Winmm.lib

MSFT:DEBUG_*_IA32_CC_FLAGS = /nologo /W4 /WX /Gy /c /D UNICODE \
/D EFI32 /Od /DSTRING_ARRAY_NAME=SecMainStrings
/FI$(DEST_DIR_DEBUG)/AutoGen.h /EHs-c- /GF /Gs8192 \
/Zi /Gm

For [BuildOptions] sections in the INF file, the entries with a common left side (of the
"=") will be either appended or replace previous entries based on the "==" replace or "="
append assignment character sequence. Sections with identical architecture modifiers
are appended to each other.
Common Section + Architectural Section

Example:
[BuildOptions.Common]
MSFT:*_*_*_CC_FLAGS = /nologo
[BuildOptions.Common]
MSFT:*_*_*_CC_FLAGS = /Od
[BuildOptions.IA32]
MSFT:*_*_IA32_CC_FLAGS = /D EFI32

For IA32 architecture builds of an EDK II INF file would logically be:
MSFT:*_*_IA32_CC_FLAGS = /nologo /Od /D EFI32

For X64 architecture builds of an EDK II INF file would logically be:
MSFT:*_*_IA32_CC_FLAGS = /nologo /Od

2.7 [Binaries] Section

The [Binaries] section is used to specify the binary files that are distributed as part of
a Binary Module. The binary files listed are not used by the $(MAKE) portion of a
platform build, but are used by other tools to generate an image suitable for either an
Application, FD or FV. A pipe character "|" is used to separate the fields. If the file is in
a sub-directory, then the relative (to the INF file) path must be included as part of the
file name. The first field is the FileType, which will let a platform integrator know the
provided file's format, while the last three fields are optional. (Three defined targets,
NOOPT, DEBUG and RELEASE are provided as part of the EDK II build environment.) The
wildcard character, "*", is permitted in the fields.
Additional information, such as what flags were used during the build, can also be
added in the comments preceding an entry or in an in-line comment that follows the
entry.

Version 1.24B March 2015 24

INF Overview EDK II INF File Specification

Files listed in this section do not require generation of AutoGen or Makefiles during the
pre-processing build steps.
It is prohibited to list a file in the "common" architectural section and also in a specific
architectural section. Binary files can be common to all architectures or specific to
individual architectures, not both. The architectural section modifier is used as a
restriction to mask binaries from target architectures that are not applicable. During a
build, the tools will group binaries in listed in the common sections with the binaries
listed for the architecture needed by the build.
This section uses one of the following section definitions:
[Binaries] [Binaries.common] [Binaries.IA32] [Binaries.X64]
[Binaries.IPF] [Binaries.EBC]

The formats for entries in this section are:
FileType|Relative/path/and/filename.ext|DEBUG|GCC|UNIXGCC|TRUE
FileType|Filename.ext|*|GCC
FIleType|Relative/path/and/filename.ext|RELEASE
FileType|Filename.ext|RELEASE
FileType|Filename.ext

The FileType falls into one of the following PI-defined types:

GUID

ACPI

ASL

This binary is an EFI_SECTION_GUID_DEFINED encapsulation section. The EDK II
build system does not support binary files of this type.

The binary is ACPI binary code generated from an ACPI compiler. There is not PI
defined type for this file, it uses an EFI_SECTION_RAW leaf section.

The binary is an ACPI Table generated from an ACPI compiler. There is no PI
defined type for this file, it uses an EFI_SECTION_RAW leaf section.

DISPOSABLE
Unlike other file types listed in this section, the file will not be placed in a leaf
section of type EFI_SECTION_DISPOSABLE, but rather it is a binary file that will
be ignored by the build tools. (Useful for distributing PDB files with binary
modules.)

UEFI_APP
The binary file is a PE32 UEFI Application which will be placed into an FFS file of
type EFI_FV_FILETYPE_APPLICATION.

PE32

PIC

This binary is an EFI_SECTION_PE32 leaf section.

This binary is an EFI_SECTION_PIC leaf section.

PEI_DEPEX
This binary is an EFI_SECTION_PEI_DEPEX leaf section.

DXE_DEPEX
This binary is an EFI_SECTION_DXE_DEPEX leaf section.

SMM_DEPEX
This binary is an EFI_SECTION_SMM_DEPEX leaf section.

25 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

SUBTYPE_GUID
This binary is an EFI_SECTION_FREEFORM_SUBTYPE_GUID leaf section.

TE
This binary is an EFI_SECTION_TE leaf section.

UNI_VER
This is a UCS-2LE encoded file that needs to be used to create an
EFI_SECTION_VERSION leaf section.

VER

UNI_UI

UI

BIN

RAW

This binary is an EFI_SECTION_VERSION leaf section.

This is a UCS-2LE encoded file that needs to be used to create an
EFI_SECTION_USER_INTERFACE leaf section.

This binary is an EFI_SECTION_USER_INTERFACE leaf section.

This binary is an EFI_SECTION_RAW leaf section.

This binary is an EFI_FV_FILETYPE_RAW leaf section.

COMPAT16
This binary is an EFI_SECTION_COMPATIBILTY16 leaf section.

FV
This binary is an EFI_SECTION_FIRMWARE_VOLUME_IMAGE leaf section.

Note: The section names listed above refer to leaf section type values rather than the name of the data
structure.

The following are examples of different types of [Binaries] sections.
[Binaries.common]

UNI_UI|DxeIpl.ui
UNI_VER|DxeLoad.ver

Version 1.24B March 2015 26

INF Overview EDK II INF File Specification

[Binaries.IA32]
DXE_DEPEX|Ia32/DxeIpl.dpx # MYTOOLS
PE32|Ia32/DEBUG/DxeIpl.efi|DEBUG # MYTOOLS
PE32|Ia32/RELEASE/DxeIpl.efi|RELEASE # MYTOOLS
DISPOSABLE|Ia32/DEBUG/DxeIpl.pdb

[Binaries.X64]

DXE_DEPEX|X64/DxeIpl.dpx # MYTOOLS
PE32|X64/DxeIpl.efi # MYTOOLS

[Binaries.IPF]

DXE_DEPEX|IPF/DxeIpl.dpx # MYTOOLS
PE32|Ipf/DxeIpl.efi # MYTOOLS

2.8 [Includes] Section

Never use an [Includes] section for pure EDK II Modules or library instances. All
include paths are generated by tools by parsing the package files specified in the
[Packages] section. This section is not required for binary module INFs.

2.9 [Protocols] Section

The [Protocols] section of the EDK II INF file is a list of the global Protocol C Names
that are used by the module developer. These C names are used by the parsing utility
to lookup the actual GUID value of the PROTOCOL that is located in the EDK II package
DEC files, and then emit a data structure to the module's AutoGen.c file.
Protocols listed in architectural sections must not be listed in common [Protocols]
sections. The architectural section modifier is used as a restriction to mask items from
architectures that are not applicable.
This section uses one of the following section definitions:
[Protocols] [Protocols.common] [Protocols.IA32] [Protocols.X64]
[Protocols.IPF] [Protocols.EBC]

The formats for entries in this section is:
gEfiProtocolCName

The following is an example of the [Protocols] section.
[Protocols]

gEfiDecompressProtocolGuid
gEfiLoadFileProtocolGuid

2.10 [Ppis] Section
The [Ppis] section of the EDK II INF file is a list of the global PPI C Names that are
used by the module developer. These C names are used by the parsing utility to lookup
the actual GUID value of the PPI that is located in the EDK II package DEC files, and
then emit a data structure to the module's AutoGen.c file.
PPIs listed in architectural sections must not be listed in common [Ppis] sections. The
architectural section modifier is used as a restriction to mask items from architectures
that are not applicable.

27 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

This section uses one of the following section definitions:
[Ppis] [Ppis.common] [Ppis.IA32] [Ppis.X64] [Ppis.IPF] [Ppis.EBC]
The formats for entries in this section is:
gEfiPpiCName

The following is an example of the [Ppis] section.
[Ppis]
gEfiPeiMemoryDiscoveredPpiGuid
gEfiFindFvPpiGuid

2.11 [Guids] Section

The [Guids] section of the EDK II INF file is a list of the global GUID C Names that are
used by the module, and not already included. These C names are used by the parsing
routine to lookup the actual GUID value that is located in the EDK II package DEC files,
and then emit a data structure to the module's AutoGen.c file.
GUID C names listed in architectural sections must not be listed in common [Guids]
sections. The architectural section modifier is used as a restriction to mask items from
architectures that are not applicable.
This section uses one of the following section definitions:
[Guids] [Guids.common] [Guids.IA32] [Guids.X64] [Guids.IPF] [Guids.EBC]

The formats for entries in this section is:
gEfiGuidCName ## Usage comment

The following is an example of the [Guids] section:
[Guids]
gEfiDebugImageInfoTable
gEfiHobMemoryAllocModuleGuid

2.12 [LibraryClasses] Section

The EDK II INF [LibraryClasses] section is used to list the names of the library
classes that are required, or optionally required by a component. A library class
instance, as specified in the DSC file, will be linked into the component. The Library
Class' Recommended Instance path must be absolute, using the global variable,
WORKSPACE, to construct the path.
Library classes listed in architectural sections must not be listed in common
[LibraryClasses] sections. The architectural section modifier is used as a restriction
to mask items from architectures that are not applicable.
This section uses one of the following section definitions:
[LibraryClasses] [LibraryClasses.common] [LibraryClasses.IA32]
[LibraryClasses.X64] [LibraryClasses.IPF] [LibraryClasses.EBC]

The format for entries in this section is:
LibraryClassName1
LibraryClassName2
LibraryClassName3 ## $(WORKSPACE)/Path/To/RecommendedLibInstanceName.inf

The comment, using the double hash "##" marks, specifies the module developer’s
recommended library instance. This is information that the platform integrator can use
to help select a library instance for a given library class during a build. The package

Version 1.24B March 2015 28

INF Overview EDK II INF File Specification

developer may also provide a recommended library instance. The defined library
instance (defined in a DSC file,) that satisfies a Library Class will be added to the LIBS
definition in the output makefile:
LIBS = $(LIBS) $(LIB_DIR)/{LibInstanceName}

Note: The above is not the name of the INF file, but the name of the library file that was generated during

the instance's compilation. Refer to the EDK II DSC File Specification for rules to select library
class instances.

Note: For binary driver or application modules, this is a list of the library instances in comments that were

used to create the binary (.efi) executable file.

The following is an example of the library class section.
[LibraryClasses]
MemoryAllocationLib
BaseMemoryLib
PeiServicesTablePointerLib
CustomDecompressLib
TianoDecompressLib
UefiDecompressLib
EdkPeCoffLoaderLib
CacheMaintenanceLib
ReportStatusCodeLib
PeiServicesLib
PerformanceLib
HobLib
BaseLib
PeimEntryPoint
DebugLib

2.13 [Packages] Section

The [Packages] section lists all of the EDK II declaration files that are used by the
component. Data from the INF and the DEC files is used to generate content for the
AutoGen.c and AutoGen.h files.
Packages listed in architectural sections must not be listed in common [Packages]
sections. The architectural section modifier is used as a restriction to mask items from
architectures that are not applicable. The locations of the packages listed in this section
will be used in generating include path statements for compiler tool chains. The
packages must be listed in the order that resolves any include dependencies.
This section uses one of the following section definitions:
[Packages] [Packages.common] [Packages.IA32] [Packages.X64]
[Packages.IPF] [Packages.EBC]

The path must be relative to the directory pointed to by the WORKSPACE system
environment variable to construct the path.
MdeModulePkg/MdeModulePkg.dec # $(WORKSPACE)/MdeModulePkg
MdePkg/MdePkg.dec # $(WORKSPACE)/MdePkg

The following is an example of a packages section:

29 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

[Packages]
MdeModulePkg/MdeModulePkg.dec
MdePkg/MdePkg.dec

If there are files listed under the [Sources] section, then the MdePkg/MdePkg.dec file
must be specified in this section. The MdePkg contains information that is required by
the EDK II build system in order to compile or assemble source files using external
compilers or assemblers. When generating the "As Built" binary INF, the tools must
include all packages that declare PCDs used by this module.
Binary only INF files must include this section if a [PatchPcd] or [PcdEx] section
contains PCD entries.

2.14 PCD Sections

These sections are used for specifying PCD information and are valid for EDK II
modules only. The entries for these sections are looked up from the package
declaration files (DEC) for generating the AutoGen.c and AutoGen.h files.
The PCD’s Name (PcdName) is defined as PCD Token Space GUID C name and the PCD C
name - separated by a period "." character. Unique PCDs are identified using the
following format to identify the named PCD:
PcdTokenSpaceGuidCName.PcdCName

PCDs listed in architectural sections must not be listed in common architectural
sections. It is not possible for a PCD to be valid for only IA32 and also valid for any
architecture.
A PCD may be valid for IA32 and X64 and invalid for EBC and IPF usage, so mixing of
specific architectural modifiers is permitted.
This section defines how a module has been coded to access a PCD. A PCD can only be
accessed using the function defined by the UEFI specification for a single type,
therefore, mixing PCD section types is not permitted.
There are five defined PCD types. Do not confuse these types with the data types of the
PCDs. The five types are: FeaturePcd (in code, identified as FEATURE_FLAG), FixedPcd
(FIXED_AT_BUILD), PatchPcd (PATCHABLE_IN_MODULE) and two dynamic types of
PCDs, Pcd (DYNAMIC) and PcdEx (DYNAMIC_EX).
The two recommended types that are commonly used in modules are: Feature PCD and
the dynamic PCD form. The PCD is used for configuration when the PCD value is
produced and consumed by drivers during execution, the value may be user
configurable from setup or the value is produced by the platform in a specified area. It
is associated with modules that are released in source code. The dynamic form is the
most flexible method, as platform integrators may chose a to use a different type (such
as fixed) for a given platform without modifying the module’s INF file or the code for
the module. For modules that will be distributed as binaries, the PatchPcd and PcdEx
are the only supported types.
The FeaturePcd is used to enable some code paths; the EDK II build system will
generate a const statement for these PCDs.
Similar in function, the dynamic PcdEx type can be used with modules that are released
as binary. However, the access methods for this style prevents using these PCDs as any
other PCD type (source code must change in order for a PcdEx to be used as a
FixedPcd).

Version 1.24B March 2015 30

INF Overview EDK II INF File Specification

The FixedPcd and PatchPcd are static and only the PatchPcd can have the value
changed in a binary prior to including the module in a firmware image.
The content of this section is the PCD Token Space Guid C Name, followed by a period
"." character and then the C name of the PCD. The default value is optional. (See
chapter 3, Module Information (INF) Format Specification, later in this document for
definition of the content.) Every PCD (PcdName) is identified by two parts, the PCD's
Token Space Guid C Name and the PCD's C Name - these two items are separated by a
period "." character. This section uses one of the following section definitions:
[(PcdType)] [(PcdType).common] [(PcdType).IA32] [(PcdType).X64]
[(PcdType).IPF] [(PcdType).EBC]

The required entries for this section are the PCD Token Space Guid C Name's for the
PCD that will be looked up by tools from the DEC files, and the PCD's C name - that
must be specified in the DEC files to limit accidental duplicate PCD C Name collisions. A
default value that the module developer suggests to use for the PCD is optional.
TokenSpaceGuidCName.PcdCName

Values of PCDs defined in this file override the default values specified in the EDK II
package declaration (DEC) file. The platform integrator can specify values in the DSC
and FDF files that will override any settings in this file. If a default value is not specified,
the build system will use 1) values from the FDF file, 2) values from the DSC file or 3)
values from the DEC file.
Expressions, or Feature Flag Expressions, may be used on PCD entry lines.
If there are files listed in a [Binaries] section and this is a PatchPcd section, and the
third field of an entry is a Hex number, 0x00000012, then the value is an offset into a
binary image. The format for this type of entry is:
PcdName | Value | HexValue

For all other instances, the format for this type of entry is:
PcdName | [Value] [| FeatureFlagExpression]

When a FeatureFlagExpression is present, if the expression evaluates to TRUE, then
the PCD entry is valid. If the expression evaluates to FALSE, then the EDK II build tools
must ignore the entry.

2.14.1 FIXED_AT_BUILD

The content for the PCD entry is the PCD's Name (PCD's Token Space Guid C name,
followed by a period "." character then the PCD's C name) and an optional Default
value. These fields are separated by the pipe "|" character. If a module is coded for
only FIXED_AT_BUILD PCDs, it can only be used during a build from source files. This
section must not be present in an INF file that describes a binary only module. This
section uses one of the following section definitions:

[FixedPcd] [FixedPcd.common] [FixedPcd.IA32] [FixedPcd.X64]
[FixedPcd.IPF] [FixedPcd.EBC]
gEfiMdePkgTokenSpaceGuid.PcdFSBClock|600000000

The following is an example of the PCD FIXED_AT_BUILD type:

31 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

[FixedPcd.common]
gEfiEdkModulePkgTokenSpaceGuid.PcdMaxSizeNonPopulateCapsule
gEfiEdkModulePkgTokenSpaceGuid.PcdMaxSizePopulateCapsule

2.14.2 PATCHABLE_IN_MODULE

The PCD entry content is the PCD's Name (PCD's Token Space Guid C name, followed
by a period "." and the PCD's C name) and an optional Default value. This section may
be present in INF files that describe a binary only module. This type of PCD is one of the
recommended formats for modules that will be distributed in binary format. These
fields are separated by the pipe "|" character. This section uses one of the following
section definitions:
[PatchPcd] [PatchPcd.IA32] [PatchPcd.X64] [PatchPcd.IPF] [PatchPcd.EBC]
[PatchPcd.common]

The following is an example of the PCD FIXED_AT_BUILD type:
[PatchPcd.common]
gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageVariableSize
gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageVariableBase

2.14.3 FEATURE_FLAG

The content for the PCD entry is the PCD's Name (PCD's Token Space Guid C name,
followed by a period "." and the PCD's C name) and an optional Default value of either
TRUE or FALSE, 1 or 0. These fields are separated by the period "|" character. This
section must not be present in INF files that describe a binary only module. This section
uses one of the following section definitions:
[FeaturePcd] [FeaturePcd.common] [FeaturePcd.IA32] [FeaturePcd.X64]
[FeaturePcd.IPF] [FeaturePcd.EBC]

The following is an example of the PCD FEATURE_FLAG type:
[FeaturePcd.common]
gEfiEdkModulePkgTokenSpaceGuid.PcdDxeIplSupportCustomDecompress
gEfiEdkModulePkgTokenSpaceGuid.PcdDxeIplSupportTianoDecompress
gEfiEdkModulePkgTokenSpaceGuid.PcdDxeIplSupportEfiDecompress
gEfiEdkModulePkgTokenSpaceGuid.PcdDxeIplBuildShareCodeHobs

2.14.4 DYNAMIC

The content for the PCD entry is the PCD's Name (PCD's Token Space Guid C name,
followed by a period "." and the PCD's C name) and an optional Default value. These
entries are separated by the pipe "|" character. While this section is the recommended
method for coding PCD access methods, it must not be present in INF files that describe
a binary only module. This section uses one of the following section definitions:
[Pcd] [Pcd.common] [Pcd.IA32] [Pcd.X64] [Pcd.IPF] [Pcd.EBC]

The following is an example of the PCD DYNAMIC type:

Version 1.24B March 2015 32

INF Overview EDK II INF File Specification

[Pcd.common]
gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageVariableSize
gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageVariableBase

2.14.5 DYNAMIC_EX

The content for the PCD entry is the PCD's Name (PCD's Token Space Guid C name,
followed by a period "." and the PCD's C name) and an optional Default value. These
entries are separated by the pipe "|" character. This section may be present in INF files
that describe a binary only module. This type of PCD is one of the recommended
formats for modules that will be distributed in binary format. This section uses one of
the following section definitions:
[PcdEx] [PcdEx.common] [PcdEx.IA32] [PcdEx.X64] [PcdEx.IPF] [PcdEx.EBC]

The following is an example of the PCD DYNAMIC_EX type:
[PcdEx.common]

gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageFtwWorkingSize
gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageFtwWorkingBase
gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageFtwSpareSize
gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageFtwSpareBase

Note: For binary (.efi) modules, only PATCHABLE_IN_MODULE or DYNAMIC_EX PCDs may be specified.
FixedPcd, DYNAMIC and FeaturePcd sections are not permitted for binary distribution of
modules.

2.15 [Depex] Section

The EDK II [Depex] section is a replacement for the DPX_SOURCE file using in EDK (the
file is specified in the nmake section of an EDK INF file.)
This section is used for specifying a Depex expression, not a binary file. In the "As Built"
INF files, this section contains a comment that lists the full dependency expression,
including Depex statements AND’d from library instances linked against a module.
Binary .depex files are listed in [Binaries] sections of the INF files.
Having a common [Depex] section and architectural [Depex] sections is prohibited.
Having multiple module type modifiers for common and architectural sections is
permitted. For example, [Depex.common.DXE_DRIVER,
Depex.common.DXE_RUNTIME_DRIVER] is valid.
This section can be used with an inheritance from libraries, by supporting logical
AND'ing of the different Depex expressions together. Since more than one type of
dependency expression may be required for modules DXE/SMM modules, as well as
components of type COMBINED_PEIM_DRIVER (not supported by the EDK II build
system), section modifier tags have been defined. For module types that prohibit the
use of a [Depex] section, all [Depex] sections from library instances must be ignored.
These are only required if more than one dependency expression is required for a
module.
The format of the depex section tag is:
Depex[.<Arch>[.<ModuleType>]]

Additionally, the rules for specifying DEPEX sections are as follows.
• If the Module is a Library, then a [Depex] section is optional.

33 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

• If the Module is a Library with a MODULE_TYPE of BASE, the generic (i.e., [Depex]) and
generic with only architectural modifier entries (i.e., [Depex.IA32]) are not permitted. It is
permitted to have a Depex section if one ModuleType modifier is specified (i.e.,
[Depex.common.PEIM).

• If the ModuleType is USER_DEFINED, then a [Depex] section is optional. If a PEI,
SMM or DXE DEPEX section is required, the user must specify a ModuleType of PEIM
to generate a PEI_DEPEX section, a ModuleType of DXE_DRIVER to generate a
DXE_DEPEX section, or a ModuleType of DXE_SMM_DRIVER to generate an SMM_DEPEX
section.

• If the ModuleType is SEC, UEFI_APPLICATION, UEFI_DRIVER, PEI_CORE, SMM_CORE or
DXE_CORE, no [Depex] sections are permitted and all library class [Depex] sections
are ignored.

• Module types PEIM, DXE_DRIVER, DXE_RUNTIME_DRIVER, DXE_SAL_DRIVER and
DXE_SMM_DRIVER require a [Depex] section.

The Depex section headers start with one of the following:
[Depex] [Depex.IA32] [Depex.X64] [Depex.IPF] [Depex.EBC] [Depex.common]

When generating the "As Built" binary INF during a build, the complete dependency
expression, including dependencies from library instances, will be listed in comments.
The following are examples of Depex section:
[Depex]
TRUE

[Depex.IA32.DXE_DRIVER, Depex.IA32.DXE_RUNTIME_DRIVER]
gEfiPcdProtocolGuid

2.16 [UserExtensions] Section

The EDK II [UserExtensions] sections allow for extending the INF with custom
processing. The format for a user extension is:
[UserExtensions.$(UserID).$(Identifier)]

Having data elements under the section header is not required.
The EDK II build tools do not use this section. When generating the "As Built" binary
INF during a build, this section is copied from the original source INF file if the UserId is
"TianoCore". Other [UserExtensions] sections will not be copied. The reference tools
ignore all content within a [UserExtensions] section.
The following is an example of a [UserExtensions] section:
[UserExtensions.NoSuchCorp."MyProcess_1.2"]

NoSuch.bat

2.16.1 [UserExtensions.TianoCore."ExtraFiles"] Section
The EDK II [UserExtensions.TianoCore."ExtraFiles"] section allow for distributing
extraneous files that are associated with a module. Files listed in this section are not
processed by EDK II build tools. These files must exist in the directory or sub-
directories of the directory containing the INF file.

Version 1.24B March 2015 34

INF Overview EDK II INF File Specification

Note: The Intel® UEFI Packaging Tool will parse this section and for all files listed in this file, add the file

to the module distribution using the UEFI Distribution Package Distribution.

The section header must be:
[UserExtensions.TianoCore."ExtraFiles"]

Having data elements under the section header is not required.
The following is an example of a [UserExtensions.TianoCore."ExtraFiles"] section:
[UserExtensions.TianoCore."ExtraFiles"]
Readme.txt

35 March 2015 Version 1.24B

EDK II INF File Specification INF Overview

Version 1.24B March 2015 36

EDK II INF File Specification

3
EDK II INF File Format

This section of the document describes the EDK II INF sections using an Extended
Backus-Naur Form.

Note: The elements of the EDK INF file (see Appendix A) and the EDK II INF files differ.

3.1 General Rules

The general rules for all EDK II INI style documents follow.

Note: Path and Filename elements within the INF are case-sensitive in order to support building on UNIX

style operating systems. Additionally, names that are C variables or used as a macro are case
sensitive. Other elements such as section tags or hex digits, in the INF file are not case-sensitive.
The use of "..", "../" and "./" in paths and filenames is strictly prohibited.

Note: This document uses a backslash “\” character to indicate that a line that cannot be displayed in this

document on a single line. Within the INF specification, each entry must appear on a single line.

• Multiple INF files may exist in a directory, however either the FILE_GUID or the
VERSION_STRING must be unique to the INF file. It is recommended that the
BASE_NAME also be unique (and match the INF filename, as in BaseLib.inf will use a
BASE_NAME of BaseLib).

