
D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 1 of 47

ARTIST

FP7-317859

Advanced software-based seRvice provisioning and
migraTIon of legacy Software

D9.7

Integrated Environment for maintaining / developing forward
engineering process

Editor(s): Alexander Bergmayr
Manuel Wimmer
Javier Troya

Responsible Partner: TUWIEN

Status-Version: Final – V1.0

Date: 31/03/2015

Distribution level (CO, PU): PU

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 2 of 47

Project Number: FP7-317859

Project Title: ARTIST

Title of Deliverable:
Integrated Environment for maintaining /
developing forward engineering process

Due Date of Delivery to the EC: 31/03/2015

Workpackage responsible for
the Deliverable:

WP9

Editor(s):

Alexander Bergmayr (TUWien)

Manuel Wimmer (TUWien)

Javier Troya (TUWien)

Contributor(s): ATOS, Tecnalia, Sparx, INRIA, Engineering

Reviewer(s): Leire Orue-Echevarria (TECNALIA)

Approved by: All Partners

Recommended/mandatory
readers:

WP 6, WP 7, WP 8, WP 11

Abstract: This deliverable comprises automatically
executable transformations needed for deploying
the modernized applications in specific Cloud
infrastructures

Keyword List: Transformation Composition, Transformation
Configuration, Transformation Parameterization,
Repository

Licensing information: Generally EPL (open source), indicated otherwise.

The document itself is delivered as a description
for the European Commission about the released
software, so it is not public.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 3 of 47

Document Description

Document Revision History

Version Date

Modifications Introduced

Modification Reason Modified by

v0.1 25/02/2015 Table of Contents TUWIEN

v0.5
13/03/2015 Content for all Sections ATOS, ENGINEERING,

TECNALIA, TUWIEN

v0.9 17/03/2015 Compilation for internal review TUWIEN

v1.0
27/03/2015 Final version ATOS, ENGINEERING,

TECNALIA, TUWIEN

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 4 of 47

Table of Contents

Table of Contents .. 4

Table of Figures ... 7

Table of Tables ... ¡Error! Marcador no definido.

Terms and abbreviations ... 8

Executive Summary ... 9

1 Introduction .. 10

1.1 About this deliverable ... 10

1.2 Fitting into the overall ARTIST solution ... 10

1.3 Main Innovations... 11

1.4 Delivered Components .. 11

1.5 Document structure .. 11

2 ARTIST Integrated Environment .. 13

2.1 Functional Description .. 13

2.2 Technical Description .. 14

2.2.1 ARTIST Suite... 14

2.2.2 Model Discovery Toolbox .. 16

2.2.3 Model Understanding Toolbox.. 17

2.2.4 Code Generation Toolbox ... 17

2.2.5 Package information ... 17

2.3 User Manual .. 18

3 Transformation Composition Language .. 20

3.1 Functional Description .. 20

3.2 Technical Specification .. 22

3.3 User Manual .. 23

3.3.1 Defining transformation chains ... 23

3.3.2 Conditional Branching ... 23

3.3.3 Concurrency .. 24

3.3.4 Supported Technologies .. 24

4 Advances in Cloud Optimization Patterns ... 25

4.1 Key-Value Storage Pattern .. 25

4.1.1 Functional Description .. 25

4.1.2 Technical Description .. 25

4.1.3 User Manual .. 26

4.2 Caching Pattern ... 27

4.2.1 Functional Description .. 27

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 5 of 47

4.2.2 Technical Description .. 27

4.2.3 User Manual .. 27

4.3 Multitenancy Pattern .. 28

4.3.1 Functional Description .. 28

4.3.2 Technical Description .. 29

4.3.3 User Manual .. 29

4.4 Materialized View Pattern .. 30

4.4.1 Functional Description .. 30

4.4.2 Technical Description .. 31

4.4.3 User Manual .. 31

4.5 Circuit Breaker Pattern .. 31

4.5.1 Functional Description .. 31

4.5.2 Technical Description .. 32

4.5.3 User Manual .. 32

4.6 Cloudification of Resource Monitoring Concerns ... 32

4.6.1 Functional Description .. 32

4.6.1.1 Platform-Independent Profile for Resource Monitoring 33

4.6.1.2 Platform-Specific model for Resource Monitoring ... 34

4.6.2 Technical Specifications .. 35

4.6.3 User Manual .. 37

4.7 Federated Identity Pattern .. 37

4.7.1 Functional Description .. 37

4.7.2 Technical Description .. 37

5 Advances in Measuring the Quality of Generated Code ... 40

5.1 Functional Description .. 40

5.2 Technical description .. 40

5.2.1 Prototype architecture .. 40

5.2.2 Components description ... 41

5.2.3 Technical specifications ... 41

5.2.4 Package information ... 42

5.3 User Manual .. 43

6 Delivery and Usage .. 45

6.1 Package Information ... 45

6.2 Installation Instructions ... 45

6.3 User Manual .. 45

6.4 Licensing Information .. 45

6.5 Download Instructions .. 45

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 6 of 47

7 Conclusions ... 46

8 References ... 47

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 7 of 47

Table of Figures

FIGURE 1 ARTIST INTEGRATED ENVIRONMENT .. 14
FIGURE 2 ARTIST PERSPECTIVE ... 15
FIGURE 3 ARTIST PREFERENCE PAGES ... 16
FIGURE 4 PACKAGE STRUCTURE OF ARTIST SUITE ... 17
FIGURE 5 CONCEPTUAL OVERVIEW OF TRANSFORMATION COMPOSITION .. 20
FIGURE 6 – UML PROFILE FOR OBJECTIFY ... 26
FIGURE 7 MODEL WITH THE CORRESPONDING ANNOTATIONS FOR THE KEY-VALUE STORAGE PATTERN 26
FIGURE 8 –ANNOTATIONS AUTOMATICALLY GENERATED FOR THE KEY-VALUE STORAGE PATTERN IN GAE 26
FIGURE 9 CLASS ANNOTATED WITH THE CACHE STEREOTYPE.. 27
FIGURE 10 ANNOTATION AUTOMATICALLY GENERATED FOR THE CACHE PATTERN IN GAE 27
FIGURE 11 STEOREOTYPE FOR MULTITENANCY ... 28
FIGURE 12 CUSTOMER CLASS ANNOTATED WITH THE MULTITENANCY STEREOTYPE 29
FIGURE 13 SOME CODE GENERATED FOR THE MULTITENANCY PATTERN IN THE CUSTOMERSERVICE CLASS 29
FIGURE 14 STEREOTYPE FOR MATERIALIZEDVIEW PATTERN .. 30
FIGURE 15 OPERATION ANNOTATED WITH THE MATERIALIZEDVIEW STEREOTYPE 30
FIGURE 16 CODE AUTOMATICALLY GENERATED FOR THE MATERIALIZEDVIEW PATTERN 31
FIGURE 17 STEREOTYPE FOR THE CIRCUITBREAKER PATTERN ... 31
FIGURE 18 OPERATION ANNOTATED WITH THE CIRCUITBREAKER STEREOTYPE .. 32
FIGURE 19 TRANSFORMATION CHAIN ... 33
FIGURE 20 PLATFORM INDEPENDENT PROFILE FOR RESOURCE MONITORING .. 34
FIGURE 21 GAE RESOURCE MONITORS PDM ... 35
FIGURE 22 ANNOTATE4RM TRANSFORMATION .. 36
FIGURE 23 PIM MODEL ANNOTATED WITH RESOURCE MONITOR PROFILE .. 36
FIGURE 24 SPCOOP MONITORING SERVICE PSM (GAE COMPLIANT) ... 37
FIGURE 25 FEDERATED IDENTITY OPTIMIZATION PATTERN PROCESS .. 38
FIGURE 26 PETSTORE PSM WITH OPENID UML .. 38
FIGURE 27 STEREOTYPED EXAMPLE MODEL .. 39
FIGURE 28 GENERATED CODE FROM STEREOTYPED EXAMPLE MODEL .. 39
FIGURE 29 MMC HIGH LEVEL ARCHITECTURE .. 41
FIGURE 30 PACKAGE STRUCTURE OF THE MAINTAINABILITY METRIC CALCULATOR 42
FIGURE 31 MAINTAINABILITY METRIC CALCULATOR PROJECT ... 43
FIGURE 32 TESTING PACKAGE .. 43
FIGURE 33 MAINTAINABILITY METRIC CALCULATOR TESTING ... 44

