
MontaVista Linux 6
Technical brief

The MontaVista Linux 6 Technical Brief provides a technical overview

of MontaVista Linux 6 (MVL6) and each of its components including

Market Specific Distributions (MSD), the Software Development Kit

(SDK), and the MontaVista Zone Content Server. The Technical Brief

concludes with an overview of MontaVista support and maintenance,

and a glossary of new terms and definitions important to understand

when learning about MVL6.

Table of Contents
»	 MontaVista Linux 6: The New approach to Embedded 	
	 Linux Development

»	 Market Specific Distributions

»	 MontaVista Software Development Kit

»	 Cross and Native Development Toolchains

»	 MontaVista Integration Platform

»	 MontaVista DevRocket 6 IDE

»	 MontaVista Zone

»	 Customer Support, Quality Assurance, & Training

2

MontaVista Linux 6 Technical Brief

MontaVista Linux 6: The New Approach to
Embedded Linux Development
MontaVista Linux 6 meets embedded developers where they are in the

development cycle with a complete embedded Linux distribution and

developer tools for a faster time to development. With Market Specific

Distributions, the MontaVista Integration Platform, and unprecedented

flexibility in a commercial solution, MontaVista Linux 6 enables developers

to build from source to more easily customize their software stack and

add product-differentiating features.

The MontaVista Linux 6 Technical Brief provides a technical overview of

MontaVista Linux 6 (MVL6) and each of its components, including Market

Specific Distributions (MSD), the Software Development Kit (SDK), and

the MontaVista Zone Content Server. The Technical Brief concludes with

an overview of MontaVista support and maintenance and a glossary of

new terms and definitions important to understand when learning about

MVL6.

Figure 1 - MontaVista Linux 6

Market Specific Distributions
MontaVista Linux 6 introduces a powerful new approach to embedded

Linux system design that benefits developers like never before, Market

Specific Distributions. Traditionally companies like MontaVista have

modeled their products similar to the RTOS world. RTOS vendors

generate “board support packages” (BSPs) that adapt a predefined

product as little as possible to execute on a new hardware platform. This

model was sensible in the era of proprietary software platforms because

the vendor was the only true innovator in the software supply chain.

The open source revolution has changed the embedded software supply

chain. Now a worldwide ecosystem of developers contributes to Linux.

Semiconductor and processor vendors such as Intel, Texas

Instruments, Freescale, ARM, MIPS, and others have shifted strategies

and now actively innovate within the open source process to enhance

Linux. They do this to showcase their newest products running reference

Linux implementations.

Our new MSD approach simplifies the process of selecting and

transitioning to a Linux commercialization partner such as MontaVista.

	

Figure 2 - MVL6 aligns the embedded Linux supply chain to simplify the 		
transition to a Linux commercialization partner

What is a Market Specific Distribution?
Each MSD is a specialized set of Linux technology that includes a Linux

kernel, software libraries, and other applications that are collectively

referred to as a “distribution.” In the enterprise software world Linux

distributions are typically intended for general purpose usage. This isn’t

true however in the embedded market. Embedded software developers

face unique market demands and design challenges that drive the

adoption of specialized hardware platforms.

Each MontaVista Linux 6 MSD is designed to deliver the appropriate

Linux technology for the target hardware platform and the hardware’s

intended market application(s).

Feature Compatible with Semiconductor
Linux Technology
Most development projects begin as an in-house prototyping effort to

prove the technology assumptions and justify continued funding. During

this period, developers often begin their work using Linux technology

from their semiconductor partners, and often within an emulation

environment on prototype silicon reference platforms. These reference

MontaVista Linux 6

MontaVista Support and Maintenance

Software Development Kit

Market Specific Distribution

MontaVista
Zone

Content
Server

Integration
Platform

Cross-
Development

Toolchain

DecRocket
Eclipse IDE

Kernel Userland

Open Source Projects
(kernel.org, GNU, USAGI, Apache. etc.)

linux 6

Semiconductor Linux Technology

Device Manufacturers

3

MontaVista Linux 6 Technical Brief

implementations are typically well integrated with the hardware, but lack

many non-hardware specific features that may be required to deliver a

complete commercial product. Technical support and updates on these

reference implementations are often extended only to the top customers

of each new semiconductor product.

When it comes time to transition to an embedded Linux

commercialization partner MontaVista can help. The MontaVista Linux

6 Market Specific Distributions are engineered to be feature compatible

with the Linux technology produced by our semiconductor partners.

Developers selecting MontaVista should be able to easily transition their

applications and device drivers to MontaVista Linux. Each MSD uses the

same or a newer base kernel version in order to assure feature

compatibility.

Aligned with Your Design Needs
Modern System-on-chip (SOC) designs often involve a complex software

stack that extends far above the Linux kernel. The new MSD approach,

pioneered by MontaVista, ensures developers have the right software

(kernel, drivers, and userland) necessary to get the most out of their

selected hardware. In some cases this may mean testing with proprietary

audio/video codecs or delivering unique virtualization technologies that

exploit the hardware architecture. The MontaVista MSD design process

delivers, or is compatible with, key supporting technologies that are

typically excluded from a generic Linux but necessary to meet

commercial embedded requirements.

