Hacking Medical Devices for Fun and Insulin: Breaking the Human

SCADA System

Jerome Radcliffe

On my 22" birthday | went to the doctor, having lost 40 pounds in less than two months and an
insatiable thirst. It did not take long before the doctor diagnosed diabetes; not long after that | was
prescribed insulin, which | had to inject into my body 4-7 times a day. There, however, is an alternative
method of delivery available for insulin injections where, rather than having to inject myself with a
needle and syringe, | could attach an insulin pump to my body. It is not a permanent attachment, but
rather uses a small needle and tubing, called an infusion set, that needs to be replaced approximately
every three days. An insulin pump is a device about the size of an old-fashion pager that can deliver
insulin doses as small as 0.25 units that can be given more constantly, where syringes are often limited
to 1.0U doses given all at once. There are several advantages to using an insulin pump: you have more
control over insulin delivery, more flexible shorter acting insulin can be used, and more data can be
captured to help make better decisions for treatment. As a geek, the idea of this “smart” gadget being
attached to me had an appeal. It allowed me to collect data which would let me make better decisions
in my treatment. It also has some wireless capabilities, making data entry from an external blood
glucose device easier. Another advance in technology for diabetics has been in the field of continuous
glucose monitors (CGM). These use three to seven day sensors that attach to your body, these sensors
then send out a wireless signal to a receiver that monitor blood sugar rates every five minutes. The
combination of the insulin pump and the CGM makes me look like a super-dork rocking the pager from
the late 90s, but it really helps me and my doctors manage my treatment better. | always joked around
that on day some hacker was going to break into my pump, give me a dose of insulin that | didn’t need,
which could force my blood sugar too low and result and render me unconscious after an hour. After
attending a talk at Defcon in 2009 that focused on hacking smart parking meters, | began to ponder
hacking into my own diabetic “smart devices.” | have a background in ham radio operation, which
provides me the knowledgeable in the physical layer of wireless communication, and felt that my added
years of experience in the computer security field might just allow me to pull off hacking this Human

SCADA System.

SCADA Connection

| was researching the Stuxnet malware in my professional job | discovered one element that
makes this research highly relevant to today’s environment. Looking at the SCADA and ICS systems, |
was amazed to see that it was very similar in concept to what | was manually doing with my insulin
pump and CGM system. Take a chemical plant for example; it has a tank of liquid or gas that it needs to
keep at a stable elevated temperature and it uses a sensor that reports that temperature, and a set of
heaters that are controlled by a valve to adjust the heat. When the sensor reports a temperature that is
too cool, the valve can be opened to create more heat. At some point the sensor will report that the
temperature is getting too hot, and the valve can be closed to reduce the heating. If the valve for the
heating does not turn off, then the temperature can get too high, which, depending on the substance
being heated could be dangerous. Regulating blood sugar to insulin ration if very similar to the chemical
plant example; a measurement is taken of blood sugar, which should be within a certain range (90-
120mg/dl). If that number is too high, insulin can be given to lower that number back to the acceptable
range. If too much insulin is given, then the blood sugar can get too low resulting in a condition known
as hypoglycemia, which can be very dangerous as the body will start to shut down when sugar gets too
low. If left untreated, hypoglycemia can lead to coma and, in extreme cases, death. When blood sugar
gets too low, diabetics will often consume a high sugar drink or food to bring levels back into a healthy
range. This humans system, then, is nearly identical to the chemical plant, and much like the chemical

plant, my ability to regulate blood sugar is dependent on the readings given to me by my hardware.

Hacking the System

In SCADA/ICS environment, the concerned is about the manipulation of the sensor data and
control over systems that make adjustments based on that data. Take Stuxnet for example. The
research on this speculated that the malware payload manipulated how fast a centrifuge would spin,
ultimately causing them to spin faster than they were designed to go, and destroying them. The Stuxnet
payload also falsely reported back to operators how fast those centrifuges spun, leaving the operators
to believe that the systems were operating correctly. How would this translate into the personal case
with diabetics? Rather than making a centrifuge spin too fast, a malicious program could tell the insulin
pump to deliver more insulin then it is programmed to do. This could result in a hypoglycemic episode.
Similar to Stuxnet, a malicious program could also inject false sensor data, resulting in the diabetic
making a decision based upon false data; if the sensor data was falsely reporting blood sugar as being
elevated when it was not, a diabetic could administer too much insulin, which, again, would result in a

potential hypoglycemic state.