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 8 of 47

Terms and abbreviations

EC European Commission

MDFE Model Driven Forward Engineering

API Application Programming Interface

GML Graphical Modelling Language

SOTA State Of The Art

MT Model Transformation

M2M Model to Model

ATL Atlas Transformation Language

M2T Model to Text

PIM Platform Independent Model

MUT Model Understanding Toolbox

PDM Platform Dependent Model

DSL Domain-Specific Language

OCL Object Constraint Language

MDE Model-Driven Engineering

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 9 of 47

Executive Summary

The ARTIST project aims at providing concepts, techniques, and tools for the modernization of
software by a migration to the cloud. Many tools have been developed in the context of
different WP’s of the ARTIST project. Allowing software engineers and modellers to apply
these tools for real world migrations scenarios, they need to be integrated into a common
environment. In this deliverable, we report on the ARTIST integrated environment that
provides a common interface to the ARTIST tools. In this sense, the integrated environment
complements the methodology process tool, cf. WP6, with dedicated tool-support for software
engineers and modellers to carry out a migration process.

As in ARTIST we work towards a model-based engineering approach to support cloud-oriented
software migration, model transformations play a key role in the transition of software to the
cloud. In fact, such a migration often requires carrying out several different transformations to
ultimately gain the required software artefacts. These transformations need to be properly
chained and maintained because typically a diverse set of transformations realized by different
transformation languages and technologies need to be executed in an appropriate order. For
this reason, we have developed a dedicated language that allows software engineers and
modellers to compose multiple transformations into a chain, thereby enabling the automatic
execution of such transformations if the chain becomes executed. The language supports
transformation technologies mainly applied in the context of reverse-engineering application
code into models, cf. WP8, and forward-engineering application code hosted by a cloud
environment from models, cf. WP9. In this deliverable, we give an overview of the key
concepts constituting this language and show how it can be applied for chaining
transformations that have been developed in the context of the ARTIST project for supporting
cloud-oriented software migration.

Moreover, transformations developed in the context of WP9 mainly realize model-to-model
transformations with the purpose of refining and optimizing them towards a selected cloud
environment and producing the pertinent application code from such models by relying on
model-to-code transformations. In this deliverable, we report on a selected set of patterns for
which we have developed concrete transformations and profiles, aiming to optimize certain
software artefacts for a selected cloud environment. In this respect, the quality of reverse-
engineered models plays a crucial role as they are considered as starting point for applying
such transformations in the forward engineering phase, cf D8.3. Only if they their quality is
appropriate, the quality of the models and generated application code as a result of possibly
chained transformations will be sufficient and useful for software engineers and modellers.

The ARTIST migration process provides techniques to investigate on the feasibility of a
migration to the cloud mainly by providing metrics, including source-code maintainability. In
this deliverable, we report on the calculation of the maintainability metric of application code
generated as a result of an ARTIST migration scenario with purpose to reason about possible
improvements.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 10 of 47

1 Introduction

1.1 About this deliverable

The integration of the ARTIST tools developed in different WPs into a common environment
aims at improving their application in real-world cloud migration scenarios including the
ARTIST use cases. In this deliverable, we report on the ARTIST integrated environment that
provides a common interface to all integrated ARTIST tools on top of the Eclipse environment.
It mainly targets software engineers and modellers carrying out migration scenarios to the
cloud. As in ARTIST we work towards a model-based engineering approach to support such a
software migration, model transformations play a key role in the transition of software to the
cloud. In fact, a migration scenario often requires carrying out several different
transformations to ultimately gain the required software artefacts. These transformations
need to be properly chained and maintained because typically a diverse set of transformations
realized by different transformation languages and technologies need to be executed in an
appropriate order. For this reason, we have developed a dedicated language that allows
multiple transformations to be composed into a transformation chain, thereby enabling their
automatic execution if the chain becomes executed. In this deliverable, we give an overview of
the key concepts constituting this language and show how it can be applied for chaining
transformations that have been developed in the context of the ARTIST project for supporting
cloud-oriented software migration. Moreover, in the ARTIST project transformation techniques
have been applied in combination with annotation-based modeling [4] for realizing
optimization patterns as reported by WP9 Deliverables. In this deliverable, we report on a
selected set of patterns for which we have developed concrete transformations and profiles,
aiming to optimize certain software artefacts for a selected cloud environment. In this respect,
not only model-to-model transformations are applied but also model-to-code transformations
that generate cloud-specific application code. As the ARTIST migration methodology provides,
among others, techniques to investigate on the feasibility of a migration to cloud mainly by
providing metrics, including source-code maintainability [2]. In this deliverable, we report on
the calculation of the maintainability metric of application code generated as a result of an
ARTIST migration scenario with purpose to reason about possible improvements.

1.2 Fitting into the overall ARTIST solution

The ARTIST integrated environment supports the ARTIST migration methodology from a
technical perspective by providing a tool suite to carry out real-world migration scenarios
including the ARTIST use cases. In this sense, it complements the methodology process tool
with a dedicated model-based tool-support for software engineers and modellers to carry out
such a process. As transformations play a crucial role in such a migration scenario, the
transformation composition language allows software engineers and modellers to chain them
into a coarse-grained transformation. This language supports transformation technologies
mainly applied in the context reverse-engineering application code into models, cf. WP8, and
forward-engineering application code hosted by a cloud environment from models, cf. WP9.
Considering the latter, transformations developed in the context of WP9 mainly realize model-
to-model transformations with the purpose of refining and optimizing them towards a selected
cloud environment and producing the pertinent application code from such models. Clearly,
the quality of reverse-engineered models plays a crucial role as they are considered as starting
point for forward-engineering activities. Only if they their quality is appropriate, the quality of
the models and generated application code as a result of such a transformation chain will be
sufficient and useful for software engineers and modellers. Measuring the quality of generated
application code is provided by calculating dedicated metrics including maintainability.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 11 of 47

1.3 Main Innovations

In this deliverable, we set the focus primarily on (i) the integration of ARTIST tools to support
model-based software migration to the cloud, (ii) the development of a composition language
to chain transformations as part of the concrete cloud-oriented migration scenario, (iii)
advances in the development of transformations and profiles to realize cloud optimization
patterns for a selected environment, and (iv) advances in the calculation of automatically
generated source-code metrics.

 ARTIST integrated environment. Provides a common interface to ARTIST tools to
support software engineers and modellers to carry out software migrations to the
cloud.

 Transformation composition language. Allows multiple transformations to be
composed into a transformation chain, thereby enabling their automatic execution if
the chain becomes executed and the reuse of them in the sense that they are loosely
coupled by a more coarse-grained transformation.

 Transformations and profiles for cloud-based optimization. Supports the
improvement of software artefacts with novel cloud optimization opportunities.

 Quality measurements for generated application code. Makes the generated code of
ARTIST tools measureable.

1.4 Delivered Components

All realized components are packaged either as Eclipse plugins or Eclipse projects. The selected
license is the Eclipse Public License (EPL)1 which is a known as a “commercial-friendly” open
source license. This should facilitate the future potential reuse and integration of the toolbox
(or at least of some of its components) by external partners.

