An Introductory Guide to SpecTRM

SpecTRM (pronounced “spectrum” and standing for Specification Tools and
Requirements Methodology) is a toolset to support the specification and development of
safe systems and software. This system development environment supports assurance
through inspections, formal validation tools, and simulation. SpecTRM emphasizes
finding errors early in the development cycle so they can be fixed with the lowest impact
on cost and schedule. The tool facilitates tracing not only requirements, but also design
rationale (including safety constraints) throughout system design and documentation.

This tutorial is an introductory walkthrough. Following the tutorial, you will learn to:

Create a new project

Create a new intent specification

Write requirements in the intent specification document

Create hyperlinks to record traceability information

Model component requirements

Create a simulation of component behavior

Use static analysis to examine the completeness of component requirements

The example used in the tutorial is a simple thermostat. Once you are comfortable with
the ideas in this tutorial, you may wish to look at the altitude switch and cruise control
examples included with SpecTRM. Although still quite simple, their system and
component requirements are more sophisticated than the thermostat presented here.
Additional information is also available in the other books in the online help system.

If you have any questions, please feel free to contact us at support@safeware-eng.com.

Run SpecTRM

Depending on what you chose during installation, SpecTRM may be run from your Start
menu or by double clicking a desktop icon. Run SpecTRM now. SpecTRM will open a
window like the one shown in figure 1, below.

SpecTRM Editor - SpecTRM

File Edit MNavigate Search Project Analysis Simulste Run Window Help

= -E A | 7% e
¥ B v x
o b

+ 1 Exarnple Project

2 outine x

n outling is not available,

= -)
37 Tasks (0 items) 5 2w x

| J| ! | Description Resource | In Folder Location

Cutline | Properties

Figure 1 - SpecTRM application window

At the top of the window is a menu bar of commands. Beneath that is the tool bar.
Vertically along the left side of the window is a bar of buttons for perspectives. A
perspective is a collection of windows that work together to perform a task. The
perspective you are in now is called the SpecTRM Editor Perspective, or just the editor
perspective, for short. We’ll come back to perspectives later.

The editor perspective is divided into four major sub-windows, called views. The view in
the top-left corner of the perspective is the navigator view. The navigator view is used to
browse through projects and open, cut, copy, paste, move, rename, and delete files and
folders. The top right view, empty right now, is used for the editors used to create a
specification. The bottom left view is for an outline of the contents of the editor.

Because no files are open for editing, the outline view displays that an outline is not
available. The bottom right view is the task list, which is used by SpecTRM to warn of
illegal syntax in requirements models.

Creating a Project

1. Select the File > New > Project... command.

2. When the dialog box appears, select SpecTRM from the left side and SpecTRM
Project from the right side, as shown in figure 2.

MHew Project %]

Select
=\

Simple SpecTRM Project
SpecTRM Example SpecTRM Project

| Mext = | Cancel

Figure 2 - Choose New Project Type

3. Click Next. Then on the next page, choose a name for this project, as shown in
figure 3, below.

Mew SpecTEM Project %]

New SpecTRM Projeck
Creakte a new SpecTRM project,

Project name: | Tukarial

Project contents

Iv Use default

< Back | Finish | Cancel

Figure 3 - Choose Project Name

4. Click Finish to create the project.

SpecTRM will create the new project in your workspace. The tutorial project will appear
in the navigator view, as shown in figure 4, below.

E Mavigatar v

o
+-TzF Example Project
1= Tutorial

Figure 4 - Tutorial Appears in the Navigator View

This new project will contain all the files associated with the tutorial project.

Creating an Intent Specification

SpecTRM works with documents called intent specifications. An intent specification
organizes information in a way that supports system and safety engineering. For more
information on intent specifications, consult the papers available at
http://www.safeware-eng.com/index.php/publications

http://www.safeware-eng.com/index.php/publications

1. Select the tutorial project in the navigator view and right-click. Choose New >
Intent Specification from the menu, as shown in figure 5, below.

E Mavigatar v X

G @S
[+-1=# Example Project

-
B Project...
Go Inko
Open in Mew Window £ Folder

Copy N
E Paste Sirnulation Canfiguration

BN visualization

f- Intent Specification

% Delete

Mave... |"_"} Qther.,..
Renarme

Eug Import...
£y Export...

55'}5 Refresh

A= H

@z Qutine Close Project
an outline is

Team k
Compare With k
Replace With k
Restore from Local History...

Properties 57| Tasks (0 items)
[

Figure 5 - New Specification Command

2. Enter a name for the specification file, as shown in figure 6, below.

Mew: Intent Specification [z|

New Intent Specification

Create a new intent specification.

Enter or select the parent Folder:

| Tukarial

+- 1z Example Project
1= Tutorial

File name: | Thermostat

Advanced =»

Finish | Cancel

Figure 6 - New Specification Name

SpecTRM will create a new intent specification file and open it in an editor window, as
shown in figure 7, below.

SpecTRM Editor - Thermostat.spd - SpecTRM EHE”'EQ

File Edit Mavigate Search Projeck Format Analysis Simulste Run Visualizations ‘Window Help

N-EHERa| %[¢ -

ﬁ 5. Mavigator v X
| kit =§= '_\
+ 1 Exarnple Project
- i [N
New Intent Specification
Level 0: Program Management Information
Program Management Plans
System Safety Plan
Accident Definition
Safety Policy
B Gutine - Level 1: System-Level Goals, Requirements, and
+- New Inkent Specification Const ralnts
Introduction 3
4 | ¥
37 Tasks (0 items) i 2w x
|J| ! |Descriptian Resource |In Folder Location

Cutline | Properties

Figure 7 - New Intent Specification

Notice that the type right portion of the perspective is now taken up by the specification
editor. In the bottom left, there is an outline of the document. Expanding that outline
shows the major sections and subsections of the intent specification (see figure 8, below).

= outline
Mew Inkent Specification
+-[= Lewvel 0: Program Management Inform
E Level 1: System-Level Goals, Requiren
E Level 2: System Design Principles
[E Level 3: Blackbox Behaviar
—|-[&= Swstem Blackbaox Eehavior

+ Mew Model

[Hard Page Break]

E user Model
+-[= verification and Yalidation
[E Level 4: Physical and Logical Design Re
[E Level 5: Physical Implementation
E Level 6: System Operations

1]-[H-[F

[[E

£ ¥

Cutline | Properties

Figure 8 - Outline of a New Specification

Editing the Specification

Once the new file is created and opened, it is possible to edit the specification. To
change the name of the specification, place the cursor and type, just as you would with a
word processor.