Pre-Integrated and Tested
Developer time spent integrating individual components, fixing

homegrown tools, or backporting features adversely impacts project

schedules, reduces developer productivity, and ultimately adds nothing

to differentiate the device. The MontaVista MSD approach selects and

integrates a broad array of popular open source software that most

projects require. Our quality assurance practices identify defects and fixes

them before they can impact project schedules.

MontaVista Software Development Kit
The MVL6 Software Development Kit (SDK) brings together all the

essential tools for successful embedded Linux product design that every

developer needs to work efficiently. These include:

	 The MontaVista Integration Platform (MVIP)•	

	 MontaVista DevRocket Integrated •	

	 Development Environment (IDE)

	 Complete toolchain that includes a set of GNU compilers and 		 •	

	 utilities, cross compilers for non-Linux runtime environments, 		

	 and on-target key system libraries

The MVL6 SDK ensures developers have a high quality, pre-integrated

set of development tools that can quickly be deployed to engineering

workstations and generate repeatable results.

SDK Host Support
Developers often must plan for a decade or more of engineering and

maintenance on a new product release. It is critical that the SDK used

in their design have broad host support and minimal dependencies

upon the host that may impair compatibility with future host operating

system versions. Since no company can anticipate what changes may be

introduced in future host operating systems, MontaVista has adhered to

available standards in order to best position the MVL6 SDK for future host

operating system compatibility.

The MontaVista Linux 6 SDK is engineered to only rely upon Linux

operating system components and APIs defined by the Linux Standard

Base (LSB) 3.1 standard1. While not officially supported, current and

future host operating systems compliant with the LSB 3.1 standard have

an improved likelihood of successful execution of the MontaVista Linux 6

SDK.

MontaVista Linux 6 is tested and officially supported on current versions

of Ubuntu, SuSE, and Red Hat Enterprise Linux.

Development Host Processor

Red Hat Enterprise Linux 5.3 X86, 32 and 64 bit

openSUSE 11.1 X86, 32 and 64 bit

Ubuntu Desktop 9.04 X86, 32 and 64 bit

Table 1 - MontaVista Linux 6 tested host distributions

Host Packages
The MontaVista Linux 6 SDK includes various host packages which are

compiled and execute on the development hosts listed above. Each of

these packages is intended to help support the execution of the SDK and

its primary functions: building software and images via the bitbake

command and execution of the GNU Compiler Collection utilities.

Target Packages
Target packages are provided for development via the delivery of multiple

collections. Each collection provides numerous recipes that can access

original source code from the MontaVista Zone, patches that modify the

original source code, and automated instructions to build and create the

resulting binaries and optional binary packages. Each recipe may create

many binary packages so that developers can easily add or remove

components they require in their final system images.

For more information about collections and recipes, see the MontaVista

Integration Platform section below.

1	 Consult the Linux Standard Base website for more information at
	 http://www.linuxfoundation.org/collaborate/workgroups/lsb

http://www.linuxfoundation.org/collaborate/workgroups/lsb

4

MontaVista Linux 6 Technical Brief

Cross and Native Development Toolchains
Developers preparing their own toolchains often fail to properly isolate

their host development system from their cross compilation tools. When

this occurs, the symptoms can be subtle and not detected until late in the

development cycle. Common issues include cross compilers that cannot

be run on alternate development hosts, or target software improperly 	

utilizing host kernel and library headers. Some developers even resort

to never upgrading their host development environment for fear that the

upgrade will break their commercial products. These typical problems

are easily avoided by using a high quality cross development toolchain,

like the one found in MVL6, which properly isolates the deployed target

software from the development environment.

MontaVista cross development toolchains can generate optimized code

for the following processor architectures2:

CPU Configuration

ARMv5T Little-Endian, ARM

ARMv6 Little-Endian, ARM, VFP

ARMv7-A Little-Endian, Thumb 2, VFP

MIPS32 Big-Endian, O32

MIPS32 Big-Endian, Soft Float, O32

MIPS32 Little-Endian, O32

MIPS32 Little-Endian, Soft Float, O32

MIPS64 Big-Endian, Soft Float, N32

MIPS64 Big-Endian, Soft Float, N64

MIPS64 Big-Endian, Hard Float, N32

MIPS64 Big-Endian, Hard Float, N64

MIPS64 Big-Endian, simple exec

Power 603 32-bit, Soft-Float

Power 603 32-bit, Hard-Float

Power e500mc 32-bit

Power e500mc 32-bit, bare metal

Power e500v2 32-bit

Power e600 32bit, Altivec

PentiumPro 32-bit

AMD64/Intel 64 64-bit

Table 2 - MontaVista toolchain optimizations

2	 Each MSD is shipped with the appropriate toolchain for the intended hardware 		
	 architecture. Not all MSDs support all available toolchain configurations.	

Non-Linux Runtime Environments
Select MSDs include support for non-Linux runtime environments. These

non-Linux runtime environments are typically used for dedicated

execution of small applications linked to a simple utility library that

provides basic services. The SDK for these MSDs includes an additional

toolchain that targets this environment and includes the required target C

library. The MontaVista Linux 6 SDK ensures that both the Linux and

non-Linux runtime environments utilize the same ABI format and a

common set of toolchain versions ensuring developer efficiency.