The source of the integrated environment and the transformation composition language is
located in the public ARTIST repository:

https://github.com/artist-
project/ARTIST/tree/master/source/Tooling/migration/integrated environment

Regarding advances in cloud optimization pattern, modifications have been carried out to the
model cloudification framework (MCF) as introduced in D9.3 and D9.5:

https://github.com/artist-
project/ARTIST/tree/master/source/Tooling/migration/modernization/MCF

Regarding advances in measusring the qualitiy of generated source code, the respective
components are located at:

https://github.com/artist-project/ARTIST/tree/master/source/Tooling/pre-
migration/technical feasibility tool/SCC

1.5 Document structure

The document is structured as follows. In Section 2, we introduce the ARTIST integrated
environment on top of the Eclipse environment. We introduce the transformation composition
language in Section 3. In Section 4 we report on the realization of a set of optimization
patterns for a selected cloud environment, while in Section 5, we report on how the

1
 „Eclipse Public License,“ [Online]. Available: http://www.eclipse.org/legal/epl-v10.html.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 12 of 47

maintainability metric can be calculated for application code generated as a result of an ARTIST
migration scenario before we conclude in Section 6.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 13 of 47

2 ARTIST Integrated Environment

2.1 Functional Description

ARTIST Suite consists of a bundle of different tools supporting the ARTIST Cloud migration
methodology. As these tools support different phases and tasks within the methodology, and
target different roles (and therefore, providing different interfaces for those users), they can
initially be not sufficiently integrated from different perspectives: usability, interoperability,
seamlessly integration along the ARTIST methodology and so on. The fact that the different
ARTIST tools have been developed according to different functional constraints, technical
paradigms or different architecture platforms - because of technical considerations or
constraints – imposes some challenges into their mutual integration. To improve the user
perception of the ARTIST Suite, as a single seamlessly integrated tool, different technical
initiatives have been conducted by ARTIST in different work packages:

 The ARTIST methodology provides the conceptual and behavioural integrated process
that drives the operation of the entire ARTIST Suite and its constituting tools.

 The Methodology Process Tool (MPT) provides another mechanism to improve the
behavioural and functional integration of the ARTIST Suite tools, which are
orchestrated within the MPT, in the different walk-through guides provided (e.g. the
Eclipse Cheat Sheets), following the personalised ARTIST methodology.

 The ARTIST Integrated Environment, described in this section, provides a seamlessly
integrated common user interface for all those ARTIST Suite tools that run within the
Eclipse environment.

The ARTIST Integrated Environment is an Integrated Development Environment (IDE), hosted
in the Eclipse IDE, which offers the Model-Driven-Engineering tools developed by ARTIST,
which are compatible with Eclipse. These ARTIST tools, mostly targeting software engineers
and modellers, cover a significant percentage of all the ARTIST tools. Nonetheless, few ARTIST
tools cannot be directly integrated, simply because they are not compatible with the ARTIST
framework. Nonetheless, for these cases, other loose coupling integration approaches have
been addressed as well, cf. D6.4.1. After this conceptual introduction of the scope and
motivation of the ARTIST Integrated Environment, we continue describing the main
functionality it offers to the end-user:

 A single delivery and installation procedure, whereby the entire ARTIST Integrated
Environment can be installed, either from a distributable bundle, or from the ARTIST
update site. Users can install the complete ARTIST Suite or individual components (e.g.
Eclipse features).

 An integrated configuration for all ARTIST Suite tools, within a single tree-structure in
the ARTIST preference pages. Additionally, endpoints to access external (i.e. Web
based) ARTIST tools can be configured in these pages.

 Top tool bars and menu bars to access external Web-based ARTIST Tools, such as the
Maturity Assessment Tool, the Methodology Process Tool, the Certification Tool, etc.
as well as wizard based tools of the ARTIST Suite, such as the Enterprise Architect
Bridge, the Reusability Trace Tool, etc. These external Web-based tools can be
accessed through the internal Eclipse Web browser, or through an external one,
depending on the configuration.

 A Wizard to create an ARTIST Cloud migration project, based on Java, which defines a
Cloud migration project folder structure according to the ARTIST MDE methodology.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 14 of 47

 A layout organization of ARTIST tool views in Eclipse perspectives. The main ARTIST
perspective includes by default the Repository view, from where the user can browse
and access reusable artefacts available in the repository.

 Homogeneous usability and access mechanism (through the user interface) to the
Eclipse-based ARTIST tools, through contextual menus that offer context-sensitive
options based on selected artefacts in the local workspace. This common access
mechanism complements other tool-specific ones, already provided by the tools
themselves, such as the Eclipse runtime configurations.

 Grouping of the ARTIST tools within common toolsets: Model Discovery Toolset,
Model Understanding Toolset, Model Cloudification and Optimization Toolset or Code
Generation toolset.

These user interface features are aiming to improve the interoperability and usability of the
ARSTIST tools within the Eclipse environment, and supporting the access to external ARTIST
Web-based tools as well, were agreed by the consortium (both technical and use case
providers) in an integration workshop held during an ARTIST general assembly.

2.2 Technical Description

ARTIST Integrated Environment (ARTIST IDE) is implemented using Eclipse PDE (Plug-in
Development Environment) collecting most of the ARTIST tools as plugins and features within
its body allowing for a single installation for ARTIST tools and also an update site. ARTIST IDE
also owns a parent plugin as the main feature, which is depending on by several tools, defining
an Eclipse perspective for ARTIST, a preference page tree entry housing preferences for some
of the tools and an ARTIST top menu and a toolbar for launching external tools. Next figure
abstractly outlines the ARTIST IDE’s architecture.

Figure 1 ARTIST Integrated Environment

2.2.1 ARTIST Suite

ARTIST Perspective: contributing to Eclipse’s perspectives extension by defining a new
perspective within Eclipse specialized for ARTIST. This perspective layout contains the
Repository View, Problems View and the Package Explorer as default. ARTIST Perspective is
created by adding an extension for org.eclipse.ui.perspectives extension point in the plugin.xml
and also defining a class implementing the IPerspectiveFactory interface of Eclipse UI package
to create the initial layout.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 15 of 47

Figure 2 ARTIST Perspective

ARTIST Preference Pages: contributing to Eclipse’s Preferences and PreferencePages
extensions by defining dedicated preference pages.

 ARTIST page contains a single checkbox which offers the user the option to launch the
external tools whether in Eclipse’s internal web browser or the system browser.

 Technical Feasibility Tool page too contains a single checkbox to let the user set a
default path for the TFT Report generation path.

 Methodology Process Tool page consists of a radio button group by which the user can
select a user role for MPT, a text field for storing the default URL for MPT Web App
and again a text field to store the path value for the MAT report to be consumed by
MPT cheat sheets.

 Repository Connections page contains an SWT table to collect and store connection
information (name and URL) for the ARTIST Repository.

 Maturity Assessment Tool page allows the user to set the default MAT URL on the text
field provided and also user credentials for MAT.

 Certification Tool page contains a text field to store the default value for the
Certification Tool’s URL.

All defined pages created by adding an extension for org.eclipse.ui.preferencePages extension
point in the plugin.xml and also defining a class implementing the IWorkbenchPreferencePage
interface of the Eclipse’s UI package. The preference page classes in ARTIST Suite also extend
the FieldEditorPreferencePage class of Eclipse UI for the ease of layout creation with regards to
coding.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 16 of 47

Figure 3 ARTIST preference pages

ARTIST Top Menu and Toolbar: Menu and the toolbar actions allows the user to create an
ARTIST migration project and launch external tools defined in the context of ARTIST;
Certification Tool, Maturity Assessment Tool and Methodology Process Tool.

Both the ARTIST top menu and toolbar is created by adding an extension for
org.eclipse.ui.menus extension point in the plugin.xml by adding a menu contribution. The
menu actions invoke an Eclipse command, defined in the plugin.xml by extending the
org.eclipse.ui.commands extension point. These actions send a parameter to the command
handler class which is then interpreted and the appropriate menu action is invoked, be it the
external tool or the ARTIST migration project wizard.

2.2.2 Model Discovery Toolbox

Model Discovery Toolbox feature consists of several plugins, which together forms the tools in
this toolbox. Currently, this toolbox, reported in WP8 Deliverables, consists of the tools;
Java2Model, Java2UMLClass, Java2UMLActivity, XMLAggregator, SQL Model Discoverer and
JUMP. All these tools except JUMP contribute to the ARTIST Integrated Environment by adding
menu actions to Modisco’s Discovery context menu item. This is managed by adding an
extension for org.eclipse.ui.menus extension point in the plugin.xml using the menu category
ID defined by Modisco.