Thermostat Intent
Specification

Level O0: Program Management Information
Program Management Plans

System Safety Plan

Accident Definition

Safety Policy

Level 1: System-Level Goals, Requirements, and
Constraints

Introduction

Figure 9 - Editor with Specification Title Changed

Next, we’ll add some text to the introduction section of the document.

1. Select the introduction in the outline view.

= outline *
- Thermostat Intent Specification ”
+-[= Lewvel 0: Program Management Infc

- =

+
+
+

o

<

[

Level 1: Syskem-Level Goals, Requ
E

[E Historical Information

E Environment

System Goals

High-Lewvel Requirements
Syskern Limikations

Operatar Requirements
Hazard Analysis

Hazard List and Hazard Log —
[E Design and Safety Constraints
E verification and Yalidation
Level 2: Syskem Design Principles

E
E
E
E
E
E

W

| b

Cutline | Properties

Figure 10 - Selection in Outline View

2. Right-click and select the New > Paragraph command. The new menu also has
options for adding other things to specifications such as new subsections,

component models, etc.

EE Outline b4
= Thermoskat Intent Specification s
+-[E Level 0: Program Management Info
--[E Level 1: System-Level Goals, Requ
S {
= Hista '| [—
H-E Enwrm Bl Condition
E gwsk
= High: Cut 18 Figure
wske oy ard Page Brea
Swsk iZ Hard P Break,
= oper Paste %81 Model
[= Haza Delete B2 paragranh
o [Hazara et sn i Lo d A
+-[= Design and Safety | [= Section
+-[= Verification and Yali B Table
+-[E= Level 2: System Design -
[[N | [N -1 . —
< | >
Outline | Properties

Figure 11 - Add Paragraph Command

3. Now we can add an introduction to the specification, giving a quick overview of

the system.

10

*Thermosl x

Introduction d

The thermostat is a simple tutorial system. 1t will ba usaed to demonstrate the featuras of
SpecTRM.

Meote that additional paragraphs can be added just by hitting Enter from within an existing
paragraph.

Figure 12 - Text Added to the Specification

Using the same procedure, we can add a system-level goal for the thermostat, shown in
figure 13, below. The goal is then refined into a high level requirement.

E Thermostat.spd X

System Goals 2

C1. The thermostat is intended to requlate the temparatura in its anvironment,

High-Level Requirements

HLE1. The system shall maintain a set temperature in its environment by controlling the
activation and deactivation of a furnace,

System Limitations

Figure 13 - System Goal and High-Level Requirement

Creating Traceability Links

It is important to create traceability links that preserve the rationale behind design
decisions. In this case, the high-level requirement HLR1 is motivated by the system goal
G1. This relationship can be recorded using a traceability link.

1. Add the text of the link. In intent specifications, convention is to add links in
parentheses at the end of a requirement, constraint, or section. The link consists
of the identifier of the thing being linked to, such as G1 for the first goal.
Additionally, an arrow is used to indicate where the link points: T for an earlier
intent specification level, 4 for a lower level, « for earlier in the same level, and
— for later in the same level. To add the arrow to the link text, right click in the
editor window and use the Insert Arrow sub-menu. Figure 14, below, shows an
example.

11

System Goals

01, The thermostat is intended 1o regulate the temperature in its environment (— HLEL),

High-Level Requirements

HLR1. The system shall maintain a set temperatura in its environment by cantrolling the

activation and deactivation of a furnace { Q1) Undo

System Limitations
Operator Requirements
Hazard Analysis

Paske

ECIEGTTNS Lp Arrow

Drowry Srrow

isks (0 ikems) Left Arrow

| ! | Description | Resource | In Folder Right Arrow 1

Figure 14 - Adding Link Text and Arrows

2. Highlight the text to hyperlink to another location.

System Goals

1. The thermostat is intended to regulate the temperature in its environment {(— HLE1[.

Figure 15 - Highlight Text to Hyperlink

3. Choose the Format > Create Link... command.

SpecTRM Editor - Thermostat.spd - SpecTRM
File Edit Mavigate Search Project
Paragraph...

»-BEES & ¢
Font...
ﬁ TS, Mavigator Create Link. ..

P e =§= Delete Link
Figure 16 - Create Link Command

Format G

4. Select the file containing the destination for the link. In this case, that’s the

Themostat.spd file. By selecting another file, it is possible to create a link from

text in one file to content in another file.

12

select a File
Select the File ko which ta link,

x]

altitude Switch, spd

Criise Cn:nntrn:nl.sid

| Mext = | Cancel

Figure 17 - Select Destination File

5. Select the portion of the document that will be the destination of the link.

13

Select an Element

x]

Select a portion of the document o which to link.

= Thermaoskat Inkent Specification S
+-[= Lewvel 0: Program Management Information
—|-[= Lewvel 1: System-Level Goals, Requirements, and Canstrainks
+-[= Introduction
[Historical Information
+-[= Environment
+-[= Swskem Goals
--[&= High-Level Requirements

[Paragraph]
[Paragraph]
= system Limitations
[= rirarabar Damivarmanke b

<« Back | Finish | Cancel

Figure 18 - Select Link Destination

6. Click Finish, and SpecTRM will create the link.

System Goals

01, The thermostat is intended 1o regulate the temperature in its environment (— HLEI],
Figure 19 - New Link

To follow the link, click on the blue, underlined text. Now, try creating a link from
HLR1 to G1.
Design Information

Next, we add design decisions at level 2 of the intent specification in the “System Design
Principles” section. Use the same steps that were used above to add the goal and high-
level requirement. When finished, they’ll look something like figure 20, below.

14

Level 2: System Design Principles
System Design Principles

2.1 'Whan the temperature exceeds the sat point, the furnace is deactivated (t HLEL)

2.2 When the temperature drops below the set point, the furnace will be activated (t HLEL),

Figure 20 - Design Principles

SpecTRM-RL Component Requirements Models

SpecTRM-RL (SpecTRM Requirements Language) is a modeling language used in
SpecTRM to describe the behavior of system components. The language was developed
to describe reactive embedded control system software, but it has been successfully
applied to other kinds of components, including hardware. This section shows the
development of a very simple SpecTRM-RL model describing the control software for
our thermostat example. Figure 21, below, shows the outline view of the model skeleton
provided in a new intent specification. The model begins with an empty example of each
kind of model element: inputs, outputs, states, modes, macros, and functions.

EE Cuatline »
—-= Level 3: Blackbox Behavior ”
—-[&= System Blackbox Behavior
- Mew Model

- Cutpuks
+- e Meww Display Cukpu
+- e Meww Cukput Connm
Modes
Skakes
Macros
Functions
Inputs
[Hard Page Break]
= user Model
+-[= Yerification and validation
+-[= Lewvel 4: Physical and Logical Desigr 7
— . . .