• Text in section tags (text between square brackets) is not case sensitive.
• A section terminates with either another section definition or the end of the file.
• To append comment information to any item, the comment must start with a hash

"#" character.
• All comments terminate with the end of line character.
• Any comment not associated with a defined comment format is considered a global

comment.
• Global comments must be separated from formatted comments by a blank line.
• Field separators for lines that contain more than one field is the pipe "|" character.

This character was selected to reduce the possibility of having the field separator
character appear in a string, such as a filename or text string.

Note: The only notable exception is the PcdName which is a combination of the

PcdTokenSpaceGuidCName and the PcdCName that are separated by the period "." character.
This notation for a PCD name was used to uniquely identify the PCD.

• A line terminates with either an end of line character or a comment.
• Except for binary "As Built" INF files generated by the tools, when processing

numeric values, either integer or hex, leading zeros specified in the entry may be
ignored. For example, 0x00000000000000000000001 can be a valid value for a
UINT8 data type, as the actual value is 1. The generated binary "As Built" INF file
must use zero byte filled in order to specify a the length of a VOID* PCD value.

Version 1.24B March 2015 35

EDK II INF File Specification EDK II INF File Format

• Sections with duplicate tags, such as two section tags: [BuildOptions], will be
combined by tools, with the second section’s content appended to the section
content that was first in the file.

• Sections with architectural modifiers are appended by tools to section content with
either the "common" or no architectural modifiers if it exists. The combined result is
then considered a complete section.

3.1.1 Backslash

The backslash "\" character in this document is only for lines that cannot be displayed
within the margins of this document. The backslash character must not be used to
extend a line over multiple lines in the INF file.

3.1.2 Whitespace characters

Whitespace (space and tab) characters are permitted between token and field
separator elements for all entries.
Whitespace characters are not permitted between the PcdTokenSpaceGuidCName and
the dot, nor are they permitted between the dot and the PcdCName.

3.1.3 Paths for File Names

Note that for specifying the path for a file name, if the path value starts with a dollar "$"
sign character a local MACRO variable is being specified. White space characters are not
permitted in path names.

Note: The use of "..", "./" and "../" in a path element is prohibited.

For all EDK II INF files, the directory path must use the forward slash character for
separating directories. (For example, MdePkg/Include/ should be specified).
Unless otherwise noted, all file names and paths must be relative to the directory where
the INF file is located.

3.2 Component INF Definition

The INF definitions describe the content of a module, either source or binary, as well as
external dependencies on packages that contain declarations of GUIDs, Protocols, PPIs
and Library Classes. The platform integrator will can select library instances that will be
used for a given library class, providing greater flexibility to the module developer. It is
not possible to code a module to a specific implementation of a library instance. It is
only possible to code a module to use a library class. The [Defines] section must
appear before any other section except the header. (The header, when specified, is
always the first section of an INF file.) The remaining sections may be specified in any
order within the INF file.

Summary

The EDK II Module Information (INF) file has the following format (using the EBNF).

Version 1.24B March 2015 36

EDK II INF File Format EDK II INF File Specification

<EDK_II_INF> ::= <Header>?
 <Defines>

<BuildOptions>*
<LibraryClasses>*
<Packages>*
<Pcds>*
<Sources>*
<Protocols>*
<Ppis>*
<Guids>*
<Binaries>*
if (LIBRARY_CLASS is declared in Defines Section):

<Depex>*
elif (MODULE_TYPE == "USER_DEFINED"

|| MODULE_TYPE == "UEFI_DRIVER"):
<Depex>*

elif (MODULE_TYPE == "PEIM"
|| MODULE_TYPE == "DXE_DRIVER"
|| MODULE_TYPE == "DXE_RUNTIME_DRIVER"
|| MODULE_TYPE == "DXE_SAL_DRIVER"
|| MODULE_TYPE == "DXE_SMM_DRIVER"):

<Depex>+
elif (MODULE_TYPE == "PEI_CORE"

|| MODULE_TYPE == "DXE_CORE"
|| MODULE_TYPE == "SMM_CORE"
|| MODULE_TYPE == "UEFI_APPLCIATION"):

Do not specify a depex section.
<UserExtensions>*

3.2.1 Common Definitions

Summary
The following are common definitions used by multiple section types.

37 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Prototype

<Word> ::= (a-zA-Z0-9_)(a-zA-Z0-9_-,)* Alphanumeric
characters with optional period ".", dash
"-" and/or underscore "_" characters.
A period character may not be followed by
another period character.
No whitespace characters are permitted.

<SimpleWord> ::= (a-zA-Z0-9)(a-zA-Z0-9_-)* A word that cannot
contain a period character.

<ToolWord> ::= (A-Z)(a-zA-Z0-9)* A word that must start with
a capital letter and is allowed to contain
additional alphanumeric characters.
Whitespace characters are not permitted.

<FileSep> ::= "/"

<Extension> ::= (a-zA-Z0-9_-)+ One or more alphanumeric
characters.

<File> ::= <Word> ["." <Extension>]

<PATH> ::= [<MACROVAL> <FileSep>] <RelativePath>

<RelativePath> ::= <Word> [<FileSep> <DirName>]*

<DirName> ::= {<Word>} {<MACROVAL>}

<FullFilename> ::= <PATH> <FileSep> <File>

<Filename> ::= [<PATH> <FileSep>] <File>

<Chars> ::= (a-zA-Z0-9_)

<Digit> ::= (0-9)

<NonDigit> ::= (a-zA-Z_)

<Identifier> ::= <NonDigit> <Chars>*

<CName> ::= <Identifier> # A valid C variable name.

<AsciiChars> ::= (0x21 - 0x7E)

<CChars> ::= [{0x21} {(0x23 - 0x5B)} {(0x5D - 0x7E)}
{<EscapeSequence>}]*

<DblQuote> ::= 0x22

Version 1.24B March 2015 38

EDK II INF File Format EDK II INF File Specification

<EscapeSequence> ::= "\" {"n"} {"t"} {"f"} {"r"} {"b"} {"0"} {"\"}
{<DblQuote>}

<TabSpace> ::= {<Tab>} {<Space>}

<TS> ::= <TabSpace>*

<MTS> ::= <TabSpace>+

<Tab> ::= 0x09

<Space> ::= 0x20

<CR> ::= 0x0D

<LF> ::= 0x0A

<CRLF> ::= <CR> <LF>

<WhiteSpace> ::= {<TS>} {<CR>} {<LF>} {<CRLF>}

<WS> ::= <WhiteSpace>*

<Eq> ::= <TS> "=" <TS>

<FieldSeparator> ::= "|"

<FS> ::= <TS> <FieldSeparator> <TS>

<Wildcard> ::= "*"

<CommaSpace> ::= "," <Space>*

<Cs> ::= "," <Space>*

<AsciiString> ::= [<TS>* <AsciiChars>*]*

<EmptyString> ::= <DblQuote><DblQuote>

<CFlags> ::= <AsciiString>

<PrintChars> ::= {<TS>} {<CChars>}

<QuotedString> ::= <DblQuote> <PrintChars>* <DblQuote>

<CString> ::= ["L"] <QuotedString>

<NormalizedString> ::= <DblQuote> [{<Word>} {<Space>}]+ <DblQuote>

<GlobalComment> ::= <WS> "#" [<AsciiString>] <EOL>+

39 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

<Comment> ::= "#" <AsciiString> <EOL>+

<UnicodeString> ::= "L" <QuotedString>

<HexDigit> ::= (a-fA-F0-9)

<HexByte> ::= {"0x"} {"0X"} <HexDigit> <HexDigit>

<HexNumber> ::= {"0x"} {"0X"} <HexDigit>*

<HexVersion> ::= "0x" <Major> <Minor>

<Major> ::= <HexDigit>? <HexDigit>? <HexDigit>?
<HexDigit>

<Minor> ::= <HexDigit> <HexDigit> <HexDigit> <HexDigit>

<DecimalVersion> ::= {"0"} {(0-9) (0-9)*} ["." (0-9)+]

<VersionVal> ::= {<HexVersion>} {(0-9)+ "." (0-9)+}

<GUID> ::= {<RegistryFormatGUID>} {<CFormatGUID>}

<RegistryFormatGUID> ::= <RHex8> "-" <RHex4> "-" <RHex4> "-"

<RHex4> "-" <RHex12>

<RHex4> ::= <HexDigit> <HexDigit> <HexDigit> <HexDigit>

<RHex8> ::= <RHex4> <RHex4>

<RHex12> ::= <RHex4> <RHex4> <RHex4>

<RawH2> ::= <HexDigit>? <HexDigit>

<RawH4> ::= <HexDigit>? <HexDigit>? <HexDigit>?
<HexDigit>

<OptRawH4> ::= <HexDigit>? <HexDigit>? <HexDigit>?

<HexDigit>?

<Hex2> ::= {"0x"} {"0X"} <RawH2>

<Hex4> ::= {"0x"} {"0X"} <RawH4>

<Hex8> ::= {"0x"} {"0X"} <OptRawH4> <RawH4>

<Hex12> ::= {"0x"} {"0X"} <OptRawH4> <OptRawH4> <RawH4>

<Hex16> ::= {"0x"} {"0X"} <OptRawH4> <OptRawH4>
<OptRawH4> <RawH4>

Version 1.24B March 2015 40

EDK II INF File Format EDK II INF File Specification

<CFormatGUID> ::= "{" <Hex8> <CommaSpace> <Hex4> <CommaSpace>
<Hex4> <CommaSpace> "{"
<Hex2> <CommaSpace> <Hex2> <CommaSpace>
<Hex2> <CommaSpace> <Hex2> <CommaSpace>
<Hex2> <CommaSpace> <Hex2> <CommaSpace>
<Hex2> <CommaSpace> <Hex2> "}" "}"

<CArray> ::= "{" {<Nlist>} {<CArray>} "}"

<NList> ::= <HexByte> [<CommaSpace> <HexByte>]*

<RawData> ::= <TS> <Number> [<Cs> <Number> [<EOL> <TS>]]*

<Integer> ::= {(0-9)} {(1-9)(0-9)*}

<Number> ::= {<Integer>} {<HexNumber>}

<HexNz> ::= (\x1 - \xFFFFFFFFFFFFFFFF)

<NumNz> ::= (1-18446744073709551615)

<GZ> ::= {<NumNz>} {<HexNz>}

<TRUE> ::= {"TRUE"} {"true"} {"True"} {"0x1"} {"0x01"}

{"1"} {<GZ>}

<FALSE> ::= {"FALSE"} {"false"} {"False"} {"0x0"}
{"0x00"} {"0"}

<BoolType> ::= {<TRUE>} {<FALSE>}

<MACRO> ::= (A-Z)(A-Z0-9_)*

<MACROVAL> ::= "$(" <MACRO> ")"

<PcdName> ::= <TokenSpaceGuidCName> "." <PcdCName>

<PcdCName> ::= <CName>

<TokenSpaceGuidCName> ::= <CName>

<UINT8> ::= {"0x"} {"0X"} (\x0 - \xFF)

<UINT16> ::= {"0x"} {"0X"} (\x0 - \xFFFF)

<UINT32> ::= {"0x"} {"0X"} (\x0 - \xFFFFFFFF)

<UINT64> ::= {"0x"} {"0X"} (\x0 - \xFFFFFFFFFFFFFFFF)

<UINT8z> ::= {"0x"} {"0X"} <HexDigit> <HexDigit>

41 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

<UINT16z> ::= {"0x"} {"0X"} <HexDigit> <HexDigit>
<HexDigit> <HexDigit>

<UINT32z> ::= {"0x"} {"0X"} <HexDigit> <HexDigit>
<HexDigit> <HexDigit> <HexDigit> <HexDigit>
<HexDigit> <HexDigit>

<UINT64z> ::= {"0x"} {"0X"} <HexDigit> <HexDigit>
<HexDigit> <HexDigit> <HexDigit> <HexDigit>
<HexDigit> <HexDigit> <HexDigit> <HexDigit>
<HexDigit> <HexDigit> <HexDigit> <HexDigit>
<HexDigit> <HexDigit>

<ShortNum> ::= (0-255)

<IntNum> ::= (0-65535)

<LongNum> ::= (0-4294967295)

<LongLongNum> ::= (0-18446744073709551615)

<NumValUint8> ::= {<ShortNum>} {<UINT8>}

<NumValUint16> ::= {<IntNum>} {<UINT16>}

<NumValUint32> ::= {<LongNum>} {<UINT32>}

<NumValUint64> ::= {<LongLongNum>} {<UINT64>}

<ModuleType> ::= {"BASE"} {"SEC"} {"PEI_CORE"} {"PEIM"}

{"DXE_CORE"} {"DXE_DRIVER"} {"SMM_CORE"}
{"DXE_RUNTIME_DRIVER"} {"DXE_SAL_DRIVER"}
{"DXE_SMM_DRIVER"} {"UEFI_DRIVER"}
{"UEFI_APPLICATION"} {"USER_DEFINED"}

<ModuleTypeList> ::= <ModuleType> [" " <ModuleType>]*

<IdentifierName> ::= <TS> {<MACROVAL>} {<PcdName>} <TS>

<Boolean> ::= {<BoolType>} {<Expression>}

<EOL> ::= <TS> 0x0D 0x0A

<OA> ::= (a-zA-Z)(a-zA-Z0-9)*

<arch> ::= {"IA32"} {"X64"} {"IPF"} {"EBC"} {<OA>}

<Edk2ModuleType> ::= {"BASE"} {"SEC"} {"PEI_CORE"} {"PEIM"}
{"DXE_CORE"} {"DXE_DRIVER"}
{"DXE_SAL_DRIVER"}

Version 1.24B March 2015 42

EDK II INF File Format EDK II INF File Specification

{"DXE_RUNTIME_DRIVER"}
{"SMM_CORE"} {"DXE_SMM_DRIVER"}
{"UEFI_DRIVER"} {"UEFI_APPLICATION"}

Note: When using the characters "|" or "||" in an expression, the expression must be encapsulated in

open "(" and close ")" parenthesis.

Note: Comments may appear anywhere within a INF file, provided they follow the rules that a comment

may not be enclosed within Section headers, and that in line comments must appear at the end of
a statement.

Note: At this time, expressions are not supported in INF files.

Parameters
Expression

Expression syntax is defined the EDK II Expression Syntax Specification.
Unicode String

When the <UnicodeString> element (these characters are string literals as
defined by the C99 specification: L"string", not actual Unicode characters) is
included in a value, the build tools may be required to expand the ASCII string
between the quotation marks into a valid UCS-2LE encoded string. The build tools
parser must treat all content between the field separators (excluding white space
characters around the field separators) as ASCII literal content when generating
the AutoGen.c and AutoGen.h files.

Comments
Strings that appear in comments may be ignored by the build tools. An ASCII string
matching the format of the ASCII string defined by <UnicodeString> (L"Foo"
for example,) that appears in a comment must never be expanded by any tool.

CFlags

OA

CFlags refers to a string of valid arguments appended to the command line of any
third party or provided tool. It is not limited to just a compiler executable tool.
MACRO values that appear in quoted strings in CFlags content must not be
expanded by parsing tools.

Other Architecture - One or more user defined target architectures, such as ARM or
PPC. The architectures listed here must have a corresponding entry in the EDK II
meta-data file, Conf/tools_def.txt. Only IA32, X64, IPF and EBC are routinely
validated.

ExtendedLine
The use of the Extended Line format is prohibited.

FileSep
FileSep refers to either the backslash "\" or forward slash "/" characters that are
used to separate directory names. All EDK II INF files must use the "/" forward
slash character when specifying the directory portion of a filename. Microsoft
operating systems, that normally use a backslash character for separating directory
names, will interpret the forward slash character correctly. Use of "..", "." and "../"
in the directory path is not permitted. Use of an absolute path is not permitted.

43 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

CArray
All C data arrays used in PCD value fields must be byte arrays. The C format GUID
style is a special case that is permitted in some fields that use the <CArray>
nomenclature.

End of Line Characters
The DOS End Of Line: "0x0D 0x0A" character must be used for all EDK II meta-
data files. All *Nix based tools can properly process the DOS EOL characters.
Microsoft based tools cannot process the *Nix style EOL characters.

3.2.2 MACRO Statements

Use of MACRO statements is optional.

Summary
Macro statements are characterize by a DEFINE line. Macro statements in INF files are
only permitted to describe a path (shortcut name,) or used to provide a shorter text
string in C Flags in the [BuildOptions] section. If the Macro statement is within the
[Defines] section, then the Macro is common to the entire file, with local definitions
taking precedence (if the same MACRO name is used in subsequent sections, then the
MACRO value is local to only that section.)
Macro statements in comments must be ignored by parsing tools.
Macro statements that are referenced before they are defined will have a value of zero.
A macro defined in a section that is common to all architectures is also value for
sections that have architectural modifiers.
It is recommended that if the tools encounter a macroval, as in $(MACRO), that is not
defined, the build tools must break.

Prototype

<MacroDefinition> ::= <TS> "DEFINE" <MTS> <MACRO> <Eq> [<Value>] <EOL>

<Value> ::= {<PATH>} {<CFlags>} {<Filename>}

Parameters
Path Definitions

Whitespace characters are not permitted in path statements. While some operating
systems permit using space characters or special characters within a path element,
the EDK II build system will not support whitespace characters and will only permit
alphanumeric characters, and the dot, dash, underline, forward and back slash
characters in file names. Use of "..", "." and "../" in the directory path is not
permitted. Use of an absolute path is not permitted. It is also permitted, although
not specified in the EBNF for <PATH> to end have the path end with the file
separator character, as in MdePkg/.

Version 1.24B March 2015 44

EDK II INF File Format EDK II INF File Specification

Examples:
DEFINE TEST = test
DEFINE TEST1 = test/
DEFINE TEST2 = MyFile.c
DEFINE TEST3 = $(TEST1)$(TEST2)
DEFINE TEST4 = $(TEST)/$(TEST2)
DEFINE GEN_SKU = MyPlatformPkg/GenPei
DEFINE SKU1 = MyPlatformPkg/Sku1/Pei
DEFINE OPENSSL_FLAGS = -DOPENSSL_SYSNAME_UWIN -DOPENSSL_SYS_UEFI

Table 4. Macro Usages

MACRO DEFINITION MACRO USAGE

DEFINE MY_MACRO = test1 $(MY_MACRO)/test2/test3.inf

DEFINE MY_MACRO = test1/ $(MY_MACRO)test2/test3.inf

DEFINE MY_MACRO = test3.inf test1/test2/$(MY_MACRO)

DEFINE MY_MACRO = test3 test1/test2/$(MY_MACRO).inf

DEFINE MY_MACRO = test1/test2/test3.inf $(MY_MACRO)

3.2.3 Conditional Statements

The conditional statements are not permitted anywhere within the INF file.

3.2.4 !include Statement

The !include statement is not permitted in an EDK II INF file.

3.2.5 Special Comment Blocks

This section defines special format comment blocks that contain information about this
module. These comment blocks are not required. They may appear at the end of any
section within the INF file, however it is preferred that they appear at the end of the
file. The format of these comment blocks is the recommended format that will
guarantee that the information is correctly inserted into UEFI Distribution Package
description files. If this comment block appears in a "Source" INF file, the EDK II build
tools must copy this comment block into the generated "As Built" binary INF file.
These comment blocks are only required for modules that use C calls to perform actions
using UEFI defined functions listed in below.
There are three predefined types of comments.
The Event types which describe timer delays used by the Boot Services SetTimer() call.
EVENT_TYPE_PERIODIC_TIMER - Event is to be signaled periodically.
EVENT_TYPE_RELATIVE_TIMER - Event is to be signaled in x 100ns units.

UNDEFINED - This will appear when a UEFI Distribution Package tool was
unable to parse the comment (spelling error) when creating a distribution
package, and the tool installed the distribution package using this value.

45 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

The BootMode types which describe the BootMode values in the Boot Services
SetBootMode() and GetBootMode() calls.
FULL - Equivalent to BOOT_WITH_FULL_CONFIGURATION

MINIMAL - Equivalent to BOOT_WITH_MINIMAL_CONFIGURATION

NO_CHANGE - Equivalent to BOOT_ASSUMING_NO_CONFIGURATION_CHANGES

DIAGNOSTICS - Equivalent to BOOT_WITH_FULL_CONFIGURATION

DEFAULT - Equivalent to BOOT_WITH_FULL_CONFIGURATION

S2_RESUME - Equivalent to BOOT_ON_S2_RESUME

S3_RESUME - Equivalent to BOOT_ON_S3_RESUME

S4_RESUME - Equivalent to BOOT_ON_S4_RESUME

S5_RESUME - Equivalent to BOOT_ON_S5_RESUME

FLASH_UPDATE - Equivalent to BOOT_ON_FLASH_UPDATE

RECOVERY_FULL - Equivalent to BOOT_IN_RECOVERY_MODE

BOOT_MFG_MODE - Equivalent to BOOT_WITH_MFG_MODE_SETTINGS

The following items are defined as special boots that may use the bit
field values: 100001b - 111111b per the PI PEI specification, table 6.
Since this comment block is informational, no attempt is made to map these
items to specific bit patterns.

RECOVERY_MINIMAL, RECOVERY_NO_CHANGE, RECOVERY_DIAGNOSTICS,
RECOVERY_DEFAULT, RECOVERY_S2_RESUME, RECOVERY_S3_RESUME,
RECOVERY_S4_RESUME, RECOVERY_S5_RESUME, RECOVERY_FLASH_UPDATE.

UNDEFINED - This will appear when a UEFI Distribution Package tool was
unable to parse the comment (spelling error) when creating a distribution
package and the tool installed the distribution package using this value.

The Hand-Off Block types refer to the various HOBs as defined by the PI specification,
HOB Code Definitions. Modules that use GetHobList() and CreateHob() should list this
content.
PHIT - the Phase Handoff Information Table (PHIT) Hob

MEMORY_ALLOCATION - Describes all memory ranges

LOAD_PEIM - This refers to EFI_HOB_TYPE_LOAD_PEIM_UNUSED

RESOURCE_DESCRIPTOR - describes resource properties

FIRMWARE_VOLUME, FIRMWARE_VOLUME2 - location and type of firmware volumes

MEMORY_POOL- describes memory pool allocations

GUID_TYPE - for HOB types not define by the PI specification

UEFI_CAPSULE - describes UEFI capsule memory pages

CPU - describes processor information

UNUSED - the HOB’s content can be ignored

UNDEFINED - This will appear when a UEFI Distribution Package tool was
unable to parse the comment (spelling error) when creating a distribution
package and the tool installed the distribution package using this value.

Version 1.24B March 2015 46

EDK II INF File Format EDK II INF File Specification

Prototype

<FixedCommentSection> ::= <ValidArchitectures>?
<EventSection>?
<BootModeSection>?
<HobSection>*

<ValidArchitectures> ::= "#" <EOL>
"#" <TS> "VALID_ARCHITECTURES" <Eq> <ArchL>
["#" <EOL>]

<ArchL> ::= <Arch> [<Space> <Arch>]* [<EbcCmt>] <EOL>

<EbcCmt> ::= <Space> "(EBC is for build only)"

<EventSection> ::= "#" <TS> "[Event]" <EOL>
<EventBlock>*

<CommonDescription> ::= "#" <TS> "##"<EOL>
["#" <TS> "#" <TS> <Description> <EOL>]+
"#" <TS> "#"<EOL>

<EventBlock> ::= <CommonDescription>*
"#" <TS> <EventType> <UsageField> <EOL>

<UsageField> ::= <TS> "##" <TS> <Usage>

<EventType> ::= {"EVENT_TYPE_PERIODIC_TIMER"}
{"EVENT_TYPE_RELATIVE_TIMER"} {"UNDEFINED"}

<Usage> ::= {"CONSUMES"} {"SOMETIMES_CONSUMES"}
{"PRODUCES"} {"SOMETIMES_PRODUCES"}
{"UNDEFINED"}

<Description> ::= <AsciiString>

<BootModeSection> ::= "#" <TS> "[BootMode]" <EOL>
<BootModeBlock>*

<BootModeBlock> ::= [<CommonDescription>]
"#" <TS> <BootModeType> <UsageField> <EOL>

<BootModeType> ::= {"FULL"} {"BOOT_WITH_FULL_CONFIGURATION"}
{"MINIMAL"}
{"BOOT_WITH_MINIMAL_CONFIGURATION"}
{"NO_CHANGE"}
{"BOOT_ASSUMING_NO_CONFIGURATION"}
{"DIAGNOSTICS"}

{"BOOT_WITH_FULL_CONFIGURATION_PLUS_DIAGNOTICS"}
{"DEFAULT"} {"BOOT_WITH_DEFAULT_SETTINGS"}
{"S2_RESUME"} {"BOOT_ON_S2_RESUME"}

47 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

{"S3_RESUME"} {"BOOT_ON_S3_RESUME"}
{"S4_RESUME"} {"BOOT_ON_S4_RESUME"}
{"S5_RESUME"} {"BOOT_ON_S5_RESUME"}
{"FLASH_UPDATE"} {"BOOT_ON_FLASH_UPDATE"}

{"BOOT_MFG_MODE"} {"BOOT_WITH_MFG_MODE_SETTINGS"}
{"RECOVERY_FULL"} {"BOOT_IN_RECOVERY_MODE"}
{"RECOVERY_MINIMAL"}
{"RECOVERY_NO_CHANGE"}
{"RECOVERY_DIAGNOSTICS"}
{"RECOVERY_DEFAULT"} {"RECOVERY_S2_RESUME"}
{"RECOVERY_S3_RESUME"}
{"RECOVERY_S4_RESUME"}
{"RECOVERY_S5_RESUME"}
{"RECOVERY_FLASH_UPDATE"} {"UNDEFINED"}

<HobSection> ::= "#" <TS> "[Hob" [<attribs>] "]" <EOL>
<HobBlock>*

<attribs> ::= <attr> ["," <TS> "Hob" <attr>]*

<attr> ::= "." <arch>

<HobBlock> ::= [<CommonDescription>]
"#" <TS> <HobType> <UsageField> <EOL>

<HobType> ::= {"PHIT"} {"MEMORY_ALLOCATION"} {"LOAD_PEIM"}
{"RESOURCE_DESCRIPTOR"} {"FIRMWARE_VOLUME"}
{"FIRMWARE_VOLUME2"} {"MEMORY_POOL"}
{"GUID_TYPE"} {"UEFI_CAPSULE"} {"CPU"}
{"UNUSED"} {"UNDEFINED"}

Parameters
Event Usage

CONSUMES – The module registers a notification function and requires that it be
executed for the module to fully function.
SOMETIMES_CONSUMES – A module registers a notification function and calls the
function when it is signaled.
PRODUCES – A module will always signal the event.
SOMETIMES_PRODUCES – A module will sometimes signal the event.