Command Line Debugging Using GDB
Developers often turn to familiar tools for addressing their most common

challenges. The GNU Project Debugger, commonly known as GDB, is the

command line source level debugging tool most commonly turned to by

developers targeting Linux. Table 2 shows the GDB usage for running the

debugger in particular modes of MVL6.

Mode Usage

Cross, Remote gdbserver, Live
application debug

Debugging of currently executing
userspace applications

Cross, Remote KGDB, Live kernel
debug

Debugging of currently executing core
kernel or kernel modules

Cross, Core-file, Post-mortem
application debug

Debugging of failed applications which
have created a core file

Native, ptrace, Live application debug On-target debugging of running
applications

Native, Core-file, Post-mortem
application debug

Debugging of failed applications which
have created a core file

Table 3 - GNU Project Debugger (GDB) modes and usages in MontaVista Linux 6

On-Target System Libraries and System
Size Reduction
Applications running on MontaVista Linux can utilize the core library

components provided by the SDK to support C and C++ development.

These include the GNU C and C++ libraries (glibc and libstdc++) plus

additional ancillary libraries typical for Linux systems. MontaVista utilizes a

specialized version of the GNU C and C++ libraries intended for

embedded systems. The “Embedded GLIBC” (EGLIBC)3 library has

several key advantages over other alternative size reduced C libraries:

	 EGLIBC is available on all architectures supported by GLIBC•	

	 EGLIBC supports both C and C++•	

	 EGLIBC is quality software based on decades of effort invested in 	•	

	 GLIBC

	 The MontaVista EGLIBC based SDK can be deployed in 54% of 	•	

	 the storage space typically required by standard GLIBC4

3 	For further information on EGLIBC consult the EGLIBC project website at http://
www.eglibc.org/home

4	 Based on MIPS architecture with all optional components disabled.

http://www.eglibc.org/home
http://www.eglibc.org/home

5

MontaVista Linux 6 Technical Brief

MontaVista is leading the market by providing the highest quality C and

C++ library code in a size-reduced format that does not impinge upon

application compatibility, reliability, or performance. EGLIBC has proven

compatibility with GLIBC as evidenced by the Debian project’s recent

adoption of EGLIBC as the default C/C++ library for the Debian Linux

distribution.

MontaVista Integration Platform
The MontaVista Integration Platform (MVIP), and included build system, is

the centerpiece of the SDK. The MVIP creates the original MSDs at install

and empowers developers to adapt MontaVista Linux to the needs of

their design. The MVIP enables source-driven customization of the entire

MontaVista Linux-based software stack and can assist developers with

the following features:

	 Based on de facto standards and an open source core•	

	 Always provided as original source + patches•	

	 Build and rebuild entire product lines with one tool•	

	 Structure customizations with collections•	

	 Build-compatible with thousands of community packages•	

	 Easily extensible and compatible with automated build•	

	 Easy to upgrade and manage change•	

	 Complements existing SCM systems•	

Let’s look at each of these areas in more detail.

Based on De Facto Standards and an
Open Source Core
At the heart of every embedded Linux development project, the build

system is relied upon daily. Therefore it is imperative the build system be

reliable and flexible in order to address unforeseen requirements. Build

systems are also inherently difficult to change once integrated into the

daily developer workflow and supporting automation. For such a critical

need, developers should only rely on tools with a proven heritage of

satisfying requirements similar to their own. Using these criteria,

MontaVista selected the BitBake5 utility as the core for the MontaVista

Integration Platform. The BitBake utility falls under the umbrella

OpenEmbedded6 (OE) project and has been a key enabling technology of

the OE project since 2004.

The BitBake-powered MVIP benefits developers by ensuring they do not

have to invest in learning a proprietary, vendor-specific technology that

may not be flexible enough to accommodate future requirements.

5	 Consult the “BitBake User’s Manual” at http://bitbake.berlios.de/manual/ for ad-
ditional technical details on BitBake	

6 	 See http://www.openembedded.net/ for more information on OpenEmbedded	

Always Original Source + Patches
MontaVista Linux 6 is a source-driven product that empowers

developers to maintain a stable software base and integrate changes

from open source, or local customizations, in order to deliver products to

market. The source code that constitutes MVL6 is always distributed to

the customer in the form of the original unmodified source code archive

from the upstream project plus any patches that might have been applied

in order to resolve defects or improve the software.

The MVIP can catalog all of the original source code and patches that

contribute to a customer design and prepare them for distribution. This

“software bill of materials” can be used to help comply with applicable

open source licenses by providing development engineers with a

complete record of all source code included in their product.

Build Your Entire Product Line with One Tool
Customers don’t build just one application or product. The challenges of

commercial product development require managing entire product lines

with multiple configurations and maintenance levels. Designing complex

Linux-based embedded systems could mean managing 10+ million lines

of source code. Developers must be able to ensure all changes to one

product configuration are inherited from that version to all of its

derivatives.

Simply dropping all of this code into an isolated Software

Configuration Management (aka Source Control Management)

system like CVS, ClearCase, or Subversion isn’t going to suffice because

the code will be updated periodically. The open source community is

continuously submitting changes, and partners that contribute to your

product development evolve their code as well.