- [H-[H-[H-[F

< ST ’ 3

Cutling | Properties

Figure 21 - Empty Model Outline

Scroll down to the model name, “New Model”, and change it to “Thermostat Controller.”

We have found that it’s helpful to begin modeling with the outputs from the component
and work backwards, across the logic of the component, to the inputs. For the thermostat
controller, we will need two outputs: one to turn on the furnace and one to turn off the
furnace. As both of these are output commands, we do not need the display output and
can delete it.

15

= outline

—|-[&= Lewvel 3: Blackbox Behavior ”

X

E System Blackbox Behavior
- Thermostat Cantroller

- Oukpuks
Eagc:) 1=y Display Cukp
+|- B Mew Cukput Comm
Maodes
States Ga To
Macros
Functions
Inputs Cut
[Hard Page Bre Caopy

E user Model Paske

+-[= Werification and va EEES

+-[= Level 4: Physical and Logmar Lesig 3

[1= - . 1. 1

£ b

Cutline | Properties

MNew b

+- - [H-[E

Figure 22 - Deleting Display Output

1. Go to the output command.
2. Change the output name to Activate Furnace, as shown in figure 23, below.

*Thermoste X

IOutput Command I

Activate Furnace

Destination: |
Fields:
Name:
Type:
Acceptable Yalues:
Units:
Granularity:
Hazardous ¥alues:
Exception—Handling:
Description:
Comments:

Timing Behavior:
Initiation Delay:
Completion Deadline:
Output Capacity Assumptions: hdt

Figure 23 - Change Output Command Name

Beneath the command name are a number of attribute-value pairs. Many of these
attributes address requirements completeness. Accidents are often caused by
incompleteness in requirements. Consider the timing behavior cluster of attributes in the

16

output command attributes. During the Three Mile Island accident, reactor status
information was being sent to a line printer. So much information was generated that the
line printer was ran up to three hours behind the state of the reactor, leading the operators
to act on out of date information. The output capacity assumptions section of the output
template reminds the engineers developing the component requirements to consider these
issues. If no information is available, the attribute can be left blank, and the blank
attribute provides a salient reminder that information is missing.

3.

4.

o

The Destination attribute names the component to which the output is sent. Give
the Destination attribute a value of Furnace.

The Fields attribute block lists the fields in the output message. The command to
activate the furnace has only one field.

a. Give the Name attribute a value of Command.

b. Give the Type attribute a value of {Activate, Deactivate}. The Type
attribute describes what values can appear in the field. Outputs may be
integers, real numbers, or values drawn from a finite set of choices (called
enumerated values). Enumerated values are written as a comma-separated
list between two braces.

c. Give the Acceptable Values attribute a value of {Activate}. Although the
command can be either activate or deactivate, the activate furnace output
only ever activates the furnace. A separate command is responsible for
deactivating it. The acceptable values attribute is used to indicate when
more values are allowed in the type than make sense for this output.

d. The rest of the attributes describing the field may be left blank for now.
Attributes like granularity and units do not make sense for an enumerated
type — they are used with integers and real numbers. The description of
the field can be filled in later.

The output, as described so far, is shown in figure 24, below.

The rest of the attributes on the output can be left blank for this small example. A
complete industrial project would complete the template in order to ensure that
the component requirements are complete. Notably, the Description attribute
would contain a hyperlink back up to design decision 2.2, which motivates the
need for an output to activate the furnace. Similarly, design decision 2.2 would
contain a hyperlink down to 3.Activate Furnace.

17

Thetmaos X

/Output Command |

Activate Furnace

Destination: Furnace
Fields:
Mame: Command
Type: {Activate, Deactivate}
Acceptable Values: {Activatal
Units:
Granularity:
Hazardous Yalues:
Exception—-Handling:
Description:
Comments:
Timing Behavior:
Initiation Delay:
Completion Deadline:
Output Capacity Assumptions:

I .

Figure 24 - Output Command Attributes

7. Scroll down to the triggering condition for the output. The triggering condition is
an AND/OR table that determines when the output is sent. It starts out empty, as
shown in figure 25, below.

TRIGGERING CONDITION

il

MESSAGE CONTENTS
Field:|Value:

Figure 25 - Empty Triggering Condition and Message Contents Tables

8. According to the system design principles at level two, the furnace will be
activated whenever the temperature falls below a set point. The controller must
infer the temperature of the room in order to determine whether the room is
above, below, or at the set point. We will call this inferred state the room
temperature and write the table as shown below, in figure 26.

TRIGGERING CONDITION

Foom Temperatura in state Cold

Figure 26 - Partial Triggering Condition

18

9. However, the requirements for this output are not quite finished. The output to
activate the furnace should only be sent when the room initially becomes to cold.
As written in figure 26 above, the command to activate the furnace would be sent
repeatedly until the room warmed up, even if the furnace was already active. The
completed triggering condition is shown in figure 27, below. (For a more
complete discussion of SpecTRM-RL’s syntax, consult the online user manual
and the two example projects included with the software.)

TRIGGERING CONDITION

Foom Temperature in state Cold
Pravious YValue of Foom Tempearature in state Cold

Figure 27 - Output Triggering Condition

10. The last step in writing the output is to describe the contents of the output
message. The message contents for this output are simple: the command field
with an activate value, as shown in figure 28, below.

MESSAGE CONTENTS

Fiald: Yaluea:
Command |Activate

Figure 28 - Output Message Contents

The next step is to add an output command that deactivates the furnace when the room is
no longer cold.

1. To add an output command, right-click on the Outputs group and choose New >
Output Command.

19

= outline *

-|-[&= Lewvel 3: Blackbox Behavior -
—|-[&= Swstem Blackbox Behavio
o
ermu:ustat Controller 5 Model Element Group
-
+ Cut {3 Display Cutpuk
+ Modes Copy Dutput Command
+--% Shates Paste
-]
. Macros Delete Supervisary Mode
+ Functions iZontral Mode
-y
+-&g Inputs €L State Element
[Hard Page Break]
[= User Model e Contral Input
+-[= Yerification and Yalidation S Input Yalue
+-[= Lewvel 4: Physical and Logical Desigr &) Macro
+-[= Lewvel 5: Physical Implementation 3
— e == &1 Function
L >
Cutline | Properties

Figure 29 - Adding an Output Command

2. Now fill in the output command, using the Activate Furnace command as a guide.
The results of filling in the name and attributes should look something like figure
30, below.