Boot Mode Usage
CONSUMES – The module always supports the given boot mode.
SOMETIMES_CONSUMES – The module may support a given boot mode on some
execution paths.
PRODUCES – The module will change the boot mode.
SOMETIMES_PRODUCES – The module will change the boot mode on some
execution paths.

Hob Usage
CONSUMES – The HOB must be present in the system.
SOMETIMES_CONSUMES – If present, the HOB will be used.

Version 1.24B March 2015 48

EDK II INF File Format EDK II INF File Specification

Usage

PRODUCES – A module will always produce the HOB.
SOMETIMES_PRODUCES – The HOB may be produced by the module under some
execution paths.

Keywords are: UNDEFINED, CONSUMES, SOMETIMES_CONSUMES, PRODUCES
and SOMETIMES_PRODUCES.

3.3 Header Section
This is an optional section, while this header section is not needed by the EDK II build
system, it will be used by the build tools for generating "As Built" INF files from sources.
This section is also used by the Intel® UEFI Packaging Tool that is included with the
EDK II build system binaries.

Summary

This section contains Copyright and License notices for the INF file in comments that
start the file. This section is optional using a format of:
@file
Abstract

Description

Copyright

License

This information can be derived from an XML Distribution Package file or is created by a
module developer creating a new module information (INF) file.
This is an optional section.

49 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Prototype
<Header> ::= <SourceHeader>

[<BinaryHeader>]

<SourceHeader> ::= <Comment>*
"##" [<Space>] <Space> "@file"
[<TS> <Filename>] <EOL>
[<Abstract>]
[<Description>]
<Copyright>*
"#" <EOL>
<License>*
"##" <EOL>+

<Abstract> ::= "#" <MTS> <AsciiString> <EOL>

["#" <EOL>]

<Description> ::= ["#" <MTS> <AsciiString> <EOL>]+
["#" <EOL>]

<Copyright> ::= "#" <MTS> <CopyName> <Date> "," <CompInfo>

<CopyName> ::= ["Portions" <MTS>] "Copyright (c)" <MTS>

<Date> ::= <Year> [<TS> {<DateList>} {<DateRange>}]

<Year> ::= "2" (0-9)(0-9)(0-9)

<DateList> ::= <CommaSpace> <Year> [<CommaSpace> <Year>]*

<DateRange> ::= "-" <TS> <Year>

<CompInfo> ::= (0x20 - 0x7e)* <MTS> "All rights reserved."

[<TS> "
"] <EOL>

<License> ::= ["#" <MTS> <AsciiString> <EOL>]+
["#" <EOL>]

<BinaryHeader> ::= <Comment>*

"##" [<Space>] <Space> "@BinaryHeader" <EOL>
<BinaryAbstract>
"#" <EOL>
<BinaryDescription>
"#" <EOL>
<Copyright>+
"#" <EOL>
<BinaryLicense>+
"##" <EOL>+

<Filename> ::= <Word> "." <Extension>

Version 1.24B March 2015 50

EDK II INF File Format EDK II INF File Specification

<BinaryAbstract> ::= "#" <MTS> <AsciiString> <EOL>

<BinaryDescription> ::= ["#" <MTS> <AsciiString> <EOL>]+

<BinaryLicense> ::= ["#" <MTS> <AsciiString> <EOL>]+
["#" <EOL>]

Parameters
Abstract

A brief one line description of what the module does.
BinaryAbstract

A brief one line description of what the module does that may be different from a
source abstract.
• If this line is present, the tools will use this line when generating the binary "As

Built" INF.
• If the Doxygen tag is not present, the tools will use the primary Abstract from

the Source INF file when generating a binary "As Built" INF.
• In the binary "As Built" INF, the Doxygen tag must not be present.
• The INF file will always have an English version of the Abstract. Other localized

versions of the abstract will be stored in the UCS-2LE encoded file specified in
the [Defines] section's MODULE_UNI_FILE.

Note: This file permits the Intel® UEFI Packaging Tool to process localized module content described in

the UEFI Platform Initialization Distribution Package Specification.

Description
A detailed description of what the module does.

BinaryDescription
A detailed description of what the module does that may be different from a source
abstract.
• If this line is present, the tools will use this line when generating the binary "As

Built" INF.
• If the Doxygen tag is not present, the tools will use the primary Description

from the Source INF file when generating a binary "As Built" INF.
• In the binary "As Built" INF, the Doxygen tag must not be present.
• The INF file will always have an English version of the Description.. Other

localized versions of the description will be stored in the UCS-2LE encoded file
specified in the [Defines] section's MODULE_UNI_FILE.

Note: This file permits the Intel® UEFI Packaging Tool to process localized module content described in

the UEFI Platform Initialization Distribution Package Specification.

Copyright
The copyright date should be modified if there is a functional change to the source
code. Since binaries are constructed from source, the binary file uses the same
copyright date as the source INF. Copyright data will not be localized.

License
One or more licenses that the module with source code is released under. License
content will not be localized.

51 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

BinaryLicense
One or more licenses that the binary module is released under that may be
different from the licenses used for distributing the module with source code.
License content will not be localized.
• If this tag is present, the tools will use this content when generating the binary

"As Built" INF.
• If the Doxygen tag is not present in the source INF, the tools will use the

License content from the Source INF file when generating a binary "As Built"
INF.

• In the binary "As Built" INF, the Doxygen tag must not be present.

Example
@file
EFI/Framework Base Memory Library

Implementation of a base memory library that provides minimum
functionality for accessing memory.

Copyright (c) 2006 - 2008, Intel Corporation. All rights reserved.

This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License which
accompanies this distribution. The full text of the license may be
found at:
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS
OR IMPLIED.

3.4 [Defines] Section

This is a required section.

Summary
This describes the required [Defines] section used in EDK II INF files. This file is
created during installation of a UEFI distribution package or by the developer and is an
input to the new build tool parsing utilities. Elements may appear in any order within
this section.
The version for this specification is "0x00010018" and new versions of this specification
must increment the minor (0018) portion of the specification code for backward
compatible changes, and increment the major number for non-backward compatible
specification changes. This value may also be specified as a decimal value, 1.24.
The [Defines] section assigns values to the symbols that describe the component.
Some items are emitted to the output makefile, others are used to create filenames
during the build. Some symbols are emitted to the generated C files.

Version 1.24B March 2015 52

http://opensource.org/licenses/bsd-license.php

EDK II INF File Format EDK II INF File Specification

The FILE_GUID is required for all EDK II modules. This GUID is used to build the FW
volume file list used by build tools to generate the final firmware volume, as well as
processed in some SMM, PEI or DXE DEPEX statements.
All new EDK II INF files must include the statement: INF_VERSION = 0x00010018 in
this section, where the number varies according to the release of this specification. It is
a HexVersion type, where the 0x0001 is the major number, and the 0018 is the minor
number. This version of the specification provides full backward compatibility to all
previous versions. This means that tools that process this version of the specification
can also process earlier versions of EDK II INF files.
This version of the specification removes content in this section that was associated
with EDK libraries and components. The section now lists only the defined EDK II
symbols and format.

Note: Possible values for MODULE_TYPE, and their descriptions, are listed in the table, "EDK II Module

Types." For each module, the BASE_NAME and MODULE_TYPE are required. The BASE_NAME
definition is case sensitive as it will be used to create a directory name during a build.

Unlike EDK, only the [Defines] section tag is valid for EDK II INF files - architectural
modifiers for the [Defines] section tag are not permitted. The section is processed in
order by the parsing utilities. Assignments of variables in other sections override
previous assignments.
The SHADOW keyword is only valid for SEC, PEI_CORE and PEIM module types. It is an
error to declare the SHADOW keyword in other module types. The default value of SHADOW
is "FALSE" when the SHADOW keyword is not specified.
EDK II modules that provide different library class implementations must use multiple
LIBRARY_CLASS statements. Each LIBRARY_CLASS statement must provide the name of
the library class supported, followed by the pipe "|" field separator and then a space " "
delimited list of module types the library instances supports. The following is an
example of specifying multiple library classes.
LIBRARY_CLASS = FOO | PEI_CORE PEIM
LIBRARY_CLASS = BAR | DXE_CORE DXE_DRIVER DXE_SMM_DRIVER

Note: Each library class requires a header file defined in the package that declares the library class.
Refer to the "EDK II Module Writer’s Guide" for more information about writing drivers and
libraries.

Additionally, a driver module may expose internal implementations of a library class,
making the internal implementations public. As an example, a DXE_CORE
implementation that uses internal functions that provide the functionality of the EDK II
Base Memory Library. The DXE_CORE module that provides these functions (for
example, DxeMain.inf) can expose them for use by other DXE drivers that depend on
the BaseMemoryLib library class.
The OptionRom statements must be included for UEFI PCI Option ROMs, and can only
be used with a MODULE_TYPE of UEFI_DRIVER.
The optional MODULE_UNI_FILE entry is used to locate an UCS-2LE format file which can
be used for localization of the module's Abstract and Description from the header
section. The content of the file can be generated by tools during the installation of a
distribution package that conforms to the UEFI Platform Initialization Distribution
Packaging Specification, or by module developers creating new content.
The FixedComments sections that follow a defines section are to permit tools to work

53 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

with UEFI Distribution Packaging Specification requirements.

Version 1.24B March 2015 54

EDK II INF File Format EDK II INF File Specification

Prototype

Note: The entry, INF_VERSION, BASE_NAME, FILE_GUID and MODULE_TYPE are required for
EDK II Modules. The VERSION_STRING entry is highly recommended.

<Defines> ::= "[Defines]" <EOL>

<DefineStatements>+

<DefineStatements> ::= <TS> "INF_VERSION" <Eq> <SpecVersion> <EOL>
<TS> "BASE_NAME" <Eq> <BaseName> <EOL>
<TS> "FILE_GUID" <Eq> <RegistryFormatGUID> <EOL>
<TS> "MODULE_TYPE" <Eq> <Edk2ModuleType> <EOL>
[<TS> "UEFI_SPECIFICATION_VERSION" <Eq>

<VersionVal> <EOL>]
[<TS> "PI_SPECIFICATION_VERSION" <Eq>

<VersionVal> <EOL>]
[<TS> "LIBRARY_CLASS" <Eq> <LibClass> <EOL>]*
[<TS> "BUILD_NUMBER" <Eq> <NumValUint16> <EOL>]
[<TS> "VERSION_STRING" <Eq>
<DecimalVersion> <EOL>]

[<TS> "PCD_IS_DRIVER" <Eq>
<PcdDriverType> <EOL>]

[<TS> "ENTRY_POINT" <Eq> <CName> [<FFE>] <EOL>]*
[<TS> "UNLOAD_IMAGE" <Eq> <CName>

[<FFE>] <EOL>]*
[<TS> "CONSTRUCTOR" <Eq> <CName> [<FFE>] <EOL>]*
[<TS> "DESTRUCTOR" <Eq> <CName> [<FFE>] <EOL>]*
[<TS> "SHADOW" <Eq> <BoolType> <EOL>]
[<OptionRomInfo>]
[<TS> "CUSTOM_MAKEFILE" <Eq>

<CustomMake> <EOL>]*
[<TS> "DPX_SOURCE" <Eq> <Filename> <EOL>]
[<TS> "SPEC" <MTS> <Spec> <EOL>]*
[<TS> <UefiHiiResource> <EOL>]
[<TS> "MODULE_UNI_FILE" <Eq> <Filename> <EOL>]
[<MacroDefinition>]*

<BaseName> ::= (a-zA-Z0-9)(a-zA-Z0-9_-.)*

<UefiHiiResource> ::= "UEFI_HII_RESOURCE_SECTION" <Eq> <TrueFalse>

<CustomMake> ::= [<Family> <FS>] <Filename>

<PcdDriverType> ::= {"PEI_PCD_DRIVER"} {"DXE_PCD_DRIVER"}

<Spec> ::= <Identifier> <Eq> <DecimalVersion>

<LibClass> ::= {<KeywordType>} {"NULL"}

<KeywordType> ::= <SimpleWord> [<FS> <ModuleTypes>]

55 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

<ModuleTypes> ::= <ModuleType> [<Space> <ModuleType>]*

<FFE> ::= <FS> <Expression>

<SpecVersion> ::= {<HexVersion>} {(0-9))+ "." (0-9)+}

<OptionRomInfo> ::= <TS> "PCI_VENDOR_ID" <Eq> <UINT16> <EOL>
<TS> "PCI_DEVICE_ID" <Eq> <UNIT16> <EOL>
<TS> "PCI_CLASS_CODE" <Eq> <UINT8> <EOL>
<TS> "PCI_REVISION" <Eq> <UINT8> <EOL>
[<TS> "PCI_COMPRESS" <Eq> <TruFal> <EOL>]

<TruFal> ::= {"TRUE"} {"FALSE"}

Parameters
Filename

Filenames listed in the [Defines] section must be relative to the directory the INF
file is in. Use of "..", "." and "../" in the directory path is not permitted. Use of an
absolute path is not permitted. The file name specified in the MODULE_UNI_FILE
entry must be a UCS-2LE encoded file with an extension of .uni, .UNI or .Uni.

MODULE_TYPE
Drivers and applications are not allowed to have a MODULE_TYPE of "BASE". Only
libraries are permitted to a have a MODULE_TYPE of "BASE". A INF file can be used
to specify other binary files types, such as logo images or legacy16 option ROMs.
The USER_DEFINED module type must be used in all cases where the module type
is not a member of <Edk2ModuleType>.

INF_VERSION
For new INF files, the version value must be set to 0x00010018. Tools that process
this version of the INF file can successfully process earlier versions of the INF file
(this is a backward compatible update). There is no requirement to change the
value in existing INF files if no other content changes. This may also be specified as
decimal value, 1.24.

EDK_RELEASE_VERSION
This optional value may be set to the major/minor number of the EDK II release
required for modules to function correctly.

UEFI_SPECIFICATION_VERSION
The UEFI_SPECIFICATION_VERSION must only be set in the INF file if the
module depends on UEFI Boot Services or UEFI Runtime Services or UEFI System
Table fields or UEFI core behaviors that are not present in the UEFI 2.1 version. The
version number for the UEFI 2.3.1 specification is the hex value: 0x0002001F. The
minor number of the specification version is a 2 digit number, where the 2.3.1 is
actually: 2.31. The major number must be incremented on a revision that would
result in a minor number greater than 99.

PI_SPECIFICATION_VERSION
The PI_SPECIFICATION_VERSION must only be set in the INF file if the module
depends on services or system table fields or PI core behaviors that are not present
in the PI 1.0 version. The version number for the 1.2 PI specification is the hex
value: 0x00010014. The minor number of the specification version is a 2 digit
number, where the 1.2 is actually: 1.20. The major number must be incremented
on a revision that would result in a minor number greater than 99.

Version 1.24B March 2015 56

EDK II INF File Format EDK II INF File Specification

VERSION_STRING
This is typically a decimal number, and if not specified, an empty string will be
provided. This value will be converted by the build tools from an ASCII string into a
null-terminated Unicode string that contains a text representation of the version. A
platform integrator may specify a different version string for an FFS version section
in the FDF file if more than just this value is needed. It is recommended that the
decimal number be used in such a manner as the integer portion of the value is
considered the major number (changing when there is a functional, non-backward
compatible change). The factional portion of the value is the considered the minor
number (changing anytime there is a change in the code that would result in a
binary image that was not identical to the binary image created prior to the
change).

BuildNumber
The optional build number must be NumValUint16. If not present, the EDK II build
tools will use the BUILD_NUMBER from the DSC file. If the DSC file does not include
the build number, the EDK II build tools will use a value of 0. If the Build number is
greater than 0, the generated INF file must contain this entry.

Spec

The user is required to ensure that a valid C name is used for the name of the
specification, and provide the decimal version of the specification. For example,
SPEC USB_SPECIFICATION_VERSION = 2.0 is a valid statement. These
statements are used to generate #define statements in the auto generated C files.

UefiHiiResource
This is an optional tag used to identify UEFI compliant drivers that must have a
UEFI_HII_RESOURCE_SECTION generated as part of the efi image file. If not
specified, the default is false.

DPX_SOURCE
The path and filename must be relative to the INF file and located within the
module’s directory tree. The file must contain only DEPEX statements as defined in
the UEFI PI Specification that are valid for the module type. C style Comments are
not in the file. Contents of this file completely override any dependency expressions
listed in [Depex] sections and all inherited dependency expressions that would
normally have been inherited from libraries linked to the module. Use of this
feature is not recommended for normal use.

OptionRomInfo
These statements are used by developers of stand-alone PCI Option ROM drivers.
They allow the developer to forego creation of an FDF file in the package directory.
Only the INF file and a DSC file are required for pure PCI Option ROM development.

ENTRY_POINT CName
This is the name of the driver’s entry point function.

UNLOAD_IMAGE CName
If a driver chooses to be unloadable, then this is the name of the module’s function
registered in the Loaded Image Protocol. It is called if the UEFI Boot Service
UnloadImage() is called for the module, which then executes the Unload function,
disconnecting itself from handles in the database as well as uninstalling any
protocols that were installed in the driver entry point. The CName is the name of
this module’s unload function.

57 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Example (EDK II Driver)
[Defines]

INF_VERSION = 0x00010018
BASE_NAME = PlatformAcpiTable
FILE_GUID = 7E374E25-8E01-4FEE-87F2-390C23C606CD
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
EDK_RELEASE_VERSION = 0x00020000
UEFI_SPECIFICATION_VERSION = 0x00020014

Example (UEFI Driver)
[Defines]
INF_VERSION = 0x00010018
BASE_NAME = Abc
FILE_GUID = DA87D340-15C0-4824-9BF3-D52286674BEF
MODULE_TYPE = UEFI_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = AbcDriverEntryPoint
UNLOAD_IMAGE = AbcUnload

Example (EDK II Library)
[Defines]

INF_VERSION = 0x00010018
BASE_NAME = LzmaCustomDecompressLib
FILE_GUID = 22f8406f-43ee-492f-82f5-4e8a1a58e6d2
MODULE_TYPE = BASE
VERSION_STRING = 1.0
LIBRARY_CLASS = CustomDecompressLib

3.5 [BuildOptions] Sections

These sections are optional for EDK II INF files.

Summary
Defines the [BuildOptions] section content. These sections are used to define the
custom definitions for individual tools. There are two styles for options, a replacement
of any previous definition (for this module only) of the flags or commands used
(specified by the double "==" equal sign) to process the module code, or an append
option, (specified by the single "=" equal sign) which will be appended to the previous
definition. When the single "=" equal sign is used, the string to the left, is appended,
typically used to override a single flag. When the double "==" sign is used, then any
previous definition (reference build requires that it must be defined tools_def.txt file)
will be cleared, and the left value replaces the entire previous definition.
The double "==" equal sign must be used to replace a command (specified by the PATH
attribute,) appending is not an option.
For the DPATH attribute, can use either the replace or append, and is used to expand

Version 1.24B March 2015 58

EDK II INF File Format EDK II INF File Specification

the system environment PATH variable prior to processing any commands.
Other, user defined attributes, can be specified, in this section, using either the append
or replace. Usage of these overrides is implementation specific.
Macro use is permitted in the [BuildOptions] sections, and must follow the rule that
Macros used in this section must be defined locally within the INF file; use of externally
defined MACROs is prohibited. Additionally, a $(MACRO) that appears inside of a quoted
string in R-Values (following an append "=" or replace "==") is permitted, as parsing
tools are not required to expand those macro values. Macros within quoted strings do
not need to be defined locally.
Macro statements, $(MACRO), that are encapsulated in double quotation marks are not
expanded, nor are they processed by parsing tools, as double quotation marks indicate
a string that must be treated as a single entity. Macro statements in comments must
also be ignored by parsing tools.
Macros are not allowed on the left side of the assignment statement (left of the equal
sign).
The EDK II build system will provide an option to create an "As Built" INF file that can
be used for binary distributions. This section will be completed, listing all of the option
flags for every application that was used to create the binary. Since these "As Built"
flags are within comment sections, the actual flag string can be extended to a new
comment line without using the line extension character.
Tools that create "As Built" information must expand any macro values used by the
tools during the module build. The standard Macro Definitions are not permitted within
this section for an "As Built" INF file.
Build options listed in architectural sections will be appended to build options listed in
the common architectural section.
Comments in this section must appear on a separate line, they may not be appended
after statements.
The "common" architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.

59 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Prototype
<BuildOptions> ::= "[BuildOptions" [<com_attrs>] "]" <EOL>

<BuildStmts>

<com_attrs> ::= {".common"} {<attrs>}

<attrs> ::= <Archs> ["," <TS> "BuildOptions" <attrs>]*

<Archs> ::= "." <arch>

<BuildStmts> ::= {<BuildOptStmts>*} {<AsBuiltStmts>}

<AsBuiltStmts> ::= <TS> "##" <TS> "@AsBuilt" <EOL>
<AsBuiltFfe>*

<AsBuiltFfe> ::= <TS> "##" <FamId> <ToolFlags> <Eq> <CFlags> <EOL>

[<TS> "#" <CFlagsContd> <EOL>]*

<CFlagsContd> ::= <CFlags>

<BuildOptStmts> ::= {<FlagExpr>} {<PathExpr>} {<CmdExpr>} {<Other>}

<FamId> ::= <Family> ":"

<FlagExpr> ::= <TS> [<FamId>] <ToolFlags> <Equal> <CFlags> <EOL>

<PathExpr> ::= <TS> [<FamId>] <ToolPath> <Equal> <PATH> <EOL>

<CmdExpr> ::= <TS> [<FamId>] <ToolCmd> <ReplaceEq> <PathCmd> <EOL>

<Other> ::= {<OtherTool>} {<MacroDefinition>}

<OtherTool> ::= <TS> [<FamId>] <ToolOther> <Equal> <String> <EOL>

<Family> ::= {"MSFT"} {"GCC"} {"INTEL"} {<Usr>} {<Wildcard>}

<Usr> ::= <ToolWord>

<Equal> ::= {<AppendEq>} {<ReplaceEq>}

<AppendEq> ::= <Eq>

<ReplaceEq> ::= <TS> "==" <TS>

<ToolSpec> ::= <Target> "_" <TagName> "_" <tarch> "_" <CmdCode>

<ToolFlags> ::= <ToolSpec> "_FLAGS"

<ToolPath> ::= <ToolSpec> "_DPATH"

Version 1.24B March 2015 60

EDK II INF File Format EDK II INF File Specification

<ToolCmd> ::= <ToolSpec> "_PATH"

<ToolOther> ::= <ToolSpec> "_" <Attribute>

<Target> ::= {<Wildcard>} {Target}

<TagName> ::= {<Wildcard>} {TagName}

<CmdCode> ::= CommandCode

<CommandName> ::= CommandExecutable

<Attribute> ::= Attribute

<tarch> ::= {"IA32"} {"X64"} {"IPF"} {"EBC"} {<OA>}
{<Wildcard>}

<CFlags> ::= (0x20 - 0x7e)+

<PathCmd> ::= <TOOLPATH> <FileSep> <CommandName>

<TOOLPATH> ::= {<PATH>} {<ABS_PATH> <PATH>}

<ABS_PATH> ::= {(a-zA-Z) ":\"} {"\"} {"/"}

Parameters
All of the keywords that make up the left side of the expression must be alphanumeric
only – no special characters are permitted. For more information about the following
parameters, refer to the Build Specification for as description of the tools_def.txt file. In
order for the entries in the INF file to be valid, there must be a matching definition in
the tools_def.txt file. The tool chain tag name must also match the one used for the
build.

Family
Must match a FAMILY name defined in the EDK II tools_def.txt file. If not present,
then the entry is valid for all tool chain families.

TOOLPATH
Paths listed in the [BuildOptions] section are relative to the system
environment variable, EDK_TOOLS_PATH, or they may be absolute. Use of "..", "."
and "../" in the directory path is not permitted. If the absolute format is used, the
module cannot be distributed using a UEFI Distribution Package.

Target

A keyword that uniquely identifies the build target; the first field, where fields are
separated by the underscore character. Three values, "NOOPT", "DEBUG" and
"RELEASE" have been pre-defined. This keyword is used to bind command flags to
individual commands.
Users may want to add other definitions, such as, PERF, SIZE or SPEED, and define
their own set of FLAGS to use with these tags. The wildcard character, "*", is
permitted after it has been defined one time for a tool chain.

61 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

TagName
A keyword that uniquely identifies a tool chain group; the second field. Wildcard
characters are permitted if and only if a command is common to all tools that will
be used by a developer. As an example, if the development team only uses IA32
Windows workstations, the ACPI compiler can be specified as:
DEBUG_*_*_ASL_PATH and RELEASE_*_*_ASL_PATH.

