
-1-

 MCS-51 Microcontroller Family Macro Assembler

 AAA SSSSSS EEEEEEE MM MM 5555555 11
 AA AA SS EE MMM MMM 55 111
 AA AA SS EE MM M MM 55 11
 AA AA SSSSS EEEEEEE MM MM ==== 555555 11
 AAAAAAA SS EE MM MM 55 11
 AA AA SS EE MM MM 55 11
 AA AA SSSSSS EEEEEEE MM MM 555555 1111

 U S E R ' S M A N U A L

 Version 1.3

 June 25, 2002

 Copyright (c) 1994, 1996, 2001 by W.W. Heinz

-2-

 TABLE OF CONTENTS

 Foreword to Version 1.0
 Foreword to Version 1.2

I. Introduction

II. Getting started

 II.1 DOS and Windows Implementation
 II.1.1 Files
 II.1.2 Installation under MS-DOS or Windows
 II.1.3 DOS Command Line Operation
 II.1.4 DOS Environment
 II.1.5 Running ASEM-51 in the Borland-IDE
 II.1.6 Running ASEM-51 from Windows 3.1x
 II.1.7 Running ASEM-51 from BRIEF
 II.1.8 The DOS Protected-Mode Assembler ASEMX
 II.1.9 The Win32 Console-Mode Assembler ASEMW
 II.1.10 The HEXBIN Utility
 II.2 Linux Implementation
 II.2.1 Files
 II.2.2 Installation under Linux
 II.2.3 Linux Command Line Operation
 II.2.4 Linux Environment
 II.2.5 The HEXBIN Utility
 II.3 The DEMO Program

III. The ASEM-51 Assembly Language

 III.1 Statements
 III.2 Symbols
 III.3 Constants
 III.4 Expressions
 III.5 The 8051 Instruction Set
 III.6 Pseudo Instructions
 III.7 Segment Type
 III.8 Assembler Controls
 III.8.1 Primary Controls
 III.8.2 General Controls
 III.9 Predefined Symbols
 III.10 Conditional Assembly
 III.10.1 General IFxx Construction
 III.10.2 IFxx and ELSEIFxx Instructions
 III.11 Macro Processing
 III.11.1 Simple Callable Macros
 III.11.2 Macro Parameters
 III.11.3 Repeat Macros
 III.11.4 Local Symbols
 III.11.5 Macro Operators
 III.11.6 Premature End of a Macro Expansion
 III.11.7 Nested and Recursive Macro Calls
 III.11.8 Nested Macro Definitions
 III.11.9 Representation in the List File

IV. Compatibility with the Intel Assembler

 IV.1 Restrictions
 IV.2 Extensions
 IV.3 Further Differences

V. List File Format

VI. Support of 8051 Derivatives

-3-

Appendix A: ASEM-51 Error Messages

 A.1 Assembly Errors
 A.2 Runtime Errors

Appendix B: HEXBIN Error Messages

 B.1 Conversion Errors
 B.2 Runtime Errors

Appendix C: Predefined Symbols

Appendix D: Reserved Keywords

Appendix E: Specification of the Intel-HEX Format

Appendix F: The ASCII Character Set

Appendix G: Literature

Appendix H: Trademarks

Appendix I: 8051 Instructions in numerical Order

Appendix J: 8051 Instructions in lexical Order

-4-

Foreword to Version 1.0
=======================

Today microcontrollers are used in a wide range of applications from simple
consumer electronic products to complex avionic components. Thus I was not
very surprised to find an 80C31 on the videotext decoder board, I purchased
some time ago. Since it had a poor user interface and many bugs, I thought
I could do it better and so I began to look for an 8051 cross assembler.
But in contrast to the huge number of hardware components sold, the number
of people developing microcontroller software seemed to be remarkable small,
and so was the number of development tools on the market.
There was a very small number of good professional cross assemblers for $250
and up - too expensive for hobby purposes. Aside of useless demos, there were
no restricted starter kits or school versions available.
I found also a few shareware and public domain assemblers. But either they
were poor and not very reliable, or not very 8051-specific, or they used some
kind of fantasy syntax that was 100 % compatible to itself, but far away from
the Intel standard. I didn't like them all!
There seems to be a general lack of useful and affordable microcontroller
development software. This is a pity, because their universality, simple
architectures and low prices make microcontrollers so interesting especially
for hobby and education.
So I decided to write a handy 8051 cross assembler for the PC.

And here it is: ASEM-51 V1.0

I hope it will help to discover the wonderful world of microcontrollers.

Have fun!

 Deisenhofen, July 19, 1994

 W.W. Heinz

-5-

Foreword to Version 1.2
=======================

More than one year has passed, since I had released ASEM-51 V1.1 in
October 1994. Although I didn't spend all the time on ASEM-51, V1.2
comes with several extensions, bug fixes, and numerous functional or
internal improvements!
Highlights of the new version are a nearly perfectly featured list
file with cross-reference and some new printing options, a bootstrap
program for MCS-51 evaluation boards, and plenty of new *.MCU files.
For detailed information see the ASEM-51 V1.2 Release Notes.

What I have learned through the last two years is that freeware is
not free, neither for the author nor for the users.
ASEM-51 could not be made with nothing but numberless free hours,
spent on pure software development. I also had to purchase a PASCAL
development system, lots of microcontroller literature, and an 80C535
evaluation board.
The distribution of freeware seems to be a bigger problem than its
development. First of all, one has to buy a modem. After that, it
costs a lot of time, fees, trouble, and "interesting" discussions
with the particular sysops, until the stuff is posted (or not) on
several BBS and ftp sites.
To publish a program on shareware CD-ROMs, one has only to find out,
which are the most suitable. For this, it is best to buy a dozen or
two (and a CD-ROM drive), and to send the software to the publishers
of those that seem to be the most popular.
The interested users finally have to purchase modems or CD-ROM drives,
and pay the same fees, or buy the same CD-ROMs, to get the "freeware"
again from these public sources.
After all, it may be cheaper, faster, and more convenient, to simply buy
a professional software solution (if any) in the PC shop at the corner.
But it's not half the fun!

ASEM-51 V1.1 had been distributed (and mirrored) to more than 60 ftp
sites all over the world, uploaded to so many BBS, and published on
at least two shareware CD-ROMs.
But I only received mails from 9 users, a local cockroach, and an
international monster. The latter two asked me for permission, to
sell ASEM-51 for (their) profit, and failed miserably.
Most of the user mails started with "I have copied your assembler
from an ftp site, which I don't remember. It is looking fine on the
first glance! By the way, have you got a data sheet of the 80Cxyz?",
or something like that.
During all the time, I have received one single error report only.
Since it had been reported by phone, I couldn't reproduce it.
Nevertheless two serious bugs have been fixed since version 1.1, but
I have found them by myself in November 1995 both.
Sure ASEM-51 is no mainstream software, but to be honest, I am a
little disappointed of the poor user feedback!

Finally, I should thank the persons, who helped me to release ASEM-51:
Andreas Kies has tested all previous beta versions of the assembler. He
has distributed the first releases, and maintained a free ASEM-51 support
account right from the beginning.
Gabriele Novak has checked the orthography of all the documentation files.
Werner Allinger has tested the latest beta version and the bootstrap program.
Last but not least, I want to thank all interested users for their comments
and suggestions.
 Deisenhofen, January 22, 1996

 W.W. Heinz

-6-

I. Introduction
===============
ASEM-51 is a two-pass macro assembler for the Intel MCS-51 family of
microcontrollers.
It is running on IBM-PC/XT/AT computers and all true compatibles under
MS-DOS, Windows, and Linux.
The DOS real-mode assembler ASEM.EXE requires only 256 kB of free DOS memory
and MS-DOS 3.0 (or higher).
The new protected-mode assembler ASEMX.EXE requires a 286 CPU (or better),
and at least 512 kB of free XMS memory.
The new Win32 console-mode assembler ASEMW.EXE requires a 386 CPU (or better)
and Windows 9x, NT, 2000 or XP.
The new Linux assembler asem requires a 386-based Linux system.
The new HTML documentation set requires a 90 MHz Pentium (or better) and a
web browser.

The ASEM-51 assembly language is a rich subset of the Intel standard that
guarantees maximum compatibility with existing 8051 assembler sources.
ASEM-51 can generate two sorts of object files: Intel-HEX format, which is
directly accepted by most EPROM programmers, and absolute OMF-51 format,
which is required for many simulators, emulators and target debuggers.
Thus ASEM-51 is suitable for small and medium MCS-51-based microcontroller
projects in hobby, education and business. However, ASEM-51 has been designed
to process also very large programs! Its most important features are:

 - fast, compact, reliable, easy to use, and well-documented
 - easy installation, almost no configuration required
 - command line operation, batch and networking capability
 - fully year 2000 compliant
 - DOS (RM and PM), Win32 and Linux binaries included
 - Intel-compatible syntax
 - five location counters, one for each of the MCS-51 address spaces
 - assembly-time evaluation of arithmetic and logical expressions
 - segment type checking for instruction operands
 - automatic code optimization of generic jumps and calls
 - macro processing (that _really_ works)
 - nested include file processing
 - nested conditional assembly
 - absolute OMF-51 module output (with debug information)
 - Intel-HEX file output
 - hex-to-binary conversion utility
 - built-in symbols for 8051 special function registers (can be disabled)
 - direct support of more than seventy 8051 derivatives
 - support of user-defined 8051 derivatives
 - special support of the Philips 83C75x family
 - 8051 register bank support
 - detailed assembler listing with symbol table or cross reference
 - further fancy printing facilities ;-)
 - documentation in ASCII and HTML format
 - bootstrap program for testing on the MCS-51 target board
 - support for easy integration into the popular Borland IDE
 - limited update service by the author

The ASEM-51 software package has been developed with:

 Borland-Pascal mit Objekten 7.0 (c) Borland International 1992
 Delphi 2.0 Client/Server Suite (c) Borland International 1996
 FreePascal 1.00 (c) Florian Klaempfl 2000

-7-

II. Getting started
===================
This chapter describes the ASEM-51 distributions, their installation on the
supported host platforms, and how to use them in daily work.

II.1 DOS and Windows Implementation

Until version 1.2, ASEM-51 was available in a real-mode implementation for
plain MS-DOS only. Meanwhile a DOS protected-mode version and a Win32 console
mode version have been added to the package.
In contrast to the new Linux implementation, all the DOS and Windows flavours
are functionally identical and their basic operation can therefore be
described together. Only a few minor differences and special features have
to be discussed separately.
Since it should be possible to share program sources with the Linux version,
all DOS and Windows executables are able to read ASCII files in both DOS and
UNIX format, but write ASCII files in their native (DOS) format only.

II.1.1 Files

Your ASEM-51 distribution archive for DOS/Windows should contain the following
groups of files:

1.) ASEM_51.DOC ASEM-51 User's Manual, ASCII format
 DOCS.HTM index file of the ASEM-51 documentation, HTML format
 *.HTM further pages of the HTML documentation
 *.GIF GIF images referenced by HTML pages
 *.JPG JPEG images referenced by HTML pages
 ASEM.EXE assembler (DOS real-mode)
 ASEM.PIF ASEM program information file for Windows 3.1x
 ASEM.ICO ASEM icon file for Windows 3.1x
 ASEM2MSG.EXE ASEM-51 message filter for Borland-IDE
 ASEM2MSG.PAS Turbo-Pascal source of ASEM2MSG.EXE
 ASEMX.EXE assembler (DOS protected-mode)
 ASEMX.PIF ASEMX program information file for Windows 3.1x
 ASEMX.ICO ASEMX icon file for Windows 3.1x
 DPMI16BI.OVL Borland's 16-bit DPMI server (for ASEMX.EXE)
 RTM.EXE Borland's 16-bit DPMI runtime manager
 ASEM32.BAT runs ASEMX with Borland's 32-bit DPMI server
 ASEMW.EXE assembler (Win32 console-mode)
 HEXBIN.EXE hex-to-binary conversion utility (DOS)
 HEXBINW.EXE hex-to-binary conversion utility (Win32)
 DEMO.A51 a sample 8051 assembler program
 *.MCU processor definition files of 8051 derivatives
 (for a detailed list of MCU files see chapter
 "VI. Support of 8051 Derivatives")

2.) BOOT51.DOC BOOT-51 User's Manual, ASCII format
 BOOT51.HTM index file of the BOOT-51 documentation, HTML format
 BOOT51.A51 BOOT-51 assembler source (requires ASEM-51 V1.3)
 CUSTOMIZ.EXE BOOT-51 customization utility
 BOOT.BAT batch file for application program upload
 UPLOAD.BAT called by BOOT.BAT only
 COMPORT.EXE setup utility for PC serial ports
 RESET51.EXE program to reset target system via PC ports
 SLEEP.EXE program to wait for the reset recovery time
 BLINK.A51 sample test program for BOOT-51

3.) README.1ST quick information, ASCII format
 LICENSE.DOC ASEM-51 License Agreement, ASCII format
 RELEASE.130 ASEM-51 Release Notes, ASCII format
 SUPPORT.DOC ASEM-51 Support Guide, ASCII format
 INSTALL.BAT creates a proper ASEM-51 installation under MS-DOS
 KILLASEM.BAT deletes all files of the ASEM-51 package (DOS)

The first group contains all files directly associated with the assembler.
The second group contains all files directly associated with the bootstrap
program. The third group contains general support and documentation files

-8-
that apply to the whole package.

II.1.2 Installation under MS-DOS or Windows

In principle ASEM-51 doesn't require a fuzzy software installation or
configuration. In the simplest case you can copy all files of the package
to your working directory, and enjoy the benefits of true plug-and-play
compatibility!
On the other hand, an installation of ASEM-51 under MS-DOS is very simple:

 - Create a new, empty scratch directory on your harddisk.

 - Unpack your ASEM-51 distribution archive into this directory,
 or copy all files of the ASEM-51 package into it.

 - Make the scratch directory default, run the batch file
 INSTALL.BAT provided, and follow the instructions.

If you don't like anything that is running automatically, or things are not
quite clear, ASEM-51 can also be installed manually as follows:

 - Create a new directory on your harddisk, e.g. C:\ASEM51.

 - Copy all files of the ASEM-51 package into this directory.

 - Append it to your PATH statement in file AUTOEXEC.BAT, e.g.

 PATH C:\DOS;C:\UTIL;C:\ASEM51

 - If this has not already been done while unpacking the distribution
 archive, create a subdirectory, e.g. C:\ASEM51\MCU, and move all
 the *.MCU files provided to this subdirectory, for better survey.

 - Create another subdirectory, e.g. C:\ASEM51\HTML, and move all
 the *.HTM, *.GIF and *.JPG files to this subdirectory, respectively.
 (To read that HTML manual, invoke your web browser and start with
 file C:\ASEM51\HTML\DOCS.HTM!)

 - Optionally define a DOS environment variable ASEM51INC in
 AUTOEXEC.BAT, to specify a search path for include files, e.g.

 SET ASEM51INC=C:\ASEM51\MCU;D:\MICROS\MCS51\INCL

 - For a proper operation of the Borland 16-bit DPMI server on computers
 with more than 16 MB RAM, be sure that EMM386.EXE (included in DOS 5.0
 or later) is loaded, and define the environment variable DPMIMEM in
 AUTOEXEC.BAT as follows:

 SET DPMIMEM=MAXMEM 16383

 - Reboot your PC.

II.1.3 DOS Command Line Operation

ASEM-51 provides full support of command line operation and batch capability
as the best commercial development tools. ;-)
Nevertheless, it can be integrated into foreign development environments,
if desired. The assembler is invoked by typing:

ASEM <source> [<object> [<listing>]] [<options>]

where <source> is the 8051 assembler source, <object> is the output file,
and <listing> is the assembler list file. The parameters <object> and
<listing> are optional. When omitted, the file names are derived from the
<source> file name, but with extensions HEX (or OMF) and LST. All file names
may be specified without extensions. In these cases, the assembler adds
default extensions as shown below:

 file extension
 --

-9-
 <source> .A51
 <object> .HEX (with /OMF-51 option: .OMF)
 <listing> .LST

If you want a file name to have no extension, terminate it with a '.'!
Instead of file names you may also specify device names to redirect the
output to character I/O ports. Device names may be terminated with a ':'!
It is not checked, whether the device is existing or suitable for the task.
Although it is possible to read the source file from a character device
(e.g. CON:) instead of a file, this cannot be recommended: Since ASEM-51
is a two-pass assembler, it always reads the source file twice!

ASEM recognizes the following options:

 /INCLUDES:path1[;path2[; ... ;pathn]]
 /DEFINE:symbol[:value[:type]]
 /OMF-51
 /COLUMNS
 /QUIET

When the /INCLUDES option is used, the assembler searches the specified
path for include files that cannot be found in the working directory.
The path may be any number of directories separated by ';' characters.
The directories will be searched from left to right.
The path, specified with the /INCLUDES option, is searched before the
path, defined with the (optional) DOS environment variable ASEM51INC!

The /DEFINE option is useful for selecting particular program variants
from the command line that have been implemented with conditional assembly.
It allows to define a symbol with a value and a segment type in the
command line. Value and type are optional. The segment type of the symbol
defaults to NUMBER, if omitted. The symbol value defaults to 0, if omitted.
The symbol value may be any numerical constant. The symbol type must be one
of the following characters:

 C = CODE
 D = DATA
 I = IDATA
 X = XDATA
 B = BIT
 N = NUMBER (default)

By default, ASEM-51 generates an object file in Intel-HEX format.
When the /OMF-51 option is specified, an absolute OMF-51 module is generated.

Options may be abbreviated as long as they remain unique!

Examples:

 0.) ASEM

 When invoked without parameters, the assembler displays a help screen:

 MCS-51 Family Macro Assembler ASEM-51 V1.3

 usage: ASEM <source> [<object> [<listing>]] [options]

 options: /INCLUDES:path1;path2;path3
 /DEFINE:symbol[:value[:type]]
 /OMF-51
 /COLUMNS
 /QUIET

 1.) ASEM PROGRAM

 will assemble the 8051 assembly language program PROGRAM.A51 and
 produce an Intel-HEX file PROGRAM.HEX and a listing PROGRAM.LST.

 2.) ASEM TARZAN.ASM JANE JUNGLE.PRN

 will assemble the 8051 assembly language program TARZAN.ASM and
 produce an Intel-HEX file JANE.HEX and a listing JUNGLE.PRN.

-10-

 3.) ASEM PROJECT EPROM.

 will assemble the 8051 assembly language program PROJECT.A51 and
 produce an Intel-HEX file EPROM and a listing PROJECT.LST.

 4.) ASEM ROVER /OMF

 will assemble the 8051 assembly language program ROVER.A51 and produce
 an absolute OMF-51 object module ROVER.OMF and a listing ROVER.LST.

 5.) ASEM sample COM2: NUL

 will assemble the 8051 assembly language program SAMPLE.A51, send
 the HEX file output to the serial interface COM2 and suppress the
 list file output by sending it to the NUL device.

 6.) ASEM APPLICAT /INC:C:\ASEM51\MCU;D:\MICROS\8051\HEADERS

 will assemble the program APPLICAT.A51, while all required include
 files will be searched first in the default directory, then in
 C:\ASEM51\MCU, and finally in D:\MICROS\8051\HEADERS.

 7.) ASEM UNIVERSL /D:Eva_Board:8000H:C

 will assemble the program UNIVERSL.A51, while the CODE symbol
 EVA_BOARD will be predefined with value 8000H during assembly.