Recon Steps

Looking at this research like a penetration test, the first step | needed to conduct was
reconnaissance. | needed to collect as much data on my targets as | could. Since | was looking to target
the wireless communication of both my insulin pump and CGM devices, | needed to get some
information on what frequencies and modulation these devices operated on. The first place | looked
was in the user manual for the devices. This often discarded document often contains a wealth of
information. In my case the manual had an appendix that told me the exact frequency and modulation
method that the CGM system | owned operated on (402.142mHz On-Off Keying), how long the packet
was (76 bits), and how often transmissions occurred (once every five minutes) The insulin pump manual
provided similar details (916mHz On-Off Keying). Another key item of information in the manual was
the Federal Communication Commission (FCC) ID of the device. All wireless devices sold in the Unites
States have to be cleared by the FCC, and are given a unique ID. If you take this ID to the FCC website,
you can download the FCC verification documents of the device. This has detailed analysis of the
transmission, including screen captures from spectrum analyzers and oscilloscopes. These devices cost
tens of thousands of dollars often outside the reach of the budgets of small or individual researchers. |
also spent some time looking at the website of the patent office. Searching under the name of the
manufacturer, | was able to find all of the patent documents for the devices. This provided a lot of
information on the devices functionality and how the devices are built. With this information, | could

start to look for devices that operate on those frequencies.

Arduino / RF Modules

Most Radio Frequency (RF)/Wireless development kits cost thousands of dollars and | was
working on a limited budget that did not allow for that type of expense. | was aware of a hardware
platform called Arduino, this little microprocessor board had a simple programming language and allows
a programmer to interface with a large assortment of devices and modules to perform all kinds of fun
tasks. While researching for devices that operated on the frequencies of my devices | stumbled across
an article that mentioned an Arduino module that worked on frequencies very close to my devices.
Better yet, it was very inexpensive and readily available. This module is based on the Texas Interments
CC1101 Wireless chip. This chip operates on the 315/433/868/915MHz ISM/SRD bands, which cover

both of my devices. | found a source of these boards on eBay for less than $20 each.

OOK Modulation

After getting the CC1101 module, | needed to figure out how to configure the device to operate
on the same frequency and modulation type as the devices | was using. This was much more difficult
than it sounds. There are 70+ register settings for the CC1101, and even for someone with over 20 years
of ham radio experience, | was a little over whelmed. One of the challenges of crossing over from
computer security research to hardware hacking research is the ease of use of the devices. Most of the
packages we use have manuals (or at least man pages) that have some use examples. The CC1101
manual has 108 pages, but none of it tells you how to program the device, nor does it have a simple user
guide on setting it up. This was designed for the experienced electrical engineer to use, not the
computer geek. One of the first settings | needed to tackle was the issue of modulation type. My years
of radio experience helped me there, as On-Off Keying (aka OOK) is very similar to the most well known
ham radio communication format, Morse code or continuous wave modulation. In this format, there
are two states of modulation, On and Off. In this case, On would equate to a binary 1, and Off would
equate to a binary 0. If viewed on an oscilloscope or logic analyzer, you can transcribe the signal into a

binary stream.

Wireless Transmission 101

There are a couple of other register settings that | was unsure of how to set, which required me
to do a little more research on how these types of chips communicate. There are two parameters that
are in the CC1101 manual that were unfamiliar; first is the Preamble setting, and the second is Sync
Word. The Preamble setting is the very first part of a transmission that usually consists of alternating
binary 1s and Os. The function of this is to allow the receiving unit to know that a transmission is
eminent. In the time that the preamble is being received, the receiver can wake up from power saving
mode and adjust various gain settings to assure that the transmission can be processed properly. The
CC1101 settings have this between 2 and 32 bytes in length. Sync Word is a predetermined set of bytes
that are transmitted right after the preamble. On the CC1101, this is in to form of multiple hex
groupings broken into a high and low word and range from 8 bytes to 32 bytes. An example would be
an 8 byte Sync Word 0x1A2B. The high word would be 0x1A and the low word would be 0x2B. The
function of this Sync Word would be to verify that the transmission is in the proper format, and for the

receiver to know that the transmission is from a compatible known transmitter.