Arch

A keyword that uniquely identifies the tool chain target architecture; the third field.
This flag is used to support the cross-compiler features, such as when a
development platform is IA32 and the target platform is X64. Using this field, a
single TagName can be setup to support building multiple target platform
architectures with different tool chains. As an example, if a developer is using
Visual Studio .NET 2003 for generating IA32 platform and uses the WINDDK
version 3790.1830 for X64 or IPF platform images, a single tag (see the MYTOOLS
PATH settings in the generated Conf/tools_def.txt or provided BaseTools/Conf/
tools_def.template file.) The wildcard character, "*", is permitted if and only if the
same tool is used for all target architectures.

CommandExecutable
The full executable name, such as cl.exe or gcc, with the preceding path specifying
the exact location of the command. If the executable can be located under a
directory specified in the system environment PATH variable, only the filename is
required. Otherwise, a WORKSPACE relative path or an absolute path must be given.
If an absolute path is used, the build system will fail the build if the executable
cannot be found.

CommandCode
A keyword that uniquely identifies a specific command; the fourth field. Several
CommandCode keywords have been predefined. See table below for the pre-defined
keywords and functional mappings. The wildcard character, "*", is permitted only
for the FAMILY, DLL and DPATH attributes (see Attributes below.)

Version 1.24B March 2015 62

EDK II INF File Format EDK II INF File Specification

Table 5. Predefined Command Codes

CommandCode Function

APP C compiler for applications.

ASL ACPI Compiler for generating ACPI tables.

ASLCC ACPI Table C compiler

ASLDLINK ACPI Table C Dynamic linker

ASLPP ASL C pre-processor

ASM A Macro Assembler for assembly code in some libraries.

ASMLINK The Linker to use for assembly code generated by the ASM tool.

CC C compiler for PE32/PE32+/Coff images.

DLINK The C dynamic linker.

MAKE Required for tool chains. This identifies the utility used to process the Makefiles
generated by the first phase of the build.

PCH The compiler for generating pre-compiled headers.

PP The C pre-processor command.

SLINK The C static linker.

TIANO This special keyword identifies a compression tool used to generate compression
sections as well as the library needed to uncompress an image in the firmware
volume.

VFR The VFR file compiler which creates IFR code.

VFRPP The C pre-processor used to process VFR files.

Attribute

A keyword to uniquely identify a property of the command; the fifth and last field.
Several pre-defined attributes have been defined: DLL, FAMILY, FLAGS, GUID,
OUTPUT and PATH. Use quotation marks if and only if the quotation marks must be
included in the flag string. The following example shows the format for the required
quoted string, "C:\Program Files\Intel\EBC\Lib\EbcLib.lib". Normally,
the quotation characters are not required as everything following the equal sign to
the end of the line is used for the flag.

Flags

Must be a valid string for the tool specified. The string will be appended to the end
of the tool's flags (from the tools_def.txt.) Both Microsoft and GCC evaluate options
from left to right on the command line. This allows disabling some flags that may
have been specified in the tools_def.txt by providing an alternate flag, i.e., if the
tools_def: CC FLAGS defines /O2 and an /O1 options is specified for this module,
the module will compile with /O1 (size) not with /O2 (speed.)
Space characters are allowed. Macros are also permitted to be used in Flag strings.

63 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Example
[BuildOptions.common]
DEFINE MACRO = /nologo
*_WINDDK3790x1830_*_CC_FLAGS = /Qwd1418,810
*_MYTOOLS_*_CC_FLAGS = /Qwd1418,810
*_VS2003_*_CC_FLAGS = /wd4244
*_WINDDK3790x1830_*_CC_FLAGS = /wd4244
*_MYTOOLS_*_CC_FLAGS = /wd4244
RELEASE_MYTOOLS_IPF_ASM_FLAGS == -N us -X explicit -M ilp64 - N so -W3
MSFT:*_*_*_*_FLAGS = /od $(MACRO)

3.6 [LibraryClasses] Sections
These are optional sections.

Summary

Defines the EDK II [LibraryClasses] section content. The Library Class entries are
single lines with one or two fields, separated by the pipe "|" character. The optional
MODULE_TYPE refers to the supported Module Type, and may be a comma separated list
of supported module types.
The EDK II build system will provide an option to generate an "As Built" INF that can be
used to distribution binary modules. Since a binary distribution does not build, the
library instances that were linked into the binary are listed in comments, rather than as
library class keywords and recommended instances. Tools that create "As Built"
information must expand any macro values used by the tools during the module build.
Listing a library class keyword outside of the "As Built" information is prohibited.
Each library class keyword must only be listed once in a library classes section. Library
class keywords listed in architectural sections are not permitted to be listed in the
common architectural section.
The "common" architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.
The use of any form of the word "NULL" (as in "Null" or "null") as a keyword in the
entries is prohibited.

Version 1.24B March 2015 64

EDK II INF File Format EDK II INF File Specification

Prototype
<LibraryClasses> ::= "[LibraryClasses" [<com_attrs>] "]" <EOL>

[<Statements>]

<com_attrs> ::= {".common"} {<attrs>}

<attrs> ::= <Archs> ["," <TS> "LibraryClasses" <attrs>]*

<Archs> ::= "." <arch> [<MODULE_TYPE>]

<MODULE_TYPE> ::= "." <ModuleType> [<FS> <ModuleType>]*

<ModuleType> ::= {"BASE"} {"SEC"} {"PEI_CORE"} {"PEIM"}
{"DXE_CORE"} {"DXE_DRIVER"} {"SMM_CORE"}
{"DXE_SMM_DRIVER"} {"DXE_RUNTIME_DRIVER"}
{"DXE_SAL_DRIVER"} {"UEFI_DRIVER"}
{"UEFI_APPLICATION"} {"USER_DEFINED"}

<Statements> ::= {<SourceContent>*} {<AsBuiltInfo>}

<SourceContent> ::= <TS> {<SourceStmts>} {<MacroDefinition>}

<SourceStmts> ::= [<RecInstanceCmt> <Filename> <EOL>]

<TS> <Keyword> [<Field2>] <EOL>

<RecInstanceCmt> ::= "##" <MTS> "@RecommendedInstance" <MTS>

<NoN> ::= (A-MO-Z)

<NoU> ::= (a-tv-zA-TV-Z0-9)

<NoL> ::= (a-km-zA-TV-Z0-9)

<Keyword> ::= {(A-Z) (a-zA-Z0-9){0,2}}
{(A-Z) (a-zA-Z0-9){4,}}
{<NoN> (a-zA-Z0-9){1,}}
{(A-Z) <NoU> (a-zA-Z0-9){0,}}
{(A-Z) (a-zA-Z0-9) <NoL> (a-zA-Z0-9){0,}}
{(A-Z) (a-zA-Z0-9){2} <NoL>(a-zA-Z0-9){0,}}

<Field2> ::= <FS> <FeatureFlagExpress>

<FeatureFlagExpress> ::= <Boolean>

<AsBuiltInfo> ::= <TS> "##" <MTS> "@LIB_INSTANCES" <WS>

<LibInstance>*

<LibInstance> ::= <TS> "#" <TS> <InfFile> <EOL>

Parameters

65 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Field1

This is a keyword that uniquely identifies a library class required to successfully
execute the driver.

Filename
Filenames listed in the Recommended Instance comment in the
[LibraryClasses] section are relative to the system environment variable,
WORKSPACE. Use of "..", "." and "../" in the directory path is not permitted. If the
Recommended Instance INF file is a member a Package (the Package contains a
DEC file) the Package (DEC file) of must also be present in the [Packages]
section. Use of an absolute path is prohibited.

FeatureFlagExpress
The feature flag expression is currently ignored by the EDK II build system.

Example

[LibraryClasses.common]
DEFINE MDE = $(WORKSPACE)/MdePkg/Library
@RecommendedInstance $(MDE)/BaseDebugLibNull/BaseDebugLibNull.inf
DebugLib
UefiDriverModelLib
PcdComponentNameDisable
@RecommendedInstance $(MDE)/UefiDriverModelLib/UefiDriverModelLib.inf
PcdDriverDiagnosticsDisable
UefiDriverEntryPoint
UefiLib
@RecommendedInstance $(MDE)/BaseLib/BaseLib.inf
BaseLib

3.7 [Packages] Sections
These are optional sections. If there are files listed under a [Sources] section, then the
INF file is required to list the MdePkg/MdePkg.dec file as the first file in a [Packages]
section. This section is also required if the module uses PCDs for both source and the
binary "As Built" INF modules.

Summary

Defines the [Packages] section tag that is used in EDK II module INF files. Note that
the path may include a reference to environment variable, WORKSPACE. If the directory
path starts with a word, rather than a MACRO or $(WORKSPACE), the path is relative to
the WORKSPACE environment variable.
Packages must be listed in the order that may be required for specifying include path
statements for a compiler. For example, the MdePkg/MdePkg.dec file must be listed
before the MdeModulePkg/MdeModulePkg.dec file. If there are PCDs listed in the
generated "As Built" INF, the packages that declare any PCDs must be listed in this
section.
Each package filename must be listed only once per section. Package filenames listed in
architectural sections are not permitted to be listed in the common architectural
section.

Version 1.24B March 2015 66

EDK II INF File Format EDK II INF File Specification

The "common" architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.
Packages listed under the "common" architecture section must not be listed in sections
that have other architecture modifiers.

Prototype

<Packages> ::= "[Packages" [<com_attrs>] "]" <EOL>
<Statements>*

<com_attrs> ::= {".common"} {<attrs>}

<attrs> ::= <Archs> ["," <TS> "Packages" <Archs>]

<Archs> ::= "." <arch>

<Statements> ::= {<MacroDefinition>} {<PkgStatements>}

<PkgStatements> ::= <TS> <Filename> [<Field2>] <EOL>

<Field2> ::= <FS> <FeatureFlagExpress>

<FeatureFlagExpress> ::= <Boolean>

Parameters
Filename

Paths listed in the [Packages] section are relative to the system environment
variable, WORKSPACE. Use of "..", "." and "../" in the directory path is not
permitted. The package path must be in the directory tree identified by the
WORKSPACE system environment variable. Use of an absolute path is prohibited.

FeatureFlagExpress
The feature flag expression is currently ignored by the EDK II build system.

Example

[Packages]
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec

[Packages.IA32]
DEFINE CPUS = IA32FamilyCpuPkg
$(CPUS)/DualCore/DualCore.dec

3.8 PCD Sections

The PCD sections are optional. If the source module code contains any Patchable in
Module or DynamicEx PCDs, then this section must be generated in the "As Built" INF
file listing each PCD with its <CommentBlock> content if available. Refer to the EDK II
Build Specification, section 8.4.1 for PCD processing rules.

67 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Summary
Defines the [(PcdType)] section content for EDK II module INF files. If a default value
is specified on the entry line, it must match the datum type specified in the DEC file
that declares this PCD. The Datum Type values are defined in the PI Specification. PCD
expressions are single lines with two or three fields; fields are separated using the pipe
"|" character. Empty Fields are permitted.
The EDK II Build system will generate an "As Built" INF file that can be delivered with a
binary distribution. Only [PatchPcd] and [PcdEx] section types are valid for in "As
Built" INF file. Tools that create "As Built" information must expand any macro values
used by the tools during the module build.
The format of the <CommentBlock> is the recommended format that will guarantee that
the information is correctly inserted into UEFI Distribution Package description files by
the Intel® UEFI Packaging Tool included in the EDK II base tools project.
Each PCD name must only be listed once in a section. PCD names listed in architectural
sections must not be listed in the common architectural section. PCDs should be either
architectural in nature or common to all architectures. The module developer should
note that all recommended values may be overridden by values specified by a platform
integrator in a platform description (DSC) file.
The "common" architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.
It is not permissible to list a PCD name in different PCD type sections. Listing a PCD
indicates what library function is used to access a PCD; only one type of access is
permitted for a specified PCD.
A generated "As Built" INF file must not contain any FeatureFlagExpression content.

Version 1.24B March 2015 68

EDK II INF File Format EDK II INF File Specification

Prototype

<Pcds> ::= {<AsBuiltPcdSec>} {<SrcPcdSec>}
{<FeaturePcd>}

<SrcPcdSec> ::= {<Patch>} {<Fixed>} {<Dyn>} {<DynEx>}
<PcdEntriesStmts>*

<PcdEntriesStmts> ::= <PcdEntries>

<Patch> ::= "[PatchPcd" [<com_patchAttrs> "]" <EOL>

<com_patchAttrs> ::= {".common"} {<patchAttrs>}

<patchAttrs> ::= <attrs> ["," <TS> "PatchPcd" <attrs>]*

<Fixed> ::= "[FixedPcd" [<com_fixedAttrs> "]" <EOL>

<com_fixedAttrs> ::= {".common"} {<fixedAttrs>}

<fixedAttrs> ::= <attrs> ["," <TS> "FixedPcd" <attrs>]*

<Dyn> ::= "[Pcd" [<com_pcdAttrs> "]" <EOL>

<com_pcdAttrs> ::= {".common"} {<pcdAttrs>}

<pcdAttrs> ::= <attrs> ["," <TS> "Pcd" <attrs>]*

<DynEx> ::= "[PcdEx" [<com_pcdexAttrs> "]" <EOL>

<com_pcdexAttrs> ::= {".common"} {<pcdexAttrs>}

<pcdexAttrs> ::= <attrs> ["," <TS> "PcdEx" <attrs>]*

<FeaturePcd> ::= "[FeaturePcd" [<com_FFArchAttrs>] "]" <EOL>
<FeatureEntriesStmts>*

<FeatureEntriesStmts> ::= <FeatureEntries>

<com_FFArchAttrs> ::= {".common"} {<FFArchAttrs>}

<FFArchAttrs> ::= <attrs> ["," <TS> "FeaturePcd" <attrs>]*

<FeatureEntries> ::= [<NUsageBlock>]
<TS> <PcdName> [<FfField1>] <TailCmt>

<TailCmt> ::= {<1UsageBlock>} {<EOL>}

<FfField1> ::= <FS> [<Boolean>] [<FfField2>]

<FfField2> ::= <FS> [<FFE>]

69 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

<AsBuiltPcdSec> ::= {<BuiltPatchPcd>} {<BuiltPcdEx>}

<BuiltPatchPcd> ::= "[PatchPcd" [<com_PPArchAttrs>] "]" <EOL>
<ValueOffsetPcd>*

<com_PPArchAttrs> ::= {".common"} {<PPArchAttrs>}

<PPArchAttrs> ::= <attrs> ["," <TS> "PatchPcd" <attrs>]*

<BuiltPcdEx> ::= "[PcdEx" [<com_PEArchAttrs>] "]" <EOL>

<AbPcdEx>*

<com_PEArchAttrs> ::= {".common"} {<PEArchAttrs>}

<attrs> ::= "." <arch>

<PEArchAttrs> ::= <attrs> ["," <TS> "PcdEx" <attrs>]*

<AbPcdEx> ::= [<NUsageBlockAb>]
<TS> <PcdName> [<TailCmt>] <EOL>

<NUsageBlockAb> ::= {<HiiComment>} {<NUsageBlock>}

<HiiComment> ::= <TS> ["##" <Usage> [<MTS> <HiiInfo>] <TS>

<CmtOrEol>

<HiiInfo> ::= <TS> "##" <TS> "L" <QuotedString> <FS>
<CName> <Offset>

<ValuePcd> ::= <TS> <PcdName> <FS> <ValUse>

<ValUse> ::= <AsBuiltValue> <TailCmt>

<ValueOffsetPcd> ::= [<NUsageBlock>]

<TS> <PcdName> <FS> <ValOffUse>

<ValOffUse> ::= <AsBuiltValue> <Offset> <TailCmt>

<Offset> ::= <FS> <NumValUint32>

<AsBuiltByteArray> ::= "{" <NList> "}"

<AsBuiltValue> ::= if (pcddatumtype == "BOOLEAN"):
{"0x00"} {"0x01"}

elif (pcddatumtype == "UINT8"):
<UINT8z>

elif (pcddatumtype == "UINT16"):
<UINT16z>

elif (pcddatumtype == "UINT32"):
<UINT32z>

Version 1.24B March 2015 70

EDK II INF File Format EDK II INF File Specification

elif (pcddatumtype == "UINT64"):
<UINT64z>

else:
<AsBuiltByteArray>

<PcdEntries> ::= [<NUsageBlock>]

<PField1>

::=

<TS> <PcdName> [<PField1>] <TailCmt>

<FS> [<Value>] [<FFE>]

<Value> ::= if (pcddatumtype == "BOOLEAN"):
<Boolean>

elif (pcddatumtype == "UINT8"):
<NumValUint8>

elif (pcddatumtype == "UINT16"):
<NumValUint16>

elif (pcddatumtype == "UINT32"):
<NumValUint32>

elif (pcddatumtype == "UINT64"):
<NumValUint64>

else:
<StringVal>

<StringVal> ::= {<StringType>} {<CArray>}

<StringType> ::= {<UnicodeString>} {<CString>}

<FFE> ::= <FS> <FeatureFlagExpress>

<1UsageBlock> ::= <CommentBlock>

<NUsageBlock> ::= <CommentBlock>+

<FeatureFlagExpress> ::= <Boolean>

<CommentBlock> ::= <TS> ["##" <TS> <Usage>] <TS> <CmtOrEol>

<CmtOrEol> ::= {<Comment>} {<EOL>}

<Usage> ::= {"CONSUMES"} {"SOMETIMES_CONSUMES"}
{"PRODUCES"} {"SOMETIMES_PRODUCES"}
{"UNDEFINED"}

Parameters
FeatureFlagExpress

The feature flag expression determines whether the entry line is valid. If the
expression evaluates to FALSE, then the entry line is ignored by the EDK II build
system.

71 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

1UsageBlock and NUsageBlock
The 1UsageBlock location, after the entry, is preferred if there is only one Usage for
the PCD entry (this may also be referred to as a tail comment). If a PCD has
multiple usages, then all CommentBlock statements must precede the entry.

Values

If a value is specified in an element and no value is set in the platform file, the
platform will use the value specified here, rather than the default value specified in
the DEC file that declares the PCD. The value must always match the Datum type,
as specified in the DEC file. When specifying a value for PCD here, expression or
macros are not permitted; only actual values are permitted.

UNDEFINED
Typically, this entry will be used when tools creating/installing UEFI Distribution
Packages encounter a missing or misspelled usage.

CONSUMES
This module always gets the PCD entry. This is the only usage allowed for Feature
PCDs.

PRODUCES
The module always sets the PCD entry.

SOMETIMES_CONSUMES
The module gets the PCD entry under certain conditions or execution paths.

SOMETIMES_PRODUCES
The module sets the PCD entry under certain conditions or execution paths.

AsBuiltByteArray
A byte array containing exactly the number of bytes (as specified as the maximum
number of bytes in the DSC file) used for the patchable in module PCD when the
binary was created. Any additional bytes for a value of less than the maximum
number of bytes will be zero filled. For example, if the actual value of the array was
only 4 bytes, but 10 bytes were allocated during the build, the tools will zero fill
remaining bytes (in the example, 6 additional bytes of 0x00 will be added).

Version 1.24B March 2015 72

EDK II INF File Format EDK II INF File Specification

Examples
[FixedPcd]
gEfiMdePkgTokenSpaceGuid.PcdFSBClock|600000000
gEfiMdePkgTokenSpaceGuid.PcdMaximumUnicodeStringLength

[FeaturePcd]
gEfiMdePkgTokenSpaceGuid.PcdComponentNameDisable|FALSE
gEfiMdePkgTokenSpaceGuid.PcdDriverDiagnosticsDisable

[Pcd.IA32]
gEfiNt32PkgTokenSpaceGuid.PcdWinNtMemorySizeForSecMain

[PatchPcd.IA32]
@AsBuilt
gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel | 0x80000040 | \
0x00004118

3.9 [Sources] Sections
These sections are optional.

Summary

Defines the [Sources] section content.
All file names specified in this section must be in the directory containing the INF file or
in sub-directories of the directory containing the INF file.
The ‘common’ architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.
All paths are relative to the directory containing the INF file. If the filename is listed as
myfile.c, the file must be located in the same directory as the INF file. Absolute paths in
the filename are prohibited.
There can be multiple sources sections, depending on the target processor. Example
sources sections are listed below. The parsing utility creates a directory path for each
file ($(DEST_DIR)\….\MyFile.c), and looks up the makefile template for the
COMPONENT_TYPE (EDK) or MODULE_TYPE (EDK II) to emit.
It is not permissible to mix EDK and EDK II style files within a module.
The macro, TABLE_NAME may be used in existing EDK INF files that point to ACPI tables,
this value will be ignored by EDK II build tools.
All HII Unicode format files must be listed in this section as well as any other "source"
type file, such as local module header files, Vfr files, etc.
Each source file must be listed only once per section. Files listed in architectural
sections are not permitted to be listed in the common architectural section.
This section is not valid for a generated "As Built" binary INF file.

73 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Prototype

<Sources> ::= "[Sources" [<com_attribs>]* "]" <EOL> [<TS>
"TABLE_NAME" <Eq> <SimpleWord> <EOL>]
<SourceFileStmts>*

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "Sources" <attrs>]*

<attrs> ::= "." <arch>

<SourceFileStmts> ::= {<MacroDefinition>} {<SourceFileEntry>}

<SourceFileEntry> ::= <TS> <Filename> [<Options>] <EOL>

<Options> ::= <FS> [<Family>] [<opt1>]

<opt1> ::= <FS> [<TagName>] [<opt2>]

<opt2> ::= <FS> [<ToolCode>] [<opt3>]

<opt3> ::= <FS> [<FeatureFlagExpress>]

<Family> ::= {"MSFT"} {"GCC"} {"INTEL"} {<Wildcard>}

<TagName> ::= {<ToolWord>} {"*"}

<ToolCode> ::= CommandCode

<FeatureFlagExpress> ::= <Boolean>

Parameters
Filename

Paths listed in the filename elements of the [Sources] section must be relative to
the directory the INF file resides in. Use of "..", "." and "../" in the directory path is
not permitted.

FeatureFlagExpress
The feature flag expression is currently ignored by the EDK II build system.

TagName
A keyword that uniquely identifies a tool chain group; the second field. Wildcard
characters are permitted if and only if a command is common to all tools that will
be used by a developer. As an example, if the development team only uses IA32
Windows workstations, the ACPI compiler can be specified as:
DEBUG_*_*_ASL_PATH and RELEASE_*_*_ASL_PATH.

CommandCode
A keyword that uniquely identifies a specific command; the fourth field. Several
CommandCode keywords have been predefined, however users may add additional
keywords, with appropriate modifications to build_rule.txt. See table below for the

Version 1.24B March 2015 74

EDK II INF File Format EDK II INF File Specification

Family

pre-defined keywords and functional mappings. The wildcard character, "*", is
permitted only for the FAMILY, DLL and DPATH attributes (see Attributes below.)

Family is keyword that uniquely identifies a tool chain family. The Family must
be either a wildcard character (meaning any Family) or it must match a defined
value for a Family label in the tools_def.txt file for at least one tool chain TagName
specified in tools_def.txt (or the TagName field that follows this field in the entry).

Example
[Sources.common]
Diskio.c
Diskio.h
ComponentName.c

[Sources.IA32}
Ia32\DiskIo.h

3.10 [UserExtensions] Sections
These are optional sections.

Summary

Defines the optional EDK II INF file [UserExtensions] section tag. The build tools
must have an a priori knowledge of how to process any items in this section.
Each UserExtensions section must have a unique set of UserId, IdString and Arch
values.
The "common" architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.
This means that the same UserId can be used in more than one section, provided the
IdString or Arch values are different. The same IdString values can be used if the
UserId or Arch values are different. The same UserId and the same IdString can be
used if the Arch values are different.
Any [UserExtensions] sections that are present in the source INF with a UserId of
"TianoCore" will be copied into the "As Built" INF file. [UserExtensions] sections with
other UserId values will not be copied to the "As Built" INF file.
Files listed in a [UserExtensions.TianoCore.”ExtraFiles”] section must be included
in a UEFI Distribution Package.

75 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Prototype

<UserExtensions> ::= "[UserExtensions" <com_attribs> "]" <EOL>
<statements>*

<com_attribs> ::= {<com_arch>} {<attribs>}

<com_arch> ::= <IdContent> [".common”]

<attribs> ::= <IdContent> ["," <TS> "UserExtensions"
 <IdContent>]*

<IdContent> ::= <UserId> <IdString> [<attrs>]

<attrs> ::= "." <arch>

<UserId> ::= "." {(a-zA-Z)(a-zA-Z0-9_.)*} {"TianoCore"}

<IdString> ::= "." {<NormalizedString>} {<SimpleWord>}
{<ReservedWord>}

<ReservedWord> ::= {"PRE_PROCESS"} {"POST_PROCESS"}
{"ExtraFiles"}

<statements> ::= Content is build tool chain specific.

Parameters
UserId

Words that contain period "." must be encapsulated in double quotation marks.

IdString
Normalized strings that contain period "." or space characters must be
encapsulated in double quotation marks. The IdString must start with a letter.

Example
[UserExtensions.Edk2AcpiTable."1.0"]
Any content may go here

3.10.1 [UserExtensions.TianoCore."ExtraFiles"] Section
This is an optional section.
Defines the optional EDK II INF file [UserExtensions.TianoCore."ExtraFiles"]
section tag. The EDK II build tools must not process any files listed in this section.

Summary
This section is used by the Intel® UEFI Packaging Tool, that is distributed as part of the
EDK II BaseTools, to locate files listed under this section header and add them to the
UEFI distribution package. When installing a UEFI distribution package, these files will
be installed in the module's directory tree.

Version 1.24B March 2015 76

EDK II INF File Format EDK II INF File Specification

Prototype
<UserExtensions> ::= "[UserExtensions" <TcEf> "]" <EOL> <FileNames>*

<TcEf> ::= ".TianoCore." <DblQuote> "ExtraFiles" <DblQuote>

<FileNames> ::= <TS> [<RelativePath>] <File> <EOL>

Parameters
FileNames

Paths listed in the filename elements of the this section must be relative to the
directory the INF file resides in. Use of "..", "." and "../" in the directory path is not
permitted.