When program errors are detected, they are flagged on the console. This
may look as follows:

 MCS-51 Family Macro Assembler ASEM-51 V1.3

 APPLICAT.A51(14): must be known on first pass
 USERBITS.INC(6): attempt to divide by zero
 DEFINES.INC(37): symbol not defined
 APPLICAT.A51(20): symbol not defined
 APPLICAT.A51(27): no END statement found

 5 errors detected

Every error is flagged with the name of the source or include file, the
local line number where it was found, and the error message itself.
This output format makes it easy to integrate ASEM-51 into existing foreign
development environments or workbenches.
A perfect fit for the Turbo C++ IDE (and perhaps others) can be reached
with the /COLUMNS option. When specified, the column numbers of program
errors are output additionally after the line numbers:

 MCS-51 Family Macro Assembler ASEM-51 V1.3

 APPLICAT.A51(14,12): must be known on first pass
 USERBITS.INC(6,27): attempt to divide by zero
 DEFINES.INC(37,18): symbol not defined
 APPLICAT.A51(20,18): symbol not defined
 APPLICAT.A51(27,1): no END statement found

 5 errors detected

If errors are detected in macro expansion lines, there is no corresponding
location in the source file. Therefore, the error is flagged with the name
of the source or include file, and the local line number from where the
macro expansion has been invoked. (For callable macros this is the line
with the macro call, and for repeat blocks this is the ENDM line.)
To give the user a hint, the macro name and expansion line (and optionally
column) number are inserted before the actual error message:

-11-
 MCS-51 Family Macro Assembler ASEM-51 V1.3

 UARTIO.A51(44,1): RECEIVE(3,22): segment type mismatch
 UARTIO.A51(87,1): REPT(4,19): symbol not defined
 UARTIO.A51(87,1): REPT(8,19): symbol not defined
 UARTIO.A51(87,1): REPT(12,19): symbol not defined

 4 errors detected

The expansion line number is the number of the expansion line within the
corresponding macro expansion, starting with 1. If the error occurs during
expansion of a repeat block, the keyword REPT replaces the macro name.

The /QUIET option suppresses all console output except error messages.

When terminating, ASEM-51 returns an exit code to the operating system:

 situation ERRORLEVEL
 --
 no errors 0
 program errors detected 1
 fatal runtime error 2

Note: Warnings do not influence the exit code!

II.1.4 DOS Environment

To specify a search path for include files, an optional environment variable
ASEM51INC can be defined:

 SET ASEM51INC=<path>

<path> may be any number of directories separated by ';' characters.
Be sure that the whole definition doesn't contain any blanks or tabs!
If ASEM51INC is defined, the assembler searches the specified <path> for
include files that can neither be found in the working directory, nor in
the search path specified with the /INCLUDES option.
The <path> directories will be searched from left to right.

Examples:

 1.) SET ASEM51INC=C:\ASEM51\MCU;D:\MICROS\MCS51\INCL

 If include files can neither be found in the working directory,
 nor in the /INCLUDES path (if specified), the assembler searches
 next C:\ASEM51\MCU and finally D:\MICROS\MCS51\INCL.

 2.) SET ASEM51INC=C:\ASEM51\MCU;%PATH%

 If ASEM51INC is defined as above in AUTOEXEC.BAT after the PATH
 statement, the assembler finally searches the directory C:\ASEM51\MCU
 and then all the directories, contained in the DOS program search
 path, from left to right!

The maximum length of <path> is limited to 255 characters. This cannot be
exceeded with the SET command of the DOS command interpreter COMMAND.COM,
but with third party command interpreters like 4DOS (max. 512 characters)!

Note that trailing blanks and tabs behind the names of environment variables
seem to be considered significant under MS-DOS! If one subsequently defines

 SET ASEM51INC =C:\ASEM51\MCU
and SET ASEM51INC=C:\8051\MCU

there will be two (!) entries concurrently in the DOS environment! However,
the assembler will recognize the second one only. Since DOS doesn't truncate
trailing blanks and tabs from variable names, the assembler can't do this
either! That is why you should be sure, to always define the environment
variable without blanks and tabs.

-12-

II.1.5 Running ASEM-51 in the Borland-IDE

Turbo C++ (1.0 thru 3.0) users will appreciate the possibility to invoke
ASEM-51 as a transfer program from the Borland IDE.
For this, the filter program ASEM2MSG for the ASEM-51 error messages
has been provided. To integrate ASEM-51 into the Borland IDE, perform
the following steps:

 - Be sure that ASEM-51 has been installed properly as described before,
 or that ASEM.EXE and ASEM2MSG.EXE are somewhere in your PATH.

 - Start the Turbo C++ (or Borland C++) IDE for DOS.

 - For Turbo C++ 1.0, first click: Options | Full menus | ON

 - Click from the menu bar: Options | Transfer

 - When the "Transfer" dialog box is active, press the Edit button.

 - Now the "Modify/New Transfer Item" dialog box should be active.
 Fill in the following items:

 Program Title: ASEM-~51
 Program Path: ASEM
 Command Line: $NOSWAP $SAVE CUR $CAP MSG(ASEM2MSG) $EDNAME /C
 Translator: [X]
 Hot key: Shift F8

 Then press the New button.

 - When returned to the "Transfer" dialog box, press the OK button.

 - Click from the menu bar: Options | Save | OK

Now it should be possible, to assemble the file in the active edit
window with ASEM-51, when pressing Shift-F8. The error messages (if any)
should appear in the "Message" window. You can browse through the errors,
and jump into the source text by simply pressing <Enter>. This even works,
if the error is not in the program itself, but in an include file!

Turbo-Pascal 7.0 users can also employ their Borland IDE for assembly.
To integrate ASEM-51 into the Turbo-Pascal IDE, perform the following
steps:

 - Be sure that ASEM-51 has been installed properly as described before,
 or that ASEM.EXE and ASEM2MSG.EXE are somewhere in your PATH.

 - Start the Turbo-Pascal 7.0 (or Borland-Pascal 7.0) IDE for DOS.

 - Click from the menu bar: Options | Tools

 - When the "Tools" dialog box is active, press the New button.

 - Now the "Modify/New Tool" dialog box should be active.
 Fill in the following items:

 Title: ASEM-~5~1
 Program path: ASEM
 Command line: $NOSWAP $SAVE CUR $CAP MSG(ASEM2MSG) $EDNAME
 Hot keys: Shift+F8

 Then press the OK button.

 - When returned to the "Tools" dialog box, press the OK button.

 - Click from the menu bar: Options | Environment | Preferences

 - When the "Preferences" dialog box is active, disable the "Close on
 go to source" item in the "Options" checkbox. Then press the OK button.

 - Finally click from the menu bar: Options | Save

-13-

Now ASEM-51 can be invoked with Shift-F8, to assemble the program in the
active edit window, while error messages (if any) appear in the "Messages"
window.

Users of both Turbo C++ and Turbo-Pascal should prefer the Turbo C++ IDE.
In the Turbo-Pascal 7.0 IDE, the /COLUMNS (or /C) option has no effect!
Turbo-Pascal versions prior to 7.0 didn't implement the Tools menu.

Note that the transfer macro $SAVE CUR saves the contents of the active
edit window (if modified), before ASEM.EXE is invoked! If your assembler
program includes further source files (which may be currently loaded into
other edit windows), better specify $SAVE ALL. This will save the contents
of all (modified) edit windows to disk files, before invoking ASEM.EXE!
If you are not sure, specify $SAVE PROMPT. This will prompt you for every
(modified) edit window to save the contents before running ASEM.EXE. For
further information on transfer macros, refer to the Borland online help!

II.1.6 Running ASEM-51 from Windows 3.1x
--
Of course ASEM and ASEMX are running fine in the Windows 3.1x DOS-Box!
But for integration into the Windows 3.1x desktop, the files ASEM.PIF
and ASEM.ICO have been provided. To insert ASEM-51 into a group of the
Program Manager, perform the following steps:

 - Be sure that ASEM-51 has been installed properly for MS-DOS
 as described before.

 - Start Windows 3.1x and expand the Program Manager window to its
 full screen size representation, if necessary.

 - Focus the program group in which ASEM-51 is to be inserted,
 e.g. "Applications".

 - Click from the Program Manager menu bar: File | New

 - When the "New Program Object" dialog box is active, choose
 the option "Program Item", and click the OK button.

 - Now the "Program Item Properties" dialog box should be active.
 Fill in the following items:

 Description: ASEM-51
 Command Line: ASEM.PIF
 Working Directory: (whatever you want)
 Shortcut Key: (whatever you want)
 Run Minimized: []

 Then press the [Change Icon] button.

 - Now a message box appears with the error message
 "There are no icons available for the specified file".
 Simply press the OK button.

 - The "Change Icon" dialog box should be displayed now. Fill in

 File Name: ASEM.ICO

 and press the OK button. Now the ASEM-51 icon should be displayed
 in the icon field. Press the OK button again.

 - When returned to the "Program Item Properties" dialog box, press
 the OK button.

(In national Windows versions, things may look slightly different.)

Now ASEM.EXE can be invoked by simply double-clicking the ASEM-51 icon.
After entering the program parameters in a corresponding dialog box,
ASEM is running in a DOS window, which remains open after program
termination, to let you have a look on the error messages.

-14-
In principle, the installation of the protected-mode assembler ASEMX.EXE
can also be done as described above. However, the <Description> field
should be filled with "ASEM-51 XMS", the <Command Line> should be
"ASEMX.PIF", and the icon <File Name> should be ASEMX.ICO instead.

II.1.7 Running ASEM-51 from BRIEF

BRIEF 3.x users can integrate ASEM-51 into their editor by simply
defining another DOS environment variable in their AUTOEXEC.BAT with

 SET BCA51="ASEM %%s"

This specifies the command for compiling files with extension *.A51.
After that, ASEM-51 can be invoked from BRIEF with Alt-F10.

II.1.8 The DOS Protected-Mode Assembler ASEMX

In general, the proven real-mode assembler ASEM.EXE is sufficient also
for very large programs. Nevertheless, it may be running out of memory,
if a program contains a huge number of long user-defined symbols, or lots
of large macro definitions.
To close the gap, the ASEM-51 package includes the new protected-mode
assembler ASEMX.EXE. ASEMX is functionally identical to ASEM, but it can
use extended memory, to meet extreme workspace requirements.
ASEMX is accompanied by Borland's 16-bit DPMI server DPMI16BI.OVL and
runtime manager RTM.EXE. It requires a 286 CPU (or better), and at least
512 kB of free XMS memory (1 MB recommended)!
When ASEMX is invoked, DPMI16BI.OVL and RTM.EXE must be either

 - in your default directory,
 - where ASEMX.EXE is, or
 - somewhere in your PATH

During startup, the DPMI server tries to allocate all the remaining free
XMS memory for use by ASEMX. If you don't want this, you can restrict the
amount of allocated memory with the DOS environment variable DPMIMEM:

 SET DPMIMEM=MAXMEM n

will restrict the XMS memory space, used for the DPMI interface, to n kB.
Never set n to a value greater than 16383!!!

In general, the Borland DPMI interface is very reliable and does normally
not conflict with other memory managers. ASEMX will also run with other
versions of DPMI16BI.OVL and RTM.EXE provided with various Borland software
packages (except TC++ 3.0 and BC++ 3.1).

However, there is trouble ahead on systems with more than 16 MB RAM!
Without specific installation, there is a fatal tendency to crash, hang,
or even boot, whenever a DPMI program like ASEMX is invoked.
For proper operation of the DPMI interface, MS-DOS 5.0 (or later) is
required, and EMM386.EXE must be loaded!
If EMM386.EXE has been loaded with parameters (e.g. NOEMS), the Borland
16-bit DPMI server cannot handle more than 16 MB! However, without
parameters (i=nnnn, x=nnnn are o.k.) or with other DPMI servers there may
be more. In these cases, ASEMX can use up to 64 MB of extended memory!

If ASEMX is running in a system environment with an own DPMI server, e.g.
the Windows DOS-Box, RTM.EXE will detect this and use the active DPMI server
instead of DPMI16BI.OVL. In this case, the environment variable DPMIMEM has
no effect.
To restrict (or increase) the available XMS memory for the Windows 3.1x DOS
prompt, change file DOSPRMPT.PIF in your WINDOWS directory with the Windows
PIF file editor.
For further information on how to make more or less XMS memory available
to application programs in other system environments, see the corresponding
user manuals.

Another interesting alternative is the Borland 32-bit DPMI server with
virtual memory management. It cannot be provided with the ASEM-51 package

-15-
for license reasons, but is contained in Borland's Turbo-Assembler 4.0
and 5.0, Borland C++ 4.5x and 5.0x, and maybe others. It has originally been
developed for the Borland command line tools, but it also works with ASEMX.
It requires a 386 CPU (or better), and allows to extend the free physical
memory with a swap file that can be created with the program MAKESWAP.EXE.
Apart of that, the 32-bit DPMI server DPMI32VM.OVL and the runtime manager
32RTM.EXE are required.
The batch file ASEM32.BAT, provided with the ASEM-51 package, shows how to
run ASEMX with 64 MB of virtual memory, using Borland's 32-bit DPMI server.

II.1.9 The Win32 Console-Mode Assembler ASEMW

In principle, the DOS assemblers ASEM and ASEMX are also running in the
Windows 9x/NT/2000/XP DOS-Box, but with some typical DOS-specific limitations:
file names are restricted to the 8.3 format, path strings are limited to
64 characters, the real-mode assembler cannot access more than 640 kB RAM,
and so on.
To overcome these disadvantages, the ASEM-51 package comes with the new
Win32 console-mode assembler ASEMW.EXE. ASEMW is functionally identical
to ASEM, but it can handle long file names and benefits of the Win32
memory management, which allows to assemble astronomically large programs!

 Hint: If you love file names with blanks in the middle, you have to
 enclose them in double quotes, e.g.

 ASEMW "Test-Program for my 80C32 Evaluation-Board.a51"

II.1.10 The HEXBIN Utility

Most EPROM programmers are accepting the Intel-HEX object file format that
is output by ASEM-51. However, for dumb EPROM burners and special purposes
it might be useful to convert the HEX file to a pure binary image file.
For this the conversion utility HEXBIN is provided.
It is invoked as follows:

 HEXBIN <hex> [<bin>] [/OFFSET:o] [/LENGTH:l] [/FILL:f] [/QUIET]

where <hex> is the input file in Intel-HEX format, and <bin> is the
binary output file. The parameter <bin> is optional. When omitted, the
file name is derived from the <hex> file name, but with the extension BIN.
All file names may be specified without extensions. In these cases, the
program adds default extensions as shown below:

 file extension

 <hex> .HEX
 <bin> .BIN

If you want a file name to have no extension, terminate it with a '.'!
Instead of file names you may also specify device names to redirect the
output to character I/O ports. Device names may be terminated with a ':'!
It is not checked, whether the device is existing or suitable for the task.

The binary file output can also be controlled with the options /OFFSET,
/FILL and /LENGTH.
Normally the first byte in the binary file is the first byte of the HEX
record with the lowest load address. If a number of dummy bytes is to be
inserted on top of the file (e.g. for alignment in an EPROM image), this
can be performed with the /OFFSET option:

 /OFFSET:1000

would insert 4096 dummy bytes before the first byte of the first HEX record
loaded. The offset must always be specified as a hex number. The default
offset is 0.
Since there may be peepholes between the HEX records, a fill byte value can
be defined with the /FILL option:

 /FILL:0

-16-
would fill all peepholes between the HEX records with zero bytes as well as
all the dummy bytes that might have been inserted with the /OFFSET or /LENGTH
option. The fill byte value must always be specified as a hex number.
The default fill byte is the EPROM-friendly FFH.
By default the last byte in the binary file is the last byte of the HEX
record with the highest load address. If the binary file should have a
well defined length, then a number of dummy bytes can be appended to the
file (e.g. for exactly matching an EPROM length), this can be performed
with the /LENGTH option:

 /LENGTH:8000

would append as many dummy bytes behind the last byte of the file, that the
total file length becomes exactly 32768 bytes. The file length must always
be specified as a hex number.
When HEXBIN has been invoked with all the above options, it may display a
file conversion report like this:

 Hex File Converter HEXBIN V2.3

 offset: 1000H bytes
 first address: 9000H
 last address: A255H
 fill peepholes with: 00H
 binary image length: 8000H bytes

The /QUIET option suppresses this console output, while error messages are
displayed regardless.

Options may be abbreviated as long as they remain unique!

Examples:

 0.) HEXBIN

 When invoked without parameters, HEXBIN displays a help screen:

 Hex File Converter HEXBIN V2.3

 usage: HEXBIN <hexfile> [<binary>] [options]

 options: /OFFSET:offset
 /LENGTH:length
 /FILL:fillbyte
 /QUIET

 1.) HEXBIN PROGRAM

 will convert the Intel-HEX file PROGRAM.HEX to a pure binary image file
 PROGRAM.BIN.

 2.) HEXBIN TARZAN.OBJ JUNGLE/FILL:E5

 will convert the Intel-HEX file TARZAN.OBJ to a binary image file
 JUNGLE.BIN and fill all peepholes between the HEX file records with
 the binary value E5H.

 3.) HEXBIN PROJECT EPROM. /off:8000 /length:10000 /f:0

 will convert the Intel-HEX file PROJECT.HEX to a binary image file
 EPROM, insert 32K dummy bytes on top of file, fill all peepholes
 and the dummy bytes with nulls, and extend the file to exactly 64K.

When terminating HEXBIN returns an exit code to the operating system:

 situation ERRORLEVEL
 --
 no errors 0
 conversion errors detected 1
 fatal runtime error 2

-17-

There is also a Win32 console-mode version of HEXBIN: HEXBINW.EXE!
HEXBINW is functionally identical to HEXBIN, but can handle long file names.

II.2 Linux Implementation

Until version 1.2, ASEM-51 was available for MS-DOS only.
To get rid of the original DOS "look and feel", many interfaces to the
operating system had to be modified or rewritten, e.g. command line
processing, console I/O, file handling, UNIX environment, and memory
management. Furthermore, the general behaviour of the programs had to be
adapted to UNIX conventions.
A certain rest of DOS flavour may still be remaining though.
On the other hand, the Linux binaries are able to read ASCII files in both
DOS and UNIX format. However, ASCII files are always written in UNIX format.
All these differences make it necessary to describe the Linux implementation
in a separate section!

II.2.1 Files

Your ASEM-51 distribution archive for Linux should contain the following
groups of files:

1.) asem_51.doc ASEM-51 User's Manual, ASCII format
 docs.htm index file of the ASEM-51 documentation, HTML format
 *.htm further pages of the HTML documentation
 *.gif GIF images referenced by HTML pages
 *.jpg JPEG images referenced by HTML pages
 asem assembler (Linux 386)
 asem.1 man-page for asem
 hexbin hex-to-binary conversion utility (Linux 386)
 hexbin.1 man-page for hexbin
 demo.a51 a sample 8051 assembler program
 *.mcu processor definition files of 8051 derivatives
 (for a detailed list of MCU files see chapter
 "VI. Support of 8051 Derivatives")

2.) boot51.doc BOOT-51 User's Manual, ASCII format
 boot51.htm index file of the BOOT-51 documentation, HTML format
 boot51.a51 BOOT-51 assembler source (for ASEM-51 V1.3 and up)
 customiz BOOT-51 customization utility (Linux 386)
 customiz.1 man-page for customiz
 boot shell script for application program upload
 boot.1 man-page for boot
 upload called by boot only (generic version)
 upload.new "new" upload (optimized for stty 2.0 or later)
 reset51 program to reset the target system via PC ports
 reset51.1 man-page for reset51
 blink.a51 sample test program for BOOT-51

3.) README.1ST quick information, ASCII format
 license.doc ASEM-51 License Agreement, ASCII format
 release.130 ASEM-51 Release Notes, ASCII format
 support.doc ASEM-51 Support Guide, ASCII format
 install.sh creates a proper ASEM-51 installation under Linux
 uninst51.sh deletes all files of the ASEM-51 package (Linux)

II.2.2 Installation under Linux

ASEM-51 for Linux is available as a tar archive and an rpm package.
If you have got the rpm package, login as root and simply type

 rpm -i asem51-1.3-1.i386.rpm

The rpm package has been tested on S.u.S.E.-Linux only, but should also
work on other Linux distributions that meet the FHS directory standard.
If you have got the tar archive, perform the following steps:

 gzip -d asem51-1.3-ELF.tar.gz

-18-
 tar xvf asem51-1.3-ELF.tar
 cd asem51
 sh install.sh

If you are installing ASEM-51 as root (preferred), the installation script
install.sh will install the whole package in /usr/local/share/asem-51/1.3,
and establish some symbolic links in /usr/local/bin and /usr/local/man/man1.

If you are installing ASEM-51 under another user-id, install.sh tries to
install the software in your home directory under ~/asem-51/1.3, and
establish some symbolic links in ~/bin and ~/man/man1.

For details see the messages, install.sh is displaying on the console,
and do some fine-tuning accordingly:

If you haven't installed ASEM-51 as root, it may be necessary to add
~/bin to your PATH, and ~/man to your MANPATH.