QOutput Command

Deactivate Furnace

Destination: Furnace
Fields:
Mame: Command
Type: {Activate, Deactivate}
Acceptable ¥alues: {Dectivate}
Units:
Granularity:
Hazardous Yalues:
Exception—-Handling:
Description:
Comments:

Figure 30 - Deactivate Furnace Output Attributes

3. The triggering condition and message contents should look something like figure
31, below.

20

TRIGGERING CONDITION

Foom Temperature in state Cold
Pravious Value of Foom Tempearature in state Cold

MESSAGE CONTENTS

Field: Walue:
Command |Deactivate

Figure 31 - Deactivate Furnace Triggering Condition and Message Contents

Next, delete the modes group, as the behavior of the thermostat is too simple to require
division into control, operating, or supervisory modes.

The output refers to a state called “Room Temperature,” so we’ll turn the empty state
element already in the model into a state that tracks the temperature of the room.

1. Edit the name of the state to read Room Temperature.

2. The Room Temperature state element can transition to several state values. All
states are required to have an Unknown state. The component transitions to the
unknown state whenever it is not possible to determine the temperature of the
room. This could happen, for example, if the temperature probe does not report
data to the software controller. In addition to the unknown state, we referred to
the Cold state in an output triggering condition above. It would make sense to
have At Set Point and Hot transitions as well. First, we fill out the AND/OR
table for the Unknown state. This AND/OR table describes the conditions that
must be true in order to transition to the unknown state.

We know that determining whether the room is too hot, too cold, or at the set
point is going to rely on a measurement of the room’s temperature and the set
point desired by the user. If either of these inputs are Obsolete, meaning that the
data is too old to be relied upon or was never received in the first place, then the
temperature of the room cannot be determined. To enter this data, it will be
necessary to add a column and a row to the AND/OR table. To add or remove a
row or column, right-click inside the cell to delete or after which to add, then
select the command, as shown in figure 32, below.

DEFINITION

= Unknown
[Tem perature Measurement is Obsolete|

Add Fow

Delete Row
Delete Colurmn

Figure 32 - Adding a Column to an AND/OR Table

21

3. When finished, the table should look like figure 33, below.

= Unknown

Temperature Measuremeant is Obsoletea

Set Point is Obsolets

i

Figure 33 - AND/OR Table for the Unknown Transition

4. Now, we add three more transition conditions: Cold, At Set Point, and Hot. This
is done by right clicking on the state element in the outline view and selecting the
New > Transition Condition command.

X

—|-[= Level 3: Blackbox Beharvior
—|-[E= System Blackbox Behavior
= Thermostat Controller
= Cukputs
+|- B Ackivate Furnace
+- e Deactivate Furnace
- States
ERRec IR E o Ternperatur
= Macros

Go To Functions
“Z Attribute
Cut = Transition Condition
Copy FIFICation and validation
Paste t: Physical and Logical Desigr
¢ Delete | =S==T s

b

Cutline | Properties

Figure 34 - Adding a Transition Condition to a State Element

5. When edited, the AND/OR tables will look something like those in figure 35,

below.

22

DEFINITION

= Unknown

Temperature Measurement iz Obsolata
|

Sat Point is Obsolate

= Cold
[Ternperature Measurarent < Set Point |

= AL Set Point
[Ternperature Measurement = Set Point |

= Hot
[Ternperature Measurement > Set Point |

Figure 35 - AND/OR Tables for the Room Temperature State

Simply delete the macro and function model element groups. This simple thermostat
component does not use macros or functions. At this point, most of the logic that governs
the workings of the thermostat has been decided. All that remains is the creation of
inputs to the component. In the process of working backward from the outputs, we’ve
identified two inputs necessary to accomplish the component’s function: a temperature
set point and a measurement of the current temperature.

The set point input is a control input; it comes from a user to direct the operations of the
thermostat. We can create the set point input by editing the empty control input skeleton
at the top of the inputs group.

Change the name of the input to Set Point.

For the Source attribute, enter Thermostat Controls.

The input has a Type of Integer.

The Units are degrees Fahrenheit, and the Granularity is 1 degree. The
Exception Handling is None.

5. Put together, the attributes describing the input look like figure 36, below. Again,
a real specification would involve determining values for the completeness
attributes on the input, but we omit them for this simple example.

PwnE

23

Control Input

Set Point

Source: Thermostat Controls

Type: Integer

Possible Values (Expected Range): Anvy
Units: Fahfenheit
Granularity: 1 degree
Exception-Handling: MNone

Figure 36 - Attributes for Set Point Input

Default definition tables are suggested by SpecTRM because many inputs behave
similarly. These defaults assume that after some amount of time, the input’s value will
become obsolete. This obsolete value makes it easy to specifically identify how out of
date data is handled, an important consideration in real-time systems. Thermostat set
points, however, are often set by a user and left in place for some time. The edited tables
look like the following:

DEFINITION

= Mew Data for Set Point
[Set Foint was Received |

= Pravious Yalue of Set Point
set Point was Received
sat Point was MNaver Faceivad

= Dbsolete
[Set Point was MNever Received |

Figure 37 - Definition Tables for Set Point Input

The temperature measurement input is an input value; it comes from a measurement of
the controlled process. We can create the temperature measurement input by editing the
empty input value skeleton.

Change the name of the input value to Temperature Measurement.

For the Source attribute, enter Temperature Probe.

The input has a Type of Integer.

The Units are degrees Fahrenheit, and the Granularity is 1 degree. The
Exception Handling is None.

10. Put together, the attributes describing the input look like figure 38, below. Again,
a real specification would involve determining values for the completeness
attributes on the input, but we omit them for this simple example.

©oN>

24

Input Yalue

Temperature Measurement

Source: Temperature Probe

Type: Integer

Possible Yalues (Expected Range): Any
Units: Degreas Fahrenheit
Cranularity: 1degres
Exception-Handling: Mone

Figure 38 - Attributes for Temperature Measurement Input

Default definition tables are suggested by SpecTRM because many inputs behave
similarly. These defaults assume that after some amount of time, the input’s value will
become obsolete. This obsolete value makes it easy to specifically identify how out of
date data is handled, an important consideration in real-time systems. For the
temperature measurement, the finished tables look like the following.

DEFINITION

= Mew Data for Temperature Measurameant
|Tem peratura Measurement was Fecaived |

=

Pravious YWalue of Temperature Measuramant
Temperature Measzuremeant was Received
Time Since Temperature Measurement was Last Feceived <= 1 seconds

(=]

Ohbsolata
Fystam Start]
Tempearature Measurement was Mewvar Recaived

Time Since Temperature Measurement was Last Received > 1|seconds .