Example

[UserExtensions.TianoCore."ExtraFiles"]
Readme.txt

3.11 [Protocols] Sections

These are optional sections. If the source module code contains any protocols, then this
section must be generated in the "As Built" INF file listing each protocol with its
<CommentBlock> content.

Summary

Defines the optional EDK II INF file [Protocols] section tag. This is a list of the global
PROTOCOL C Names that are referenced in the EDK II Module's C code.
Each protocol must be listed only once per section. Protocols listed in architectural
sections are not permitted to be listed in the common architectural section.
The "common" architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.
The format of the <CommentBlock> is the recommended format that will guarantee that
the information is correctly inserted into UEFI Distribution Package description files by
the Intel® UEFI Packaging Tool included in the EDK II base tools project. The usages in
the comment block describe how the Protocol is used in the C code.
A binary INF file must not contain any FeatureFlagExpression content.

77 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Prototype

<Protocols> ::= "[Protocols" [<com_attribs>] "]" <EOL>
<ProtoStatments>*

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "Protocols" <attrs>]*

<attrs> ::= "." <arch>

<ProtoStatements> ::= [<NUsageBlock>]
<TS> <ProtocolSpec> {<1UsageBlock>} {<EOL>}

<ProtocolSpec> ::= <CName> [<FS> <FeatureFlagExpress>]

<1UsageBlock> ::= <CommentBlock>

<NUsageBlock> ::= <CommentBlock>+

<FeatureFlagExpress> ::= <Boolean>

<CommentBlock> ::= <TS> <UsageField> <TS> [<Comment>] <EOL>

<UsageField> ::= ["##" <TS> <Usage> <TS>] [<Notify>]

<Notify> ::= "##" <TS> "NOTIFY" <TS>

<Usage> ::= {"PRODUCES"} {"SOMETIMES_PRODUCES"}
{"CONSUMES"} {"SOMETIMES_CONSUMES"}
{"TO_START"} {"BY_START"} {"UNDEFINED"}

Parameters
FeatureFlagExpress

The feature flag expression is currently ignored by the EDK II build system.
1UsageBlock and NUsageBlock

The 1UsageBlock location, after the entry, is preferred if there is only one usage
for the Protocol entry. If a Protocol has multiple usages, then all CommentBlock
statements must precede the entry.

UNDEFINED
Typically, this entry will be used when tools creating/installing UEFI Distribution
Packages encounter a missing or misspelled usage. UNDEFINED is also valid when
the Protocol is not used as a Protocol and the GUID value of the Protocol is used for
something else.

CONSUMES
This module does not install the protocol, but needs to locate a protocol. Not valid if
the Notify attribute is true.

PRODUCES
This module will install this protocol. Not valid if the Notify attribute is true.

Version 1.24B March 2015 78

EDK II INF File Format EDK II INF File Specification

SOMETIMES_CONSUMES
This module does not install the protocol, but may need to locate a protocol under
certain conditions, (such as if it is present.) If the Notify attribute is set, then the
module will use the protocol, named by GUID, via a registry protocol notify
mechanism.

SOMETIMES_PRODUCES
This module will install this protocol under certain conditions. Not valid if the
Notify attribute is true.

TO_START
The protocol is consumed by a Driver Binding protocol Start function. Thus the
protocol is used as part of the UEFI driver model. Not valid if the Notify attribute
is true.

BY_START
The protocol is produced by a Driver Binding protocol Start function. Thus the
protocol is used as part of the UEFI driver model. Not valid if the Notify attribute
is true.

NOTIFY

This specifies whether this is a Protocol or ProtocolNotify. If set, then the module
will use this protocol, named by GUID, via a registry protocol notify mechanism.

Example
[protocols]
gEfiDecompressProtocolGuid
gEfiLoadFileProtocolGuid

3.12 [Ppis] Sections
These are optional sections. If the source module code contains any PPIs, then this
section must be generated in the "As Built" INF file listing each PPI with its
<CommentBlock> content.

Summary

Defines the EDK II INF file [PPIs] section content. This is a list of the global PPI C
Names that are referenced in the EDK II Module's C code.
Each PPI must be listed only once per section. PPIs listed in architectural sections are
not permitted to be listed in the common architectural section.
The "common" architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.
The format of the <CommentBlock> is the recommended format that will guarantee that
the information is correctly inserted into UEFI Distribution Package description files by
the Intel® UEFI Packaging Tool included in the EDK II base tools project. The usages in
the comment block describe how the PPI is used in the C code.
A binary INF file must not contain any FeatureFlagExpression content.

79 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Prototype

<Ppis> ::= "[Ppis" [<com_attribs>] "]" <EOL>
<PpiStatements>*

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "Ppis" <attrs>]*

<attrs> ::= "." <arch>

<PpiStatements> ::= [<NUsageBlock>]
<TS> <PpiSpec> [<1UsageBlock>]

<PpiSpec> ::= <CName> [<FS> <FeatureFlagExpress>]

<1UsageBlock> ::= <CommentBlock>

<NUsageBlock> ::= <CommentBlock>+

<FeatureFlagExpress> ::= <Boolean>

<CommentBlock> ::= <TS> <UsageField> <TS> [<Comment>] <EOL>

<UsageField> ::= ["##" <TS> <Usage> <TS>] [<Notify>]

<Notify> ::= "##" <TS> "NOTIFY" <TS>

<Usage> ::= {"PRODUCES"} {"SOMETIMES_PRODUCES"}
{"CONSUMES"} {"SOMETIMES_CONSUMES"}
{"UNDEFINED"}

Parameters
FeatureFlagExpress

The feature flag expression is currently ignored by the EDK II build system.
1UsageBlock and NUsageBlock

The 1UsageBlock location, after the entry, is preferred if there is only one usage
for the PPI entry. If a PPI has multiple usages, then all CommentBlock statements
must precede the entry.

UNDEFINED
Typically, this entry will be used when tools creating/installing UEFI Distribution
Packages encounter a missing or misspelled usage. UNDEFINED is also valid when
the PPI is not used as a PPI and the GUID value of the PPI is used for something
else.

CONSUMES
This module does not install the PPI, but needs to locate a PPI. Not valid if the
Notify true.

PRODUCES
This module will load this PPI. Not valid if the Notify attribute is true.

Version 1.24B March 2015 80

EDK II INF File Format EDK II INF File Specification

SOMETIMES_CONSUMES
This module does not install the PPI, but may need to locate a PPI under certain
conditions or execution paths. If the Notify attribute is set, then the module will
use the PPI, named by GUID, via a registry PPI notify mechanism.

SOMETIME_PRODUCES
This module will load this PPI under certain conditions or execution paths. Not valid
if the Notify attribute is true.

NOTIFY
This specifies whether this is a Ppi or PpiNotify. If set to, the module requires or
consumes a PPI, named by GUID, via a register PPI notify mechanism.

Example
[ppis]
gEfiPeiMemoryDiscoveredPpiGuid
gEfiFindFvPpiGuid

3.13 [Guids] Sections
These are optional sections. If the source module code contains any GUIDs (other than
PPI or PROTOCOL GUIDs), then this section must be generated in the "As Built" INF file
listing each GUID with its <CommentBlock> content.

Summary

Defines the EDK II INF file [Guids] section content. This is a list of the global GUID C
Names that are referenced in the module's code, but not already referenced in the INF.
Unique GUID C names may be published in the DEC file (or come from a Distribution
Package surface area description.) The C Names used in this section are formatted
using the external name.
The "common" architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.
Each GUID must be listed only once per section. GUIDs listed in architectural sections
are not permitted to be listed in the common architectural section.
The format of the <CommentBlock> is the recommended format that will guarantee that
the information is correctly inserted into UEFI Distribution Package description files by
the Intel® UEFI Packaging Tool included in the EDK II base tools project. The usages in
the comment block describe how the GUID is used in the C code.
A "binary" INF file must not contain any FeatureFlagExpression content.

81 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Prototype

<Guids>

::=

"[Guids" [<com_attribs>] "]" <EOL>
 <GuidsStatements>*

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "Guids" <attrs>]*

<attrs> ::= "." <arch>

<GuidsStatements> ::= [<NUsageBlock>}
<TS> <GuidSpec> [<1UsageBlock>]

<GuidSpec> ::= <CName> [<FS> <FeatureFlagExpress>]

<1UsageBlock> ::= <CommentBlock>

<NUsageBlock> ::= <CommentBlock>+

<FeatureFlagExpress> ::= <Boolean>

<CommentBlock> ::= <TS> [<UseOrFieldOpt>] <CmtOrEol>

<UseOrFieldOpt> ::= [<UsageField>] [<GuidTypeField>]

<UsageField> ::= "##" <TS> <Usage> <TS>

<GuidTypeField> ::= "##" <TS> <GuidType> <TS>

<CmtOrEol> ::= {<Comment>} {<EOL>}

<Usage> ::= {"CONSUMES"} {"SOMETIMES_CONSUMES"}
{"PRODUCES"} {"SOMETIMES_PRODUCES"}
{"UNDEFINED"}

<GuidType> ::= {"Event"} {"File"} {"FV"} {"GUID"} {"HII"}
{"HOB"} {"SystemTable"} {"TokenSpaceGuid"}
{<VariableType>} {"UNDEFINED"}

<VariableType> ::= {"Variable"}
{"Variable:" <TS> <VariableName>}

<VariableName> ::= <UnicodeString>

Parameters
FeatureFlagExpress

The feature flag expression is currently ignored by the EDK II build system.

Version 1.24B March 2015 82

EDK II INF File Format EDK II INF File Specification

1UsageBlock and NUsageBlock
The 1UsageBlock location, after the entry, is preferred if there is only one If a
GUID has multiple usages, then all CommentBlock statements must precede the
entry.

Usage

One or more Usage comment lines may be specified for a given GUID. If more than
one Usage, then the comment section following the Usage must be provided,
explaining the different usages.

UNDEFINED - Usage
Typically, this entry will be used when tools creating/installing UEFI Distribution
Packages encounter a missing or misspelled usage. UNDEFINED may also be used
for GUIDs that identify different types of information.

CONSUMES
CONSUMES means that a module may use this GUID that does not fit into the
defined PROTOCOL or PPI types. The module will use the named GUID. For GUID
type of:
• Event - CONSUMES means that the module has an event waiting to be signaled

(i.e., the module registers a notification function and calls the function when it
is signaled.

• System Table - this means that the module will use a GUIDed entry in the
system table.

• Variable - this means that the module may use the variable entry.
• HII - the formset may be registered into HII by this module.
• TokenSpaceGuid - this means that an Token Space GUID will be required for

PCD entries used in this module.
• Hob - this means that a HOB may need to be present in the system.
• File/FV - this means that a file must be present in an FV, such as a module that

loads a processor microcode patch file.
• GUID - this means that a module may use this GUID that does not fit into the

defined GUID types.
PRODUCES

PRODUCES means that a module will produce a GUID that does not fit into the
defined PROTOCOL or PPI types. This module always produces a named GUID. For
GUID type of:
• Event - this means that module will signal all events in an event group.
• System Table - this means that the module will produce a GUIDed entry in the

system table.
• Variable - this means that the module will write the variable.
• HII - PRODUCES is not valid for this GUID type.
• TokenSpaceGuid - PRODUCES is not valid for this GUID type.
• Hob - this means that the HOB will be produced by the module.
• File/FV - this means that a module creates a file that is present in an FV, such

as a file that contains a microcode patch.
• GUID - this means that a module will produce a GUID that does not fit into the

defined PROTOCOL, PPI or GUID types.

83 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Example
[Guids]
gEfiDebugImageInfoTable
gEfiHobMemoryAllocModuleGuid

gEfiAbcVariableGuid ## PRODUCES ## Variable:L"XYZ" # Sets the variable

Event registered to EFI_HII_SET_KEYBOARD_LAYOUT_EVENT_GUID group,
which will be triggered by
EFI_HII_DATABASE_PROTOCOL.SetKeyboardLayout().
SOMETIME_CONSUMES ## Event
gEfiHiiKeyBoardLayoutGuid

3.14 [Depex] Sections

These are optional sections

Summary
Defines the optional EDK II INF file [Depex] section content. The [Depex] section is a
replacement for the dependency file specified by the driver writer. The DPX_SOURCE in
the [Defines] section an EDK INF file will over-ride the dependency specified here.
This section can be used for inheritance from libraries, by supporting logical AND'ing of
the different Depex expressions together.
The Rules would be as follows:
• EDK II INF - [Depex] section and inheritance from libraries is supported via AND'ing

the different Depex expressions together
• EDK II INF - The [Defines] section's keyword, DPX_SOURCE, would override Depex

section and let module owner force a Depex independent of the [Depex]
inheritance. Not recommended, but gives complete control to the driver writer.

• Each [Depex] section tag listed in an INF file must be unique. If there are multiple
[Depex] sections that have the same section tag, i.e., [Depex.IA32.DXE_DRIVER]
and another [Depex.IA32.DXE_DRIVER] section in the same INF, the build must
break.

If a DPX_SOURCE is specified in the [Defines] section, the [Depex] section is ignored,
and the file specified in the DPX_SOURCE is used instead.
When processing the file, the INF file name specified in the <GuidStmt> and
<DepInstruct> statement is replaced by the FILE_GUID value from the INF file,
translated to a POSIX C structure as shown below:
INTERFACENAME = { /* 0F05DE03-8A1B-408C-8F84-B547F593E463 */

0x0F05DE03,
0x8A1B,
0x408C,
{0x8F, 0x84, 0xB5, 0x47, 0xF5, 0x93, 0xE4, 0x63}

};

The term, "SOR" is ignored as part of the dependency processing. The DXE driver is to
remain on the Schedule on Request (SOR) queue until the DXE Service Schedule() is

Version 1.24B March 2015 84

EDK II INF File Format EDK II INF File Specification

called for this DXE. The dependency expression evaluator treats this operation like a No
Operation (NOP).
There are three types of dependency sections (PEI, SMM and DXE) permitted by
specifications. The SMM dependency section uses the same grammar as the DXE
dependency section. The optional tags (identified as <DepexType> in the EBNF, below)
must be used at the start of a depex listing. The depex expression for a given type is
terminated by the start of a new optional section tag, the start of a new section or the
end of file.
Drivers with MODULE_TYPE set to SEC, PEI_CORE, DXE_CORE, SMM_CORE, UEFI_DRIVER
and UEFI_APPLICATION cannot have [Depex] sections. Libraries and modules that are
USER_DEFINED may have a [Depex] section. All remaining drivers, PEIM, DXE_DRIVER,
DXE_SAL_DRIVER, DXE_RUNTIME_DRIVER and DXE_SMM_DRIVER module types must have
a [Depex] section.
Libraries of type SEC, PEI_CORE, DXE_CORE, SMM_CORE and UEFI_APPLICATION are not
allowed to have a [Depex]. The MODULE_TYPE entry in the [Defines] section for a
library only defines the module type that the build system must assume for building the
library. It does not define the types of modules that a library may be linked with.
Instead, the LIBRARY_CLASS entry in the [Defines] section optionally lists the
supported module types that the library may be linked against.
Libraries of type BASE are not permitted to have generic (i.e., [Depex]) and generic
with only architectural modifier (i.e., [Depex.IA32]) entries. Library of type BASE are
permitted to have a Depex section if one ModuleType modifier is specified (i.e.,
[Depex.common.PEIM).
When using the ModuleType as a section modifier (for example: [Depex.IA32.PEIM]),
for drivers, the ModuleType must match the value of MODULE_TYPE entry in the
[Defines] section. For Libraries, the ModuleType used in the section modifier must be
a member of the Module Types listed after the LIBRARY_CLASS keyword in the
[Defines] section. If no module types are listed after the LIBRARY_CLASS keyword in
the [Defines] section, then the library is compatible with all module types, so all
module types may be used as a section modifier.
The "common" architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.
If the MODULE_TYPE is UserDefined, the build tools must exit gracefully and provide the
user with an error message stating that the [Depex] section header does not provide
enough information to determine the type of the Depex section.
If the module is not a library (no LIBRARY_CLASS in the [Defines] section) and the
MODULE_TYPE is SEC, SMM_CORE, DXE_CORE, PEI_CORE, UEFI_DRIVER or
UEFI_APPLICATION a Depex section is not permitted. If one is found, the build tools
must exit gracefully and provide the user with an error message stating the [Depex]
section is not valid for the MODULE_TYPE.
If the module is a library (with a LIBRARY_CLASS statement in the [Defines] section)
and there is no module type defined in Depex section's modifier and there is a MTL
defined (with a ModuleTypeList statement following by the LIBRARY_CLASS statement
in the [Defines] section) and each module type in MTL is PEIM,
DXE_DRIVER, DXE_SAL_DRIVER, DXE_RUNTIME_DRIVER, DXE_SMM_DRIVER or UEFI_DRIVER
the build tools must create a related Depex section for each module type in XML.
If the module is a library and the MODULE_TYPE is not BASE (with a LIBRARY_CLASS
statement in the [Defines] section) and it has no MTL defined (without a

85 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

ModuleTypeList statement following by the LIBRARY_CLASS statement in the
[Defines] section) a Depex section is not permitted. If one is found, the build tools
must exit gracefully and provide the user with an error message stating the [Depex]
section is not valid for the module.
If the module is a library (with a LIBRARY_CLASS statement in the [Defines] section)
and the MODULE_TYPE is UEFI_DRIVER, the [Depex] section must map to a DxeDepex
section in the XML.
For a binary INF file, the [Depex] section will contain the full dependency expression,
including the dependencies from the linked libraries in a comment.

Version 1.24B March 2015 86

EDK II INF File Format EDK II INF File Specification

Note: A UEFI_DRIVER which is not included in an FD image (such as a driver that will be loaded from

the shell or stored in a PCI option ROM) will not have an FFS DEPEX section generated by the
tools.

Note: Capitalization in the Prototypes listed below does not match the capitalization used in the PI

Specification.

Prototype

<Depex> ::= "[Depex" [<com_attribs>] "]" <EOL>
{<DepexSection>*} {<AsBuiltDepex>}

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "Depex" <attrs>]*

<attrs> ::= "." <arch> [<Module>]

<Module> ::= "." <DepexModuleType>

<DepexModuleType> ::= {"PEIM"} {"DXE_DRIVER"} {"DXE_SMM_DRIVER"}

{"DXE_RUNTIME_DRIVER"} {"DXE_SAL_DRIVER"}
{"UEFI_DRIVER"} {"USER_DEFINED"}

<DepexSection> ::= {<PeiDepex>} {<SmmDepex>} {<DxeDepex>}

<DxeDepex> ::= <DxeDepexStatements>+

["END" <EOL>]

<DxeDepexStatements> ::= {<SorStmt>} {<GuidStmt>} {<BoolStmt>}

<PeiDepex> ::= <PeiDepexStatements>*
["END" <EOL>]

<PeiDepexStatements> ::= {<BoolStmt>} {<DepInstruct>}

<SmmDepex> ::= <DxeDepex>

<GuidStmt> ::= {"BEFORE"} {"AFTER"} <GuidCName> [<EOL>]

<DepInstruct> ::= "PUSH" <CFormatGUID> [<EOL>]

<SorStmt> ::= "SOR" <BoolStmt> [<EOL>]

<BoolStmt> ::= {<Bool>} {<BoolExpress>}

<Bool> ::= {"TRUE"} {"FALSE"} {<GuidCName>} [<EOL>]

<GuidCName> ::= <CName> # A Guid C Name

<NTs> ::= "NOT" <TS>

87 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

<BoolExpress>

<BoolExpressCont>

<AsBuiltDepex>

<FullDxe>

::=

::=

::=

::=

<NTs> <Bool> [<BoolExpressCont>]*

<MTS> {"AND"} {"OR"} <MTS> [<NTs>] <Bool>

"#" {<FullDxe>} {<FullPei>} {<FullSmm>} <EOL>

<DxeStatements>+

 [<TS> "END"]

<DxeStatements> ::= {<SorAbStmt>} {<GuidAbStmt>} {<BoolAbStmt>}

<FullPei> ::= <PeiStatements>*
[<TS> "END"]

<PeiStatements> ::= {<BoolAbStmt>} {<DepAbInstruct>}

<FullSmm> ::= <FullDxe>

<GuidAbStmt> ::= {"BEFORE"} {"AFTER"} <TS> <GuidCName> <TS>

<DepAbInstruct> ::= "PUSH" <TS> <CFormatGUID> <TS>

<SorAbStmt> ::= "SOR" <TS> <BoolAbStmt> <TS>

<BoolAbStmt> ::= {<BoolAb>} {<BoolAbExpress>}

<BoolAb> ::= {"TRUE"} {"FALSE"} {<GuidCName>} <TS>

<GuidCName> ::= <CName> # A Guid C Name

<BoolAbExpress> ::= <NTs> <Bool> [<BoolAbExpressCont>]*

<BoolAbExpressCont> ::= <MTS> {"AND"} {"OR"} <MTS> [<NTs>] <Bool>

Example
[Depex]
gEfiFirmwareVolumeBlockProtocolGuid
AND gEfiAlternateFvBlockGuid
AND gEfiFaultTolerantWriteLiteProtocolGuid

[Depex]
SOR gEfiProtocolIDependOnGuid

[Depex.common]
SOR gEfiProtocolIDependOnGuid

[Depex.IA32.DXE_SMM_DRIVER]

Version 1.24B March 2015 88

EDK II INF File Format EDK II INF File Specification

TRUE

[Depex.IA32.DXE_DRIVER]
TRUE AND gEfiAlternateFvBlockGuid

3.15 [Binaries] Section

Summary
Defines the [Binaries] tag is required for EDK II INF files for Binary Modules.
This is a required section for Binary Modules Only.
Each binary file must be listed only once per section. Files listed in architectural
sections are not permitted to be listed in the common architectural section.
The "common" architecture modifier in a section tag must not be combined with other
architecture type; doing so will result in a build break.
There can be multiple [Binaries] sections, depending on the target processor.
Example binaries sections are listed below. Each binary file's path is relative to the
location of the component's INF file. The parsing utility creates a directory path for each
file ($(DEST_DIR)/Path/OUTPUT), and copies each file (or a processed version of a
UCS-2LE encoded User Interface or Version section) to the OUTPUT directory. No
makefile is produced, as binary files are only used by the third phase of a build,
creating FV, FD or similar binary files.
All file names specified in this section must be in the directory containing the INF file or
in sub-directories of the directory containing the INF file.
When a binary INF file is generated by tools during a source build, if a symbol file, such
as a PDB or SYM file is generated, the tools must add the file to this section using a
binary file type of "DISPOSABLE".
One and only one EFI_SECTION_VERSION is allowed in a FFS image, therefore one and
only one VER (VER or UNI_VER) can be included in any one [Binaries] section.
One and only one EFI_SECTION_USER_INTERFACE is allowed in a FFS image, therefore
one and only one UI (UI or UNI_UI) can be included in any one [Binaries] section.
One and only one EFI_SECTION_FREEFORM_SUBTYPE_GUID is allowed in a FFS image,
therefore one and only one SUBTYPE_GUID with a unique GUID Value can be included in
any one [Binaries] section.

89 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

Prototype

<Binaries> ::= "[Binaries" [<com_attribs>] "]" <EOL>
[<UiExpression>]
[<VerExpression>]
<BinariesStatements>*

<BinariesStatements> ::= {<MacroDefinition>} {<BinaryFiles>}

{<SubTypeGuid>}

<com_attribs> ::= {".common"} {<attribs>}

<attribs> ::= <attrs> ["," <TS> "Binaries" <attrs>]*

<attrs> ::= "." <arch>

<UiExpression> ::= <TS> <UiFile> [<UiOptions>] <EOL>

<UiOptions> ::= <FS> [<Target>] [<FS> <FeatureFlagExpress>]

<UiFile> ::= <UiType> <FS> <Filename>

<UiType> ::= {"UNI_UI"} {"UI"}

<VerExpression> ::= <TS> <VerFile> [<VerOptions>] <EOL>

<VerOptions> ::= <FS> [<Target>] [<FS> <FeatureFlagExpress>]

<VerFile> ::= <VerType> <FS> <Filename>

<VerType> ::= {"UNI_VER"} {"VER"}

<SubTypeGuid> ::= <TS> "SUBTYPE_GUID" <GuidOpts> <EOL>

<GuidOpts> ::= <FS> <GuidValue> <FileOpts> <EOL>

<GuidValue> ::= {<CName>} {<RegistryFormatGUID>}

<BinaryFiles> ::= <TS> <FileType> <FileOpts> <EOL>

<FileOpts> ::= <FS> <Filename> [<Options>] <EOL>

<Options> ::= <FS> [<Target>] [<Opt1>]

<Opt1> ::= <FS> [<Family>] [<Opt2>]

<Opt2> ::= <FS> [<TagName>] [<Opt3>]

<Opt3> ::= <FS> <FeatureFlagExpress>

Version 1.24B March 2015 90

EDK II INF File Format EDK II INF File Specification

<Target>

<Family>

::=

::=

{<ToolWord>} {<Wildcard>}

{"MSFT"} {"GCC"} {"INTEL"} {<Usr>}

 {<Wildcard>}

<Usr> ::= <ToolWord>

<TagName> ::= {ToolWord} {<Wildcard>}

<FeatureFlagExpress> ::= <Boolean>

<FileType> ::= <Edk2FileType>

<Edk2FileType> ::= {"ACPI"} {"ASL"} {"PE32"} {"PIC"} {"FV"}
{"PEI_DEPEX"} {"DXE_DEPEX"} {"SMM_DEPEX"}
{"TE"} {"BIN"} {"RAW"} {"COMPAT16"}
{"DISPOSABLE"}

Parameters
FeatureFlagExpress

The feature flag expression is currently ignored by the EDK II build system.