To specify a search path for the include files *.mcu provided, you can
define an optional environment variable ASEM51INC.
For this, bash, ksh, and sh users should insert the following lines into
their .profile file:

 ASEM51INC=/usr/local/share/asem-51/1.3/mcu
 export ASEM51INC

csh, tcsh, and zsh users should insert the following line into their
.login file respectively:

 setenv ASEM51INC /usr/local/share/asem-51/1.3/mcu

If you have installed ASEM-51 in your home directory, ASEM51INC should
point to ~/asem-51/1.3/mcu of course.

To read the HTML manuals, invoke your web browser and bookmark the index page

 /usr/local/share/asem-51/1.3/html/docs.htm (installation as root)
 ~/asem-51/1.3/html/docs.htm (local installation)

Note that you cannot reset your 8051 target system with a PC printer port,
if you haven't installed ASEM-51 as root!
(For details see the BOOT-51 documentation provided.)

If you have installed ASEM-51, but you don't like it, you can easily
uninstall it. If you have installed the rpm package, simply type

 rpm -e asem51

If you have installed the generic tar archive, be sure to uninstall
ASEM-51 under the same user-id you previously used for installation! Run

 uninst51.sh

and that's it.

II.2.3 Linux Command Line Operation

Under Linux, the assembler is invoked by typing:

asem [<options>] <source> [<object> [<listing>]]

where <source> is the 8051 assembler source, <object> is the output
file, and <listing> is the assembler list file.
All file names that are specified explicitly, are left unchanged.
The parameters <object> and <listing> are optional. When omitted, the
<object> file name is derived from the <source> file name, but with
extension ".hex" (or ".omf"). When the <listing> file name is omitted,
it is derived from the <object> file name, but with extension ".lst":

 file extension

-19-
 <object> .hex (with -o option: .omf)
 <listing> .lst

Instead of file names you may also specify device names to redirect the
output to I/O devices. Device names are assumed to start with "/dev/".
Of course no extensions will be added to device names!
It is not checked, whether the device is existing or suitable for the task.
Although it is possible to read the source file from a character device
instead of a file, this cannot be recommended: Since ASEM-51 is a two-pass
assembler, it always reads the source file twice!
The maximum length of a file parameter is limited to 255 characters!

asem recognizes the following options:

 short options | long options
 --------------------------+--------------------------------
 -i path1:path2:path3 | --includes=path1:path2:path3
 -d symbol[:value[:type]] | --define=symbol[:value[:type]]
 -o | --omf-51
 -c | --columns
 -v | --verbose

The short and long options in the same row are equivalent.
Long options may be abbreviated as long as they remain unique.
All option names are case-sensitive!

When the --includes option is used, the assembler searches the specified
path for include files that cannot be found in the working directory.
The path may be any number of directories separated by ':' characters.
The directories will be searched from left to right.
The path, specified with the --includes option, is searched before the
path, defined with the (optional) environment variable ASEM51INC!
The maximum path length is limited to 255 characters.

The --define option is useful for selecting particular program variants
from the command line that have been implemented with conditional assembly.
It allows to define a symbol with a value and a segment type in the
command line. Value and type are optional. The segment type of the symbol
defaults to NUMBER, if omitted. The symbol value defaults to 0, if omitted.
The symbol value may be any numerical constant. The symbol type must be one
of the following characters:

 C = CODE
 D = DATA
 I = IDATA
 X = XDATA
 B = BIT
 N = NUMBER (default)

By default, ASEM-51 generates an object file in Intel-HEX format. When
the --omf-51 option is specified, an absolute OMF-51 module is generated.

Examples:

 0.) asem

 When invoked without parameters, the assembler displays a help screen:

 MCS-51 Family Macro Assembler ASEM-51 V1.3

 usage: asem [options] <source> [<object> [<listing>]]

 options: -i --includes=path1:path2:path3
 -d --define=symbol[:value[:type]]
 -o --omf-51
 -c --columns
 -v --verbose

 1.) asem program.a51

 will assemble the 8051 assembly language program program.a51 and
 produce an Intel-HEX file program.hex and a listing program.lst.

-20-

 2.) asem tarzan.asm jane jungle.prn

 will assemble the 8051 assembly language program tarzan.asm and
 produce an Intel-HEX file jane and a listing jungle.prn.

 3.) asem project eprom

 will assemble the 8051 assembly language program project and
 produce an Intel-HEX file eprom and a listing eprom.lst.

 4.) asem -o rover.a51

 will assemble the 8051 assembly language program rover.a51 and produce
 an absolute OMF-51 object module rover.omf and a listing rover.lst.

 5.) asem sample.a51 /dev/ttyS0 /dev/null

 will assemble the 8051 assembly language program sample.a51, send
 the HEX file output to the serial interface /dev/ttyS0 and suppress
 the list file output by sending it to the /dev/null device.

 6.) asem -i /usr/local/include/asem-51:~/8051/inc app.a51

 will assemble the program app.a51, while all required include
 files will be searched first in the default directory, then in
 /usr/local/include/asem-51, and finally in ~/8051/inc.

 7.) asem --define=Eva_Board:8000H:C universal.a51

 will assemble the program universal.a51, while the CODE symbol
 EVA_BOARD will be predefined with value 8000H during assembly.

When program errors are detected, corresponding error messages are output
to standard error. This may look as follows:

 applicat.a51(14): must be known on first pass
 userbits.inc(6): attempt to divide by zero
 defines.inc(37): symbol not defined
 applicat.a51(20): symbol not defined
 applicat.a51(27): no END statement found

Every error is flagged with the name of the source or include file, the
local line number where it was found, and the error message itself.
This output format provides a hook to run ASEM-51 from third-party IDEs.
A perfect fit may be reached with the --columns option. When specified,
the column numbers of program errors are output additionally after the
line numbers:

 applicat.a51(14,12): must be known on first pass
 userbits.inc(6,27): attempt to divide by zero
 defines.inc(37,18): symbol not defined
 applicat.a51(20,18): symbol not defined
 applicat.a51(27,1): no END statement found

If errors are detected in macro expansion lines, there is no corresponding
location in the source file. Therefore, the error is flagged with the name
of the source or include file, and the local line number from where the
macro expansion has been invoked. (For callable macros this is the line
with the macro call, and for repeat blocks this is the ENDM line.)
To give the user a hint, the macro name and expansion line (and optionally
column) number are inserted before the actual error message:

 uartio.a51(44,1): RECEIVE(3,22): segment type mismatch
 uartio.a51(87,1): REPT(4,19): symbol not defined
 uartio.a51(87,1): REPT(8,19): symbol not defined
 uartio.a51(87,1): REPT(12,19): symbol not defined

-21-

The expansion line number is the number of the expansion line within the
corresponding macro expansion, starting with 1. If the error occurs during
expansion of a repeat block, the keyword REPT replaces the macro name.

By default, ASEM-51 is totally "quiet", if no errors are detected.
If the --verbose option is specified, additional product, version, and
error summary information is written to standard output:

 MCS-51 Family Macro Assembler ASEM-51 V1.3

 uartio.a51(44,1): RECEIVE(3,22): segment type mismatch
 uartio.a51(87,1): REPT(4,19): symbol not defined
 uartio.a51(87,1): REPT(8,19): symbol not defined
 uartio.a51(87,1): REPT(12,19): symbol not defined

 4 errors detected

When terminating, ASEM-51 returns an exit code to the calling process:

 situation exit code

 no errors 0
 program errors detected 1
 fatal runtime error 2

Note: Warnings are also output on standard error,
 but do not influence the exit code!

II.2.4 Linux Environment

To specify a search path for include files, an optional environment variable
ASEM51INC can be defined:

1.) For bash, ksh, and sh:

 ASEM51INC=<path>
 export ASEM51INC

2.) For csh, tcsh, and zsh:

 setenv ASEM51INC <path>

<path> may be any number of directories separated by ':' characters.
Be sure that the whole definition doesn't contain any blanks or tabs!
If ASEM51INC is defined, the assembler searches the specified <path> for
include files that can neither be found in the working directory, nor in
the search path specified with the --includes option.
The <path> directories will be searched from left to right.

Examples:

 1.) bash:
 ASEM51INC=/usr/local/include/asem-51:~/micros/mcs51/inc
 export ASEM51INC

 If include files can neither be found in the working directory,
 nor in the --includes path (if specified), the assembler searches
 next /usr/local/include/asem-51 and finally ~/micros/mcs51/inc.

 2.) csh:
 setenv ASEM51INC /usr/local/include/asem-51

 If ASEM51INC is defined as above in .login, the assembler finally
 searches the directory /usr/local/include/asem-51 for include files.

The maximum length of <path> is limited to 255 characters.

-22-

II.2.5 The HEXBIN Utility

Most EPROM programmers are accepting the Intel-HEX object file format that
is output by ASEM-51. However, for dumb EPROM burners and special purposes
it might be useful to convert the HEX file to a pure binary image file.
For this the conversion utility hexbin is provided.
It is invoked as follows:

 hexbin [<options>] <hexfile> [<binary>]

where <hexfile> is the input file in Intel-HEX format, and <binary> is the
binary output file. All file names that are specified explicitly, are left
unchanged. The parameter <binary> is optional. When omitted, the file name
is derived from the <hexfile>, but with the extension ".bin".
The maximum length of a file parameter is limited to 255 characters!

Instead of file names you may also specify device names to redirect the input
or output to I/O devices. Device names are assumed to start with "/dev/".
Of course no extensions will be added to device names!
It is not checked, whether the device is existing or suitable for the task.

hexbin recognizes the following options:

 short options | long options
 ---------------+---------------------
 -o <offset> | --offset=<offset>
 -l <length> | --length=<length>
 -f <fillbyte> | --fill=<fillbyte>
 -v | --verbose

The short and long options in the same row are equivalent.
Long options may be abbreviated as long as they remain unique.
All option names are case-sensitive!

The binary file output can be controlled with the options --offset,
--fill and --length.
Normally the first byte in the binary file is the first byte of the HEX
record with the lowest load address. If a number of dummy bytes is to be
inserted on top of the file (e.g. for alignment in an EPROM image), this
can be performed with the --offset option:

 --offset=1000

would insert 4096 dummy bytes before the first byte of the first HEX record
loaded. The offset must always be specified as a hex number. The default
offset is 0.
Since there may be peepholes between the HEX records, a fill byte value can
be defined with the --fill option:

 --fill=0

would fill all peepholes between the HEX records with zero bytes as well
as all the dummy bytes that might have been inserted with the --offset or
--length option. The fill byte value must always be specified as a hex
number. The default fill byte is the EPROM-friendly FFH.
By default the last byte in the binary file is the last byte of the HEX
record with the highest load address. If the binary file should have a
well defined length, then a number of dummy bytes can be appended to the
file (e.g. for exactly matching an EPROM length), this can be performed
with the --length option:

 --length=8000

would append as many dummy bytes behind the last byte of the file, that the
total file length becomes exactly 32768 bytes. The file length must always
be specified as a hex number.

By default, hexbin is totally "quiet", if no errors are detected.
If the --verbose option is specified, additional product and version
information, and a file conversion report is written to standard output:

-23-

 Hex File Converter HEXBIN V2.3

 offset: FF0H bytes
 first address: 7FF0H
 last address: 8255H
 fill peepholes with: A5H
 binary image length: 2000H bytes

Examples:

 0.) hexbin

 When invoked without parameters, hexbin displays a help screen:

 Hex File Converter HEXBIN V2.3

 usage: hexbin [options] <hexfile> [<binary>]

 options: -o --offset=<offset>
 -l --length=<length>
 -f --fill=<fillbyte>
 -v --verbose

 1.) hexbin program.hex

 will convert the Intel-HEX file program.hex to a pure binary image file
 program.bin.

 2.) hexbin -f E5 tarzan.obj jungle.bin

 will convert the Intel-HEX file tarzan.obj to a binary image file
 jungle.bin and fill all peepholes between the HEX file records with
 the binary value E5H.

 3.) hexbin --off=8000 -l10000 --fill=0 project.hex eprom

 will convert the Intel-HEX file project.hex to a binary image file
 eprom, insert 32K dummy bytes on top of file, fill all peepholes
 and the dummy bytes with nulls, and extend the file to exactly 64K.

When terminating hexbin returns an exit code to the calling process:

 situation exit code

 no errors 0
 conversion errors detected 1
 fatal runtime error 2

II.3 The DEMO Program

For getting started with a new assembler, it is always helpful to have
a program that can be assembled with it. For this purpose, the 8051
assembler program DEMO.A51 is provided, which can be used for a first
test of the ASEM-51 installation. For this, you should either have installed
ASEM-51 as described above, or keep all files of the ASEM-51 package directly
in your working directory!

Under MS-DOS or in a Windows DOS-Box simply type

 ASEM DEMO
 HEXBIN DEMO

at the DOS prompt. ASEM and HEXBIN should finish without errors and you
should have the following new files on your disk:

 DEMO.HEX Intel-HEX file
 DEMO.LST assembler list file of DEMO.A51
 DEMO.BIN binary image file of DEMO.HEX

-24-
Under Linux type

 asem demo.a51
 hexbin demo.hex

Again asem and hexbin should finish without errors and you should have
the following new files on your disk:

 demo.hex Intel-HEX file
 demo.lst assembler list file of demo.a51
 demo.bin binary image file of demo.hex

If something goes wrong, either ASEM-51 is not properly installed, there
may be files missing in your distribution, or the assembler simply cannot
find the include file 8052.mcu!
demo.a51 may also serve as a sample assembler program that includes examples
for (nearly) all machine instructions, pseudo instructions, assembler
controls, and meta instructions that have been implemented in ASEM-51.
Whenever in doubt how to use a particular command, demo.a51 may be a
valuable help.
Unlike other assemblers, the ASEM-51 list file is no alibi feature!
It is really instructive to compare the original source to the generated
code in the listing.

-25-

III. The ASEM-51 Assembly Language
==================================
The user should be familiar with 8051 microcontrollers and assembly
language programming. This manual will not explain the architecture of
the MCS-51 microcontroller family nor will it discuss the basic concepts
of assembly language programming. It only describes the general syntax
of assembler statements and the assembler instructions that have been
implemented in ASEM-51.

III.1 Statements

Source files consist of a sequence of statements of one of the forms:

 [symbol:] [instruction [arguments]] [;comment]

 symbol instruction argument [;comment]

 $control [(argument)] [;comment]

Everything that is written in brackets is optional.
The maximum length of source code lines is 255 characters.
Everything from the ';' character to the end of line is assumed to be
commentary. Blank lines are considered to be commentary, too.
The lexical elements of a statement may be separated by blanks and tabs.
Aside of character string constants, upper and lower case letters are
equivalent.

Examples: HERE: MOV A,#0FFH ;define label HERE and load A with FFH

 YEAR EQU 1999 ;define symbol for current year

 $INCLUDE (80C517.MCU) ;include SAB80C517 register definitions

III.2 Symbols

Symbols are user-defined names for addresses, numbers or macros.
Their maximum significant length is 31 characters. They can be even
longer, but everything behind the first 31 characters is ignored.
Symbols may consist of letters, digits, '_' and '?' characters.
A symbol name must not start with a digit!
Upper and lower case letters are considered to be equivalent.
Note: Assembly language keywords must not be redefined as user symbols!

Example: Is_this_really_a_SYMBOL_? is a legal symbol name!

-26-

III.3 Constants

Numeric constants consist of a sequence of digits, followed by a radix
specifier. The first character must always be a decimal digit.
The legal digits and radix specifiers are:

 constant digits radix

 binary 0 ... 1 B
 octal 0 ... 7 Q or O
 decimal 0 ... 9 D or none
 hex 0 ... F H

Thus, for example, the following constants are equivalent:

 1111111B binary
 177Q octal
 177o octal
 127 decimal
 127d decimal
 07FH hex

Character constants may be used wherever a numeric value is allowed.
A character constant consists of one or two printing characters enclosed
in single or double quotes. The quote character itself can be represented
by two subsequent quotes. For example:

 'X' 8 bit constant: 58H
 "a@" 16 bit constant: 6140H
 '''' 8 bit constant: 27H

In DB statements, character constants may have any length.
In this case, we call it a character string. For example:

 'This is only text!'

-27-

III.4 Expressions

Arithmetic expressions are composed of operands, operators and parentheses.
Operands may be user-defined symbols, constants or special assembler symbols.
All operands are treated as unsigned 16-bit numbers.
Special assembler symbols, that can be used as operands are:

 AR0, ... , AR7 direct addresses of registers R0 thru R7

 $ the location counter of the currently active segment
 (start address of the current assembler statement)

The following operators are implemented:

Unary operators: + identity: +x = x
 - two's complement: -x = 0-x
 NOT one's complement: NOT x = FFFFH-x
 HIGH high order byte
 LOW low order byte

Binary operators: + unsigned addition
 - unsigned subtraction
 * unsigned multiplication
 / unsigned division
 MOD unsigned remainder
 SHL logical shift left
 SHR logical shift right
 AND logical and
 OR logical or
 XOR exclusive or
 . bit operator used for bit-adressable locations
 EQ or = equal to ----.
 NE or <> not equal to | results are:
 LT or < less than |
 LE or <= less or equal than | 0 if FALSE
 GT or > greater than | FFFFH if TRUE
 GE or >= greater or equal than ____|

Operators that are no special characters but keywords as SHR or AND must
be separated from their operands by at least one blank or tab.
In general expressions are evaluated from left to right according to
operator precedence, which may be overridden by parentheses.
Parentheses may be nested to any level.
Expressions always evaluate to unsigned 16-bit numbers, while overflows
are ignored. When an expression result is to be assigned to an 8-bit
quantity, the high byte must be either 00 or FF.

 Operator precedence:

 () ^ highest
 + - NOT HIGH LOW (unary) |
 . |
 * / MOD |
 SHL SHR |
 + - (binary) |
 EQ = NE <> LT < LE <= GT > GE >= |
 AND |
 OR XOR v lowest

Example: The expression P1.((87+3)/10 AND -1 SHR 0DH) will evaluate to 91H.

-28-

III.5 The 8051 Instruction Set

ASEM-51 implements all 8051 machine instructions including generic jumps
and calls. The assembler implements two instructions

 JMP <address>
 CALL <address>

that do not represent a specific opcode: generic jump and call.
These instructions will always evaluate to a jump or call, not necessarily
the shortest, that will reach the specified address.
JMP may assemble to SJMP, AJMP or LJMP, while CALL can only evaluate to
ACALL or LCALL. Note that the assembler decision may not be optimal. For
code addresses that are forward references, the assembler always generates
LJMP or LCALL respectively. However, for backward references this is a
powerful tool to reduce code size without extra trouble.

With the $PHILIPS control, ASEM-51 can be switched to the reduced instruction
set of the Philips 83C75x family of microcontrollers. This disables the LJMP,
LCALL, and MOVX instructions as well as the XDATA and XSEG pseudo instructions,
and generic jumps and calls will always assemble to absolute addressing.

The rest of the 8051 instruction mnemonics is listed in Appendix D.
Appendices I and J are containing tables of all 8051 instructions with
their opcodes, mnemonics, arguments, lengths, affected flags and durations.
The comprehensive example program DEMO.A51 provided shows all the 8051
instructions in a syntactical context.

For detailed information on the Intel MCS-51 architecture and instruction
set refer to the HTML documentation file MCS51MAN.HTM provided.
(Requires a web-browser and full Internet access!)

All MCS-51 instruction mnemonics are copyright (c) by Intel Corporation!

-29-

III.6 Pseudo Instructions

In the subsequent paragraphs, all ASEM-51 pseudo instructions are described.
Lexical symbols are written in lower case letters, while assembler keywords
are written in upper case.
Instruction arguments are represented by <arg>, <arg1> or something like
that. Numeric expressions are represented by <expr>, <expr1> and so on.
Syntax elements enclosed in brackets are optional.
The ellipsis "..." means always "a list with any number of elements".

DB <arg1> [,<arg2> [,<arg3> ...]] define bytes

 The DB instruction reserves and initializes a number of bytes with
 the values defined by the arguments. The arguments may either be
 expressions (which must evaluate to 8-bit values) or character
 strings of any length. DB is only allowed in the CODE segment!