JUMP tool on the other hand, defines a Run Configuration which can be accessed by opening
the Eclipse’s default Run Configuration View. This contribution is extended by adding a context
menu option to projects which have Java nature. The menu option allows the user to create
and open a JUMP run configuration with the properties of the selected Java Project. This is also
managed by adding an extension for org.eclipse.ui.menus extension point in the plugin.xml
that is linked to a command invoking the run configuration of the JUMP tool.

The user manuals and figures further explaining the tools can be found in the tool’s respective
deliverables (WP8 series of deliverables).

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 17 of 47

2.2.3 Model Understanding Toolbox

The tools in Model Understanding Toolbox are; Component Model Generator, PIM Abstractor,
Annotation Based Slicing and CMM (Computation of Model Metrics). All of these tools
contribute to the Eclipse’s menu extension by defining menu actions under the Model
Understanding Toolbox context menu for UML files. PIM abstractor and Component Model
Generator also assist the user with a dialog on which the user can make a selection among the
pre-defined abstractor types and UML profiles to be used in the model abstraction and
generation processes. This dialogs are basically implemented as Java classes extending the
TitleAreaDialog of Eclipse’s JFace API. The user manuals and figures further explaining the
tools can be found in the tool’s respective deliverables (WP8 series of deliverables).

2.2.4 Code Generation Toolbox

This toolbox feature is formed of Java Code Generator and Maintainability Metric Calculator
(MMC) tools, both of which define extensions to Eclipse menus by action additions to context
menus of UML files. These actions are grouped under the Code Generation Toolbox menu
item. MMC also has a custom dialog which helps the user in selecting a source code location of
the selected UML model. The dialogs and menu entries for this feature are implemented the
same way as the Model Understanding Toolbox’s menu extensions and dialogs. The user
manuals and figures further explaining the tools can be found in the tool’s respective
deliverables (WP8 series of deliverables).

2.2.5 Package information

Since all ARTIST tools’ individual package information are within their respective deliverables,
this section will only describe the delivery package of the main feature (ARTIST Suite), which
consists of the folder structure shown below.

Figure 4 Package structure of ARTIST Suite

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 18 of 47

eu.artist.suite.commands: Contains the LaunchBrowserWithURLHandler.java which
handles the browser launch actions of external tools.

eu.artist.suite.perspective: Contains the ARTISTPerspectiveFactory.java. This class is
responsible for the creation of the main layout of the ARTIST perspective.

eu.artist.suite.preferences: Contains the PreferenceConstants.java which holds constant
and default values that are being used by the preference pages and
PreferenceInitializer.java which initializes the preference values whenever a preference
page is opened.

eu.artist.suite.preferences.pages: This package contains the implementations of all the
preference pages defined within the context of ARTIST. Each class in this package defines a
unique page in the Eclipse preferences tree view.

eu.artist.suite.project: Contains the ARTISTProjectSupport.java. This class offers a method
for creation of an ARTIST Migration Project.

eu.artist.suite.utils: The package contains a single class called WorkspaceHelper.java. This
class offers methods for creating a base project, adding nature to a project, creation of folders
and setting classpath for library files.

eu.artist.suite.wizards: Contains the NewARTISTProjectWizard.java which is an extension of
the Eclipse wizard, enabling creation of an ARTIST project using the Eclipse wizards.

2.3 User Manual

ARTIST Integrated Environment and all its features plugin will be available for installation using
Eclipse’s Install New Software feature via ARTIST’s update site. Now, it can be downloaded and
installed manually. Eclipse 4.2 (Juno) is required for installation but Eclipse 4.3 (Kepler) is
recommended.

Installation Procedure of Required Plugins

ATL plugins are required to be installed. ATL plugins may be installed by following the
installation procedure below:

1. On the Help menu of Eclipse, click Install New Software.

2. From the “Work with” dropdown list select Kepler or Juno depending on your Eclipse
version. If you do not have these entries in the list continue on from step 2a otherwise
continue from step 3.

a. Click Add button at the right side of the Work with dropdown list.

b. Write a name of your choice for the Kepler/Juno repo.

c. Write http.download.eclipse.org/releases/kepler or
http://download.eclipse.org/releases/juno to the Location field and click Ok.

3. Select ATL SDK, click next and follow the instructions on screen.

4. Restart Eclipse.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 19 of 47

Installation of ARTIST Integrated Environment

The ARTIST IDE update site will be published at the ARTIST website www.artist-project.eu
available for installation using Eclipse’s Install New Software feature. Currently, and anytime,
the user can download the update site zip file from https://github.com/artist-
project/ARTIST/tree/master/binary/ARTIST_IDE and follow the instructions below for
installation.

1. Download the update site zip file from: https://github.com/artist-
project/ARTIST/tree/master/binary/ARTIST_IDE

2. Extract the Zip contents to a desired location.

3. On the Help menu of Eclipse, click Install New Software.

4. Click the Add button at the right side of the Work with dropdown list.

a. Click the Local button and select the update site folder extracted from the zip
file on step 2. Click Ok button.

b. Click Ok button.

5. Select the ARTIST features you want to install and follow the instructions on screen.

6. Restart Eclipse.

http://www.artist-project.eu/
https://github.com/artist-project/ARTIST/tree/master/binary/ARTIST_IDE
https://github.com/artist-project/ARTIST/tree/master/binary/ARTIST_IDE
https://github.com/artist-project/ARTIST/tree/master/binary/ARTIST_IDE
https://github.com/artist-project/ARTIST/tree/master/binary/ARTIST_IDE

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 20 of 47

3 Transformation Composition Language

A modernization scenario often requires carrying out several different transformations to
ultimately gain the modernized software artefacts. These transformations need to be properly
chained and maintained because typically a diverse set of transformations realized by different
transformation languages need to be executed in an appropriate order in particular if there are
dependencies between these transformations. For instance, a transformation may require
models as input that is produced by another transformation as output. In such a case, the
order in which they are executed is vital for the produced result.

3.1 Functional Description

We have developed a dedicated language that allows multiple transformations to be
composed into a transformation chain, thereby enabling their automatic execution if the chain
becomes executed. Chaining transformations fosters reuse in the sense that existing
transformations are loosely coupled by a more coarse-grained transformation [1]. Such a loose
coupling ensures that the developers still have the control over the execution of the single
transformations. The latter is important not only to pause and resume a transformation chain
in case of developers need to intervene, e.g., manual changes need to be carried out on
produced models, but also to partially re-execute the transformation chain as a result of
updates to one or more transformations. Such an incremental transformation execution can
significantly reduce the runtime overhead particularly when computation-intensive
transformations are marginally revised [2]. Moreover, it can ensure that manual changes to
existing models prior the re-execution of a transformation in the chain are retained because
they are only updated instead of entirely re-created.

Figure 5 Conceptual overview of transformation composition

From a conceptual perspective, a transformation chain is considered as a single
transformation, where its input is determined by the entry point of the transformation chain,
i.e., transformations that do not require input from other transformations, and the end point
of the transformation chain determines its output. The latter is produced by transformations
on which no other transformations depend. As a result, a transformation chain is a directed
graph, where the arcs in the graph represent a dependency of one transformation to another

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 21 of 47

of the chain. We exploit a place/transition Petri net [3] as the formal representation to encode
transformation chains and its well-defined operational semantics to execute them. In doing so,
the analysis techniques supported by this formalism can directly be used to, e.g., check the
reachability of a certain transformation from another one in the chain. Moreover, the fact that
Petri nets permit concurrent state transitions enables transformations to be executed in
parallel. Finally, because the placement of the tokens captures the state of the chain's
execution, it allows developers to intervene the chain, thereby both a black-box as well as a
white-box view on a transformation chain is provided. Figure 5 gives a conceptual overview of
defining and executing a transformation chain.