Intermingling community, semiconductor partner, commercial Linux

vendor, and local development team patches into one development

stream inhibits progress and can result in confusion when components

are upgraded independently.

By integrating with your SCM system, tracking changes to community

code, and managing dependencies, the MVIP helps you manage this

constantly changing process, ensuring you have successful, repeatable

builds.

Structure Your Customizations with Collections
The MontaVista Integration Platform’s powerful task and collection7

powered system can use shared collections for common elements while

extending or replacing software elements that are unique to one offering

in the product line. The shared collections and inherited configuration

settings save valuable time across projects through reduced update and

maintenance overhead while improving build performance.

7	 See end Glossary for definitions to commonly used terms in MVL6	

http://bitbake.berlios.de/manual/
http://www.openembedded.net/

6

MontaVista Linux 6 Technical Brief

Collections ensure locally generated software contributions are isolated

from the evolving base of Linux software which together represents your

product design. Ultimately, collections save time and reduce repetitive

work by helping developers more easily structure and maintain source

code and customizations.

MontaVista MSDs are fabricated out of one or more collections. Each

collection can introduce new software packages, patches, or

configuration changes to the software stack build. Collections are

stacked on top of each other and each collection can replace software

packages from lower components.

Each MVL6 MSD is typically composed of the Foundation, Core, and one

MSD collection. Depending on the hardware capabilities other collections

may be included as well. Current collections include8:

Name Summary Recipes

Foundation The essential development host and target
recipes required for building and running a
small Linux system. The majority of these
support building the small set of target
packages provided

100

Core An expanded set of recipes for expanded
Linux system functionality

160

MSD Each MSD is delivered with a collection
named after the MSD containing the Linux
kernel. May also include other MSD specific
software not bundled with other collections

1

Audio Audio recording, playback, and manipulation 3

Bluetooth Support software for Bluetooth radio support 2

Graphics Base X.org support and programming
libraries

40

Wireless Wireless networking utilities 4

Table 4 - Example collections associated with MontaVista Linux 6

Build-Compatible with Thousands of
Community Packages
As mentioned, developers often must supplement the software

packages available from MontaVista with additional packages from the

open source community. With the MontaVista Integration Platform this

common practice is now simplified. The MVIP is compatible with the

recipe format used by the OpenEmbedded community. Developers can

now select from over 6000 packages via OpenEmbedded and add them

to their MVIP managed projects.9 Refer to Appendix B for an example of

an OpenEmbedded recipe.

8	 Specific MSD’s may require alternate or upgrade versions of the components listed. 	
	 Recipe counts are approximate and will change over time.	

9 	 MontaVista standard technical support applies only to packages distributed as part 	
	 of a MontaVista created collection in a MSD. Professional services are available to 	
	 support other available software packages.

		 	

Easily Extensible and Compatible with
Automated Builds
Engineering best-practices recommend continuous and automated build

systems be used for ensuring repeatable builds and monitoring software

quality. This time saving ability enables teams to leverage off-hours to run

systems 24 hours a day. Developers have full control of the MVIP directly

from the command line and they can introduce their own extensions by

utilizing the Python scripting language. This lets them create new tasks

that are automated and integrated into the build environments.

Easy to Upgrade and Manage Change
With developers enhancing and maintaining multiple commercial

products, efficient change management is an essential competency.

Simplistic techniques, like checking the Linux kernel source code into a

revision control system, cannot ensure the entire product line is

maintainable, reproducible, and can be enhanced without breaking other

builds. With the MVIP developers can:

	 Control the introduction of unplanned software updates by •	

	 “locking down” the build configuration

	 Generate test builds of new configurations that can be rolled 		 •	

	 back to known good configurations

	 Work cooperatively with your revision control system to manage 	•	

	 the entire software stack configuration, sources, and

	 customizations•	

Complements and Integrates with Your
Existing SCM System
Most companies have standardized on a corporate Software

Configuration Management (SCM) system for managing the evolution of

their software assets. The MVIP can be used with many SCM systems,

including popular commercial and open source options (i.e. CVS,

Subversion, and GIT), by simply controlling updates to your project

directory and archiving the original source code and metadata

collections. This clear methodology assures developers their software

build components are fully archived and their builds will be reproducible

in the future.

For larger teams that may use multiple SCM systems, the MVIP has the

flexibility to directly access more than one system in order to pull code

directly into the build. Each software package that contributes to the

build can be fetched from a defined SCM. For added convenience,

source code, binaries, and patches stored in compressed tarballs can

also be fetched via HTTP/HTTPS or from the local file system. The MVIP

is meant to seamlessly integrate into your existing development

environment, not disrupt it.

7

MontaVista Linux 6 Technical Brief

MontaVista DevRocket 6 IDE
MontaVista DevRocket 6 is the Integrated Development Environment

(IDE) that supports MontaVista Linux 6. DevRocket 6 delivers a set of

tools designed to streamline and automate common embedded Linux

development and analysis10 tasks. DevRocket 6 is based on the Eclipse

project and is delivered as a set of Eclipse plug-ins that increase

developer productivity by simplifying the complex tasks of embedded

Linux development. DevRocket 6 plug-ins can work within standard

Eclipse-based platforms based on the Ganymede release or with the

bundled Eclipse runtime delivered with MVL6.