Here is where | ran into a problem. There is nothing in the documentation about these two

settings. More problematic is that the CC1101 module will not put any data into its receive buffers

unless it’s matched to the Preamble and Sync Word settings. After much thought, | opened up the
receiver unit of the CGM system that | own in order to see if | could determine what RF chip was being
used. Luckily, I could read the markings on the chip, and it turns out that it uses an AMIS-52100M RF
chip. I was able to find the datasheet for this chip, but it has no mention of Preamble or Sync Word
settings. It used a completely different transmission format. Rather than a preamble with a series of 1s
and Os, it transmitted a series of 1s to wake the chip up and set the gain controls. This rendered the

“intelligent” features of the CC1101 RF module unusable.

Direct Decode Method

There was another method | could configure the CC1101 module into that would allow me to
see the data being transmitted. This is called “Direct Mode” or “Serial Mode”. This mode uses two pins:
one is a clock and the other is data. In this two pin setup, there is a continuous clock signal being
generated by the RF module. This provides the timing for reading any signals that the RF module picks
up, which would come in from the data pin. The best way to think of the clock signal is like a
metronome when playing music. The metronome helps a musician keep time, so they can play a note

for the proper amount of time. In our case, it tells us how to read the 1s and Os coming in on the data

line. Visually it looks like this:

Using this mode, | could manually decode transmissions and try and determine what the data being

sent looked like.

CGM Discoveries
The CGM device had some known quantities that made it appealing to tackle first. It has a very

small packet size (76 bits) and a high rate of transmission (once every five minutes). There was also
some known data that was assured to be in the packet. The transmitter that attaches to the sensor is
designed to last approximately one year. This replaceable transmitter has a unique serial identifier that
has to be programmed into the receiver. This assures that the receiver is using the data from the correct
sensor. The format of this unique identifier is 5 characters long, the first character being a 0 (zero)ora 1
(one). The remaining four characters are alphanumeric (0 though 9, A though Z). There should be a
consistent pattern in the transmission where this identifier is located. Another factor is that the
variance in the data being returned from the sensor should not change drastically every five minutes. To
minimize this, data was only collected when my blood sugar was stable, as it can be highly variable at
times, such as after meals. This was done to try and make the sensor transmissions as consistent as
possible. After collecting several hours of data, what | found there were not consistent packets. There
were some identifiable patterns in the transmissions, and the transmissions were almost always 9.0ms
to 9.3ms long, and between 73 and 78 bytes in length. This indicates that the information discovered in
the research was accurate. When looking at the patterns of the data stream, with very minor changes
(not changing any data, only spacing limited to one clock cycle) 80 percent of the packets had the same
first 21 bits. These bits do not directly translate to the unique identifier of the transmitter. There are
two theories to why this data is not consistent. First, the transmitter is transmitting at low power (25
microwatts). This might make it difficult for the receiver to adjust the gain settings enough to accurately
receive the signal. This theory is hard to verify, but we do know that every transmission was the same
length and was detected every five minutes. If the signal was so weak to not be received properly, it
would be expected that some of the transmissions would be missed or truncated, having inconsistent
lengths. The second theory is that the data is getting encoded or modified before being transmitted.
This is more likely, as parts of the transmission are identical enough to indicate that the identifier is in

the transmission, but in a different way.

Insulin Pump Discoveries
The second device that | looked at was my insulin pump. There are three wireless applications

that the insulin pump | own utilizes. First, there is a java based program that uses a wireless peripheral
device to configure all the settings on the device. Second, there is a blood glucose meter that can
communicate the results of a blood strip test to the insulin pump. This makes it more convenient for a

diabetic to enter those values into the insulin pump. Third, this insulin pump also has a CGM