 Example: DB 19,'January',98,(3*7+12)/11

DW <expr1> [,<expr2> [,<expr3> ...]] define words

 The DW instruction reserves and initializes a number of words with
 the values defined by the arguments. Every argument may be an
 arbitrary expression and requires two bytes of space.
 DW is only allowed in the CODE segment!

 Example: DW 0,0C800H,1999,4711

DS <expr> define space

 Reserves a number of uninitialized bytes in the current segment.
 The value of <expr> must be known on pass 1!
 DS is allowed in every segment, except in the BIT segment!

 Example: DS 200H

DBIT <expr> define bits

 Reserves a number of uninitialized bits.
 The value of <expr> must be known on pass 1!
 DBIT is only allowed in the BIT segment!

 Example: DBIT 16

NAME <symbol> define module name

 Defines a module name for the OMF-51 object file. If no module name
 is defined, the module name is derived from the source file name.
 When generating Intel-HEX file output, the NAME instruction has no
 effect. The module name must be a legal assembler symbol.
 Only one NAME instruction is allowed within the program. The symbol
 however, may be redefined in the subsequent program.

 Example: NAME My_1st_Program

ORG <expr> origin of segment location

 Sets the location counter of the current segment to the value <expr>.
 The value of <expr> must be known on pass 1!
 It must be greater or equal to the segment base address.
 The default value of all location counters at program start is 0.

 Example: ORG 08000H

-30-

USING <expr> using register bank

 Sets the register bank used to <expr>, which must be in the range
 of 0...3. The USING instruction only affects the values of the
 special assembler symbols AR0, ... , AR7 representing the direct
 addresses of registers R0, ... , R7 in the current register bank.
 The value of <expr> must be known on pass 1!
 The default value for the register bank is 0.

 Example: USING 1

END end of program

 This must be the last statement in the source file. After the END
 statement only commentary and blank lines are allowed!

 Example: END ;end of program

<symbol> EQU <expr> define numeric constant
<symbol> EQU <reg> define invariant register
<symbol> SET <expr> define numeric variable
<symbol> SET <reg> define variable register

 The EQU instruction defines a symbol for a numeric constant or a
 register. If a numeric expression <expr> is assigned to the symbol,
 it will be of the type NUMBER. If a register <reg> is assigned to
 the symbol, it will be of the type REGISTER. <reg> may be one of the
 special assembler symbols A, R0, R1, R2, R3, R3, R4, R5, R6, or R7.
 A symbol once defined with EQU can never be changed!
 The SET instruction is working quite similar to EQU. However, symbols
 defined with SET can be redefined with subsequent SET instructions!
 The values of <expr> and <reg> must be known on pass 1!
 A symbol that has been SET, cannot be redefined with EQU!
 A symbol that has been EQU'd cannot be reSET!
 On pass 2, forward references to a SET symbol always evaluate
 to the last value, the symbol has been SET to on pass 1.
 Register symbols can be used as instruction operands within the
 whole program instead of the corresponding registers.
 Forward references to register symbols are not allowed!

 Examples: MAXMONTH EQU 12
 OCTOBER EQU MAXMONTH-2
 COUNTREG EQU R5

 CHAPTER SET 1
 CHAPTER SET CHAPTER+1
 CHAPTER SET A

<symbol> CODE <expr> define ROM address
<symbol> DATA <expr> define direct RAM address
<symbol> IDATA <expr> define indirect RAM address
<symbol> BIT <expr> define bit address
<symbol> XDATA <expr> define external RAM address

 These instructions define symbolic addresses for the five 8051
 memory segments (address spaces). For DATA, IDATA and BIT type
 symbols, the value of <expr> must not exceed 0FFH!
 The value of <expr> must be known on pass 1!
 Once defined with one of the above instructions, the symbols cannot
 be redefined.

 Examples: EPROM CODE 08000H
 STACK DATA 7
 V24BUF IDATA 080H
 REDLED BIT P1.5
 SAMPLER XDATA 0100H

-31-
CSEG [AT <expr>] switch to CODE segment [at address]
DSEG [AT <expr>] switch to DATA segment [at address]
ISEG [AT <expr>] switch to IDATA segment [at address]
BSEG [AT <expr>] switch to BIT segment [at address]
XSEG [AT <expr>] switch to XDATA segment [at address]

 These instructions switch to one of the five 8051 address spaces.
 If a segment base address is specified with "AT <expr>", a new
 absolute segment is started, and the location counter is set to
 <expr>. If "AT <expr>" is omitted, the location counter keeps the
 previous value of the particular segment.
 The value of <expr> must be known on pass 1!
 At program start, the default segment is CODE and the base addresses
 and location counters of all segments are set to zero.

 Examples: DSEG ;switch to previous DATA segment

 CSEG AT 8000h ;start a new CODE segment at address 8000H

 XSEG at 0 ;start a new XDATA segment at address 0

-32-

III.7 Segment Type

Every assembly time expression is assigned a segment type, depending on
its operands and operators. The segment type indicates the address space,
the expression result might belong to, if it were used as an address.
There are six possible segment types:

 CODE
 DATA
 IDATA
 XDATA
 BIT
 NUMBER (typeless)

Most expression results have the segment type NUMBER. That means they are
assumed to be typeless. However, in some cases it may be useful to assign
a particular segment type!
The following six rules apply when the segment type is evaluated:

 1. Numerical constants are always typeless.
 Consequently their segment type is NUMBER.

 2. Symbols are assigned a segment type during definition. Symbols
 that are defined with EQU or SET have no segment type.
 Labels get the segment type of the currently active segment.

 3. The result of a unary operation (+, -, NOT, HIGH, LOW) will have
 the segment type of its operand.

 4. The results of all binary operations (except "+", "-" and ".") will
 have no segment type.

 5. If only one operand in a binary "+" or "-" operation has a segment
 type, then the result will have that segment type, too. In all other
 cases, the result will have no segment type.

 6. The result of the bit operation "." will always have the segment
 type BIT.

Examples:
--------- The following symbols have been defined in a program:

 OFFSET EQU 16
 START CODE 30H
 DOIT CODE 0100H
 REDLED BIT P1.3
 VARIAB4 DATA 20H
 PORT DATA 0C8H
 RELAY EQU 5

 1.) The expression START+OFFSET+3 will have the segment type CODE.
 2.) The expression START+DOIT will be typeless.
 3.) The expression DOIT-REDLED will be typeless.
 4.) The expression 2*VARIAB4 will be typeless.
 5.) The expression PORT.RELAY will have the segment type BIT.

The segment type is checked, when expressions appear as addresses. If the
expression result is not typeless and does not have the segment type of the
corresponding segment, the instruction is flagged with an error message.
The only exceptions are the segment types DATA and IDATA, which are assumed
to be compatible in the address range of 0 to 7FH. Since ASEM-51 does only
support absolute segments, those addresses are really always pointing to the
same physical location in the internal memory.

Example:

 Line I Addr Code Source

 1: N 30 DSEG AT 030H ;internal RAM

-33-
 2: 30 N 01 COUNT: DS 1 ;counter variable
 3:
 4: CSEG ;ROM
 5: 0000 C2 30 START: CLR COUNT
 ^
 @@@@@ segment type mismatch @@@@@

The CLR instruction is flagged with the error message "segment type mismatch"
in the assembler list file, because only a BIT type address is allowed here.
However, COUNT is a label with the segment type DATA!

-34-

III.8 Assembler Controls

ASEM-51 implements a number of assembler controls that influence the
assembly process and list file generation. There are two groups of
controls: primary and general controls.
Primary controls can only be used at the beginning of the program and
remain in effect throughout the assembly. They may be preceded only
by control statements, blank and commentary lines. If the same primary
control is used multiple times with different parameters, the last one
counts.
General controls may be used everywhere in the program. They perform a
single action, or remain in effect until they are cancelled or changed by
a subsequent control statement.
A control statement starts always with a '$' character, followed by one or
more assembler controls.
Assembler controls may have a number or string type operand, which must
always be enclosed in parentheses.
Number type operands are arithmetic expressions that must be known on pass 1.
String type operands are character strings which are enclosed in parentheses
instead of quotes. In analogy to quoted strings, no control characters
(including tabs) are allowed within these strings! The string delimiter ')'
can be represented by two subsequent ')' characters.
If a control statement changes the listing mode, the control statement itself
is always listed in the previous listing mode!
The following table lists all the implemented controls and their abbreviations:

Control Type Default Abbreviation Meaning

$COND G $COND --- list full IFxx .. ENDIF constructions
$NOCOND G --- don't list lines in false branches
$CONDONLY G --- list assembled lines only

$DATE(string) P '' $DA inserts date string into page header

$DEBUG P $NODEBUG $DB include debug information into object
$NODEBUG P $NODB don't include debug information

$EJECT G $EJ start a new page in list file

$ERROR(string) G --- force a user-defined error
$WARNING(string) G --- output a warning message to console

$GEN G $GEN $GE list macro calls and expansion lines
$NOGEN G $NOGE list macro calls only
$GENONLY G $GO list expansion lines only

$INCLUDE(file) G $IC include a source file

$LIST G $LIST $LI list subsequent source lines
$NOLIST G $NOLI don't list subsequent source lines

$MACRO(n) P $MACRO(50) $MR reserve n % of free memory for macros
$NOMACRO P $NOMR reserve all for the symbol table

$MOD51 P $MOD51 $MO enable predefined SFR symbols
$NOMOD51 P $NOMO disable predefined SFR symbols

$NOBUILTIN P list SFR --- don't list predefined symbols

$NOTABS P use tabs --- don't use tabs in list file

$PAGING P $PAGING $PI enable listing page formatting
$NOPAGING P $NOPI disable listing page formatting

$PAGELENGTH(n) P n=64 $PL set lines per page for listing

$PAGEWIDTH(n) P n=132 $PW set columns per line for listing

$PHILIPS P MCS-51 --- switch on 83C75x family support

-35-

$SAVE G $SA save current $LIST/$GEN/$COND state
$RESTORE G $RS restore old $LIST/$GEN/$COND state

$SYMBOLS P $SYMBOLS $SB create symbol table
$NOSYMBOLS P $NOSB don't create symbol table

$TITLE(string) G copyright $TT inserts title string into page header

$XREF P $NOXREF $XR create cross reference
$NOXREF P $NOXR don't create cross reference

The subsequent paragraphs contain detailed explanations of the implemented
controls.

-36-

III.8.1 Primary Controls

$DATE (string) Inserts a date string into the list file page header.
 If $DATE() is specified, the actual date is inserted.
 Date strings will be truncated to a maximum length of
 11 characters.
 Default is: no date string.
 The control has no effect, when the $NOPAGING control has
 been specified.

$DEBUG Includes debug information into the OMF-51 module. When
 generating Intel-HEX file output, $DEBUG has no effect.

$NODEBUG Don't include debug information. (Default!)

$MACRO (n) Save macro definitions and expand macro calls. (Default!)
 Optionally reserve n % of free memory for macro definitions.
 (0 <= n <= 100)
 Default is n=50.
 The control has been implemented for compatibility purposes
 only. In ASEM-51 it has no effect except that it cancels
 the $NOMACRO control.

$NOMACRO Don't save macro definitions and don't expand macro calls.
 Reserve all free memory for the symbol table.
 The control has been implemented for compatibility purposes
 only. In ASEM-51, it only suppresses the macro expansion.

$MOD51 Switches on the built-in 8051 special function register
 and interrupt symbol definitions. (Default!)

$NOMOD51 Switches off the built-in 8051 special function register
 and interrupt symbol definitions. The predefined symbols
 ??ASEM_51 and ??VERSION cannot be switched off!

$PAGING Switches on the page formatting in the list file.
 (Default!)

$NOPAGING Switches off the page formatting in the list file.

$PAGELENGTH (n) Sets the list file page length to n lines.
 (12 <= n <= 65535)
 Default is n=64.
 The control has no effect, when the $NOPAGING control has
 been specified.

$PAGEWIDTH (n) Sets the list file page width to n columns.
 (72 <= n <= 255)
 Default is n=132.

$PHILIPS Switches on the Philips 83C75x family support option.
 This disables the LJMP, LCALL, and MOVX instructions as
 well as the XDATA and XSEG pseudo instructions. Generic
 jumps and calls will always assemble to absolute addressing.

$SYMBOLS Generates the symbol table at the end of the list file.
 (Default!)
 When the $XREF control is active, $SYMBOLS has no effect!

$NOSYMBOLS Suppresses the symbol table at the end of the list file.
 When the $XREF control is active, $NOSYMBOLS has no effect!

$NOBUILTIN Suppresses the predefined (built-in) symbols in the symbol
 table or cross-reference listing for a better survey.
 Only the user-defined symbols are listed.

$NOTABS Expands all tab characters in the list file output to
 blanks.

-37-
$XREF Generates a cross-reference listing instead of a symbol
 table. Note that this slightly slows down assembly, and
 consumes about 67 % more memory space!

$NOXREF Generates a symbol table instead of a cross-reference
 listing. (Default!)

Examples: $NOMOD51 ;switch off 8051 SFR symbol definitions
 $PAGELENGTH(60) ;set page length to 60 lines per page
 $PW(80) ;set page width to 80 characters per line
 $NOSYMBOLS ;no symbol table required
 $NOTABS ;printer doesn't support tab characters
 $DATE(2. 8. 95) ;date of latest version
 $XREF ;generate a cross-reference listing
 $ DEBUG NOPAGING ;include debugging information into OMF-51
 ;modules, and suppress page formatting

III.8.2 General Controls

$COND List full IFxx .. ELSEIFxx .. ELSE .. ENDIF constructions.
 (Default!) The Control is overridden by $NOLIST.

$NOCOND Don't list lines in false IFxx .. ELSEIFxx .. ELSE .. ENDIF
 branches. The Control is overridden by $NOLIST.

$CONDONLY List lines in true IFxx .. ELSEIFxx .. ELSE .. ENDIF
 branches only, without the IFxx, ELSEIFxx, ELSE and ENDIF
 statements itself. The Control is overridden by $NOLIST.

$EJECT Starts a new page in the list file.
 The control has no effect, when the $NOPAGING control has
 been specified.

$ERROR (string) Forces an assembly error with a user-defined error message.
 This is intended to support configuration management and
 can be applied sensefully with conditional assembly only.

$WARNING (string) Outputs a user-defined warning message to the console, and
 increments the warning count. This is also intended to ease
 configuration management.

$GEN List macro calls and expanded macros. (Default!)
 The listing fully shows the nesting of macro calls.
 The Control is overridden by $NOLIST.

$NOGEN List macro calls only. The expanded macros are not listed.
 The Control is overridden by $NOLIST.

$GENONLY List the expanded macro bodies only. Macro calls and EXITM
 statements are not listed.
 The Control is overridden by $NOLIST.

$INCLUDE (file) Includes an external source file into the assembler program
 just behind the $INCLUDE statement. If the include file has
 not been specified with an absolute path, and it cannot be
 found in the default directory, the path specified with the
 /INCLUDES command line option (if present) is searched from
 left to right, and if it cannot be found there either, the
 path specified with the environment variable ASEM51INC (if
 defined) is searched from left to right as well.
 Include files may be nested to any depth.

$LIST List source code lines. (Default!)

$NOLIST Do not list source code lines, provided they do not contain
 errors, until the next $LIST statement occurs.

$SAVE Saves the current $LIST/$GEN/$COND state on a $SAVE-stack.
 $SAVE statements can be nested to any depth.

-38-

$RESTORE Restores a previously saved $LIST/$GEN/$COND state.

$TITLE (string) Inserts a title string into the list file page header.
 Titles may be truncated according to the specified (or
 default) page width.
 Default: ASEM-51 copyright information.
 The control has no effect, when the $NOPAGING control has
 been specified.

Examples: $NOLIST ;switch off listing
 $INCLUDE (8052.MCU) ;include 8052 SFR symbol definition file
 $LIST ;switch on listing
 $TITLE (Computer-Controlled Combustion Unit for Motorcycles)
 $EJ ;new page with new title
 $ERROR(invalid configuration: buffer size > external RAM size)
 $WARNING(int. RAM doesn't meet minimum stack size requirements)
 $SAVE GENONLY CONDONLY ;save old $LIST/$GEN/$COND status, and list
 ;only source lines that are really assembled
 $RESTORE ;restore previous listing mode

III.9 Predefined Symbols

For easy access to the 8051 special function register and interrupt
addresses, ASEM-51 has a number of predefined (built-in) DATA, BIT and
CODE symbols.
These predefined symbols can be switched off with the $NOMOD51 control.
For detailed information on symbols and addresses refer to Appendix C.
For identification of the assembler and its version number, the following
NUMBER type symbols are predefined:

 ??ASEM_51 = 8051H ASEM-51
 ??VERSION = 0130H version 1.3

These two symbols can not be switched off!

-39-

III.10 Conditional Assembly

Conditional assembly allows to assemble or ignore selected parts of code.
This can be used to keep the code for various program variants in a single
source, to ease configuration control and maintenance. Conditional assembly
is also useful to write fancy macros.
The following fourteen meta instructions have been implemented:

 IF <expr> ELSEIF <expr>
 IFN <expr> ELSEIFN <expr>
 IFDEF <symbol> ELSEIFDEF <symbol>
 IFNDEF <symbol> ELSEIFNDEF <symbol>
 IFB <literal> ELSEIFB <literal>
 IFNB <literal> ELSEIFNB <literal>
 ENDIF ELSE

Meta instructions overlay the Intel MCS-51 assembly language, but are not
part of it! C programmers may compare them to C preprocessor commands.
In the subsequent text, IFxx is used as a collective name for the
IF/IFN/IFDEF/IFNDEF/IFB/IFNB instructions. In analogy ELSEIFxx is used as a
collective name for the ELSEIF/ELSEIFN/ELSEIFDEF/ELSEIFNDEF/ELSEIFB/ELSEIFNB
instructions (not including ELSE).

III.10.1 General IFxx Construction

Simple IFxx ... ENDIF constructions can be used to assemble a number of
enclosed statements only, if a particluar condition is met:

 IFxx <condition>
 <statement 1>
 <statement 2>
 . ;assembled if <condition> is TRUE
 .
 <statement n>
 ENDIF

The statements 1 through n are assembled if <condition> is TRUE, otherwise
they are ignored.

If it should be possible to select two variants of code depending on a
particular condition, this can be done with an IFxx .. ELSE .. ENDIF
construction. If the <condition> in the IFxx statement is TRUE, then
statements 1 to n are assembled and the statements n+1 to n+m are ignored.

 IFxx <condition>
 <statement 1>
 . ;assembled if <condition> is TRUE
 <statement n>
 ELSE
 <statement n+1>
 . ;assembled if <condition> is FALSE
 <statement n+m>
 ENDIF

Should <condition> be FALSE, it is exactly vice versa! That means the
statements 1 to n are ignored and the statements n+1 to n+m are assembled.
This works also, if the IFxx or ELSE branches contain no statements at all.

Whenever more than two cases have to be distinguished, a corresponding number
of ELSEIFxx branches can be inserted between the IFxx and the ELSE branch.
In such an IFxx .. ELSEIFxx .. ELSE .. ENDIF construction, only the statements
in the branch with the first TRUE condition are assembled. The statements in
all other branches are ignored.
If none of the conditions is TRUE, only the statements in the ELSE branch
(if any) are assembled.

 IFxx <condition 1>
 . ;assembled if <condition 1> is TRUE
 .

-40-
 ELSEIFxx <condition 2>
 . ;assembled if <condition 1> is FALSE,
 . ;and <condition 2> is TRUE
 ELSEIFxx <condition 3>
 . ;assembled if <condition 1> and
 . ;<condition 2> are FALSE, and
 . ;<condition 3> is TRUE
 .
 .
 ELSEIFxx <condition n>
 . ;assembled if <condition 1> thru
 . ;<condition n-1> are FALSE and
 . ;<condition n> is TRUE
 ELSE
 . ;assembled if <condition 1> thru
 . ;<condition n> are FALSE
 ENDIF

IFxx ... ELSEIFxx ... ELSE ... ENDIF constructions may be nested to any depth!
The listing mode of those constructions can be set with the $COND, $NOCOND and
$CONDONLY controls.

III.10.2 IFxx and ELSEIFxx Instructions

The particular IFxx instructions are working as follows:

IF <expr> The IF condition is TRUE, if the expression <expr> is not
 equal to 0. The value of <expr> must be known on pass 1!