Note: For more information about the following parameters, refer to the Build Specification for a

description of the tools_def.txt file. In order for the entries in the INF file to be valid, there must be
a matching definition in the tools_def.txt file. The tool chain tag name must also match the one
used for the build.

Target
A keyword that uniquely identifies the build target. This keyword is used to bind
command flags to individual commands. Refer to the Build Specification for the
exact format of the tools_def.txt file. The tools_def.txt file defines a label to specify
different items such as executables, options and locations. The label is broken up
into fields which are separated by an underscore character. The Target must be
either a wildcard character (meaning all targets) or it must be specified in the first
field of at least one of these labels. Three values, "NOOPT", "DEBUG" and
"RELEASE", have been pre-defined.
Users may want to add other definitions, such as, PERF, SIZE or SPEED, and define
their own set of FLAGS to use with these tags.

TagName
TagNames must also appear in at least one Label specified in the tools_def.txt file.
The TagName must be either a wildcard character (meaning any TagName) or it
must match a defined value for a TagName label in the tools_def.txt file for the tool
chain tag name specified.

Family

Family is keyword that uniquely identifies a tool chain family. The Family must
be either a wildcard character (meaning any Family) or it must match a defined
value for a Family label in the tools_def.txt file for at least one tool chain TagName
specified in tools_def.txt (or the TagName field that follows this field in the entry).

91 March 2015 Version 1.24B

EDK II INF File Specification EDK II INF File Format

FileType: "SUBTYPE_GUID"

The file type, "SUBTYPE_GUID" is shorthand for the
EFI_FREEFORM_SUBTYPE_GUID_SECTION section.

FileType: "DISPOSABLE"
The file type, "DISPOSABLE" does not represent content for the
EFI_SECTION_DISPOSABLE. These files will not be processed by EDK II build
tools, but rather, may specify other types of files that may be used such as PDB or
SYMS files generated for symbolic debugging.

Example
[Binaries.common]
UNI_UI|DxeIpl.ui
UNI_VER|DxeLoad.ver

[Binaries.Ia32]

DXE_DEPEX|Release/DxeIpl.dpx # MYTOOLS
PE32|Debug/Ia32/DxeIpl.efi|DEBUG # MYTOOLS
PE32|Release/Ia32/DxeIpl.efi|RELEASE # MYTOOLS
DISPOSABLE|Debug/Ia32/DxeIpl.pdb|DEBUG

[Binaries.X64]

DXE_DEPEX|Debug/X64/DxeIpl.dpx # MYTOOLS
PE32|Debug/X64/DxeIpl.efi|DEBUG # MYTOOLS
DISPOSABLE|Debug/X64/DxeIpl.pdb|DEBUG

[Binaries.IPF]

DXE_DEPEX|Debug/IPF/DxeIpl.dpx # MYTOOLS
PE32|Debug/Ipf/DxeIpl.efi|DEBUG # MYTOOLS
DISPOSABLE|Debug/Ipf/DxeIpl.pdb|DEBUG

Version 1.24B March 2015 92

EDK II INF File Specification

Appendix A
EDK INF File Specification

This appendix covers the format of the original EDK INF files. However, the format of
comments in the EDK INF may vary from this specification, as the original EDK parsing
tool, ProcessDSC, only looked for a specific set of tokens. Due the extensive use of
MACRO statements in the EDK components and libraries INF files, EDK INF files cannot
be processed by tools to create a distribution that complies with the UEFI Platform
Initialization Distribution Package Specification.

A.1 Design Discussion

Directive statements are permitted within the EDK INF files.

A.1.1 [defines] Section

The [defines] section of an EDK INF file is used to define variable assignments that
can be used in later build steps. The EDK parsing utilities process local symbol
assignments made in this section. Note that the sections are processed in the order
listed here, and later assignments of these local symbols do not override previous
assignments.
This section will typically use one of the following section definitions:
[define] [defines] [defines.IA32] [defines.X64] [defines.IPF] [defines.EBC]

Note: The [define] section tag is only valid for EDK INF files. EDK II INF files must use the ‘defines’

keyword.

The format for entries in this section is:
Name = Value

The following is an example of this section.
[defines]
BASE_NAME = DiskIo
FILE_GUID = CA261A26-7718-4b9b-8A07-5178B1AE3A02
COMPONENT_TYPE = BS_DRIVER

The following table lists the possible content of this section.

Version 1.24B March 2015 95

EDK INF File Specification EDK II INF File Specification

Table 6. EDK [defines] Section Elements

Tag Required Value Notes

BASE_NAME Yes A single word This is a single word identifier that
will be used for the component
name.

COMPONENT_TYPE Yes One of the EDK I
Component Types

See Table EDK I Component
(module) Types for possible values

FILE_GUID No--Optional
for Libraries,
Required for
all other
component
types

Guid Value Registry (8-4-4-4-12) Format GUID

EDK_RELEASE_VERS
ION

No--Optional Hex Value A Hex version number, 0x00020000

EFI_SPECIFICATIO
N_VERSION

No--Optional HexValue A Hex version number, 0x00020000

MAKEFILE_NAME No--Optional Filename.ext The name of the Makefile to be
generated for this component

CUSTOM_MAKEFILE No--Optional Filename.ext This specifies the name of a custom
makefile that should be used,
instead of a generated makefile.
NOTE: EDK INF components
specifying a custom EDK style
makefile cannot be used in an EDK
II build.

BUILD_NUMBER No--Optional Set this four digit
value in the
generated Makefile

Normally not used in INF files.

C_FLAGS No--Optional Microsoft C Flags
to use with for a cl
commands for this
module

Normally not used in INF files.
Typically, an EDK INF file will
provide a separate nmake section
to specify different build
parameters.

FFS_EXT No--Optional File Extension The FFS extension to use for this
component, refer to the table EDK I
Component (module) Types for the
default FFS extension. This value is
used to create a component PKG
file.

FV_EXT No--Optional File Extension The FV extension to use for this
component, refer to the table EDK I
Component (module) Types for the
default FV extension.

SOURCE_FV No--Optional Word If present, the variable is set at the
beginning of the generated makefile

VERSION No--Optional Four digit integer If present, this value will be used
for the VERSION section of the FFS.

VERSION_STRING No--Optional String If present, this value will be used to
generate the UNICODE file for the
VERSION section of the FFS.

96 March 2015 Version 1.24B

EDK II INF File Specification EDK INF File Specification

The following table lists the available COMPONENT_TYPE values supported by EDK INF
files.

Version 1.24B March 2015 97

EDK INF File Specification EDK II INF File Specification

Table 7. EDK Component (module) Output File Extensions

COMPONENT_TYPE EDK II
Extension

EDK File, FFS or
FV Extension

Description

LIBRARY .lib .lib Library component linked as part of
the build with other components.

FILE From file
name or
.FFS

From file name or
.FFS

Raw file copied directly to FV

Apriori .bin .SEC This EDK INF component is not
supported in the EDK II build - it is
created from content in other EDK II
build meta-data files.

EFI Binary
Executable

.efi .pe32 PE32/PE32+/Coff binary executable.
The extension of the file has changed
for EDK II builds which generate
processed (GenFw) images.

AcpiTable .acpi .SEC An ACPI Table.

Legacy16 .bin .SEC The MODULE_TYPE for a Legacy16
when migrating to EDK II should be
specified as USER_DEFIND. The .rom
or .bin file should be included under
a [binaries] section.
In EDK, the COMPONENT_TYPE of
Legacy16 was mostly used to specify
PCI Option ROMs.

BINARY .bin .FFS

CONFIG .bin .SEC

LOGO .bin .SEC The MODULE_TYPE for a LOGO when
migrating to EDK II should be
specified as USER_DEFINED. The
.bmp file should be include under a
[binaries] section.
In EDK, the COMPONENT_TYPE of
LOGO was used to specify a .bmp
file.

RAWFILE .raw .RAW

FVIMAGEFILE .fv .FVI

SECURITY_CORE .efi .SEC Modules of this type are designed to
start execution at the reset vector of
a CPU. They are responsible for
preparing the platform for the PEI
Phase. Since there are no standard
services defined for SEC, modules of
this type follow the same rules as
modules of type Base and typically
include some amount of CPU specific
assembly code to establish
temporary memory for a stack.
Modules of this type may optionally
produce services that are passed to
the PEI Phase in HOBs and those
services must be compliant with the
PEI CIS.

98 March 2015 Version 1.24B

EDK II INF File Specification EDK INF File Specification

PEI_CORE .efi .PEI This module type is used by PEI Core
implementations that are complaint
with the PEI CIS.

COMBINED_PEIM_DRI
VER

.efi .PEI

PIC_PEIM .efi .PEI

RELOCATABLE_PEIM .efi .PEI When migrating to EDK II, this type
of module should use the register for
shadow PPI, and set the [defines]
entry:
SHADOW = TRUE

PE32_PEIM .efi .PEI This module type is used by PEIMs
that are compliant with the PEI CIS

BS_DRIVER .efi .DXE This module type is either the DXE
Core or DXE Drivers that are
complaint with the DXE CIS. These
modules only execute in the boot
services environment and are
destroyed when ExitBootServices() is
called.

RT_DRIVER .efi .DXE This module type is used by DXE
Drivers that are complaint with the
DXE CIS. These modules execute in
both boot services and runtime
services environments. This means
the services that these modules
produce are available after
ExitBootServices() is called. If
SetVirtualAddressMap() is called,
then modules of this type are
relocated according to virtual
address map provided by the
operating system.

SAL_RT_DRIVER .efi .DXE This module type is used by DXE
Drivers that can be called in physical
mode before SetVirtualAddressMap()
is called and either physical mode or
virtual mode after
SetVirtualAddressMap() is called.
This module type is only available to
IPF CPUs. This means the services
that these modules produce are
available after ExitBootServices().

BS_DRIVER .efi .SMM This module type is used by DXE
Drivers that are loaded into SMRAM.
As a result, this module type is only
available for IA-32 and x64 CPUs.
These modules only execute in
physical mode, and are never
destroyed. This means the services
that these modules produce are
available after ExitBootServices().

Version 1.24B March 2015 99

EDK INF File Specification EDK II INF File Specification

APPLICATION .efi .APP This module type is used by UEFI
Applications that are compliant with
the EFI 1.10 Specification or the
UEFI 2.0 Specification. UEFI
Applications are always unloaded
when they exit.

EFI USER
INTERFACE

.ui .ui

EFI VERSION .ver .ver

EFI DEPENDENCY .dpx .dpx

A.1.2 [sources] Section
The [sources] section is used to specify the files that make up the component.
Directories names are required for files existing in subdirectories of the component. All
directory names are relative to the location of the INF file. Macros are allowed in the
source file path. For EDK builds, each file is added to the macro of $(INC_DEPS),
which can be used in a makefile dependency expression.
This section will typically use one of the following section definitions:
[sources] [sources.common] [sources.IA32] [sources.X64] [sources.IPF]
[sources.EBC]

The following example demonstrates entries in this section.
[sources.common]

DxeIpl.dxs
DxeIpl.h
DxeLoad.c

[sources.Ia32]
Ia32/VirtualMemory.h
Ia32/VirtualMemory.c
Ia32/DxeLoadFunc.c
Ia32/ImageRead.c

[sources.X64]

X64/DxeLoadFunc.c

[sources.IPF]
Ipf/DxeLoadFunc.c
Ipf/ImageRead.c

Binary file types - EDK does not have the flexibility of EDK II, but does provide a
method for specifying binary files in the [sources] section. The following lists the
mapping of EDK specific binary file types to EFI sections.

SEC_GUID

The binary file is an EFI_SECTION_FREEFORM_SUBTYPE_GUID section.

SEC_PE32

This binary is an EFI_SECTION_PE32 section.

100 March 2015 Version 1.24B

EDK II INF File Specification EDK INF File Specification

SEC_PIC

This binary is an EFI_SECTION_PIC section.

SEC_PEI_DEPEX

This binary is an EFI_SECTION_PEI_DEPEX section.

SEC_DXE_DEPEX

This binary is an EFI_SECTION_DXE_DEPEX section.

SEC_TE
This binary is an EFI_SECTION_TE section.

SEC_VER

This binary is an EFI_SECTION_VERSION section.

SEC_UI
This binary is an EFI_SECTION_USER_INTERFACE section.

SEC_BIN

The binary is an EFI_SECTION_RAW section.

SEC_COMPAT16

This binary is an EFI_SECTION_COMPATIBILTY16 section.

A.1.3 [libraries] Section

The [libraries] section of the EDK INF is used to list the names of the libraries that
will be linked into the EDK component. The library names do not include the directory
locations or the extension name of the file. For each library, {LibName}, found, the
{LibName} is added to the LIBS definition in the output makefile:
LIBS = $(LIBS) $(LIB_DIR)\{LibName}

This section will typically use one of the following section definitions:
[libraries.common] [libraries.IA32] [libraries.X64] [libraries.IPF]
[libraries.EBC]

The formats for entries in this section is:
LibraryName

The following is an example of a libraries section.
[libraries.common]

EfiProtocolLib
EfiDriverLib

A.1.4 [includes] Section

The [includes] section of the EDK INF file is a list of directories to be included on the
compile command line. These are included in a section of the Makefile generated by the
parsing utilities. For each include path specified, the following line is written to the
component's makefile.
INC = $(INC) -I $(SOURCE_DIR)\{path}

The path must be absolute, however the use of the global variable, EDK_SOURCE is
recommended to construct the path.
This section will typically use one of the following section definitions:

Version 1.24B March 2015 101

EDK INF File Specification EDK II INF File Specification

[includes.common] [includes.IA32] [includes.X64] [includes.IPF] [includes.Nt32]
[include.common] [include.IA32] [include.X64] [include.IPF]

The formats for entries in this section is:
$(EDK_SOURCE)/path/to/header/files

The following is an example of the [includes] section.
[includes.common]
$(EDK_SOURCE)\Foundation\Efi
$(EDK_SOURCE)\Foundation
$(EDK_SOURCE)\Foundation\Framework
.
$(EDK_SOURCE)\Foundation\Include
$(EDK_SOURCE)\Foundation\Efi\Include
$(EDK_SOURCE)\Foundation\Framework\Include
$(EDK_SOURCE)\Foundation\Include\IndustryStandard
$(EDK_SOURCE)\Foundation\Core\Dxe
$(EDK_SOURCE)\Foundation\Library\Dxe\Include

A.1.5 [nmake] Section

The optional EDK [nmake] section may also include a ".ProcessorName" to restrict
processing based on the processor name. The section data is simply copied directly to
the component makefile, before the build commands are emitted.
This section will typically use one of the following section definitions:
[nmake] [nmake.common] [nmake.IA32] [nmake.X64] [nmake.IPF] [nmake.EBC]

The format for entries in this section is any valid Makefile syntax. Refer to make
command reference for your tool chains.
The following is an example of the EDK [nmake] section.
[nmake.common]
IMAGE_ENTRY_POINT=DiskIoDriverEntryPoint

A.2 EDK File Specification
The general rules for all EDK INI style documents follow.

Note: Path and Filename elements within the INF are case-sensitive in order to support building on UNIX

style operating systems.

A section terminates with either another section definition or the end of the file.

Summary
Component EDK INF description

102 March 2015 Version 1.24B

EDK II INF File Specification EDK INF File Specification

<EDK_INF> ::= [<Header>]
<Defines>
<Sources>
[<Includes>]
[<Libraries>]
[<Nmake>]

A.2.1 Header Section

Summary

This section contains Copyright and License notices for the INF file in comments that
start the file. This section is optional using a format of:

#/*++

Copyright
License

Module Name:
EdkFrameworkProtocolLib.inf

Abstract:

Component description file.

#--*/

This information a developer creating a new EDK component or library information
(INF) file.
This is an optional section.

Version 1.24B March 2015 103

EDK INF File Specification EDK II INF File Specification

Prototype
<Header> ::= [“#”] “/*++” <EOL>

[<Copyright>]
[<License>]
[<ModuleName>]
[<Abstract>] [“#”]
“--*/” <EOL>

<Abstract> ::= [“#”] “Abstract:” <EOL>
[[“#”] <Sentence> <EOL>]*
[“#”] <EOL>

<ModuleName> ::= [“#”] “Module Name:” <EOL>
[[“#”] <Sentence>+ <EOL>]+
[“#”] <EOL>

<Copyright> ::= [[“#”] “Copyright (c) <Date> “,” <CompExtra> <EOL>]+
[“#”] <EOL>

<License> ::= [[“#”] <LicenseSentence> <EOL>]+
[“#”] <EOL>

Example
#/*++

Copyright (c) 2004, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the
BSD License which accompanies this distribution. The full text of the
license may be found at
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

Module Name:

EdkFrameworkProtocolLib.inf

Abstract:

Component description file.

#--*/

104 March 2015 Version 1.24B

http://opensource.org/licenses/bsd-license.php

EDK II INF File Specification EDK INF File Specification

A.2.2 [defines] Section

Summary
This describes the required [define] tag, which is required in all EDK INF files. This
file is created by the developer and is an input to the new build tool parsing utilities.
Elements may appear in any order within this section.
This is a required section.
The define sections defines symbols that describe the component. Some items are
emitted to the output makefile.
The FILE_GUID is required for all EDK components that are not libraries. This guid is
used to build the FW volume file list used by build tools to generate the final firmware
volume, as well as processed in some SMM, PEI or DXE DEPEX statements.

Note: Possible values for COMPONENT_TYPE, and their descriptions, are listed in the table,

"Component (module) Types." For each component, the BASE_NAME and COMPONENT_TYPE
are required. The COMPONENT_TYPE definition is case sensitive. The default FV extension can
be overridden by defining the symbol FV_EXT.

Section [defines.$(PROCESSOR).$(PLATFORM)] is used with EDK components
only. The section is processed in order by the parsing utilities. Assignments of variables
in other sections do not override previous assignments.
Platform integrators that will be using EDK components that require a static FlashMap.h
(and/or FlashMap.inc) must code them by hand and maintain the state of the static
FlashMap files with the EDK II DSC and FDF files.

Version 1.24B March 2015 105

EDK INF File Specification EDK II INF File Specification

Prototype

<Defines> ::= "[defines" [<attribs>] "]" <EOL>
<expression>+

<attribs> ::= <attrs> [“,” “defines” <attrs>]*

<attrs> ::= ".” <arch> [“.” <PlatformName>]

<arch> ::= {"IA32"} {"X64"} {"IPF"} {"EBC"} {"common"}

<PlatformName> ::= {<Word>} {“$(PLATFORM)”) {“platform”}

<expression> ::= "BASE_NAME" "=" <Word> <EOL>
["COMPONENT_TYPE" "=" <EdkCompType> <EOL>]
["FILE_GUID" "=" <GuidOrVar> <EOL>]
[“EDK_RELEASE_VERSION” “=” “0x00020000” <EOL>]
["MAKEFILE_NAME" "=" <Filename> <EOL>]
["CUSTOM_MAKEFILE" "=" <Filename> <EOL>]
["BUILD_NUMBER" "=" <Integer>{1,4} <EOL>]
["BUILD_TYPE" "=" <MakefileType> <EOL>]
["FFS_EXT" "=" <Word> <EOL>]
["FV_EXT" "=" <Word> <EOL>]
["SOURCE_FV" "=" <Word> <EOL>]
[“PACKAGE” “=” “CompressPEIM” <EOL>]
["VERSION_NUMBER" "=" <Integer>{1,4} <EOL>]
["VERSION_STRING" "=" <String> <EOL>]
[“GENERIC_CAPSULE_FILE_PATH” “=” <PathOnly> <EOL>]
[“MICROCODE_ALIGNMENT” “=” <HexNumber> <EOL>]
[“MICROCODE_FILE_PATH” “=” <PathOnly> <EOL>]
[“PLATFORM_BDS_FILE_PATH” “=” <PathOnly> <EOL>]
[“RESTRICTED_BDS_FILE_PATH” “=” <PathOnly> <EOL>]

<Filename> ::= [<PATH>] <Word> ["." <Extension>]

<PathOnly> ::= <PATH> <Word>

<MakefileType> ::= {“MAKEFILE”} {“CUSTOM_MAKEFILE”} {<Filename>}

<PATH> ::= [<Variable> “\”] <Path>

<Path> ::= [{<Word> “\”} {“..\”}]+

<Variable> ::= {"$(" <MacroName> ")"} {"$(WORKSPACE)"}
{"$(EFI_SOURCE)"} {"$(EDK_SOURCE)"}

<GuidOrVar> ::= {<RegistryFormatGUID>}
{“$(EFI_APRIORI_GUID)”}
{“$(EFI_ACPI_TABLE_STORAGE_GUID)”}
{“$(EFI_DEFAULT_BMP_LOGO_GUID)”}
{“$(EFI_PEI_APRIORI_FILE_NAME_GUID)”}

<EdkCompType> ::= {"APPLICATION"} {“AcpiTable”} {“APRIORI”}
{“BINARY”} {"BS_DRIVER"} {“CONFIG”} {“FILE”}
{“FVIMAGEFILE”} {"LIBRARY"} {“LOGO”} {“LEGACY16”}

106 March 2015 Version 1.24B

EDK II INF File Specification EDK INF File Specification

{“MICROCODE”} {“PE32_PEIM”} {"PEI_CORE"}
{“RAWFILE”} {"RT_DRIVER"} {"SAL_RT_DRIVER"}
{"SECURITY_CORE"} {"COMBINED_PEIM_DRIVER"}
{"PIC_PEIM"} {"RELOCATABLE_PEIM"}

<MacroName> ::= <Word>

Example (EDK Driver)
[Defines]

BASE_NAME = DiskIo
FILE_GUID = CA261A26-7718-4b9b-8A07-5178B1AE3A02
COMPONENT_TYPE = BS_DRIVER

Example (EDK Library)
[Defines]

BASE_NAME = WinNtLib
COMPONENT_TYPE = LIBRARY

A.2.3 [includes] Section

Summary

Defines the optional "includes paths" for EDK INF files only. These sections should
never be used in EDK II INF files. These sections are used to define the include paths
for compiling the component source files. Valid sections for EDK include the
[includes.$(PROCESSOR).$(PLATFORM)], [includes.$(PROCESSOR)], and
[includes.common] sections. NOTE: EDK uses both "include" and "includes" section
header types. These sections are processed if present. These paths are used to define
the $(INC) macro and is written to the component's makefile.
This is an optional section.
The standard Macro Definitions are not permitted within this section.
For EDK modules, the path must include either the "$(EFI_SOURCE)" or
"$(EDK_SOURCE)" environment variable.
This section also allows for specifying individual header files that will be added to the
$(INC) macro using the /FI (Microsoft) or -include (GCC) switch. This is an optional
section.

Version 1.24B March 2015 107

EDK INF File Specification EDK II INF File Specification

Prototype
<Includes> ::= "[include" ["s"] [<Attrs>] ']" <EOL>

<PATH>+

<Attrs> ::= <Attributes> [",” “include" ["s"]? <Attrs>]*

<Attributes> ::= [<Archs>] [<VarName>] [<Platform>]

<Archs> ::= "." <arch>

<arch> ::= {"IA32"} {"X64"} {"IPF"} {"EBC"} {"common"} {<OA>}

<VarName> ::= “.” {“$(PROCESSOR)”} {“$(“ <Word> “)”}

<Platform> ::= “.” {“Platform”) {“nt32”} {“$(PLATFORM)”}

<PATH> ::= {<MACRO>} {<RelDir>}

<MACRO> ::= <MacroName> [“\” <Word>]+

<MacroName> ::= {"$(EDK_SOURCE)"} {“$(EFI_SOURCE)”} {“$(BUILD_DIR)”}
{“$(SOURCE_DIR)”}

<RelDir> ::= [“..\”]+ {“..”} {<Word>}

Example
[Includes.common]
$(EDK_SOURCE)\Foundation\Efi
$(EDK_SOURCE)\Foundation
$(EDK_SOURCE)\Foundation\Framework
.
$(EDK_SOURCE)\Foundation\Include
$(EDK_SOURCE)\Foundation\Efi\Include
$(EDK_SOURCE)\Foundation\Framework\Include
$(EDK_SOURCE)\Foundation\Include\IndustryStandard
$(EDK_SOURCE)\Foundation\Core\Dxe
$(EDK_SOURCE)\Foundation\Library\Dxe\Include

A.2.4 [libraries] Section

Summary

Defines the optional [libraries] section tag for EDK INF files. The [libraries]
section is used to define a $(LIBS) macro in the EDK component's makefile. All
libraries listed in the [libraries.common], [libraries.$(PROCESSOR)], and
[libraries.$(PROCESSOR).$(PLATFORM)] sections are added to the LIBS
definition as either $(LIB_DIR)\LibName or $(PROCESSOR)\LibName. The libraries
are specified without path information.
The standard Macro Definitions are not permitted in this section.
This is an optional section.

108 March 2015 Version 1.24B

EDK II INF File Specification EDK INF File Specification

Prototype

<Libraries> ::= "[libraries" [<attrs>] ']" <EOL>
<LibName>+

<attrs> ::= "." <archs> ["." <platform>]

<archs> ::= <arch> ["," <arch> ["." <platform>]]
["," "libraries." <attrs>]*

<arch> ::= {"IA32"} {"X64"} {"IPF"} {"EBC"} {"common"}
{"platform"} {"nt32"} {“$(PROCESSOR)”}

<platform> ::= {“platform”} {“$(PLATFORM)”} {<Word>}

<LibName> ::= <Word>

Example
[Libraries.common]
EfiProtocolLib
EfiDriverLib

A.2.5 [nmake] Section

Summary

Defines the [nmake] section tag for EDK INF files. These sections are used to make a
direct addition to the component's output makefile. EFI section
[nmake.$(PROCESSOR).$(PLATFORM)], [nmake.$(PROCESSOR)], and
[nmake.common] are processed if present. The section data is simply copied directly to
the component makefile, before the build commands are emitted. Filenames specified
in this section are relative to the EDK INF file or the EDK DSC file.
This is an optional section.
This section is not permitted in EDK II modules. Note that the C_STD_INCLUDE line is
usually used to clear any flags that might have been set by the Microsoft tool chain
setup scripts, therefore no <CFlags> are printed, and the line in the Example is the
most common usage.
The standard Macro Definitions are not permitted in this section.