The definition of a transformation chain is enabled by a Groovy2-based domain-specific
language, which is inspired by current build tools such as Gradle3. The following Listing shows
the definition of a transformation chain consisting of five transformations that depend on each
other. The first transformation produces a Java model from a Java code base. In fact, MoDisco
is used to perform this first transformation, which is realized as a model discoverer in the
context of WP8. In a second step, a UML model is produced from the previously obtained Java
model, where this UML model is considered as input for a slicing transformation in the third
step. Then, in the fourth step the sliced UML model is refined towards the Google App Engine
before in a final step code is generated from it. All the transformations in this scenario have
been developed in the context of WP8 and WP9.

def java2javamodel = trafo (name: "java2javamodel", of: "MoDisco") {
 project = "JavaProject"
}

def java2uml = trafo (name: "java2uml", of: "ATL") {
 metaModel "Java", "./Java.ecore"
 metaModel "UML", "./UML.ecore"

 input "Java", "IN", "./javamodel.xmi", "JavaSource"
 output "UML", "OUT", "./umlmodel", "Table"

 transformation = "./Java2UML.asm"
}

def uml2sliceduml = trafo (name: "uml2sliceduml", of: "ATL/EMFTVM") {
 metaModel "UML", "./UML.ecore"

 input "Java", "IN", "./javamodel.xmi", "JavaSource"
 output "UML", "OUT", "./umlmodel", "Table"

 transformation = "./UML2SlicedUML.asm"
}

def uml2refineduml = trafo (name: "uml2refineduml", of: "ATL/EMFTVM") {
 metaModel "UML", "./UML.ecore"

 input "Java", "IN", "./javamodel.xmi", "JavaSource"
 output "UML", "OUT", "./umlmodel", "Table"

 transformation = "./UML2SlicedUML.asm"
}

2
 Groovy: http://groovy-lang.org

3
 Gradle: https://gradle.org

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 22 of 47

def uml2java = trafo (name: "uml2java", of: "Acceleo") {
 project "UML", "./UML.ecore"

 main "Java", "IN", "./javamodel.xmi", "JavaSource"
 target "UML", "OUT", "./umlmodel", "Table"

 model = "./UML2SlicedUML.asm"
}

java2uml.dependsOn "java2javamodel"
uml2sliceduml.dependsOn "java2uml"
uml2refineduml.dependsOn "uml2sliceduml"
uml2java.dependsOn "uml2refineduml"

If a transformation is scheduled for execution, it runs through four phases: (i) setup, (ii) pre-
work, (iii) work, and (iv) post-work. The first phase is dedicated to initialize a transformation by
providing all the required parameters. In the above Listing, the parameters required to setup
the transformation are enclosed by the curly brackets. The other three phases are part of the
execution of a defined transformation in the chain. Developers can interfere in these phases
by passing method calls to them, which is useful, for instance, to save intermediate results,
add assertions that need to be fulfilled, provide debug information, and pass the behaviour of
a transformation directly via the chain. The following Listing shows how the three phases can
be accessed.

java2javamodel << {
 // before the transformation is executed
}

java2javamodel.work = {
 // the transformation itself
}

java2javamodel >> {
 // after the transformation has been executed
}

3.2 Technical Specification

The transformation composition language uses the following components and technologies:

 eu.artist.migration.transformation.composition.ui: provides an user interface to
execute a transformation chain

 eu.artist.migration.transformation.composition.core: implements the transformation
composition language based on Groovy, provides a translation of defined
transformation chains into a Petri net representation, and enables the execution of
transformation chains

 eu.artist.migration.transformation.composition.delegates: delegates to the
supported technologies such as Acceleo, ATL, ATL/EMFTVM, Modisco

 Groovy: it is used as a host language for implementing the transformation compositin
language

 Java / JVM: it is used to implement the delegators to the supported technologies;
Groovy is dynamically compiled to JVM bytecode

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 23 of 47

3.3 User Manual

In this Section, we give an overview of how the transformation composition language can be
used in practice. A dedicated menu entry is offered to execute defined transformation chain
(right click on *.moola script and select “Run Moola”)

3.3.1 Defining transformation chains

Transformation chains are composed of transformations defined in a *.moola script. The
following example composes three transformations that are executed one after each other.

def a = trafo (name: "a") {
 // setup configuration for $name"
}

def b = trafo (name: "b") {
 // setup configuration for $name"
}

def c = trafo (name: "c") {
 // setup configuration for $name"
}

// define the dependencies between the transformations
b.dependsOn "a"
c.dependsOn "b"

Dependencies between transformations can also be defined within the signature of a
transformation.

def a = trafo (name: "a") {
 // setup configuration for $name"
}

def b = trafo (name: "b", dependsOn: ['a']) {
 // setup configuration for $name"
}

def c = trafo (name: "c", dependsOn: ['b']) {
 // setup configuration for $name"}

Moreover, a short cut can be used to define the order in which the transformations shall be
executed. Finally, it is possible to explicitly define the entry point of the transformation chain.

run inOrder: ["a", "b", "c"]
start with: ["b"]

3.3.2 Conditional Branching

Dependencies can also be annotated with conditions. A condition needs to forward control to
exactly one succeeding transformation. For instance, if the condition of the dependency of ”c”
to “b” doesn't match, a default route has to be defined. An exception will be thrown if no
condition matches and no default branch is defined.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 24 of 47

def assertion = "some value"

def a = trafo (name: "a") {
 // setup configuration for $name"
}

def a = trafo (name: "b") {
 // setup configuration for $name"
 assertion = "some other value"
}

def a = trafo (name: "c") {
 // setup configuration for $name"}

def a = trafo (name: "d") {
 // setup configuration for $name"
}

// define the dependencies between the transformations
b.dependsOn("a")
c.dependsOn("b") {
 asseration == "some other value"
}
d.dependsOn("b")

3.3.3 Concurrency

Transformations in a chain are executed once all the transformations they depend on have
been executed. As a result, transformations are if possible executed in parallel.

def a = trafo (name: "a") {
 // setup configuration for $name"}
}

def b = trafo (name: "b") {
 // setup configuration for $name"}
}

def c = trafo (name: "c") {
 // setup configuration for $name"}
}

b.dependsOn "a"
c.dependsOn "a"

3.3.4 Supported Technologies

Currently, four different types of transformations are supported. They refer to the respective
Eclipse-based technologies: Acceleo, ATL, ATL/EMFTVM, and MoDisco.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 25 of 47

4 Advances in Cloud Optimization Patterns

In the ARTIST project, transformation techniques are applied in combination with annotation-
based modeling [8] for realizing optimization patterns as contributed by WP9. In following, we
report on a selected set of patterns for which we have developed concrete transformations
and profiles, aiming to turn on-premise software into cloud-based software and optimize
certain software artefacts for a selected cloud environment.

4.1 Key-Value Storage Pattern

4.1.1 Functional Description

This pattern aims to change the architecture of the database by converting a relational schema
into a key-value storage. In order to successfully apply this pattern, first the domain model of
the application has to be extracted, as it is described in D9.3. For the Google App Engine, we
use the Objectify profile, shown in Figure 6. The transformations explained in D9.3
automatically annotate the corresponding entity classes and properties with the
corresponding annotations (@Entity, @Embed, @Id…) as shown in Figure 7 for an example
model of the Petstore. Finally, when the code generator is launched, the corresponding
annotations are automatically created for the generated classes and properties (cf. Figure 8).

4.1.2 Technical Description

As explained in D9.3, the objectification component for generating Objectify-based PSMs from
PIMs that capture the domain model of an application is realized based on two model-to-
model transformations:

 DomainModelObjectification: Generic transformation rules to apply Objectify-based
stereotypes to domain model elements.

 DataAccessObjectsObjectification: Generic transformation rules to generate service
classes for entities of a domain model.

The main technologies used to realize the objectification component are as follows:

 UML metamodel: for representing the discovered UML models, which is included in
the UML2 plugin

 ATL / EMFTVM: for implementing purposes

 Java: for implementation purposes.

Furthermore, and as explained in D9.5, we have extended the Acceleo-based code generator
developed by Obeo Networks, which includes the following aspects:

 Generic Code Generator: We have added support for UML profiles to the Acceleo-
based code generator developed by Obeo Networks. In this respect, we have also
restructured the code templates as we produce Java annotations for corresponding
UML stereotypes.