IFN <expr> The IFN condition is TRUE, if the expression <expr> is
 equal to 0. The value of <expr> must be known on pass 1!

IFDEF <symbol> The IFDEF condition is TRUE, if the <symbol> is defined in
 the program. Forward references to <symbol> are not allowed!

IFNDEF <symbol> The IFNDEF condition is TRUE, if the <symbol> is not defined
 in the program. Forward references to <symbol> are not allowed!

IFB <literal> The IFB (if blank) condition is TRUE, if the <literal> is
 empty. <literal> is a string, enclosed in angle brackets.

IFNB <literal> The IFNB (if not blank) condition is TRUE, if the <literal> is
 not empty. <literal> is a string, enclosed in angle brackets.

 Although the IFB and IFNB statements are valid also outside of
 macros, they can be applied sensefully in macro bodies only.
 Usually they are used to decide, whether macro arguments have
 been left blank, or not.

The corresponding ELSEIFxx instructions are working respectively.

Example 1: IF .. ELSE .. ENDIF construction

 TARGET EQU 0 ;configuration: 1 for application board
 ;-------------- 0 for evaluation board
 IF TARGET
 ORG 0 ;program start address of application board
 ELSE
 ORG 8000H ;program start address of evaluation board
 ENDIF

 Currently the program is configured for the evaluation board
 version.

Example 2: IFNDEF .. ELSE .. ENDIF construction

 ;EVA_537 EQU 0 ;symbol undefined: 80C537 application board
 ;symbol defined: 80C537 evaluation board
 IFNDEF EVA_537

-41-
 CLOCK EQU 16 ;clock frequency of application board
 CSEG AT 0 ;program start address of application board
 ELSE
 CLOCK EQU 12 ;clock frequency of evaluation board
 CSEG AT 8000H ;program start address of evaluation board
 ENDIF

 Currently the program is configured for the application board
 version.

Example 3: IFB .. ELSE .. ENDIF construction

 DECIDE MACRO X, Y
 IFB <X&Y>
 NOP
 NOP
 ELSE
 DB '&X,&Y'
 ENDIF
 ENDM

 If the above macro is invoked as follows,

 DECIDE Nonsense

 the parameter X will be replaced by "Nonsense" and the
 parameter Y by a zero length string. Thus the IFB literal
 becomes <Nonsense>, and the macro will be expanded to:

 DB 'Nonsense,'

 If the macro will be invoked without arguments,

 DECIDE

 the parameters X and Y will be replaced by zero length
 strings both, and the IFB literal becomes <>. Thus the
 macro will be expanded to:

 NOP
 NOP

 Macros are explained in detail in chapter
 "III.11 Macro Processing".

Example 4: IFNDEF .. ELSEIF .. ELSEIF .. ELSE .. ENDIF construction

 The symbol BAUDRATE serves to define the UART baudrate:

 IFNDEF BAUDRATE
 LJMP AUTOBAUD ;automatic baudrate detection
 ELSEIF BAUDRATE EQ 9600
 MOV TH1, #0FDH ;9600 baud
 ELSEIF BAUDRATE EQ 1200
 MOV TH1, #0E8H ;1200 baud
 ELSE
 $ERROR(baudrate not implemented)
 ENDIF

 If the symbol BAUDRATE is not defined at all, a jump to
 the label AUTOBAUD is performed.
 If the symbol BAUDRATE is defined with one of the legal
 values 9600 or 1200, timer 1 is initialized accordingly.
 If the symbol BAUDRATE is defined with another value, a
 corresponding user-defined error message is generated.

-42-

III.11 Macro Processing

Macros allow to combine basic assembler instructions to "super commands".
For this, macros are defined as blocks of code, which can be used in a
program, wherever it is desired.
However, an advanced macro design with parameters, local symbols and macro
operators, combined with conditional assembly, goes far beyond this basic
functionality!
With only five keywords (MACRO, REPT, ENDM, EXITM, LOCAL) and some control
characters the ASEM-51 macro processor provides a variety of powerful tools.
These five meta instructions are not part of the Intel MCS-51 assembly
language, but overlay it, as already known from conditional assembly.
There are two sorts of macros: callable macros and repeat blocks.

III.11.1 Simple Callable Macros

Macros must first be defined, before they can be called in a program.
A simple macro definition consists of the macro name, which can be defined
with the keyword MACRO, the macro body, and a final ENDM (end macro)
instruction.

 <macro name> MACRO
 <body line 1>
 <body line 2>
 .
 .
 <body line m>
 ENDM

The macro name must be a valid, unique symbol. It cannot be redefined later.
Keywords cannot be used as macro names.
The macro body may comprise any number of lines. Body lines may be all kinds
of assembler instructions, pseudo instructions, controls, meta instructions,
macro calls and even further macro definitions.
The macro body and the whole macro definition is terminated with the ENDM
instruction.
Macros must be defined, before they can be called. Forward references to
macros are not allowed. Once defined, a macro can be called by its name in
the subsequent program as often as desired. Whenever a macro is called, the
macro body will be "inserted" into the program and then assembled as normal
source lines. This process is called macro expansion.

Example: MY_FIRST MACRO ;definition
-------- MOV A,#42
 ADD A,R5
 ENDM

 MY_FIRST ;call

 After the call of the macro MY_FIRST, the body lines

 MOV A,#42
 ADD A,R5

 are inserted into the program and assembled.

III.11.2 Macro Parameters

Callable macros may have parameters, to allow more flexible use.
The names of the formal parameters are specified in the macro definition
behind the keyword MACRO, separated by commas. All parameter names of a
macro must be different, valid symbols. Keywords cannot be used as
parameter names. Macros may have any number of parameters, as long as they
fit on one line. Parameter names are local symbols, which are known within
the macro only. Outside the macro they have no meaning!

 <macro name> MACRO <parameter 1>, <parameter 2>, ... ,<parameter n>
 <body line 1>

-43-
 <body line 2>
 .
 .
 <body line m>
 ENDM

When called, actual arguments can be passed to the macro. The arguments
must be separated by commas. Valid macro arguments are

 1. arbitrary sequences of printable characters, not containing blanks,
 tabs, commas, or semicolons

 2. quoted strings (in single or double quotes)

 3. single printable characters, preceded by '!' as an escape character

 4. character sequences, enclosed in literal brackets < ... >, which may
 be arbitrary sequences of valid macro arguments (types 1. - 4.),
 blanks, commas and semicolons

 5. arbitrary sequences of valid macro arguments (types 1. - 4.)

 6. expressions preceded by a '%' character

Note: The keywords MACRO, EQU, SET, CODE, DATA, IDATA, XDATA, BIT, and
 the ':' character cannot be passed as the first macro argument,
 because they always start a symbol definition!
 Therefore they must be enclosed in literal brackets < ... >.

During macro expansion, these actual arguments replace the symbols of the
corresponding formal parameters, wherever they are recognized in the macro
body. The first argument replaces the symbol of the first parameter, the
second argument replaces the symbol of the second parameter, and so forth.
This is called substitution.
Without special assistance, the assembler will not recognize a parameter
symbol if it

 - is part of another symbol

 - is contained in a quoted string

 - appears in commentary

Example 1: MY_SECOND MACRO CONSTANT, REGISTER
---------- MOV A,#CONSTANT
 ADD A,REGISTER
 ENDM

 MY_SECOND 42, R5

 After calling the macro MY_SECOND, the body lines

 MOV A,#42
 ADD A,R5

 are inserted into the program, and assembled.
 The parameter names CONSTANT and REGISTER have been
 replaced by the macro arguments "42" and "R5".

The number of arguments, passed to a macro, can be less (but not greater)
than the number of its formal parameters. If an argument is omitted, the
corresponding formal parameter is replaced by an empty string.
If other arguments than the last ones are to be omitted, they can be
represented by commas.

Example 2: The macro OPTIONAL has eight formal parameters:

 OPTIONAL MACRO P1,P2,P3,P4,P5,P6,P7,P8
 .
 .
 <macro body>

-44-
 .
 .
 ENDM

 If it is called as follows,

 OPTIONAL 1,2,,,5,6

 the formal parameters P1, P2, P5 and P6 are replaced by the
 arguments 1, 2, 5 and 6 during substitution. The parameters
 P3, P4, P7 and P8 are replaced by a zero length string.

For more flexible macro design, there must be a possibility to recognize
empty macro arguments, and to branch the macro expansion accordingly.
This can be performed with conditional assembly, using the IFB and IFNB
meta instructions. (See chapter "III.10.2 IFxx and ELSEIFxx Instructions".)

III.11.3 Repeat Macros

Repeat macros don't have a macro name, and therefore cannot be called
multiple times. They are always expanded immediately after their definition.
During expansion, their macro body is repeated n times (0 <= n <= 65535).
Repeat macros start with the keyword REPT, followed by an expression, which
must be known on pass 1. In analogy to callable macros, there is a macro
body, which must be terminated with an ENDM instruction:

 REPT <expression>
 <body line 1>
 <body line 2>
 .
 .
 <body line m>
 ENDM

The expression value specifies how many times the macro body is to be
repeated. Since repeat macros start with the keyword REPT, they are
sometimes also called "REPT blocks".

Example: REPT 5
-------- NOP
 ENDM

 This REPT block will expand to five NOP instructions
 immediately after its definition:

 NOP
 NOP
 NOP
 NOP
 NOP

III.11.4 Local Symbols

Local symbols are symbols, which are only known within a macro body, but not
outside the macro. Symbols that are defined for the whole program, will
subsequently be called "global symbols" for better understanding.
We are already familiar with a special case of local symbols: formal macro
parameters. They appear in the macro definition only. Since they are
substituted during macro expansion, we don't have further problems with them.
But what happens with symbols that are defined in a macro body?

Example 1: The following simple macro is intended to read a character
---------- from the 8051 UART, and to return it in A:

 RECEIVE MACRO
 UARTIN: JNB RI,UARTIN
 MOV A,SBUF
 CLR RI
 ENDM

-45-
 This will work only once! If the macro RECEIVE is called
 multiple times, the label UARTIN will be multiply defined.

This can be solved by simply declaring the symbol UARTIN local.
For this, the LOCAL statement has been introduced. After the keyword
LOCAL, a list of local symbols can be specified, separated by commas.
These symbols will only be valid inside the macro that contains the LOCAL
statement. LOCAL statements may only be placed directly after the MACRO
or REPT statement, preceding the first body line. They may contain any
number of local symbols. The macro body may be preceded by an arbitrary
number of LOCAL statements.
Local symbols must be valid symbols, unique within the macro, and different
from the formal parameters (if any). Keywords cannot be used as local symbol
names. If a local symbol has the same name as a global symbol, the local
scope takes precedance during substitution.
When a macro is expanded, its local symbols are always substituted: the
formal parameters are replaced by the macro arguments, and the local symbols
that have been declared in a LOCAL statement are replaced by unique, global
symbol names, which the assembler generates during every expansion. These
have always the format ??xxxx, where xxxx is a unique symbol number.

Example 2: After a redesign of our previous macro RECEIVE using
---------- local symbols, it is looking as follows:

 RECEIVE MACRO
 LOCAL UARTIN
 UARTIN: JNB RI,UARTIN
 MOV A,SBUF
 CLR RI
 ENDM

 Enhanced as shown above, the macro will work correctly,
 as often as desired. When RECEIVE is called for the first
 time, the local symbol UARTIN will be replaced by ??0000,

 ??0000: JNB RI,??0000
 MOV A,SBUF
 CLR RI

 when it is called for the second time, UARTIN will be
 replaced by ??0001, and so on:

 ??0001: JNB RI,??0001
 MOV A,SBUF
 CLR RI

However, it is recommended not to define global symbols in the format ??xxxx,
to avoid name conflicts with substituted local symbols from expanded macros.

III.11.5 Macro Operators

There are some special control characters, which are very useful for macro
definition, call and expansion:

;; Macro commentary:
 Normally, comments in body lines are also contained in the expanded
 lines. If a commentary begins with ';;' however, it is not stored
 during macro definition. Therefore, it doesn't consume memory space,
 and appears in the list file in the macro definition only, but not
 in the expanded lines.

! Literal operator:
 If the escape character '!' precedes another printable character in
 a macro argument, the assembler is forced to treat that character
 literally. This means it will be passed to the macro, even if it is
 a control character, while the literal operator itself is removed.

< > Literal brackets:
 If a macro argument is intended to contain separation or control
 characters, it must be enclosed in literal brackets < ... > to pass
 it to the macro as one argument string, while the outermost pair of

-46-
 brackets is removed. Literal brackets can be nested to any depth.

% Evaluation:
 If a macro argument is preceded by the evaluation operator '%', it
 is interpreted as an expression, which will be evaluated before it
 is passed to the macro. The actual argument string will not be the
 expression itself, but a decimal ASCII representation of its value.
 The expression must be known on pass 1.

& Substitution:
 The '&' character separates parameter names (local symbols) from
 surrounding text. Outside quoted strings and commentary it serves
 only as a general separation character. This applies always when
 a local symbol directly precedes or follows another alphanumeric
 string. Inside quoted strings and commentary, a local symbol must
 be preceded by '&' if it is to be substituted there.
 During every macro expansion, the assembler removes exactly one '&'
 from every sequence of '&' characters. This allows for example, to
 define a nested macro inside a macro body, which also uses the
 substitution operator '&': one writes simply '&&'!

Example 1: The commentary should only be visible in the definition
---------- of the macro LICENSE:

 LICENSE MACRO
 DB 'Copyright' ;;legal stuff
 ENDM

 When called, the expanded macro body is looking
 like this in the list file:

 DB 'Copyright'

Example 2: SPECIAL !;

 passes a semicolon to the macro SPECIAL as a literal
 argument. This could also be done with

 SPECIAL <;>

Example 3: The macro CONST defines a 16-bit constant in ROM:

 CONST MACRO NUMB
 DW NUMB
 ENDM

 If it is called as shown below,

 CONST 0815H+4711-42

 the parameter NUMB would be substituted as follows:

 DW 0815H+4711-42

 If the same macro argument is preceded by a '%' however,

 CONST %0815H+4711-42

 the substitution will result in:

 DW 6738

Example 4: During substitution, both arguments of the macro CONCAT
---------- should form a seamless symbol name:

 CONCAT MACRO NAM, NUM
 MOV R3,#0
 NAM&NUM: DJNZ R3,NAM&NUM
 ENDM

 When CONCAT is called as follows,

-47-
 CONCAT LABEL, 08

 the parameters NAM and NUM are substituted during macro
 expansion as shown below:

 MOV R3,#0
 LABEL08: DJNZ R3,LABEL08

III.11.6 Premature End of a Macro Expansion

Sometimes it is useful, if a macro expansion can be terminated, before
the end of the macro body is reached. This can be forced with the EXITM
(exit macro) instruction. However, this makes sense in conjunction with
conditional assembly only.

Example: FLEXIBLE MACRO QUANTITY
-------- DB 'Text'
 IF QUANTITY LE 255
 EXITM
 ENDIF
 DW QUANTITY
 ENDM

 The macro FLEXIBLE always has to insert the string 'Text'
 into the CODE space. After that, it should insert a 16-bit
 constant only, if the numerical value of the parameter
 QUANTITY is greater than 255.
 Otherwise the macro expansion should be terminated with
 EXITM before. If the macro is called as follows,

 FLEXIBLE 42

 it will be expanded to

 DB 'Text'

 in list mode $GENONLY/$CONDONLY.
 However, if it is called like this,

 FLEXIBLE 4711

 it will be expanded to:

 DB 'Text'
 DW 4711

When a macro expansion is terminated with EXITM, all IFxx constructions that
have been opened within the macro body so far, are closed.
Of course macro bodies may also contain control statements. If an include
file is inserted into a macro body with a $INCLUDE control, and this include
file, or a nested include file, contains an EXITM instruction, all include
file levels up to the next macro level are closed at this point, and the
expansion of that macro is terminated immediately.

III.11.7 Nested and Recursive Macro Calls

Macro bodies may also contain macro calls, and so may the bodies of those
called macros, and so forth.
If a macro call is seen throughout the expansion of a macro, the assembler
starts immediately with the expansion of the called macro. For this, its
its expanded body lines are simply inserted into the expanded macro body of
the calling macro, until the called macro is completely expanded. Then the
expansion of the calling macro is continued with the body line following
the nested macro call.

Example 1: INSIDE MACRO
---------- SUBB A,R3
 ENDM

 OUTSIDE MACRO

-48-
 MOV A,#42
 INSIDE
 MOV R7,A
 ENDM

 In the body of the macro OUTSIDE, the macro ISIDE is called.
 If OUTSIDE is called (and the list mode is set to $GENONLY),
 one gets something like the following expansion:

 Line I Addr Code Source

 15+ 1 0000 74 2A MOV A,#42
 17+ 2 0002 9B SUBB A,R3
 18+ 1 0003 FF MOV R7,A

Since macro calls can be nested to any depth (while there is free memory),
the macro expansion level is shown in the I-column of the list file.
Since macro and include file levels can be nested in arbitrary sequence and
depth, the nesting level is counted through all macro and include file
levels regardless. For better distinction, the character following the
global line number is ':' for include file levels, and '+' for macro levels.

If macros are calling themselves, one speaks of recursive macro calls.
In this case, there must be some stop criterion, to prevent the macro of
calling itself over and over until the assembler is running out of memory!
Here again, conditional assembly is the solution:

Example 2: The macro COUNTDOWN is to define 16-bit constants from
---------- 1 thru n in descending order in ROM. n can be passed to
 the macro as a parameter:

 COUNTDOWN MACRO DEPTH
 IF DEPTH GT 0
 DW DEPTH
 COUNTDOWN %DEPTH-1
 ENDIF
 ENDM

 If COUNTDOWN is called like this,

 COUNTDOWN 7

 something like the following macro expansion results
 (in list mode $GENONLY/$CONDONLY):

 Line I Addr Code Source

 16+ 1 0000 00 07 DW 7
 19+ 2 0002 00 06 DW 6
 22+ 3 0004 00 05 DW 5
 25+ 4 0006 00 04 DW 4
 28+ 5 0008 00 03 DW 3
 31+ 6 000A 00 02 DW 2
 34+ 7 000C 00 01 DW 1

After the Dark Ages, when the dust was settling and the sun broke through
the gloom, computer science discovered the method of recursive programming.
There was no doubt that this was the SOLUTION!
And the computer scientists started to explain this to the students.
But it seemed that the students didn't get it. They always complained
that recursive calculation of n! is a silly example indeed.
All the scientists felt stronly that there was still something missing.
After 10 more years of hard research work, they also found the PROBLEM:

Example 3: The Towers of Hanoi

 There are three vertical sticks on the table. On stick 1
 there are n discs with different diameters and a hole in
 the middle, the smallest disc on top, the biggest on the
 bottom.

 Stick 1 Stick 2 Stick 3

-49-

 | | |
 Disc 1 ===|=== | |
 Disc 2 =====|===== | |
 Disc n =======|======= | |
 __________|________________|________________|__________
 ///

 The PROBLEM is to transfer the tower of discs from stick 1
 to stick 2 with a minimum of moves. But only the topmost
 disc on a tower may be moved at one time, and no disc may
 be layed on a smaller disc. Stick 3 may be used for scratch
 purposes. This is a SOLUTION with ASEM-51 macros:

 ;The Towers of Hanoi

 $GENONLY CONDONLY

 DISCS EQU 3 ;number of discs

 HANOI MACRO n, SOURCE, DESTINATION, SCRATCH
 IF n > 0
 HANOI %(n-1), SOURCE, SCRATCH, DESTINATION
 ; move topmost disc from stick &SOURCE to stick &DESTINATION
 HANOI %(n-1), SCRATCH, DESTINATION, SOURCE
 ENDIF
 ENDM

 HANOI DISCS, 1, 2, 3

 END

 The recursive macro HANOI generates an instruction manual
 for the PROBLEM, where the instructions appear as comment
 lines in the list file. The symbol DISCS must be set to
 the desired number of discs. If HANOI is called like this,

 HANOI 3, 1, 2, 3

 the following "instruction manual" is generated:

 27+ 3 ; move topmost disc from stick 1 to stick 2
 35+ 2 ; move topmost disc from stick 1 to stick 3
 44+ 3 ; move topmost disc from stick 2 to stick 3
 53+ 1 ; move topmost disc from stick 1 to stick 2
 64+ 3 ; move topmost disc from stick 3 to stick 1
 72+ 2 ; move topmost disc from stick 3 to stick 2
 81+ 3 ; move topmost disc from stick 1 to stick 2

 The GENONLY and CONDONLY controls ensure that the table
 doesn't contain all the macro calls and IF constructions.