functionality, allowing the use of a CGM sensor that works exactly the same as the stand alone CGM
device mentioned above. All three use the same wireless interface on the insulin pump. From earlier
research we already know the frequency (916.50mHz) and modulation (OOK). Before digging into the
physical layer of the wireless transmission, | wanted to see what the log files of the configuration
software had to offer for more information. In the properties file, the logging was set to NONE, which |
changed to HIGH. This produced a wealth of information, including the actual messages and responses
with the device. Another discovery is the use of an encoding method used before transmission of the
message to the device. This encoding method lengthens the message, almost doubling the size. Curious
to how this encoding method worked, | looked at the lone java library file (also known as a JAR file) that
the program used in an effort to see more detail of this method. Often, companies will obfuscate these
libraries to prevent easy reverse engineering. Luckily, these files were not obfuscated and were easily
viewed. Being able to view these library files, it was trivial to reproduce not only the encoding method,

but all of the message formats and command codes for the device.

Security Concerns

What does all of this information tell us though? Is there a security concern? Is there a
vulnerability to exploit? In a word: maybe. Let us consider some of the known attacks that are seen in
the more traditional computer security models. Replay attacks are going to be effective against these
types of devices. There is no timestamp or other protection to defend against these types of attacks.
Similarly, if the message format is known, and the encoding method is known, then being able to spoof
the transmission might be trivial. One of the elements to all of the transmissions is the serial number of
the device or the unique identifier of the device. In the case of the CGM sensors, this is transmitted in a
beacon like fashion (in my device’s case, every five minutes). This would make it easy to passively
discover this information. The insulin pump does not have this issue, and the serial number would have
to be acquired through other means, perhaps through social engineering. Given this information, what

theoretical malicious attacks could be performed?

Theoretical CGM Attack Example
The worst case scenario for an attack on a CGM device would be to spoof sensor data to the

user making them think that their sugar is either higher or lower than it actually is. There are two ways
that this can be accomplished. If the transmission format is unknown, then a replay attack can be used.
Using a previously transcribed transmission from the sensor that shows a high sugar value, this could

later be re-transmitted by the CC1101 RF module. This would cause the receiver unit to indicate a

higher sugar reading then actually exists. To eliminate the legitimate sensor data from being picked up,
the CC1101 can transmit garbage data at the same time that the sensor is transmitting. This would be a
trivial task, as the transmissions occur at an exact time that is predictable (every five minutes). Thisis a
dangerous situation for the diabetic, as the sugar value reported by the CGM is used to determine the
amount of insulin to administer. A diabetic could be manipulated into administering more insulin then
needed, potentially causing a hypoglycemic condition. There are three factors the make this attack
harder then it seems. First, the range of the CGM devices is extremely limited. The transmitter would
have to be within 100 to 200 feet of the CGM receiver. This limits the attacker’s ability, as they have to
gain physical access the individual’s personal space to conduct the attack. Second, CGM devices often
will prompt the user for a calibration measurement, which is done with a blood glucose meter. This
would defeat the attacks, as intervention of this calibration test is highly unlikely. Lastly, while an
attacker might be able to manipulate a diabetic to administer too much insulin, this is something that is
common for a diabetic to experience. The manipulation of the sensor data would have to continue for

hours to keep the user manipulated. This also reduces the likelihood of a successful attack.

Theoretical Insulin Pump Attack
A dangerous situation for an insulin pump user is the unknown manipulation of configuration

settings as these settings are the foundation for calculating the amount of insulin that is dispensed to
the user. This attack would involve the attacker purchasing the wireless peripheral needed to talk to the
insulin pump. These are often found on eBay for less than one hundred US dollars, or can be purchased
without the need for a prescription brand new from medical supply retailers. The task of discovering
the command codes for the insulin pump and message format are fairly simple. Google shows that this
information has been published in multiple places, even though the manufacturer has not disclosed
them directly. An attack would need little time, as the changing of a configuration setting would only
take moments. For example, the setting that controls the ratio of insulin given at meal time could be
altered. If a user is suppose to get 1 Unit of insulin per 5 grams of carbohydrate eaten, the attack could
change that to 1 unit of insulin per 3 grams of carbohydrates eaten. This is a significant enough
difference to cause a diabetic to become hypoglycemic roughly 60 to 90 minutes after eating. Again,
there are some factors that limit this attack. First, like the CGM devices, the range on an insulin pump’s
wireless ability is limited to 100 to 200 feet. Unlike the CGM attack, this attack only takes seconds
though. Second, the attacker would have to acquire the serial number to the insulin pump target for the
attack to work. This cannot be done wirelessly, and would probably require physical access to the

device. This is not impossible, but does limit the potential for attack.

