
BACHELOR THESIS, SPRING TERM 2013

SMARTOR
Dress Naked C++ Pointers to Smart Pointers

AUTHORS
André Fröhlich & Christian Mollekopf

SUPERVISOR
Prof. Peter Sommerlad





Bachelor Thesis

Smartor
Dress Naked C++ Pointers to Smart Pointers

André Fröhlich, Christian Mollekopf

Spring Term 2013

Supervised by Prof. Peter Sommerlad





Abstract

C++ allows the use of raw pointers as they exist in plain C. Unfor-
tunately, they can’t demonstrate the semantic role of their usage,
as they are a very low level concept. Furthermore, they often lead
to memory leaks and hard to understand source code.

Better alternatives in C++ are smart pointers. Smart pointers are a
group of wrappers around raw pointers. They provide a facility that
covers the memory management and adds semantic information on
what exactly the pointer is used for. The goal of our project is to
develop an Eclipse CDT plug-in assisting a developer in finding and
converting raw pointers into smart pointers. In addition, it serves as
an experiment on how the Scala language helps to write code that
manipulates an abstract syntax tree.

Our thesis contains an analysis of pointer roles and their possible
transformations into smart pointers. The plug-in assists a devel-
oper in detecting and transforming raw pointers into suitable smart
pointers by displaying a marker in the editor and offering appropri-
ate quick fixes. Using Scala resulted in cleaner and more readable
source code. Scala’s match statement provides a neat way to match
against types thus helps avoiding conditional statements for type
checking.

I





Management Summary

This thesis describes how error prone C++ naked pointers can be
automatically converted into C++ smart pointers as well as the
development of an Eclipse CDT plug-in assisting a developer on
this task. This chapter gives a brief overview of the motivation, the
goals and the results of this thesis.

Motivation

C++ supports the use of pointers. A pointer is a data type whose
value refers directly to another value stored elsewhere in the com-
puter memory using its address1. Every time a pointer is used, it
has a special role describing its usage. However, it is not possible to
demonstrate the role with a pointer since it is a low level concept.
This leads to hard to understand code.

In C++ better alternatives are smart pointers. The use of smart
pointers can demonstrate the role of the pointer and manage re-
sources. with these problems and provides a high lever concept. A
smart pointer is an abstract data type that simulates a pointer while
providing automatic memory management and other features2. Dif-
ferent type of smart pointers provides different semantic meanings
such as sharing a reference or transfering ownership.

1Wikipedia, Pointer (computer programming).
2Wikipedia, Smart pointer .

III



Goals

The goal of this thesis is to analyse the different pointer roles and
how they can be used to replace plain pointer by developing an
Eclipse plug-in for this task. Many of these transformations are
non-trivial and require a careful analysis. The main focus is the
anlysis of possible pointer roles and their relation with newer C++
smart pointers.

Usually Eclipse plug-ins are written in Java. For this thesis we
decided to examine how the Scala programming language helps to
write such a plug-in as it provides a build in pattern matching mech-
anism. Using Scala, we hoped to be able to write cleaner and less
cluttered code without the usual boiler plate Java requires. In ad-
dition we wanted to expand our knowledge with the functional pro-
grammming paradigm Scala uses.

Results

Our plug-in assists a developer to convert raw pointers into smart
pointers. It is able to find occurrences and mark them in the editor
using a marker. The plug-in also provides a quick fix for various
cases. Activating a quick fix transforms the code to get rid of the
raw pointer (1) and replaces it with the appropriate smart pointer
(2). The plug-in is also able to detect and remove local deallocation
code as it becomes invalid using a smart pointer.

1 int *x = new int{1};

2 delete x;

Listing 1: Before the transformation

1 int x = std:: unique_ptr{new x{1}};

Listing 2: After the transofrmation

IV



Conversion into a unique pointer

Further Work

Pointers to strings and arrays are special cases and would be an
interesting subject for further studies and a useful extension for the
plug-in. The heuristic to determine ownership can also be extended
and would be a valueable addition. Furthermore, pointer tracking
using symbolic execution could be greatly beneficial.

V





Declaration of Authorship

We declare that this thesis and the work presented in it was done
by our own and without any assistance, execept what was agreed
with the supervisor. All consulted sources are clearly mentioned and
cited correctly. No copyright-protected materials are unauthorizedly
used in this work.

Place and date André Fröhlich

Place and date Christian Mollekopf

VII





Contents

1. Introduction 5
1.1. Project Duration . . . . . . . . . . . . . . . . . . . . 5
1.2. Report Contents . . . . . . . . . . . . . . . . . . . . 5
1.3. Target Audience . . . . . . . . . . . . . . . . . . . . . 6

2. Objectives 7
2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Vision . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4. Agreement . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Analysis 13
3.1. Pointer Roles . . . . . . . . . . . . . . . . . . . . . . 13
3.2. Available Smart-Pointers . . . . . . . . . . . . . . . . 22

3.2.1. The purpose of smart pointers . . . . . . . . . 22
3.2.2. Available smart pointers and other intention

revealing constructs . . . . . . . . . . . . . . . 23
3.2.3. std::unique ptr . . . . . . . . . . . . . . . . . 24
3.2.4. std::shared ptr . . . . . . . . . . . . . . . . . 24
3.2.5. std::weak ptr . . . . . . . . . . . . . . . . . . 24
3.2.6. std::auto ptr (deprecated) . . . . . . . . . . . 25
3.2.7. non owning ptr . . . . . . . . . . . . . . . . . 25
3.2.8. optional . . . . . . . . . . . . . . . . . . . . . 25
3.2.9. boost smart pointers . . . . . . . . . . . . . . 26

3.3. Replacing the use of raw pointers . . . . . . . . . . . 27
3.3.1. Choosing the right smart pointer for a refac-

toring . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2. An approach for automatic determination of

a suitable smart pointer . . . . . . . . . . . . 30

1



Contents

3.4. Refactoring Cases . . . . . . . . . . . . . . . . . . . . 34

3.4.1. Format . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2. Scope and Limitations . . . . . . . . . . . . . 38

3.4.3. Starting points . . . . . . . . . . . . . . . . . 39

3.4.4. Default Cases . . . . . . . . . . . . . . . . . . 42

3.4.5. Local pointer: owning pointer . . . . . . . . . 43

3.4.6. Local pointer: non-owning . . . . . . . . . . . 47

3.4.7. Function parameter: owning pointer . . . . . 50

3.4.8. Function parameter: Non-owning pointer . . . 53

3.4.9. Return value: owning pointer . . . . . . . . . 55

3.4.10. Return value: non-owning pointer . . . . . . . 57

3.4.11. Heuristic to determine ownership: local delete 59

3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 61

4. Implementation 63
4.1. Checker . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1. Control Flow . . . . . . . . . . . . . . . . . . 65

4.1.2. Pattern matching . . . . . . . . . . . . . . . . 67

4.2. Quickfix . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1. Architecture . . . . . . . . . . . . . . . . . . . 70

4.2.2. Control Flow . . . . . . . . . . . . . . . . . . 72

4.2.3. Includes . . . . . . . . . . . . . . . . . . . . . 74

4.3. Checker-Quickfix association . . . . . . . . . . . . . . 74

4.4. Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5. Review . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6. Scala . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6.1. Seamless integration with Java . . . . . . . . . 77

4.6.2. val/var . . . . . . . . . . . . . . . . . . . . . . 77

4.6.3. Pattern Matching . . . . . . . . . . . . . . . . 78

4.6.4. Exception handling . . . . . . . . . . . . . . . 78

4.6.5. Option . . . . . . . . . . . . . . . . . . . . . . 79

4.6.6. foreach . . . . . . . . . . . . . . . . . . . . . . 79

4.6.7. Concise notation . . . . . . . . . . . . . . . . 79

4.6.8. Java Conversions . . . . . . . . . . . . . . . . 80

4.6.9. Conclusion . . . . . . . . . . . . . . . . . . . . 81

2



Contents

5. Conclusion 83
5.1. Accomplishments . . . . . . . . . . . . . . . . . . . . 83
5.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . 84
5.3. Personal Statements . . . . . . . . . . . . . . . . . . 84

5.3.1. André Fröhlich . . . . . . . . . . . . . . . . . 84
5.3.2. Christian Mollekopf . . . . . . . . . . . . . . . 86

A. Organisation 89
A.1. Approach . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2. Project Plan . . . . . . . . . . . . . . . . . . . . . . . 90

A.2.1. Intended Plan . . . . . . . . . . . . . . . . . . 90
A.2.2. Actual Plan . . . . . . . . . . . . . . . . . . . 91

A.3. Time Report . . . . . . . . . . . . . . . . . . . . . . . 92

B. Environment 93
B.1. Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.2. Eclipse Plug-ins . . . . . . . . . . . . . . . . . . . . . 94

B.2.1. Installation . . . . . . . . . . . . . . . . . . . 94
B.2.2. Eclipse Plug-in Development Environment . . 95
B.2.3. Scala IDE for Eclipse . . . . . . . . . . . . . . 95
B.2.4. C/C++ Development Tools . . . . . . . . . . 95
B.2.5. Jeeeyul’s Eclipse Themes - Chrome . . . . . . 95
B.2.6. IFS CDT Testing . . . . . . . . . . . . . . . . 96
B.2.7. Issues . . . . . . . . . . . . . . . . . . . . . . 96
B.2.8. Target File . . . . . . . . . . . . . . . . . . . 98

B.3. Eclipse Static Code Analysis . . . . . . . . . . . . . . 98
B.4. Eclipse Abstract Syntax Tree . . . . . . . . . . . . . 99
B.5. Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.6. Build System and Continous Integration . . . . . . . 102

B.6.1. Tycho . . . . . . . . . . . . . . . . . . . . . . 103
B.6.2. Documentation . . . . . . . . . . . . . . . . . 104
B.6.3. Jenkins . . . . . . . . . . . . . . . . . . . . . 104

C. Developer Guide 105
C.1. Java, Scala and other tools . . . . . . . . . . . . . . . 105
C.2. Installing the Eclipse IDE . . . . . . . . . . . . . . . 105
C.3. Plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . 106

3



Contents

C.4. Importing the project . . . . . . . . . . . . . . . . . . 106
C.5. Source overview . . . . . . . . . . . . . . . . . . . . . 106

C.5.1. Manifest and plugin.xml . . . . . . . . . . . . 107
C.5.2. Target file . . . . . . . . . . . . . . . . . . . . 107
C.5.3. Markers . . . . . . . . . . . . . . . . . . . . . 107
C.5.4. Quick fixes . . . . . . . . . . . . . . . . . . . . 108

D. User Manual 109
D.1. Installation . . . . . . . . . . . . . . . . . . . . . . . 109
D.2. Guide . . . . . . . . . . . . . . . . . . . . . . . . . . 109
D.3. Known Issues . . . . . . . . . . . . . . . . . . . . . . 111

E. Nomenclature 113

F. Bibliography 117

4



1. Introduction

At the University of Applied Sciences Rapperswil a bachelor thesis
is usually done by groups of two students. This chapter covers the
project duration, the contents of this report and its target audi-
ence.

1.1. Project Duration

This project started with the beginning of the spring term 2013 on
February 18th. The kickoff meeting was on February 20th.

This report has to be handed in by June 14th 12:00. On the same
day the exhibition of the bachelor thesis takes place.

The date for the final demonstration of this thesis is set on June
24th 2013.

1.2. Report Contents

This report starts with the mandatory abstract and management
summary chapters. After this introduction the objectives are de-
scribed in a separate chapter. The analysis chapter shows our in-
vestigation on pointer roles and their possible transformation into
smart pointers. Implementation details and notes are described in
the following chapter. This reports ends with a chapter about our
conclusion and personal view on this project. The appendix con-
tains an overview over the environment the plug-in was developed

5



1. Introduction

in. It also contains a brief introduction to developers interested in
picking up this project for further work. A user manual shows how
the plug-in can be installed and used. The appendix ends with the
nomenclature and bibliography.

1.3. Target Audience

Readers are expected to have the knowledge a student of the Uni-
versity of Applied Sciences Rapperswil usually has after study for
four semesters.

Developers interested in working with our code must know some
basic Scala concepts. This report does not contain an introduction
to the Scala language. For a quick introduction we recommend “A
Tour of Scala”1 found on the Scala website. For a deeper introduc-
tion, we recommend “Programming in Scala”2 by Martin Odersky,
Lex Spoon and Bill Venners.

1scala-lang.org, A Tour of Scala.
2Odersky, Spoon, and Venners, Programming in Scala.

6



2. Objectives

2.1. Motivation

Using raw pointers in C++ is complex, error prone, and results of-
ten in hard to understand code. Manual resource management can
become very complex as the number of code-path’s grows, and con-
sequently becomes a maintenance burden as even minor changes to
the code could potentially break the resource management. Further,
pointers can have various semantics, including C-implementation of
a reference, strings, arrays, optional return values or arguments,
ownership transfer, etc. Unfortunately there are only few tools for
the developer to communicate the intended meaning. This results
in unclear responisbilities in programming interfaces which can ul-
timately lead to dangling pointers, double deletes, memory leaks
and alike. Smart-pointers address those problems, by giving the
pointer a type, expressing the meaning, and by moving the resource-
management to the library. This leads to more expressive code.

While smart-pointers have been long existing in various third-
party libraries, C++11 now standardized std::unique_ptr and
std::shared_ptr, removing the last barrier from widespread use of
smart-pointers.

2.2. Vision

The goal of this project is to analyse in which cases raw point-
ers can be replaced with which smart-pointer and to develop an
Eclipse CDT plug-in, that helps developers to spot existing uses of

7



2. Objectives

raw pointers and fix them with a corresponding smart-pointer. As
many of those transformations are non-trivial, the goal is to iden-
tify possible transformations and to implement only a subset deemed
feasible.

The plugin should for instance handle the following cases:

• raw pointers passed as arguments, where the function doesn’t
take ownership of the resource, should be converted to a con-
figurable smart-pointer ( non_owning_ptr ), which is likely to
be standardized in upcoming versions of the C++ standard.

• raw pointers passed as arguments, where the function does
take ownership of the resource, should be converted to std::

unique_ptr .

• char * should be converted to std::string, but only if the
pointer owns the resource.

• non-owning char * should be converted to a configurable non-
owning string reference type ( string_ref ), which will also be
standardized in a future C++ standard version.

A further case which has to be researched is the usage of pointer-
based arrays where the operators new[] / delete[] are used, as
opposed to the single object new / delete .

C++11 provides several new memory management features. Move
semantics have been introduced, as alternative to passing by ref-
erence respectively copying. This new feature enables replacing
many uses of references and pointers, where move semantics would
have been required. Among the new smart-pointers one can find
std::shared_ptr, which is a traditional reference counted, shared
pointer. std::unique_ptr provides a move-only pointer replacing
std::auto_ptr, which i.e. tried to emulate move semantics using
the pre-C++11 tools, resulting in somewhat unexpected/awkward
behaviour. Upcoming C++ versions will enhance this further by
providing pointers for non-owning pointers and non-owning string
references ( string_ref ), as a replacement for char* .

8



2.3. Focus

Since third party libraries provide similar pointers, i.e. boost, the
used smart-pointer types should be configurable as far as possible.
This includes factory functions such as make_shared which would
have to be adapted accordingly. Further the header files for smart-
pointer definitions must be managed so the conversion can be exe-
cuted fully automated.

2.3. Focus

The plug-in will be developed in Scala, a programming language
with functional-programming aspects, that runs in the Java-VM and
supports mixing Java and Scala code. This is required for working
with the Eclipse Plug-in Framework. Scala was chosen for educa-
tional purposes and it’s pattern-matching capabilities which could
become useful for processing the abstract syntax tree.

The project will be developed using Maven as buildsystem and the
development will be supported by a bugtracker and a fully auto-
mated buildserver for continuous integration.

A project report with management summary and abstract will be
written to document the project. Further deliverables will be pro-
vided according to the HSR bachelor thesis requirements.

Example

The following example shows a function that takes a raw pointer as
parameter x, modifies x’s pointee using a member-function call, and
returns a heap allocated resource of type T2.