New in MontaVista DevRocket 6: MVIP Projects
The new MontaVista Integration Platform provides developers with a

powerful new command-line based tool for customizing and compiling an

entire Linux based software stack. DevRocket 6 introduces a new project

type that exploits the power of the MVIP from the DevRocket graphical

user interface.

New in MontaVista DevRocket 6: MemTraq
Developers building Linux based products often struggle to find memory

leaks in deployed systems. Traditional techniques such as Valgrind or

mpatrol are limited because they require:

	 excessive CPU overhead•	

	 special runtime configurations that can’t be used in production 		•	

	 deployed systems

	 on-target storage for memory trace information•	

To address these limitations MontaVista created a new memory leak

analysis framework for MontaVista Linux 6 that integrates at the

lowest level of the userspace software stack. This new feature, known

as MemTraq, provides developers with visual depiction of live memory

leak information from running applications without disrupting operation of

the program under analysis. Unlike alternative solutions, MemTraq does

not require invasive binary patching of applications while running and

can operate without slowing down the application being analyzed. These

enhancements enable developers to gain efficiencies in tracking down

memory leaks in order to deliver devices to market with higher quality.

Target Management
DevRocket 6 utilizes the open source Eclipse target management project

called Remote Systems Explorer (RSE) that includes a full terminal

interface used to log in to and run commands on remote targets.

MontaVista created and contributed back to the community an SSH

implementation for RSE that allows target management on any

MontaVista Linux target using the industry standard SSH protocol to

10	 Debug and analysis tools are dependent upon kernel and userspace features imple	
	 mented in the Market Specific Distribution. Consult the MSD documentation to see 	
	 if the required features are implemented and supported.	

support a wide range of target services that otherwise would need to be

manually set up by the developer. These prerequisite services include file

and process management, remote terminal/shell, and fully automated

debugging and analysis.

Fully Automated Edit/Compile/Debug
MontaVista DevRocket accelerates time to market by delivering a

streamlined and fully automated edit/compile/debug cycle, thus

eliminating the multiple manual and error-prone steps involved in building

binaries, copying them to a target, launching the debug server, and

connecting back to the host. DevRocket 6 manages deploying

applications to the target and identifying the toolchain to construct the

correct debug chain for your project. Multiply these time-saving steps

across an entire team and it can really affect a products time-to-market.

Advanced Analysis
DevRocket 6 delivers intuitive, interactive, and accessible interfaces to

configure, manage, execute, and present results from best-of-breed

FOSS analysis tools. Significant productivity gains are realized when

solving common analysis questions such as:

	 How much memory is my system using and which components 	•	

	 are responsible for it?

	 Where are my system and application performance bottlenecks?•	

	 What is the source of my memory leak?•	

	 Which events have transpired on the system and why?•	

MontaVista Zone
The MontaVista Zone is an exclusive online support site available to all

current valid MontaVista subscribers.

The MontaVista Zone provides 24x7 access to:

	 Downloads for the latest software releases, updates, and up		 •	

	 grades

	 Online documentation •	

	 Frequently Asked Questions (FAQs) •	

	 Interactive online tutorials •	

	 Open and closed known problem reports (with the resolution for 	•	

	 each closed problem report)

	 RSS feed for notification of all patches/updates •	

	 Proactive security monitoring and patch distribution •	

	 Detailed list of all hosts and targets supported, by architecture •	

	 Detailed information that covers: •	

Development Environment 1.	

Kernel Information 2.	

Application Development 3.	

Integration/Deployment 4.	

8

MontaVista Linux 6 Technical Brief

	
Figure 4 – The MontaVista Zone provides a knowledge base and access to

software and updates

Integration with MontaVista Linux 6
With MontaVista Linux 6, the MontaVista Zone is now directly integrated

with the MontaVista Integration Platform. This new integration with the

MontaVista Zone Content Server enables developers to quickly access

software updates and archives without having to manually download

individual product components, thus saving time and increasing

efficiency. Using a single command, developers update their project or

local content mirrors to be current.

Source Mirroring
The open source projects that developers typically use to build

embedded Linux based devices distribute their source code via hundreds

of individual Web sites. Simply obtaining current copies of all of the

relevant source code can take a significant amount of time as each

website may be experiencing technical difficulties or have been

reorganized. Based on our own experience, it can take days to locate the

individual source locations and download all appropriate content,

assuming the sites still remain online and contain the appropriate links.

The MontaVista Zone Content Server provides a source code mirror of all

required source code components for building MontaVista Linux 6. This

source code is automatically accessed by the MontaVista

Integration platform as needed during the build process. The source

code is referenced in such a way that in the unlikely event the MontaVista

Zone is unavailable the code can be automatically retrieved from the

original community maintained website. The source mirror function of the

MontaVista Zone ensures customers can always access the source code

that contributed to their projects. The mirroring and fallback capabilities

ensure you will always be able to create repeatable builds.

Prebuilt Staging Packages
Building an entire Linux, based design from source can take hours.