Future Security Concerns

Although all these potential attacks are serious, diabetics still have a significant human element
in the decision making process of delivering their medication. A person takes the data provide by the
CGM system and blood glucose meter, along with other variables to determine the proper amount of
insulin to administer. There are security risks in manipulating some of the data the person uses, but
ultimately an attacker cannot directly manipulate the amount of insulin given. The industry has plans to
remove the human intervention from this equation though. The Juvenile Diabetes Research Foundation
(JDRF) is pushing a campaign called the “Artificial Pancreas Project”. The goal of this would be to “close
the loop” between the CGM monitoring systems and the insulin pump delivery system. To go back to
our SCADA example, rather than a human monitoring the temperature and adjusting the heat, replace
the human with a computer program. This would allow for the automatic adjustment of the heat rather
than waiting for a human to react. A closed loop insulin delivery system would take the sensor readings
and adjust insulin delivery based upon a computer program. Given the attack scenarios given above, the
potential for harm would be greater in an automated system. Less human involvement would also
mean less human oversight of the process. The Artificial Pancreas Project is defiantly a step in the right
direction for the treatment of diabetes. The security, however, around the devices should be looked at
more closely and it should be done not as an afterthought. It should be a priority from the start of

development until the end of production.

Future Research Paths

This research on wireless security on these medical devices has only scratched the surface of
what vulnerabilities exist. More can be done to protect these devices and their data from potential
exploit. The scope of the research can be expanded as well. These RF chips and wireless formats are in
a wide array of devices, from wireless toys, medical devices, industrial equipment, and SCADA hardware.
With a little bit of knowhow, a little bit of hardware and some curiosity, a whole new world of research

is waiting to be done.

Appendix A: CC1101 Registry Settings

// CC1101 CONFIG REGSITER

#define CC1101 IOCFG2 0x00 !/
#define CC1101 IOCFG1 0x01 !/
#define CC1101 IOCFGO 0x02 !/
#define CC1101 FIFOTHR 0x03 //
#define CC1101 SYNC1 0x04 !/
#define CC1101 SYNCO 0x05 !/
#define CC1101 PKTLEN 0x06 //
#define CC1101 PKTCTRLI1 0x07 //
#define CC1101 PKTCTRLO 0x08 !/
#define CC1101 ADDR 0x09 !/
#define CC1101 CHANNR 0x0A !/
#define CC1101 FSCTRL1 0x0B !/
#define CC1101 FSCTRLO 0x0C !/
#define CC1101 FREQ2 0x0D //
#define CC1101 FREQ1 0x0E //
#define CC1101 FREQO 0x0F //
#define CC1101 MDMCFG4 0x10 !/
#define CC1101 MDMCFG3 0x11 //
#define CC1101 MDMCFG2 0x12 //
#define CC1101 MDMCFG1 0x13 !/
#define CC1101 MDMCEFGO 0x14 //
#define CC1101 DEVIATN 0x15 //
#define CC1101 MCSM2 0x16 !/
configuration
#define CC1101 MCSM1 0x17 //
configuration
#define CC1101 MCSMO 0x18 !/
configuration
#define CC1101 FOCCFG 0x19 !/
#define CC1101 BSCFG 0x1A //
#define CC1101 AGCCTRL2 0x1B //
#define CC1101 AGCCTRL1 0x1C !/
#define CC1101 AGCCTRLO 0x1D //
#define CC1101 WOREVT1 0x1E //
#define CC1101 WOREVTO 0x1F //
#define CC1101 WORCTRL 0x20 !/
#define CC1101 FRENDI1 0x21 //
#define CC1101 FRENDO 0x22 //
#define CC1101 FSCAL3 0x23 !/
#define CC1101 FSCAL2 0x24 //
#define CC1101 FSCAL1 0x25 !/
#define CC1101 FSCALO 0x26 !/
#define CC1101 RCCTRL1 0x27 //
#define CC1101 RCCTRLO 0x28 !/
#define CC1101 FSTEST 0x29 !/
#define CC1101 PTEST 0x2A //
#define CC1101 AGCTEST 0x2B //
#define CC1101 TEST2 0x2C !/
#define CC1101 TEST1 0x2D //
#define CC1101 TESTO 0x2E //
//CC1101 Strobe commands
#define CC1101 SRES 0x30 !/
#define CC1101 SFSTXON 0x31 !/
(1f MCSMO.FS AUTOCAL=1) .