1 T2* f(T1* const x)

2 {

3 if (x)

4 x->set (1);

5 return new T2();

6 }

9



2. Objectives

x is a non-owning reference to a object, since f contains no delete and
x’s pointee is modified, so it should be converted to a non owning ptr
to make the semantics clear. By using non owning ptr we make ex-
plicitly clear that f doesn’t take ownership and that it may modify
x’s pointee. Since x may be null, we also can’t convert x to a ref-
erence. The return value could be either a std::unique_ptr, or a
std::shared_ptr . Which one is suitable is not visible without more
context, but for this example we’ll assume std::shared_ptr is what
we want. The converted result would therefore look like this:

1 std:: shared_ptr <T2 > f(non_owning_ptr <T1 >

const x)

2 {

3 if (x)

4 x->set (1);

5 return make_shared <T2 >();

6 }

In the result the semantics and responsibilities of f and the caller
are much clearer. It’s clear that x may be modified by f and that
x is still valid after the call to f. It is also clear that the caller of
f owns the returned object, and the potential memory leak (if the
caller doesn’t handle the return value), is fixed.

10



2.4. Agreement

2.4. Agreement

The following parties confirm the validity of the tasks described in
this chapter.

Place and date Prof. Peter Sommerlad

Place and date André Fröhlich

Place and date Christian Mollekopf

11





3. Analysis

This chapter analyses available smart pointers and their applicabil-
ity to various scenarios where raw pointers may be used.

The first section introduces the problem domain by analyzing the
various roles a pointer can take and how a raw pointer could be
better represented using smart pointers and other language con-
structs.

The second section presents a set of common smart pointers that
are currently available, and explains their typical usage.

The third section analyses how suitable smart pointers for a raw
pointer could be chosen and describes an approach to automatically
select a smart pointer based on the ownership of the raw pointer.

Finally, the fourth section analyses a set of concrete code examples
and how they could be refactored. This analysis is then meant to
serve as foundation for the implementation.

3.1. Pointer Roles

Considering the following pointer declaration:

1 T *p;

A raw pointer can have a variety of roles, but gives no indication
which roles the author of the code intended for it. It is thus left
to the reader of the code to figure out what the author’s intentions
were. Without using smart pointers to convey the original intention,
all that is left to help the reader are comments in the code and

13



3. Analysis

coding conventions, which are both highly error prone as they are
up to interpretation and not checkable by the compiler.

A raw pointer declaration can have any role of the following list, or
a combination thereof:

• reference

• reassignable reference

• handle to dynamically allocated memory

• optional

• error code

• array

• string

Note how the pointer declaration above doesn’t reveal anything
about the developers intentions or the roles the pointer could have,
and thus all semantics are hidden in the declarations context (com-
ments, how the pointer is used, common patterns, ...).

The following sections explain each of the mentioned roles, where
they typically appear, on how they could be represented in a way
that conveys the semantics using smart pointers and other intention
revealing language constructs such as references.

For a description of the used smart pointers in this section see 3.2
on page 22;

Reference

1 void foo(int *ref) {

2 int i = *ref;

3 }

14



3.1. Pointer Roles

A pointer can be the C-implementation of the C++ reference. A
reference is by definition non-owning but can be const or non-const.
Further can the reference refer to stack or heap allocated data struc-
tures. A reference must be initialized and may not be reassigned (the
referenced value can be reassigned of course).

References typically occur as return values, function parameters and
local identifiers.

C++ offers a dedicated operator for references:

1 void foo(int &ref) {

2 int i = ref;

3 }

By using the reference operator it is clear that ref can not be NULL,
doesn’t own the referenced resource and that the reference can not
be reassigned.

Note that a reference can become dangling if the reference lives
longer than the resource it is pointing to:

1 int &getLocalVariable () {

2 int x;

3 return x;

4 }

While this is an obvious example to illustrate the problem, valid
scenarios exist where a reference can become dangling. However, in
such cases the use of a C++-Reference is not suitable, and other
options such as a std::weak_ptr should be considered.

Reassignable reference

Since references cannot be reassigned with a new pointee, and must
be initialized immediately, it is not always possible to use a C++
reference in place of a raw pointer when the pointer has the role of
a reference.

1 int *ref = getRef ();

2 for(int i = 0; i < 3; i++) {

3 if (condition(i))

15



3. Analysis

4 ref = getRef(i);

5 }

6 *ref = getNewValue ();

ref is initialized with the reference to different values based on
condition(). Because references must be initialized immediately,
and may not be assigned a new value later on, it is not possible to
simply replace the use of the pointer with a reference.

In such cases non_owning_ptr may be better suited.

1 non_owning_ptr <int> ref = getRef ();

2 for(int i = 0; i < 3; i++) {

3 if (condition(i))

4 ref = getRef(i);

5 }

6 *ref = getNewValue ();

non_owning_ptr behaves exactly like a raw pointer, but clearly shows
the intent that ref is a non-owning reference.

Handle to dynamically allocated memory

A raw pointer may represent a handle with ownership to dynami-
cally allocated memory. Having ownership means that the holder
of the handle is responsible to release the allocated memory before
disposing of the handle.

Typical examples are factory and disposal functions:

1 int *create () {

2 return new int(3);

3 }

4 void dispose(int *p) {

5 delete p;

6 }

The raw pointers returned from create() and passed to dispose(),
own the resource but give no indication that they do.

To better communicate the semantics of the pointer, std::

unique_ptr and std::shared_ptr are available, where std::unique_ptr

16



3.1. Pointer Roles

holds sole ownership of the resource and std::shared_ptr shared
ownership (for further information about the smart pointers see 3.2
on page 22).

1 std:: unique_ptr <int> create () {

2 return std:: unique_ptr <int >(new int());

3 }

By returning a std::unique_ptr, it is clear that the caller gets the
ownership of the resource, and that the resource is not meant to
be shared. create() can return a std::unique_ptr using move
semantics.

1 std:: shared_ptr <int> create () {

2 return std:: make_shared <int >(3);

3 }

By returning a std::shared_ptr, it is clear that the caller gets the
ownership of the resource, and that the resource is meant to be
shared.

Both variants ensure by returning a resource managing smart
pointer that the resource is not leaked.

std::unique_ptr and std::shared_ptr typically occur as return val-
ues, function parameters or local variables.

Note that these smart pointers not only communicate the intent of
the developer, but also take over the responsibility for the resource
management by ensuring that the resource is deleted when no longer
required.

Optional

Raw pointers can be used for optional values that are not guaranteed
to be initialized. The convention is typically that if the pointer is
NULL, the value is not available.

17



3. Analysis

1 void foo(int *value) {

2 if (value) {

3 addToList (*value);

4 }

5 }

Because the value can be NULL, it can be used as optional value.
Note that this implementation passes value by reference.

Optionals typically occur as return values or function parameters.

boost::optional provides an explicit way to mark a value as op-
tional.

1 void foo(boost::optional <int> value) {

2 if (value) {

3 int i = *value;

4 }

5 }

boost::optional indicates that value is indeed optional. Note that
this implementation passes value by value.

Since smart pointers can be empty, optional can be implemented
using smart pointers:

1 void foo(non_owning_ptr <int> value) {

2 if (value) {

3 int i = *value;

4 }

5 }

An optional reference or value can be represented by a non_owning_ptr

. value can be empty, indicating that the value is not available.
Note that this notation doesn’t give any explicit information that
value may be empty. Also note that this example passes value by
reference like the first example.

18



3.1. Pointer Roles

Error Code

Since an integer can be assigned to a pointer variable, the pointer
can be misused to transport other information instead of the address
of a pointee. Besides optional values, this property is typically used
for return values where pointers are mixed with error codes. In its
simplest variation the only error code is NULL, where NULL would
be more appropriately represented by nullptr in C++11.

1 int *foo() {

2 int i = getValue ();

3 if (error ()) {

4 return 0;

5 }

6 return i;

7 }

While this example looks similar to an optional return value, its se-
mantics are slightly different. An optional return value implies that
it is entierly valid that no value is returned, where an error code,
such as nullptr, implies that the call to foo() should normally suc-
ceed, but may fail. In such cases an exception based error handling
may be better suited, clearly distinguishing the normal operation
and the error handling code-path.

More advanced versions of such error codes may transport different
error codes using the pointer variable:

1 #define ERROR_FOO_FAILED -1

2 #define ERROR_FOO2_FAILED -2

3 int *foo() {

4 int i = getValue ();

5 if (error ()) {

6 return ERROR_FOO_FAILED;

7 }

8 return i;

9 }

As this usage is a clear misuse of pointers, this pointer role is not
considered further by this analysis.

19



3. Analysis

Array

C++ arrays degrade to raw pointers when assigned to a raw pointer
variable e.g. when passed to a function with a raw pointer parame-
ter. Hence a raw pointer can have the role of an array.

1 int getFirst(int *array) {

2 return array [0];

3 }

An array degrades to a pointer because the identifier of an array
is equal to a pointer pointing to the first element of the array (i.e.
array == &(array[0])). Note however that array contains no indica-
tion that it is an array, and further doesn’t convey any information
about its size. It is thus neither possible for the function to check
for an out of bounds access nor if array even is an array at all.

To at least pass along the information that array is an array, the
following notation should be preferred:

1 int getFirst(int array []) {

2 return array [0];

3 }

When dynamically allocated, arrays must be allocated using the
new[] operator, and consequently be deleted using the delete[]

operator. Failing to do so, and using the normal delete operator
would lead to only the first element of the array being deleted and
in leaking the rest of the array.

Arrays are a special case of a raw pointer, imposing the same prob-
lems as pointers to other resources, but with special allocation and
deallocation operators. The solutions are thus largely orthogonal.

std::unique_ptr already supports array operators ( new[]/ delete[]),
and std::shared_ptr may support them in future versions (see also
Section 3.2 on page 22). Additionally boost::shared_array exists.

As plain arrays are a very low level concept (essentially pointer
arithmetics) they should not normally be used. Instead, the C++

20



3.1. Pointer Roles

Standard Library1 provides containers such as std::vector and std

::list, which are in most cases preferred. The containers can be
used in conjunction with one of the usual smart pointers when allo-
cated on the heap.

Because smart pointer refactorings for arrays would be largely an
orthogonal effort to the refactorings for other resources, and because
the use of plain arrays in most modern C++ code is not recommeded
anyways, arrays are not considered further by this analysis.

String

Strings are a special case of vectors and as such also degrade to raw
pointers when passed to a raw pointer variable.

1 void print(char *string) {

2 std::cout << string;

3 }

string doesn’t convey any information if it is a pointer to a single
char, an array of char’s or indeed an array of chars representing a
string.

The Standard C++ Library thus provides std::string as dedicated
container for strings.

1 void print(std:: string &string) {

2 std::cout << string;

3 }

By using the std::string class it is immediately clear that string

represents a string, print() doesn’t have to delete the object, and
the strings size is available within the object.

Just like a normal reference can a char pointer also be a string refer-
ence. const string references are typically used to refer to literals.

1 char const *p = "literal";

1Wikipedia, C++ Standard Library .

21



3. Analysis

Such a literal could be wrapped using the not yet standardized
string_view2, which is a non-owning reference to a string.

Although it is not yet possible replace the use of char pointers with
a suitable string class in all cases, it is still often possible, and future
enhancements to the standard should resolve the missing parts.

String objects can be used with the usual smart pointers when al-
located on the heap.

Because smart pointer refactorings for strings would be largely an
orthogonal effort to the refactorings for other resources, and because
the use of C-Style strings in modern C++ code is not recommeded
anyways, strings are not considered further by this analysis.

3.2. Available Smart-Pointers

Various smart pointers are available to express the semantics a raw
pointer can have (see table 3.1 on page 13), and to help with the
resource management. This section provides an overview of available
smart pointers and their semantics.

3.2.1. The purpose of smart pointers

Smart pointers have two primary purposes.

First, the smart pointers that take ownership of a resource also help
with the memory management. Two main concepts exist, the sole
ownership of a resource, and the shared ownership of a resource.
Sole ownership means only one smart pointer ever holds ownership
of the resource, and is thus responsible to release the resource before
the smart pointer is destroyed. Shared ownership means multiple
smart pointers share the ownership of the resource, so the resource
is only released once the last smart pointer looses it’s reference to
it.

2Yasskin, N3609: string view: a non-owning reference to a string, revision 3 .

22



3.2. Available Smart-Pointers

Second, they provide a vocabulary for the developer to express his
intents in a way that is not only understandable by humans, but
also a compiler (and other automated tools). This makes it easier
for a developer who has to understand a piece of code, as he doesn’t
have to guess the roles a pointer has based on how the pointer is
used. It also enables automated tools to check if the intended usage
is not violated.

3.2.2. Available smart pointers and other intention
revealing constructs

The following smart pointers have been considered in this analysis.
optional is not really a smart pointer, but serves a similar purpose
in terms of an intention revealing vocabulary. It was thus added for
the sake of completeness.

Smart Pointer Boost Smart Pointer Description
std::unique ptr boost::scoped ptr takes sole ownership, manages life-

time
std::shared ptr boost::shared ptr shared ownership, manages lifetime
std::weak ptr boost::weak ptr non-owning reference to object man-

aged by shared ptr
std::auto ptr - predecessor of std::unique ptr
non owning ptr - a non-owning reference
optional boost::optional optional value, not a smart pointer
- boost::scoped array scoped pointer for arrays
- boost::shared array shared pointer for arrays
- boost::intrusive ptr shared pointer with externalized ref-

erence count

Table 3.1.: Available Smart Pointers

23



3. Analysis

3.2.3. std::unique ptr

std::unique_ptr takes sole ownership of a resource, and deletes it
upon destruction. It is therefore non-copyable, but supports move
semantics and can thus be used in containers supporting move se-
mantics (e.g. std::vector). Currently a new-expression is still
required to create a resource that is wrapped by a std::unique_ptr,
but a make_unique similar to make_shared has already been pro-
posed3 and will likely be included in a future version of the C++
standard4. For dynamically allocated arrays std::unique_ptr sup-
ports std::unique_ptr<T[]> instead of std::unique_ptr<T>.

3.2.4. std::shared ptr

std::shared_ptr takes shared ownership of a resource, employing a
reference count, and deletes the resource once it is no longer ref-
erenced. It can therefore be freely copied, while ensuring that no
memory leak occurs. std::shared_ptr should be created using std

::make_shared. Support for dynamically allocated arrays has been
discussed5, but not yet proposed for the standard.

3.2.5. std::weak ptr

std::weak_ptr holds a non-owning reference to an object managed
by a std::shared_ptr. It doesn’t increase the reference count and
thus doesn’t prevent the resource from being deleted, but tracks the
deletion of the object so it doesn’t result in a dangling pointer. To
access the referenced object the std::weak_ptr must be converted
to a std::shared_ptr first to assume temporary ownership.

3Lavavej, N3588: make unique.
4Sutter, Trip Report: ISO C++ Spring 2013 Meeting .
5Hinnant, Why isn’t there a std::shared_ptr<T[]> specialisation?

24



3.2. Available Smart-Pointers

3.2.6. std::auto ptr (deprecated)

std::auto_ptr takes sole ownership of a resource, and deletes it upon
destruction. Copying an std::auto_ptr transfers the ownership to
the target, resulting in unusual copy semantics. Due to the unusual
copy semantics and the lack of move semantics, std::auto_ptr may
not be placed in standard containers. As of C++11 std::auto_ptr

is deprecated and replaced by std::unique_ptr6.

3.2.7. non owning ptr

non_owning_ptr holds a non-owning reference to an object. It be-
haves exactly like a raw pointer and doesn’t provide any memory
management facilities. It’s sole purpose is to express that the pointer
doesn’t hold ownership of the resource. non_owning_ptr should be
created using make_nonowning. The pointer is drafted in N35147 as
exempt_ptr with the associated function make_exempt.

3.2.8. optional

optional allows to transport an optional payload (value, reference,
...). The payload is accessed using the familiar operators from point-
ers, * to dereference it and -> to access a member of the contained
object directly. optional is not yet standardized, but should be
part of a future version of the C++ standard8.

6Toit, N3337 Working Draft, Standard for Programming Language C++: The
class template auto ptr is deprecated. Note: [ The class template unique ptr
20.7.1 provides a better solution. -end note ] .

7Brown, N3514: A Proposal for the World’s Dumbest Smart Pointer .
8Sutter, Trip Report: ISO C++ Spring 2013 Meeting .

