
US 20130291124A1

(19) United States
(12) Patent Application Publication (10) Pub. N0.: US 2013/0291124 A1

Zhao et al. (43) Pub. Date: Oct. 31, 2013

(54) METHOD AND SYSTEM FOR MANAGING (52) US. Cl.
DATA IN A COMMUNICATION NETWORK CPC G06F 21/60 (2013.01); H04L 67/02

201 3 .01
(71) Applicant: Motorola Mobility LLC, Libertyville, USPC 726/28(; 709/219)

IL (US)
(57) ABSTRACT

(72) Inventors: David Long Zhao, Bothell, WA (U S);
Kevin John West, Kirkland, WA (Us); A method for managing a plurality of ?les in a communica
Vijay Krishnan Mani, Kenmore, WA tion network having a plurality of clients includes a server
(Us) receiving (502) metadata associated With a secured ?le stored

in a virtual data drive of a ?rst client. The server also receives
(21) Appl. No.: 13/929,650 (504) data segments associated With the ?le from the virtual

data drive of the ?rst client. The server stores the metadata and
(22) Filedi J 1111- 27, 2013 data segments associated With the ?le at the server. The server

generates (506) a ?rst representation of the ?le based on the
Related US‘ Application Data received metadata and data segments associated With the ?le

(62) Division of application NO_ 12/657,931, ?led on Jan and sends (508) the ?rst representation of the ?le to the
29, 2010’ HOW pat NO_ 8,510,848 plurality of clients. Next, the server receives (510) a request

from a second client for at least one data segment of the ?le.
Publication Classi?cation The server authenticates the request based on a plurality of

access rights of a user of the second client and sends (512) the
(51) Int. Cl. at least one data segment of the ?le to the second client When

G06F 21/60 (2006.01) the request is authenticated.

114 108 110 118

Patent Application Publication Oct. 31, 2013 Sheet 1 0f 8 US 2013/0291124 A1

Patent Application Publication Oct. 31, 2013 Sheet 2 0f 8 US 2013/0291124 A1

I /
.woN Now

0cm wow
I / pomwouo? $230M

Patent Application Publication

@3
7

Oct. 31, 2013 Sheet 6 of 8

Receive metadata associated with
a ?le, the ?le being stored in a
virtual data drive‘ of a ?rst client

Receive data segments associated
with the ?le from the virtual data

drive of the ?rst client

V

Generate a ?rst representation of
the ?le based on the received
metadata and data segments

associated with the ?le

Send a ?rst representation of the
?le to the plurality of clients

1
Receive a request from a second
client for the one or more data

segment of the ?le

7

Send the requested one or more

segment of the ?le to the second
client

(Stop)

FIG. 5

502

504

506

508

510

512

US 2013/0291124 A1

Patent Application Publication Oct. 31, 2013 Sheet 7 of 8 US 2013/0291124 A1

(123
V

De?ne access rights for users of 92
all clients

‘ 604
Store metadata and data segments _/

associated with a ?le

Receive a change to the data 96
segments of the ?le

V

Update 'a ?rst representation of 608
the ?le based on the received /
change to the data segments

V ‘

Send the updated ?rst ' 610

representation of the ?le to all /
clients

V

(Stop ')

FIG. 6

Patent Application Publication Oct. 31, 2013 Sheet 8 of 8 US 2013/0291124 A1

m

V

Receive a request for data 92
segments associated with a
secure ?le ?om a client

v

Authenticate the user based on 94
' access rights of a user of the

client

Did the
‘ authentication Yes

of user

succeed?

l
Stream data

/ segments to the
708 ' P“ “m

(Stop)

FIG. 7 a

US 2013/0291124 A1

METHOD AND SYSTEM FOR MANAGING
DATA IN A COMMUNICATION NETWORK

REFERENCE TO RELATED APPLICATIONS

[0001] The present application is a divisional of non-pro
visional application Ser. No. 12/657,931 ?led Jan. 29, 2010,
which claims priority from provisional application No.
61/206,588 ?led Feb. 2, 2009. Both related applications are
hereby incorporated in their entirety by this reference.

FIELD OF THE DISCLOSURE

[0002] The present disclosure relates to managing data in a
communication network. More speci?cally, the present dis
closure relates to providing access to data stored in a remote
storage using a virtual data drive.

BACKGROUND

[0003] Typically, data in the form of ?les such as docu
ments, image ?les, and audio/video/multimedia ?les is stored
as a sequence of data bytes in a computer’s local storage, for
example, the hard drive of the computer. Storing data in a
local storage has a few limitations. One of such limitations is
that only a restricted volume of data can be stored because of
the limited capacity of the storage. For example, most of the
personal computers available in market have a local storage of
40 Gigabytes (GB) to 320 GB. Another limitation is that the
local storage is neither secure nor reliable because data can
not be retrieved when the computer malfunctions or gets
damaged. Also, if the computer is lost or stolen, data can be
accessed by unauthorized users and can be misused. For
example; con?dential data such as personnel details stored in
a laptop can be accessed by unauthoriZed users for criminal
activities.
[0004] To overcome these limitations associated with the
local storage, service providers enable users to store data at
remote storage sites connected through networks. Mostly,
these remote storage sites are utiliZed as seamless backups or
synchronization devices to maintain copies of data present in
the local storage of the computer. When a ?le is created by a
user in the local storage, a copy of the ?le is automatically
created at the remote storage site. Similarly, when the user
modi?es a ?le stored in the local storage, the same modi?ca
tion is automatically made to the copy of the ?le at the remote
storage site. In this scenario, if a user intends to store a
400-GB data in the remote storage, he requires a local storage
of 400 GB connected to his computer. Therefore, in this case,
the user may be required to connect an external hard drive to
his/her computer, or may be required to upgrade the local
storage of his/her computer. This requires additional expen
diture and hence is not an e?icient way to store a large amount
of data.
[0005] Another manner in which the remote storage sites
are utiliZed is non-seamless. Users having an access to the
remote storage sites manually upload and download data to
and from the remote storage sites. In this scenario, only the
downloaded data is stored in the local storage “of the com
puter. Also, in this case, if the user intends to make modi?
cation to an already uploaded ?le, he/ she has to manually
download the ?le on the local storage and then make changes
to it. Therefore, he/ she has to upload the modi?ed ?le on the
remote storage site again. Also, in the case of remote storage
sites, users have to continuously keep track of the free space
available in the local storage of their computers as they need

Oct. 31,2013

to delete ?les from the local storage to vacate space for ?les
they intend to download. Thus, at every step, user’s manual
intervention is requiredimaking this process entirely non
seamless.