[=1]

Figure 39 - Definition Tables for Temperature Measurement Input

Model Validation

Once the model is constructed, it can be executed and analyzed. However, to execute and
analyze a model, the syntax of the model must be valid. For example, consider the case
in figure 40, below. This is the triggering condition for one of our outputs with an error
introduced. The Room Temperature name has been mistakenly written as
Temperature. When the file is saved, the model is automatically validated. Because of
the error here, tasks are added to the task view at the bottom of the window, as shown in
figure 41, below.

25

TRIGGERING CONDITION

Temparatura in state Cold
Previous Value of Room Temperature in state Cold

Figure 40 - Erroneous Triggering Condition

SpecTRM Editor - Thermostat.spd - SpecTRM [:I@[EI

Fil= Edit Mavigate Search Projeck Format Analysis Simulate Run Visualizations ‘Window Help

=¥ - 5 B - ¢ @ -

B |7 Mavigator w x || B Thermostat.spd X
A
| o £ TRIGGERING CONDITION
+ &% Example Project
= 1& Tutorial [Temperature in state Cold |
.project [Previous Walue of Room Temperature in state Cold|
B Copy (2) of Thermostat.spd
a
% Copy {3} of Thermostat. spd MESSAGE CONTENTS
E Copy (4) of Thermastat, spd
E Copy of Thermostat, spd
E Thermostat.spd Command
B/ outline x

#-E Level 2; System Design Principles #
= B Level 3: Blackbox Behavior
—-[E System Blackbox Behaviar v
=1 %8 Thermostat Controller < S
= C@ Outputs
+ @ Activate Furnace
+|- & Deactivate Furnace

=@ States
B Ry T h
H cé In‘putzom emperature Thermastat.spd Activate Furnace in Therm
+|-Eg Set Point
+| g Temperature Meas
[Hard Page Break]
[= User Model
+-[E Verification and validation

Resource In Fal... ‘ Location |

Thermostat.spd Tutarial Activate Furnace in Thermostat Controller

v
—

< »

Cutline | Properties

Na such element exists,

Figure 41 — Task Added for Erroneous Name

Correcting the name and saving the file removes the error notice from the task view.

Sometimes it is desirable to remove validation error tasks from the task list without
having to make changes to a model. This is often the case when working on a partially
complete model — it isn’t intended to be finished yet and errors are expected. In this case,
it is possible to clear the validation errors related to a model from the task list.

1. Right-click on the model in the outline view.
2. Choose the Clear Validation Tasks command.

26

= outline *

+-[= Lewvel 2: System Design Principles #
--[&= Lewvel 3: Blackbox Behavior
- [& Swskem Blackbox Behaviar
= Therrmostat Conkroller <
- OukpUks
+ - Activate ;- G0 To
+| -3 Dieackivaty

= M]
- States

+-EL Room Ten Cuk
= Inputs Copry

+-Eg Set Poink Paste
+|- S Temperat Delete
[Hard Page Break,
= user Madel Generate Yisualization

+-[= Verification and valida
Fm e uem o0 o . G99 Refresh validation Tasks

<

Cutline | Properties

& Clear validation Tasks
Link, Identifiers

Figure 42 - Clear Validation Tasks Command

Alternatively, you can right click on a specification (.spd) file in the resource navigator,
right-click, and select the Clear Validation Tasks command from that menu. This will
clear all validation tasks related to that file.

Simulation

Once the model is complete, simulation makes it possible to see how the component will
behave before the costly steps of design and implementation. SpecTRM simulates the
behavior of the component by executing the requirements specification. This section
describes how to set up and run a simulation of a SpecTRM-RL model. First, we need a
valid model, which we’ve developed in the sections above. Next, we need a visualization
to observe during the simulation.

1. Highlight the model to be simulated in the outline view of the specification file,
right-click, and choose the Generate Visualization command.

27

= outline

5 =
5 =
5 =
B

5 =
5 =

o =

<

- Thermostat Inkent Specification
Lewvel 0 Program Management InfForm
Level 1: System-Level Goals, Requiren
Level 21 System Design Principles <

Level 3: Blackbox Behawior

[E Svstem Blackbox Behavior

+ Thetrmostat Controller
[Hard Page Break]

[= User Madel

[E verification and Yalidati

Level 41 Physical and Logice

Lewvel 5 Physical Implement

Level & Syskem Operations

Cutline | Properties

&7 Tasks (0 items)

| + | ! | Descripkion

GoTo
e k

Zuk
Copy
Paste
Delete

Generate Yisualization

£§3 Refresh Yalidation Tasks
A Clear validation Tasks

Figure 43 - Generating Visualization

2. Provide a location and file name for the visualization file.

28

Save File As [E|

Save As
-,
Save file bo another location,

Enter or select the parent Folder:

| Tukarial

+- 1z Example Praject

1= Tutorial

File name: | Thermostat, mewe

Ik | Cancel

Figure 44 - Supply Name for Visualization File

3. Double-clicking on the .mvc file in the resource navigator will open an editor for
the visualization, as shown in figure 45, below. The editor can be used to refine
the layout of the visualization. For this example, however, no changes are

necessary.

29

Thermastat.spd x
[Select [Temnerature Pruhe] -
[0 Marguee
«:Connection Tool Temperatu
— Thermostat Controller
Model Elements #
A Label SUPERVISORY MODE | INFERRED SYS
g Input Room Temperature
Th stat Controls |——»
o cum (Thermostat Controls|——— cONTROL MODE e
&L State Cold
Mode E&t Set Point
& Device Hot
B Group
Madel
w
¢ >

Figure 45 - Visualization Editor

The thermostat simulation will be fed data from text files, which must be created next.

1. First, create a new folder for the simulation data by right clicking on the Tutorial
project and choosing New > Folder.