25



3. Analysis

3.2.9. boost smart pointers

Boost is a widely used set of libraries that provide its own set
of smart pointers. Some standard smart pointers, such as std::

shared_ptr came out of boost initially9.

boost::scoped ptr

boost::scoped_ptr takes sole ownership of a resource, and deletes
it upon destruction. It is non copyable and doesn’t support move
semantics. Similar to std::unique_ptr<T>.

boost::scoped array

boost::scoped_array takes sole ownership of a dynamically allocated
array, and deletes it upon destruction. It is non copyable and doesn’t
support move semantics. Similar to std::unique_ptr<T[]>.

boost::shared ptr

boost::shared_ptr takes shared ownership of a resource, employing
a reference count, and deletes the resource once it is no longer ref-
erenced. Similar to std::shared_ptr<T>.

boost::shared array

boost::shared_array takes shared ownership of a dynamically allo-
cated array, employing a reference count, and deletes it once it is no
longer referenced.

9Boost, boost::shared ptr class template.

26



3.3. Replacing the use of raw pointers

boost::weak ptr

boost::weak_ptr holds a non-owning reference to an object managed
by a boost::shared_ptr. Similar to std::weak_ptr.

boost::intrusive ptr

boost::intrusive_ptr behaves like a boost::shared_ptr but external-
izes the reference count. This decreases usability, but can be useful if
the reference count is for instance embedded in the managed object.
boost::shared_ptr should be preferred whenever possible.

boost::optional

See optional.

3.3. Replacing the use of raw pointers

To replace a raw pointer with a suitable smart pointer or values and
references it is first necessary to analyze which roles a raw pointer
takes. There is no single correct solution for a specific raw pointer,
as each pointer can take multiple roles, and many roles can be rep-
resented in multiple ways.

Considering the following use of a raw pointer:

1 void set(int *i) {

2 if (i) {

3 *i = 3;

4 }

5 }

Because the referenced value holds no const modifier, and a value is
assigned, the pointer represents a reference. The if-clause suggests
that the parameter is optional, it is not clear however if the pointer

27



3. Analysis

is truly allowed to be NULL, or if this is just a safety measurement
for errors.

Thus, this example could for instance represent an optional refer-
ence:

1 void set(boost::optional <int&>() i) {

2 if (i) {

3 *i = 3;

4 }

5 }

In this representation the developer expressed that the function pa-
rameter is optional, and if available is a reference to an integer.

The same thing could also be expressed, though less explicitly, using
non_owning_ptr as reference:

1 void set(boost::optional <const non_owning_ptr

<int> > i) {

2 if (i) {

3 **i = 3;

4 }

5 }

The non_owning_ptr still makes clear that i is a non-owning refer-
ence, but is slightly less convenient to use.

And since non_owning_ptr can be empty, the optional could also be
implemented without boost::optional:

1 void set(const non_owning_ptr <int> i) {

2 if (i) {

3 *i = 3;

4 }

5 }

In this version it is not explicitly communicated that the parameter
is optional. Depending on other factors, such as coding conven-
tions of the project, the simpler notation might justify this loss of
semantics.

As one can see there is an almost infinite number of combinations
possible, and often there is more than one “correct” solution. It is

28



3.3. Replacing the use of raw pointers

in the responsibility of the developer to communicate his intentions
by using an appropriate combination of the available smart pointers
after evaluating other factors such as the projects coding conventions
or other “best practices”.

3.3.1. Choosing the right smart pointer for a
refactoring

Because a raw pointer can be represented by various combinations
of smart pointers and other intention revealing language constructs
(reference, value, ...), the problem can be simplified by selecting a
subset of smart pointers to implement the roles.

When looking at the options for suitable smart pointers, there are
two primary candidates with which most roles can be expressed:
non_owning_ptr and std::unqiue_ptr.

std::shared_ptr is usually not an option because there is no reason
why a reference count should be required if there wasn’t one with
the raw pointer. If there was a custom reference counting with the
raw pointer, a refactoring would need to be able to correctly identify
and remove it. std::shared_ptr could still be a useful offer in some
cases such as a new factory function that hasn’t been used yet (if
it is already used we run into the aforementioned problem that a
reference count is introduced where there wasn’t one before).

optional is not required as its functionality can be emulated using
empty smart pointers. A refactoring without optional is syntacti-
cally also less intrusive (the smart pointer can be used exactly like
a raw pointer, optional requires additional adjustments).

C++ References are also implementable using non_owning_ptr. Fur-
ther is non_owning_ptr syntactically less intrusive and has the addi-
tional advantage that it may be reassigned, which again removes a
special case.

Values on the stack are not considered, because the same ownership
semantics can be achieved using std::unique_ptr (sole ownership,

29



3. Analysis

destruction as the identifier goes out of scope). Further may the
move from heap to stack be undesirable due to platform limitations
such as the stack size limit. I.e. if the object was managed on the
heap before, nothing has changed in that regard that would justify
why the object should be managed on the stack after the refactoring.
Like C++ references is a refactoring to a value also syntactically a
rather intrusive change.

3.3.2. An approach for automatic determination of
a suitable smart pointer

When only considering std::unqiue_ptr and non_owning_ptr for a
refactoring (for the reasons lined out in the previous section), a
primary point of distinction is the ownership of the pointer. It
is therefore possible to automatically select the appropriate smart
pointer by determining the ownership of a raw pointer.

This section analyses how the ownership of a raw pointer can be de-
termined and highlights the difficulties inherent to the approach.

Determining ownership of a raw pointer

To automatically select an appropriate smart pointer based on the
ownership of the raw pointer, ways to automatically determine own-
ership are required.

There are two places where a pointer is normally (see 3.3.2 on
page 32) guaranteed to be owning:

• When a pointer is first initialized using new.

• When a pointer is finally deleted using delete.

In all other cases a pointer is potentially non-owning, and the only
way to determine the ownership of a pointer is to track it from either
the allocation or the deletion.

30



3.3. Replacing the use of raw pointers

Between allocation and deletion the pointer may be passed around,
potentially transferring ownership to other variables. Each assign-
ment may potentially transfer ownership:

• An assignment to a variable: int *x = p;

• An assignment to a function parameter: foo(p);

• An assignment to a return value: return p;

However, while an assignment may transfer ownership, it is not guar-
anteed to do so. The assignment may instead result in a non-owning
reference.

Consider the following example:

1 int *p = new int();

2 int *x = p;

3 foo(p);

4 delete x;

• line 1: p is guaranteed to have ownership of the resource.

• line 2: x MAY receive ownership of the resource, but is not
guaranteed to do so. From this point on it is unclear if x or
p has ownership of the resource or is just a reference.

• line 3: as in line 2, foo() MAY receive ownership, but is not
guaranteed to do so.

• line 4: the delete on x gives the guarantee that x holds
ownership.

It is also possible that a pointer looses (or receives) ownership of a
pointer conditionally:

1 int *p = new int();

2 int *x {0};

3 if (i == 1) {

4 x = p;

5 }

6 if (x) {

7 delete x;

8 } else {

31



3. Analysis

9 delete p;

10 }

• line 1: p is guaranteed to have ownership of the resource.

• line 3: if the condition is true, x receives ownership of the
pointer (although that is only clear on line 7).

• line 6: only if x was set the condition is true and line 7 is
reached, otherwise the delete on line 9 is reached resulting in
p having ownership.

• line 7: the delete on x gives the conditional guarantee that x

holds ownership.

• line 9: the delete on p gives the conditional guarantee that p

holds ownership.

The same is of course possible across function boundaries. This
shows that pointer ownership has to be tracked per code path, as
the same identifier can have different semantics in different code
paths (because the underlying pointer can change).

Note that smart pointers are already used in parts of the code base
may also give the required information if a pointer holds ownership
or not.

Other Memory Management Models

There are scenarios where the assumption that the first pointer that
receives the pointee from the new-expression receives the ownership
of the object, doesn’t hold true.

Consider the following example:

1 struct Object {

2 Object (){ register(); }

3 void register() { MemoryManagementUnit ::

register(this); }

4 };

5

32



3.3. Replacing the use of raw pointers

6 Object *o = new Object ();

We assume that MemoryManagementUnit is a facility that manages
the lifetime of all objects registered with it. MemoryManagementUnit

::register() takes therefore ownership of pointers passed to
it. In line 2, the constructed object passes ownership to the
MemoryManagementUnit by calling register(). Although o is initial-
ized directly from the new-expression in line 6, o never receives
ownership of the object.

Similarly, it is possible that an object passes its ownership some-
where during a function call:

1 struct Object {

2 void doSomething () { MemoryManagementUnit

::register(this); }

3 };

4

5 Object *o = new Object ();

6 o->doSomething ();

While o initially receives ownership in this example on line 5,
it looses it (rather unexpectedly) in line 6 during the call to
doSomething(). This ownership transfer would go unnoticed when
only checking for external assignments.

It would be possible to check for this different memory management
model by ensuring that the this-pointer is not stored anywhere
from within the object.

As a real world example, such a memory management model is for
instance implemented in the Qt-Framework10 with QObject. With
QObject, each object can register itself with the parent object, pass-
ing it’s ownership to the parent. The parent object is then respon-
sible for managing the lifetime of its children11.

As this memory management model doesn’t work together with the
one used for smart pointers, this issue is ignored for this analysis.

10qt-project.org, Qt Project .
11qt-project.org, QObject Trees & Ownership.

33



3. Analysis

Conclusion

While tracking the ownership of a pointer seems feasible at first,
conditional ownership transfers and multiple assignments make the
task quickly daunting. To be able to track the ownership each code-
path has to be evaluated, where the number of codepaths grows
exponentially with the number of if statements and potentially un-
limited with loops and recursion.

The structural representation of the code provided by an abstract
syntac tree allows to track identifiers in the code, but not the un-
derlying value, which would be required to be able to track pointers.
In order to be able to track pointer ownership, a codepath analysis
would therefore be required.

An example, to highlight the complexity of tracking pointer owner-
ship, would be a list containing pointers. Depending on the internal
implementation, it would be very difficult to track where a pointer
enters the list and where it leaves it (i.e. one would have to track
the index which the pointer occupies).

While this is not generally infeasible (compilers and advanced code
inspection tools can inspect codepaths), it is clearly beyond the
scope of this project.

3.4. Refactoring Cases

In order to refactor the use of raw pointers into smart pointers, the
following section identifies a set of starting points where raw pointers
can appear in the source code, and analyses what refactorings can
be applied to each starting point.

Raw pointers can appear in various places and convey various se-
mantics. Each starting point where a raw pointer could appear is
associated with a number of possible refactorings (one per smart
pointer), which are then offered to the developer. Because we are
not able to analyze the semantics automatically (see Section 3.3.2),

34



3.4. Refactoring Cases

it is up to the developer to choose a suitable refactoring from the
options provided. It is however possible to support the developer in
his choice by limiting the available refactorings using heuristics.

As the complexity for what pointers can be used can quickly go be-
yond what we can reasonably refactor in a way that is still useful,
this analysis tries to identify a limited set of the common cases, so
we can provide actually useful refactorings. This means not every
possible case is covered, but a limited set of cases should be handled
well. By looking at concrete cases that are existing in real-world
codebases, we hope to identify a useful subset of possible refactor-
ings.

Further is the complexity limited by only refactoring a single call-
hierarchy level instead of recursively converting full call hierarchies
. This is because tracking the variables is not directly supported
(see also Section 3.3.2 on the preceding page), so the task would
be too complex within the scope of this project. Further has this
approach the advantage that the changes from a refactoring are
usually applied to the code the developer is currently working on,
making it easier for the developer to review the changes and also
giving finer grained control over the refactored parts of the source
code.

The analysis is based on the smart pointers available in Standard
C++ Library. If other smart pointers (i.e. boost) should be used,
a smart pointer with the same semantics has to be chosen (see Ta-
ble 3.1 on page 23). For cases where no standard smart pointer
exists, boost is the preferred alternative.

The following guidelines are generally applicable to all refactor-
ings:

• Preserve the lifetime of the object: Using a smart pointer
should not change the lifetime of the object.

1 void foo()

2 {

3 MyClass *p = new MyClass ();

4 bar(p)

35



3. Analysis

5 delete p;

6 MyClass p2 = new MyClass ();

7 delete(p2)

8 }

By turning p into a local smart pointer, both objects would
live until the end of foo(), resulting in a change of lifetime
for p. As this could lead to problems, and p was deleted on
purpose before allocating p2, such changes of lifetime must be
avoided (for instance by calling p.release()).

• Don’t change semantics of the pointer, i.e., constness should
be preserved.

1 MyClass const *p = new MyClass ();

2 // becomes

3 std:: unique_ptr <const MyClass > p { new

MyClass () };

• Don’t change the scope of the pointer, i.e., don’t move a dec-
laration in a for-loop to the beginning of the function.

1 for(int i = 0; i < 3; i++) {

2 MyClass const *p = new MyClass ();

3 }

4 // becomes

5 for(int i = 0; i < 3; i++) {

6 std:: unique_ptr <const MyClass > p {

new MyClass () };

7 }

• When creating smart pointers, type hierarchies must be taken
into account, i.e., the type used in the new-expression must be
used to to create the smart pointer, as opposed to the type of
the pointer-variable declaration, that might be using a base-
type.

1 Base *p { new Derived () };

2 // becomes

3 std:: unique_ptr <Base > p { new Derived ()

};

36



3.4. Refactoring Cases

3.4.1. Format

The section 3.4.3 on page 39 first analyses the particularities of the
chosen starting points wherer a raw pointer could be used in the
source code.

3.4.4 on page 42 then analyses an example of each starting point
for the case where the pointer holds ownership and once for the case
where the pointer doesn’t hold ownership. Each case is analysed
using the following format:

• A short explanation

• A generic example based on Listing 3.1

• A specific example from a real world code base12

• The refactored generic example

• Limitations and edge cases of the handling of the refactoring
case

This format allows to describe all considered cases with enough de-
tail that the implementation can be based on it.

Throughout the examples the following class hierarchy is used:

1 class Vehicle;

2

3 class Car: public Vehicle

4 {

5 public:

6 Car(int ps);

7 };

8

9 class Engine;

10

11 template <typename T>

12 class SpecializedCar: public Vehicle

13 {

14 public:

15 SpecializedCar(int ps);

12Software, DOOM3 Sourcecode.

37



3. Analysis

16 };

Listing 3.1: Vehicle class hierarchy

3.4.2. Scope and Limitations

Only std::unique_ptr and non_owning_ptr are considered for the
refactorings because all roles can be expressed with them (see also
section 3.3.1 on page 29).

As strings and arrays are a special case of pointers for which specific
smart pointers exist, this analysis doesn’t consider them (See 3.1 on
page 13).

It is assumed that a single identifier always either stands for an own-
ing pointer or a non-owning pointer, but never for both. Therefore
a construct like this would not be supported:

1 int *getRef ();

2 int *i;

3 if (condition ()) {

4 i = new int();

5 } else {

6 i = getRef ();

7 }

8 if (condition ()) {

9 delete i;

10 }

It is not possible to choose a suitable smart pointer for i, because
the identifier changes the semantics in the codepaths.

Further are any problems resulting from misuse of pointers, such as
assigning numbers to a pointer other than nullptr, not taken into
account.

38



3.4. Refactoring Cases

3.4.3. Starting points

For the analysis three different starting points were chosen:

• A local pointer variable: int *x;

• A pointer function parameter: void foo(int *x);

• A pointer return value: int *foo();

The starting points have been chosen because they seemed like nat-
ural starting points for a conversion (i.e. where one would want to
apply a quickfix), and due to expected feasibility.

Further potential starting points that have not been analysed are:

• Global variables

• Class members

Local pointer

Local pointers are the simplest case due to their limited visibility.
Therefore only the scope the local variable needs to be considered.

Function parameter

Function parameters are different from local variables because they
are visible outside of the scope of the function. Therefore also the
caller code needs to be considered. Note that because the func-
tion parameter is visible inside the scope of the function, the same
refactorings apply as for local pointers.

If a function is modified to take a smart pointer instead of a raw
pointer as argument, the signature changes. These are the implica-
tions for callers:

• There can be a type mismatch when a caller tries to pass in a
raw pointer:

39



3. Analysis

1 void foo(non_owning_ptr <Car > car)

2 {

3

4 }

5

6 Car *car;

7 foo(car);

The call to foo() fails because the constructor of non_owning_ptr

is explicit.