[0006] In light of the foregoing, it is desirable to have a
system that enables users to seamlessly store data at a remote
storage without maintaining a copy of the data at the local
storage. Also, the system should not require the user to manu
ally download a ?le on his/her local storage every time he/ she
wants to make changes to the ?le already on the remote
storage.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Embodiments of the disclosure are described in con
junction with the appended drawings to illustrate, and not to
limit, the disclosure. Like designations denote like elements,
and in which:

[0008] FIG. 1 illustrates the architecture of a data manage
ment system where various embodiments of the disclosure
can be practiced;

[0009] FIG. 2 illustrates a hierarchical representation of the
data management system, in accordance with an embodiment
of the disclosure;
[0010] FIG. 3 illustrates the architecture of a computational
device of the data management system, in accordance with an
embodiment of the disclosure;
[0011] FIGS. 4A-4G illustrates various embodiments of a
?rst representation and a second representation of a ?le, in
accordance with an embodiment of the disclosure;

[0012] FIG. 5 is a ?owchart illustrating a method for man
aging a plurality of ?les in a communication network, in
accordance with an embodiment of the disclosure;

[0013] FIG. 6 is a ?owchart illustrating a method for man
aging a server, in accordance with an embodiment of the
disclosure; and
[0014] FIG. 7 is a ?owchart illustrating a method for
accessing a secured ?le, in accordance with an embodiment
of the disclosure.

DETAILED DESCRIPTION

[0015] Before describing in detail the embodiments in
accordance with the disclosure, it should be observed that
these embodiments reside primarily in the method and system
used for managing data in a communication network. Accord
ingly, the method steps and system components have been
represented to show only those speci?c details that are perti
nent for an understanding of the embodiments, and not details
that will be apparent to those with ordinary skill in the art.

[0016] FIG. 1 illustrates the architecture of a data manage
ment system 100 where various embodiments of the disclo
sure can be practiced. Data management system 100 is imple
mented over a communication network 102. Examples of
communication network 102 include a Local Area Network
(LAN), a Wide Area Network (WAN), cellular network,
cloud computing network, high speed cable network, and the
Internet. Communication network 102 includes a server 104
connected to a remote storage 106. In accordance with one
implementation, server 104 is a stand-alone server connected
to remote storage 1 06. In accordance with another implemen
tation, server 104 is a cluster of servers connected to remote
storage 106. Examples of server 104 include, but not limited

US 2013/0291124 A1

to, a MySQL Amazon EC2®, and Ruby on Rails®. Example
of remote storage includes, but is not limited, to Amazon
S3®.
[0017] Data management system 100 includes one or more
clients connected to communication network 102. These cli
ents are shoWn as a ?rst client 108 and a second client 110 in
FIG. 1.

[0018] In the description of the present patent application,
the term “clients” refers to computer program applications
installed to access data stored at remote storage 106. As
depicted, ?rst client 108 and second client 110 are installed on
a computational device having a local storage, shoWn as a ?rst
computational device 112 having a ?rst local storage 114 and
a second computation device 116 having a second local stor
age 118. Examples of computational devices include, but are
not limited to, a computer, a laptop, a personnel data assistant
(PDA), and a mobile phone. Examples of local storage
include, but are not limited to, a hard disk and a solid-state
drive. In accordance With another embodiment, local storage
may comprise a metadata store and a data store such that
metadata associated With a ?le is stored in the metadata store
of the local storage and data segments associated With the ?le
are stored in the data store of the local storage.
[0019] As mentioned, ?rst client 108 and second client 110
are applications running on ?rst computational device 112
and second computation device 116, respectively. In one
example, client 108 is a Web broWser. In another example,
client 108 is a standalone-client application based on JAVA.
Further, operating systems such as WindoWs®, Linux, and
Macintosh® (Mac) are installed on computational devices
112 and 116.
[0020] First client 108 enables computational device 112 to
communicate With server 104 and receive data stored in
remote storage 106. Further, client 108 enables its user to
upload a ?le on remote storage 106 by placing the ?le in a
virtual data drive of ?rst client 108. In accordance With an
embodiment of the disclosure, the virtual data drive is a
shortcut in the form of an icon that can be used to upload one
or more ?les to server 104. For example, if ?rst client 108 runs
on the Microsoft® Windows@ operating system, the virtual
data drive is displayed With other data drives, such as a C drive
or a D drive. When the user of ?rst client 108 places a ?le in
the virtual data drive of ?rst client 108, the data segments and
metadata associated With the ?le are transferred from local
storage 114 to remote storage 106. Based on the received
metadata and data segments, server 104 generates a ?rst rep
resentation of the ?le and sends a message describing the ?rst
representation of the ?le to clients 108 and 110. On receiving
the message from server 104, second client 110 stores the ?rst
representation of the ?le in local storage 118 and ?rst client
108 stores it in local storage 114.
[0021] In accordance With another embodiment, ?rst client
108 can also generate a default ?rst representation of the ?le
uploaded to remote storage 106. In this case, the ?rst repre
sentation of the ?le is not sent to ?rst client 108 by server 104,
and only sent to second client 110.
[0022] The ?rst representation of the ?le has a smaller siZe
as compared With the siZe of the ?le. Typically, the ?rst
representation of the ?le includes metadata associated With
the ?le. The metadata associated With the ?le includes data
related to the hierarchy of directories associated With the ?le.
In one implementation of the disclosure, the ?rst representa
tion also includes some data segments associated With the ?le.
For example, if the ?le is a music ?le, the ?rst representation

Oct. 31,2013

of the music ?le may include metadata associated With the
music ?le, and the ?rst and last data segments of the music
?le. Examples of the metadata include siZe of the music ?le,
artist name, song name, album name, composer name, offset
of the music ?le in the remote storage, and date of creation of
the music ?le. In accordance With another implementation,
the ?rst representation of the ?le does not include any meta
data or data segment associated With the ?le. In this case, the
?rst representation can be, for example, only the name of the
music ?le and the like.
[0023] In accordance With an embodiment of the disclo
sure, the ?rst representation of the ?le is determined by server
104 based on a set of attributes related to the ?le. For example,
the set of attributes may include name, siZe of the ?le, content
or content overvieW of the ?le, timestamp of creation, and
timestamp of modi?cation. Also, the ?rst representation of
the ?le determines the format in Which ?rst client 108 and
second client 110 store the ?le in their corresponding local
storages. For example, if the ?le contains an image, the ?rst
representation of the ?le can be a copy of the image having a
loWer resolution.
[0024] In accordance With an embodiment of the disclo
sure, the ?rst representation of the ?le is treated as a valid
system ?le object by applications installed on computational
devices 112 and 116 i.e. applications can use the ?rst repre
sentation of the ?le as a valid form of the ?le. For example, if
the ?rst representation of an image ?le is a thumbnail, then the
thumbnail can be accessed by a “Picture VieWer” application
in the same Way as “Picture VieWer” accesses the image ?le.