Developers shouldn’t have to wait while unmodified components are built

from source again and again. The MontaVista Integration Platform has

extended the BitBake utility to generate and use prebuilt staging

packages. These staging packages hold all of the intermediary products

and outputs of a build in a form that can be distributed and shared.

Prebuilt staging packages are used to accelerate the initial usage of the

product and helps developers quickly get started without waiting for an

initial build from source. As developers start to configure their Linux

system the prebuilt staging packages are rebuilt incrementally to match

the new configuration. These new prebuilt staging packages can be

shared amongst the development team (via a network filesystem) to

ensure that developers never have to wait on redundant builds.

Local Mirroring and Proxy Support
Many companies have policies restricting direct access to the Internet

from software build machines. For those that do the MVIP and

MontaVista Zone have two capabilities that can help:

	•	 Proxy Support: The MVIP can access the MontaVista Zone via a 	

	 local web proxy and the HTTP protocol. For open source projects 	

	 that are available only as Git, CVS, or Subversion repositories the 	

	 MontaVista Zone contains snapshot tarballs of the repository

	•	 Local Mirrors: The MVIP can help you create and update your 	

	 own local mirrors of the MontaVista Zone Content Server that is 	

	 used by the MVIP. This will include a snapshot of all content 	

	 collections, source code, and prebuilt staging packages. The 		

	 local mirror can then be redistributed via a local network or

	 physical media

Customer Support, Quality Assurance,
and Training
Ideal project outcomes depend on more than just source code and

compilers. MontaVista has assembled a broad array of support,

maintenance, quality assurance practices, professional services, and

training offerings so developers can focus on product development.

Support and Maintenance
Throughout the development cycle it’s common for teams to burn cycles

fixing bugs and resolving issues. This doesn’t account for the number of

unknown bugs that surface after shipment. As project development ends,

customers often transition their efforts to a support and maintenance

team. This team is responsible for ensuring critical defects and security

risks are addressed on a timely basis.

9

MontaVista Linux 6 Technical Brief

Support and maintenance developers can use the MontaVista Zone to

inspect the most recent defect resolutions provided for their version of

MontaVista Linux and integrate these fixes. The MontaVista technical

support team is available to help development engineers integrate

maintenance changes into their projects.

Technical Support
MontaVista Technical Support provides customers with a complete range

of technical engineering support for MontaVista products. Our technical

support consultant engineers are highly qualified Linux developers, with

hundreds of years of combined experience in RTOS/Linux development,

implementation, and support.

MontaVista maintenance and support covers MVL6 components

including the kernel, cross compilers, debuggers, host and target

applications, and configuration, development and debugging tools.

Additional information on specific features supported is available on the

MontaVista Zone.

In its core support offerings, MontaVista provides multiple tiers of

technical support, designed to meet the individual needs of customers’

development teams. Each tier provides both email and telephone based

support to one or more named contacts in the license holder

organization. Specific tiered offerings include Standard, Premium,

Managed, or Dedicated support.

Long Term Maintenance
Customers who require support beyond the end of life of core

support can sign up for Long Term Maintenance. Long Term Maintenance

is designed for the needs of development teams in industries such as

Telecommunications, Transportation, Aerospace, and Defense, where it

is common to find embedded equipment with fielded lifetimes of 10 years

or more. Customers covered by Long Term Maintenance receive critical

and security bug fixes for a fixed version of the MontaVista Linux kernel,

OS platform, and development tools, enabling them to focus on other

important aspects of their projects. Long Term Maintenance packages

are renewable annually or on a fixed term basis.

Product Updates and Security Defect Resolution
The MontaVista Zone provides customers with a stream of product

updates that resolve identified software defects and security issues. The

product updates are generated based on customer feedback and shared

broadly with all customers that have purchased an applicable product.

Security defect resolutions typically result from the proactive

monitoring of security defects identified in the open source community

and by organizations that register defects with the Common

Vulnerabilities and Exposures (CVE) database.

Customers can monitor available defect resolutions via MontaVista Zone,

RSS, and direct email.

Product Update Model
MontaVista Linux 6 introduces a new product update model that

streamlines the update of designs and ensures customers have the most

up-to-date software available for their builds. Product updates are

distributed as collection updates directly to the MontaVista Integration

Platform or the customer’s local content mirror. Each update is

cumulative and includes all previous versions of each updated software

package. These cumulative updates can be safely distributed to

developers without disturbing locked-down product build configurations.

When developers wish to experiment with deploying updated software

components the version lock can be released and the new build will

contain the fully updated software stack. Developers can also individually

control product updates so that only updates deemed critical are applied

to their designs.

Quality Assurance Practices
Embedded Linux is MontaVista’s core expertise. Our quality assurance

program is built upon a decade of experience testing and improving upon

embedded Linux. The foundation of MontaVista quality assurance efforts

begins with our people and the procedures we have created. While test

automation is used extensively at MontaVista, experience has proven that

automated testing alone cannot identify all failure modes.