• The compiler could choose a different overload, which may go
unnoticed, leading to unexpected behaviour:

1 void foo(Vehicle *)

2 {

3 }

4

5 // before refactoring

6 void foo(Car *car)

7 {

8 }

9

10 // after refactoring

11 void foo(non_owning_ptr <Car > car)

12 {

13 }

14

15 Car *car = new Car (42);

16 foo(car);

Before the refactoring foo(Car*) is selected. After the refac-
toring foo(Vehicle*) is selected, because the raw pointer ar-
gument no longer matches the non_owning_ptr parameter.

A possible migration path for this problem would be to provide
an overloaded wrapper function that takes the raw pointer,
wraps it in a smart pointer, and delegates the call to the smart
pointer version:

1 void foo(non_owning_ptr <Car > car)

2 {

3 }

40



3.4. Refactoring Cases

4

5 // wrapper

6 void foo(Car *car)

7 {

8 foo(non_owning_ptr <Car >(car));

9 }

This way the caller code doesn’t need to be adjusted and there
is no danger of a new overload being selected. Note that if all
callers can be adjusted before the refactoring, this problem
can be avoided entirely. This may however not be possible if
the code is part of the API of a library.

Note that the same problem applies to a virtual dispatch as
well:

1 struct Base {

2 virtual foo(Car*);

3 };

4 struct Derived {

5 // before the refactoring

6 virtual foo(Car*);

7 // after the refactoring

8 virtual foo(non_owning_ptr <Car >);

9 };

10

11 Car *car = new Car (42);

12 Base *base = new Derived;

13 base ->foo(car);

The call to base->foo() resulted in a call to Derived::foo()

before the refactoring due to the virtual dispatch mechanism.
After the refactoring Base::foo() is called instead, because
Derived::foo() no longer matches. This problem can be solved
with the aforementioned wrapper approach as migration path,
or by adjusting overridden methods in the whole type hierar-
chy.

Note that this refactoring must be applied to both the declaration
and the definition of the function.

41



3. Analysis

Return value

Return values require the adaption of all callers, just like function
parameters, but as the return value is not part of the function sig-
nature, there is no conflict with overloaded functions.

Note that this refactoring must be applied to both the declaration
and the definition of the function.

3.4.4. Default Cases

For each starting point there are generally two options, one per
target smart pointer, due to the two chosen smart pointers std::

unique_ptr and non_owning_ptr as described in 3.4.2 on page 38.

The default refactoring cases are therefore the following:

• Local pointer, owning pointer

• Local pointer, non-owning pointer

• Function parameter, owning pointer

• Function parameter, non-owning pointer

• Return value, owning pointer

• Return value, non-owning pointer

This means per identified raw pointer two refactorings are poten-
tially applicable. Because automatically determining ownership of
the pointer was deemed to complex in most cases within the scope
of this project (see 3.3.2 on page 30), it is up to the developer to
make the appropriate choice.

As a special case, a delete within the local scope can be used as
heuristic to determine that the deleted raw pointer holds ownership
of the resource. In this case it is not necessary to offer the non-
owning pointer refactoring to the develeoper.

42



3.4. Refactoring Cases

3.4.5. Local pointer: owning pointer

A local pointer receives ownership if it is initialized using a new-
expression, a function returning an owning pointer (i.e. a factory
function), or an owning pointer variable.

The owning pointer must either pass ownership somewhere or delete
the resource before it goes out of scope.

Example

1 void foo()

2 {

3 Vehicle const *p { new SpecializedCar <

Engine >(42) };

4 bar(p);

5 delete p;

6 }

• The pointer has a const modifier that must be preserved during
conversion.

• The initialization expression of the allocated object is 42

• The pointer is then passed to bar(), which will result in an
error after converting p to a smart pointer

• Finally the object is deleted at the end of the scope, resulting
in exactly the same behaviour when using a smart pointer

Specific Example

• sourcefile: DOOM-3/neo/tools/radiant/splines.cpp:1307-1323

• function: idCameraDef::load

• variable: src

43



3. Analysis

1 bool idCameraDef ::load( const char *filename

) {

2 idParser *src;

3 src = new idParser( filename ,

LEXFL_NOSTRINGCONCAT |

LEXFL_NOSTRINGESCAPECHARS |

LEXFL_ALLOWPATHNAMES );

4 if ( !src ->IsLoaded () ) {

5 common ->Printf( "couldn ’t load %s\n",

filename );

6 delete src;

7 return false;

8 }

9 clear ();

10 parse( src );

11 delete src;

12 return true;

13 }

The code shows the following characteristics:

• The if-clause results in two possible code-paths, of which both
must contain a delete statement in order to get the same result
after converting to a smart pointer.

• The definition of src is separated from its initialization.

• src is passed to parse, requiring either calling src.get() or
converting the argument of parse to a smart pointer.

• Due to the delete it is ensured that parse didn’t take owner-
ship.

Example refactored

1 void foo()

2 {

3 std:: unique_ptr <const Vehicle > p { new

SpecializedCar <Engine >(42) };

4 bar(p.get());

5 }

44



3.4. Refactoring Cases

The pointer can be refactored to a std::unique_ptr.

Because p is passed to bar, the raw pointer must be extracted
using p.get(). Further the delete had to be removed as the std::

unique_ptr will delete the resource as it goes out of scope.

In case a std::make_unique would become available the initialization
would look the following:

1 std:: unique_ptr <const Vehicle > p {

make_unique < SpecializedCar <Engine > >(42)

};

Limitations and Edge Cases

• The plugin could detect disposal functions, and pass the
pointer to the disposal function using the smart pointers
release() method.

• The initialization for the pointer may also occur at a later stage
(no direct initialization). In this case both the definition of the
pointer and the initialization must be adjusted accordingly.

• If a pointer is deleted early (before it goes out of scope), it is
required to reset the smart pointer early using unique_ptr<T

>::reset(nullptr), in order not to change the lifetime of the
pointee.

• If the pointer is reassigned, the smart pointer would have to
be reassigned as well using its reset() method. Note that the
old pointer must be released first, in order not to delete it:

1 std:: unique_ptr <const Vehicle > p { new

Car (42) };

2 p.release ();

3 p.reset(new Car (42));

But since this code would result in the first assigned pointer
to leak, the only valid scenario would be:

45



3. Analysis

1 std:: unique_ptr <const Vehicle > p { new

Car (42) };

2 passOwnership(p.release ());

3 p.reset(new Car (42));

There must be something which takes ownership of the old
pointer, otherwise to code is not valid. If passOwnership()

would expect a std::unique_ptr as argument (as it should),
this would result in

1 passOwnership(make_unique(p.release ()));

At this point it should become evident that it is not a good idea
to reuse the pointer identifier when using an owning pointer.
The plugin therefore does not handle this case.

• If a function parameter to which the pointer is passed already
uses a std::unique_ptr, the pointer can be moved using std

::move instead of wrapping it with a constructor call.

1 void bar(std:: unique_ptr <Vehicle >);

2

3 Vehicle *p { new Car (42) };

4 bar(std:: unique_ptr(p));

5 // becomes

6 std:: unique_ptr <Vehicle > p { new Car (42)

};

7 bar(std::move(p));

• If the pointer is initialized from a function return value, and
the return value already uses a std::unique_ptr, the smart
pointer can be copy constructed instead of using release().

1 std:: unique_ptr <Vehicle > create ();

2

3 Vehicle *p { create ().release () };

4 // becomes

5 std:: unique_ptr <Vehicle > p { create () };

• If the pointer is passed to a function which takes ownership of
the pointer, but doesn’t have a smart pointer parameter, the
pointer must be released using release() instead of get().

46



3.4. Refactoring Cases

• If the pointer is returned from a function with a raw pointer
return value, the raw pointer must be extracted using release

().

1 Vehicle *create ()

2 {

3 std:: unique_ptr <Vehicle > p { new Car

(42) };

4 return p.release ();

5 }

3.4.6. Local pointer: non-owning

A local pointer is non owning if it is initalized by a reference.

It can therefore be refactored to a non_owning_ptr.

Example

1 void bar(Vehicle const *);

2 Vehicle *getReference ();

3

4 void foo()

5 {

6 Vehicle const *p { getReference () };

7 bar(p);

8 }

• The pointer has a const modifier, which must be preserved
during conversion.

• p is initialized using a call to getReference(), which returns a
non-owning pointer.

• p is then passed to bar(), which will result in an error after
converting to a smart pointer.

47



3. Analysis

Specific Example

• sourcefile: DOOM-3/neo/tools/radiant/CamWnd.cpp:53-67

• function: ValidateAxialPoints

• variable: selFace

1 void ValidateAxialPoints () {

2 int faceCount = g_ptrSelectedFaces.

GetSize ();

3 if (faceCount > 0) {

4 face_t *selFace = reinterpret_cast <

face_t * > (g_ptrSelectedFaces.

GetAt (0));

5 if (g_axialAnchor >= selFace ->

face_winding ->GetNumPoints ()) {

6 g_axialAnchor = 0;

7 }

8 if (g_axialDest >= selFace ->

face_winding ->GetNumPoints ()) {

9 g_axialDest = 0;

10 }

11 } else {

12 g_axialDest = 0;

13 g_axialAnchor = 0;

14 }

15 }

The code shows the following characteristics:

• The definition of selFace is nested in an if-clause.

• selFace is initialized with a reference to a face_t object.

• Because selFace is neither passed to a function nor is it deleted
in ValidateAxialPoints, it is ensured that selFace doesn’t hold
ownership.

48



3.4. Refactoring Cases

Example refactored

1 void bar(Vehicle const *);

2 Vehicle *getReference ();

3

4 void foo()

5 {

6 non_owning_ptr <const Vehicle > p {

getReference () };

7 bar(p.get());

8 }

The pointer can be refactored to a non_owning_ptr.

Because p is passed to bar(), the raw pointer must be extracted
using p.get().

In case of a later initialization or reassignment the pointer must be
created using make_nonowning:

1 non_owning_ptr <const Vehicle > p;

2 p = make_nonowning(getReference);

Limitations and Edge Cases

• The initialization for the pointer may also occur at a later stage
(no direct initialization). In this case both the definition of the
pointer and the initialization must be adjusted accordingly.
Note that a reassignment can be handled in the same way.

• If a function parameter to which the pointer is passed already
uses a non_owning_ptr, the pointer can be passed directly in-
stead of wrapping it with make_nonowning.

1 void bar(non_owning_ptr <Vehicle >);

2

3 Vehicle *p{new Car (42)};

4 bar(make_nonowning(p));

5 // becomes

6 non_owning_ptr <Vehicle > p{make_nonowning <

Car >(42) };

7 bar(p);

49



3. Analysis

• If the pointer is initialized from a function return value, and
the return value already uses a non_owning_ptr, the smart
pointer can be copy constructed instead of using get().

1 non_owning_ptr <Vehicle > getRef ();

2

3 Vehicle *p { getRef ().get() };

4 // becomes

5 non_owning_ptr <Vehicle > p { getRef () };

• If the pointer is returned from a function with a raw pointer
return value, the raw pointer must be extracted using get().

1 non_owning_ptr <Vehicle > getRef ();

2 Vehicle *foo()

3 {

4 std:: non_owning_ptr <Vehicle > p {

getRef () };

5 return p.get();

6 }

3.4.7. Function parameter: owning pointer

A function takes ownership of a pointer if either the function deletes
the pointer itself (like a disposal function), or if the function trans-
fers ownership somewhere.

See also 3.3.2 on page 30.

Example

1 void sell(Car*);

2 void destroyCar(Car* c)

3 {

4 delete c;

5 }

6

7 void trySellCar(Car* car)

8 {

9 //We can’t sell this junk

50



3.4. Refactoring Cases

10 if (car ->ps() <= 42) {

11 destroyCar(car);

12 } else {

13 sell(car);

14 }

15 }

16

17 void foo()

18 {

19 Car *car = new Car (42);

20 trySellCar(car);

21 }

trySellCar would transfer the ownership of the pointer to sell if
it’s ps were greater than 42, but instead passes it to the disposal
function destroyCar. We know that destroyCar takes ownership of
the pointer because it deletes it.

We assume that sell takes ownership of the pointer. If it wouldn’t,
car would be owning in one codepath and non-owning in the other.

Example refactored

1 void sell(Car*);

2 void destroyCar(Car* c)

3 {

4 delete c;

5 }

6

7 void trySellCar(std::unique_ptr <Car > car)

8 {

9 //We can’t sell this junk

10 if (car ->ps() <= 42) {

11 destroyCar(car.get());

12 } else {

13 sell(car.get());

14 }

15 }

16

17 void foo()

18 {

19 Car *car = new Car (42);

20 trySellCar(std::unique_ptr <Car >(car));

51



3. Analysis

21 }

The pointer can be refactord to a std::unique_ptr.

destroyCar could be removed entirely in this case, since it’s apart
from the delete empty. car in foo() must be wrapped by a std

::unique_ptr. If car in foo() would already be a std::unique_ptr,
std::move would be required to pass it to trySellCar() using move
semantics:

1 void foo()

2 {

3 std:: unique_ptr <Car > car{ new Car (42) };

4 trySellCar(std::move(car));

5 }

Limitations and Edge Cases

• The same limitations as for a local pointer apply, as the pa-
rameter behaves inside the scope of the function like a local
variable.

• If the refactored function is either virtual or has overloaded
functions, the workaround described in 3.4.3 on page 39 should
be applied as migration path.

• If a caller already uses a std::unique_ptr, but extracts the
raw pointer using release(), the pointer can be moved using
std::move instead.

1 void bar(non_owning_ptr <Vehicle >);

2

3 std:: unique_ptr <Car > p;

4

5 bar(p.release ());

6 // becomes

7 bar(std::move(p));

52



3.4. Refactoring Cases

3.4.8. Function parameter: Non-owning pointer

A non-owning pointer can be passed to a function as argument for
example to:

• provide a reference to a data structure where complex return
values can be stored.

• pass a dynamically allocated object as argument.

The pointer parameter is non-owning if:

• it was ensured that the pointer is not owning (see 3.4.7 on
page 50).

• it was ensured that the caller keeps ownership of the pointer.

As this is non-trivial to detect (see 3.3.2 on page 30), it is up to the
developer to indicate if the argument is indeed non-owning.

Example

1 void setupCar(Car* car)

2 {

3 car ->setup();

4 }

5

6 void setup()

7 {

8 Car *car = new Car (42);

9 setupCar(car);

10 delete car;

11 }

The parameter car of setupCar() is non-owning as the pointer is
never deleted or passed to a function taking ownership. The passed
object may be modified as long as the object is not const.

Specific Example

• sourcefile: DOOM-3/neo/tools/radiant/splines.cpp:1728-1750

53



3. Analysis

• function: idInterpolatedPosition::parse

• variable: src

1 void idInterpolatedPosition ::parse( idParser

*src ) {

2 idToken token;

3

4 src ->ExpectTokenString( "{" );

5 while ( 1 ) {

6 if ( !src ->ExpectAnyToken( &token ) )

{

7 break;

8 }

9 if ( token == "}" ) {

10 break;

11 }

12

13 if ( !token.Icmp( "startPos" ) ) {

14 src ->Parse1DMatrix( 3, startPos.

ToFloatPtr () );

15 }

16 else if ( !token.Icmp( "endPos" ) ) {

17 src ->Parse1DMatrix( 3, endPos.

ToFloatPtr () );

18 }

19 else {

20 idCameraPosition :: parseToken(

token , src);

21 }

22 }

23 }

The code shows the following characteristics:

• A raw pointer src is passed as a function argument.

• assuming parseToken doesn’t take ownership of src, this func-
tion never takes ownership of the pointer.

Example Refactored

54



3.4. Refactoring Cases

1 void setupCar(non_owning_ptr <Car > car)

2 {

3 car ->setup();

4 }

5

6 void setup ()

7 {

8 Car *car = new Car (42);

9 setupCar(make_nonowning(car));

10 delete car;

11 }

The pointer can be refactored to a non_owning_ptr.

Each caller must be adjusted to use make_nonowning, because the
constructor of non_owning_ptr is explicit.