[0025] Once the ?rst representation is received by ?rst cli
ent 108 and second client 110, either of the clients can send a
request to server 104 to access the uploaded ?le if it is not
available in corresponding local storage. For example, if the
uploaded ?le is a song and after vieWing the ?rst representa
tion of the song, the user of second client 110 Wants to vieW
the entire song, he/ she can send a request to server 104 to
listen to the song. Thereafter, server 104 receives this request
from second client 110 and grants the user access to the song
if he/ she has access rights to vieW the song. In this case, server
104 streams data segments associated With the song from
remote storage 106 to second client 110. According to an
embodiment, one or more data segments associated With the
?le are streamed from remote storage 106 and stored at local
storage 118 of second client 110 if the request is not for a
“secured ?le”. For example, if While uploading the song to
remote storage 106, the user of ?rst client 108 does not
classify the song as a “secured ?le”, the song is cached at local
storage 118 of second client 110 When second client 110 gets
access to the song. HoWever, if the user of ?rst client 108
classi?es the song as a “secured ?le”, the song is not cached
at local storage 118 of second client 110. In this case, second
client 110 only stores basic metadata such as ?le name and ?le
creation timestamp in local storage 118.
[0026] HoWever, if the ?le (movie song) is available in local
storage 118 of second client 110, the request to server 104 is
not sent and the ?le already stored in local storage 118 is
provided to second client 110. In other Words, second client
110 only requests for ?les Which are not saved or cached in its
local storage 118.
[0027] In accordance With an embodiment of the disclo
sure, the number of data segments cached at local storage 118
of second client 110 is based on one or more parameters of the
communication netWork. The one or more parameters
include, but are not limited to, bandWidth of the communica

US 2013/0291124 A1

tion network and connection speed. For example, When sec
ond client 110 is connected to server 104 through a cellular
network, the number of data segments being transferred by
server 104 and subsequently cached in local storage 118 of
second client 110 is less than the number of data segments
transferred by server 104 and subsequently cached in local
storage 118 When second client 110 is connected to server 104
through a high-speed cable connection.
[0028] In accordance With another embodiment, one or
more data segments associated With the ?le are synchro
nously accessed from remote storage 106 for the user using
?rst client 108. For example, a user of ?rst client 108 can
request access to a document Which is being edited by a user
of second client 110. The changes being made to the docu
ment by the user of second client 110 are received by server
104 that further updates the document correspondingly.
Server 104 also sends the updated document for access to the
user of ?rst client 108. Thus, the user of ?rst client 108 can
synchronously access the document being changed by the
user of second client 110.

[0029] In accordance With an embodiment of the disclo
sure, if the ?le requested by second client 110 is a media ?le,
only the data segments Which are not included in the ?rst
representation of the ?le are sent to second client 110. For
example, if the ?rst representation (Which is already stored in
local storage 118 of second client 110) has the ?rst and last
data segments of the song, only the remaining data segments
are sent to second client 110. On the contrary, if the ?le is a
document, the ?rst representation of the document includes
metadata associated With the document and all the data seg
ments are sent to second client 110 in this case.

[0030] In accordance With another embodiment, if feW data
segments are already present in local storage 118 of second
client 110, those data segments are not requested by second
client 110 While sending the request to server 104 and only
remaining data segments are requested. For example, if some
of the data segments of a song are already saved or cached in
local storage 118, only the remaining data segments of the
song are requested by second client 110.
[0031] On receiving the data segments, according to one
example, second client 110 adds the received data segments
to the ?rst representation of the ?le to create a second repre
sentation of the ?le. In one embodiment, second client 110
receives all data segments associated With the ?le and
replaces the ?rst representation of the ?le With the second
representation of the ?le in local storage 118. In this case, the
second representation of the ?le is a complete ?le, i.e., all the
data segments associated With the ?le are stored in local
storage 118.
[0032] In accordance With another embodiment, client 110
is con?gured to send a request to server 104 for a “random”
access of a ?le. For example, the virtual data drive enables
second client 110 to randomly access a particular data seg
ment associated With the ?le Without doWnloading all the data
segments associated With the ?le starting from the beginning.
For example, When a user of client 110 Wants to play a music
?le in a media player, he/ she may jump to the middle of the
song. In this case, second client 110 requests for data seg
ments located in the middle of the sequence of data segments
of the song. Thus, data segments from the middle of the song
are streamed from remote storage 106 to second client 110. In
other Words, if the user decides to play the initial portions of
the music ?le, then second client 110 requests only the nec
essary data segments and creates a “chunk ?le” that only takes

Oct. 31,2013

up as much storage as the siZe of the music ?le even though its
data segments may be organiZed differently based on the
nature in Which the ?le Was read.
[0033] Server 104 is further con?gured to generate the ?rst
representation of a ?le When the ?le is modi?ed in remote
storage 106. For example, if second client 110 modi?es a ?le
stored at remote storage 106, server 104 determines an
updated ?rst representation of the ?le and sends it to ?rst
client 108 and second client 110.
[0034] In accordance With another example, server 104 is
con?gured to alloW o?line access to a ?le such that second
client 110 can request Which ?les it Will require for of?ine
access. In this case, server 104 Would send the requested ?les
to second client 110. For example, a user of second client 110
may Wish to access a music ?le for later use When second
client 110 Will not be connected (in the future) to communi
cation netWork 100. In this case, server 104 provides the
entire music ?le to local storage 118 of second client 110 so
that the user can play the music ?le even When second client
110 is not connected to communication netWork 100.