//
the synthesizer is

//
#define CC1101 SXOFF 0x32 !/

GDO2 output pin configuration
GDO1l output pin configuration
GDOO output pin configuration
RX FIFO and TX FIFO thresholds
Sync word, high INT8U

Sync word, low INT8U

Packet length

Packet automation control
Packet automation control
Device address

Channel number

Frequency synthesizer control
Frequency synthesizer control
Frequency control word, high INT8U
Frequency control word, middle INT8U
Frequency control word, low INT8U
Modem configuration

Modem configuration

Modem configuration

Modem configuration

Modem configuration

Modem deviation setting

Main Radio Control State Machine

Main Radio Control State Machine
Main Radio Control State Machine

Frequency Offset Compensation configuration
Bit Synchronization configuration
AGC control

AGC control

AGC control

High INT8U Event 0 timeout

Low INT8U Event 0 timeout

Wake On Radio control

Front end RX configuration

Front end TX configuration
Frequency synthesizer calibration
Frequency synthesizer calibration
Frequency synthesizer calibration
Frequency synthesizer calibration
RC oscillator configuration

RC oscillator configuration
Frequency synthesizer calibration control
Production test

AGC test

Various test settings

Various test settings

Various test settings

Reset chip.
Enable and calibrate frequency synthesizer
If in RX/TX: Go to a wait state where only

running (for quick RX / TX turnaround) .
Turn off crystal oscillator.

#define CC1101 SCAL 0x33 !/
off

//
#define CC1101 SRX 0x34 !/
coming from IDLE and

//
#define CC1101 STX 0x35 !/
calibration first if

//
is enabled:

//
#define CC1101 SIDLE 0x36 !/
synthesizer and exit

//
#define CC1101 SAFC 0x37 !/
synthesizer
#define CC1101 SWOR 0x38 !/
on-Radio)
#define CC1101 SPWD 0x39 !/
#define CC1101 SFRX 0x3A !/
#define CC1101 SFTX 0x3B !/
#define CC1101 SWORRST 0x3C !/
#define CC1101 SNOP 0x3D !/
commands to two

//
//CC1101 STATUS REGSITER
#define CC1101 PARTNUM 0x30
#define CC1101 VERSION 0x31
#define CC1101 FREQEST 0x32
#define CC1101 LOQI 0x33
#define CC1101 RSSI 0x34
#define CC1101 MARCSTATE 0x35
#define CC1101 WORTIME1 0x36
#define CC1101 WORTIMEO 0x37
#define CC1101 PKTSTATUS 0x38
#define CC1101 VCO VC DAC 0x39
#define CC1101 TXBYTES 0x3A
#define CC1101 RXBYTES 0x3B

//CC1101 PATABLE, TXFIFO,RXFIFO

#define CC1101 PATABLE 0x3E
#define CC1101 TXFIFO 0x3F
#define CC1101 RXFIFO 0x3F
#define CC1101 SPI WRITE MASK 0x80

void CC1101::ConfigSettings (int num) {
SpiStrobe (CC1101 SRES); //Reset
delay (5);
SpiStrobe (CC1101 SFRX);

//These are common settings

SpiWriteReg (CC1101 FSCTRL1, 0x06);
SpiWriteReg (CC1101 FSCTRLO, 0x00);
SpiWriteReg (CC1101 FREQZ, 0x0F) ;
SpiWriteReg (CC1101 FREQI, 0x77) ;
SpiWriteReg (CC1101 FREQO, 0x8D) ;
SpiWriteReg (CC1101 CHANNR, 0x00) ;
SpiWriteReg (CC1101 DEVIATN, 0x15);
SpiWriteReg (CC1101 FSCAL3, 0xE9) ;
SpiWriteReg (CC1101 FSCALZ, 0x2A) ;
SpiWriteReg (CC1101 FSCALI, 0x00) ;
SpiWriteReg (CC1101 FSCALO, 0x1F) ;
SpiWriteReg (CC1101 FSTEST, 0x59) ;