Limitations and Edge Cases

• The same limitations as for a local pointer apply, as the pa-
rameter behaves inside the scope of the function like a local
variable.

• If a caller already uses a non_owning_ptr, but extracts the raw
pointer using get(), the smart pointer can passed directly.
If the pointer is extracted from another smart pointer using
get(), it still needs to be wrapped using make_non_owning

3.4.9. Return value: owning pointer

A function may pass ownership with a pointer as return value.

One pattern returning an owning pointer is the factory method pat-
tern13.

13Wikipedia, Factory Method .

55



3. Analysis

Example

1 Vehicle *createVehicle ()

2 {

3 return new Car();

4 }

5

6 void main()

7 {

8 Vehicle *vehicle = createVehicle ();

9 }

createVehicle allocates the Car object and then transfers ownership
to the caller. It is therefore a factory function.

Specific Example

• sourcefile: DOOM-3/neo/tools/radiant/splines.cpp:777-787

• function: idCameraDef::startNewCamera

• variable: cameraPosition

1 idCameraPosition *idCameraDef :: startNewCamera

( idCameraPosition :: positionType type ) {

2 clear ();

3 if (type == idCameraPosition :: SPLINE) {

4 cameraPosition = new idSplinePosition

();

5 } else if (type == idCameraPosition ::

INTERPOLATED) {

6 cameraPosition = new

idInterpolatedPosition ();

7 } else {

8 cameraPosition = new idFixedPosition

();

9 }

10 return cameraPosition;

11 }

The code shows the following characteristics:

• The if-clauses result in 3 different codepaths, of which all re-
turn an owning pointer.

56



3.4. Refactoring Cases

Example Refactored

1 std:: unique_ptr <Vehicle > createVehicle ()

2 {

3 return std:: unique_ptr <Vehicle >(new Car()

);

4 }

5

6 void main()

7 {

8 Vehicle *vehicle = createVehicle ().

release ();

9 }

The return value can be refactored to a std::unique_ptr.

Each return statement must be adjusted to use std::unique_ptr.

Each caller must be adjusted to extract the raw pointer using
release().

Limitations and Edge Cases

• If a caller already uses a std::unique_ptr it can be initialized
directly instead:

1 std:: unique_ptr <Vehicle > vehicle{

createVehicle () };

3.4.10. Return value: non-owning pointer

A function may return a pointer as non-owning reference.

Example

1 Vehicle *getVehicle ()

2 {

3 static Car car;

4 return &car;

5 }

57



3. Analysis

6

7 void main()

8 {

9 Vehicle *vehicle = getVehicle ();

10 }

Note that this is not a factory function, but resembles something like
the singleton pattern. The important difference is that getVehicle

doesn’t transfer the ownership of car, but only returns a reference
to it.

Specific Example

• sourcefile: DOOM-3/neo/tools/radiant/splines.cpp:1606-1612

• function: idInterpolatedPosition::getPoint

• variable: startPos, endPos

1 idVec3 *idInterpolatedPosition :: getPoint( int

index ) {

2 assert( index >= 0 && index < 2 );

3 if ( index == 0 ) {

4 return &startPos;

5 }

6 return &endPos;

7 }

The code shows the following characteristics:

• The if-clause results in two possible code-paths, of which both
return a non-owning pointer.

Example Refactored

1 non_owning_ptr <Vehicle > getVehicle ()

2 {

3 static Car car;

4 return make_nonowning (&car);

5 }

6

7 void main()

58



3.4. Refactoring Cases

8 {

9 Vehicle *vehicle = getVehicle ().get();

10 }

The return value can be refactored to a non_owning_ptr, to indicate
that no ownership is transferred to the caller.

Each return statement must be adjusted to use make_nonowning().

Each caller must be adjusted to extract the raw pointer using get

().

Limitations and Edge Cases

• If a caller already uses a non_owning_ptr it can be initialized
directly instead:

1 non_owning_ptr <Vehicle > vehicle{

getVehicle () };

3.4.11. Heuristic to determine ownership: local
delete

If a delete is available within the local scope, it can be assumed that
the pointer is owning. This assumption is not guaranteed to hold
true in all cases, but is a good heuristic to determine that a pointer
holds ownership of the resource.

By employing this heuristic, it is possible to only offer std::

unique_ptr as suitable refactoring, removing non_owning_ptr from
the available choices.

Note that while a delete of a pointer is a clear indication of ownership
of the pointer, a lack thereof doesn’t automatically mean that the
pointer doesn’t own the resource. The ownership may be transferred
to a disposal function, or to the caller in case of a factory function.
Further it is possible that the pointer is stored and cleaned up later
on. See also 3.3.2 on page 30.

It is therefore not possible to apply this heuristic reversely.

59



3. Analysis

Example

1 void foo()

2 {

3 Car *p { new Car (42) };

4 delete p;

5 }

Because p is deleted within the scope of this function, it can be
assumed that p holds ownership of the resource.

Specific Example

• sourcefile: DOOM-3/neo/tools/radiant/splines.cpp:1307-1323

• function: idCameraDef::load

• variable: src

1 bool idCameraDef ::load( const char *filename

) {

2 idParser *src;

3 src = new idParser( filename ,

LEXFL_NOSTRINGCONCAT |

LEXFL_NOSTRINGESCAPECHARS |

LEXFL_ALLOWPATHNAMES );

4 if ( !src ->IsLoaded () ) {

5 common ->Printf( "couldn ’t load %s\n",

filename );

6 delete src;

7 return false;

8 }

9 clear ();

10 parse( src );

11 delete src;

12 return true;

13 }

The delete on src gives the indication that src is owning and
could therefore be refactored to a std::unique_ptr.

60



3.5. Conclusion

Limitations and Edge Cases

• If the code would have multiple codepaths (for instance due
to an if-statement), it would have to be ensured that each
codepath contains a delete. As a simplification the plugin
assumes that all codepaths contain a delete, if a delete-
statement was found in the current scope.

• The plugin could detect disposal functions, and determine
ownership accordingly.

• If the pointer variable is reassigned, or if the pointer passed
ownership somwhere else between initialization of the pointer
variable and its deletion, this heuristic could deliver wrong
results.

The following artificial example illustrates a case where the
heuristic would not apply:

1 void foo()

2 {

3 Car *p { getReference () };

4 p->doSomething ();

5 p = get();

6 delete p;

7 }

Although p represents a reference at first, it receives owner-
ship in line 5 due to the assignment (assuming get() returns
an owning pointer). In this case a refactoring to a std::

unique_ptr would give the false impression that p holds own-
ership from the beginning.

3.5. Conclusion

The analysis shows, when ignoring the special cases of arrays and
strings, all roles of a raw pointer can take can be expressed using std

::unique_ptr and non_owning_ptr. While other language constructs

61



3. Analysis

would be available to represent certain roles, these two allow to
refactor the code with fewer other changes required, and support
refactoring only part of the code while the rest still uses raw pointers.
This is important to be able to gradually convert the use of raw
pointers to smart pointers, while being able to review and test each
step.

Although it would be possible to automatically determine the suit-
able smart pointer to use, based on the ownership of the pointer, it
is shown that the analysis of the ownership of a raw pointer can be
very complex, because the semantics can change for the same iden-
tifier in each code path. Hence a full analysis would be too difficult
to implement based on the information provided by the abstract
syntax tree within the scope of this project.

Due to this complexity, fully automated refactorings adjusting all
uses of a pointer automatically were not implemented. Instead the
chose approach provides possible refactorings for the developer to
choose, and only taking small steps in those refactorings. The de-
veloper who understands the code can then make the necessary de-
cisions and review the applied changes.

This analysis also highlights one of the great benefits of smart point-
ers, the revealed semantics. While it is usually possible for a devel-
oper to guess the correct semantics of a pointer after having looked
at enough context, it can be a lot of work to correctly analyze it
and that work every new developer will have to do again. Smart
pointers give developers the tools to express their intentions in a
way that also a compiler can understand, which might be of even
greater value than the automatic memory management.

By recognizing the use of raw pointers in an existing codebase, any
by providing suitable refactorings we can help developers to spot
and fix the use of raw pointers. Although the plugin is not able to
automatically determine the suitable smart pointer, the developer
is at least supported by heuristics that work in many cases.

62



4. Implementation

The implementation of the smartor plug-in is split into two major
parts: the checker and the quickfixes.

The checker is responsible for identifying the starting points (see
Section 3.4.3 on page 39) in the code which are then marked using
a marker.

The quickfix is responsible for executing a predefined refactoring.
For each marker quickfixes are registered, which are then proposed
to the user. If a quickfix is activated by the user, the quickfix im-
plementation commits it’s modifications to the source code.

Figure 4.1.: A marker highlighting a raw pointer argument with two
proposed quickfixes

The plug-in was developed using Scala, the project results in a single
plug-in that can be used in Eclipse.

4.1. Checker

The checker is responsible for identifying problematic sections in the
code which are then reported to the Codan framework.

63



4. Implementation

The Codan framework provides an AST, which is then evaluated by
the checker to identify the required parts.

The checker is implemented as single class that derives from
org.eclipse.cdt.codan.core.cxx.model.AbstractIndexAstChecker, an
extension point provided by Codan for code checking plug-ins.

Checker

org.eclipse.cdt.codan.core.cxx.
model.AbstractIndexAstChecker

Figure 4.2.: The checker type hierarchy

The following patterns are evaluated in the given order, with pat-
terns listed first taking precedence and the associated problem being
reported:

• ch.hsr.ifs.cdt.smartor.plugin.error.LocalPointerWithLocalDelete

:
A declaration statement containing a raw pointer with a
delete in the local scope.

1 int *i = new int(3);

2 delete i;

• ch.hsr.ifs.cdt.smartor.plugin.error.LocalRawPointer:
A declaration statement containing a raw pointer.

1 int *i = new int(3);

• ch.hsr.ifs.cdt.smartor.plugin.error.SmartPointerArgumentToRawPointer

:

64



4.1. Checker

A function call statement with a smart pointer argument
passed to a raw pointer parameter.

1 void foo(int *);

2 non_owning_ptr <int> i = make_nonowning <

int >(3);

3 foo(i);

• ch.hsr.ifs.cdt.smartor.plugin.error.RawPointerParameter:
A parameter declaration containing a raw pointer.

1 void foo(int *i);

• ch.hsr.ifs.cdt.smartor.plugin.error.RawPointerReturn:
A function declarator containing a raw pointer as return
value.

1 int *get();

The reported problems correspond to either a starting point de-
fined in Section 3.4.3 on page 39, or a combination of a start-
ing point and a heuristic. This approach allows quickfixes to be
registered on specific combinations of starting points and heuris-
tics. For instance is the refactoring for a non_owning_ptr on a lo-
cal pointer not registered on ch.hsr.ifs.cdt.smartor.plugin.error.

LocalPointerWithLocalDelete, because we know that this refactoring
is not applicable in this case because the pointer has ownership of
the resource.

4.1.1. Control Flow

The primary entry point to process the AST is:

1 def processAst(ast: IASTTranslationUnit):

Unit

This method get’s called whenever the AST must be reevaluated.

Although the framework would provide the visitor org.eclipse.cdt

.core.dom.ast.ASTVisitor to traverse the AST, this facility was not
used to make use of Scala’s pattern matching instead.

65



4. Implementation

1 private def traverseTree(node: IASTNode):

Unit = {

2 node match {

3 case DeclarationStatement(ContainsPointer

(HasLocalDelete(declarationStatment)))

=> placeMarkers(ProblemId.

localPointerWithLocalDelete , node)

4 case DeclarationStatement(ContainsPointer

(parameter)) => placeMarkers(ProblemId

.localRawPointer , parameter)

5 case FunctionCallStatement(

SmartPointerArgumentToRawPointerParameter

(argument)) => placeMarkers(ProblemId.

smartPointerArgumentToRawPointer ,

argument)

6 case SinglePointerParameter(parameter) =>

placeMarkers(ProblemId.

rawPointerParameter , parameter)

7 case FunctionDeclarator(

ContainsPointerNonRecursive(parameter)

) => placeMarkers(ProblemId.

rawPointerReturn , parameter)

8 case _ => node.getChildren foreach

traverseTree

9 }

10 }

traverseTree() provides a method that recursively traverses each
node in the AST, and gets called by processAst(). Inside this
method, each node is matched using extractor objects. So instead
of relying on the double dispatch mechanism of the visitor to pro-
cess particular node types, Scalas matching capabilities are used
to match specific patterns within the AST. This helps to keep the
core logic of the Checker together in one place, with all the logic
for the actual pattern matching externalized into custom extractor
objects.

Each detected problem is reported using placeMarkers:

1 private def placeMarkers(problem: ProblemId.

ProblemId , node: IASTNode): Unit = {

2 val definition = ProblemDefinitionFactory.

getProblemDefinition(problem)

66



4.1. Checker

3 reportProblem(definition.getErrorId , node ,

definition.getProblemName)

4 }

The reported problems are finally displayed to the user as marker
in the editor (see 4.1 on page 63), which allows the user to get a
problem description and to trigger associated quickfixes.

4.1.2. Pattern matching

The Checker makes extensive use of Scala’s pattern matching capa-
bilities. Let us consider the following example:

1 node match {

2 case DeclarationStatement(ContainsPointer

(HasLocalDelete(declarationStatment)))

=> placeMarkers(ProblemId.

localPointerWithLocalDelete , node)

3 case _ => node.getChildren foreach

traverseTree

4 }

This is a shortened version of Checker.traverseTree(). As we can see,
node is matched using the match keyword. The match-statement is
similar to a switch-statement popular in e.g. C++. It allows how-
ever to match the individual cases using custom extractor objects.

An extractor object must implement the unapply() method:

1 def unapply(arg: T1): Option[T2]

unapply() has one argument and an optional return value. A return
value of None indicates that the extractor object does not match,
where a return value of Some indicates that it matches. Further
is the type of the argument evaluated if it matches the matched
expression.

For instance this is how the DeclarationStatement extractor is im-
plemented:

67



4. Implementation

1 object DeclarationStatement {

2 def unapply(parameter:

IASTSimpleDeclaration) = Some(parameter)

3 }

This extractor matches only if the argument is of type IASTSimpleDeclaration

, but it returns the argument unconditionally.

Extractor objects allow for great flexibility because they can be
nested:

1 node match {

2 case DeclarationStatement(ContainsPointer

(HasLocalDelete(declarationStatment)))

=> placeMarkers(ProblemId.

localPointerWithLocalDelete , node)

3 ...

node is first matched using DeclarationStatement, where node

matches if DeclarationStatement.unapply returns an Option that
is not None. If DeclarationStatement matches, its return value is
passed on to the next extractor object ContainsPointer.

If all extractor objects match, the final return value is available in
delarationStatement, which can then be used inside the case (in this
case to place a marker).

A more advanced example than the DeclarationStatement is the
ContainsPointer-extractor that recusively searches for a node of the
type IASTPointer:

1 object ContainsPointer {

2 def unapply(node: IASTNode): Option[

IASTNode] = {

3 node.getChildren.foreach { child =>

4 child match {

5 case x: IASTPointer => return Some(

node)

6 case x: IASTNode => unapply(x).

foreach( ret => return Some(ret))

7 case _ =>

8 }

9 }

68



4.2. Quickfix

10 None

11 }

12 }

Its unapply() method uses itself pattern matching to identify the
type of its children, and calls itself recursively to descend in the
tree of children. Because this extractor object can also not apply,
althought the argument type matched, it is possible that unapply()

returns None instead of Some. Note the shorter notation used to
match a type:

1 case x: IASTPointer => return Some(node)

This allows to directly match for a type without writing a dedicated
extractor object, but has the drawback that no extractor objects
can be nested inside the expression.

4.2. Quickfix

The quickfixes apply the actual refactoring to the code when acti-
vated.

Because the quickfix class is used to associate a quickfix with a
reported problem (see 4.3 on page 74), each quickfix needs to be in
it’s own class. Each marker has an associated problem id, for which
quickfixes can be registered. This allows to decouple the detection
of a potential problem, and a proposed quickfix.

The following quickfixes were implemented in the ch.hsr.ifs.cdt.

smartor.quickfix.quickfixes package:

• LocalToNonOwningPtr: Local raw pointer to non_owning_ptr

refactoring.