[0035] In accordance With an embodiment, each user
should have the access rights to’ clients 108 and 110 to be able
to access or upload ?les to and from server 104. Server 104 is
con?gured to create accounts for each user and de?ne access
rights to users of clients 108 and 110. Based on the account,
server 104 is further con?gured to authenticate users of cli
ents 108 and 110. An account is created for a user by server
104 When the user signs-up With server 104. The user account
is created by supplying a usemame and a passWord along With
additional personal information such as name, date of birth,
sex, and country. Access rights include a combination of the
right to upload ?les to the server, the right to read or modify
?les, the right to delete ?les, and the like.
[0036] In accordance With an embodiment of the disclo
sure, a ?le uploaded by a user of ?rst client 108 into the virtual
data drive of ?rst client 108 is not removed from local storage
114 unless there is need to free up space in local storage 114.
In this case, the ?le is kept in local storage 114 of ?rst client
108 and uploaded to server 104 as Well. Further, in this case,
the ?rst representation of the ?le generated by server 104 is
also received by ?rst client 108, although it already has the
uploaded ?le.
[0037] Although the above description relates to uploading
a ?le in remote storage 106 by saving the ?le in a virtual drive,
in accordance With an embodiment of the disclosure, data
segments associated With the ?le can automatically be trans
ferred to remote storage 106 to free memory in local storage
114 for neW ?les. For example, a user uploads a video movie
?le to the virtual data drive Which already has a number of
song ?les stored in it. Once the song ?les stored in the virtual
data drive have been transferred to remote storage 106 they
can be removed from local storage 114 to free space for the
video movie ?le.
[0038] FIG. 2 illustrates the hierarchical representation of
data management system 100, in accordance With an embodi
ment. Data management system 100 is implemented over
server 104 connected to computational device 112 via com
munication netWork 102. Computational device 112 includes
client 108 connected to local storage 114. Server 104 is con
nected to remote storage 106.
[0039] Before a user ofclient108 can access or upload ?les
to server 104, the user has to sign-up With server 104. By
signing-up With server 104, a user account is created for the
user With a username and passWord along With additional

US 2013/0291124 A1

personal information. Each user account is provided With
access rights by a rights manager 208. Access rights provided
by rights manager 208 may include a combination of the right
to upload ?les to the server, the right to read or modify ?les,
the right to delete ?les, and the like.
[0040] In accordance With an embodiment, to upload a ?le
in remote storage 106, a user of client 108 uploads a ?le into
a virtual data drive of computational device 112. Metadata
and data segments associated With the ?le uploaded into the
virtual data drive are received by a receiver 202 of server 104.
The metadata associated With the ?le includes, but is not
limited to, data related to the hierarchy of directories associ
ated With the ?le and ?le attributes. For example, if a user
uploads a song ?le using the virtual data drive of computation
device 112, the metadata of the song can include the size of
the ?le, artist name, track name, etc.
[0041] After receiving the metadata and data segments
associated With the ?le, a processor 204 of server 104 gener
ates a ?rst representation of the ?le based on the metadata and
data segments received by receiver 202. The ?rst representa
tion of the ?le is smaller in size as compared With that of the
?le. In the example, the ?rst representation of the song ?le can
be the artist name, track name, and the starting and ending
segments of the song.
[0042] A sender 206 of server 104 sends the ?rst represen
tation of the ?le to all clients (not shoWn in FIG. 2) present in
the communication network. In the embodiment shoWn in
FIG. 2, sender 206 sends the ?rst representation of the ?le to
client 108. When the 10 ?rst representation is received, it is
stored in local storage 114 associated With client 108 of
computational device 112.
[0043] After receiving the ?rst representation and vieWing
it, the user of client 108 may Want to vieW the entire ?le or
some part of it. In this case, the user of client 108 requests
access to one or more data segments of the ?le. Client 108
checks if the requested data segments of the ?le are available
in local storage 114. If the requested data segments are avail
able in local storage 114, client 108 provides the requested
data segments of the ?le to the user. If the requested data
segments are not available in local storage 114, client 108
sends a request to server 104 to access the one or more data

segments of the ?le stored in remote storage 106. In the
previous example, the user may Wish to play the song ?le.
Client 108 checks if the song ?le is available for playback in
local storage 114. If it is not available, client 108 sends a
request to server 104 for playing the song ?le.
[0044] Receiver 202 of server 104 receives this request.
Processor 204 of server 104 processes the request and
instructs sender 206 of server 104 to establish a streaming
connection With a streamer 214 of client 108 and begin
streaming the requested data segments of the ?le. A cache
manager 212 associated With client 108 receives the streamed
data segments of the ?le from sender 206 of server 104 to
enable access by the user of computational device 112. In the
example, the user Wants to play the song ?le Which is stored
in remote storage 106 of server 104. Streamer 214 of the client
receives the stream of data segments of the song ?le from
sender 206 of server 104 and cache manager 212 of client 108
begins to catch the stream of data segments of the song ?le for
playback by computational device 112.
[0045] In another example, the user of computational
device 112 can modify one or more data segments of the ?le.
In this case, client 108 sends a request to server 104 for
modifying one or more data segments of the ?le stored in

Oct. 31,2013

remote storage 106. Receiver 202 of server 104 receives the
request. Processor 204 of server 104 processes the request
and instructs sender 206 of server 104 to send the requested
data segments of the ?le to client 108. The user can then
modify the one or more data segments. The modi?ed data
segments are sent back to server 104 by a sync manager 210.
Receiver 202 of server 104 receives the modi?ed data seg
ments and processor 204 updates the ?rst representation of
the ?le based on the modi?ed data segments. Sync manager
210 of client 108 then synchronizes and updates the ?rst
representation of the ?le stored in local storage 114 With the
?rst representation of the ?le stored at remote storage 106 of
server 104. The updated ?rst representation of the ?le is then
sent by sender 206 to all clients connected to server 104. For
example, a user may modify an image stored in remote stor
age 106 of server 104. Sender 206 provides the image to client
108 of computational device 112 to enable editing by the user.
The edited image is updated in remote storage 106 of server
104. Processor 204 of server 104 updates the ?rst represen
tation of the image and sync manager 210 of client 108
synchronizes the ?rst representation of the image stored in
local storage 114 of client 108 With the updated ?rst repre
sentation of the image provided by server 104.