Version 1.24B March 2015 109

EDK INF File Specification EDK II INF File Specification

Prototype

<Nmake> ::= "[nmake" [<attrs>] ']" <EOL>
<expression>+

<attrs> ::= <Archs> [<plat>] [",” “nmake" <attrs>]*

<Archs> ::= "." <arch>

<plat> ::= "." <Word>

<arch> ::= {"IA32"} {"X64"} {"IPF"} {"EBC"} {"common"}

<expression> ::= [<IEP>] [<DS>] [<CSI>] [<CPF>] [<APF>]
[<LSF>] [<EBC>] [<DEF>]

<IEP> ::= "IMAGE_ENTRY_POINT" "=" <CName> <EOL>

<DS> ::= "DPX_SOURCE" "=" <Filename> <EOL>

<CSI> ::= "C_STD_INCLUDE" "=" [<CFlags>] <EOL>

<CPF> ::= "C_PROJ_FLAGS" "=" <CFlags> <EOL>

<APF> ::= "ASM_PROJ_FLAGS" "=" <AFlags> <EOL>

<LSF> ::= "LIB_STD_FLAGS" "=" <LFlags> <EOL>

<EBC> ::= [“EBC_C_STD_FLAGS” “=” <String> <EOL>]
[“EBC_LIB_STD_FLAGS” “=” <String> <EOL>]

<DEF> ::= <Word> "=" {<Word>} {<String>} <EOL>

<STATEMENTS> ::= Valid NMAKE Makefile syntax.

Parameters
CFlags

AFlags

LFlags

This content must be valid compiler flags for the Microsoft C compiler, cl.exe.

This content must be valid flags for the Microsoft Assembler, ml.exe.

This content must be valid flags for the Microsoft Linker, lib.exe.

110 March 2015 Version 1.24B

EDK II INF File Specification EDK INF File Specification

Example
[nmake.common]
C_STD_INCLUDE =
IMAGE_ENTRY_POINT=WatchdogTimerDriverInitialize
DPX_SOURCE=WatchDogTimer.dxs

[nmake.common]
C_FLAGS = $(C_FLAGS) /D EDKII_GLUE_LIBRARY_IMPLEMENTATION
LIB_STD_FLAGS = $(LIB_STD_FLAGS) /IGNORE:4006 /IGNORE:4221

[nmake.ia32]
C_FLAGS = $(C_FLAGS) /D MDE_CPU_IA32

[nmake.x64]
C_FLAGS = $(C_FLAGS) /D MDE_CPU_X64

[nmake.ipf]
C_FLAGS = $(C_FLAGS) /D MDE_CPU_IPF

[nmake.ebc]
EBC_C_STD_FLAGS = $(EBC_C_STD_FLAGS) /D
EDKII_GLUE_LIBRARY_IMPLEMENTATION
EBC_LIB_STD_FLAGS = $(EBC_LIB_STD_FLAGS) /IGNORE:4006 /IGNORE:4221
EBC_C_STD_FLAGS = $(EBC_C_STD_FLAGS) /D MDE_CPU_EBC

A.2.6 [sources] Section

Summary

Defines the [sources] section tag is required for EDK INF files. NOTE: EDK uses both
"source" and "sources" in the section header.
There can be multiple sources sections, depending on the target processor. Example
sources sections are listed below. The parsing utility creates a directory path for each
file ($(DEST_DIR)\….\MyFile.c), and looks up the makefile template for the
COMPONENT_TYPE (EDK) to emit.
It is not permissible to mix EDK and EDK II style files within a module.
The macro, TABLE_NAME may be used in existing EDK INF files that point to ACPI
tables, this value wil be ignored by EDK II build tools.

Version 1.24B March 2015 111

EDK INF File Specification EDK II INF File Specification

Prototype

<sources> ::= "[source" ["s"] [<attrs>] "]" <EOL>

 [<MacroDefinition>]*

<attrs>

::=

[<EdkExpression>]+

<Archs> [",” “sources" <attrs>]*

<Archs> ::= if (COMPONENT_TYPE defined in defines):
"." <archs> [<plat>]

else:
"." <archs>

<archs> ::= if (COMPONENT_TYPE defined in defines):

<EdkArch> ["," <EdkArch>]*
else:

<arch> ["|" <arch>]*

<EdkArch> ::= {"IA32"} {"X64"} {"IPF"} {“Common”}

<plat> ::= "." {“$(PLATFORM)”} {“$(PROCESSOR)”}
{<Word>}

<DefineStatement> ::= [“DEFINE” <Word> “=” [<PATH>] <EOL>]*
[“TABLE_NAME” “=” <Word> <EOL>]

<EdkExpression> ::= <Filename> [“|” <Family>] <EOL>

<Family> ::= {"MSFT"} {"GCC"} {"INTEL"} {"*"}

<Filename> ::= <Path> <Word> "." <Extension>

<Path> ::= [<Macro> {“\”} {“/”}] [<Word> {“\”} {“/”}]+

Examples
[sources.common]
BsDataHubStatusCode.c
BsDataHubStatusCode.h

112 March 2015 Version 1.24B

EDK II INF File Specification

Appendix B
Build Changes and Customizations

B.1 Customizing EDK Compilation for a Component

There are several mechanisms for customizing the build for a firmware component.
These include:
• Creating a new component INF file that specifies BUILD_TYPE=xxx, and then

creating a [build.$(PROCESSOR).xxx] section in the platform DSC file.
• Creating a new component INF file and a makefile for the component, and

specifying BUILD_TYPE=MAKEFILE in the INF file. Then add a
[build.$(PROCESSOR).makefile] section to the DSC file that describes how to
"build" the component using the makefile. Typically this will be commands to copy
the file to the $(DEST_DIR), and then invoking nmake.

• Trivial customizations can be accomplished by adding or modifying the [nmake]
sections in the component INF file. This may require defining $(PLATFORM) in the
EDK DSC file, and then adding a new [nmake.$(PROCESSOR).$(PLATFORM)]
section in the component INF file.

• Another option is to define a variable in the component INF file, passing it to the
component makefile via the DSC [makefile.common] section, and then using
!IFDEF statements in the [build.$(PROCESSOR).$(COMPONENT_TYPE)]
section to perform custom steps.

B.2 Changing Files in an EDK Library

Library INF files are shared among different platforms. However, not all platforms
require all the same source files. To customize the library INF files for different
platforms, simply define $(PLATFORM), either on the command line, or in the DSC file,
and then make customizations in the [sources.$(PROCESSOR).$(PLATFORM)]
section of the library INF file.
An alternative to this method is to simply create a new INF file for the library, and then
use it in place of the existing library INF file

B.3 Customizing EDK II Compilation for a Module
Common Definitions

The preferred method for customizing a build is to copy the source module directory to
a new directory and modifying the INF file and module sources. This method is
preferred over the EDK methods as build reproducibility is more easily accomplished.
Additional customizations for build options should be made in the platform description
(DSC) file. While it is permitted to use the [BuildOptions] section to define custom
compiler flags, this section should only be used as a last resort. The default flags

Version 1.24B March 2015 113

Build Changes and Customizations EDK II INF File Specification

defined the tools_def.txt file provide the best known size and speed optimizations, and
the platform DSC file can override the defaults in its [BuildOptions] section.

114 March 2015 Version 1.24B

EDK II INF File Specification

Appendix C
Symbols

One of the core concepts of this utility is the notion of symbols. Use of symbols follows
the makefile convention of enclosing within $(), for example $(EDK_SOURCE). As the
utility processes files during execution, it will often perform parsing of variable
assignments. These variables can then be referenced in other sections of the DSC file.
Variable assignments will be saved internally in either a local or global symbol table.
The local symbol table is purged following processing of individual component INF files.
Global symbol values persist throughout execution of the utility. Local symbol values
take precedent over global symbols. The following table describes the symbols
generated internally by the utility. They can be overridden either on the command line,
in the DSC file, or in individual INF files. The G/L column indicates whether the symbol
is typically a global or a local symbol.

Version 1.24B March 2015 115

Symbols EDK II INF File Specification

Table 8. Symbol Description

Symbol Name G/L Description

EDK_SOURCE G Defines the root directory of the local EDK source tree, for
example C:\EFI2.0. If not defined as an environmental
variable when the tool is invoked, the utility will attempt to
determine a reasonable value based on the current working
directory.

EFI_SOURCE G Defines the root directory of the local EDK source tree, for
example C:\EFI2.0. If not defined as an environmental
variable when the tool is invoked, the utility will attempt to
determine a reasonable value based on the current working
directory.

PROCESSOR G/L Defines the target processor for which the code is to be
built. This symbol will typically be used to include or exclude
source files in component INF files, and to define the tool
chain for building.

BUILD_DIR G Defines the build tip directory for the current platform. For
example, this may be
$(EDK_SOURCE)\Platform\Anacortes_870.

SOURCE_DIR L For a component, defines the directory of the component
source files.

DEST_DIR L For a component, defines the directory (typically under
BUILD_DIR) where the component object files are to be
built.

LIB_DIR L Specifies the directory where EFI libraries are deposited
after building. Typically $(BUILD_DIR)\$(PROCESSOR)

BIN_DIR L Specifies the directory where final component binaries are
deposited during build. Typically
$(BUILD_DIR)\$(PROCESSOR)

OUT_DIR L Unused, but typically $(BUILD_DIR)\$(PROCESSOR)

DSC_FILENAME G Name of the DSC file as specified on the command line. Can
be used for dependencies in the makefiles.

INF_FILENAME L Name of the INF file for a given component. Can be used for
dependencies in the makefiles.

FV_EXT L Common component type (BS driver, application, etc) have
predefined file name extensions assigned (.dxe, .app, etc).
If there is a deviation from the convention, or a new
(unknown to the utility) component type is being built, then
FV_EXT may need to be defined for the component so the
utility knows the result file name extension. This information
is necessary to generate dependencies in makefile.out.

MAKEFILE_NAME L Name of the output makefile for the component. Default is
“makefile”. This value can be overridden to support building
different variations of a component in the same DEST_DIR
directory.

PLATFORM L This symbol can be used to provide more selectivity of files
in the component INF files. If assigned, then the utility will
also process any files in the INF file under sections
[sources.$(PROCESSOR).$(PLATFORM)],
[includes.$(PROCESSOR).$(PLATFORM)], and
[libraries.$(PROCESSOR).$(PLATFORM)].

FILE L As the utility processes each source file in the component
INF file, this symbol gets assigned the name of the file, less
the file extension.

116 March 2015 Version 1.24B

EDK II INF File Specification Symbols

Symbol Name G/L Description

PACKAGE L/G If defined, then the utility will create a package file named
$(DEST_DIR)\$(BASE_NAME).pkg, and copy, with macro
expansion, the
[package.$(COMPONENT_TYPE).$(PACKAGE)] section from
the DSC file to the output file.

PACKAGE_FILE L If defined, then the utility will not generate a package file.
The build can then use the value $(PACKAGE_FILE) to have
GenFfsFile use an existing package file for creating the
firmware file.

Version 1.24B March 2015 117

Symbols EDK II INF File Specification

118 March 2015 Version 1.24B

EDK II INF File Specification

Appendix D
Sample Driver INF Files

The following INF file example are from EDK II MdeModulePkg/Universal/Disk/
DiskIoDxe/DiskIoDxe.inf and IntelFrameworkModulePkg/Universal/StatusCode/
RuntimeDxe/StatusCodeRuntimeDxe.inf driver modules.

Version 1.24B March 2015 119

Sample Driver INF Files EDK II INF File Specification

D.1 DiskIoDxe INF file

@file
Module that lays Disk I/O protocol on every Block I/O protocol.

This module produces Disk I/O protocol to abstract the block accesses
of the Block I/O protocol to a more general offset-length protocol
to provide byte-oriented access to block media. It adds this protocol
to any Block I/O interface that appears in the system that does not
already have a Disk I/O protocol. File systems and other disk access
code utilize the Disk I/O protocol.

Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.

This program and the accompanying materials
are licensed and made available under the terms and conditions of the
BSD License which accompanies this distribution. The full text of the
license may be found at:
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

[Defines]

INF_VERSION = 0x00010018
BASE_NAME = DiskIoDxe
MODULE_UNI_FILE = DiskIoDxe.uni
FILE_GUID = 6B38F7B4-AD98-40e9-9093-ACA2B5A253C4
MODULE_TYPE = UEFI_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = InitializeDiskIo

The following information is for reference only and not required by the
build tools.

VALID_ARCHITECTURES = IA32 X64 IPF EBC

DRIVER_BINDING = gDiskIoDriverBinding
COMPONENT_NAME = gDiskIoComponentName
COMPONENT_NAME2 = gDiskIoComponentName2

120 March 2015 Version 1.24B

http://opensource.org/licenses/bsd-license.php

EDK II INF File Specification Sample Driver INF Files

[Sources]
ComponentName.c
DiskIo.h
DiskIo.c

[Packages]

MdePkg/MdePkg.dec

[LibraryClasses]
UefiBootServicesTableLib
MemoryAllocationLib
BaseMemoryLib
BaseLib
UefiLib
UefiDriverEntryPoint
DebugLib

[Protocols]
gEfiDiskIoProtocolGuid ## BY_START
gEfiBlockIoProtocolGuid ## TO_START

D.2 StatusCodeRuntimeDxe INF file

@file
Status Code Runtime Dxe driver produces Status Code Runtime Protocol.

Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.

This program and the accompanying materials
are licensed and made available under the terms and conditions of the
BSD License which accompanies this distribution. The full text of the
license may be found at:
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

Version 1.24B March 2015 121

http://opensource.org/licenses/bsd-license.php

Sample Driver INF Files EDK II INF File Specification

[Defines]
INF_VERSION = 0x00010018
BASE_NAME = StatusCodeRuntimeDxe
MODULE_UNI_FILE = StatusCodeRuntimeDxe.uni
FILE_GUID = FEDE0A1B-BCA2-4A9F-BB2B-D9FD7DEC2E9F
MODULE_TYPE = DXE_RUNTIME_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = StatusCodeRuntimeDxeEntry

The following information is for reference only and not required by the
build tools.

VALID_ARCHITECTURES = IA32 X64 EBC

VIRTUAL_ADDRESS_MAP_CALLBACK = VirtualAddressChangeCallBack

[Sources]
SerialStatusCodeWorker.c
RtMemoryStatusCodeWorker.c
DataHubStatusCodeWorker.c
StatusCodeRuntimeDxe.h
StatusCodeRuntimeDxe.c

[Packages]
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec
IntelFrameworkPkg/IntelFrameworkPkg.dec
IntelFrameworkModulePkg/IntelFrameworkModulePkg.dec

[LibraryClasses]
OemHookStatusCodeLib
SerialPortLib
UefiRuntimeLib
MemoryAllocationLib
UefiLib
UefiBootServicesTableLib
UefiDriverEntryPoint
HobLib
PcdLib
PrintLib
ReportStatusCodeLib
DebugLib
BaseMemoryLib
BaseLib

122 March 2015 Version 1.24B

EDK II INF File Specification Sample Driver INF Files

SynchronizationLib

[Guids]
gEfiDataHubStatusCodeRecordGuid ## SOMETIMES_PRODUCES ## UNDEFINED \
DataRecord Guid

gEfiStatusCodeDataTypeDebugGuid ## SOMETIMES_PRODUCES ## UNDEFINED \
Record data type

gMemoryStatusCodeRecordGuid ## SOMETIMES_CONSUMES ## HOB
gEfiEventVirtualAddressChangeGuid ## CONSUMES ## Event
gEfiStatusCodeDataTypeStringGuid ## SOMETIMES_CONSUMES ## UNDEFINED

[Protocols]

gEfiStatusCodeRuntimeProtocolGuid ## PRODUCES
gEfiDataHubProtocolGuid ## SOMETIMES_CONSUMES \
Needed if Data Hub is supported for status code

[FeaturePcd]

gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeReplayIn ## CONSUMES
gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdStatusCodeUseOEM \
CONSUMES

gEfiIntelFrameworkModulePkgTokenSpaceGuid.PcdStatusCodeUseDataHub \
CONSUMES

gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeUseMemory ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeUseSerial ## CONSUMES

[Pcd]
gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeMemorySize |128|

gEfiMdeModulePkgTokenSpaceGuid.PcdStatusCodeUseMemory ##
SOMETIMES_CONSUMES

[Depex]

TRUE

Note: In the above example, the backslash “\” character is used to show a line continuation for

readability. Use of a backslash character in the actual INF file is not permitted.

Version 1.24B March 2015 123

Sample Driver INF Files EDK II INF File Specification

124 March 2015 Version 1.24B

EDK II INF File Specification

Appendix E
Sample Library INF Files

The following INF file are examples of INF files for the EDK II MdePkg library,
PeiServicesTablePointerLib and the MdeModulePkg libraries,
DxeCoreMemoryAllocationLib.inf and SmmCorePerformanceLib.inf.

Version 1.24B March 2015 125

Sample Library INF Files EDK II INF File Specification

E.1 PeiServicesTablePointerLib.inf

@file
Instance of PEI Services Table Pointer Library using global variable
for the table pointer.

PEI Services Table Pointer Library implementation that retrieves a
pointer to the PEI Services Table from a global variable. Not available
to modules that execute from read-only memory.

Copyright (c) 2007 - 2012, Intel Corporation. All rights reserved.

This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License which
accompanies this distribution. The full text of the license may be
found at:
http://opensource.org/licenses/bsd-license.php.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

[Defines]

INF_VERSION = 0x00010018
BASE_NAME = PeiServicesTablePointerLib
MODULE_UNI_FILE = PeiServicesTablePointerLib.uni
FILE_GUID = 1c747f6b-0a58-49ae-8ea3-0327a4fa10e3
MODULE_TYPE = PEIM
VERSION_STRING = 1.0
LIBRARY_CLASS = PeiServicesTablePointerLib|PEIM PEI_CORE SEC

CONSTRUCTOR = PeiServicesTablePointerLibConstructor

VALID_ARCHITECTURES = IA32 X64 IPF EBC (EBC is for build only)

[Sources]

PeiServicesTablePointer.c

[Packages]
MdePkg/MdePkg.dec

[LibraryClasses]

126 March 2015 Version 1.24B

http://opensource.org/licenses/bsd-license.php

EDK II INF File Specification Sample Library INF Files

DebugLib

E.2 DxeCoreMemoryAllocationLib.inf
@file
Memory Allocation Library instance dedicated to DXE Core.

The implementation borrows the DxeCore Memory Allocation services as
the primitive for memory allocation instead of using UEFI boot
services in an indirect way.
It is assumed that this library instance must be linked with DxeCore
in this package.

Copyright (c) 2008 - 2010, Intel Corporation. All rights reserved.

This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License which
accompanies this distribution. The full text of the license may be
found at:
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN “AS IS” BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

[Defines]

INF_VERSION = 0x00010018
BASE_NAME = DxeCoreMemoryAllocationLib
FILE_GUID = 632F3FAC-1CA4-4725-BAA2-BDECCF9A111C
MODULE_TYPE = DXE_CORE
VERSION_STRING = 1.0
LIBRARY_CLASS = MemoryAllocationLib|DXE_CORE

The following information is for reference only and not required by the
build tools.

VALID_ARCHITECTURES = IA32 X64 IPF EBC

[Sources]
MemoryAllocationLib.c

Version 1.24B March 2015 127

http://opensource.org/licenses/bsd-license.php

Sample Library INF Files EDK II INF File Specification

DxeCoreMemoryAllocationServices.h

[Packages]
MdePkg/MdePkg.dec

[LibraryClasses]
DebugLib
BaseMemoryLib

E.3 SmmCorePerformanceLib.inf

@file
Performance library instance used by SMM Core.

This library provides the performance measurement interfaces and
initializes performance logging for the SMM phase.
It initializes SMM phase performance logging by publishing the SMM
Performance and PerformanceEx Protocol, which is consumed by
SmmPerformanceLib to logging performance data in SMM phase.
This library is mainly used by SMM Core to start performance logging
to ensure that SMM Performance and PerformanceEx Protocol are
installed at the very beginning of SMM phase.

Copyright (c) 2011 - 2012, Intel Corporation. All rights reserved.

This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License which
accompanies this distribution.
The full text of the license may be found at:
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

[Defines]

INF_VERSION = 0x00010018
BASE_NAME = SmmCorePerformanceLib
MODULE_UNI_FILE = SmmCorePerformanceLib.uni
FILE_GUID = 36290D10-0F47-42c1-BBCE-E191C7928DCF
MODULE_TYPE = SMM_CORE
VERSION_STRING = 1.0

128 March 2015 Version 1.24B

http://opensource.org/licenses/bsd-license.php

EDK II INF File Specification Sample Library INF Files

PI_SPECIFICATION_VERSION = 0x0001000A
LIBRARY_CLASS = PerformanceLib|SMM_CORE

CONSTRUCTOR = SmmCorePerformanceLibConstructor

The following information is for reference only and not required by the
build tools.

VALID_ARCHITECTURES = IA32 X64

[Sources]
SmmCorePerformanceLib.c
SmmCorePerformanceLibInternal.h

[Packages]
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec

[LibraryClasses]
MemoryAllocationLib
UefiBootServicesTableLib
PcdLib
TimerLib
BaseMemoryLib
BaseLib
DebugLib
SynchronizationLib
SmmServicesTableLib

[Protocols]

gEfiSmmBase2ProtocolGuid ## CONSUMES
gEfiSmmAccess2ProtocolGuid ## CONSUMES

[Guids]
PRODUCES ## UNDEFINED # Install protocol
CONSUMES ## UNDEFINED # SmiHandlerRegister
gSmmPerformanceProtocolGuid
PRODUCES ## UNDEFINED # Install protocol
CONSUMES ## UNDEFINED # SmiHandlerRegister
gSmmPerformanceExProtocolGuid

[Pcd]

gEfiMdePkgTokenSpaceGuid.PcdPerformanceLibraryPropertyMask \

Version 1.24B March 2015 129

Sample Library INF Files EDK II INF File Specification

CONSUMES

Note: In the above example, the backslash “\” character is used to show a line continuation for

readability. Use of a backslash character in the actual INF file is not permitted.

130 March 2015 Version 1.24B

EDK II INF File Specification

Appendix F
Sample Binary INF Files

The following are example INF files for the binary modules, EnhancedFatDxe, in the
FatBinPkg. The second example is a generated binary INF file for the RuntimeDxe driver
in the MdeModulePkg.

Version 1.24B March 2015 131

Sample Binary INF Files EDK II INF File Specification

F.1 FatBinPkg/EnhancedFatDxe/Fat.inf

@file

Binary FAT32 EFI Driver for IA32, X64, IPF and EBC arch.

This UEFI driver detects the FAT file system in the disk.
It also produces the Simple File System protocol for the consumer to
perform file and directory operations on the disk.

Copyright (c) 2007 - 2010, Intel Corporation. All rights reserved.

This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License which
accompanies this distribution. The full text of the license may be
found at:
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

[Defines]

INF_VERSION = 0x00010008
BASE_NAME = Fat
FILE_GUID = 961578FE-B6B7-44c3-AF35-6BC705CD2B1F
MODULE_TYPE = UEFI_DRIVER
VERSION_STRING = 1.0

The following information is for reference only and not required by the
build tools.

VALID_ARCHITECTURES = IA32 X64 IPF EBC

[Binaries.Ia32]

PE32|Ia32/Fat.efi|*

[Binaries.X64]

PE32|X64/Fat.efi|*

[Binaries.IPF]

132 March 2015 Version 1.24B

http://opensource.org/licenses/bsd-license.php

EDK II INF File Specification Sample Binary INF Files

PE32|Ipf/Fat.efi|*

[Binaries.EBC]
PE32|Ebc/Fat.efi|*

[Binaries.ARM]

PE32|Arm/Fat.efi|*

F.2 MdeModulePkg/Core/RuntimeDxe.inf

@file
Module that produces EFI runtime virtual switch over services.

This runtime module installs Runtime Architectural Protocol and
registers CalculateCrc32 boot services table, SetVirtualAddressMap &
ConvertPointer runtime services table.

Copyright (c) 2006 - 2012, Intel Corporation. All rights reserved.