• LocalToSharedPtr: Local raw pointer to std::shared_ptr refac-
toring (not used).

• LocalToUniquePtr: Local raw pointer to std::unique_ptr refac-
toring.

69



4. Implementation

• ParameterToNonOwningPtr: Raw pointer parameter to non_owning_ptr

refactoring.

• ParameterToUniquePtr: Raw pointer parameter to std::

unique_ptr refactoring.

• ReturnToNonOwningPtr: Raw pointer return value to non_owning_ptr

refactoring.

• ReturnToUniquePtr: Raw pointer return value to std::

unique_ptr refactoring.

• ExtractRawPointer: Refactoring to extract raw pointer from a
smart pointer argument using get() if the argument is passed
to a raw pointer parameter.

• ExtractRawPointerAll: Mass-refactoring for ExtractRawPointer

that is automatically applied to all uses of an identifier.

4.2.1. Architecture

To share the logic between the often similar quickfixes, a type hier-
archy was introduced:

70



4.2. Quickfix

QuickFix

SmartPointerQuickFix SmartPointerFactory

SmartPointerDefinition

FunctionQuickFixLocalToNonOwningPtr LocalToUniquePtr

ReturnToUniquePtrReturnToNonOwningPtrParameterToUniquePtrParameterToNonOwningPtr

QuickFix is the base class for all quickfixes. It provides the frame-
work to identify the marked statement in the sourcecode, traverse
all occurrences of a variable, and to finally commit the changes to
the sourcecode.

SmartPointerQuickFix is the base class for all quickfixes that refactor
the use of raw pointers to smart pointers. It contains the code
to replace initialization and assignment statements containing raw
pointers with equivalents for smart pointers.

FunctionQuickFix is the base class for all quickfixes that modify the
function itself and not only its body (i.e. parameters and return
value). It contains the necessary logic to traverse all uses of the
function, to be able to adjust the callers accordingly.

SmartPointerDefinition

The abstract class SmartPointerDefinition encapsulates the partic-
ularities of the individual smart pointers. In particular:

• The namespace the smart pointer is in.

71



4. Implementation

• The name of the pointer.

• The header to include.

• Whether or not the header should be copied from the ones
distributed with the plug-in.

• The initializer expressions (e.g. std::make_unique).

Note that two initializer expressions are available: getInitializerExpression

() and getEqualInitializerExpression(). These are required because
direct initialization ( getInitializerExpression()) usually only re-
quires the pointer, where an an assignement ( getEqualInitializerExpression
()) requires the pointer to be wrapped with the constructor call or
e.g. a std::make_unique due to the explicit constructor.

The SmartPointerDefinition instances are created using the
SmartPointerFactory, which provides a place to switch between
various smart pointers (std, Boost, Qt, ...). So far only the
Standard C++ Library version has been implemented though.

4.2.2. Control Flow

The primary entry point for the quickfix is the QuickFix.modifyAST

(index: IIndex, marker: IMarker) method, which is called by the
framework when the quickfix is activated. modifyAST employs
the template method patter1, in order to centralize most logic
in the base classes and only deferring the particualrities to the
subclasses.

The template method operations are:

• getTargetStatement(node: IASTNode): Retrieves the primary
target statement that should be refactored. This is required
because the quickfixes operate on different targets such as
local variables, parameters and return values. Based on
the primary target statement, further target statements are
identified as occurrences of the same variable.

1Wikipedia, Template Method .

72



4.2. Quickfix

• getNewStatement(targetStatement: IASTNode, isReportedNode:

Boolean): Option[IASTNode]: Returns the refactored replace-
ment statement for a target statement.

• handleIncludes(r: ASTRewrite, ast: IASTTranslationUnit,

destination: IFolder): Unit: allows the subclasses to add
includes to the ASTRewrite.

Applying the quickfix then involves:

• Finding the target statement:

1 val targetStatement = getTargetStatement(

astName)

• Processing all occurrences of the target statement:

1 processOccurrences(targetStatement.get).

foreach { x =>

2 x._2 match {

3 case null => r.remove(x._1 , null)

4 case _ => r.replace(x._1, x._2, null)

5 }

6 }

Each statement is either removed if its replacement is null, or
replaced otherwise. The replacement statements are created
using getNewStatement().

• Handling of includes:

1 handleIncludes(r, ast , marker.getResource

.getProject.getFolder("smartor"))

handleIncludes allows subclasses to include header files. The
subfolder for header includes is hardcoded to “smartor”.

• Committing the changes:

1 r.rewriteAST.perform(new

NullProgressMonitor);

After this the changes are written back to the file.

73



4. Implementation

4.2.3. Includes

The plug-in supports copying headers to a a project. This func-
tionality is used to include headers shipped with the plug-in, such
as exempt_ptr.h. This works especially well because many smart
pointers, such as the boost implementation, are header only im-
plementations which makes it easier to include the smart pointer
implementations.

Includes are shipped in the headerFile/ptor/ subdirectory of the
plug-in, and are copied to the smartor subdirectory of the target
project.

The handling of includes is implemented in SmartPointerQuickFix.

handleIncludes(), which adds an #include statement to the source
file if not already present and copies the header if SmartPointerDefinition

.copyHeader is true.

To ensure that the header is found, the include path of the target
project needs to be adjusted, which is done automatically by the
GnuCppIncludePathAdder. GnuCppIncludePathAdder adds a new include
path relative to the target workspace to the project, if not already
present.

4.3. Checker-Quickfix association

The problems which can be reported by the checker are registered
in plugin.xml:

1 <extension

2 point="org.eclipse.cdt.codan.core.

checkers">

3 <checker

4 class="ch.hsr.ifs.cdt.smartor.checker

.Checker"

5 id="ch.hsr.ifs.cdt.smartor.plugin.

Checker"

6 name="Smartor Warning Checker">

7 <problem

74



4.4. Tests

8 category="org.eclipse.cdt.codan.

core.categories.CodeStyle"

9 defaultEnabled="true"

10 defaultSeverity="Warning"

11 description="Smartor Warning"

12 id="ch.hsr.ifs.cdt.smartor.plugin

.error.LocalRawPointer"

13 name="Smartor"

14 messagePattern="Smartor: &apos;&

apos ;{0}& apos;&apos;">

15 </problem >

16 </checker >

17 </extension >

Each problem has an id, which is used by the checker’s reportProblem

() method.

Each quickfix can then be registered to such an id using the
problemId attribute in plugin.xml:

1 <extension

2 point="org.eclipse.cdt.codan.ui.

codanMarkerResolution">

3 <resolution

4 class="ch.hsr.ifs.cdt.smartor.

quickfix.ConvertToUniquePtr"

5 problemId="ch.hsr.ifs.cdt.smartor.

plugin.error.localRawPointer">

6 </resolution >

7 </extension >

If the checker now reports a problem, the associated quickfixes are
offered to the user. Further can all problems individually be turned
on or off in the configuration.

4.4. Tests

The project was developed using a test driven approach. Therefore
a set of JUnit testcases has been implemented. All tests are in a
separate project ch.hsr.ifs.smartor.test to avoid dependencies of

75



4. Implementation

the main plug-in on the test infrastructure. The tests have been
written in Scala and reuse the test infrastructre of codan.

Because each test class can only test one quickfix, one test per quick-
fix had to be implemented.

4.5. Review

Unfortunately we were not able to implement all analysed features
before end of the project. However, most of the more difficult prob-
lems such as node traversal, and finding callers of functions have
been solved.

To document missing parts, unittests have been written for all miss-
ing features.

Note that the ExtractRawPointer and ExtractRawPointerAll refactor-
ings are no longer required, because the raw pointer is now auto-
matically extracted during the smart pointer refactorings. Instead a
refactoring for owning smart pointers to transform the call to get()

to release() would be required. For this ExtractRawPointer and the
corresponding check in the checker can serve as basis.

The code is otherwise well structured, easy to extend and work with
and should thus be a good starting point for further work. The ar-
chitecture was designed primarily to share logic among similar quick-
fixes. Flexibility has been introduced where required, e.g. by encap-
sulating the smart pointer knowledge in SmartPointerDefinition.

4.6. Scala

The plug-in was written completely in Scala, as a learning experience
and to make use of Scala features such as the pattern matching,
which we hoped to be useful when analyzing the AST.

76



4.6. Scala

Scala is a programming language that runs in the JVM, is fully
object-oriented, supports aspects of functional programming, and
has a focus on a concise syntax. For an introducation to Scala “A
Tour Of Scala”2 can be recommended.

This section is going to highlight a couple of features that were found
to be particularly useful.

4.6.1. Seamless integration with Java

Scala integrates seamlessly with java as Scala can call java code,
and java can call Scala code. We were thus able to write our project
fully in Scala, although the base classes we had to extend and the
whole eclipse framework are pure java code. This works because
Scala code compiles to bytecode for the JVM, just like normal java
code.

4.6.2. val/var

Scala allows to specify identifiers as either val or var.

var is a normal variable, which can be reassigned and changed as
we’re used to from e.g. Java.

val is an immuatble variable, which cannot be reassigned, while the
value remains mutable.

1 var v1: MyType = new MyType

2 v1 = new MyType // valid

3 val v2: MyType = new MyType

4 v2 = new MyType // invalid

5 v2.modify () //valid

By trying to avoid var and using val whereever possible it be-
comes much easier to track variables. Note how this effectively re-
moves the problem of identifiers changing semantics as described in
Section 3.3.2 on page 34.

2scala-lang.org, A Tour of Scala.

77



4. Implementation

4.6.3. Pattern Matching

The pattern matching supported by Scala’s match keyword, is
a great feature that is applicable in a lot of cases and was used
throughout the codebase. A nice example is down-casting of
values:

1 x match {

2 case name: IASTName => doSomething

3 case node: IASTNode => doSomething

4 case _ => println("Not a name nor a node")

5 }

This notation provides a concise and extensible way to downcasting,
while still handling errors in the default case ( case _).

For a detailed example how pattern matching was used in the im-
plementation of the checker using extractor objects see 4.1.2 on
page 67

4.6.4. Exception handling

A try-catch block has a return value just like any other function. It
is thus possible to do something like this:

1 val ast = try {

2 val tu: ITranslationUnit =

getTranslationUnitViaEditor(marker);

3 tu.getAST(index , ITranslationUnit.

AST_SKIP_INDEXED_HEADERS);

4 } catch {

5 case e: CoreException=> e.printStackTrace ()

; return;

6 }

Because the last value in an expresssion is automatically the return
value of the expression, ast is automatically assigned with the result
of tu.getAST() if no exception occurs.

78



4.6. Scala

4.6.5. Option

The Option construct is extensively used throughout the code. It
allows to transport an optional value, similar to boost:optional.
This has the same semantic advantages, but the Scala version also
provides a some nice syntactic possibilities:

• None represents an empty option, Some a non-empty one.

• Instead of testing the option using an if statement, foreach can
be used:

1 option.foreach{ val =>

2 doSomething(val)

3 }

• If the path were the option is emtpy needs to be handled,
matching is more suitable:

1 option match {

2 case Some(val) => doSomething(val)

3 case None =>

4 }

4.6.6. foreach

foreach provides a nice notation to iterate over various containers
such as Option and Array:

1 array.foreach{ val =>

2 doSomething(val)

3 }

4.6.7. Concise notation

Scala supports a very concise notation by allowing to skip many
unnecessary symbols such as semicolons, braces in function calls
and variable identifiers. To give you an idea:

79



4. Implementation

• Semicolons can be omitted when at the end of a line:

• Overridden functions don’t require the full function declara-
tion:

1 //A function with a String as return

value

2 override def getLabel = "Quickfix Label"

3 //A function with a Option[IASTNode] as

return value

4 override def getTargetStatement(node:

IASTNode) = Some(node)

Note that in the second example the argument only needs to
be specified because node is used in the assigned expression.

• Braces can be ommited when calling getters:

1 marker.getResource.getProject.getFolder("

smartor")

This greatly helps to reduce the boilerplate code that needs to be
written and to remove the visual clutter.

4.6.8. Java Conversions

Although it is possible to maintain a mixed maven project using
the Scala-maven-plugin — that means using Scala and Java source
files in one project — we decided to go with a pure Scala way for
simplicity reasons. For that reason we had to convert some source
files we work with into Scala.

The conversion was not very difficult and more or less a one to one
translation from Java source code statements into Scala. To deal
with collection classes the use of JavaConversions from Scala was
benefical.

1 import collection.JavaConversions._

2 val includePaths = includeOption.

getIncludePaths ().toSeq + includePath

80



4.6. Scala

The snippet shows how implicit conversions for Java are imported.
includeOption is a reference to an instance of IOption, a Java inter-
face provided by the eclipse framework. After the import statement
Scala is able to implicitly convert Java collections into Scala and
vice versa. This way we didn’t have to clutter the source code with
type conversions.

4.6.9. Conclusion

Overall the use of Scala in this project has been a great experi-
ence. We gained many insights into different programming patterns
than what we are used to from C++ and Java, and the integration
between Java and Scala was smooth.

Especially the pattern matching helped to write code that is concise,
reliable and easy to extend. While not all things are very intuitive
(e.g. how Maps are handled), there were no insurmountable Prob-
lems, and it was overall a pleasure to use.

Because we were new to Scala, it certainly slowed us down in the
beginning, but we think this learning experience payed off.

We can clearly recommend Scala for Eclipse plugins as we did face
any Scala related issues and the resulting code was an improvement
on what we could have done using Java.

81





5. Conclusion

This chapter reviews the results of our work and gives an outlook
how project can be continued. It also includes our personal state-
ments.

5.1. Accomplishments

During this bachelor thesis we examined how a plug-in can assists
a developer at finding raw pointers and convert them into smart
pointers. The following achievements are notable:

• The thesis contains an analysis of pointer roles as well as their
possible conversions into smart pointers.

• Although the ownership tracking approach was not successful
it analyses where the problems lie, which could be useful for
future work on the topic.

• We created an Eclipse CDT plug-in that finds raw pointer is-
sues and marks them in the editor. The developer may choose
to manually resolve the issue or invoke a quick fix we provided
for various cases. The quick fix automatically converts the
pointer into a suitable smart pointer.

• The plug-in has support for smart pointers introduced with
C++11 as well as a newer smart pointer proposal that is going
to be implemented in a future C++ version.

83



5. Conclusion

• We verified that Scala is benefical in many areas of our project.
The pattern matching mechanism resulted in cleaner and more
readable source code. It is a neat way to match against types
and thus helps avoiding conditional statements for type check-
ing.

5.2. Future Work

There are multiple options to continue this project:

• The handling of all special cases can be finished based on the
already implemented test cases.

• Pointer to strings and pointer to arrays provide a field of spe-
cial cases for further analysis and would be also a useful addi-
tion to the plug-in.

• The heuristic to determine ownership can be improved and
extended.

• Pointer tracking using symbolic execution would allow to make
large scale refactorings throughout uses of a raw pointer.

5.3. Personal Statements

This section contains our personal statements on this project.

5.3.1. André Fröhlich

The subject of our thesis gave me once more the opportunity to
develop an Eclipse plug-in and to intensively deal with one aspect
of the C++ programming language. In addition, this project gave
me the chance to deal with Scala and functional programming, what

84



5.3. Personal Statements

is not part of the regular curriculum at the University of Applied
Sciences Rapperswil.

I could learn a lot about C++ again. Christian Mollekopf had more
experience in C++ and better sense for the pointer issue as I did. I
was able to greatly benefit from working with him. I also benefited
from the supervision of Prof. Peter Sommerlad, who often gave us
valuable inputs. I used to see smart pointers only as better alterna-
tive to manual memory management using raw pointer. However,
at the project I learned to appreciate the semantic expressiveness of
smart pointers.

I did enjoy learning Scala. Some elements of Scala also helped me to
better understand concepts of other programming languages. Mirko
Stocker’s knowledge of Scala is immense and the possibility to get his
help was very useful. I was able to develop a better sense for func-
tions without side effects and the use of constant variables. Scala
also helps to write clearer, less bloated code. I can imagine using
Scala instead of Java for future projects.

During the project we had often problems with our build system
using Maven and Tycho. It was not always easy to solve the prob-
lem and it took a lot of time that we would have better used for
something else.