[0046] In accordance With yet another example, the user of
client 108 requests to enable access to one or more data

segments of a secured ?le. Client 108 sends a request to server
104 to enable access to the one or more data segments of a

secured ?le stored in remote storage 106. For example, the
user of computational device 112 may Wish secure access to
a ?nancial document. In this case, client 108 sends a request
to server 104 for secure access to the ?nancial document and
this request is received by receiver 202.

[0047] The received request is processed by processor 204
of server 104, and processor 204 in turn sends a request to
rights manager 208 for authenticating the user of client 108
based on the access rights of the user. If rights manager 208
authenticates the user, sender 206 is authorized to send the
requested data segments of the secured ?le to client 108. In an
embodiment, the requested data segments are directly
streamed to streamer 214 of client 108 Without being cached
by cache manager 212 or stored by local storage 114 of client
108. In the example, if the user has access rights to the
?nancial document, then server 104 provides secure access to
the ?nancial document and does not cache the ?nancial docu
ment in local storage 114. In other Words, the ?nancial docu
ment bypasses local storage 114 and is directly streamed to
client 108.

[0048] In accordance With another embodiment of the dis
closure, the user of client 108 can also modify one or more
data segments of a secured ?le by similar means and the
updated ?rst representation is then sent to all the clients of
communication netWork 102.

[0049] FIG. 3 illustrates the architecture of computational
devices 112 and 116 of data management system 100, in
accordance With an embodiment of the disclosure. Typically,
computational devices 112 and 1.16 are computers that run a
Windows@ operating system or a Macintosh® operating sys
tem. In FIG. 3, computational device 112 is depicted running
on Windows@ operating system and computational device
116 running on Macintosh® operating system. As clients 108
and 110 are applications implemented using JAVA, they can
be installed on both computational devices 112 and 116 and

US 2013/0291124 A1

can enable computational devices 112 and 116 to establish a
communication link With server 104 and access the ?les
stored in remote storage 106.
[0050] As depicted, computational device 112 includes cli
ent 108, a WindoWs explorer extension module 301, a Win
doWs ?le system API module 302, and a Remote procedure
call (RPC) module 304. WindoWs explorer extension module
301 provides additional functionalities to the user of client
108 by providing additional control elements. Examples of
the control elements include buttons, menu items, and icon
overlays. WindoWs ?le system application programming
interface (API) module 302 facilitates the interception of the
requests generated for accessing ?les. The requests are gen
erated by the applications running on computational device
112. Further, WindoWs ?le systemAPI module 302 facilitates
direction of these requests to client 108.
[0051] Similarly, computational device 116 includes client
110, a Mac Finder extensions module 308, a Mac ?le system
API module 310, and a Remote procedure call (RPC) module
312. The Mac Finder extensions module 308 provides addi
tional functionalities to the user of client 110 by providing
neW control elements. Examples of the neW control elements
include neW buttons, menu items, and icon overlays. The Mac
?le system API module 310 facilitates the interception of the
requests generated to access ?les. The requests are generated
by the applications running on computational device 112.
Further, Mac ?le system API module 310 facilitates direction
of these requests to client 110.

[0052] In one embodiment, client 108 includes a File sys
tem layer 316, a ShellAPI module 318, a Sync Manager 320,
a Cache Manager 322, and data streamers 324. The requests
directed to client 108 by WindoWs ?le system API module
302 are handled by File system layer 316. File system layer
316 also enables computational device 112 to perform vari
ous operations on the ?les stored in remote storage 106.
Examples of the various operations include opening a ?le,
reading a ?le, seeking a ?le, creating a ?le, and modifying a
?le.
[0053] Extension calls generated by WindoWs explorer
extension module 301 for providing the additional control
elements to the user of client 108 are handled by Shell API
module 318.
[0054] Sync Manager 320 facilitates the synchronization of
client 108 With server 104. During the synchronization, Sync
Manager 320 detects and uploads neWly created ?les to
remote storage 106. Further, Sync manager 320 uploads the
metadata associated With the ?les that are placed in the virtual
data drive of client 108. Modi?cations made to these ?les are
uploaded by Sync Manager 320. Sync Manager 320 is further
con?gured to send periodic requests to server 104 for doWn
loading modi?cations made by other clients on the ?les that
are stored in local storage 114. Sync Manager 320 can thus
doWnload the updated ?rst representation of the modi?ed ?les
and can also doWnload the entire modi?ed ?le to provide
o?line access to the ?le.

[0055] Cache Manager 322 is con?gured to store the ?rst
representation of a ?le in local storage 114 based on the
message received from server 104. The ?rst representation of
the ?le is either stored automatically or on a request by the
user. Moreover, Cache manager 322 is con?gured to receive
data segments associated With the ?le from remote storage
106. On receiving the data segments, cache manager 322
transforms the ?rst representation of the ?le to the second
representation of the ?le. In one embodiment of the disclo

Oct. 31,2013

sure, cache manager 322 receives all data segments associ
ated With the ?le and replaces the ?rst representation of the
?le With all data segments of the ?le. Further, data streamers
324 are con?gured to doWnload data segments from remote
storage 106. In one example, data streamers 324 doWnload
data segments as multiple streams of data.

[0056] Similarly, client 110 includes a File system layer
326, a Shell API module 328, a Sync Manager 330, a Cache
Manager 332, and data streamers 334. The functionalities of
these elements are the same as those explained for client 108,
and hence are not described again for the sake of simplicity.

[0057] FIGS. 4A-4G illustrate various embodiments of a
?rst representation and a second representation of a ?le, in
accordance With an embodiment of the disclosure. As already
discussed, When client 108 uploads a ?le on remote storage
106, client 108 transfers metadata and data segments associ
ated With the ?le from local storage 114 to remote storage
106. Thereafter, server 104 generates a ?rst representation of
the ?le based on the received metadata and data segments
associated With the ?le, and sends the representation to the
clients 108 and 110. Clients 108 and 110 then store the ?rst
representation of the ?le in their respective local storages
Subsequently, to access the ?le stored in remote storage 106,
client 110 can generate a request for one or more data seg
ments of the ?le based on the ?rst representation of the ?le.
The request received by server 104 is processed by processor
204 of server 104, and the requested one or more data seg
ments of the ?le are sent to client 110. Client 110 receives the
requested one or more data segments of the ?le and generates
a second representation of the ?le by adding the received one
or more data segments of the ?le to the ?rst representation of
the ?le. For example, if a user uploads an image ?le to server
104 via client 108 such as an “image vieWer” application
softWare (for example IrfanVieW®), the server creates a
thumbnail of the image ?le as the ?rst representation of the
image ?le and sends the thumbnail of the image ?le to clients
108. and 110. When the user clicks on the thumbnail, a
request is sent to the server to receive the image ?le. The
image ?le is received by the “image vieWer” and displayed to
the user.