This program and the accompanying materials are licensed and made
available under the terms and conditions of the BSD License which
accompanies this distribution. The full text of the license may be
found at:
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

[Defines]

INF_VERSION = 0x00010018
BASE_NAME = RuntimeDxe
FILE_GUID = B601F8C4-43B7-4784-95B1-F4226CB40CEE
MODULE_TYPE = DXE_RUNTIME_DRIVER
VERSION_STRING = 1.0

[Packages.IA32]
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec

[Binaries.IA32]
PE32|RuntimeDxe.efi
DXE_DEPEX|RuntimeDxe.depex

Version 1.24B March 2015 133

http://opensource.org/licenses/bsd-license.php

Sample Binary INF Files EDK II INF File Specification

[PatchPcd.IA32]
CONSUMES
gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000047|0x1EC8

CONSUMES
gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x27|0x1ECC

CONSUMES
gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask|0x07|0x1ECD

[Protocols.IA32]
PRODUCES
gEfiRuntimeArchProtocolGuid

SOMETIMES_CONSUMES
CONSUMES
gEfiLoadedImageProtocolGuid

SOMETIMES_CONSUMES
gPcdProtocolGuid

CONSUMES
gEfiPcdProtocolGuid

SOMETIMES_CONSUMES
gEfiDevicePathProtocolGuid

CONSUMES
gEfiStatusCodeRuntimeProtocolGuid

SOMETIMES_PRODUCES
gEfiDriverBindingProtocolGuid

SOMETIMES_CONSUMES
gEfiSimpleTextOutProtocolGuid

SOMETIMES_CONSUMES
gEfiGraphicsOutputProtocolGuid

SOMETIMES_CONSUMES
gEfiHiiFontProtocolGuid

SOMETIMES_CONSUMES \
Consumes if gEfiGraphicsOutputProtocolGuid uninstalled

134 March 2015 Version 1.24B

EDK II INF File Specification Sample Binary INF Files

gEfiUgaDrawProtocolGuid

SOMETIMES_PRODUCES # User chooses to produce it
gEfiComponentNameProtocolGuid

SOMETIMES_PRODUCES # User chooses to produce it
gEfiComponentName2ProtocolGuid

SOMETIMES_PRODUCES # User chooses to produce it
gEfiDriverConfigurationProtocolGuid

SOMETIMES_PRODUCES # User chooses to produce it
gEfiDriverConfiguration2ProtocolGuid

SOMETIMES_PRODUCES # User chooses to produce it
gEfiDriverDiagnosticsProtocolGuid

SOMETIMES_PRODUCES # User chooses to produce it
gEfiDriverDiagnostics2ProtocolGuid

[Ppis.IA32]

[Guids.IA32]
CONSUMES ## Event
CONSUMES ## Event
PRODUCES ## Event \
RuntimeDriverSetVirtualAddressMap() signals this event.

gEfiEventVirtualAddressChangeGuid

SOMETIMES_CONSUMES
SOMETIMES_CONSUMES ## UNDEFINED
gEfiStatusCodeDataTypeDebugGuid

CONSUMES ## Event
CONSUMES ## Event
gEfiEventExitBootServicesGuid

SOMETIMES_CONSUMES ## UNDEFINED
gEfiStatusCodeSpecificDataGuid

SOMETIMES_CONSUMES ## Event
gEfiEventReadyToBootGuid

SOMETIMES_CONSUMES ## Event
gEfiEventLegacyBootGuid

Version 1.24B March 2015 135

Sample Binary INF Files EDK II INF File Specification

SOMETIMES_CONSUMES ## Variable
gEfiGlobalVariableGuid

[PcdEx.IA32]

The following information is for reference only and not required by the
build tools.

VALID_ARCHITECTURES = IA32 X64 IPF EBC

@AsBuilt
MSFT:DEBUG_VS2008x86_IA32_SYMRENAME_FLAGS = \

Symbol renaming not needed for
MSFT:DEBUG_VS2008x86_IA32_ASLDLINK_FLAGS = /NODEFAULTLIB \

/ENTRY:ReferenceAcpiTable /SUBSYSTEM:CONSOLE
MSFT:DEBUG_VS2008x86_IA32_VFR_FLAGS = -l -n
MSFT:DEBUG_VS2008x86_IA32_PP_FLAGS = /nologo /E /TC /FIAutoGen.h
MSFT:DEBUG_VS2008x86_IA32_GENFW_FLAGS =
MSFT:DEBUG_VS2008x86_IA32_OPTROM_FLAGS = -e
MSFT:DEBUG_VS2008x86_IA32_SLINK_FLAGS = /NOLOGO /LTCG
MSFT:DEBUG_VS2008x86_IA32_ASM_FLAGS = /nologo /c /WX /W3 /Cx /coff \

/Zd /Zi
MSFT:DEBUG_VS2008x86_IA32_ASL_FLAGS =
MSFT:DEBUG_VS2008x86_IA32_CC_FLAGS = /nologo /c /WX /GS- /W4 \

/Gs32768 /D UNICODE /O1ib2 /GL /FIAutoGen.h /EHs-c- /GR- /GF /Gy
/Zi /Gm

MSFT:DEBUG_VS2008x86_IA32_VFRPP_FLAGS = /nologo /E /TC \
/DVFRCOMPILE /FI$(MODULE_NAME)StrDefs.h

MSFT:DEBUG_VS2008x86_IA32_ASLCC_FLAGS = /nologo /c /FIAutoGen.h \
/TC /Dmain=ReferenceAcpiTable

MSFT:DEBUG_VS2008x86_IA32_APP_FLAGS = /nologo /E /TC
MSFT:DEBUG_VS2008x86_IA32_DLINK_FLAGS = /NOLOGO /NODEFAULTLIB \

/IGNORE:4001 /OPT:REF /OPT:ICF=10 /MAP /ALIGN:32 \
/SECTION:.xdata,D /SECTION:.pdata,D /MACHINE:X86 /LTCG /DLL \
/ENTRY:$(IMAGE_ENTRY_POINT) /SUBSYSTEM:EFI_BOOT_SERVICE_DRIVER \
/SAFESEH:NO /BASE:0 /DRIVER /DEBUG \
/PDB:$(OUTPUT_PATH)\$(BASE_NAME).pdb \
/PDBSTRIPPED:$(OUTPUT_PATH)\$(BASE_NAME)_Stripped.pdb

MSFT:DEBUG_VS2008x86_IA32_ASLPP_FLAGS = /nologo /E /C /FIAutoGen.h
MSFT:DEBUG_VS2008x86_IA32_OBJCOPY_FLAGS = objcopy not needed for
MSFT:DEBUG_VS2008x86_IA32_MAKE_FLAGS = /nologo
MSFT:DEBUG_VS2008x86_IA32_ASMLINK_FLAGS = /nologo /tiny

136 March 2015 Version 1.24B

EDK II INF File Specification Sample Binary INF Files

Note: In the above example, the backslash “\” character is used to show a line continuation for

readability. Use of a backslash character in the actual INF file is not permitted.

Version 1.24B March 2015 137

Sample Binary INF Files EDK II INF File Specification

138 March 2015 Version 1.24B

EDK II INF File Specification

Appendix G
Module Types

Table 9. EDK II Module Types

FILE TYPE MODULE_TYPE EDK II
Extension

Description

Library BASE | SEC | PEI_CORE
| PEIM | DXE_CORE |
DXE_DRIVER |
DXE_RUNTIME_DRIVER
| DXE_SAL_DRIVER |
DXE_SMM_DRIVER
|SMM_CORE |
UEFI_DRIVER |
UEFI_APPLICATION |
USER_DEFINED

.lib Library component used in the
build for linking against
components.

File USER_DEFINED .bin In EDK, this was used to specify
various types of source or binary
files.

Legacy16 USER_DEFINED .bin or
.rom

In EDK, this was used to specify
various types of binary files.

BINARY USER_DEFINED .bin or
.rom

In EDK, this was used to specify
various types of binary files.

CONFIG USER_DEFINED .bin In EDK, this was used to sepcify
INI text files that were processed
by different tools into binary files.

LOGO USER_DEFINED .bmp The MODULE_TYPE for a LOGO,
when migrating to EDK II should
be specified as USER_DEFINED.
The .bmp file should be included
under a [binaries] section.
In EDK, the COMPONENT_TYPE of
LOGO was used to specify a .bmp
file in the [sources] section.

RAWFILE USER_DEFINED .raw In EDK, this was used to specify
various types of binary files.

FVIMAGEFILE N/A .fv
APRIORI Not Supported. .bin Distribution of an Aprior file is not

supported. These files are
created during image generation
stage based on content of a .FDF
file.
In EDK, the file was just a text
file with a single line for each
driver.

Version 1.24B March 2015 139

Module Types EDK II INF File Specification

FILE TYPE MODULE_TYPE EDK II
Extension

Description

BASE BASE .efi Modules of this type can be
ported to any execution
environment. This module type is
intended to be use by silicon
module developers to produce
source code that is not tied to
any specific execution
environment.

SEC SEC .efi Modules of this type are designed
to start execution at the reset
vector of a CPU. They are
responsible for preparing the
platform for the PEI Phase. Since
there are no standard services
defined for SEC, modules of this
type follow the same rules as
modules of type Base and
typically include some amount of
CPU specific assembly code to
establish temporary memory for
a stack. Modules of this type may
optionally produce services that
are passed to the PEI Phase in
HOBs and those services must be
compliant with the PEI CIS.

PEI_CORE PEI_CORE .efi This module type is used by PEI
Core implementations that are
complaint with the PEI CIS.

PEIM PEIM .efi This module type is used by
PEIMs that are compliant with the
PEI CIS

DXE_CORE DXE_CORE .efi This module type is used by DXE
Core implementations that are
compliant with the DXE CIS.

DXE_DRIVER DXE_DRIVER .efi This module type is used by DXE
Drivers that are complaint with
the DXE CIS. These modules only
execute in the boot services
environment and are destroyed
when ExitBootServices() is
called.

DXE_RUNTIME_DRIVER DXE_RUNTIME_DRIVER .efi This module type is used by DXE
Drivers that are complaint with
the DXE CIS. These modules
execute in both boot services and
runtime services environments.
This means the services that
these modules produce are
available after ExitBootServices()
is called. If
SetVirtualAddressMap() is called,
then modules of this type are
relocated according to virtual
address map provided by the
operating system.

140 March 2015 Version 1.24B

EDK II INF File Specification Module Types

FILE TYPE MODULE_TYPE EDK II
Extension

Description

DXE_SAL_DRIVER DXE_SAL_DRIVER .efi This module type is used by DXE
Drivers that can be called in
physical mode before
SetVirtualAddressMap() is called
and either physical mode or
virtual mode after
SetVirtualAddressMap() is called.
This module type is only available
to IPF CPUs. This means the
services that these modules
produce are available after
ExitBootServices().

SMM_CORE SMM_CORE .efi This module is the SMM Core.

DXE_SMM_DRIVER DXE_SMM_DRIVER .efi This module type is used by DXE
Drivers that are loaded into
SMRAM. As a result, this module
type is only available for IA-32
and x64 CPUs. These modules
only execute in physical mode,
and are never destroyed. This
means the services that these
modules produce are available
after ExitBootServices().

UEFI_DRIVER UEFI_DRIVER .efi This module type is used by UEFI
Drivers that are compliant with
the EFI 1.10 Specification or the
UEFI 2.x Specification. These
modules provide services in the
boot services execution
environment. UEFI Drivers that
return EFI_SUCCESS are not
unloaded from memory. UEFI
Drivers that return an error are
unloaded from memory.

UEFI_APPLICATION UEFI_APPLICATION .efi This module type is used by UEFI
Applications that are compliant
with the EFI 1.10 Specification or
the UEFI 2.x Specification. UEFI
Applications are always unloaded
when they exit.

USER_DEFINED USER_DEFINED .bin or
.rom

User defined extension

EFI Dependency Section Any - the code for these
sections is included as
part of any module, and
no separate INF is
required.

.dpx This is the compiled dependency
section for SMM, PEIM or DXE
modules. A dependency section
may also be generated from a
dependency source (.dxs) file, if
specified in the [Sources]
section.

EFI User Interface Section Any - the code for these
sections is included as
part of any module, and
no separate INF is
required.

.ui This is a processed User Interface
section

Version 1.24B March 2015 141

Module Types EDK II INF File Specification

FILE TYPE MODULE_TYPE EDK II
Extension

Description

EFI Version Section Any - the code for these
sections is included as
part of any module, and
no separate INF is
required.

.ver This is a processed Version
section

This following table shows the mapping of EDK II Module Types to EDK Component
Types.

Table 10. Module Type to Component Type Mapping

EDK II Module Type EDK Component Type

BASE | SEC | PEI_CORE | PEIM | DXE_CORE |
DXE_DRIVER | DXE_RUNTIME_DRIVER |
DXE_SAL_DRIVER | DXE_SMM_DRIVER |
UEFI_DRIVER | UEFI_APPLICATION

LIBRARY

BASE LIBRARY | SECURITY_CORE | PEI_CORE |
COMBINED_PEIM_DRIVER | PIC_PEIM |
RELOCATABLE_PEIM | BS_DRIVER | RT_DRIVER |
SAL_RT_DRIVER | APPLICATION

SEC SECURITY_CORE

PEI_CORE PEI_CORE

PEIM COMBINED_PEIM_DRIVER (See NOTE below)

PEIM PIC_PEIM

PEIM RELOCATABLE_PEIM

DXE_CORE BS_DRIVER

DXE_DRIVER BS_DRIVER with a Dependency Section

DXE_RUNTIME_DRIVER RT_DRIVER

DXE_SAL_DRIVER SAL_RT_DRIVER

DXE_SMM_DRIVER BS_DRIVER

UEFI_DRIVER BS_DRIVER without a Dependency Section.

UEFI_APPLICATION APPLICATION

Note: The EDK II build system does not support creation of COMBINED_PEIM_DRIVER EFI leaf

sections.

142 March 2015 Version 1.24B

	EDK II Module Information (INF) File Specification
	Contents
	1
	Introduction 1
	2
	INF Overview 9
	Appendix C Symbols 115
	Appendix D
	Sample Driver INF Files 119
	Appendix E
	Sample Library INF Files 125
	Appendix F
	Sample Binary INF Files 131
	Appendix G
	Module Types 139

	1
	1.1 Overview
	Compatible
	Simplified platform build and configuration
	Distributing Modules

	1.2 Related Information
	1.3 Terms
	BaseTools
	BDS BNF
	Component
	DEC
	DEPEX
	Dist
	DXE SAL
	DXE SMM
	DXE Runtime
	EBNF
	EDK
	EDK II
	EDK Compatibility Package (ECP)
	EFI
	FLASH
	Foundation
	Framework
	GUID
	HII
	HOB
	Library Class
	Library Instance
	Module
	Module Type
	Package
	PCD PEI
	PEIM
	PPI
	Protocol
	Runtime Services
	SAL
	UEFI Application
	UEFI Driver
	UEFI Specification Version 2.4
	UEFI Platform Initialization Distribution Package Specification Version 1.0
	UEFI Platform Initialization Specification 1.3
	Unified EFI Forum
	VFR VPD

	1.4 Target Audience
	1.5 Conventions Used in this Document
	1.5.1 Data Structure Descriptions
	Summary:
	Prototype:
	Parameters:
	Example:

	1.5.2 Pseudo-Code Conventions
	1.5.3 Typographic Conventions

	2
	2.1 Processing Overview
	2.2 Information File General Rules
	2.2.1 Section Entries
	[Sources.X64, Sources.IPF]

	2.2.2 Comments
	gPkgTSGuid.PcdFoo|TRUE|BOOLEAN|0x00000015 # EFI_FOO_MEMORY
	UI = “# Copyright 2007, No Such, LTD. All rights reserved.”

	2.2.3 Valid Entries
	2.2.4 Naming Conventions
	C:/Work/Edk2/edksetup.bat

	2.2.5 !include Statements
	2.2.6 Macro Statements
	2.2.7 Conditional Directive Statements (!if...)
	2.2.8 Expressions

	2.3 EDK II INF Format
	2.4 [Defines] Section
	[Defines]
	Name = Value
	[Defines]
	[Defines]
	Table 1. EDK II [Defines] Section Elements

	2.5 [Sources] Section
	[Sources] [Sources.common] [Sources.IA32] [Sources.X64] [Sources.IPF] [Sources.EBC]
	[Sources.common] DxeIpl.dxs DxeIpl.h DxeLoad.c

	2.6 [BuildOptions] Section
	Table 2. EDK II [BuildOptions] Section Elements
	Table 3. EDK II [BuildOptions] Variable Descriptions
	[BuildOptions.common]
	Common Section + Architectural Section

	2.7 [Binaries] Section
	[Binaries] [Binaries.common] [Binaries.IA32] [Binaries.X64] [Binaries.IPF] [Binaries.EBC]
	FileType|Filename.ext
	[Binaries.common] UNI_UI|DxeIpl.ui UNI_VER|DxeLoad.ver

	2.9 [Protocols] Section
	[Protocols] [Protocols.common] [Protocols.IA32] [Protocols.X64] [Protocols.IPF] [Protocols.EBC]
	gEfiProtocolCName
	[Protocols] gEfiDecompressProtocolGuid gEfiLoadFileProtocolGuid
	[Ppis] [Ppis.common] [Ppis.IA32] [Ppis.X64] [Ppis.IPF] [Ppis.EBC] The formats for entries in this section is:
	[Ppis]
	[Guids] [Guids.common] [Guids.IA32] [Guids.X64] [Guids.IPF] [Guids.EBC]
	gEfiGuidCName ## Usage comment
	[Guids] gEfiDebugImageInfoTable gEfiHobMemoryAllocModuleGuid
	LibraryClassName3 ## $(WORKSPACE)/Path/To/RecommendedLibInstanceName.inf
	LIBS = $(LIBS) $(LIB_DIR)/{LibInstanceName}
	[LibraryClasses] MemoryAllocationLib BaseMemoryLib PeiServicesTablePointerLib CustomDecompressLib TianoDecompressLib UefiDecompressLib EdkPeCoffLoaderLib CacheMaintenanceLib ReportStatusCodeLib PeiServicesLib PerformanceLib
	[Packages] [Packages.common] [Packages.IA32] [Packages.X64] [Packages.IPF] [Packages.EBC]
	MdeModulePkg/MdeModulePkg.dec # $(WORKSPACE)/MdeModulePkg MdePkg/MdePkg.dec # $(WORKSPACE)/MdePkg
	[Packages] MdeModulePkg/MdeModulePkg.dec MdePkg/MdePkg.dec

	2.14 PCD Sections
	PcdTokenSpaceGuidCName.PcdCName
	[(PcdType)] [(PcdType).common] [(PcdType).IA32] [(PcdType).X64] [(PcdType).IPF] [(PcdType).EBC]
	TokenSpaceGuidCName.PcdCName
	PcdName | Value | HexValue
	PcdName | [Value] [| FeatureFlagExpression]
	[FixedPcd] [FixedPcd.common] [FixedPcd.IA32] [FixedPcd.X64] [FixedPcd.IPF] [FixedPcd.EBC] gEfiMdePkgTokenSpaceGuid.PcdFSBClock|600000000
	[FixedPcd.common] gEfiEdkModulePkgTokenSpaceGuid.PcdMaxSizeNonPopulateCapsule gEfiEdkModulePkgTokenSpaceGuid.PcdMaxSizePopulateCapsule
	[PatchPcd] [PatchPcd.IA32] [PatchPcd.X64] [PatchPcd.IPF] [PatchPcd.EBC] [PatchPcd.common]
	gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageVariableSize gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageVariableBase
	[FeaturePcd] [FeaturePcd.common] [FeaturePcd.IA32] [FeaturePcd.X64] [FeaturePcd.IPF] [FeaturePcd.EBC]
	[FeaturePcd.common] gEfiEdkModulePkgTokenSpaceGuid.PcdDxeIplSupportCustomDecompress gEfiEdkModulePkgTokenSpaceGuid.PcdDxeIplSupportTianoDecompress gEfiEdkModulePkgTokenSpaceGuid.PcdDxeIplSupportEfiDecompress gEfiEdkModulePkgTokenSpaceGuid.PcdDxeIplBui...
	[Pcd] [Pcd.common] [Pcd.IA32] [Pcd.X64] [Pcd.IPF] [Pcd.EBC]
	[Pcd.common] gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageVariableSize gEfiGenericPlatformTokenSpaceGuid.PcdFlashNvStorageVariableBase
	[PcdEx] [PcdEx.common] [PcdEx.IA32] [PcdEx.X64] [PcdEx.IPF] [PcdEx.EBC]

	2.15 [Depex] Section
	Depex[.<Arch>[.<ModuleType>]]

	2.16 [UserExtensions] Section
	[UserExtensions.NoSuchCorp."MyProcess_1.2"] NoSuch.bat
	[UserExtensions.TianoCore."ExtraFiles"]

	3
	EDK II INF File Format
	3.1 General Rules
	3.1.1 Backslash
	3.1.2 Whitespace characters
	3.1.3 Paths for File Names

	3.2 Component INF Definition
	Summary
	<Depex>*

	3.2.1 Common Definitions
	Prototype
	<EscapeSequence> ::= "\" {"n"} {"t"} {"f"} {"r"} {"b"} {"0"} {"\"}
	<Comment> ::= "#" <AsciiString> <EOL>+
	<HexDigit> <HexDigit> <HexDigit> <HexDigit>

	Parameters

	3.2.2 MACRO Statements
	Summary
	Prototype
	<MacroDefinition> ::= <TS> "DEFINE" <MTS> <MACRO> <Eq> [<Value>] <EOL>

	Examples:
	DEFINE SKU1 = MyPlatformPkg/Sku1/Pei

	3.2.3 Conditional Statements
	3.2.4 !include Statement
	3.2.5 Special Comment Blocks
	EVENT_TYPE_RELATIVE_TIMER - Event is to be signaled in x 100ns units.
	FULL - Equivalent to BOOT_WITH_FULL_CONFIGURATION MINIMAL - Equivalent to BOOT_WITH_MINIMAL_CONFIGURATION
	UNDEFINED - This will appear when a UEFI Distribution Package tool was unable to parse the comment (spelling error) when creating a distribution package and the tool installed the distribution package using this value.
	PHIT - the Phase Handoff Information Table (PHIT) Hob MEMORY_ALLOCATION - Describes all memory ranges LOAD_PEIM - This refers to EFI_HOB_TYPE_LOAD_PEIM_UNUSED RESOURCE_DESCRIPTOR - describes resource properties
	Keywords are: UNDEFINED, CONSUMES, SOMETIMES_CONSUMES, PRODUCES

	3.3 Header Section
	Summary
	Prototype
	<Header> ::= <SourceHeader> [<BinaryHeader>]

	Example

	3.4 [Defines] Section
	Summary
	Prototype
	<Defines> ::= "[Defines]" <EOL>

	Example (EDK II Driver)
	Example (UEFI Driver)
	Example (EDK II Library)

	3.5 [BuildOptions] Sections
	Summary
	Prototype
	<BuildOptions> ::= "[BuildOptions" [<com_attrs>] "]" <EOL>
	Table 5. Predefined Command Codes

	Example

	3.6 [LibraryClasses] Sections
	Summary
	Prototype
	<LibraryClasses> ::= "[LibraryClasses" [<com_attrs>] "]" <EOL> [<Statements>]

	Example

	3.7 [Packages] Sections
	Summary
	Prototype
	Example

	3.8 PCD Sections
	Summary
	Prototype
	<AsBuiltPcdSec> ::= {<BuiltPatchPcd>} {<BuiltPcdEx>}

	Examples

	3.9 [Sources] Sections
	Summary
	Prototype
	Example

	3.10 [UserExtensions] Sections
	Summary
	Prototype
	Example
	[UserExtensions.Edk2AcpiTable."1.0"] Any content may go here

	3.10.1 [UserExtensions.TianoCore."ExtraFiles"] Section
	Summary
	Prototype
	<UserExtensions> ::= "[UserExtensions" <TcEf> "]" <EOL> <FileNames>*

	Example

	3.11 [Protocols] Sections
	Summary
	Prototype
	Example

	3.12 [Ppis] Sections
	Summary
	Prototype
	Example

	3.13 [Guids] Sections
	Summary
	Parameters
	Example

	3.14 [Depex] Sections
	Summary
	INTERFACENAME = { /* 0F05DE03-8A1B-408C-8F84-B547F593E463 */ 0x0F05DE03,
	DXE_DRIVER, DXE_SAL_DRIVER, DXE_RUNTIME_DRIVER, DXE_SMM_DRIVER or UEFI_DRIVER

	Prototype
	<Depex> ::= "[Depex" [<com_attribs>] "]" <EOL>

	3.15 [Binaries] Section
	Summary
	Prototype
	<Binaries> ::= "[Binaries" [<com_attribs>] "]" <EOL> [<UiExpression>]
	EFI_FREEFORM_SUBTYPE_GUID_SECTION section.

	Example

	Appendix A EDK INF File Specification
	A.1 Design Discussion
	A.1.1 [defines] Section
	Table 6. EDK [defines] Section Elements
	Table 7. EDK Component (module) Output File Extensions

	A.1.2 [sources] Section
	A.1.3 [libraries] Section
	A.1.4 [includes] Section
	A.1.5 [nmake] Section

	A.2 EDK File Specification
	Summary
	A.2.1 Header Section
	Summary
	Prototype
	Example

	A.2.2 [defines] Section
	Summary
	Prototype
	Example (EDK Driver)
	Example (EDK Library)

	A.2.3 [includes] Section
	Summary
	Prototype
	Example

	A.2.4 [libraries] Section
	Summary
	Prototype

	A.2.5 [nmake] Section
	Summary
	Prototype
	Example

	A.2.6 [sources] Section
	Summary
	Prototype
	Examples

	Appendix B Build Changes and Customizations
	B.1 Customizing EDK Compilation for a Component
	B.2 Changing Files in an EDK Library
	B.3 Customizing EDK II Compilation for a Module Common Definitions

	Appendix C Symbols
	Table 8. Symbol Description

	Appendix D Sample Driver INF Files
	D.1 DiskIoDxe INF file
	D.2 StatusCodeRuntimeDxe INF file

	Appendix E Sample Library INF Files
	E.1 PeiServicesTablePointerLib.inf
	E.2 DxeCoreMemoryAllocationLib.inf
	E.3 SmmCorePerformanceLib.inf

	Appendix F Sample Binary INF Files
	F.1 FatBinPkg/EnhancedFatDxe/Fat.inf
	F.2 MdeModulePkg/Core/RuntimeDxe.inf

	Appendix G Module Types
	Table 9. EDK II Module Types
	Table 10. Module Type to Component Type Mapping