In the second last meeting, two weeks before the end of the project,
we found out that we did not understand our task, as we should. For
me, this was a very frustrating experience. We falsely assumed that
smart pointers are primarily a better way for memory management
as raw pointers in C++. We knew that it is possible to demonstrate
the semantic meaning of pointers as we also analyzed the various
pointer roles. However, we have failed to understand that the roles
should be used as the starting point for our analysis. Of course, we
have the remaining time as good as possible in order to correct our
mistake.

Finally, the project was pretty exhausting, but I was able to learn
a lot. The topic is very interesting and the Scala a language was
enrichment both for the project, as well as for my experience.

85



5. Conclusion

5.3.2. Christian Mollekopf

As our second project using eclipse as a platform and maven as
buildsystem it was somewhat frustrating to see that we were run-
ning again in many setup and buildsystem problems. Although most
problems could be solved in the end and often proved to be a real
issue in a configuration file or the other, the errors often appeared
without any specific action taken and seldomly with a useful error
description. This cost a lot of time during the project, that would
have been better spent otherwise. It was however a familiar expe-
rience working with the eclipse frameworks with its (overly?) loose
coupling.

As we established in our second last meeting, that we apparently
didn’t have the same understanding of our task as our advisors was
obviously also not necessarily what we had hoped for. According to
our task description our target was to analyse how raw pointers can
be refactored into smart pointers, and provide suitable refactorings.
There are however different approaches to that. Before the project
my personal understanding of what a smart pointer is for, was the
memory management, and never really the revealing of semantics. I
though of it really just as a way for the compiler to enforce that there
is no memory leak. Coming from that line of thought, there are only
two major smart pointers: std::unique_ptr and std::shared_ptr,
and naturally I also assumed that the primary motivation for using
smart pointers was to get rid of the error prone manual memory
management.

Of course I started to see the value of the semantics, especially
as non_owning_ptr came into the picture, and we suddenly started
to discuss things like boost::optional (which I would never have
introduced to the project, due to my understanding). However, I’ve
seen the semantics as ”bonus points” while the primary target still
was to remove the manual resource management. Of course I should
have realized that this is not what was expected, but at this point
I was already deep down the rabbit hole called ”tracking pointer
ownership”. The ownership of a pointer is indeed an important

86



5.3. Personal Statements

feature to be able to automatically refactor a memory management
system, but not so much to to attach semantics to a pointer (where
we either need no tracking at all, or only have to track within a very
limited scope). In the end we wanted to solve a problem which was
much to difficult within the scope of this project, and didn’t realize
that this wasn’t the problem we were expected to solve. We also
realized too late that the problem we wanted to solve was much too
difficult.

After realizing, we unfortunately only had two weeks left, within
which we basically had to rewrite the whole analysis, as the approach
we started with didn’t really fit anymore. For instance it didn’t
make sense anymore to try to identify specific patterns in the code
which can be refactored (which we did because we wanted identify
specific constellations in which we can determine the ownership), if
all we really had to do is find declarations and offer all available
refactoring options. While the “new” task is a lot simpler and far
more straightforward, it still requires a lot of time to implement,
which we didn’t have at this point in time. Nevertheless we tried
our best to still achieve something useful within that timeframe and
hope the result goes now more in the expected direction.

However, there were also very positive aspects in the project. I
enjoyed a lot to work with Scala, which was a breath of fresh air
in the Java landscape. I think Scala has a lot of nice concepts, and
although I’m far from really understanding the full capabilities of
the language, I still got a nice insight and would definitely consider
to write my next project where I’m forced to interact with Java
using Scala.

I also ended up thinking a lot about programming languages in terms
of semantics of expressions, where even seemingly trivial things, like
the identifier not being the same as the underlying variable, and why
it can get messy if the underlying value can change, really started
to become clear to me. I got to appreaceate the conveyed semantics
by various language constructs and smart pointers more, optional

being one of constructs I always made a circle around so far, and
where I now can think of loads of places where I wished it was

87



5. Conclusion

used (default constructed values really can’t be the solution to that
problem).

Overall, the project ended up being a bit strenuous, but still proved
to be a great learning experience. Unfortunately we couldn’t get
everything to the state where we would have liked it, but I think we
still laid a foundation that a future project could build upon.

88



A. Organisation

Every software development project has to have some sort of organ-
isation. This chapter gives an overview on the approach we used
and how the project was planed. It shows how the plan actually
turned out.

A.1. Approach

The regulation of our school limits the time we can and should spent
on this project. Therefore the scope of our project has to be open.
Much of the organisation is specified by the supervisor of the thesis.
Prof. Sommerlad favored weekly meetings in which the next steps
as well the previous are discussed.

Once a week — usually on monday afternoon — we met with profes-
sor Sommerlad and his assistant in the working room of the Institue
for Software at the University of Applied Sciences Rapperswil. On
the agenda is to tell him what happend in the past week, discuss
open problems and agree on the next steps. This leads to an incre-
mental software development approach.

For collaboration we decided to use Redmine. It provides support
for issue tracking, displaying gantt charts, document management
and a project wiki.

89



A. Organisation

A.2. Project Plan

Although the next steps are discussed week by week, we created a
project plan first. It serves as a rough guide helping ous to determine
our next steps every week.

A.2.1. Intended Plan

Spring Term 2013

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Kick off

Non-owning ptrs

Local scoped ptrs

Char* support

Function arguments

Functions returns

Functions returns

Poster, video, manual

Spare

Delivery

90



A.2. Project Plan

Of course we couldn’t follow the plan as there are many unexpected
outcomes during the development. With the weekly meetings we
could flexible change our course and still having a direction.

The plan shows we falsely assumed this semester had fourteen weeks
as usual but actually it had fifteen weeks.

A.2.2. Actual Plan

Spring Term 2013

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Kick off

Local Ptrs

Return Values

Non-owning Ptr

Argument/Parameter Ptrs

Revision

At the beginning we have used more time, because we had prob-
lems with the build system and also worked out our objectives. In
addition, we had little experience with Scala.

In the second last meeting we realized that we did not understand
our task, as we should. We falsely assumed that smart pointers are
primarily a better way for memory management as raw pointers in
C++ and built our analysis on that assumption. In the last two
weaks our main focus was to revise our work.

91



A. Organisation

A.3. Time Report
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 T

Target
Fröhlich
Mollekopf

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 30 30 360
21.5 24 19 14 24 16.5 22 24 19 23.5 23 21 25 16 18 42.5 51 404
21 17 21 12 32 4 15 22 19 22 24 30 22 16 30 48 50 405

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Target Fröhlich Mollekopf

Figure A.1.: Time spent per week

The figure shows how much hours we spent working on this project
per week. Time shortfalls due to illness or vacation were compen-
sated over the whole project duration.

The effort for this module should correspond to 12 ECTS credit
points or 360 hours of work. The total time spent on this thesis per
person:

• André Fröhlich 404 hours

• Christian Mollekopf 405 hours

These numbers include an estimation of the effort that was done
after the print of this thesis.

92



B. Environment

Creating Eclipse plug-ins is a complex task. This chapter gives an
overview about the tools used in this project. It also severs as a
brief introduction to the relevant areas of the Eclipse framework.

B.1. Tools

• Eclipse C/C++ Development Tooling is a project based
on the Eclipse plattform which provides a fully functional C
and C++ integrated development environment.

• Eclipse is a software development environment with an ex-
tensible plug-in system.

• Git is a distributed source code management system.

• Jenkins is an open-source continous integration server.

• Maven is a build manager for Java projects.

• Redmine a web application for project management.

• Tycho is set of Maven plug-ins and extensions for building
Eclipse plugins.

• GCC 4.8 is used to compile C++ files and support the new
C++11 standard.

• LATEX is the document markup language we used to write this
thesis.

93



B. Environment

B.2. Eclipse Plug-ins

To develop an Eclipse plug-in using Scala several plug-ins are re-
quired. This section shows what plug-ins we used and what they
are good for.

B.2.1. Installation

Where not otherwise specified, we used the Eclipse Juno update site.
To install a plug-in simply go to “Help→ Install New Software...”.

Figure B.1.: The Eclipse dialog to install new software.

94



B.2. Eclipse Plug-ins

The figure shows the Eclipse dialog to install new software. Under
“Work with:” the default Juno update site is selected. The screen-
shot also shows how to use the search field. While using the search
field, it may happen that Eclipse responds slowly.

This dialog can also be used to install software from other update
sites. Ether the address can be entered directly or may be managed
using the “Add” button.

B.2.2. Eclipse Plug-in Development Environment

If you don’t use the Eclipse RCP package you need to install this
plug-in to get the environment for developming Eclipse plug-ins.

B.2.3. Scala IDE for Eclipse

The Scala IDE for Eclipse is a powerful plug-in providing a complete
IDE to develop in Scala.

The update site for Eclipse Juno is: http://download.scala-
ide.org/sdk/e38/scala210/stable/site

B.2.4. C/C++ Development Tools

You don’t have to install this plug-in into your plug-in development
Eclipse instance, but it may be convenient. If it isn’t installed it can
be provided using a .target file.

B.2.5. Jeeeyul’s Eclipse Themes - Chrome

Originally, this plug-in is designed to make Eclipse Juno more beau-
tiful. As it often happens during the development of Eclipse plug-ins
that more then one Eclipse instance is running, we use this plug-in
to give each instance a different appearance.

95



B. Environment

It can be installed using this update site: https://raw.github.

com/jeeeyul/eclipse-themes/master/net.jeeeyul.eclipse.

themes.updatesite

After the installation it can be activated in the Eclipse preferences
under “General → Appearance”. Once it is active it can be cus-
tomized in “General → Appearance → Chrome Theme”.

B.2.6. IFS CDT Testing

This plug-in helps to test Eclipse CDT plug-ins.

The update site is found on: http://dev.ifs.hsr.ch/updatesites/
cdttesting/juno

B.2.7. Issues

Run Configurations

To avoid the “Setup Diagnostics” dialog while testing the plugin, it
is recommended that the Scala IDE isn’t launched with the plug-
in. This can be achieved by editing the “Run Configurations”. In
the “Plug-ins” tab “Launch with” should be changed to “plug-ins
selected below only”. Disable all unnecessary plug-ins like those of
the Scala IDE. However, a Scala library is however needed and the
plug-in providing it must remain enabled.

As an alternative it is also possible to select “org.eclipse.platform.ide”
instead of “org.eclipse.sdk.ide” in the “Run Configuration” in the
“Main” tab under “Run a product”.

Alternatively a .target file can be used. After the activation its
configuration is workspace wide active.

96

https://raw.github.com/jeeeyul/eclipse-themes/master/net.jeeeyul.eclipse.themes.updatesite
https://raw.github.com/jeeeyul/eclipse-themes/master/net.jeeeyul.eclipse.themes.updatesite
https://raw.github.com/jeeeyul/eclipse-themes/master/net.jeeeyul.eclipse.themes.updatesite
http://dev.ifs.hsr.ch/updatesites/cdttesting/juno
http://dev.ifs.hsr.ch/updatesites/cdttesting/juno


B.2. Eclipse Plug-ins

Eclipse CDT C++11 support

Support for C++11 is not provided out of the box by the Eclipse
CDT version we used. This section describes what may be neces-
sary.

Figure B.2.: The addition of the -std=c++11 option is required.

The compiler options can be altered in the preferences. Under
“C/C++ Build→ Setting” in the “Discovery” tab, the “CDT GCC
Built-in Compiler setting” can be specified. It is required to add
the “-std=c++11” option as showed in figure B.2.

Depending on the version of GCC it can be required to add aditional
symbols. Under “C/C++ General→ Path and Symbols” in the
“Symbols” tab, the symbols can be edited as shown in figure B.3.

97



B. Environment

Figure B.3.: Additional symbols can be defined.

B.2.8. Target File

When the plug-in is run Eclipse launches a new instances with the
plug-in and its dependencies. A .target file allows to specify all
required plug-in dependencies a plug-in needs to launch. Eclipse
automaticaly downloads them if necessary. It is an alternative to
configuring run configurations ins Eclipse. The target file can be
activated by opening it and clicking on “Set as Target Platform”.

B.3. Eclipse Static Code Analysis

Eclipse provides a framework for static code analysis called Codan
(CODe ANalysis). It allows plug-ins to provide checkers which per-
form real time analysis on the code1.

1Eclipsepedia, CDT/designs/StaticAnalysis.

98



B.4. Eclipse Abstract Syntax Tree

B.4. Eclipse Abstract Syntax Tree

An abstract syntax Tree (AST) represents the syntactic structure
of source code2. Eclipse CDT provides an interface to its internal
syntax tree data structure, allowing plug-in developers to parse and
manipulate the source code.

Interface

Eclipse provides a rich set of Java interfaces to access its abstract
syntax tree. The following list is a selection and should give you an
overview of the fundamental interface we used for the project.

IASTNode Root node of the abstract syntax tree

IASTAttributeOwner AST node with attributes

IASTDeclarator Base interface for a declarator

IASTSimpleDeclaration Simple declaration

IASTStatement Root node for statements

IASTCaseStatement case statement

IASTCompoundStatement A block of statements

IASTDeclarationStatement Statment for declara-
tion

IASTDoStatement do statement

IASTExpressionStatement Expression statement

IASTForStatement for statement

IASTIfStatement if statement

IASTReturnStatement return statement

IASTSwitchStatement switch statement

2Wikipedia, Abstract Syntax Tree.

99



B. Environment

IASTWhileStatement while statement

IASTDeclaration Root node for declaration

IASTFunctionDefinition Function declaration

IASTSimpleDeclaration Simple declaration

IASTInitializer Initializer for a declarator

IASTEqualsInitializer Initializer with equals sign (=)

IASTInitializerList Braced initializer list

Example

This example gives you a basic understanding how the abstract syn-
tax tree in Eclipse works. The declaration is compound a simple
declaration specifier containing the data type and a declarator con-
taining all the other details. It is itself compound of multiple ele-
ments: one for the pointer, one for the name and one for the equals
initializer. You can imagine this works somehow like a russian ma-
tryoshka doll. With the Scala match expression we do the pattern
matching to navigate through the abstract syntax tree.

1 int *x = new int {1};

The code line above shows a simple statement written in C++. The
tree below shows how this code is stored internaly.

100



B.4. Eclipse Abstract Syntax Tree

IASTSimpleDeclaration

IASTEqualsInitializer

ICPPASTNewExpression

ICPPASTInitializerList

ICCPASTLiteralExpression

1

ICCPASTTypeId

ICPPASTSimpleDeclSpecifier

int

IASTName

x

IASTPointer

*

ICPPASTDeclaratorICPPASTSimpleDeclSpecifier

int

The names are rather long because of the vast amount of available
interfaces. With some basic knowledge of C++ it is not too diffi-
cult to understand what interface represents what part of the code.
However, the AST DOM view is very handy to find the appropriate
interface.

Figure B.4.: The DOM AST View

If the view is not visible initially you can use the “Show View”
Dialog under “Window”, “Show View”, “Other” to get it. Clicking
on a node highlights the correspondent part of the code.

101



B. Environment

B.5. Testing

Automated testing with JUnit is possible by extending the Check-
erTestCase class. It provides an interface to load code and run a
checker over it.

1 def testLocalRawPointer (): Unit = {

2 loadCodeAndRunCpp("void foo() { int *x =

new int(3); delete x; }")

3 checkErrorLine (1, ErrorId)

4 }

For Java developers the test facility provides with getAboveComment()

a way to load C++ code from the comment above the test method
which is particularly usefull for larger code snippets with multiple
lines. Since the Eclipse test facility is written for Java develop-
ers, the getAboveComment() Method doesn’t work for our Scala test
classes. Fortunately, this is also not necessary since Scala supports
multi-line strings.

1 def testLocalRawTwoDelete (): Unit = {

2 loadCodeAndRunCpp(

3 """ void foo() {

4 int *y;

5 delete y;

6 int *x = new int(3);

7 delete x;

8 }""")

9 checkErrorLine (2, ErrorId)

10 }

B.6. Build System and Continous
Integration

Building Eclipse plug-ins may be a complex and difficult task. We
have opted for the more modern approach using Maven. To do con-
tinous integration we decided to use Jenkins which regularly build
the Maven project.

102



B.6. Build System and Continous Integration

B.6.1. Tycho

There two main approaches to build Eclipse plug-ins: Apache Ant
with PDE and Apache Maven with Tycho. We used the more mod-
ern build technqiue using Maven and Tycho.