[0058] FIG. 4A illustrates a ?rst representation of the ?le as
stored in local storage 114. The ?rst representation includes
the metadata related to the ?le. The data segments associated
With the ?le are stored at remote storage 106. For example, if
the ?le being uploaded is a document, metadata such as ?le
name, time stamp of creation, timestamp of modi?cation, and
reference to the document is stored in local storage 114.

[0059] FIG. 4B illustrates a second representation of the
?le. In this representation, all data segments associated With
the ?le are received from remote storage 106 and stored in
local storage 114. In another embodiment, a subset of the data
segments associated With the ?le is stored in local storage
114.

[0060] FIG. 4C illustrates another form of the ?rst repre
sentation of the ?le stored in local storage 114. This repre
sentation includes the ?rst data segment of the ?le, the last
data segment of the ?le and metadata related to the ?le. The
remaining data segments of the ?le are stored in remote
storage 106. For example, if the ?le being uploaded is a music
?le, the ?rst data segment of the music ?le, the last data
segment of the music ?le, and the metadata related to the
music ?le are stored as the ?rst representation in local storage
118.

US 2013/0291124 A1

[0061] In accordance With another implementation, a com
pressed version of the ?le is stored With metadata as the ?rst
representation in local storage 114. For example, if the ?le is
an image, a copy of the image having a loWer resolution is
stored in local storage 114.
[0062] FIG. 4D illustrates another form of the second rep
resentation of the ?le. This representation includes a begin
ning metadata, all the data segments of the ?le, and the ending
metadata of the ?le. For example, if the ?le is a music ?le, the
beginning metadata related to the music ?le, all of the data
segments of the music ?le and the ending metadata related to
the music ?le are stored as the ?rst representation in local
storage 118.
[0063] FIG. 4E illustrates yet another form of the ?rst rep
resentation of the ?le. This representation includes a begin
ning metadata, partial data segments of the ?le, and the end
ing metadata of the ?le. For example, if the ?le is a music ?le,
the beginning metadata related to the music ?le, partial data
segments of the music ?le and the ending metadata related to
the music ?le are stored as the ?rst representation in local
storage 118.
[0064] FIG. 4F illustrates yet another form of the second
representation of the ?le. The second representation includes
the ?rst data segment of the ?le, the last data segment of the
?le, and remaining data segments of the ?le that are received
from remote storage 106. Consider the example of the music
?le again. When computational device 116 launches a music
player for playing the music ?le stored in remote storage 106,
the player plays the ?rst data segment of the music ?le as the
?rst data segment is stored in local storage 118. While the ?rst
data segment is being played, the remaining data segments
associated With the music ?le are continuously streamed from
remote storage 106 and played as soon’ as playing of the ?rst
data segment is over. As the rate of streaming data segments
is higher than the rate at Which the music ?le is played, the
music ?le is continuously played Without any latency. As a
result, the user feels as if the music ?le is stored locally in
local storage 118.
[0065] FIG. 4G illustrates yet another form of the second
representation of the ?le. In this case, the second representa
tion includes the ?rst data segment of the ?le, the last data
segment of the ?le and the remaining data segments. As
depicted, the data segments of the ?le are not sequentially
stored in local storage 118. For example, the remaining data
segments are stored before the ?rst data segment in the case
shoWn in FIG. 4G. When the user accesses the ?le, the virtual
data drive enables the user to access the data segments in the
correct sequence, irrespective of the sequence in Which they
are stored.

[0066] FIG. 5 is a ?owchart illustrating a method for man
aging a plurality of ?les in a communication netWork, in
accordance With an embodiment of the disclosure. At step
502, metadata associated With a ?le, uploaded or saved by a
user for storage in the virtual data drive of client 108, is
received by receiver 202 of server 104. The metadata associ
ated With the ?le includes, but is not limited to, metadata
related to the hierarchy of directories associated With the ?le,
?le name, ?le creation timestamp, ?le modi?cation times
tamp, siZe of the ?le, and content type of the ?le.
[0067] At step 504, data segments associated With the ?le
saved in the virtual drive of client 1 08 are received by receiver
202 of server 104. At step 506, processor 204 of server 104
generates a ?rst representation of the ?le, based on the
received metadata and data segments associated With the ?le.

Oct. 31,2013

The ?rst representation of the ?le is also generated based on
a set of attributes related to the ?le and a set of prede?ned
rules. The set of attributes may include siZe of the ?le, content
of the ?le, timestamps of creation, and timestamp of modi?
cation. Processor 204 also alloWs the user of client 108 (Who
uploads the ?le) to customiZe a set of prede?ned rules for
generating the ?rst representation of the ?le. The prede?ned
rules include, but are not limited to, a combination of one or
more attributes related to the ?le, such as type of ?le. As an
example, a ?rst representation of an image ?le is a com
pressed image smaller than the actual image and information
about the author of the image. The user can customiZe this
?rst representation of the ?le such that the ?rst representation
of the image ?le contains a thumbnail of the image ?le.

[0068] At step 508, sender 206 of server 104 sends the ?rst
representation of the ?le to clients 108 and 110 connected to
server 104. Based on the received ?rst representation, client
110 stores the ?rst representation of the ?le in its local storage
118 and client 108 stores it in its local storage 114. After
receiving the ?rst representation of the ?le, client 110 can
generate a request to access the data’ segments of the ?le
based on the ?rst representation of the ?le. Client 110 checks
Whether the requested data segments associated With the ?le
are present in local storage 118 (either saved or cached if the
?le Was earlier accessed by client 110). Consider the example
of a music ?le. When the music player is launched, client 110
checks Whether the requested portions of the music ?le are
already stored or cached in local storage 118. Client 110
accesses the requested data segments of the ?le When the
requested data segments are stored or cached in local storage
118. The music player gets the access to the requested por
tions of the music ?le When they are stored or cached in local
storage 118. If the requested data segments are not stored in
local storage, client 110 generates a request based on the ?rst
representation of the ?le and sends the request to server 104.
For example, When a user desires to vieW the image ?le using
an application such as a’ “Picture vieWer”, the compressed
version of the ?le, i.e., a copy of the image ?le With loWer
resolution, is immediately displayed in the picture vieWer. To
improve the resolution of the displayed image, client 110 may
send a request to server 104 for streaming the remaining data
segments from remote storage 106 to local storage 118.