MontaVista quality assurance practices are performed in stages:

	•	 Functional testing: Performed by the expert engineer respon		

	 sible for the creation of a new feature or hardware port of

	 MontaVista Linux. This testing effort is focused on assuring the 		

	 correct functional implementation of the feature, establishing 		

	 performance expectations, and documenting typical and

	 edge-case operational modes for further testing

	•	 Automated build testing: Once the enhancement has been 		

	 propagated to the common source code repositories the new 		

	 feature is integrated with the automated build process. Automat	

	 ed building typically exposes undocumented dependencies upon 	

	 the primary engineer’s development environment. Removing 		

	 these undocumented dependencies is critical for assuring that 		

	 customers can reliably build their MontaVista Linux based prod		

	 ucts on any supported development host

	•	 Automated testing: MontaVista uses a custom developed, 		

	 automated test facility to install, configure, test, and analyze 		

	 the automated builds. This multi-site test facility utilizes over 350 	

	 host systems, target boards, and test equipment components. 	

	 Customized databases and reporting engines track test prog		

	 ress and collect results for inspection. Over the years MontaVista 	

	 has created a suite of test scenarios that utilize available com		

	 munity created tests and custom written test scripts

	

10

MontaVista Linux 6 Technical Brief

	 Manual testing:•	 Manual testing is still required for certain types 	

	 of features and general product quality issues. Developers test 		

	 I/O device compatibility, general performance, and operation 		

	 during applicable actions such as insertion and removal. Develop	

	 ers also perform installation testing and walk-through testing to 	

	 ensure that the product documentation matches the 			

	 actual product usage

By the time testing is completed, over 25,000 individual tests will have

been run on the kernel and toolchain. Currently, MontaVista has between

30 and 50 automated test suites and an additional 10 manual test suites

that go into improving MVL6 quality.

MontaVista’s custom test procedures have been designed to focus

attention on the areas most likely to identify latent defects not caught

during functional testing. Test procedures are customized for each MSD.

For a list of the types of test procedures run see Appendix A.

Training
MontaVista customer education provides world-class education and

training in developing intelligent device applications using MontaVista

Linux. With the skills acquired, development teams will be able to reduce

application development cycles while minimizing development risk.

Available training topics include:

	 Embedded Linux Foundation for Managers•	

	 System Development Jumpstart using MontaVista Linux•	

	 Device Drivers with MontaVista Linux•	

	 Custom On-Site Courses - MontaVista provides courses tuned to 	•	

	 customers’ requirements and present them at their facilities

Professional Services
MontaVista Professional Services is highly experienced with

operating system internals, have in-depth knowledge of the Linux kernel,

and can provide integration services across the full software stack,

including middleware and applications. MontaVista professional services

provide complete, end-to-end assistance to help Linux development

teams get their deployments to market rapidly and with less development

risk.

The Meld Embedded Linux Community
Meld is a free community designed for embedded developers using Linux

to build commercial products. Sponsored by MontaVista, community

members contribute their time and advice to help support their peers.

You can find Meld at http://meld.mvista.com.

Summary
MontaVista Linux 6 delivers a new approach to embedded Linux design. By providing source based, Market Specific Distributions, along with

the MontaVista Integration platform and the other SDK components, developers have new flexibility in their approach to embedded design.

For the first time developers can fully leverage the open source community and the semiconductor Linux technology, while still gaining all the

benefits of commercial embedded Linux, to deliver better products to market faster, and at a lower cost.

http://meld.mvista.com

BitBake - The MontaVista Integration Platform is built upon BitBake, a global build manager with the ability to resolve dependencies, 	

fetch content from the MontaVista Zone Content Server (or a mirror), and build that content into bootable images.

Classes can be used to define actions that are common for a large number of recipes. For instance, a class can be used to define the 	

common build actions for software based on the open source autotools build environment. Individual package recipes can simply

include a class by reference, and replace or extend the default actions only where necessary.

Collections - Groupings of related components. In general, the kernel and its components are grouped as one collection. User space 	

and custom components are grouped into several other collections and included or removed as needed.

Content Mirrors - A mirror is an organization’s local copy of one or more MSDs exactly as they appear on the MontaVista Zone

Content Server. Development projects can be created using the mirror instead of the Content Server, saving network bandwidth and

ensuring that all developers are working from a common base.

Dependencies can be used to declare that a given package requires the support of another package, either at build time or at run time. 	

The build process can ensure build time dependencies are built before the dependent packages, and that run time dependencies are 	

automatically included in any resulting images.

Images are recipes that define deployable outputs from the build. These outputs can include bootloader and kernel binaries, as well as 	

filesystem images containing system and user application software.

Market Specific Distribution (MSD) - A set of collections represents a Market-Specific Distribution (MSD), literally a distribution

geared 	toward a specific market. Each MSD is a specialized set of Linux technology including a Linux kernel, software libraries, and other

applications that are collectively referred to as a “distribution.” Each MSD is customized to deliver the appropriate Linux technology for

the target hardware platform and its intended market application.

MontaVista Software Development Kit (SDK) – The SDK consists of following tools necessary for successful embedded Linux

based product design developers need to work efficiently: The MontaVista Integration Platform, DevRocket integrated development

environment, and cross development toolchains.

MontaVista Integration Platform (MVIP) - Tools that access the MontaVista Zone Content Server and authenticate themselves to the 	

server. Authentication enables the server to display the content specifically available to the caller. The tools that drive this process and 	

manage the content are collectively called the MontaVista Integration Platform.