30

B Mavigakor w % || © Thermostat,spd Thermaostat,

| oo E |:':'z='§= |[§Select
[+-1=# Exampla Project £, Marques
Bt A profe
.project ject. ..
LR G0 Inko
Thermos _ "
- E Thermae Cipen in New Window
Capy &\ Intent Specification
@ Paste Simulation Configuration
8 Delete [BF visualization
Move... ﬁr Other...
Rename e
adel
g2y Import..,
£ Export...
E§5 Refresh
8= outline Close Project
" Model Team ¥
- Thermostat Con - Compare With ,
-- Temperature Pr Replace With ’
- aroup Restore from Local History. .. <
[+ Thermastat Con
- Group Properties asks (0 items)

Figure 46 - New Folder Command

2. Provide a name for the folder of simulation data files.

31

]

Mew Folder

Folder

Create a new Folder resaurce, @

Enter or select the parent Folder:

| Tukarial

a o
+- 1z Example Project
1= Tutorial

Folder name: | Simulation Data|

Advanced =»

Finish | Cancel

Figure 47 - Simulation Data Directory Creation Dialog

3. SpecTRM creates the folder underneath the Tutorial project.

32

E Mavigatar

@5 rl| X SF
+-TzF Example Project
—-1=F Tukarial
S Sirnulation Data
.project
Thermostat, fmye
B Thermastat,spd

Figure 48 - Simulation Data Folder

4. Now create a text data file for the set point input. This is done with by right
clicking on the folder and choosing the New > Other... command.

33

E MNavigatar - E Thermostat, spd

G om | e [y Select

[+-Ta# Example Project I:I+ Marquee

[=]-1=% Tutarial +— Conneckion Toal
= SiriLlation Data

& Model Elerments »

ﬁ} Project. ..

Go Into
Open in Mesw Window % Folder

Copy é’_i Intent Specification
@ Pacte Sirnulation Canfiquration
@ Wisualization

8 Delete
Mave, ..

Renarne

Eug Import...
£y Export...

@15 Refresh

g e | |

Team »
Compare \With »
Replace With k
Restore From Local History...

57 Tasks (0 items)
Properties | v | ! | Description

Figure 49 - New File Command

— = e e

5. The file is created as a simple file, shown in figure 50, below.

34

New Ed

Select P
L]
Create a new file resource ﬁ
Sirnple ﬁ“ Project
SpecTRM =% Falder
il |

| Mext = | Cancel

Figure 50 - Simple File

6. Give the file a name of Set Point Data.csv. When you click finish, the file will
automatically be opened. If your computer has Microsoft Office installed, the file
will be opened in Microsoft Excel. Put times in the first column and data in
subsequent columns, as shown in figure 51, below. The data file below says that
at 1 second into the simulation, the user inputs a set point of 70 degrees
Fahrenheit.

£l Set Point Data

B
1 second 1 70

2
Figure 51 - Simulation Data File

7. When saving the file, you must save the file as a comma separated value (CSV)
file, as shown in figure 52, below. Excel will warn that information may be lost
by saving to CSV. Confirm that you wish to save the file as a CSV file.

35

<] @ @ X o5 E - Toos -

Save in: I |5y Simulation Data

o

Hiskory

«'

My Documents

i Set Poink Data

Favorites

—ﬁ File name: ISet Point Daka j E Save I

Wy et
Save as bype: |c5u {Comma delimitad) -] -l |

Figure 52 - Save as a CSV file

Now use the same procedure to create an input file for the temperature reading called
Temperature Measurement.csv. The only difference is that the file of temperature
readings will have more data in it. Create a file that looks like the following:

36

Bl Temperature Reading

A,

1 1500 milliseconds 72
2 (1000 milliseconds 71
3 |[1500 milliseconds 70
4 12000 milliseconds [
S |2500 milliseconds St
F 3000 milliseconds (=i
73500 milliseconds 70
a8 (4000 milliseconds 1
9 4500 milliseconds 72
10 15000 milliseconds 71
11 15500 milliseconds 70
12 16000 milliseconds [
13 |Ra00 milliseconds St
14 7000 milliseconds (=i
15 7500 milliseconds 70
16 18000 milliseconds 1
17 18500 milliseconds 72
18 19000 milliseconds 71
19 19500 milliseconds 70
20 10000 milliseconds B9
21

Figure 53 - Temperature Measurement Data

8. Lastly, right-click on the Simulation Data folder and select the Refresh
command. This forces SpecTRM to synchronize with the file system, which has
been changed by Excel.

Next, we must create a simulation configuration file that ties together the model,
visualization, and data sources.

1. Create a simulation configuration file by right clicking on the tutorial project and
selecting New > Simulation Configuration.

37

E Mavigatar * X Thermostat, spd
=T = - .=§=' [‘% Select
+-{= Example Project {73 Marquee
—|- e +—+ Connection Tool
T Siranlakime Cak o
Mew d =5 Project...
@0 Into
Open in Mew Window % Folder
Capy Intent Specification
% B Simulation Configuration
9% Delete BN visualization
Mave. .. @v Other...
Renares

Figure 54 - Command to Create a New Simulation Configuration

2. Provide a name for the simulation configuration file, as shown in figure 55,

below.

Simulation Configuration Editor File

This wizard creates a new File with *,scf extension that can be opened by simulation configuration edikar,

x]

Container: | ITutarial

Erowse. ..

File name: | Thermostat, scf

Finish |

Cancel

Figure 55 - Choose Name for Simulation Configuration File

3. SpecTRM will open an editor for the new simulation configuration file.

38

Thermastat.spd Thermostak, myve x
Simulator Configuration
Models Connections General Settings

Display Time Resolution

| 50 |mi||isecu:|nds j

Ideal Time Compression Ratio

Real Time : Simulation Tine
Mare

|5I3 |mi||isec0nds j g |50 |mi||isec0nds ﬂ

Visualizations
[Halt simulation at the end of available data.

Mare More

‘Overview:| Models | Visualizations | Connections

Figure 56 - Simulation Configuration Editor

4. Change the display time resolution, real time, and simulation time to 250
milliseconds. This will cause the simulation to run in real time, updating once
every 250 milliseconds.

Next, add the model to the simulation:
1. Click the Models tab at the bottom of the editor.

2. Click the Add Model... button in the editor page displayed.
3. Choose the thermostat specification file in the list displayed.

39

Add a Model

select a Specification

Choose a specification document From which to add a model,

altitude Switch, spd

Criise Cn:nntrn:nl.sid

| Mext = | Cancel

x]

Figure 57 - List of Specification Files

4. Select the Thermostat model from the file.

40

Add a Model

x]

Select a Model

Chose a model b add ko the simulation,

Thermostat Controller

| <« Back | Finish

Cancel

Figure 58 - List of Models in the File

5. Click Finish, and SpecTRM will add the model to those in the simulation.

Thermostat.spd Thermastat, myvc B *Thermaosta

Models

Thermnostat, spd: Thermostat Conkr

Properties

Add Madel... Specification: fTutorial] Thermostat, spd
Remave Maodel Model: Thermostat Conkroller

[Halt For Mon-robust logic,

Crverview Models | Visualizations | Connections

Figure 59 - Simulation Configuration with Model Added

41

Next, we add the visualization to the configuration. This process is very similar to
adding a model. Click on the tab for visualizations, then on the add button. When
prompted for the name of the visualization to add, choose the Thermostat.mvc file.