[0069] At step 510, receiver 202 of server 104 receives a
request for access to one or more data segments of the ?le
from client 110.

[0070] At step 512, sender 206 of server 104 sends the
requested one or more data segments of the ?le to client 110.
On receiving the stream of the requested data segments of the
?le from sender 206, the ?rst representation of the ?le is
transformed into a second representation of the ?le and pro
vided to the user. In the example, the image ?le is received and
displayed in the picture vieWer. In another implementation,
on receiving the remaining data segments, client 110 appends
the received data segments With the ?rst representation of the
?le. Consider the example of the music ?le Where the ?rst
representation of the music ?le includes metadata associated
With the music ?le, the ?rst data segment of the music ?le, and
the last data segment of the music ?le stored in local storage
118. When the user launches a music player to play the music
?le, the ?rst data segment stored in local storage 118 is
accessed by client 110 and played by the music player. Mean
While, client. 110 sends a request to server 104 for streaming
the remaining data segments associated With the music ?le.
As the remaining data segments are streamed from remote

US 2013/0291124 A1

storage 106 to local storage 118, the remaining data segments
are continuously played by the music player. Client 110
accesses the second representation of the music ?le, which
includes the requested data segments associated with the
music ?le. Subsequently, client 110 delivers the requested
data segments in the right sequence to the music player.
[0071] FIG. 6 is a ?owchart illustrating a method for man
aging server 104, in accordance with an embodiment of the
disclosure. Each user should have the access rights to clients
108 and 110 to be able to access or upload ?les to and from
server 104. At step 602, server 104 de?nes access rights to
users of clients 108 and 110 by creating and con?guring
accounts for each user. Based on the created accounts, server
104 is further con?gured to authenticate users of Clients 108
and 110.An account is created for the user by server 104 when
a user signs-up with server 1 04. The user account is created by
entering a username and a password along with additional
personal information such as name, date of birth, sex, and
country. Access rights include a combination of the right to
upload ?les to the server, the right to read or modify ?les, the
right to delete ?les, and the like.
[0072] At step 604, remote storage 106 of server 104 stores
the received metadata and data segments associated with the
?le when the user uploads the ?le into the virtual data drive of
client 108. For example, a song ?le uploaded into the virtual
data drive by the user is received by remote storage 106. An
application running on computational device 116 is used by
the user to make changes to the ?le.

[0073] At step 606, receiver 202 of server 104 receives the
changes made to one or more data segments of the ?le. In our
example, the user can make changes to the song ?le. The
changed song ?le is received by server 104.

[0074] At step 608; processor 204 of server 1.04 updates
the ?rst representation of the ?le based on the changes made
to one or more data segments of the ?le by the user. In the
example, processor 204 updates the ?rst representation of the
song ?le based on the changes made to the song ?le.

[0075] At step 610, the updated ?rst representation of the
?le is sent to clients 108 and 110. In an example implemen
tation, the updated ?rst representation of the ?le is synchro
niZed with the sync managers of all the clients connected to
the communication network. For example, the updated ?rst
representation of the music ?le is synchronized with all the
music players in the network so that all music players can play
the updated ?rst representation of the music ?le.
[0076] FIG. 7 is a ?owchart illustrating a method for
accessing a secured ?le, in accordance with an embodiment
of the disclosure. A ?le containing con?dential or sensitive
information is a secured ?le. Examples of the con?dential or
sensitive information may include credit card numbers, bank
account numbers, and social security numbers. None of the
data segments associated with a secured ?le are stored in local
storage 114 of client 108. Client 108 of computational device
112 generates a request to access one ore more data segments
of a secured ?le stored in remote storage 106 of server 104.
The request is generated based on the ?rst representation of
the secured ?le stored in local storage 114. The ?rst repre
sentation of the secured ?le includes basic metadata related to
the secured ?le. Examples of the basic metadata may include
a ?le name, and timestamp of creation.

[0077] At step 702, server 104 receives the request for
accessing one or more data segments of the secured ?le from
client 108.

Oct. 31,2013

[0078] At step 704, processor 204 of server 104 authenti
cates the user of client 108 based on the access rights of the
user of client 108 to check whether the user is authoriZed to
access the one or more data segments of the secured ?le. The
user can be authenticated by using various tools that imple
ment methods for authentication. An example of a method
that can be used for user authentication involves asking for a
username and a password from the user. As already described,
before the user can access or upload ?les on remote storage
106 of server 104, the user has to sign-up with server 104. By
signing-up with server 104, a user account is created by rights
manager 208 for the user with a username and password along
with additional personal information. Each user account is
provided with access rights to server 104 by rights manager
208. As a result, a list of authentic usernames and passwords
are maintained at the server for authentication.

[0079] At step 706, processor 204 of server 104 checks if
the authentication of the user is successful. If the authentica
tion of the user is unsuccessful, the steps of the ?owchart
terminate. If the authentication of user succeeds, then at step
708, sender 206 of the server 104 streams the requested data
segments of the ?le to client 108. On receiving the stream of
the requested data segments of the ?le from the sender 206,
the ?rst representation of the ?le is transformed into a second
representation of the ?le and provided to the user. In another
embodiment, on receiving the remaining data segments, cli
ent 108 appends the received data segments with the ?rst
representation of the ?le. The data segments are directly
accessed by client 108 without being stored in the local stor
age 114 or cached by the cache manager 212.