Calibrate frequency synthesizer and turn it

(enables quick start).
Enable RX. Perform calibration first if

MCSMO.FS AUTOCAL=1.
In IDLE state: Enable TX. Perform

MCSMO.FS AUTOCAL=1. If in RX state and CCA

Only go to TX if channel is clear.
Exit RX / TX, turn off frequency

Wake-On-Radio mode if applicable.
Perform AFC adjustment of the frequency

Start automatic RX polling sequence (Wake-
Enter power down mode when CSn goes high.
Flush the RX FIFO buffer.

Flush the TX FIFO buffer.

Reset real time clock.

No operation. May be used to pad strobe

INT8Us for simpler software.

//Flush the RX FIFO

SpiWriteReg (CC1101 PKTLEN, 0x50
SpiWriteReg (CC1101 ADDR, 0x00
SpiWriteReg (CC1101 MDMCFGI1, 0x02
SpiWriteReg (CCllOl_PKTCTRLl, 0x00
SpiWriteReg(CCllOl_FIFOTHR, 0x07
SpiWriteReg (CC1101 MDMCFG3, 0x4A
SpiWriteReg (CC1101 MDMCFG2, 0x33
SpiWriteReg (CC1101 MDMCFGO, 0x18
SpiWriteReg (CC1101 MCsM2 , 0x07
SpiWriteReg (CC1101 MCSM1, 0x30

)
)
)
)
)
)
); //B4
)
)
)
SpiWriteReg (CC1101 MCSMO , 0x18) ;
)
)
)
)
)
)
)
)
)
)

; //F8

SpiWriteReg (CC1101 FOCCFG, 0x16
SpiWriteReg (CC1101 BSCFG, 0x6C
SpiWriteReg (CC1101 FRENDI, 0x56
SpiWriteReg (CC1101 FRENDO, Ox11

; // Wide BW = B6, Narrow 56

SpiWriteReg (CC1101 TEST2, 0x81); // Wide BW = 88, Narrow 81
SpiWriteReg (CC1101 TESTI, 0x35); // Wide BW = 31, Narrow 35
SpiWriteReg (CC1101 AGCCTRL2, 0xA4); //A4
SpiWriteReg (CC1101 AGCCTRL1, 0x50); //50
SpiWriteReg (CC1101 AGCCTRLO, 0x92); //92

SpiWriteReg (CC1101 MDMCFG4, 0x58); //58 Bandwidth

if (num == 1) {
Serial.println("Setting Dexcom FIFO");
SpiWriteReg (CC1101 PKTCTRLO, 0x00);
SpiWriteReg (CC1101 IOCFG2, 0x09); //Carrier Sense
SpiWriteReg (CC1101 IOCFGO, 0x00); // RX FIFO
SpiWriteReg (CC1101 SYNCI, 0xAD)
SpiWriteReg (CC1101 SYNCO, 0xEB)
SpiWriteReg (CC1101 MDMCFG4, 0xC8);
SpiWriteReg (CC1101 MDMCFG3, 0x4A)
SpiWriteReg (CC1101 MDMCFGZ, 0x34)
SpiWriteReg (CC1101 MDMCFGI1, 0x02)
SpiWriteReg (CC1101 MDMCFGO, O0xF8)
SpiStrobe (CC1101 SRX);

}

else if (num == 2){
Serial.println("Setting Direct GP0=Clock GP2=Data");
SpiWriteReg (CC1101 PKTCTRLO, 0x12);
SpiWriteReg (CC1101 IOCFGZ, 0x0C) ;
SpiWriteReg (CC1101 IOCFGI, 0x2E); //0C = Data, OB = Clock
SpiWriteReg (CC1101 IOCFGO, 0x0B)
//Other from Doc
SpiWriteReg (CC1101 MDMCFG4, 0xC8)
SpiWriteReg (CC1101 MDMCFG3, 0x4A)
SpiWriteReg (CC1101 MDMCFG2, 0x30);