 Code Generator Extension for Objectify: We have implemented an Acceleo-based
code generator extension for the Objectify framework.

 Code Generator UI: Code generator UI developed by Obeo Networks.

 Acceleo: Base technology to realize the code generation facility

 Java: Base technology to realize the code generation facility

 UML: Modeling language to represent the models and profiles injected to the code
generation facility

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 26 of 47

4.1.3 User Manual

The steps to obtain the domain model with the Objectify profile and the corresponding
stereotypes applied are explained in Section 3.3.1.3 of D9.3. Considering the generation of the
code, it is explained in Section 3.2.4 of D9.5.

Figure 6 – UML Profile for Objectify

Figure 7 Model with the corresponding annotations for the Key-Value Storage pattern

Figure 8 –Annotations automatically generated for the Key-Value Storage pattern in GAE

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 27 of 47

4.2 Caching Pattern

4.2.1 Functional Description

The application of this pattern aims at reducing the time for performing reads to the database,
facilitating database scalability. In the Google App Engine, we simply need the <<Cache>>
stereotype of the Objectify profile shown in Figure 6 on the entities that we want to be cached.
Thus, we only need to know which classes, out of those representing the domain model, we
want to be cached, and stereotype them, as shown in for the Item class in Figure 9.

Figure 9 Class annotated with the Cache stereotype

Then, the corresponding @Cache annotation at code level as well as the necessary import is
automatically generated by the code generator (cf. Figure 10).

Figure 10 Annotation automatically generated for the Cache pattern in GAE

4.2.2 Technical Description

As explained in D9.5 [1], we have extended the Acceleo-based code generator developed by
Obeo Networks. For this specific pattern, we add support for including the @Cache annotation
and the corresponding imports.

4.2.3 User Manual

In order to execute this pattern for having the annotations included in the code, the user
needs to execute the extended code generator after the <<Cache>> stereotype has been
applied to the corresponding classes.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 28 of 47

4.3 Multitenancy Pattern

4.3.1 Functional Description

As we explained in D9.3, the Google App Engine offers a PaaS service to its developers, and we
do not have to worry about splitting the data in the database among tenants, since GAE
manages it automatically and transparently to the developer. GAE offers the Namespaces
service4 to implement multitenancy. By using this service, namespaces can be set, obtained,
and validated using namespace_manager.

Although in D9.3 we presented the possibility to stereotype both operations and classes with
the Multitenancy profile, we only consider the stereotype of classes in order to automatically
generate code that supports multitenancy. The profile that we propose is shown in Figure 11.
When a Class is stereotyped with Multitenancy, this means that all the entities of this specific
type consider multitenancy. Consequently, all the reads and writes on these entities will be
done by applying the ID of the specific tenant or group of tenants. At this level, it can also be
specified the type and level of multitenancy that the system must provide, although for GAE,
these parameters are not needed.

Figure 11 Steoreotype for Multitenancy

In order to automatically generate code that supports multitenancy, we have extended the
Acceleo code generator to include some code related to multitenancy in some service classes
of those entities stereotyped with <<Multitenancy>>. The user should be aware that the
entities that should be stereotyped with <<Multitenancy>> are those that must have their data
split in the database. In GAE, the Namespace is set to be the ID of the user who is logged in the
application. For instance, in the model of the Petstore shown in Figure 12, we can see how the
Customer class is extended with the Multitenancy stereotype, since the user wants each
customer of the application to read/write his/her own data. This means that, when we execute
the code generator, some code specific for the NamespaceManager is added in the service
class of the Customer. In fact, we consider that a new customer logs in whenever it is created
or it is searched for. For this reason, these two operations of the CustomerService class get
extended. The necessary imports to support this service are also included automatically (cf.
Figure 13).

4
 https://developers.google.com/appengine/docs/python/multitenancy/multitenancy

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 29 of 47

Figure 12 Customer class annotated with the Multitenancy stereotype

Figure 13 Some code generated for the Multitenancy pattern in the CustomerService class

4.3.2 Technical Description

As explained in D9.5 [1], we have extended the Acceleo-based code generator developed by
Obeo Networks. For this specific pattern, we add support for extending specific service classes
and for adding the necessary imports.

4.3.3 User Manual

In order to execute this pattern for adding the necessary code, the user needs to execute the
extended code generator after the <<Multitenancy>> stereotype has been applied to the
corresponding domain classes.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 30 of 47

4.4 Materialized View Pattern

4.4.1 Functional Description

When a query requires only a subset of the data from some entities, such as a summary of
orders for several customers without all of the order details, it must extract all of the data for
the relevant entities in order to extract the required information. In addition to joining tables
or combining data entities, queries may also include the current values of calculated columns
or data items. Realizing the same query once and again influences negatively the performance
of the system. This pattern proposes to store the results of these frequently-realized queries in
the Cache, improving the performance of the application.

We consider that these queries are realized inside specific methods of the classes in the
migrated application. Consequently, we stereotype with <<MaterializedView>> those methods

that contain queries of this type (cf. Figure 14). The idea is to first look if the value we are
interested in is in the Cache. If it is not, the query is realized and the value returned (and also
stored in the Cache). If it is, it is retrieved from the Cache.

Figure 14 Stereotype for MaterializedView pattern

For automatically generating code for this pattern, in order for an operation to acquire the
logic to implement the materialized view pattern, it needs to have the <<MaterializedView>>
stereotype applied, as shown for the updateProduct operation in Figure 15. Then, the
corresponding code template in code level is automatically generated. Then, when executing
the code generator, the necessary imports as well as the code are automatically generated, as
shown in Figure 16.

Figure 15 Operation annotated with the MaterializedView stereotype

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 31 of 47

Figure 16 Code automatically generated for the MaterializedView pattern

4.4.2 Technical Description

As explained in D9.5 [1], we have extended the Acceleo-based code generator developed by
Obeo Networks. For this specific pattern, we add support for extending the specific operations
of service classes that are annotated with <<MaterializedView>>. Specifically, the extension in
code level refers to the inclusion of the template in said operations.

4.4.3 User Manual

In order to execute this pattern for having the code included in the operations, the user needs
to execute the extended code generator after the <<MaterializedView>> stereotype has been
applied to the corresponding operations.

4.5 Circuit Breaker Pattern

4.5.1 Functional Description

A circuit breaker acts as a proxy for operations that may fail. The proxy should monitor the
number of recent failures that have occurred, and then use this information to decide whether
to allow the operation to proceed or simply return an exception immediately or wait for a
specific timeout for retrying the operation.

We have implemented this pattern in a model level as a stereotype extending an operation,
since it is within methods where the calls to a specific service may fail. As we need the
information about the number of failures before the circuit breaker acts, we have set an
attribute threshold in the stereotype. We also need to know the time we want the application
to wait before retrying the operation, something that is stored in the timeout attribute. The
stereotype we have defined is shown in Figure 17.

Figure 17 Stereotype for the CircuitBreaker pattern

In order for an operation to acquire the logic to implement the circuit breaker pattern, it needs
to have the <<CircuitBreaker>> stereotype applied (cf. Figure 18). Then, the corresponding

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 32 of 47

code template in code level is automatically generated together with the CircuitBreaker.java
and ServiceCircuit.java classes.

Figure 18 Operation annotated with the CircuitBreaker stereotype

4.5.2 Technical Description

As explained in D9.5 [1], we have extended the Acceleo-based code generator developed by
Obeo Networks. For this specific pattern, we add support for extending the specific operations
of service classes that are annotated with <<CircuitBreaker>>. Specifically, the extension at
code level refers to the inclusion of the template in said operations.

4.5.3 User Manual

In order to execute this pattern for having the code included in the operations, the user needs
to execute the extended code generator after the <<CircuitBreaker>> stereotype has been
applied to the corresponding operations.