[0080] Various embodiments of the disclosure provide
method and system for managing data in a communication
network such as a Local Area Network (LAN), a Wide Area
Network (WAN), a communication network, and the Internet.
A user working on a computational device, installed with a
client, is enabled to upload a ?le on a remote storage by
placing the ?le in a virtual data drive. On uploading the ?le,
most of the data segments associated with the ?le are moved
to the remote storage. The ?le can either be accessed manu
ally by the user or can be automatically downloaded when
ever required by an application running on the computational
device based on the metadata related to the ?le stored in the
local storage. Further, the user can randomly access the ?le
stored in the remote storage from any site connected to the
communication network through a virtual data drive. Further,
the disclosure enables the user to directly access the 5 ?le
stored in the remote storage. In this case, the data segments
associated with the ?le are not cached in the local storage of
the user.

[0081] The method and system for managing data in a
communication network, as described in the disclosure, may
be embodied in the form of a computer system. Typical
examples of a computer system include a general-purpose
computer, a programmed microprocessor, a micro-controller,
a peripheral integrated circuit element, and other devices or
arrangements of devices that are capable of implementing the
steps that constitute the method of the disclosure.
[0082] The computer system typically comprises a com
puter, an input device, and a display unit. The computer
typically comprises a microprocessor, which is connected to
a communication bus. The computer also includes a memory,
which may include a Random Access Memory (RAM) and a
Read Only Memory (ROM). Further, the computer system
comprises a storage device, which can be a hard disk drive or

US 2013/0291124 A1

a removable storage drive such as a ?oppy disk drive and an
optical disk drive. The storage device can be other similar
means for loading computer programs or other instructions
into the computer system.
[0083] The computer system executes a set of instructions
that are stored in one or more storage elements to process
input data. These storage elements can also hold data or other
information, as desired, and may be in the form of an infor
mation source or a physical memory element present in the
processing machine. Exemplary storage elements include a
hard disk, a DRAM, an SRAM, and an EPROM. The storage
element may be external to the computer system and con
nected to or inserted into the computer, to be doWnloaded at or
prior to the time of use. Examples of such external computer
program products are computer-readable storage mediums
such as CD-ROMS, Flash chips, and ?oppy disks.
[0084] The set of instructions may include various com
mands that instruct the processing machine to perform spe
ci?c tasks such as the steps that constitute the method of the
disclosure. The set of instructions may be in the form of a
softWare program. The softWare may be in various forms such
as system softWare or application softWare. Further, the soft
Ware may be in the form of a collection of separate programs,
a program module With a large program, or a portion of a
program module. The software may also include modular
programming in the form of object-oriented programming.
The softWare program that contains the set of instructions can
be embedded in a computer program product for use With a
computer, the computer program product comprising a com
puter-usable medium With a computer-readable program
code embodied therein. Processing of input data by the pro
cessing machine maybe in response to users’ commands,
results of previous processing, or a request made by another
processing machine.
[0085] The modules described herein may include proces
sors and program instructions that are used to implement the
functions of the modules described herein. Some or all the
functions can be implemented by a state machine that has no
stored program instructions, or in one or more Application
speci?c Integrated Circuits (ASlCs), in Which each function
or some combinations of some of the functions are imple
mented as custom logic.

[0086] While the various embodiments of the disclosure
have been illustrated and described, it Will be clear that the
invention is not limited only to these embodiments, example,
or implementations. Numerous modi?cations, changes,
variations, substitutions, and equivalents Will be apparent to
those skilled in the art, Without departing from the spirit and
scope of the invention.

We claim:

1. A method for managing a plurality of ?les in a commu
nication netWork, the communication netWork comprising a
plurality of clients and at least one ?le of the plurality of ?les
comprising one or more data segments, the method compris
ing:

a. receiving metadata associated With a ?le, by a server,
Wherein the ?le is stored in a virtual data drive of a ?rst
client of the plurality of clients;

b. receiving, by the server, data segments associated With
the ?le from the virtual data drive of the ?rst client;

c. storing the metadata and data segments associated With
the ?le at the server;

Oct. 31,2013

d. generating, by the server, a ?rst representation of the ?le
based on the received metadata and data segments asso
ciated With the ?le;

e. sending, by the server, the ?rst representation of the ?le
to the plurality of clients; and

f. sending, by the server, at least one data segment of the ?le
to a second client of the plurality of clients based on a
request received at the server from the second client for
the at least one data segment of the ?le.

2. The method as recited in claim 1 further comprising:
receiving, by the server, inputs to de?ne a plurality of

access rights to at least one user of a plurality of users
corresponding to the plurality of clients for accessing the
?le.

3. The method as recited in claim 1 further comprising:
receiving, by the server, a change to the at least one data

segment of the ?le from the second client.
4. The method as recited in claim 3 further comprising:
updating, by the server, the ?rst representation of the ?le

based on the received change to the at least one data
segment of the ?le.

5. The method as recited in claim 4 further comprising:
sending, by the server, the updated ?rst representation of

the ?le to the plurality of clients.
6. The method as recited in claim 1 further comprising:
authenticating, by the server, the request based on a plural

ity of access rights of a user of the second client When the
?le is a secured ?le.

7. The method as recited in claim 6, Wherein the at least one
data segment of the ?le sent to the second client is not cached
by the second client When the ?le is a secured ?le.

8. The method as recited in claim 1, Wherein one or more
data segments of the sent at least one data segments of the ?le
are cached by the second client When the ?le is not a secured
?le.

9. The method as recited in claim 8, Wherein the number of
the one or more data segments of the sent at least one data
segments cached by the second client is based on one or more
parameters of the communication netWork.

10. A method for managing a plurality of ?les in a com
munication netWork, the communication netWork comprising
a plurality of clients and at least one ?le of the plurality of ?les
comprising one or more data segments, the method compris
ing:

a. receiving metadata associated With a ?le, by a server,
Wherein the ?le is a secured ?le stored in a virtual data
drive of a ?rst client of the plurality of clients;

b. receiving, by the server, data segments associated With
the ?le from the virtual data drive of the ?rst client;

c. storing the metadata and data segments associated With
the ?le at the server;

d. generating, by the server, a ?rst representation of the ?le
based on the received metadata and data segments asso
ciated With the ?le;

e. sending, by the server, the ?rst representation of the ?le
to the plurality of clients;

f. receiving, by the server, a request from a second client of
the plurality of clients for at least one data segment of the
?le;

g. authenticating, by the server, the request based on a
plurality of access rights of a user of the second client;
and

US 2013/0291124 A1 Oct. 31,2013

h. sending, by the server, the at least one data segment of
the ?le t0 the second client When the request is authen
ticated.