Exercise 1: Modify the macro HANOI so that it is generating a move
 table in ROM, which could directly be used as an input
 for an 8051-controlled robot-arm that really plays the
 game with 3 real sticks and n real discs.
 n
Exercise 2: Prove that the minimum number of moves is 2 - 1. ;-)

III.11.8 Nested Macro Definitions

A macro body may also contain further macro definitions. However, these
nested macro definitions aren't valid until the enclosing macro has been
expanded! That means, the enclosing macro must have been called, before
the nested macros can be called.

Example 1: A macro, which can be used to define macros with arbitrary
---------- names, may look as follows:

 DEFINE MACRO MACNAME
 MACNAME MACRO

-50-
 DB 'I am the macro &MACNAME.'
 ENDM
 ENDM

 In order not to overload the example with "knowhow", :-)
 the nested macro only introduces itself kindly with
 a suitable character string in ROM. The call

 DEFINE Obiwan

 would define the macro

 Obiwan MACRO
 DB 'I am the macro Obiwan.'
 ENDM

 and the call

 DEFINE Skywalker

 would define the following macro:

 Skywalker MACRO
 DB 'I am the macro Skywalker.'
 ENDM

Example 2: A macro is to insert a variable number of NOPs into the
---------- program. For this, a macro with a nested REPT block seems
 to be best-suited:

 REPEAT MACRO NOPS
 REPT NOPS
 NOP
 ENDM
 ENDM

 The macro call

 REPEAT 4

 results in something like that:

 Line I Addr Code Source

 9+ 1 N 0004 REPT 4
 10+ 1 NOP
 11+ 1 ENDM
 12+ 2 0000 00 NOP
 13+ 2 0001 00 NOP
 14+ 2 0002 00 NOP
 15+ 2 0003 00 NOP

III.11.9 Representation in the List File
--
Sometimes macro expansions tend to produce much more listing lines than
resulting code. To list or not to list - that is the question!
The requirements to either get a better overall view or more detailed
information may vary in different development phases or program sections.
To always get the best results, a number of general controls has been
introduced, which influence the representation of macro expansions and IFxx
constructions in the list file (see chapter "III.8 Assembler Controls"):

Control Type Default Abbreviation Meaning
--
$GEN G $GEN $GE list macro calls and expansion lines
$NOGEN G $NOGE list macro calls only
$GENONLY G $GO list expansion lines only
--
$COND G $COND --- list full IFxx .. ENDIF constructions
$NOCOND G --- don't list lines in false branches
$CONDONLY G --- list assembled lines only

-51-
--
$SAVE G $SA save current $LIST/$GEN/$COND state
$RESTORE G $RS restore old $LIST/$GEN/$COND state

-52-

IV. Compatibility with the Intel Assembler
==
With their cross assembler ASM51, Intel has defined and implemented a
suitable assembly language for the MCS-51 family, which has always been
the only real standard in the 8051 world.
Unfortunately, Intel has announced the "end of life" of ASM51 (final
version 2.3) and all the other Intel MCS-51 development tools to the
end of 1993.
The ASEM-51 assembly language is a subset of the Intel standard that
guarantees maximum compatibility with existing 8051 assembler sources.
It implements all 8051 instruction mnemonics as well as a rich and useful
subset of the Intel pseudo instructions and assembler controls.

IV.1 Restrictions

Since ASEM-51 generates an Intel-HEX file (or absolute OMF-51) output
instead of relocatable object modules, the whole source code of an 8051
application program has to reside in one single file. Consequently all
pseudo instructions that deal with relocatable segments or external or
public symbols, have not been implemented:

 PUBLIC
 EXTRN
 SEGMENT
 RSEG

Intel-style macros are not supported! (Thus the '%' character can be used in
comments.)
Up to now only the following assembler controls and their abbreviations have
been implemented:

 | primary controls abbrev. | general controls abbrev.
---------+-----------------------------------+-----------------------------
 | $DATE (<string>) $DA | $EJECT $EJ
 | $DEBUG $DB | $GEN $GE
 | $NODEBUG $NODB | $NOGEN $NOGE
 | $MACRO (<percent>) $MR | $GENONLY $GO
 | $NOMACRO $NOMR | $INCLUDE (<file>) $IC
Intel- | $MOD51 $MO | $LIST $LI
 | $NOMOD51 $NOMO | $NOLIST $NOLI
controls | $PAGING $PI | $SAVE $SA
 | $NOPAGING $NOPI | $RESTORE $RS
 | $SYMBOLS $SB | $TITLE (<string>) $TT
 | $NOSYMBOLS $NOSB |
 | $PAGELENGTH (<lines>) $PL |
 | $PAGEWIDTH (<columns>) $PW |
---------+-----------------------------------+-----------------------------
 | $NOBUILTIN ----- | $COND -----
ASEM-51 | $NOTABS ----- | $NOCOND -----
controls | $PHILIPS ----- | $CONDONLY -----
 | | $ERROR (<string>) -----
 | | $WARNING (<string>) -----

IV.2 Extensions

Assembler controls need not start in column 1, but may be preceded by any
number of blanks and tabs. Primary controls may also be preceded by comment
lines and $INCLUDE statements, provided the corresponding include files are
only containing other control statements and commentary.
The source file may contain blank and comment lines behind the END statement.
Character strings may also be enclosed in double quotes.
The DATA symbol for the special function register PCON is predefined.
The bit operator '.' is legal in all expressions, not only in those that
have to match the segment type BIT.

ASEM-51 introduces a set of meta instructions, which overlay the Intel MCS-51
assembly language, but are not part of it!
The meta instructions IFxx, ELSEIFxx, ELSE, and ENDIF allow conditional

-53-
assembly, while the meta instructions MACRO, REPT, ENDM, EXITM, and LOCAL
(and some control characters) form a powerful macro processing language.
For detailed information on meta instructions see chapters
"III.10 Conditional Assembly" and "III.11 Macro Processing".

IV.3 Further Differences

To make semantics unique, especially the precedence of unary operators in
expressions is slightly different. Furthermore, expressions with a bit
operation "." evaluate to a BIT type result, not to NUMBER. The segment
type of symbols that are defined with EQU or SET evaluates always to NUMBER.
Otherwise it might be difficult in some cases, to force the definition of
typeless symbols. This is described in detail in chapters "III.4 Expressions"
and "III.7 Segment Type".
Except in DB instructions, the zero length string constant '' is illegal.
The $NOMOD51 control disables also the predefined CODE addresses.
The special assembler symbols AR0...AR7 are predefined for bank 0 before
the first USING statement occurs.

-54-

V. List File Format
===================
The ASEM-51 list file format has been designed to give the user as much
information about the generated code as possible.
Besides the source code listed, there are five basic layout structures
in the listing:

 - the page header
 - the file header
 - the line headings
 - the error diagnosis
 - the symbol table or cross-reference listing

Normally, every page of the listing starts with a page header as shown below:

ASEM-51 V1.3 Copyright (c) 2001 by W.W. Heinz PAGE 1

It identifies the assembler, contains the copyright information and shows the
actual page number at the right margin. After the page header, source lines
are output in the list file format. When the maximum number of lines per page
is reached, another page header is output after a form feed character.
If your printer doesn't support form feeds, the page header can be
suppressed with the $NOPAGING control. The number of lines per page can be
adjusted to the paper format with the $PAGELENGTH control. The width of the
page header (and all other lines) can be set with the $PAGEWIDTH control.

The file header appears only on the first page. It identifies the assembler,
lists all input and output files and marks the columns for the line headings.
A typical file header is looking as shown below:

 MCS-51 Family Macro Assembler A S E M - 5 1 V 1.3
 ===

 Source File: demo.a51
 Object File: demo.hex
 List File: demo.lst

 Line I Addr Code Source

Directly after the file header starts the listing of the source code lines.
Every source code line is preceded by a line heading. The line heading
consists of four columns: line number, include file or macro level, line
address, and generated code.
By default the line headings contain tab characters to save disk space.
If your printer or file browser doesn't support tabs, they can be expanded
to blanks with the $NOTABS control.

The column "Line" contains the global line number. It is not necessarily
the local line number within the particular source file, but a global line
number that is counted over the main source, all include files, and all
macro expansion lines.
Since include files and macros can be nested arbitrarily, the global line
number is terminated by a ':' character for the main source and all include
file levels, and with a '+' character for macro expansion levels.

The column "I" flags the level of include file or macro nesting. In the main
source, this column is empty. The first include file gets level 1. If this
include file includes another include file, this one gets level 2, and so on.
This is also valid for nested macro calls. If a macro is called in the main
source, its expansion lines get level 1. If this macro calls another one, it
gets level 2, and so forth.
Include file and macro levels can be nested in any sequence and to any depth!

-55-

The column "Addr" shows the start address of the listed line in the currently
active segment (8051 address space). All addresses are represented as hex
numbers. The addresses in the CODE and XDATA segments are four-digit numbers.
Addresses in all other segments are two-digit numbers. For lines that cannot
be assigned to a particular segment, the "Addr" field is left blank.

The "Code" column may contain up to four bytes of generated code, which is
sufficient for all 8051 instructions. The code is listed in hex byte
quantities starting from the left margin of the "Code" column.
However, the code generated for DB and DW instructions may be longer than
four bytes. In these cases, the source code line is followed by additional
line headings until the whole code of the line is listed.
The "Code" column does not always contain code that consumes space in the
8051 CODE segment. In contrast to many other assemblers, ASEM-51 lists the
evaluation results of all expressions that may appear in pseudo instructions
or assembler controls. These values are listed in hex representation at the
right margin of the "Code" column. The segment type of those expressions is
flagged with one single character at the left margin of the "Code" column:

 C CODE
 D DATA
 I IDATA
 X XDATA
 B BIT
 N typeless number
 R register

The "Source" column finally contains the original source code line.
A typical source code listing is looking as follows:

 Line I Addr Code Source

 1: ;A sample List File Demo Program
 2: ;-------------------------------
 3: $NOMOD51 ;no 8051 SFR
 4: N 004F $PAGEWIDTH (79) ;79 columns per line
 5: $NOTABS ;expand tabs
 6: N 90 P1 DATA 090H ;port 1 address
 7: B 93 INPUT BIT P1.3 ;pulse input
 8:
 9: N 8000 ORG 08000H ;set location counter
 10: 8000 80 20 SJMP START ;jump to start address
 11:
 12: 8002 01 07 DB 1,7 ;define bytes
 13: 8004 00 02 00 0C DW 2,12,9 ;define words
 8008 00 09
 14: 800A 63 6F 66 66 DB 'coffeeright (c) 1999',0 ;string
 800E 65 65 72 69
 8012 67 68 74 20
 8016 28 63 29 20
 801A 31 39 39 39
 801E 00
 15: 801F N 0003 DS 3 ;define space
 16:
 17: 8022 75 30 00 START: MOV COUNT,#0 ;reset counter
 18: 8025 30 93 FD LLEVEL: JNB INPUT,LLEVEL ;wait for high
 19: 8028 20 93 FD HLEVEL: JB INPUT,HLEVEL ;wait for low
 20: 802B 05 30 INC COUNT ;count pulse
 21: 802D 80 F6 JMP LLEVEL ;next pulse
 22:
 23: N 30 DSEG AT 030H ;internal RAM
 24: 30 N 01 COUNT: DS 1 ;counter variable
 25:
 26: END

If an error is detected in a source line, its position is flagged with a ^
character as good as possible, and a comprehensive error message is inserted.
This is looking as shown below:

-56-

 17: 8022 75 30 00 START: MOV COUNT,#0 ;reset counter
 18: 8025 30 93 FD LLEVEL: JNB INPUT,LLEVEL ;wait for high
 19: 8028 20 93 00 HLEVEL: JB INPUT,HLEUEL ;wait for low
 ^
 @@@@@ symbol not defined @@@@@

 20: 802B 05 30 INC COUNT ;count pulse
 21: 802D 80 F6 JMP LLEVEL ;next pulse

The error diagnosis at the end of program lists the register banks used,
and the total number of errors detected throughout the assembly:

 register banks used: 0, 1, 3

 187 errors detected

A register bank counts as "used", if the program had switched to that
bank with a USING instruction, or one of the special assembler symbols
AR0 ... AR7 has been used, while the bank was active. The message

 register banks used: ---

means, that no bank has been used explicitly, and that the program
code may, but need not, be register bank independent.

After the source code listing and error diagnosis, the symbol table or
cross-reference listing starts. By default, a symbol table is generated.
The symbol table lists all the symbols of a program in alphabetical order
with their symbol name, segment type, hex value and first definition line.
Predefined symbols are listed without a definition line number.
The symbol table listing can be suppressed with the $NOSYMBOLS control.
A typical symbol table listing is looking as shown below:

 L I S T O F S Y M B O L S
 =============================

SYMBOL TYPE VALUE LINE
--
AKKUM REGISTER A 38
COUNT DATA 30 47
HLEVEL CODE 802E 35
INPUT BIT 93 12
LLEVEL CODE 802B 34
MY_PROGRAM MODULE 14
P1 DATA 90
QUANT NUMBER 0013 22
RECEIVE MACRO 5
SP DATA 81
STACK IDATA 80 17
START CODE 8022 31
VOLTDC XDATA D785 50

If the $XREF control is specified, a cross-reference listing is generated
instead of a symbol table. The corresponding cross-reference listing for
the symbol table above is looking as follows:

 C R O S S - R E F E R E N C E - L I S T I N G
 ===

SYMBOL TYPE VALUE DEFINED REFERENCED

AKKUM REGISTER A 38 42 43
COUNT DATA 30 47 32 40

-57-
 43 44
HLEVEL CODE 802E 35 35
INPUT BIT 93 12 34 35
LLEVEL CODE 802B 34 34 41
MY_PROGRAM MODULE 14
P1 DATA 90 12
QUANT NUMBER 0007 22 44
 NUMBER 0013 37
RECEIVE MACRO 5
SP DATA 81 31
STACK IDATA 80 17 31
START CODE 8022 31 24
TRASH undef. ---- 42
VOLTDC XDATA D785 50 33

It lists all the symbols of the program in alphabetical order, with their
symbol name, all definitions including definition lines, segment types, and
numerical values. Furthermore, all symbol references are listed as well.
The SYMBOL column contains the symbol name, while the columns TYPE, VALUE,
and DEFINED may contain the segment types, numerical values, and definition
lines of one, more, or no symbol defintions.
Register symbols have the symbol type "REGISTER", module names have the symbol
type "MODULE", macro names have the symbol type "MACRO", and symbols that have
been referenced but not defined, are flagged with "undef." in the TYPE column.
Starting from column REFERENCED up to the right margin, there is a number of
columns (depending on the page width), containing all line numbers of symbol
references (if any).
The cross-reference listing does not distinguish, whether multiple definitions
of, or references to a particular symbol are legal or not. For this, refer to
the error messages in the source listing.

-58-

VI. Support of 8051 Derivatives
===============================
Today a large number of 8051 derivatives is available that grows almost
monthly! They all use the same instruction set of the MCS-51 processor core,
but are different in peripheral components, to cover a wide range of
applications. The difference for the assembly language programmer is mainly
the varying set of special function registers and interrupt addresses.
It is always good practice to use the same SFR names in a microcontroller
application program that the manufacturer of the derivative used has defined.
For this the processor definition files *.MCU are provided. They all are
include files with the special function register definitions of a particular
8051 derivative. However, the predefined symbols of ASEM-51 must be switched
off prior to including the SFR definitions of another derivative as shown
below:
 $NOMOD51
 $INCLUDE (80C515.MCU)

This would switch off the predefined symbols of the 8051 and include the
register definitions of the 80C515 or 80C535 respectively.
Hence it is easy for the user to adapt ASEM-51 to a brandnew 8051 derivative!
All what he has to do is to write a corresponding include file with the SFR
definitions derived from the manufacturer's data sheet.
The name of every processor definition file is corresponding to the ROM
version of a particular derivative. Of course it also applies to the EPROM,
EEPROM, flash, and ROM-less versions (if any) of that derivative.
By the way, the file 8051.MCU provided contains exactly the predefined
symbols of ASEM-51, because its internal symbol table has been generated
from it!
To switch ASEM-51 to the reduced instruction set of the Philips 83C75x
family of microcontrollers, the $PHILIPS control can be used.

Currently the following processor definition files are provided with ASEM-51:

 Name Manufacturer Versions

 8051.MCU Intel 8051, 8031, 8751BH
 (and others) 8051AH, 8031AH, 8751H, 8051AHP, 8751H-8
 80C51BH, 80C31BH, 87C51, 80C51BHP
 Atmel 89C51, 89LV51, 87LV51, 80F51, 87F51
 8052.MCU Intel 8052AH, 8032AH, 8752BH
 SIEMENS 80513, 8352-5
 80C52.MCU Intel 80C52, 80C32, 87C52,
 80C54, 87C54, 80C58, 87C58
 83C51FX.MCU Intel 83C51FA, 80C51FA, 87C51FA
 83C51FB, 87C51FB, 83C51FC, 87C51FC
 83C51R.MCU Intel 83C51RA, 80C51RA, 87C51RA,
 83C51RB, 87C51RB, 83C51RC, 87C51RC
 83C51KB.MCU Intel 83C51KB
 83C51GB.MCU Intel 83C51GB, 80C51GB, 87C51GB
 83C151.MCU Intel 83C151SB, 87C151SB, 80C151SB
 83C151SA, 87C151SA
 83C152.MCU Intel 80C152JA, 83C152JA, 80C152JB
 80C152JC, 83C152JC, 80C152JD
 83C452.MCU Intel 83C452, 80C452
 8044.MCU Intel 8044AH, 8344AH, 8744AH
 83931HA.MCU Intel 83931HA, 80931HA
 83931AA.MCU Intel 83931AA, 80931AA
 80512.MCU SIEMENS 80512, 80532
 80515.MCU SIEMENS 80515, 80535, 80515K, 83515-4
 80C515.MCU SIEMENS 80C515, 80C535, 83C515H
 83C515A.MCU SIEMENS 83C515A-5, 80C515A
 80C517.MCU SIEMENS 80C517, 80C537
 C501.MCU SIEMENS C501-1R, C501-L
 C502.MCU SIEMENS C502-2R, C502-L
 C503.MCU SIEMENS C503-1R, C503-L
 C504.MCU SIEMENS C504-2R, C504-L
 C509.MCU SIEMENS C509-L
 C511.MCU SIEMENS C511, C511A
 C513.MCU SIEMENS C513, C513A, C513A-H

-59-
 C513AO.MCU SIEMENS C513AO
 C515.MCU SIEMENS C515-L, C515-1R
 C515A.MCU SIEMENS C515A-L, C515A-4R
 C515C.MCU SIEMENS C515C-8R
 C517A.MCU SIEMENS C517A-L, C517A-4R, 83C517A-5, 80C517A
 C540U.MCU SIEMENS C540U
 C541U.MCU SIEMENS C541U
 83C451.MCU Philips 83C451, 80C451, 87C451
 83C528.MCU Philips 83C528, 80C528, 87C528, 83C524, 87C524
 83CE528, 80CE528, 89CE528
 83C550.MCU Philips 83C550, 80C550, 87C550
 83C552.MCU Philips 83C552, 80C552, 87C552
 83C562.MCU Philips 83C562, 80C562
 83C652.MCU Philips 83C652, 80C652, 87C652
 83C654, 87C654, 83CE654, 80CE654
 83C750.MCU Philips 83C750, 87C750
 83C751.MCU Philips 83C751, 87C751
 83C752.MCU Philips 83C752, 87C752
 83C754.MCU Philips 83C754, 87C754
 83C851.MCU Philips 83C851, 80C851
 83C852.MCU Philips 83C852
 87LPC762.MCU Philips 87LPC762
 87LPC768.MCU Philips 87LPC768
 80C521.MCU AMD 80C521, 80C541, 87C521, 87C541, 80C321
 80C324.MCU AMD 80C324
 83C154.MCU OKI 83C154, 80C154, 85C154VS
 83C154S.MCU OKI 83C154S, 80C154S, 85C154HVS
 80C310.MCU DALLAS 80C310
 80C320.MCU DALLAS 80C320, 87C320, 80C323, 87C323
 80C390.MCU DALLAS 80C390
 87C520.MCU DALLAS 87C520, 83C520
 87C530.MCU DALLAS 87C530, 83C530
 87C550.MCU DALLAS 87C550
 89C420.MCU DALLAS 89C420
 DS5000.MCU DALLAS 5000FP, 5000, 5000T, 2250, 2250T
 DS5001.MCU DALLAS 5001FP, 5002FP, 5002FPM, 2251T, 2252T
 MAX7651.MCU Maxim MAX7651, MAX7652
 COM20051.MCU SMC COM20051
 89C52.MCU Atmel 89C52, 89C55, 89LV52, 89LV55, 87LV52,
 80F52, 87F52
 87F51RC.MCU Atmel 87F51RC, 87F55, 87LV55
 89C1051.MCU Atmel 89C1051
 89C2051.MCU Atmel 89C2051, 89C4051, 89C1051U
 89S8252.MCU Atmel 89S8252, 89LS8252
 89S51.MCU Atmel 89S51
 89S52.MCU Atmel 89S52, 89LS52
 89S53.MCU Atmel 89S53, 89LS53
 89S4D12.MCU Atmel 89S4D12
 73M2910.MCU TDK 73M2910, 73M2910A
 AN2131.MCU Cypress AN2121, AN2122, AN2125, AN2126,
 AN2131, AN2135, AN2136

All SIEMENS derivatives are now manufactured and sold by Infineon!