4.6 Cloudification of Resource Monitoring Concerns

4.6.1 Functional Description

Platform resource monitoring in Java is possible through several means, the most widely used
being JMX (Java Management eXtension). JMX provides means to add flexible and powerful
management interfaces to an application. Through JMX technology, a set of platform
resources to be controlled can be seen as simple, well-defined objects whose properties map
to the lower-level characteristics of the given resource. With JMX, Java instruments the Virtual
Machine itself to provide visibility into the state of memory management, class loading, active
threads, logging, and platform configuration. This functionality is provided through MXBeans,
which are, in effect, management beans encapsulating specific parts of the Java Platform’s
internals. The management interface exposes several classes to control a wide set of
resources, including Memory, Operating System, Threads, Runtime.

When moving to cloud, in particular to PaaS providers, it is possible that this information is no
longer available, incorrect or not supported. The transformation described in this section is
aimed at replacing the existing technology to gather the information about platform resources

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 33 of 47

with one that is supported by the cloud provider, with a minimal impact for the rest of the
system.

Although for some types of resources resource management is taken care of by the cloud
provider, the monitoring of resource consumption can be useful to systems when they want to
enact closed loop management mechanisms, or even to try to contain costs related to
resources consumption.

Taking as an example Google App Engine (GAE), while this cloud provider does not support
JMX, including JMXBeans access, it offers billing schemas based on resource usage quotas.
Resource monitoring can be useful to check that the system does not exceed the thresholds
over which resources are to be paid for. Even if JMX is not supported as such, GAE offers
several other services to manage and monitor the consumption of resources. The idea of the
transformation is to create a profile that allows identifying platform resources, so to be able to
replace the technology to access them with the ones compatible with the cloud provider.

In Figure 19, the whole transformation chain is visualized, together with the artifacts involved
in the process. All artifacts and transformations are described in more detail in the following
paragraphs. The initial input to the transformation process is the UML Model of the system to
be migrated. The model is annotated with the ResourceMonitoring Profile created to identify
resources ant its properties. This annotated model, still platform independent, is then mapped
with the Resource Monitoring GAE library model. This library is specific to Google app engine
and uses cloud provider specific APIs to gather information on the resources.

Figure 19 Transformation Chain

The result of this mapping is a Platform specific model with resource management support for
the target cloud provider, in this case Google App Engine

4.6.1.1 Platform-Independent Profile for Resource Monitoring

The Resource Monitoring profile (res-model.profile) has been derived automatically from the
JMX specifications. It describes resources and their main properties relevant at the level of the
Java platform. The profile has been generated using an ATL transformation (JMX-CD2RM-
Profile) that maps the JMX concepts to stereotypes, along with their properties. The diagram in
Figure 20 depicts some of the resources modelled in the profile. Even if not all providers
support the access to all the properties listed in the res-model.profile, the profile is as
complete as possible to be platform independent.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 34 of 47

.

Figure 20 Platform Independent Profile for Resource Monitoring

4.6.1.2 Platform-Specific model for Resource Monitoring

To exploit the information made available from Google App Engine, a library for resource
monitoring has been developed in the context of ARTIST Project. This library uses platform
specific services (GAE QuotasService, Module APIs, GAE SystemProperty class) plus other
standard Java calls, to gather information about resources.

A model for this library has been generated and annotated with the Resource profile, and used
as the PDM for this transformation

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 35 of 47

Figure 21 GAE resource monitors PDM

4.6.2 Technical Specifications

This section describes an example of migration of a SPCoop service responsible for monitoring
and managing resources using JMX platform beans, to the corresponding GAE compliant
service.

The input Platform Independent class diagram represents the system once sliced to extract the
relevant view of the original PSM. This is the output of the model discovery / understanding
phase of the ARTIST methodology, and input to the transformation described in this section.

Taking into consideration the migration goal described above, the first step of the migration is
to map resources in JMX and map them to the vocabulary of the Resource monitor PIM profile.
For this purpose an in-place ATL transformation (Annotate4RM.atl) has been created. A
snippet of the transformation, regarding the mapping of Interfaces is shown below:

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 36 of 47

Figure 22 Annotate4RM transformation

A sample of the resulting PIM model with RM stereotypes is shown in Figure 23.

Figure 23 PIM model annotated with Resource Monitor profile

The following step consists on merging the annotated PIM model with a Platform Dependent
Model that links concepts of the PIM profile to the classes needed to resource properties
values in Google App Engine as already shown in Figure 2124.

The transformation is performed by applying the respective transformation –
RM2GAEMapper.atl – that relates classes, attributes and operations of the PIM profile with

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 37 of 47

correspondent ones of the PDM. The resulting Platform Specific diagram is depicted in Figure
25.

Figure 24 SPCoop monitoring service PSM (GAE compliant)

4.6.3 User Manual

The concrete implementations of M2MT modules supporting the “cloudification” of resource
monitoring in Google App Engine are part of the ARTIST Cloudification Toolbox, and located in
ARTIST-Tooling Github Repository, under the folder migration/modernization/ in the project
eu.artist.migration.modernization.eng.monitor.

The project contains the following folders:

 transform: containing all ATL transformations;

 models: collects input and output models. The input PIM is spcoop-res_JMX.uml, while
the PSM model produced by the transformation is named spcoop-res_GAE.uml;

 PDM: contains the resource-monitor-GAE.uml model;

 profiles: contains the res-model.profile

 launch: The folder contains the launch files allowing to run the transformations. Files
are numbered for convenience of the user.

In order to run the transformations, launch file 1_RM_annotate.launch first, to create the
spcoop-res_PIM_RM.uml intermediate model, then launch 2_PIM2PSM.launch to generate the
target PSM model. To launch the file run right click on the file in the workspace resource tree
and select “Run as”, choosing the launch configuration matching the file name.

4.7 Federated Identity Pattern

4.7.1 Functional Description

Elaborating the work described in deliverable D9.3 on the cloudification of security concerns,
we have extended the transformation to include the model-to-code step. Figure 25 recalls the
transformation chain already covered in D9.3 (in grey) and highlights the extension, the
implementation on top of an Acceleo-based code generator for the Federated Identity pattern.

4.7.2 Technical Description

This generator extends the standard UML2Java Acceleo code generator to create stubs of core
methods, so to implement correctly the authentication process using the openID4Java library,
based on the stereotypes in the Authentication Enforcer pattern.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 38 of 47

Figure 25 Federated Identity optimization pattern process

In particular, the core operations have method bodies’ templates and comments that guide
the correct interaction with the openid4java library.

Figure 26 Petstore PSM with OpenID UML

For example, using stereotypes from the AuthenthicationEnforcer profile, it has been possible
to identify and initialize methods for the AuthenticationProvider class, where variables
referring to the Subject class have been matched to the correct signature. In the following an
example of a model and one of its generated methods:

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 39 of 47

Figure 27 Stereotyped example model

Figure 28 Generated code from stereotyped example model

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 40 of 47

5 Advances in Measuring the Quality of Generated Code

5.1 Functional Description

In the first stages of the ARTIST methodology (pre-migration phase) and project, where the
feasibility for a migration to cloud is being evaluated, the maintainability metric (as defined by
IEEE [5]) for analysing the software complexity is calculated. In the context of the
modernization phase, the maintainability metric of the generated metric is calculated too. The
main purpose for this re-calculation of the maintainability index is to analyze if within the
application modernization process (through model to model and model to code
transformations) this metric has improved.

Maintainability is defined by IEEE standard glossary of Software Engineering [2] as “the ease
with which a software system or component can be modified to correct faults, improve
performance or other attributes, or adapt to a changed environment”.