Recipes are BitBake script files that define how to build a particular target object. Actions can be defined for various stages of the build 	

process, including:

fetch: downloads the base source archives •	

patch: applies patches containing modifications to the base source archives•	

configure: configures build settings for a particular package•	

compile: compiles the software.•	

install: creates the desired installation structure for the built package contents•	

package: bundles the installed package contents into archives•	

clean: removes temporary files created by the build process•	

Tasks are recipes that are associated with no unique software; they contain only dependencies and sometimes build actions. Tasks can 	

be used to provide an easy way to include a complex set of functionality constructed from a number of different packages. By declaring 	

dependencies on specific packages through a task, users of the task are freed of having to know these details themselves.

MontaVista Zone Content Server – Part of the MontaVista Zone, the Content Server is the location from which users locate and 		

download all software content including MVL6 SDK, MSD(s), and any updates, security fixes and more.

Glossary of Terms and Definitions

Networking

IPv4•	

IPv6•	

IPSEC•	

IPSEC Hardware acceleration•	

IP Tables•	

VLAN•	

SCTP•	

PPP•	

Tools

MVIP system build•	

Linux Trace Toolkit•	

PRAMFS•	

KGDB over Ethernet•	

KGDB over serial•	

Multi-threaded Core Dump•	

OProfile•	

Powertop•	

Kernel Function Tracing•	

I/O

USB Host / HID•	

USB Host / Ethernet•	

USB Host / Mass Storage•	

USB Host / Serial•	

USB Full Speed•	

USB High Speed•	

Generic Keyboard & Mouse•	

Real time clock•	

Ethernet Networking•	

Wireless Networking•	

SD/MMC cards•	

Other hardware specific 		 •	

	 tests per MSD test plan

General System

Application spot checks•	

System stress testing•	

Linux Test Project•	

Prelinking•	

Memory Over commitment•	

Out-of-Memory Killer•	

Power Management

Basic power on/off control•	

Dynamic tick•	

Dynamic frequency and 	•	

	 voltage scaling

Deferrable Timers•	

Graphics and Sound

Xorg•	

DirectFB•	

HW graphics acceleration•	

ALSA•	

Real-time

Preemption modes•	

System stress under pre		 •	

	 emption modes

Priority Inheritance•	

Robust Futexes•	

Priority Queuing•	

Completely Fair Scheduler 		 •	

	 (CFS)

CPU Affinity•	

High resolution timer•	

Application Development

POSIX Test Suite•	

POSIX message queues•	

Booting

NFS root•	

Disk•	

Flash•	

Bootloader•	

Filesystems

EXT2/3•	

JFFS2•	

NFSv3•	

FAT•	

CRAMFS•	

RAMFS•	

SYSFS•	

TMPFS•	

Automount•	

Usage

Installation testing•	

Kernel build•	

Toolchain

GCC Test Suite•	

GDB Test Suite•	

Binutils/Linker/Assembler 		 •	

	 Test Suite

Plum Hall C/C++ Validation 		 •	

	 Suite

GLIBC and libstdc++ Test 		 •	

	 Suite

EEMBC Benchmarks•	

Appendix A – Sample List of Test Procedures

DESCRIPTION = “An Embeddable SQL Database Engine”

SECTION = “libs”

PRIORITY = “optional”

DEPENDS = “readline ncurses”

LICENSE = “PD”

SRC_URI = “http://www.sqlite.org/sqlite-${PV}.tar.gz \

	 	 file://libtool.patch;patch=1”

S = “${WORKDIR}/sqlite-${PV}”

inherit autotools pkgconfig

EXTRA_OECONF = “--disable-tcl --enable-shared \

		 --enable-threadsafe“

do_compile_prepend() {

		 oe_runmake sqlite3.h

		 install -m 0644 sqlite3.h ${STAGING_INCDIR}

}

do_stage() {

oe_libinstall -so libsqlite3 ${STAGING_LIBDIR}

install -m 0644 sqlite3.h ${STAGING_INCDIR}

}

PACKAGES = “libsqlite libsqlite-dev libsqlite-doc sqlite3 sqlite3-dbg”

FILES_sqlite3 = “${bindir}/*”

FILES_libsqlite = “${libdir}/*.so.*”

FILES_libsqlite-dev = “${libdir}/*.a ${libdir}/*.la ${libdir}/*.so \

	 	 ${libdir}/pkgconfig ${includedir}”

FILES_libsqlite-doc = “${docdir} ${mandir} ${infodir}”

AUTO_LIBNAME_PKGS = “libsqlite”

Appendix B – Sample Recipe

© 2009 MontaVista Software, Inc. All rights reserved.

Linux is a registered trademark of Linus Torvalds. MontaVista and DevRocket are trademarks or registered

trademarks of MontaVista Software, Inc. All other names mentioned are trademarks, registered trademarks or

service marks of their respective companies. MVL06TB0909

MontaVista Software, Inc.

2929 Patrick Henry Drive

Santa Clara, CA 95054

Tel: +1.408.572.8000

Fax: +1.408.572.8005

email: sales@mvista.com

www.mvista.com

http://www.mvista.com