-60-

Appendix A
==========

ASEM-51 Error Messages

A.1 Assembly Errors:

Assembly errors apply to the consistency of the assembly language
program in syntax and semantics. If one of these errors is detected,
it is flagged in the list file, and program execution continues.
When assembly is finished, ASEM terminates with exit code 1:

Error Message Meaning

address below segment base Attempt to set the location counter
 of the current segment below the
 segment base address.

address out of range The address of a jump or call
 instruction cannot be reached with
 the selected addressing mode.

already a macro parameter In a macro definition, a local symbol
 is equal to a previously defined
 parameter name.

argument exceeds end of line A macro argument contains more
 opening than closing angle brackets.

attempt to divide by zero During evaluation of an assembly time
 expression, the assembler has to
 divide by zero.

binary operator expected In this position of an expression,
 only binary operators are allowed.

comma expected There should be a ',' character in
 the marked position.

commands after END statement The END statement is followed by
 further assembler statements.

constant out of range A numerical constant is greater
 than 65535.

duplicate local symbol In a macro definition, a local symbol
 is defined multiple times or equal to
 a previously defined parameter name.

duplicate parameter name The parameter names of a macro are
 not all different.

ENDIF statement expected There are pending IFxx constructions,
 which are not terminated with an
 ENDIF meta instruction.

ENDM statement expected There are macro definitions, which
 are not terminated with an ENDM
 instruction.

expression out of range The result of an expression is too
 big or too small for that purpose.

file name expected There should be a valid file name
 in this position.

forward reference to macro A macro has been called, before it
 has been defined.

-61-

forward reference to register A register type symbol has been used,
 before it has been EQU'd or SET.

illegal character A statement contains characters, which
 are not allowed in MCS-51 assembly
 language.

illegal constant There are syntax errors in a
 numeric constant.

illegal control statement A statement is starting with an
 unknown keyword beginning with a $.

illegal operand In this position of an expression,
 a valid operand had been expected.

illegal statement syntax A statement contains a syntax element,
 which is not allowed in this context.

invalid base address A DATA address that is not bit-
 addressable has been used on the
 left side of a '.' operator.

invalid bit number A number greater than 7 has been
 used on the right side of a '.'
 operator.

invalid instruction The instruction has previously been
 disabled with the $PHILIPS control.

macro type operand A macro type symbol is used as an
 operand in a numeric expression.

maximum line length exceeded During macro expansion, the replacement
 of parameters and/or local symbols
 increases the resulting line length
 to more than 255 characters.

misplaced LOCAL instruction In a macro definition, a LOCAL in-
 struction is preceded by body lines.

misplaced macro instruction A macro instruction is used outside
 of a macro definition, or otherwise
 misplaced in the program structure.

misplaced macro operator A macro operator (<, >, !, %, &) has
 been used in a wrong position.

module name already defined There are more than one NAME
 statements in the program.

must be known on first pass The result of an expression must
 fully evaluate on pass 1 of assembly.

must be preceded by $SAVE A $RESTORE control occurs without
 a preceding $SAVE control.

must be preceded by IFxx An ELSEIFxx, ELSE or ENDIF meta
 instruction occurs without a
 preceding IFxx meta instruction.

no END statement found The program ends without an END
 statement.

not allowed in BIT segment Instruction is not allowed in a
 BIT segment.

only allowed in BIT segment Instruction is only allowed in a
 BIT segment.

only allowed in CODE segment Instruction is only allowed in a

-62-
 CODE segment.

operand expected An instruction ends, before it is
 syntactically complete.

phase error A symbol is evaluating to different
 values on pass 1 and pass 2, or a
 macro has been defined different on
 pass 1 and pass 2.

 Note: This is a serious, internal assembler
 ----- error, and should be reported to the
 author immediately!

preceded by non-control lines A primary control occurs after
 statements that are no assembler
 controls.

register type operand A register type symbol is used as an
 operand in a numeric expression.

segment limit exceeded The location counter exceeds the
 boundaries of the current segment.

segment type mismatch The segment type of an operand does
 not match the type of the instruction.

string exceeds end of line A character string is not properly
 terminated with a quote.

symbol already defined Attempt to redefine a symbol, which
 is already defined.

symbol name expected There should be a valid symbol name
 in this position.

symbol not defined A symbol is referenced, which has
 never been defined.

too many closing parentheses An expression contains more closing
 than opening parentheses.

too many opening parentheses An expression contains more opening
 than closing parentheses.

too many operands An instruction contains more operands
 than expected.

unary operator expected In this position of an expression,
 only unary operators are allowed.

user-defined error A user-defined error message has been
 forced with the $ERROR control.

A.2 Runtime Errors:

Runtime errors are operational errors, or I/O errors.
If one of these errors is detected, it is flagged on the console,
and ASEM is aborting with exit code 2:

Error Message Meaning

access denied No privilege for attempted operation.
ambiguous option name Not enough characters specified.
argument missing Option requires an argument.
disk full No more free disk space.
disk write-protected Attempt to write to a write-protected disk.
drive not ready Disk drive is off, or no media mounted.
duplicate file name Attempt to overwrite an input or output file.
fatal I/O error General (unknown) disk or device I/O error.
file not found Source or include file not found. (DOS/Windows)

-63-
illegal option syntax Option is not correctly specified.
invalid argument Option has an illegal argument.
no input file There is no file name in the command line.
no such file or directory Source or include file not found. (Linux)
not a directory Path contains a non-directory name. (Linux)
out of memory Heap overflow!
path not found Disk or directory not found. (DOS/Windows)
symbol is predefined A /DEFINE option specifies a predefined symbol.
too many open files No more free file handles.
too many parameters More than three file names have been specified.
unknown option Option is not implemented.

-64-

Appendix B
==========

HEXBIN Error Messages

B.1 Conversion Errors:

Conversion errors apply to the consistency of Intel-HEX file and
program options. If one of these errors is detected, it is flagged
on the console, and HEXBIN is aborting with exit code 1:

Error Message Meaning

checksum error Checksum is not correct.
data after EOF record Type 0 records after type 1 record.
file length out of range /LENGTH option makes file too large.
fill-byte out of range /FILL option defines byte value > 255.
hex file format error Certainly no Intel-HEX file.
illegal hex digit Character is no valid hex digit.
illegal record type Record type is none of 0 or 1.
invalid record length Record length doesn't match the record.
multiple EOF records More than one type 1 record.
no data records found File doesn't contain any type 0 records.
no EOF record found File ends without a type 1 record.
offset out of range /OFFSET option makes file too large.
record exceeds FFFFH Address space wrap around in record.
record exceeds file length /LENGTH option made file too short.

B.2 Runtime Errors:

Runtime errors are operational errors, or I/O errors.
If one of these errors is detected, it is flagged on the console,
and HEXBIN is aborting with exit code 2:

Error Message Meaning

access denied No privilege for attempted operation.
ambiguous option name Not enough characters specified.
argument missing Option requires an argument.
disk full No more free disk space.
disk write-protected Attempt to write to a write-protected disk.
drive not ready Disk drive is off, or no media mounted.
duplicate file name Attempt to overwrite an input or output file.
fatal I/O error General (unknown) disk or device I/O error.
file not found Intel-HEX file not found. (DOS/Windows)
illegal option syntax Option is not correctly specified.
invalid argument Option has an illegal argument.
no input file There is no file name in the command line.
no such file or directory Intel-HEX file not found. (Linux)
not a directory Path contains a non-directory name. (Linux)
path not found Disk or directory not found. (DOS/Windows)
too many open files No more free file handles.
too many parameters More than two file names have been specified.
unknown option Option is not implemented.

-65-

Appendix C
==========

Predefined Symbols

 DATA Addresses:

 P0 080H P1 090H
 SP 081H SCON 098H
 DPL 082H SBUF 099H
 DPH 083H P2 0A0H
 PCON 087H IE 0A8H
 TCON 088H P3 0B0H
 TMOD 089H IP 0B8H
 TL0 08AH PSW 0D0H
 TL1 08BH ACC 0E0H
 TH0 08CH B 0F0H
 TH1 08DH

 BIT Addresses:

 IT0 088H EA 0AFH
 IE0 089H RXD 0B0H
 IT1 08AH TXD 0B1H
 IE1 08BH INT0 0B2H
 TR0 08CH INT1 0B3H
 TF0 08DH T0 0B4H
 TR1 08EH T1 0B5H
 TF1 08FH WR 0B6H
 RI 098H RD 0B7H
 TI 099H PX0 0B8H
 RB8 09AH PT0 0B9H
 TB8 09BH PX1 0BAH
 REN 09CH PT1 0BBH
 SM2 09DH PS 0BCH
 SM1 09EH P 0D0H
 SM0 09FH OV 0D2H
 EX0 0A8H RS0 0D3H
 ET0 0A9H RS1 0D4H
 EX1 0AAH F0 0D5H
 ET1 0ABH AC 0D6H
 ES 0ACH CY 0D7H

 CODE Addresses:

 RESET 0000H EXTI1 0013H
 EXTI0 0003H TIMER1 001BH
 TIMER0 000BH SINT 0023H

 Plain Numbers:

 ??ASEM_51 8051H ??VERSION 0130H

-66-

Appendix D
==========

Reserved Keywords

 Special Assembler Symbols:

 $ location counter
 A accumulator
 AB A/B register pair
 AR0,AR1,AR2,AR3,AR4,AR5,AR6,AR7 direct register addresses
 C carry flag
 DPTR data pointer
 PC program counter
 R0, R1, R2, R3, R4, R5, R6, R7 registers

 Instruction Mnemonics

 ACALL DA JNB MUL RR
 ADD DEC JNC NOP RRC
 ADDC DIV JNZ ORL SETB
 AJMP DJNZ JZ POP SJMP
 ANL INC LCALL PUSH SUBB
 CALL JB LJMP RET SWAP
 CJNE JBC MOV RETI XCH
 CLR JC MOVC RL XCHD
 CPL JMP MOVX RLC XRL

 Pseudo Instructions

 AT DATA DSEG IDATA SET
 BIT DB DW ISEG USING
 BSEG DBIT END NAME XDATA
 CODE DS EQU ORG XSEG
 CSEG

 Operators

 AND GT LOW NE SHL
 EQ HIGH LT NOT SHR
 GE LE MOD OR XOR

 Assembler Controls

 $COND $GO $NODEBUG $NOSYMBOLS $RS
 $CONDONLY $IC $NOGE $NOTABS $SA
 $DA $INCLUDE $NOGEN $NOXR $SAVE
 $DATE $LI $NOLI $NOXREF $SB
 $DB $LIST $NOLIST $PAGELENGTH $SYMBOLS
 $DEBUG $MACRO $NOMACRO $PAGEWIDTH $TITLE
 $EJ $MO $NOMO $PAGING $TT
 $EJECT $MOD51 $NOMOD51 $PHILIPS $WARNING
 $ERROR $MR $NOMR $PI $XR
 $GE $NOBUILTIN $NOPAGING $PL $XREF
 $GEN $NOCOND $NOPI $PW
 $GENONLY $NODB $NOSB $RESTORE

 Meta Instructions

 ELSE ELSEIFN ENDM IFDEF LOCAL
 ELSEIF ELSEIFNB EXITM IFN MACRO
 ELSEIFB ELSEIFNDEF IF IFNB REPT
 ELSEIFDEF ENDIF IFB IFNDEF

-67-

Appendix E
==========

Specification of the Intel-HEX Format

This object file format is supported by many cross assemblers, utilities,
and most EPROM programmers.
An Intel-HEX file is a 7-bit ASCII text file, that contains a sequence of
data records and an end record. Every record is a line of text that starts
with a colon and ends with CR and LF.
Data records contain up to 16 data bytes, a 16-bit load address, a record
type byte and an 8-bit checksum. All numbers are represented by upper case
ASCII-hex characters.

 DATA RECORD:

 Byte 1 colon (:)
 2 and 3 number of binary data bytes for this record
 4 and 5 load address for this record, high byte
 6 and 7 load address " " " low byte
 8 and 9 record type: 00 (data record)
 10 to x data bytes, two characters each
 x+1 to x+2 checksum (two characters)
 x+3 to x+4 CR and LF

 A typical data record looks like

 :10E0000002E003E4F588758910F58DF58BD28E302A

The end record is the last line of the file.
In principle it is structured like a data record, but the number of data
bytes is 00, the record type is 01 and the load-address field is 0000.

 END RECORD:

 Byte 1 colon (:)
 2 and 3 00 (number of data bytes)
 4 and 5 00 (load address, high byte)
 6 and 7 00 (load address, low byte)
 8 and 9 record type: 01 (end record)
 10 and 11 checksum (two characters)
 12 and 13 CR and LF

 The typical END record looks like

 :00000001FF

The checksum is the two's complement of the 8-bit sum, without carry, of
the byte count, the two load address bytes, the record type byte and all
data bytes.

-68-

Appendix F
==========

The ASCII Character Set

 hex | 00 10 20 30 40 50 60 70
 -----+--
 0 | NUL DLE 0 @ P ` p
 1 | SOH DC1 ! 1 A Q a q
 2 | STX DC2 " 2 B R b r
 3 | ETX DC3 # 3 C S c s
 4 | EOT DC4 $ 4 D T d t
 5 | ENQ NAK % 5 E U e u
 6 | ACK SYN & 6 F V f v
 7 | BEL ETB ' 7 G W g w
 8 | BS CAN (8 H X h x
 9 | HT EM) 9 I Y i y
 A | LF SUB * : J Z j z
 B | VT ESC + ; K [k {
 C | FF FS , < L \ l |
 D | CR GS - = M] m }
 E | SO RS . > N ^ n ~
 F | SI US / ? O _ o DEL

-69-

Appendix G
==========

Literature

 Order Number

Intel: MCS(R) 51 Microcontroller Family User's Manual
 MCS-51 Macro Assembler User's Guide
 8-Bit Embedded Controllers 1990
 8XC51RA/RB/RC CHMOS Single-Chip 8-Bit Microcontroller 272659-002
 8XC51RA/RB/RC Hardware Description, February 1995 272668-001
 83C51KB High Performance Keyboard Microcontroller 272800-001
 83C51KB Hardware Description 272801-001
 MCS 51 Microcontroller Family User's Manual, Feb 1994 272383-002
 8XC151SA and 8XC151SB Hardware Description, June 1996 272832-001
 Embedded Microcontrollers, 1997 270646-009
 8x931AA, 8x931HA USB Peripheral Controller User's Manual Sept. 97

SIEMENS: SAB 80512/80532 User's Manual B2-B3808-X-X-7600
 SAB 80515/80535 User's Manual B2-B3976-X-X-7600
 SAB 80C515/80C535 Data Sheet
 SAB 80C515A/83C515A-5 Addendum B158-H6613-X-X-7600
 SAB 80C515A/83C515A-5 Data Sheet B158-H6605-X-X-7600
 SAB 80C517/80C537 User's Manual B258-B6075-X-X-7600
 SAB 80C517A/83C517A-5 Addendum B158-H6612-X-X-7600
 SAB 80C517A/83C517A-5 Data Sheet B158-H6581-X-X-7600
 SIEMENS Microcontrollers Data Catalog B158-H6569-X-X-7600
 SAB 80513/8352-5 Data Sheet B158-B6245-X-X-7600
 SAB-C501 User's Manual B158-H6723-G1-X-7600
 SAB-C502 User's Manual B158-H6722-G1-X-7600
 SAB-C503 User's Manual B158-H6650-G1-X-7600
 Application Notes and User Manuals, CD-ROM B193-H6900-X-X-7400
 C504 8-Bit CMOS Microcontroller User's Manual B158-H6958-X-X-7600
 C509-L 8-Bit CMOS Microcontroller User's Manual B158-H6973-X-X-7600
 C515C 8-Bit CMOS Microcontroller User's Manual B158-H6981-X-X-7600
 C515 8-Bit CMOS Microcontroller User's Manual 04.98
 C515A 8-Bit CMOS Microcontroller User's Manual 08.97
 C517A 8-Bit CMOS Microcontroller User's Manual 01.99
 C540U/C541U 8-Bit CMOS Microcontroller Data Sheet 10.97
 C513AO 8-bit CMOS Microcontroller User's Manual 05.99

Philips: PCB83C552 User's Manual
 PCB83C552, PCB80C552 Development Data
 8051-Based 8-Bit Microcontrollers - Data Handbook 1994
 83C754/87C754 Preliminary Specification, 1998 Apr 23
 87LPC762 Data Sheet, 2001 Oct 26
 87LPC768 Data Sheet, 2002 Mar 12

AMD: Eight-Bit 80C51 Embedded Processors - Data Book 1990

OKI: MSM80C154, MSM83C154 User's Manual
 Microcontroller Data Book, 5th Edition 1990

TDK: TSC 73M2910/2910A Microcontroller, 10/22/96 - rev.