Lastly, the input data files must be connected to the inputs in the model. To do this,
follow the steps below:

1. Click on the Connections tab.

Thermastat.spd Thermostat, myvec

Connections

Properties

Add Input File. ..
Add Cutput File...
Add Conduit...
Remove Conneckion

Figure 60 - Empty Connections Page

2. Press the Add Input File... button.
3. Select the Set Point Data.csv file to use as an input source and click Next.

42

x]

Add Input File Connection

Select an Input File

Zhoose the File From which input data will be read.

Analog Altimeter Data,csw

Digital Alkimeter One Daka,csy
Digital Altimeter Two Daka,csy
Gear Skatus Daka.csy

Inhibit Data,csy

Reset Data,cay

Distance Sensor.csy

Drriver Control,csy

Maintenance Parameter Tuner,csy
Vehicle,csw

Sek Point Daka,csw
Temperature Measuremenk, csy

| Mext = | Cancel

Figure 61 - Select Input File

4. Select the Set Point input as the destination for the input data and click Finish.

43

Add Input File Connection

x]

Select Inputs
Specify the inputs which will be read From the file,

Thermostat Controller:Sekt Paink

Thermastat Cantraller s Temperature Measurement

<« Back Mext = | Finish | Cancel

Figure 62 - Select Set Point Input

5. Now repeat the process to hook up the Temperature Reading.csv data file to the

Temperature Measurement input. When finished, the connections screen should
look like figure 63, below.

Thermastat,spd Thermostat, mwc B *Thermosta X

Connections

Input:Set Point Data,csy Properties

Input File: [Tutorial{Simulation Data) Temperature Measurement.csy

#dd Cutput File, .. Inputs: Thermostat Controller: Temper ature Measurenment
Add Conduit...
Remave Connection

| #
|

Figure 63 - Input Files Added

44

We now add an output files to record the furnace outputs issued by the executing model.

1. Click on the Add Output File... button.
2. Select the output command to activate the furnace.

Add Output File Connection

Select Outputs

Coose the oukput data ko wrike bo the File,

Thermoskat Controller i fckivate Furnace: Command
Thermaoskat Contraller ;Deactivate Furnace: Command

| Mextk = | Cancel

Figure 64 - Select Output for File

3. Supply a folder and file name for the output file, such as the one in figure 65,
below and click Finish.

45

Add Output File Connection

select a File

Zhoose the File to which bo write output data,

Enter or select the parent Folder:

| TukaorialfSimulation Data

+- 1z Example Project
—|-1z% Tutorial
=+ Simulation Data

File narne: | Activate Furnace.csy

Advanced =»

< Back Mext = | Finish | Cancel

Figure 65 - File for Output

4. SpecTRM will add the output file to the list of connections, as shown in figure 66,
below.

46

Thermostat, spd Thermostat. v

Connections Tutorialf Thermostat, scf

Input:Set Point Data.csy Properties
Input: Temperature Measurement.

Cutput: Sckivate Furnace. csw Add Input File. .. Output File: [Tuborial/Simulation Datafackivate Furnace.csy
Add Qutput File, .. Outputs: Thermostat Controller: ctivate Furnace:Command
Add Conduit...
Remove Conneckion

Figure 66 - Connections with Output File Added

Follow the procedure above to add an output file for the furnace deactivation command.
Save the simulation configuration file. The simulation is now ready to run.

1. Select the Simulate > Setup Simulator... command.

SpecTRM Editor - Thermostat.scf - SpecTRM

File Edit Mawigate Search Project Analysis BEUERN Run Window Help
0 = e < Bl - Setup Simulakor.
. .
ﬁ'r‘ 2= Navigator - = Teardown Simulator
8 o =§= = Skark
+- 1% Example Project 1l Pause
- Tutorial _
= .) i Skep
—l-{z= Simulation Data
ﬁ Activate Furnace,csy M Stop 3

Figure 67 - Setup Simulator Command

2. Select the Thermostat simulation configuration and click OK.

47

%)

Selection Meeded

Select Simulator Configuration

O & alkitude Switch Model,scf
O &l cruise Control.scf
Thermostat.scf

Select Al Deselect Al |

(0] 4 | Cancel

Figure 68 - Choice of Simulation Configurations

3. Alittle time will pass as SpecTRM reads in the model, parses it, and validates it.
SpecTRM will automatically open a new perspective, the simulation perspective.

48

SpecTRM Simulator - Thermostat.scf - SpecTRM

File Edit MNavigate Search Project Simulate Run Window Help

B -|E B & ¥ @ -

o= 0 & B X || & Elsment Yalues x

Temperature Prohe I &) Element [value

+ Thermostat C...
lTemperature Measurerment

Thermostat Controller

SUPERVISORY MODE |INFERRED SYSTEM STATE _
Room Termperature
(Themostat Controls|———"""CONTROL MODE

Linknown
ECDU

At Set Point
Hot

<

ITutorial/ Thermostat, mwe

37| Tasks (0 items)

| J ‘ ! | Diescription Resource ‘ InFal.. | Location

Tasks | Simulation Console |Event Log

Figure 69 - Simulation Perspective

The simulation perspective contains the visualization in the top left position. The top
right contains a list of element values. Expanding the list will show all the inputs,
outputs, states, and modes used in the simulation along with their current values. The
bottom of the perspective contains a few views, including the task view and a simulation
console and log. The simulator is controlled with the buttons at the top right of the
visualization view. These buttons start, pause, step, and stop the simulation.

4. Press the start button followed shortly thereafter by the pause button.

e 00 & B X
[Temnerature Pruhe] -
lTemperature Measurement

Figure 70 - Simulation Tool Bar

5. SpecTRM will start the simulation and pause it when the pause button is pushed.
You should see something similar to figure 71, below.

49

Visualizations [Pause: 500 miliseconds]

0= 01 = B x

[Temnerature Pruhe]

Termperature Measurament
Thermostat Controller 72

SUPERVISORY MODE |INFERRED SYSTEM STATE

] Set Poir CONTROL MODE RDEEﬂEE;ﬂﬁ:I’StUre
Cald

At Set Paint
Hot

<

s

ol T

Latl F
Activate Furnace -

Deactivate Furnace

{ITutariali Ther mostat. mve ;

Figure 71 - Beginning of Simulation

The visualization is animated to show what the requirements model is doing during
execution. Values in blue are inputs currently arriving. Inputs shown in a light green are
the most recent values to arrive sometime previously. Whether any of the inputs are in
blue on your screen will depend on when in the data sequence you paused the simulator.
The Room Temperature state element has a yellow highlight indicating the current state.
If you stopped the simulation before 1 second has passed, then the room temperature state
is unknown — although a temperature measurement has come in, the user has not yet set
the set point. Recall that we set up the data files for the set point to come in at 1 second.
Before that, the set point is obsolete, indicating that the data is either too old or, as in this
case, was never received. Use the step button to step forward to 1 second.