As explained in D5.1.1, in the context of ARTIST we use the compound MEMOOD method [6],
to calculate the Maintenance based on the following model:

𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 = 2.399 + 0.493 × 𝑀𝑜𝑑𝑖𝑓𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 0.474 × 𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 0.524 ×
𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 0.507 ∗ 𝐿𝑂𝐶

Where:

𝑀𝑜𝑑𝑖𝑓𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.629 + 0.471 × 𝑁𝐶 − 0.173 × 𝑁𝐺𝑒𝑛 − 0.616 × 𝑁𝐴𝑔𝑔𝐻 − 0.696
× 𝑁𝐺𝑒𝑛𝐻 + 0.396 × 𝑀𝑎𝑥𝐷𝐼𝑇

𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1.66 + 0.256 × 𝑁𝐶 − 0.394 × 𝑁𝐺𝑒𝑛𝐻

𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.182 × 0.99 × 𝐴𝐶 + 0.100 × 𝐸𝐶 + 0.097 × 𝑁𝐷 − 0.036 × 𝑃𝐶 + 0.068
× 𝐷𝑀𝑆

𝐿𝑂𝐶 = 0.269 + 0.008 × 𝐶𝑜𝑢𝑝𝑙𝑖𝑛𝑔 + 0.181 × 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 + 0.119 × 𝐶𝐶 + 0.084 × 𝐼𝐿𝐶𝐶

Being NC: Number of classes; NGen: Number of Generalizations; NGenH: Number Of
Generalizations Hierarchies; AC: Afferent Coupling; EC: Efferent Coupling; ND: Nesting Depth;
DMS: Distance from main sequence; PC: % coverage; CC: Cyclomatic complexity; ILCC: IL
Cyclometic complexity.

This prototype calculates the final Maintainability metric through the combination of the
atomic metrics. The final objective is to calculate both metrics, the one obtained from the
source code and the one calculated from the generated code, and analyse possible variations.

5.2 Technical description

5.2.1 Prototype architecture

The current Maintainability metric calculator prototype architecture is a java API that explores
source files to generate several Metrics of a specific project. The following image depicts the
overall architecture:

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 41 of 47

Figure 29 MMC High level architecture

While the main objective of the Maintainability Metric Calculator is to expose an API that any
other plug-in or RCP could use to obtain the metrics generated in the ARTIST project, it also
provides Test Cases to access the same functionality as if used programmatically. The
generated metrics is available in XML files and console log.

5.2.2 Components description

The current Maintainability Metric calculator prototype component comprises three
components:

 Metric Explorer: This is the main component of the Maintainability Metric calculator
current prototype. It provides the calculation of all the required metrics that are used
to generate the maintainability metric. Besides, it also provides exporting features to
convenient formats like XML or JSON.

 Structures: This component contains the structures of the inputs and outputs models
that the Metric Explorer uses. It also provides the functionality for generating the
output file formats (XML, JSON).

 Test Cases: This component is provided for implementing the testing of the Metric
Explorer component. It generates several use cases that test the functionality of the
Maintainability Metric calculator. The test case generates console logs and XML files
with several examples (DEWS and JavaPetStore).

5.2.3 Technical specifications

All the components are developed in JavaSE 1.6. So this is the minimum java version for
executing the API. There are no any other requirements.

User Interface

There is no user interface implemented as the result obtained from Maintainability Metric
calculator will be consumed by other ARTIST tools or used for validation. For executing the
Metrics Explorer API the user has to execute the test cases included in the API. Several input
parameters can be changed for obtaining new metrics of different projects.

Back-end

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 42 of 47

There is no persistency implemented neither planned for this API. Thus, every time the new
metrics are needed, they have to be calculated. Persistency is delegated to API consumers.

5.2.4 Package information

The following image depicts the package structure of the main component, the Artist metrics
generator plug-in.

Figure 30 Package structure of the Maintainability metric calculator

 eu.artist.migration.mmc.metricexplorer: Contains the classes for exploring the UML
models and the source code.

 eu.artist.migration.mmc.strucctures: Contains the classes of the structures used by
the metric explorer component

 eu.artist. migration.mmc.test: Contains the test cases classes for executing the metric
explorer component.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 43 of 47

5.3 User Manual

In this version of the prototype this plug-in requires manual installation. The user has to import
de components to the Eclipse workspace manually. All the components are developed in
JavaSE 1.6. So this is the minimum java version for executing the API.

Import the project into the Eclipse workspace:

Figure 31 Maintainability metric calculator project

Open the eu.artist.migration.mmc.test package

Figure 32 Testing package

Right click in a test case and select the Run as Java Application option:

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 44 of 47

Figure 33 Maintainability metric calculator testing

Note: The user has to change the ”hardcoded” input parameters of the test cases manually

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 45 of 47

6 Delivery and Usage

6.1 Package Information

All realized components are packaged either as Eclipse plugins or Eclipse projects.

6.2 Installation Instructions

Components that have been realized in terms of Eclipse plugins need to be located in the
respective Eclipse plugins folder. These components provide a dedicated UI to execute them.
How they can be used is described in the respective user manuals.

Components that are not yet realized in terms of Eclipse plugins are provided as Eclipse
projects. They need to be located in the respective Eclipse workspace to execute them. We
have prepared a dedicated configuration to launch them in Eclipse. Again, how they can be
launched is described in the respective user manuals.

6.3 User Manual

User manuals are provided by the sections describing the corresponding component.

6.4 Licensing Information

The selected license is the Eclipse Public License (EPL)5 which is a known as a “commercial-
friendly” open source license. This should facilitate the future potential reuse and integration
of the toolbox (or at least of some of its components) by external partners.

6.5 Download Instructions

The sources of the different components developed in the context of this deliverable have
been pushed to the public ARTIST repository:

https://github.com/artist-
project/ARTIST/tree/master/source/Tooling/migration/integrated environment

5
 „Eclipse Public License,“ [Online]. Available: http://www.eclipse.org/legal/epl-v10.html.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 46 of 47

7 Conclusions

In this deliverable, we have reported on (i) the integration of ARTIST tools to support model-
based software migration to the cloud, (ii) the development of a composition language to
chain transformations as part of the concrete cloud-oriented migration scenario, (iii) advances
in the development of transformations and profiles to realize cloud optimization patterns for a
selected environment, and (iv) advances in the calculation of source-code metrics.

Considering the ARTIST integrated environment, it is developed on top of the Eclipse
environment and targeted at software engineers and modellers to carry out cloud-oriented
migration scenarios. The ARTIST integrated environment provides user interfaces, including
tool bars, wizards, and views, for ARTIST tools that support such scenarios by a model-based
approach.

As migration scenarios often require carrying out several different transformations to
ultimately gain the expected software artefacts, we have developed a dedicated language that
allows multiple transformations to be composed into a transformation chain, thereby enabling
their automatic execution if the chain becomes executed. Transformations are loosely coupled
by a more coarse-grained transformation, which fosters reuse while at the same time ensures
that the software engineers and modellers still have the control over the execution of the
single transformations.

Transformations developed in the context of the forward engineering phase of a migration
scenario mainly refine and optimize models and application code towards a selected cloud
environment. We have developed several transformations and profiles to support the
refinement step with the main purpose to exploit novel cloud optimization opportunities. In
fact, we have selected a set of optimization patterns contributed by WP9 and realized concrete
transformations and profiles to support them by considering both the model level as well as
the code level.

To measure the quality of the generated application code, we developed tool-support for
calculating pertinent metrics, including maintainability, with the main purpose to reason about
possible improvements achieved by a cloud-oriented software migration.

D9.7. – Integrated Environment for maintaining/developing

forward engineering process Version: 1.0 – Final, Date: 31/03/2015

Project Title: ARTIST Contract No. FP7-317859

 www.artist-project.eu

Page 47 of 47

8 References

[1] Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W., Schwinger, W.: Reuse in Model-to-Model Transformation
Languages: Are We There Yet? Software & Systems Modeling pp. 1–36 (2013)

[2] Bergmayr, A., Troya, J., Wimmer, M.: From out-place transformation evolution to in-place model patching. In: Proc. Intl. Conf. on
Automated Software Engineering (ASE). pp. 647– 652 (2014)

[3] Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Institut für Instrumentelle Mathematik, Bonn (1962)

[4] Bergmayr, A., Grossniklaus, M., Wimmer, M., Kappel, G.: „UML Profile Generation for Annotation-based Modeling“; Appears in
Conf. on Softwae Engineering and Software Management (SE2015), 2015

[5] IEEE, “IEEE Standard Glossary of Software Engineering Terminology”, 1990