Maven Tycho is a set of Maven plugins. There is no installation
required as Maven automaticaly download the plugin the first time
it needs it.

Normally all building information is in the Maven POM file. How-
ever, Eclipse RCP application and plug-ins are using a manifest file
for that. Tycho is able to sychronize these two approachs bringing
both together. To do so it extends the maven dependency model.

Many eclpse artifacts are not stored in maven repositories but in
p2 repositories instead. With Tycho Maven is able to use these
p2 repositories to solve building dependencies. Tycho is using a
manifest first approach.

Metadata

All Maven configuration data is stored in the pom.xml file. Meta-
data may be distributed over several files:

• bundle manifest (META-INF/MANIFEST.MF)

• build.properties

• Feature.xml

• .product files

• .target files

• category.xml

103



B. Environment

B.6.2. Documentation

To build this thesis we used a LATEXplugin for Maven called LaTeX
Mojo. This plug-in also helps to generate a simple LATEXproject
skeleton:

1 mvn archetype:create \

2 -DarchetypeGroupId=org.codehaus.mojo \

3 -DarchetypeArtifactId=latex -maven -

archetype \

4 -DarchetypeVersion =1.1 \

5 -DgroupId=ch.hsr.ifs \

6 -DartifactId=thesis

The document can be build using the latex:latex Maven goal:

1 cd thesis

2 mvn latex:latex

There is additional documentation about this plug-in the project
website: http://mojo.codehaus.org/latex-maven-plugin/.

B.6.3. Jenkins

Jenkins is an open-source continous integration tool written in
Java3. We setup two projects, one for the plug-in and antoher one
for the documentation. Since both projects are build using Maven
the setup is straightforward. In order that Jenkins is able to fetch
the latest sources we use the Git Jenkins plug-in.

3Eclipse:Jenkins.

104



C. Developer Guide

This chapter guides through the process of setting up a development
environment to extend the plug-in described in this thesis.

C.1. Java, Scala and other tools

For developing the following tools are required:

• Java

• Scala

• Git

• Maven

For more information about the tools, refer to the environment sec-
tion of this appendix.

C.2. Installing the Eclipse IDE

Eclipse can be downloaded from eclipse.org . Any package can be
used as the needed plug-ins can be installed later. A good choice is
the “Eclipse IDE for Java Developers” oder the “Eclipse for RCP
and RAP Developers” package. It is also possible to use the Scala-
IDE Elipse distrubtion that can be found on scala-ide.org.

105

http://www.eclipse.org
http://scala-ide.org


C. Developer Guide

C.3. Plug-ins

There is a set of plug-ins we recommend.

• C/C++ Development Tools

• Eclipse for RCP and RAP Developers

• Tycho Project Configuratiors

• Scala IDE for Eclipse

• IFS CDT-Testing Feature

• Jeeyul’s Themes

Jeeyul’s Themes allows to modify the appearance of Eclipse. It is
helpful to give multiple Eclipse instances different colors in order to
easily distinguish them.

C.4. Importing the project

The source is avaiable as a Git repository. A virtual server is avaible
that provides a central repository. Since the life time of the server
is limited, this repository may no longer available. A copy of the
repository is also provided on the compact disc of this thesis.

The repository contains the source of the plug-in as well as of the
documentation.

C.5. Source overview

The source is distributed over multiple folders.

• ch.hsr.ifs.cdt.smartor contains the plug-in source project

• ch.hsr.ifs.cdt.smartor.feature contains the plug-in featuer
project

106



C.5. Source overview

• ch.hsr.ifs.cdt.smartor.test contains the plug-in test
project

• ch.hsr.ifs.cdt.smartor.p2repository contains the plug-in
p2repository

• documentation contains the LATEXdocumentation

The root folder as well the subfolders are Maven projects, containing
its pom.xml file. Note that the documentation is also built using
Maven.

C.5.1. Manifest and plugin.xml

Dependencies are set in the MANIFEST.MF and plugin.xml files. Eclipse
provides an “Plug-in Manifest editor” helping with editing these
files.

C.5.2. Target file

The target is used to store the plug-ins required to run the plug-
in. When it is activated the plug-ins listed in it doesn’t need to be
installed in the Eclipse instance that is used to develop the plug-in.
Target files are activated workspace wide and not per project.

C.5.3. Markers

Markers are part of the Eclipse CDT Codan project. As part of the
static code analysis framework they provide an interface to mark
passages of the source in an editor. Multiple markers per line are
possible as they are stacked.

The entry point for markers is the Checker class located in
the ch.hsr.ifs.cdt.smartor.checker package. It extends the
AbstractIndexAstChecker class and overrides the processAst Method.
Scalas match Statement is used to distinguish the differnt cases.

107



C. Developer Guide

Possible problem cases are defined in the Problemdefinitions.scala

file in the ch.hsr.ifs.cdt.smartor package.

Testing is done with the SmartorCheckerTest class. It is located
in the ch.hsr.ifs.cdt.smartor.test package of the test project and
extends the CheckerTestCase class and is a JUnit test case.

C.5.4. Quick fixes

The framework also provides a facility to provide quick fixes for
markers. Activating these gives an user the opportunity to trans-
form the reported problem.

The entry point for quick fixes is the the QuickFix class located
in the ch.hsr.ifs.cdt.smartor.quickfix package. The package also
contains subclasses providing the different quick fix functionality for
each case.

108



D. User Manual

This chapter shows the installation process of the Smartor plug-in,
how it is used and its known issues. It is assumed that the reader
is familar with using Eclipse.

D.1. Installation

The following steps guides you through the installation process.

1. Start Eclipse

2. Select “Help→Install New Software ...”

3. Type or paste the URL of the update site into “Work with:”

4. Enable the checkbox to select the plug-in

5. Click the finish button.

D.2. Guide

The plug-in is active after the installation. While writing C++ files
markers are triggered by the use of raw pointers. The occurrence
gets a yellow underline and on the left side of the editor a icon
is placed to indicate the issue. It is possible to resolve the issue
manually or the activate a quickfix using the icon in the editor or
using a shortcut — usually Strg+1 or Cmd+1 on Mac.

109



D. User Manual

Figure D.1.: The plug-in displays raw pointer issues.

Figure D.2.: The plug-in removes delete statements, calls the get()
function and adds include statements if needed.

As shown in figure D.2 the plug-in can also add include statements
and in the case of a non-owning pointer it also adds the needed
header file to the project and setups the include path in the project

110



D.3. Known Issues

preferences. It also removes delete statements and uses the get()
function of a smart pointer if needed.

D.3. Known Issues

The plug-in only operates as part of eclipes code analysis. To man-
ually trigger the analysis process, right click on a file in the “Project
Explorer” and select “Run C/C++ Code Analysis”.

The functionality to convert pointers is limited by the cases men-
tioned in the Analysis section of this thesis.

111





E. Nomenclature

AST Abstract syntax tree — represents the source code as tree
data structure.

Best Practice A method or technique that yields results superior
those achieved with other means.

Callee The callee is the function that is being called.

Caller The caller is the code that calls this function.

Checker Responsible for placing markers.

Codan Eclipse’s static code analysis project.

Coding Convention A set of guidelines that recommend a pro-
gramming style.

Dangling Pointer A pointer that does not point to a valid object.

Eclipse RCP A platform for building rich client applications.

Empty Smart Pointer A smart pointer that points to no object
(shall not be dereferenced).

Indentifier An identifier in the source code (e.g. in int x; is x
the identifier).

Intention Revealing Language Construct Language con-
structs such as references, boost::optional or smart pointers.

JVM Java Virtual Machine.

Manifest file Contains project information for building Eclipse
RCP applications and plug-ins and can be used with Maven
through Tycho.

113



E. Nomenclature

Marker Marks an issue in the editor.

Maven A build system with dependency managment and a plug-in
system.

Move Semantics C++11 feature that models the move of a value,
rather than a copy or a reference.

Non-owning Pointer A pointer role where the pointer does not
owne the resource.

Null Smart Pointer A smart pointer that doesn’t own any
pointer.

OSGi Open Services Gateway initiative — a module system for
the Java platform.

Owning Pointer A pointer role where the pointer own the re-
source.

POM Project Object Model — contains project information for
Apache Maven

Pointee The object/resource a pointer points to.

Pointer Provides direct access to a memory address on a low level.

Quick fix Possible solution to an issue like a small refactoring.

RAII Resource Acquisition Is Initialization - A programming id-
iom that deals with resource allocation and deallocation.

Refactoring Altering code without changing its behavior.

Shared Pointer A smart pointer for shared ownership.

Smart Pointer simulates a pointer but can reveal pointer role
semantics and provide memory management.

Symbolic execution Analysis of programs by tracking symbolics.

Target file Allows to specify all required plug-in dependencies
that a plug-in needs to launch.

114



Tycho A Maven plug-in for building Eclipse RCP applications and
plug-ins.

Unique Pointer A smart pointer for single ownership.

115





F. Bibliography

Boost. boost::shared ptr class template. [Online; accessed 28-04-
2013]. 2013. url: http://www.boost.org/doc/libs/1_53_0/
libs/smart_ptr/shared_ptr.htm.

Brown, Walter E. N3514: A Proposal for the World’s Dumbest Smart
Pointer. [Online; accessed 28-04-2013]. 2012. url: http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3514.

pdf.
Eclipsepedia. CDT/designs/StaticAnalysis. [Online; accessed 25-05-

2013]. 2013. url: http://wiki.eclipse.org/index.php?

title=CDT/designs/StaticAnalysis&oldid=283283.
Hinnant, Howard. Why isn’t there a std::shared_ptr<T[]> special-

isation? [Online; accessed 28-04-2013]. 2013. url: http : / /

stackoverflow.com/a/8947700.
Lavavej, Stephan T. N3588: make unique. [Online; accessed 28-04-

2013]. 2013. url: http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2013/n3588.txt.

Odersky, Martin, Lex Spoon, and Bill Venners. Programming in
Scala. Second Edition, Updated for Scala 2.8. Walnut Creek,
Calif: artima, 2010. isbn: 978-0981531649.

qt-project.org. QObject Trees & Ownership. [Online; accessed 25-
05-2013]. 2013. url: http://qt-project.org/doc/qt-4.8/
objecttrees.html.

— Qt Project. [Online; accessed 25-05-2013]. 2013. url: http://
qt-project.org/.

scala-lang.org. A Tour of Scala. [Online; accessed 06-06-2013]. 2013.
url: http://www.scala-lang.org/node/104.

Software, IDE. DOOM3 Sourcecode. [Online; accessed 25-03-2013].
2013. url: https://github.com/id-Software/DOOM-3/.

117

http://www.boost.org/doc/libs/1_53_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_53_0/libs/smart_ptr/shared_ptr.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3514.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3514.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3514.pdf
http://wiki.eclipse.org/index.php?title=CDT/designs/StaticAnalysis&oldid=283283
http://wiki.eclipse.org/index.php?title=CDT/designs/StaticAnalysis&oldid=283283
http://stackoverflow.com/a/8947700
http://stackoverflow.com/a/8947700
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3588.txt
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3588.txt
http://qt-project.org/doc/qt-4.8/objecttrees.html
http://qt-project.org/doc/qt-4.8/objecttrees.html
http://qt-project.org/
http://qt-project.org/
http://www.scala-lang.org/node/104
https://github.com/id-Software/DOOM-3/


F. Bibliography

Sutter, Herb. Trip Report: ISO C++ Spring 2013 Meeting. [Online;
accessed 28-04-2013]. 2013. url: http://isocpp.org/blog/
2013/04/trip-report-iso-c-spring-2013-meeting.

Toit, Stefanus Du. N3337 Working Draft, Standard for Programming
Language C++: The class template auto ptr is deprecated. Note:
[ The class template unique ptr 20.7.1 provides a better solution.
-end note ]. 2012.

Wikipedia. Abstract Syntax Tree. [Online; accessed 25-05-2013].
2013. url: http : / / en . wikipedia . org / wiki / Abstract _

syntax_tree.
Wikipedia. C++ Standard Library. [Online; accessed 25-05-2013].

2013. url: http : / / en . wikipedia . org / wiki / C % 2B % 2B _

Standard_Librar.
Wikipedia. Factory Method. [Online; accessed 25-05-2013]. 2013.

url: http://en.wikipedia.org/wiki/Factory_method_

pattern.
Wikipedia. Pointer (computer programming). [Online; accessed

01-06-2013]. 2013. url: http://en.wikipedia.org/w/index.
php ? title = Pointer _ (computer _ programming ) &oldid =

554897073.
— Smart pointer. [Online; accessed 01-06-2013]. 2013. url: http:

//en.wikipedia.org/w/index.php?title=Smart_pointer&

oldid=556415178.
Wikipedia. Template Method. [Online; accessed 25-05-2013]. 2013.

url: http://en.wikipedia.org/wiki/Template_method_
pattern.

Yasskin, Jeffrey. N3609: string view: a non-owning reference to a
string, revision 3. [Online; accessed 28-04-2013]. 2013. url:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2013/n3609.html.

118

http://isocpp.org/blog/2013/04/trip-report-iso-c-spring-2013-meeting
http://isocpp.org/blog/2013/04/trip-report-iso-c-spring-2013-meeting
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/C%2B%2B_Standard_Librar
http://en.wikipedia.org/wiki/C%2B%2B_Standard_Librar
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/wiki/Factory_method_pattern
http://en.wikipedia.org/w/index.php?title=Pointer_(computer_programming)&oldid=554897073
http://en.wikipedia.org/w/index.php?title=Pointer_(computer_programming)&oldid=554897073
http://en.wikipedia.org/w/index.php?title=Pointer_(computer_programming)&oldid=554897073
http://en.wikipedia.org/w/index.php?title=Smart_pointer&oldid=556415178
http://en.wikipedia.org/w/index.php?title=Smart_pointer&oldid=556415178
http://en.wikipedia.org/w/index.php?title=Smart_pointer&oldid=556415178
http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3609.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3609.html

	Introduction
	Project Duration
	Report Contents
	Target Audience

	Objectives
	Motivation
	Vision
	Focus
	Agreement

	Analysis
	Pointer Roles
	Available Smart-Pointers
	The purpose of smart pointers
	Available smart pointers and other intention revealing constructs
	std::unique_ptr
	std::shared_ptr
	std::weak_ptr
	std::auto_ptr (deprecated)
	non_owning_ptr
	optional
	boost smart pointers

	Replacing the use of raw pointers
	Choosing the right smart pointer for a refactoring
	An approach for automatic determination of a suitable smart pointer

	Refactoring Cases
	Format
	Scope and Limitations
	Starting points
	Default Cases
	Local pointer: owning pointer
	Local pointer: non-owning
	Function parameter: owning pointer
	Function parameter: Non-owning pointer
	Return value: owning pointer
	Return value: non-owning pointer
	Heuristic to determine ownership: local delete

	Conclusion

	Implementation
	Checker
	Control Flow
	Pattern matching

	Quickfix
	Architecture
	Control Flow
	Includes

	Checker-Quickfix association
	Tests
	Review
	Scala
	Seamless integration with Java
	val/var
	Pattern Matching
	Exception handling
	Option
	foreach
	Concise notation
	Java Conversions
	Conclusion


	Conclusion
	Accomplishments
	Future Work
	Personal Statements
	André Fröhlich
	Christian Mollekopf


	Organisation
	Approach
	Project Plan
	Intended Plan
	Actual Plan

	Time Report

	Environment
	Tools
	Eclipse Plug-ins
	Installation
	Eclipse Plug-in Development Environment
	Scala IDE for Eclipse
	C/C++ Development Tools
	Jeeeyul's Eclipse Themes - Chrome
	IFS CDT Testing
	Issues
	Target File

	Eclipse Static Code Analysis
	Eclipse Abstract Syntax Tree
	Testing
	Build System and Continous Integration
	Tycho
	Documentation
	Jenkins


	Developer Guide
	Java, Scala and other tools
	Installing the Eclipse IDE
	Plug-ins
	Importing the project
	Source overview
	Manifest and plugin.xml
	Target file
	Markers
	Quick fixes


	User Manual
	Installation
	Guide
	Known Issues

	Nomenclature
	Bibliography