50

70

<

Visualizations [Pause: 1 second]

Thermostat Controller

0= 01 = B x

[Temnerature Pruhe]

Termperature Measurament
1

SUPERVISORY MODE |INFERRED SYSTEM STATE

J———— CONTROL MODE

Set Faoint

Room Temperature
Lnknown
Cold
At Set Paoint
Hot

s

ol T

Latl F
Activate Furnace -

Deactivate Furnace

{ITutariali Ther mostat. mve ;

Figure 72 - Simulation at 1 Second

At one second, the user inputs the set point that the system is to maintain. Notice the
room temperature transitions to hot, indicating that the temperature measurement is above
the set point. Step forward to 1.5 seconds and watch the simulation transition to At Set
Point. Step forward again to 2 seconds, and notice that at the room temperature falls
below 70, the room temperature state transitions to Cold, causing the Activate Furnace
command to be sent, as shown in figure 73, below.

51

Visualizations [Pause: 2 seconds] o= 00 & B X
M
[Temnerature Pruhe]
Temperature Measurement
Thermostat Controller b4
SUPERVISORY MODE |INFERRED SYSTEWM STATE e
Room Temperature Activate Furnacerl—
—
] St Point CONTROL MODE Lnknownh Activate
Cold Deactivate Furnace
At Set Paoint
Hot
w
< >

Figure 73 - Transition to Cold Sends a Furnace Activation Command

Continuing the simulation forward will run through the data provided in the text files we
created earlier. When the simulation runs out of data, the measurement input will
eventually go to obsolete. Press stop to halt the simulator. After the simulation is
complete, tear down the simulation with the Simulate > Teardown Simulator
command.

Analysis

Execution of requirements is an excellent way to gain insight into the runtime behavior of
a system. However, a simulation is dependent on the data used to drive the execution. If
the data used shows a requirements error, the defect can be corrected. However, if the
available data doesn’t demonstrate a problem, then it will not be detected using
simulation alone. Static analyses of a model help find problems without relying on
particular data chosen to exercise the system.

One static analysis provided by SpecTRM detects nondeterminism. Nondeterminism
occurs when more than one AND/OR table in a state or mode element is true at the same
time. For example, an error in the requirements for the thermostat controller might make
it possible for the tables for Cold and Hot to be true at the same time. Obviously, the
room cannot be both below and above the set point temperature, so this would indicate an
error in the requirements. Another error would be if the triggering conditions to activate
and deactivate the furnace were true at the same time — only one of those outputs should
be sent at a time. We will test this latter case using the nondeterminism analysis.

1. Select Analysis > Determinism Analysis from the main menu.

52

Spec TRM Editor - Thenmostat.spd - SpecTRM
File Edit Mavigate Search Project Format
B-HEES ||| &%
i o

Figure 74 - Determinism Analysis Menu Command

Analysis

2. Select the Thermostat.spd file.

Determinism Analysis

5Select a Specification File

Choose the specification File which contains the model to analyze.

alkitude Switch, spd

| Mext = |

Simulake Run

Robustness Analysis

Determinism Analysis

Crilise Cn:nntrn:nl.sid

Cancel

Wis

3

Figure 75 - Select a File for Analysis

3. Select the model to analyze.

53

x]

Determinism Analysis

Select a SpecTRM-RL Model
Choose a SpecTRM-RL model ko analyze.

Thermoskat Controller

< Back | Mext = | Cancel

Figure 76 - Select Model to Analyze

4. Expand the output and select the two triggering conditions. To select the first, left
click on it. To select the second, ctrl + left click.

54

x]

Determinism Analysis

Select a set of Condition Tables to Analyze.

Select the conditions ko analkvze For determinism. The combination of
conditions will be tested for nondeterministic behavior,

—|- Activate Furnace
Triggering Condition
—|- Deactivate Furnace

Triggering Condition
+|- Room Temperature
+|- Set Poink
+|- Temperature Measurement

< Back | Mext = | Cancel

Figure 77 - Select Tables to Analyze for Nondeterminism

5. Give SpecTRM a file in which to write the results.

55

x]

Determinism Analysis

Choose the Target file for Analysis Results.

Select the File to which the results of the analysis will be written,

Enter or select the parent Folder:

| Tukarial

2
+- 1z Example Project
+- 1z Tutorial

File name: | HE=nENat=r] e

Advanced =»

< Back | Finish | Cancel

Figure 78 - File Selection Dialog

6. The analysis results will be generated and the results file opened. The results
should look like figure 79, below.

56

Analysis for
Nondeterministic Scenarios

Original Conditions

Foom Temperature in state Cold
Previous Yalue of Room Temperature in state Cold

Foom Temperature in state Cold
Previous Yalue of Room Temperature in state Cold

Results

Mo scenarios were found,

Figure 79 - Analysis Results

Note that the results have found no examples of nondeterminism here. The thermostat
model is so simple that we would have to contrive examples in which nondeterminism
appeared in the model. Were there examples of nondeterminism found by the analysis,
the results would contain a list of expression values that would expose the
nondeterminism, making it a simple task to add conditions to the tables to fix the
problem. To see examples of nondeterminism, explore the altitude switch and cruise
control examples.

The other static analysis SpecTRM can perform is a robustness analysis. A non-robust
set of tables has scenarios under which no table is true. This is something of the inverse
to nondeterminism; nondeterminism involves multiple tables being true, where non-
robustness involves no tables being true. Exactly one table should be true for any
combination system states and inputs.

For more information about SpecTRM’s capabilities and the SpecTRM-RL modeling
language, consult the online user reference manual included with the software. For more
information about using SpecTRM’s features to support system safety, refer to the papers
at http://www.safeware-eng.com/index.php/publications and
http://sunnyday.mit.edu/papers.html

If you have any questions, please feel free to contact us at support@safeware-eng.com.

57

http://www.safeware-eng.com/index.php/publications
http://sunnyday.mit.edu/papers.html

	Run SpecTRM
	Creating a Project
	Creating an Intent Specification
	Editing the Specification
	Creating Traceability Links
	Design Information
	SpecTRM-RL Component Requirements Models
	Model Validation
	Simulation
	Analysis