DALLAS: High-Speed Micro User's Guide, V1.3 January 1994, 011994
 Secure Microcontroller User's Guide, 062001
 DS80C310 High-Speed Micro, 090198
 DS80C320/DS80C323 High-Speed/Low-Power Micro, 070196
 DS80C390 Dual CAN High-Speed Microprocessor, 090799
 DS87C520/DS83C520 EPROM/ROM High-Speed Micro, 110195
 DS87C530/DS83C530 EPROM/ROM Micro with Real-Time Clock, 112299
 DS87C550 EPROM High-Speed Micro with A/D and PWM, 091698
 DS89C420 Ultra High-Speed Microcontroller User's Guide, 020602

Maxim: MAX7651/MAX7652 Programmer's Reference Manual
 MAX7651/MAX7652 Data Sheet, 19-2119; Rev 0; 8/01

-70-
Atmel: AT89C51, 8-Bit Microcontroller with 4 Kbytes Flash 0265E
 AT89C52, 8-Bit Microcontroller with 8 Kbytes Flash 0313E
 AT89C55, 8 bit Microcontroller with 20K bytes Flash
 AT89LV51, 8-Bit Microcontroller with 4 Kbytes Flash 0303C
 AT89LV52, 8-Bit Microcontroller with 8 Kbytes Flash
 AT89C1051, 8-Bit Microcontroller with 1 Kbyte Flash 0366C
 AT89C2051, 8-Bit Microcontroller with 2 Kbytes Flash 0368C
 AT89C4051, 8-Bit Microcontroller with 4K Bytes Flash Preliminary
 AT89C1051U, 8-Bit Microcontroller with 1K Bytes Flash Preliminary
 AT89S8252, 8 Bit Microcontroller with 8K bytes Flash Preliminary
 AT89LS8252, 8-Bit Microcontroller with 8K Bytes Flash 0850B-B-12/97
 AT89S51, 8-bit Microcontroller with 4K Bytes ISP Flash 2487A-10/01
 AT89S52, 8-bit Microcontroller with 8K Bytes ISP Flash 1919A-07/01
 AT89LS52, 8-bit LV Microcontroller with 8K Bytes ISP Flash 2601A-12/01
 AT89S53, 8-Bit Microcontroller with 12K Bytes Flash Preliminary
 AT89LS53, 8-Bit Microcontroller with 12K Bytes Flash 0851B-B-12/97
 AT89LV55, 8-Bit Microcontroller with 20K bytes Flash 0811A-A-7/97
 AT80F51, 8-Bit Microcontroller with 4K Bytes QuickFlash 0979A-A-12/97
 AT87F51, 8-Bit Microcontroller with 4K Bytes QuickFlash 1012A-02/98
 AT80F52, 8-Bit Microcontroller with 8K Bytes QuickFlash 0980A-A-12/97
 AT87F52, 8-Bit Microcontroller with 8K Bytes QuickFlash 1011A-02/98
 AT89S4D12, 8-Bit Microcontroller with 132K Bytes Flash 0921A-A-12/97
 AT87F51RC, 8-Bit Microcontroller with 32K Bytes QuickFlash 1106B-12/98
 AT87F55, 8-Bit Microcontroller with 20K Bytes QuickFlash 1147A-05/99
 AT87LV51, 8-bit Microcontroller with 4K Bytes QuickFlash 1602A-04/00
 AT87LV52, 8-Bit Microcontroller with 8K Bytes QuickFlash 1437A-07/99
 AT87LV55, 8-bit Microcontroller with 20K Bytes QuickFlash 1609A-04/00

Cypress: The EZ-USB Integrated Circuit, Technical Reference Manual Version 1.9

German Literature:

Andreas Roth: Das MIKROCONTROLLER Kochbuch, 1997, iWT ISBN 3-88322-225-9

-71-

Appendix H
==========

Trademarks

ASEM-51 is a trademark of W.W. Heinz.
MCS-51 and ASM51 are trademarks of Intel Corporation.
Turbo-Pascal and Borland-Pascal are trademarks of Borland International, Inc.
Delphi is a trademark of Borland International, Inc.
Turbo C++ and Borland C++ are trademarks of Borland International, Inc.
Turbo-Assembler is a trademark of Borland International, Inc.
IBM-PC, IBM-XT, IBM-AT and OS/2 are trademarks of IBM Corporation.
MS-DOS and Windows are trademarks of Microsoft Corporation.
Novell DOS is a trademark of Novell, Inc.
BRIEF is a trademark of SDC Partners II L.P.
4DOS is a registered trademark of JP Software Inc.
Linux is a trademark of Linus Torvalds.
FreePascal is a trademark of Florian Klaempfl.
All device codes of 8051 derivatives are trademarks of the manufacturers.
Other brand and product names are trademarks of their respective holders.

-72-

Appendix I
==========

8051 Instructions in numerical Order

Abbreviations: direct = 8-bit DATA address in internal memory
 const8 = 8-bit constant in CODE memory
 const16 = 16-bit constant in CODE memory
 addr16 = 16-bit long CODE address
 addr11 = 11-bit absolute CODE address
 rel = signed 8-bit relative CODE address
 bit = 8-bit BIT address in internal memory

Opcode Mnemonic Operands Bytes Flags Cycles
--
 00 NOP 1 1
 01 AJMP addr11 2 2
 02 LJMP addr16 3 2
 03 RR A 1 1
 04 INC A 1 P 1
 05 INC direct 2 1
 06 INC @R0 1 1
 07 INC @R1 1 1
 08 INC R0 1 1
 09 INC R1 1 1
 0A INC R2 1 1
 0B INC R3 1 1
 0C INC R4 1 1
 0D INC R5 1 1
 0E INC R6 1 1
 0F INC R7 1 1
 10 JBC bit, rel 3 2
 11 ACALL addr11 2 2
 12 LCALL addr16 3 2
 13 RRC A 1 CY P 1
 14 DEC A 1 P 1
 15 DEC direct 2 1
 16 DEC @R0 1 1
 17 DEC @R1 1 1
 18 DEC R0 1 1
 19 DEC R1 1 1
 1A DEC R2 1 1
 1B DEC R3 1 1
 1C DEC R4 1 1
 1D DEC R5 1 1
 1E DEC R6 1 1
 1F DEC R7 1 1
 20 JB bit, rel 3 2
 21 AJMP addr11 2 2
 22 RET 1 2
 23 RL A 1 1
 24 ADD A, #const8 2 CY AC OV P 1
 25 ADD A, direct 2 CY AC OV P 1
 26 ADD A, @R0 1 CY AC OV P 1
 27 ADD A, @R1 1 CY AC OV P 1

-73-

Opcode Mnemonic Operands Bytes Flags Cycles
--
 28 ADD A, R0 1 CY AC OV P 1
 29 ADD A, R1 1 CY AC OV P 1
 2A ADD A, R2 1 CY AC OV P 1
 2B ADD A, R3 1 CY AC OV P 1
 2C ADD A, R4 1 CY AC OV P 1
 2D ADD A, R5 1 CY AC OV P 1
 2E ADD A, R6 1 CY AC OV P 1
 2F ADD A, R7 1 CY AC OV P 1
 30 JNB bit, rel 3 2
 31 ACALL addr11 2 2
 32 RETI 1 2
 33 RLC A 1 CY P 1
 34 ADDC A, #const8 2 CY AC OV P 1
 35 ADDC A, direct 2 CY AC OV P 1
 36 ADDC A, @R0 1 CY AC OV P 1
 37 ADDC A, @R1 1 CY AC OV P 1
 38 ADDC A, R0 1 CY AC OV P 1
 39 ADDC A, R1 1 CY AC OV P 1
 3A ADDC A, R2 1 CY AC OV P 1
 3B ADDC A, R3 1 CY AC OV P 1
 3C ADDC A, R4 1 CY AC OV P 1
 3D ADDC A, R5 1 CY AC OV P 1
 3E ADDC A, R6 1 CY AC OV P 1
 3F ADDC A, R7 1 CY AC OV P 1
 40 JC rel 2 2
 41 AJMP addr11 2 2
 42 ORL direct, A 2 1
 43 ORL direct, #const8 3 2
 44 ORL A, #const8 2 P 1
 45 ORL A, direct 2 P 1
 46 ORL A, @R0 1 P 1
 47 ORL A, @R1 1 P 1
 48 ORL A, R0 1 P 1
 49 ORL A, R1 1 P 1
 4A ORL A, R2 1 P 1
 4B ORL A, R3 1 P 1
 4C ORL A, R4 1 P 1
 4D ORL A, R5 1 P 1
 4E ORL A, R6 1 P 1
 4F ORL A, R7 1 P 1
 50 JNC rel 2 2
 51 ACALL addr11 2 2
 52 ANL direct, A 2 1
 53 ANL direct, #const8 3 2
 54 ANL A, #const8 2 P 1
 55 ANL A, direct 2 P 1
 56 ANL A, @R0 1 P 1
 57 ANL A, @R1 1 P 1
 58 ANL A, R0 1 P 1
 59 ANL A, R1 1 P 1
 5A ANL A, R2 1 P 1
 5B ANL A, R3 1 P 1
 5C ANL A, R4 1 P 1
 5D ANL A, R5 1 P 1
 5E ANL A, R6 1 P 1
 5F ANL A, R7 1 P 1

-74-

Opcode Mnemonic Operands Bytes Flags Cycles
--
 60 JZ rel 2 2
 61 AJMP addr11 2 2
 62 XRL direct, A 2 1
 63 XRL direct, #const8 3 2
 64 XRL A, #const8 2 P 1
 65 XRL A, direct 2 P 1
 66 XRL A, @R0 1 P 1
 67 XRL A, @R1 1 P 1
 68 XRL A, R0 1 P 1
 69 XRL A, R1 1 P 1
 6A XRL A, R2 1 P 1
 6B XRL A, R3 1 P 1
 6C XRL A, R4 1 P 1
 6D XRL A, R5 1 P 1
 6E XRL A, R6 1 P 1
 6F XRL A, R7 1 P 1
 70 JNZ rel 2 2
 71 ACALL addr11 2 2
 72 ORL C, bit 2 CY 2
 73 JMP @A+DPTR 1 2
 74 MOV A, #const8 2 P 1
 75 MOV direct, #const8 3 2
 76 MOV @R0, #const8 2 1
 77 MOV @R1, #const8 2 1
 78 MOV R0, #const8 2 1
 79 MOV R1, #const8 2 1
 7A MOV R2, #const8 2 1
 7B MOV R3, #const8 2 1
 7C MOV R4, #const8 2 1
 7D MOV R5, #const8 2 1
 7E MOV R6, #const8 2 1
 7F MOV R7, #const8 2 1
 80 SJMP rel 2 2
 81 AJMP addr11 2 2
 82 ANL C, bit 2 CY 2
 83 MOVC A, @A+PC 1 P 2
 84 DIV AB 1 CY OV P 4
 85 MOV direct, direct 3 2
 86 MOV direct, @R0 2 2
 87 MOV direct, @R1 2 2
 88 MOV direct, R0 2 2
 89 MOV direct, R1 2 2
 8A MOV direct, R2 2 2
 8B MOV direct, R3 2 2
 8C MOV direct, R4 2 2
 8D MOV direct, R5 2 2
 8E MOV direct, R6 2 2
 8F MOV direct, R7 2 2
 90 MOV DPTR, #const16 3 2
 91 ACALL addr11 2 2
 92 MOV bit, C 2 2
 93 MOVC A, @A+DPTR 1 P 2
 94 SUBB A, #const8 2 CY AC OV P 1
 95 SUBB A, direct 2 CY AC OV P 1
 96 SUBB A, @R0 1 CY AC OV P 1
 97 SUBB A, @R1 1 CY AC OV P 1

-75-

Opcode Mnemonic Operands Bytes Flags Cycles
--
 98 SUBB A, R0 1 CY AC OV P 1
 99 SUBB A, R1 1 CY AC OV P 1
 9A SUBB A, R2 1 CY AC OV P 1
 9B SUBB A, R3 1 CY AC OV P 1
 9C SUBB A, R4 1 CY AC OV P 1
 9D SUBB A, R5 1 CY AC OV P 1
 9E SUBB A, R6 1 CY AC OV P 1
 9F SUBB A, R7 1 CY AC OV P 1
 A0 ORL C, /bit 2 CY 2
 A1 AJMP addr11 2 2
 A2 MOV C, bit 2 CY 1
 A3 INC DPTR 1 2
 A4 MUL AB 1 CY OV P 4
 A5 illegal opcode
 A6 MOV @R0, direct 2 2
 A7 MOV @R1, direct 2 2
 A8 MOV R0, direct 2 2
 A9 MOV R1, direct 2 2
 AA MOV R2, direct 2 2
 AB MOV R3, direct 2 2
 AC MOV R4, direct 2 2
 AD MOV R5, direct 2 2
 AE MOV R6, direct 2 2
 AF MOV R7, direct 2 2
 B0 ANL C, /bit 2 CY 2
 B1 ACALL addr11 2 2
 B2 CPL bit 2 1
 B3 CPL C 1 CY 1
 B4 CJNE A, #const8, rel 3 CY 2
 B5 CJNE A, direct, rel 3 CY 2
 B6 CJNE @R0, #const8, rel 3 CY 2
 B7 CJNE @R1, #const8, rel 3 CY 2
 B8 CJNE R0, #const8, rel 3 CY 2
 B9 CJNE R1, #const8, rel 3 CY 2
 BA CJNE R2, #const8, rel 3 CY 2
 BB CJNE R3, #const8, rel 3 CY 2
 BC CJNE R4, #const8, rel 3 CY 2
 BD CJNE R5, #const8, rel 3 CY 2
 BE CJNE R6, #const8, rel 3 CY 2
 BF CJNE R7, #const8, rel 3 CY 2
 C0 PUSH direct 2 2
 C1 AJMP addr11 2 2
 C2 CLR bit 2 1
 C3 CLR C 1 CY 1
 C4 SWAP A 1 1
 C5 XCH A, direct 2 P 1
 C6 XCH A, @R0 1 P 1
 C7 XCH A, @R1 1 P 1
 C8 XCH A, R0 1 P 1
 C9 XCH A, R1 1 P 1
 CA XCH A, R2 1 P 1
 CB XCH A, R3 1 P 1
 CC XCH A, R4 1 P 1
 CD XCH A, R5 1 P 1
 CE XCH A, R6 1 P 1
 CF XCH A, R7 1 P 1

-76-

Opcode Mnemonic Operands Bytes Flags Cycles
--
 D0 POP direct 2 2
 D1 ACALL addr11 2 2
 D2 SETB bit 2 1
 D3 SETB C 1 CY 1
 D4 DA A 1 CY P 1
 D5 DJNZ direct, rel 3 2
 D6 XCHD A, @R0 1 P 1
 D7 XCHD A, @R1 1 P 1
 D8 DJNZ R0, rel 2 2
 D9 DJNZ R1, rel 2 2
 DA DJNZ R2, rel 2 2
 DB DJNZ R3, rel 2 2
 DC DJNZ R4, rel 2 2
 DD DJNZ R5, rel 2 2
 DE DJNZ R6, rel 2 2
 DF DJNZ R7, rel 2 2
 E0 MOVX A, @DPTR 1 P 2
 E1 AJMP addr11 2 2
 E2 MOVX A, @R0 1 P 2
 E3 MOVX A, @R1 1 P 2
 E4 CLR A 1 P 1
 E5 MOV A, direct 2 P 1
 E6 MOV A, @R0 1 P 1
 E7 MOV A, @R1 1 P 1
 E8 MOV A, R0 1 P 1
 E9 MOV A, R1 1 P 1
 EA MOV A, R2 1 P 1
 EB MOV A, R3 1 P 1
 EC MOV A, R4 1 P 1
 ED MOV A, R5 1 P 1
 EE MOV A, R6 1 P 1
 EF MOV A, R7 1 P 1
 F0 MOVX @DPTR, A 1 2
 F1 ACALL addr11 2 2
 F2 MOVX @R0, A 1 2
 F3 MOVX @R1, A 1 2
 F4 CPL A 1 P 1
 F5 MOV direct, A 2 1
 F6 MOV @R0, A 1 1
 F7 MOV @R1, A 1 1
 F8 MOV R0, A 1 1
 F9 MOV R1, A 1 1
 FA MOV R2, A 1 1
 FB MOV R3, A 1 1
 FC MOV R4, A 1 1
 FD MOV R5, A 1 1
 FE MOV R6, A 1 1
 FF MOV R7, A 1 1

-77-

Appendix J
==========

8051 Instructions in lexical Order

Abbreviations: direct = 8-bit DATA address in internal memory
 const8 = 8-bit constant in CODE memory
 const16 = 16-bit constant in CODE memory
 addr16 = 16-bit long CODE address
 addr11 = 11-bit absolute CODE address
 rel = signed 8-bit relative CODE address
 bit = 8-bit BIT address in internal memory

 i = register numbers 0 or 1
 n = register numbers 0 thru 7
 a = 32 * m
 m = the 3 most significant bits of an absolute address

Opcode Mnemonic Operands Bytes Flags Cycles
--
 11+a ACALL addr11 2 2
 24 ADD A, #const8 2 CY AC OV P 1
 26+i ADD A, @Ri 1 CY AC OV P 1
 25 ADD A, direct 2 CY AC OV P 1
 28+n ADD A, Rn 1 CY AC OV P 1
 34 ADDC A, #const8 2 CY AC OV P 1
 36+i ADDC A, @Ri 1 CY AC OV P 1
 35 ADDC A, direct 2 CY AC OV P 1
 38+n ADDC A, Rn 1 CY AC OV P 1
 01+a AJMP addr11 2 2
 54 ANL A, #const8 2 P 1
 56+i ANL A, @Ri 1 P 1
 55 ANL A, direct 2 P 1
 58+n ANL A, Rn 1 P 1
 B0 ANL C, /bit 2 CY 2
 82 ANL C, bit 2 CY 2
 53 ANL direct, #const8 3 2
 52 ANL direct, A 2 1
 B6+i CJNE @Ri, #const8, rel 3 CY 2
 B4 CJNE A, #const8, rel 3 CY 2
 B5 CJNE A, direct, rel 3 CY 2
 B8+n CJNE Rn, #const8, rel 3 CY 2
 E4 CLR A 1 P 1
 C2 CLR bit 2 1
 C3 CLR C 1 CY 1
 F4 CPL A 1 P 1
 B2 CPL bit 2 1
 B3 CPL C 1 CY 1
 D4 DA A 1 CY P 1
 16+i DEC @Ri 1 1
 14 DEC A 1 P 1
 15 DEC direct 2 1
 18+n DEC Rn 1 1
 84 DIV AB 1 CY OV P 4
 D5 DJNZ direct, rel 3 2

-78-

Opcode Mnemonic Operands Bytes Flags Cycles
--
 D8+n DJNZ Rn, rel 2 2
 06+i INC @Ri 1 1
 04 INC A 1 P 1
 05 INC direct 2 1
 A3 INC DPTR 1 2
 08+n INC Rn 1 1
 20 JB bit, rel 3 2
 10 JBC bit, rel 3 2
 40 JC rel 2 2
 73 JMP @A+DPTR 1 2
 30 JNB bit, rel 3 2
 50 JNC rel 2 2
 70 JNZ rel 2 2
 60 JZ rel 2 2
 12 LCALL addr16 3 2
 02 LJMP addr16 3 2
 76+i MOV @Ri, #const8 2 1
 F6+i MOV @Ri, A 1 1
 A6+i MOV @Ri, direct 2 2
 74 MOV A, #const8 2 P 1
 E6+i MOV A, @Ri 1 P 1
 E5 MOV A, direct 2 P 1
 E8+n MOV A, Rn 1 P 1
 92 MOV bit, C 2 2
 A2 MOV C, bit 2 CY 1
 75 MOV direct, #const8 3 2
 86+i MOV direct, @Ri 2 2
 F5 MOV direct, A 2 1
 85 MOV direct, direct 3 2
 88+n MOV direct, Rn 2 2
 90 MOV DPTR, #const16 3 2
 78+n MOV Rn, #const8 2 1
 F8+n MOV Rn, A 1 1
 A8+n MOV Rn, direct 2 2
 93 MOVC A, @A+DPTR 1 P 2
 83 MOVC A, @A+PC 1 P 2
 F0 MOVX @DPTR, A 1 2
 F2+i MOVX @Ri, A 1 2
 E0 MOVX A, @DPTR 1 P 2
 E2+i MOVX A, @Ri 1 P 2
 A4 MUL AB 1 CY OV P 4
 00 NOP 1 1
 44 ORL A, #const8 2 P 1
 46+i ORL A, @Ri 1 P 1
 45 ORL A, direct 2 P 1
 48+n ORL A, Rn 1 P 1
 A0 ORL C, /bit 2 CY 2
 72 ORL C, bit 2 CY 2
 43 ORL direct, #const8 3 2
 42 ORL direct, A 2 1
 D0 POP direct 2 2
 C0 PUSH direct 2 2
 22 RET 1 2
 32 RETI 1 2
 23 RL A 1 1
 33 RLC A 1 CY P 1

-79-

Opcode Mnemonic Operands Bytes Flags Cycles
--
 03 RR A 1 1
 13 RRC A 1 CY P 1
 D2 SETB bit 2 1
 D3 SETB C 1 CY 1
 80 SJMP rel 2 2
 94 SUBB A, #const8 2 CY AC OV P 1
 96+i SUBB A, @Ri 1 CY AC OV P 1
 95 SUBB A, direct 2 CY AC OV P 1
 98+n SUBB A, Rn 1 CY AC OV P 1
 C4 SWAP A 1 1
 C6+i XCH A, @Ri 1 P 1
 C5 XCH A, direct 2 P 1
 C8+n XCH A, Rn 1 P 1
 D6+i XCHD A, @Ri 1 P 1
 64 XRL A, #const8 2 P 1
 66+i XRL A, @Ri 1 P 1
 65 XRL A, direct 2 P 1
 68+n XRL A, Rn 1 P 1
 63 XRL direct, #const8 3 2
 62 XRL direct, A 2 1