)
)

’

SpiWriteReg (CC1101 MDMCFGl, 0x42
SpiWriteReg (CC1101 MDMCFGO, OxF8
SpiStrobe (CC1101 SRX);

}

else 1if (num == 3) {
Serial.println ("Async GPO");
SpiWriteReg (CC1101 PKTCTRLO, 0x30);
SpiWriteReg (CC1101 IOCFGO, 0x0D) ;
//Other from Doc
SpiWriteReg (CC1101 MDMCFG4, 0xC8)
SpiWriteReg (CC1101 MDMCFG3, 0x4A)
SpiWriteReg (CC1101 MDMCFG2, 0x30);
SpiWriteReg (CC1101 MDMCFGl, 0x42)
SpiWriteReg (CC1101 MDMCFGO, O0xF8)
SpiStrobe (CC1101 SRX);

else 1if (num == 4) {

Serial.println("Setting Direct Hard GPO=Clock GP2=Data");

SpiWriteReg (CC1101 PKTCTRLO, 0x12);

SpiWlriteReg (CC1101 IOCFG2, 0x17);

SpiWriteReg (CC1101 IOCFGI, 0x2E); //0C = Data, OB = Clock

SpiWiriteReg (CC1101 IOCFGO, 0x1D)

//Other from Doc

SpiWriteReg (CC1101 MDMCFG4, 0xC8)

SpiWlriteReg (CC1101 MDMCFG3, O0x4A)

SpiWriteReg (CC1101 MDMCFG2, 0x30);
)
)

’

SpiWriteReg (CC1101 MDMCFGl, 0x42
SpiWriteReg (CC1101 MDMCFGO, OxF8
SpiStrobe (CC1101 SRX);

} else if (num == 5) {
Serial.println("Transmit test");
SpiWriteReg (CC1101 PKTCTRLO, 0x00)
SpiWriteReg (CC1101 SYNCI, 0xFF)
SpiWriteReg (CC1101 SYNCO, 0xFF)
SpiWriteReg (CC1101 MDMCFG4, 0xC8);
SpiWriteReg(CCllOl_MDMCFG3, 0x4A) ;

)
)
)
)
)

’
’

’

SpiWriteReg (CC1101 MDMCFG2, 0x35); // 35 = 15/16 +CS; 34 = CS;
SpiWriteReg (CC1101 MDMCFG1l, 0x02); // Preamble 0=2 bytes;1=3 bytes
SpiWriteReg (CC1101 MDMCFGO, O0xF8);

SpiWriteReg (CC1101 IOCFGZ, 0x06

SpiWriteReg (CC1101 IOCFGO, 0x00

; //Sync
; // RX FIFO

byte i;
byte TX buffer[4]1={0};
for (1=0;1i<4;1i++)
{
TX buffer[i]=0xAA;
}
Serial.println ("Transmit Start");
ccll0l.SendData (TX buffer,4);
Serial.println("Transmit Complete");
} else if (num == 6) {
Serial.println("OneTouch Direct GP0=Clock GP2=Data"):;
SpiWriteReg (CC1101 PKTCTRLO, 0x12);
SpiWriteReg (CC1101 IOCFGZ, 0x0C) ;
SpiWriteReg (CC1101 IOCFGI, 0x2E); //0C = Data, OB = Clock
SpiWriteReg (CC1101 IOCFGO, 0x0B)
//Switch to 916 mhz

’

SpiWriteReg (CC1101 FREQZ, 0x23);
SpiWriteReg (CC1101 FREOQI, 0x40) ;
SpiWriteReg (CC1101 FREQO, 0x00) ;

//Other from Doc
SpiWriteReg (CC1101 MDMCFG4, 0xC8)
SpiWriteReg (CC1101 MDMCFG3, 0x4A)
SpiWriteReg (CC1101 MDMCFG2, 0x30);
SpiWriteReg (CC1101 MDMCFGl, 0x42)
SpiWriteReg (CC1101 MDMCFGO, O0xF8)
SpiStrobe (CC1101 SRX);

} else {
Serial.println("No Config");

